Science.gov

Sample records for dynamic interfacial properties

  1. Influences of thermal annealing on P3HT/PCBM interfacial properties and charge dynamics in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng-En; Dinelli, Franco; Yu, Chen-Te; Shih, Hwa-Wei; Pei, Zingway; Chang, Chen-Shiung; Shih-Sen Chien, Forest

    2015-12-01

    The effects of thermal annealing on the interfacial properties of poly(3-hexylthiophene) (P3HT)/[6,6]-phenyl C61 butyric acid methyl ester (PCBM) and on the charge dynamics in P3HT:PCBM polymer solar cells (PSCs) are investigated. This study determines that an effective phase separation of the P3HT and PCBM caused by thermal annealing achieves a larger interfacial area for efficient exciton dissociation and a well-defined pn junction with few defect levels at the P3HT/PCBM interface. Additionally, thermal annealing creates a compositional gradient across the P3HT:PCBM films, which enhances the charge transit ability significantly. These improved interfacial properties and efficiency in charge transit ability account for the better power conversion efficiency of P3HT:PCBM PSCs treated with thermal annealing.

  2. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Garrido, J. M.; Algaba, J.; Míguez, J. M.; Mendiboure, B.; Moreno-Ventas Bravo, A. I.; Piñeiro, M. M.; Blas, F. J.

    2016-04-01

    We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable parameters potential functions approach proposed by Chandrasekhar and Jorgensen [J. Chem. Phys. 77, 5073 (1982)] and a new parametrization of the TraPPE force fields for cyclic alkanes and ethers [S. J. Keasler et al., J. Phys. Chem. B 115, 11234 (2012)]. In both cases, dispersive and coulombic intermolecular interactions are explicitly taken into account. In the second case, THF is modeled as a single sphere, a diatomic molecule, and a ring formed from three Mie monomers according to the SAFT-γ Mie top-down approach [V. Papaioannou et al., J. Chem. Phys. 140, 054107 (2014)]. Simulations were performed in the molecular dynamics canonical ensemble and the vapor-liquid surface tension is evaluated from the normal and tangential components of the pressure tensor along the simulation box. In addition to the surface tension, we have also obtained density profiles, coexistence densities, critical temperature, density, and pressure, and interfacial thickness as functions of temperature, paying special attention to the comparison between the estimations obtained from different models and literature experimental data. The simulation results obtained from the three CG models as described by the SAFT-γ Mie approach are able to predict accurately the vapor-liquid phase envelope of THF, in excellent agreement with estimations obtained from TraPPE model and experimental data in the whole range of coexistence. However, Chandrasekhar and Jorgensen model presents significant deviations from experimental results. We also compare the predictions for surface tension as obtained from simulation results for all the models with

  3. On interfacial properties of tetrahydrofuran: Atomistic and coarse-grained models from molecular dynamics simulation.

    PubMed

    Garrido, J M; Algaba, J; Míguez, J M; Mendiboure, B; Moreno-Ventas Bravo, A I; Piñeiro, M M; Blas, F J

    2016-04-14

    We have determined the interfacial properties of tetrahydrofuran (THF) from direct simulation of the vapor-liquid interface. The molecules are modeled using six different molecular models, three of them based on the united-atom approach and the other three based on a coarse-grained (CG) approach. In the first case, THF is modeled using the transferable parameters potential functions approach proposed by Chandrasekhar and Jorgensen [J. Chem. Phys. 77, 5073 (1982)] and a new parametrization of the TraPPE force fields for cyclic alkanes and ethers [S. J. Keasler et al., J. Phys. Chem. B 115, 11234 (2012)]. In both cases, dispersive and coulombic intermolecular interactions are explicitly taken into account. In the second case, THF is modeled as a single sphere, a diatomic molecule, and a ring formed from three Mie monomers according to the SAFT-γ Mie top-down approach [V. Papaioannou et al., J. Chem. Phys. 140, 054107 (2014)]. Simulations were performed in the molecular dynamics canonical ensemble and the vapor-liquid surface tension is evaluated from the normal and tangential components of the pressure tensor along the simulation box. In addition to the surface tension, we have also obtained density profiles, coexistence densities, critical temperature, density, and pressure, and interfacial thickness as functions of temperature, paying special attention to the comparison between the estimations obtained from different models and literature experimental data. The simulation results obtained from the three CG models as described by the SAFT-γ Mie approach are able to predict accurately the vapor-liquid phase envelope of THF, in excellent agreement with estimations obtained from TraPPE model and experimental data in the whole range of coexistence. However, Chandrasekhar and Jorgensen model presents significant deviations from experimental results. We also compare the predictions for surface tension as obtained from simulation results for all the models with

  4. Dynamic interfacial properties of human tear-lipid films and their interactions with model-tear proteins in vitro.

    PubMed

    Svitova, Tatyana F; Lin, Meng C

    2016-07-01

    This review summarizes the current state of knowledge regarding interfacial properties of very complex biological colloids, specifically, human meibum and tear lipids, and their interactions with proteins similar to the proteins found in aqueous part of human tears. Tear lipids spread as thin films over the surface of tear-film aqueous and play crucial roles in tear-film stability and overall ocular-surface health. The vast majority of papers published to date report interfacial properties of meibum-lipid monolayers spread on various aqueous sub-phases, often containing model proteins, in Langmuir trough. However, it is well established that natural human ocular tear lipids exist as multilayered films with a thickness between 30 and 100nm, that is very much disparate from 1 to 2nm thick meibum monolayers. We employed sessile-bubble tensiometry to study the dynamic interfacial and rheological properties of reconstituted multilayered human tear-lipid films. Small amounts (0.5-1μg) of human tear lipids were deposited on an air-bubble surface to produce tear-lipid films in thickness range 30-100nm corresponding to ocular lipid films. Thus, we were able to overcome major Langmuir-trough method limitations because ocular tear lipids can be safely harvested only in minute, sub-milligram quantities, insufficient for Langmuir through studies. Sessile-bubble method is demonstrated to be a versatile tool for assessing conventional synthetic surfactants adsorption/desorption dynamics at an air-aqueous solution interface. (Svitova T., Weatherbee M., Radke C.J. Dynamics of surfactant sorption at the air/water interface: continuous-flow tensiometry. J. Colloid Interf. Sci. 2003;261:1170-179). The augmented flow-sessile-bubble setup, with step-strain relaxation module for dynamic interfacial rheological properties and high-precision syringe pump to generate larger and slow interfacial area expansions-contractions, was developed and employed in our studies. We established that

  5. Tunable Interfacial Thermal Conductance by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Meng

    We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1

  6. Tunable Interfacial Thermal Conductance by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Shen, Meng

    We study the mechanism of tunable heat transfer through interfaces between solids using a combination of non-equilibrium molecular dynamics simulation (NEMD), vibrational mode analysis and wave packet simulation. We investigate how heat transfer through interfaces is affected by factors including pressure, interfacial modulus, contact area and interfacial layer thickness, with an overreaching goal of developing fundamental knowledge that will allow one to tailor thermal properties of interfacial materials. The role of pressure and interfacial stiffness is unraveled by our studies on an epitaxial interface between two Lennard-Jones (LJ) crystals. The interfacial stiffness is varied by two different methods: (i) indirectly by applying pressure which due to anharmonic nature of bonding, increases interfacial stiffness, and (ii) directly by changing the interfacial bonding strength by varying the depth of the potential well of the LJ potential. When the interfacial bonding strength is low, quantitatively similar behavior to pressure tuning is observed when the interfacial thermal conductance is increased by directly varying the potential-well depth parameter of the LJ potential. By contrast, when the interfacial bonding strength is high, thermal conductance is almost pressure independent, and even slightly decreases with increasing pressure. This decrease can be explained by the change in overlap between the vibrational densities of states of the two crystalline materials. The role of contact area is studied by modeling structures comprised of Van der Waals junctions between single-walled nanotubes (SWCNT). Interfacial thermal conductance between SWCNTs is obtained from NEMD simulation as a function of crossing angle. In this case the junction conductance per unit area is essentially a constant. By contrast, interfacial thermal conductance between multiwalled carbon nanotubes (MWCNTs) is shown to increase with diameter of the nanotubes by recent experimental studies [1

  7. Surface relaxations as a tool to distinguish the dynamic interfacial properties of films formed by normal and diseased meibomian lipids.

    PubMed

    Georgiev, Georgi As; Yokoi, Norihiko; Ivanova, Slavyana; Tonchev, Vesselin; Nencheva, Yana; Krastev, Rumen

    2014-08-14

    The surface properties of human meibomian lipids (MGS), the major constituent of the tear film (TF) lipid layer, are of key importance for TF stability. The dynamic interfacial properties of films by MGS from normal eyes (nMGS) and eyes with meibomian gland dysfunction (dMGS) were studied using a Langmuir surface balance. The behavior of the samples during dynamic area changes was evaluated by surface pressure-area isotherms and isocycles. The surface dilatational rheology of the films was examined in the frequency range 10(-5) to 1 Hz by the stress-relaxation method. A significant difference was found, with dMGS showing slow viscosity-dominated relaxation at 10(-4) to 10(-3) Hz, whereas nMGS remained predominantly elastic over the whole range. A Cole-Cole plot revealed two characteristic processes contributing to the relaxation, fast (on the scale of characteristic time τ < 5 s) and slow (τ > 100 s), the latter prevailing in dMGS films. Brewster angle microscopy revealed better spreading of nMGS at the air-water interface, whereas dMGS layers were non-uniform and patchy. The distinctions in the interfacial properties of the films in vitro correlated with the accelerated degradation of meibum layer pattern at the air-tear interface and with the decreased stability of TF in vivo. These results, and also recent findings on the modest capability of meibum to suppress the evaporation of the aqueous subphase, suggest the need for a re-evaluation of the role of MGS. The probable key function of meibomian lipids might be to form viscoelastic films capable of opposing dilation of the air-tear interface. The impact of temperature on the meibum surface properties is discussed in terms of its possible effect on the normal structure of the film.

  8. Molecular dynamics analysis on wetting and interfacial properties of water-alcohol mixture droplets on a solid surface

    NASA Astrophysics Data System (ADS)

    Surblys, D.; Yamaguchi, Y.; Kuroda, K.; Kagawa, M.; Nakajima, T.; Fujimura, H.

    2014-01-01

    Molecular dynamics simulations of single water, water-methanol, or water-IPA (isopropyl-alcohol) mixture droplets on a solid surface were performed with various mixture ratios. An increase in alcohol fraction generally gave an increase in droplet wettability. Both methanol and IPA molecules showed a strong preference to gather at various interfaces, with methanol molecules also showing a tendency to diffuse into the droplet bulk. Specific interfacial tensions were investigated using quasi-one-dimensional simulation systems, and liquid-vapor and solid-liquid interfacial tensions were found to decrease greatly due to the presence of interfacial alcohol, while solid-vapor interfacial tensions were proved to have little influence on wettability. Young's relation was found to hold quantitatively well for both water-methanol and water-IPA droplets. The validity of using Bakker's equation on solid-liquid interfaces was also investigated, and it was shown that for tightly spaced crystal surfaces, the introduced uncertainly is small.

  9. Molecular Dynamics Simulations of CO2/Water/Quartz Interfacial Properties: Impact of CO2 Dissolution in Water.

    PubMed

    Javanbakht, Gina; Sedghi, Mohammad; Welch, William; Goual, Lamia

    2015-06-01

    The safe trapping of carbon dioxide (CO2) in deep saline aquifers is one of the major concerns of CO2 sequestration. The amount of capillary trapping is dominated by the capillary pressure of water and CO2 inside the reservoir, which in turn is controlled by the interfacial tension (IFT) and the contact angle (CA) of CO2/water/rock systems. The measurement of IFT and CA could be very challenging at reservoir conditions, especially in the presence of toxic cocontaminants. Thus, the ability to accurately predict these interfacial properties at reservoir conditions is very advantageous. Although the majority of existing molecular dynamics (MD) studies of CO2/water/mineral systems were able to capture the trends in IFT and CA variations with pressure and temperature, their predictions often deviated from experimental data, possibly due to erroneous models and/or overlooked chemical reactions. The objective of this study was to improve the MD predictions of IFT and CA of CO2/water/quartz systems at various pressure and temperature conditions by (i) considering the chemical reactions between CO2 and water and (ii) using a new molecular model for α-quartz surface. The results showed that the presence of carbonic acid at the CO2/water interface improved the predictions of IFT, especially at low temperature and high pressure where more CO2 dissolution occurs. On the other hand, the effect on CA was minor. The slight decrease in CA observed across the pressure range investigated could be attributed to an increase in the total number of H-bonds between fluid molecules and quartz surface.

  10. Internal and interfacial dielectric properties of cytochrome c from molecular dynamics in aqueous solution.

    PubMed Central

    Simonson, T; Perahia, D

    1995-01-01

    The dielectric properties of proteins are central to their stability and activity. We use the Fröhlich-Kirkwood theory of dielectrics to analyze two 1-ns molecular dynamics simulations of ferro- and ferricytochrome c in spherical droplets of 1400 water molecules. Protein and solvent are idealized as a series of concentric, spherical, dielectric media. Analysis results depend strongly on the treatment of the charged protein side chains at the protein/solvent interface. If charged side chains are viewed as part of the protein medium, then the protein dipole fluctuations are dominated by large, mutually uncorrelated, anisotropic, motions of the charged side chains. It is then incorrect to view the protein region as a single, homogeneous dielectric material. If one does take this view, estimates of the protein "dielectric constant" vary from 16 to 37, depending on the exact choice of model parameters. In contrast, if the charged portions of the charged side chains are viewed as part of the solvent medium, then theory and simulation are consistent: the protein dipole fluctuations excluding charged side chains are roughly those of a homogeneous, isotropic dielectric medium, with a dielectric constant of 4.7 +/- 1.0 (ferro) or 3.4 +/- 1.0 (ferri), in agreement with powder experiments. Statistical uncertainty and sensitivity to model parameters are small. Analysis of the radial dependence of the dipole fluctuations suggests that the inner half of the protein has a somewhat lower dielectric constant of 1.5-2, consistent with its biological function in electron transfer. These results suggest that Poisson-Boltzmann models could treat the protein bulk as a low-dielectric medium and the charged surface groups as part of the solvent region. Images Fig. 1 Fig. 3 PMID:7862638

  11. Microstructural Evolution Based on Fundamental Interfacial Properties

    SciTech Connect

    A. D. Rollett; D. J. Srolovitz; A. Karma

    2003-07-11

    This first CMSN project has been operating since the summer of 1999. The main achievement of the project was to bring together a community of materials scientists, physicists and mathematicians who share a common interest in the properties of interfaces and the impact of those properties on microstructural evolution. Six full workshops were held at Carnegie Mellon (CMU), Northwestern (NWU), Santa Fe, Northeastern University (NEU), National Institute for Standards and Technology (NIST), Ames Laboratory, and at the University of California in San Diego (UCSD) respectively. Substantial scientific results were obtained through the sustained contact between the members of the project. A recent issue of Interface Science (volume 10, issue 2/3, July 2002) was dedicated to the output of the project. The results include: the development of methods for extracting anisotropic boundary energy and mobility from molecular dynamics simulations of solid/liquid interfaces in nickel; the extraction of anisotropic energies and mobilities in aluminum from similar MD simulations; the application of parallel computation to the calculation of interfacial properties; the development of a method to extract interfacial properties from the fluctuations in interface position through consideration of interfacial stiffness; the use of anisotropic interface properties in studies of abnormal grain growth; the discovery of abnormal grain growth from random distributions of orientation in subgrain networks; the direct comparison at the scale of individual grains between experimentally observed grain growth and simulations, which confirmed the importance of including anisotropic interfacial properties in the simulations; the classification of a rich variety of dendritic morphologies based on slight variations in the anisotropy of the solid-liquid interface; development of phase field methods that permit both solidification and grain growth to be simulated within the same framework.

  12. Interfacial welding of dynamic covalent network polymers

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Shi, Qian; Li, Hao; Jabour, John; Yang, Hua; Dunn, Martin L.; Wang, Tiejun; Qi, H. Jerry

    2016-09-01

    Dynamic covalent network (or covalent adaptable network) polymers can rearrange their macromolecular chain network by bond exchange reactions (BERs) where an active unit replaces a unit in an existing bond to form a new bond. Such macromolecular events, when they occur in large amounts, can attribute to unusual properties that are not seen in conventional covalent network polymers, such as shape reforming and surface welding; the latter further enables the important attributes of material malleability and powder-based reprocessing. In this paper, a multiscale modeling framework is developed to study the surface welding of thermally induced dynamic covalent network polymers. At the macromolecular network level, a lattice model is developed to describe the chain density evolution across the interface and its connection to bulk stress relaxation due to BERs. The chain density evolution rule is then fed into a continuum level interfacial model that takes into account surface roughness and applied pressure to predict the effective elastic modulus and interfacial fracture energy of welded polymers. The model yields particularly accessible results where the moduli and interfacial strength of the welded samples as a function of temperature and pressure can be predicted with four parameters, three of which can be measured directly. The model identifies the dependency of surface welding efficiency on the applied thermal and mechanical fields: the pressure will affect the real contact area under the consideration of surface roughness of dynamic covalent network polymers; the chain density increment on the real contact area of interface is only dependent on the welding time and temperature. The modeling approach shows good agreement with experiments and can be extended to other types of dynamic covalent network polymers using different stimuli for BERs, such as light and moisture etc.

  13. Studies of structural, dynamical, and interfacial properties of 1-alkyl-3-methylimidazolium iodide ionic liquids by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Ghatee, Mohammad Hadi; Zolghadr, Amin Reza; Moosavi, Fatemeh; Ansari, Younes

    2012-03-01

    Bulk and surface properties of the ionic liquids 1-alkyl-3-methyl-imidazolium iodides ([Cnmim]I) were simulated by classical molecular dynamics using all atom non-polarizable force field (n = 4, butyl; 6, hexyl; 8, octyl). The structure of ionic liquids were initially optimized by density functional theory and atomic charges obtained by CHELPG method. Reduction of partial atomic charges (by 20% for simulation of density and surface tension, and by 10% for viscosity) found to improve the accuracy, while a non-polarizable force field was applied. Additionally, the simulation ensembles approach the equilibrium faster when the charge reduction is applied. By these refined force field parameters, simulated surface tensions in the range of 323-393 k are quite in agreement with the experiments. Simulation of temperature dependent surface tension of [C4mim]I well beyond room temperature (up to 700 K) permits prediction of the critical temperature in agreement with that predicted from experimental surface tension data. Simulated densities in the range of 298-450 K for the three ionic liquids are within 0.8% of the experimental data. Structural properties for [C4mim]I were found to be in agreement with the results of Car-Parrinello molecular dynamics simulation we performed, which indicates a rather well-structured cation-anion interaction and occurs essentially through the imidazolium ring cation. Diffusion coefficient changes with alkyl chain length in the order of [C8mim]I > [C6mim]I > [C4mim]I for the cation and the anion. Formation of a dense domain in subsurface region is quite evident, and progressively becomes denser as the alkyl chain length increases. Bivariate orientational analysis was used to determine the average orientation of molecule in ionic liquids surface, subsurface, and bulk regions. Dynamic bisector-wise and side-wise movement of the imodazolium ring cation in the surface region can be deduced from the bivariate maps. Atom-atom density profile and

  14. Molecular dynamics studies of interfacial water at the alumina surface.

    SciTech Connect

    Argyris, Dr. Dimitrios; Ho, Thomas; Cole, David

    2011-01-01

    Interfacial water properties at the alumina surface were investigated via all-atom equilibrium molecular dynamics simulations at ambient temperature. Al-terminated and OH-terminated alumina surfaces were considered to assess the structural and dynamic behavior of the first few hydration layers in contact with the substrates. Density profiles suggest water layering up to {approx}10 {angstrom} from the solid substrate. Planar density distribution data indicate that water molecules in the first interfacial layer are organized in well-defined patterns dictated by the atomic terminations of the alumina surface. Interfacial water exhibits preferential orientation and delayed dynamics compared to bulk water. Water exhibits bulk-like behavior at distances greater than {approx}10 {angstrom} from the substrate. The formation of an extended hydrogen bond network within the first few hydration layers illustrates the significance of water?water interactions on the structural properties at the interface.

  15. Interfacial gauge methods for incompressible fluid dynamics.

    PubMed

    Saye, Robert

    2016-06-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of "gauge freedom" to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  16. Interfacial gauge methods for incompressible fluid dynamics

    PubMed Central

    Saye, Robert

    2016-01-01

    Designing numerical methods for incompressible fluid flow involving moving interfaces, for example, in the computational modeling of bubble dynamics, swimming organisms, or surface waves, presents challenges due to the coupling of interfacial forces with incompressibility constraints. A class of methods, denoted interfacial gauge methods, is introduced for computing solutions to the corresponding incompressible Navier-Stokes equations. These methods use a type of “gauge freedom” to reduce the numerical coupling between fluid velocity, pressure, and interface position, allowing high-order accurate numerical methods to be developed more easily. Making use of an implicit mesh discontinuous Galerkin framework, developed in tandem with this work, high-order results are demonstrated, including surface tension dynamics in which fluid velocity, pressure, and interface geometry are computed with fourth-order spatial accuracy in the maximum norm. Applications are demonstrated with two-phase fluid flow displaying fine-scaled capillary wave dynamics, rigid body fluid-structure interaction, and a fluid-jet free surface flow problem exhibiting vortex shedding induced by a type of Plateau-Rayleigh instability. The developed methods can be generalized to other types of interfacial flow and facilitate precise computation of complex fluid interface phenomena. PMID:27386567

  17. Interfacial Nonlinear Dynamics, Phenomena, and Devices

    NASA Astrophysics Data System (ADS)

    Zhou, Ping

    The dynamics of an optical switch based on a dielectric -clad nonlinear film is presented. Two transition processes of the optical switching, from total internal reflection (TIR) to transmission (Tr) and from Tr to TIR, are investigated in theory as well as experiment. Nonlinear dynamic layered transfer matrix theory is developed to study the transition process from TIR to Tr at a nonlinear thin film due to the optically induced refractive index change. A simple theoretical model based on a dynamic nonlinear Fabry-Perot etalon is given for the analysis of the switching process from Tr to TIR. The quantitative analysis can be used for the design and optimization of an optical sensor protector and other devices. Experiments have been done on both the processes of TIR to Tr and Tr to TIR switching for visible as well as infrared wavelengths. A theory for the design of an optimal anti-reflection coating is proposed in order to aid the design and optimization of a nonlinear interfacial switch. Furthermore, a detailed study of the dynamic optical tunneling through the nonlinear interface indicates that the reflected wave would undergo an additional dynamic nonlinear phase shift which is a novel nonlinear interfacial phenomenon, first revealed by this study.

  18. Dynamics of deeply supercooled interfacial water

    NASA Astrophysics Data System (ADS)

    Swenson, Jan; Cerveny, Silvina

    2015-01-01

    In this review we discuss the relaxation dynamics of glassy and deeply supercooled water in different types of systems. We compare the dynamics of such interfacial water in ordinary aqueous solutions, hard confinements and biological soft materials. In all these types of systems the dielectric relaxation time of the main water process exhibits a dynamic crossover from a high-temperature non-Arrhenius temperature dependence to a low-temperature Arrhenius behavior. Moreover, at large enough water content the low-temperature process is universal and exhibits the same temperature behavior in all types of systems. However, the physical nature of the dynamic crossover is somewhat different for the different types of systems. In ordinary aqueous solutions it is not even a proper dynamic crossover, since the water relaxation decouples from the cooperative α-relaxation of the solution slightly above the glass transition in the same way as all secondary (β) relaxations of glass-forming materials. In hard confinements, the physical origin of the dynamic crossover is not fully clear, but it seems to occur when the cooperative main relaxation of water at high temperatures reaches a temperature where the volume required for its cooperative motion exceeds the size of the geometrically-confined water cluster. Due to this confinement effect the α-like main relaxation of the confined water seems to transform to a more local β-relaxation with decreasing temperature. Since this low-temperature β-relaxation is universal for all systems at high water content it is possible that it can be considered as an intrinsic β-relaxation of supercooled water, including supercooled bulk water. This possibility, together with other findings for deeply supercooled interfacial water, suggests that the most accepted relaxation scenarios for supercooled bulk water have to be altered.

  19. A molecular dynamics study of polymer/graphene interfacial systems

    SciTech Connect

    Rissanou, Anastassia N.; Harmandaris, Vagelis

    2014-05-15

    Graphene based polymer nanocomposites are hybrid materials with a very broad range of technological applications. In this work, we study three hybrid polymer/graphene interfacial systems (polystyrene/graphene, poly(methyl methacrylate)/graphene and polyethylene/graphene) through detailed atomistic molecular dynamics (MD) simulations. Density profiles, structural characteristics and mobility aspects are being examined at the molecular level for all model systems. In addition, we compare the properties of the hybrid systems to the properties of the corresponding bulk ones, as well as to theoretical predictions.

  20. Direct, Dynamic Measurement of Interfacial Area within Porous Media

    SciTech Connect

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.; Bromhal, Grant

    2010-01-01

    Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the

  1. Interfacial properties of stanene-metal contacts

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Pan, Feng; Ye, Meng; Wang, Yangyang; Pan, Yuanyuan; Zhang, Xiuying; Li, Jingzhen; Zhang, Han; Lu, Jing

    2016-09-01

    Recently, two-dimensional buckled honeycomb stanene has been manufactured by molecular beam epitaxy growth. Free-standing stanene is predicted to have a sizable opened band gap of 100 meV at the Dirac point due to spin-orbit coupling (SOC), resulting in many fascinating properties such as quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. In the first time, we systematically study the interfacial properties of stanene-metal interfaces (metals = Ag, Au, Cu, Al, Pd, Pt, Ir, and Ni) by using ab initio electronic structure calculations considering the SOC effects. The honeycomb structure of stanene is preserved on the metal supports, but the buckling height is changed. The buckling of stanene on the Au, Al, Ag, and Cu metal supports is higher than that of free-standing stanene. By contrast, a planar graphene-like structure is stabilized for stanene on the Ir, Pd, Pt, and Ni metal supports. The band structure of stanene is destroyed on all the metal supports, accompanied by a metallization of stanene because the covalent bonds between stanene and the metal supports are formed and the structure of stanene is distorted. Besides, no tunneling barrier exists between stanene and the metal supports. Therefore, stanene and the eight metals form a good vertical Ohmic contact.

  2. Interfacial properties of stanene–metal contacts

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Pan, Feng; Ye, Meng; Wang, Yangyang; Pan, Yuanyuan; Zhang, Xiuying; Li, Jingzhen; Zhang, Han; Lu, Jing

    2016-09-01

    Recently, two-dimensional buckled honeycomb stanene has been manufactured by molecular beam epitaxy growth. Free-standing stanene is predicted to have a sizable opened band gap of 100 meV at the Dirac point due to spin–orbit coupling (SOC), resulting in many fascinating properties such as quantum spin Hall effect, quantum anomalous Hall effect, and quantum valley Hall effect. In the first time, we systematically study the interfacial properties of stanene–metal interfaces (metals = Ag, Au, Cu, Al, Pd, Pt, Ir, and Ni) by using ab initio electronic structure calculations considering the SOC effects. The honeycomb structure of stanene is preserved on the metal supports, but the buckling height is changed. The buckling of stanene on the Au, Al, Ag, and Cu metal supports is higher than that of free-standing stanene. By contrast, a planar graphene-like structure is stabilized for stanene on the Ir, Pd, Pt, and Ni metal supports. The band structure of stanene is destroyed on all the metal supports, accompanied by a metallization of stanene because the covalent bonds between stanene and the metal supports are formed and the structure of stanene is distorted. Besides, no tunneling barrier exists between stanene and the metal supports. Therefore, stanene and the eight metals form a good vertical Ohmic contact.

  3. Understanding the interfacial layer dynamics of polymer nanocomposites from broadband dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Carroll, Robert; Cheng, Shiwang; Sokolov, Alexei

    Polymer nanocomposites show many advanced mechanical, thermal, optical, and transport properties mainly due to the vast interfacial area between the polymer matrix and nanoparticles. Recent studies show that there is an interfacial polymer layer with structure and dynamics that are different from the bulk polymer, and that contributes to the advanced macroscopic properties. It has been shown that broadband dielectric spectroscopy provides good method to study the interfacial dynamics in nanocomposites. However, current dielectric spectroscopy studies ignore the heterogeneous nature of polymer nanocomposites. Models based on a simple superposition of bulk polymer and interfacial layer spectra, or those that assume the interfacial layer is dynamically ``dead'' are inaccurate. In this talk, the prevailing methods in the literature will be compared with an accurate method accounting for the heterogeneity of the nanocomposites. Different nanocomposites with well-dispersed nanoparticles will be used as examples. The analysis clearly shows that the width and the amplitude of the relaxation peaks are affected by the data analysis. Thus accurate quantitative conclusions on properties and thickness of the interfacial layer can be achieved only using heterogeneous models.

  4. Dynamic characteristics of gas-water interfacial plasma under water

    SciTech Connect

    Zheng, S. J.; Zhang, Y. C.; Ke, B.; Ding, F.; Tang, Z. L.; Yang, K.; Zhu, X. D.

    2012-06-15

    Gas-water interfacial plasmas under water were generated in a compact space in a tube with a sandglass-like structure, where two metal wires were employed as electrodes with an applied 35 kHz ac power source. The dynamic behaviors of voltage/current were investigated for the powered electrode with/without water cover to understand the effect of the gas-water interface. It is found that the discharge exhibits periodic pulsed currents after breakdown as the powered electrode is covered with water, whereas the electrical current reveals a damped oscillation with time with a frequency about 10{sup 6} Hz as the powered electrode is in a vapor bubble. By increasing water conductivity, a discharge current waveform transition from pulse to oscillation presents in the water covering case. These suggest that the gas-water interface has a significant influence on the discharge property.

  5. Mesoscale Interfacial Dynamics in Magnetoelectric Nanocomposites

    SciTech Connect

    Shashank, Priya

    2009-12-14

    Biphasic composites are the key towards achieving enhanced magnetoelectric response. In order understand the control behavior of the composites and resultant symmetry of the multifunctional product tensors, we need to synthesized model material systems with the following features (i) interface formation through either deposition control or natural decomposition; (ii) a very high interphase-interfacial area, to maximize the ME coupling; and (iii) an equilibrium phase distribution and morphology, resulting in preferred crystallographic orientation relations between phases across the interphase-interfacial boundaries. This thought process guided the experimental evolution in this program. We initiated the research with the co-fired composites approach and then moved on to the thin film laminates deposited through the rf-magnetron sputtering and pulsed laser deposition process

  6. Correlated Single Quantum Dot Blinking and Interfacial Electron Transfer Dynamics.

    PubMed

    Jin, Shengye; Hsiang, Jung-Cheng; Zhu, Haiming; Song, Nianhui; Dickson, Robert M; Lian, Tianquan

    2010-08-31

    The electron transfer (ET) dynamics from core/multi-shell (CdSe/CdS(3ML)ZnCdS(2ML)ZnS(2ML)) quantum dots (QDs) to adsorbed Fluorescein (F27) molecules have been studied by single particle spectroscopy to probe the relationship between single QD interfacial electron transfer and blinking dynamics. Electron transfer from the QD to F27 and the subsequent recombination were directly observed by ensemble-averaged transient absorption spectroscopy. Single QD-F27 complexes show correlated fluctuation of fluorescence intensity and lifetime, similar to those observed in free QDs. With increasing ET rate (controlled by F27-to-QD ratio), the lifetime of on states decreases and relative contribution of off states increases. It was shown that ET is active for QDs in on states, the excited state lifetime of which reflects the ET rate, whereas in the off state QD excitons decay by Auger relaxation and ET is not a competitive quenching pathway. Thus, the blinking dynamics of single QDs modulate their interfacial ET activity. Furthermore, interfacial ET provides an additional pathway for generating off states, leading to correlated single QD interfacial ET and blinking dynamics in QD-acceptor complexes. Because blinking is a general phenomenon of single QDs, it appears that the correlated interfacial ET and blinking and the resulting intermittent ET activity are general phenomena for single QDs.

  7. Interfacial Molecular Searching Using Forager Dynamics

    NASA Astrophysics Data System (ADS)

    Monserud, Jon H.; Schwartz, Daniel K.

    2016-03-01

    Many biological and technological systems employ efficient non-Brownian intermittent search strategies where localized searches alternate with long flights. Coincidentally, molecular species exhibit intermittent behavior at the solid-liquid interface, where periods of slow motion are punctuated by fast flights through the liquid phase. Single-molecule tracking was used here to observe the interfacial search process of DNA for complementary DNA. Measured search times were qualitatively consistent with an intermittent-flight model, and ˜10 times faster than equivalent Brownian searches, suggesting that molecular searches for reactive sites benefit from similar efficiencies as biological organisms.

  8. How does interfacial rheology govern soap bubble cluster dynamics?

    NASA Astrophysics Data System (ADS)

    Cohen-Addad, Sylvie; Biance, Anne-Laure; Hohler, Reinhard

    2009-11-01

    Aqueous foams are concentrated dispersions of gas bubbles in a soapy solution. These complex fluids exhibit solid-like or liquid-like mechanical behaviors, depending on the applied shear. When it is increased beyond a yield strain, neighbor switching bubble rearrangements called T1 events are triggered and plastic flow sets in. We study experimentally the dynamics of such strain induced T1s in 3D bubble clusters that we consider as model systems of 3D foams. To determine the hydrodynamics and physico-chemistry that set the duration of T1s, we use foaming solutions of a wide range of well characterized bulk and interfacial rheological properties. At low shear rates, the T1 duration is set by a balance between surface tension and surface viscous forces in qualitative agreement with previous studies of T1s in 2D foams [1] and we present a simple physical model that explains our 3D findings. Moreover, above a characteristic shear rate, rearrangement dynamics are driven by the applied strain. By combining all our results, we link the transition from intermittent to continous flow dynamics in foams to the rheology of the gas-liquid interfaces. [4pt] [1] M. Durand, H. A. Stone, Phys. Rev. Lett. 97, 2226101 (2006).

  9. Atomistic simulation of surface functionalization on the interfacial properties of graphene-polymer nanocomposites

    SciTech Connect

    Wang, M. C.; Lai, Z. B.; Galpaya, D.; Yan, C.; Hu, N.; Zhou, L. M.

    2014-03-28

    Graphene has been increasingly used as nano sized fillers to create a broad range of nanocomposites with exceptional properties. The interfaces between fillers and matrix play a critical role in dictating the overall performance of a composite. However, the load transfer mechanism along graphene-polymer interface has not been well understood. In this study, we conducted molecular dynamics simulations to investigate the influence of surface functionalization and layer length on the interfacial load transfer in graphene-polymer nanocomposites. The simulation results show that oxygen-functionalized graphene leads to larger interfacial shear force than hydrogen-functionalized and pristine ones during pull-out process. The increase of oxygen coverage and layer length enhances interfacial shear force. Further increase of oxygen coverage to about 7% leads to a saturated interfacial shear force. A model was also established to demonstrate that the mechanism of interfacial load transfer consists of two contributing parts, including the formation of new surface and relative sliding along the interface. These results are believed to be useful in development of new graphene-based nanocomposites with better interfacial properties.

  10. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength

    SciTech Connect

    Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.

    2014-07-25

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.

  11. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength

    DOE PAGESBeta

    Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.

    2014-07-25

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface.more » The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical

  12. Roles of interfacial reaction on mechanical properties of solder interfaces

    NASA Astrophysics Data System (ADS)

    Liu, Pilin

    This study investigated roles of interfacial reaction in fracture and fatigue of solder interconnects. The interfacial reaction phases in the as-reflowed and after aging were examined by cross-sectional transmission electron microscopy (TEM) while interfacial mechanical properties were determined from a flexural peel fracture mechanics technique. Because of their widespread uses in microelectronic packaging, SnPb solder interfaces, and Bi-containing Pb-free solder interfaces were chosen as the subjects of this study. In the interfacial reaction study, we observed a complicated micro structural evolution during solid-state aging of electroless-Ni(P)/SnPb solder interconnects. In as-reflowed condition, the interfacial reaction produced Ni3Sn 4 and P-rich layers. Following overaging, the interfacial microstructure degenerated into a complex multilayer structure consisting of multiple layers of Ni-Sn compounds and transformed Ni-P phases. In SnPb solder interfacial system, fatigue study showed that the overaging of the high P electroless Ni-P/SnPb interconnects resulted in a sharp reduction in the fatigue resistance of the interface in the high crack growth rate regime. Fracture mechanism analysis indicated that the sharp drop in fatigue resistance was triggered by the brittle fracture of the Ni3Sn2 intermetallic phase developed at the overaged interface. The fatigue behavior was strongly dependent on P concentration in electroless Ni. Kirkendall voids were found in the interfacial region after aging, but they did not cause premature fracture of the solder interfaces. In Bi-containing solder interfacial system, we found that Bi segregated to the Cu-intermetallic interface during aging in SnBi/Cu interconnect. This caused serious embrittlement of Sn-Bi/Cu interface. Further aging induced numerous voids along the Cu3Sn/Cu interface. These interfacial voids were different from Kirkendall voids. Their formation was explained on basis of vacancy condensation at the

  13. An aggregation-induced-emission platform for direct visualization of interfacial dynamic self-assembly.

    PubMed

    Li, Junwei; Li, Yuan; Chan, Carrie Y K; Kwok, Ryan T K; Li, Hongkun; Zrazhevskiy, Pavel; Gao, Xiaohu; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2014-12-01

    An in-depth understanding of dynamic interfacial self-assembly processes is essential for a wide range of topics in theoretical physics, materials design, and biomedical research. However, direct monitoring of such processes is hampered by the poor imaging contrast of a thin interfacial layer. We report in situ imaging technology capable of selectively highlighting self-assembly at the phase boundary in real time by employing the unique photophysical properties of aggregation-induced emission. Its application to the study of breath-figure formation, an immensely useful yet poorly understood phenomenon, provided a mechanistic model supported by direct visualization of all main steps and fully corroborated by simulation and theoretical analysis. This platform is expected to advance the understanding of the dynamic phase-transition phenomena, offer insights into interfacial biological processes, and guide development of novel self-assembly technologies. PMID:25363745

  14. An Aggregation-Induced-Emission Platform for Direct Visualization of Interfacial Dynamic Self-Assembly**

    PubMed Central

    Chan, Carrie Y.K.; Kwok, Ryan T.K.; Li, Hongkun; Zrazhevskiy, Pavel; Gao, Xiaohu; Sun, Jing Zhi; Qin, Anjun; Tang, Ben Zhong

    2015-01-01

    An in-depth understanding of dynamic interfacial self-assembly processes is essential for a wide range of topics in theoretical physics, materials design, and biomedical research. However, direct monitoring of such processes is hampered by the poor imaging contrast of a thin interfacial layer. We report in situ imaging technology capable of selectively highlighting self-assembly at the phase boundary in real time by employing the unique photophysical properties of aggregation-induced emission. Its application to the study of breath-figure formation, an immensely useful yet poorly understood phenomenon, provided a mechanistic model supported by direct visualization of all main steps and fully corroborated by simulation and theoretical analysis. This platform is expected to advance the understanding of the dynamic phase-transition phenomena, offer insights into interfacial biological processes, and guide development of novel self-assembly technologies. PMID:25363745

  15. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties.

    PubMed

    Haghighatpanah, Shayesteh; Bohlén, Martin; Bolton, Kim

    2014-01-01

    Molecular dynamics (MD) and molecular mechanics (MM) methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube (SWNT)-polyethylene and SWNT-polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the SWNT with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1 to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the SWNT wall. PMID:25229056

  16. Time-Dependent Interfacial Properties and DNAPL Mobility

    SciTech Connect

    Tuck, D.M.

    1999-03-10

    Interfacial properties play a major role in governing where and how dense nonaqueous phase liquids (DNAPLs) move in the subsurface. Interfacial tension and contact angle measurements were obtained for a simple, single component DNAPL (tetrachloroethene, PCE), complex laboratory DNAPLs (PCE plus Sudan IV dye), and a field DNAPL from the Savannah River Site (SRS) M-Area DNAPL (PCE, trichloroethene [TCE], and maching oils). Interfacial properties for complex DNAPLs were time-dependent, a phenomenon not observed for PCE alone. Drainage capillary pressure-saturation curves are strongly influenced by interfacial properties. Therefore time-dependence will alter the nature of DNAPL migration and penetration. Results indicate that the time-dependence of PCE with relatively high Sudan IV dye concentrations is comparable to that of the field DNAPL. Previous DNAPL mobility experiments in which the DNAPL was dyed should be reviewed to determine whether time-dependent properties influenced the resutls. Dyes appear to make DNAPL more complex, and therefore a more realistic analog for field DNAPLs than single component DNAPLs.

  17. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength.

    PubMed

    Ge, Ting; Robbins, Mark O; Perahia, Dvora; Grest, Gary S

    2014-07-01

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is significantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.

  18. Molecular Dynamics Simulation of the AgCl/Electrolyte Interfacial Capacity

    SciTech Connect

    Zarzycki, Piotr; Rosso, Kevin M.

    2010-06-03

    Molecular dynamics simulation of the AgCl(100)/KCl(aq) interfacial electrostatic capacity is presented. The simulations are motivated by the need to reduce ambiguities in electrical double layer model parametrization, which here we attempt by reducing the computed interfacial molecular structure to hypothetical planes of charge separation consistent with a treatment of the interface in terms of parallel plate capacitors. The calculated interfacial capacity (cint = 8.43 μF/cm2) is in excellent agreement with measurements for the closely related AgI/electrolyte interface, and the dependence on electrolyte concentration and temperature are qualitatively similar to experimental observations. Molecular dynamics based capacity profiles show a similar overall decay to the classical Helmholtz model, validating its use for approximating the interfacial capacity at relatively high electrolyte concentration. However, fine structure is present and the interfacial electrostatic properties oscillate with distance from the surface. Finally, the dielectric constant for first layer water is calculated to equal 5.1, which confirms that water nearest the interface is under dielectric saturation conditions.

  19. A growing-drop technique for measuring dynamic interfacial tension

    SciTech Connect

    MacLeod, C.A.; Radke, C.J.

    1993-10-01

    A novel, growing-drop technique is described for measuring dynamic interfacial tension due to sorption of surface-active solutes. The proposed method relates the instantaneous pressure and size of expanding liquid drops to interfacial tension and is useful for measuring both liquid/gas and liquid/liquid tensions over a wide range of time scales, currently from 10 ms to several hours. Growing-drop measurements on surfactant-free water/air and water/octanol interfaces yield constant tensions equal to their known literature values. For surfactant-laden, liquid drops, the growing-drop technique captures the actual transient tension evolution of a single interface, rather than interval times as with the classic maximum-drop-pressure and drop.-volume tension measurements. Dynamic tensions measured for 0.25 mM aqueous 1-decanol solution/air and 0.02 kg/m{sup 3} aqueous Triton X-100 solution/dodecane interfaces show nonmonotonic behavior, indicating slow surfactant transport relative to the imposed rates of interfacial dilatation. The dynamic tension of a purified and fresh 6 mM aqueous sodium dodecyl sulfate (SDS) solution/air interface shows only a monotonic decrease, indicating rapid surfactant transport relative to the imposed rates of dilatation. ConverselY, an aged SDS solution, naturally containing trace dodecanol impurities, exhibits dynamic tensions which reflect a superposition of the rapidly equilibrating SDS and the slowly adsorbing dodecanol.

  20. Synthesis and electrochemical properties of polyaniline nanofibers by interfacial polymerization.

    PubMed

    Manuel, James; Ahn, Jou-Hyeon; Kim, Dul-Sun; Ahn, Hyo-Jun; Kim, Ki-Won; Kim, Jae-Kwang; Jacobsson, Per

    2012-04-01

    Polyaniline nanofibers were prepared by interfacial polymerization with different organic solvents such as chloroform and carbon tetrachloride. Field emission scanning electron microscopy and transmission electron microscopy were used to study the morphological properties of polyaniline nanofibers. Chemical characterization was carried out using Fourier transform infrared spectroscopy, UV-Vis spectroscopy, and X-ray diffraction spectroscopy and surface area was measured using BET isotherm. Polyaniline nanofibers doped with lithium hexafluorophosphate were prepared and their electrochemical properties were evaluated.

  1. Investigations on interfacial dynamics with ultrafast electron diffraction

    NASA Astrophysics Data System (ADS)

    Murdick, Ryan A.

    An ultrafast electron diffractive voltammetry (UEDV) technique is introduced, extended from ultrafast electron diffraction, to investigate the ultrafast charge transport dynamics at interfaces and in nanostructures. Rooted in Coulomb-induced refraction, formalisms are presented to quantitatively deduce the transient surface voltages (TSVs), caused by photoinduced charge redistributions at interfaces, and are applied to examine a prototypical Si/SiO2 interface, known to be susceptible to photoinduced interfacial charging The ultrafast time resolution and high sensitivity to surface charges of this electron diffractive approach allows direct elucidation of the transient effects of photoinduced hot electron transport at nanometer (˜2 nm) interfaces. Two distinctive regimes are uncovered, characterized by the time scales associated with charge separation. At the low fluence regime, the charge transfer is described by a thermally-mediated process with linear dependence on the excitation fluence. Theoretical analysis of the transient thermal properties of the carriers show that it is well-described by a direct tunneling of the laser heated electrons through the dielectric oxide layer to surface states. At higher fluences, a coherent multiphoton absorption process is invoked to directly inject electrons into the conduction band of SiO2, leading to a more efficient surface charge accumulation. A quadratic fluence dependence on this coherent, 3-photon lead electron injection is characterized by the rapid dephasing of the intermediately generated hot electrons from 2-photon absorption, limiting the yield of the consecutive 1-photon absorption by free carriers. The TSV formalism is extended beyond the simple slab geometry associated with planar surfaces (Si/SiO2), to interfaces with arbitrary geometrical features, by imposing a corrective scheme to the slab model. The validity of this treatment is demonstrated in an investigation of the charge transfer dynamics at a metal

  2. Dynamically reconfigurable complex emulsions via tunable interfacial tensions.

    PubMed

    Zarzar, Lauren D; Sresht, Vishnu; Sletten, Ellen M; Kalow, Julia A; Blankschtein, Daniel; Swager, Timothy M

    2015-02-26

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with

  3. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    PubMed Central

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-01-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including multiple emulsions and Janus droplets which contain hemispheres of differing material, are of increasing importance1 in pharmaceuticals and medical diagnostics2, in the fabrication of microparticles and capsules3–5 for food6, in chemical separations7, in cosmetics8, and in dynamic optics9. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets’ physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes10, to small-volume but more precise microfluidic methods11,12. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have greatly increased utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of

  4. Dynamically reconfigurable complex emulsions via tunable interfacial tensions

    NASA Astrophysics Data System (ADS)

    Zarzar, Lauren D.; Sresht, Vishnu; Sletten, Ellen M.; Kalow, Julia A.; Blankschtein, Daniel; Swager, Timothy M.

    2015-02-01

    Emulsification is a powerful, well-known technique for mixing and dispersing immiscible components within a continuous liquid phase. Consequently, emulsions are central components of medicine, food and performance materials. Complex emulsions, including Janus droplets (that is, droplets with faces of differing chemistries) and multiple emulsions, are of increasing importance in pharmaceuticals and medical diagnostics, in the fabrication of microparticles and capsules for food, in chemical separations, in cosmetics, and in dynamic optics. Because complex emulsion properties and functions are related to the droplet geometry and composition, the development of rapid, simple fabrication approaches allowing precise control over the droplets' physical and chemical characteristics is critical. Significant advances in the fabrication of complex emulsions have been made using a number of procedures, ranging from large-scale, less precise techniques that give compositional heterogeneity using high-shear mixers and membranes, to small-volume but more precise microfluidic methods. However, such approaches have yet to create droplet morphologies that can be controllably altered after emulsification. Reconfigurable complex liquids potentially have great utility as dynamically tunable materials. Here we describe an approach to the one-step fabrication of three- and four-phase complex emulsions with highly controllable and reconfigurable morphologies. The fabrication makes use of the temperature-sensitive miscibility of hydrocarbon, silicone and fluorocarbon liquids, and is applied to both the microfluidic and the scalable batch production of complex droplets. We demonstrate that droplet geometries can be alternated between encapsulated and Janus configurations by varying the interfacial tensions using hydrocarbon and fluorinated surfactants including stimuli-responsive and cleavable surfactants. This yields a generalizable strategy for the fabrication of multiphase emulsions with

  5. Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect

    Eberle, C.C.

    1999-12-30

    The objectives of the CRADA are to: Confirm that fiber-resin adhesion is responsible for the observed poor shear properties; Determine the mechanism(s) responsible for poor adhesion between carbon fibers and epoxy resins after e-beam curing; Develop and evaluate resin systems and fiber treatments to improve the properties of e-beam cured, carbon-fiber-reinforced composites; and Develop refined methods for processing e-beam cured, carbon-fiber-reinforced composites.

  6. Shape Oscillations of Gas Bubbles With Newtonian Interfacial Rheological Properties

    NASA Technical Reports Server (NTRS)

    Nadim, Ali

    1996-01-01

    The oscillation frequency and damping rate for small-amplitude axisymmetric shape modes of a gas bubble in an ideal liquid are obtained, in the limit when the bubble interface possesses Newtonian interfacial rheology with constant surface shear and dilatational viscosities. Such results permit the latter surface properties to be measured by analyzing experimental data on frequency shift and damping rate of specific shape modes of suspended bubbles in the presence of surfactants.

  7. A perspective on the interfacial properties of nanoscopic liquid drops

    NASA Astrophysics Data System (ADS)

    Malijevský, Alexandr; Jackson, George

    2012-11-01

    The structural and interfacial properties of nanoscopic liquid drops are assessed by means of mechanical, thermodynamical, and statistical mechanical approaches that are discussed in detail, including original developments at both the macroscopic level and the microscopic level of density functional theory (DFT). With a novel analysis we show that a purely macroscopic (static) mechanical treatment can lead to a qualitatively reasonable description of the surface tension and the Tolman length of a liquid drop; the latter parameter, which characterizes the curvature dependence of the tension, is found to be negative and has a magnitude of about a half of the molecular dimension. A mechanical slant cannot, however, be considered satisfactory for small finite-size systems where fluctuation effects are significant. From the opposite perspective, a curvature expansion of the macroscopic thermodynamic properties (density and chemical potential) is then used to demonstrate that a purely thermodynamic approach of this type cannot in itself correctly account for the curvature correction of the surface tension of liquid drops. We emphasize that any approach, e.g., classical nucleation theory, which is based on a purely macroscopic viewpoint, does not lead to a reliable representation when the radius of the drop becomes microscopic. The description of the enhanced inhomogeneity exhibited by small drops (particularly in the dense interior) necessitates a treatment at the molecular level to account for finite-size and surface effects correctly. The so-called mechanical route, which corresponds to a molecular-level extension of the macroscopic theory of elasticity and is particularly popular in molecular dynamics simulation, also appears to be unreliable due to the inherent ambiguity in the definition of the microscopic pressure tensor, an observation which has been known for decades but is frequently ignored. The union of the theory of capillarity (developed in the nineteenth

  8. Effects of wettability and interfacial nanobubbles on flow through structured nanochannels: an investigation of molecular dynamics

    NASA Astrophysics Data System (ADS)

    Yen, Tsu-Hsu

    2015-12-01

    Solid-fluid boundary conditions are strongly influenced by a number of factors, including the intrinsic properties of the solid/fluid materials, surface roughness, wettability, and the presence of interfacial nanobubbles (INBs). The interconnected nature of these factors means that they should be considered jointly. This paper employs molecular dynamics (MD) simulation in a series of studies aimed at elucidating the influence of wettability in boundary behaviour and the accumulation of interfacial gas. Specifically, we examined the relationship between effective slip length, the morphology of nanobubbles, and wettability. Two methods were employed for the promotion of hydrophobicity between two structured substrates with similar intrinsic contact angles. We also compared anisotropic and isotropic atomic arrangements in the form of graphite and Si(100), respectively. A physical method was employed to deal with variations in surface roughness, whereas a chemical method was used to adjust the wall-fluid interaction energy (ɛwf). We first compared the characteristic properties of wettability, including contact angle and fluid density within the cavity. We then investigated the means by which variations in solid-fluid interfacial wettability affect interfacial gas molecules. Our results reveal that the morphology of INB on a patterned substrate is determined by wettability as well as the methods employed for the promotion of hydrophobicity. The present study also illustrates the means by which the multiple effects of the atomic arrangement of solids, surface roughness, wettability and INB influence effective slip length.

  9. Controlling Interfacial Dynamics: Covalent Bonding versus Physical Adsorption in Polymer Nanocomposites.

    PubMed

    Holt, Adam P; Bocharova, Vera; Cheng, Shiwang; Kisliuk, Alexander M; White, B Tyler; Saito, Tomonori; Uhrig, David; Mahalik, J P; Kumar, Rajeev; Imel, Adam E; Etampawala, Thusitha; Martin, Halie; Sikes, Nicole; Sumpter, Bobby G; Dadmun, Mark D; Sokolov, Alexei P

    2016-07-26

    It is generally believed that the strength of the polymer-nanoparticle interaction controls the modification of near-interface segmental mobility in polymer nanocomposites (PNCs). However, little is known about the effect of covalent bonding on the segmental dynamics and glass transition of matrix-free polymer-grafted nanoparticles (PGNs), especially when compared to PNCs. In this article, we directly compare the static and dynamic properties of poly(2-vinylpyridine)/silica-based nanocomposites with polymer chains either physically adsorbed (PNCs) or covalently bonded (PGNs) to identical silica nanoparticles (RNP = 12.5 nm) for three different molecular weight (MW) systems. Interestingly, when the MW of the matrix is as low as 6 kg/mol (RNP/Rg = 5.4) or as high as 140 kg/mol (RNP/Rg= 1.13), both small-angle X-ray scattering and broadband dielectric spectroscopy show similar static and dynamic properties for PNCs and PGNs. However, for the intermediate MW of 18 kg/mol (RNP/Rg = 3.16), the difference between physical adsorption and covalent bonding can be clearly identified in the static and dynamic properties of the interfacial layer. We ascribe the differences in the interfacial properties of PNCs and PGNs to changes in chain stretching, as quantified by self-consistent field theory calculations. These results demonstrate that the dynamic suppression at the interface is affected by the chain stretching; that is, it depends on the anisotropy of the segmental conformations, more so than the strength of the interaction, which suggests that the interfacial dynamics can be effectively tuned by the degree of stretching-a parameter accessible from the MW or grafting density. PMID:27337392

  10. Controlling Interfacial Dynamics: Covalent Bonding versus Physical Adsorption in Polymer Nanocomposites

    DOE PAGESBeta

    Holt, Adam P.; Bocharova, Vera; Cheng, Shiwang; Kisliuk, Alexander M.; White, B. Tyler; Saito, Tomonori; Uhrig, David; Mahalik, J. P.; Kumar, Rajeev; Imel, Adam E.; et al

    2016-06-23

    It is generally believed that the strength of the polymer nanoparticle interaction controls the modification of near-interface segmental mobility in polymer nanocomposites (PNCs). However, little is known about the effect of covalent bonding on the segmental dynamics and glass transition of matrix-free polymer-grafted nanoparticles (PGNs), especially when compared to PNCs. In this article, we directly compare the static and dynamic properties of poly(2-vinylpyridine)/silica-based nanocomposites with polymer chains either physically adsorbed (PNCs) or covalently bonded (PGNs) to identical silica nanoparticles (RNP = 12.5 nm) for three different molecular weight (MW) systems. Interestingly, when the MW of the matrix is as lowmore » as 6 kg/mol (RNP/Rg = 5.4) or as high as 140 kg/mol (RNP/Rg= 1.13), both small-angle X-ray scattering and broadband dielectric spectroscopy show similar static and dynamic properties for PNCs and PGNs. However, for the intermediate MW of 18 kg/mol (RNP/Rg = 3.16), the difference between physical adsorption and covalent bonding can be clearly identified in the static and dynamic properties of the interfacial layer. We ascribe the differences in the interfacial properties of PNCs and PGNs to changes in chain stretching, as quantified by self-consistent field theory calculations. These results demonstrate that the dynamic suppression at the interface is affected by the chain stretching; that is, it depends on the anisotropy of the segmental conformations, more so than the strength of the interaction, which suggests that the interfacial dynamics can be effectively tuned by the degree of stretching a parameter accessible from the MW or grafting density.« less

  11. Intermolecular network analysis of the liquid and vapor interfaces of pentane and water: microsolvation does not trend with interfacial properties.

    PubMed

    Ghadar, Yasaman; Clark, Aurora E

    2014-06-28

    Liquid:vapor and liquid:liquid interfaces exhibit complex organizational structure and dynamics at the molecular level. In the case of water and organic solvents, the hydrophobicity of the organic, its conformational flexibility, and compressibility, all influence interfacial properties. This work compares the interfacial tension, width, molecular conformations and orientations at the vapor and aqueous liquid interfaces of two solvents, n-pentane and neopentane, whose varying molecular shapes can lead to significantly different interfacial behavior. Particular emphasis has been dedicated toward understanding how the hydrogen bond network of water responds to the pentane relative to the vapor interface and the sensitivity of the network to the individual pentane isomer and system temperature. Interfacial microsolvation of the immiscible solvents has been examined using graph theoretical methods that quantify the structure and dynamics of microsolvated species (both H2O in C5H12 and C5H12 in H2O). At room temperature, interfacial water at the pentane phase boundary is found to have markedly different organization and dynamics than at the vapor interface (as indicated by the hydrogen bond distributions and hydrogen bond persistence in solution). While the mesoscale interfacial properties (e.g. interfacial tension) are sensitive to the specific pentane isomer, the distribution and persistence of microsolvated species at the interface is nearly identical for both systems, irrespective of temperature (between 273 K and 298 K). This has important implications for understanding how properties defined by the interfacial organization are related to the underlying solvation reactions that drive formation of the phase boundary.

  12. Interfacial Properties of a Hydrophobic Dye in the Tetrachloroethylene-Water-Glass Systems

    SciTech Connect

    Tuck, D.M.

    1999-02-23

    Interfacial effects play an important role in governing multiphase fluid behavior in porous media. Strongly hydrophobic organic dyes, used in many experimental studies to facilitate visual observation of the phase distributions, have generally been implicitly assumed to have no influence on the interfacial properties of the various phases in porous media. Sudan IV is the most commonly used dye for non-aqueous phase liquids (NAPLs) in laboratory experiments. It has also been used in at least one field experiment. The effects of this dye on the tetrachloroethylene (PCE)-water-glass system were investigated to test the assumption that the dye does not effect the interfacial properties and therefore PCE mobility. The results indicate that the dye does indeed change the interfacial relationships.The effect of the dye on the interfacial relationships is a complex function of the dye concentration, the solid phase composition, and the dynamic rate of new interface formation. The dye caused a slight (<10 percent) increase in interfacial tension at low concentrations (<0.1 g/L) and high rates of new interface formation. The dye reduced interfacial tension between PCE and water at low rates of new interface formation for all dye concentrations tested (0.00508 to 5.08 g/L). At the highest dye concentration, the PCE-water interfacial tension was significantly reduced regardless of the rate of new interface formation. The apparent interfacial tension increase at low dye concentrations is suspected to be an artifact of a low measured IFT value for the undyed PCE caused by leaching of rubber o-rings by the PCE prior to testing in the final drop-volume configuration.In addition to reducing interfacial tension, the dye was found to significantly alter the wetting relationship between PCE and water on a glass surface at and above the range of reported dye concentrations cited in the literature (1.1 to 1.7 g/L). The wetting relationship was rendered neutral from a water-wet initial

  13. Physicochemical properties and interfacial adaptation of root canal sealers.

    PubMed

    Cañadas, Piedad S; Berástegui, Ester; Gaton-Hernández, Patrícia; Silva, Léa A B; Leite, Giselle A; Silva, Roberto S

    2014-01-01

    This study compared the physicochemical properties and interfacial adaptation to canal walls of Endo-CPM-Sealer, Sealapex and Activ GP with the well-established AH Plus sealer. The following analyses were performed: radiopacity, pH variation and solubility using samples of each material and scanning electron microscopy of root-filled bovine incisors to evaluate the interfacial adaptation. Data were analyzed by the parametric and no-parametric tests (α=0.05). All materials were in accordance with the ANSI/ADA requirements for radiopacity. Endo-CPM-Sealer presented the lowest radiopacity values and AH Plus was the most radiopaque sealer (p=0.0001). Except for ActiV GP, which was acidic, all other sealers had basic chemical nature and released hydroxyl ions. Regarding solubility, all materials met the ANSI/ADA recommendations, with no statistically significant difference between the sealers (p=0.0834). AH Plus presented the best adaptation to canal walls in the middle (p=0.0023) and apical (p=0.0012) thirds, while the sealers Activ GP and Endo-CPM-Sealer had poor adaptation to the canal walls. All sealers, except for ActiV GP, were alkaline and all of them fulfilled the ANSI/ADA requirements for radiopacity and solubility. Regarding the interfacial adaptation, AH Plus was superior to the others considering the adaptation to the bovine root canal walls.

  14. Mimicking mussel adhesion to improve interfacial properties in composites.

    PubMed

    Hamming, L M; Fan, X W; Messersmith, P B; Brinson, L C

    2008-07-01

    The macroscale properties of polymer-matrix composites depend immensely on the quality of the interaction between the reinforcement phase and the bulk polymer. This work presents a method to improve the interfacial adhesion between metal-oxides and a polymer matrix by performing surface-initiated polymerization (SIP) by way of a biomimetic initiator. The initiator was modeled after 3,4-dihydroxy-L-phenylalanine (dopa), an amino acid that is highly concentrated in mussel foot adhesive proteins. Mechanical pull out tests of NiTi and Ti-6Al-4V wires from poly (methyl methacrylate) (PMMA) were performed to directly test the interfacial adhesion. These tests demonstrated improvements in maximum interfacial shear stress of 116% for SIP-modified NiTi wires and 60% for SIP-modified Ti-6Al-4V wires over unmodified specimens. Polymer chain growth from the metal oxides was validated using x-ray photoemission spectroscopy (XPS), ellipsometry, scanning electron microscopy (SEM), and contact angle analysis. PMID:19578545

  15. Capillary, wettability and interfacial dynamics in polymer electrolyte fuel cells

    SciTech Connect

    Mukherjee, Partha P

    2009-01-01

    In the present scenario of a global initiative toward a sustainable energy future, the polymer electrolyte fuel cell (PEFC) has emerged as one of the most promising alternative energy conversion devices for different applications. Despite tremendous progress in recent years, a pivotal performance/durability limitation in the PEFC arises from liquid water transport, perceived as the Holy Grail in PEFC operation. The porous catalyst layer (CL), fibrous gas diffusion layer (GDL) and flow channels play a crucial role in the overall PEFC performance due to the transport limitation in the presence of liquid water and flooding phenomena. Although significant research, both theoretical and experimental, has been performed, there is serious paucity of fundamental understanding regarding the underlying structure-transport-performance interplay in the PEFC. The inherent complex morphologies, micro-scale transport physics involving coupled multiphase, multicomponent, electrochemically reactive phenomena and interfacial interactions in the constituent components pose a formidable challenge. In this paper, the impact of capillary transport, wetting characteristics and interfacial dynamics on liquid water transport is presented based on a comprehensive mesoscopic modeling framework with the objective to gain insight into the underlying electrodynamics, two-phase dynamics and the intricate structure-transport-interface interactions in the PEFC.

  16. Exploiting interfacial water properties for desalination and purification applications.

    SciTech Connect

    Xu, Hongwu; Varma, Sameer; Nyman, May Devan; Alam, Todd Michael; Thuermer, Konrad; Holland, Gregory P.; Leung, Kevin; Liu, Nanguo; Xomeritakis, George K.; Frankamp, Benjamin L.; Siepmann, J. Ilja; Cygan, Randall Timothy; Hartl, Monika A.; Travesset, Alex; Anderson, Joshua A.; Huber, Dale L.; Kissel, David J.; Bunker, Bruce Conrad; Lorenz, Christian Douglas; Major, Ryan C.; McGrath, Matthew J.; Farrow, Darcie; Cecchi, Joseph L.; van Swol, Frank B.; Singh, Seema; Rempe, Susan B.; Brinker, C. Jeffrey; Clawson, Jacalyn S.; Feibelman, Peter Julian; Houston, Jack E.; Crozier, Paul Stewart; Criscenti, Louise Jacqueline; Chen, Zhu; Zhu, Xiaoyang; Dunphy, Darren Robert; Orendorff, Christopher J.; Pless, Jason D.; Daemen, Luke L.; Gerung, Henry; Ockwig, Nathan W.; Nenoff, Tina Maria; Jiang, Ying-Bing; Stevens, Mark Jackson

    2008-09-01

    A molecular-scale interpretation of interfacial processes is often downplayed in the analysis of traditional water treatment methods. However, such an approach is critical for the development of enhanced performance in traditional desalination and water treatments. Water confined between surfaces, within channels, or in pores is ubiquitous in technology and nature. Its physical and chemical properties in such environments are unpredictably different from bulk water. As a result, advances in water desalination and purification methods may be accomplished through an improved analysis of water behavior in these challenging environments using state-of-the-art microscopy, spectroscopy, experimental, and computational methods.

  17. Dynamics of various polymer-graphene interfacial systems through atomistic molecular dynamics simulations.

    PubMed

    Rissanou, Anastassia N; Harmandaris, Vagelis

    2014-04-28

    The current work refers to a simulation study on hybrid polymer-graphene interfacial systems. We explore the effect of graphene on the mobility of polymers, by studying three well known and widely used polymers, polyethylene (PE), polystyrene (PS) and poly(methyl-methacrylate) (PMMA). Qualitative and quantitative differences in the dynamical properties of the polymer chains in particular at the polymer-graphene interface are detected. Results concerning both the segmental and the terminal dynamics render PE much faster than the other two polymers; PS follows, while PMMA is the slowest one. Clear spatial dynamic heterogeneity has been observed for all model systems, with different dynamical behavior of the adsorbed polymer segments. The segmental relaxation time of the polymer (τseg) as a function of the distance from graphene shows an abrupt decrease beyond the first adsorption layer for PE, as a result of its well-ordered layered structure close to graphene, though a more gradual decay is observed for PS and PMMA. The distribution of the relaxation times of adsorbed segments was also found to be broader than those of the bulk ones for all three polymer-graphene systems. PMID:24667937

  18. Molecular Dynamics Studies on the Effects of Water Speciation on Interfacial Structure and Dynamics in Silica-Filled PDMS Composites

    SciTech Connect

    Gee, R H; Maxwell, R S; Dinh, L N; Balazs, B

    2001-11-21

    Significant changes in materials properties of siloxane based polymers can be obtained by the addition of inorganic fillers. In silica-filled polydimethylsiloxane (PDMS) based composites the mechanism of this reinforcing behavior is presumably hydrogen bonding between surface hydroxyls and backbone siloxane species. We have chosen to investigate in detail the effect of chemisorbed and physisorbed water on the interfacial structure and dynamics in silica-filled PDMS based composites. Toward this end, we have combined molecular dynamics simulations and experimental studies employing DMA and Nh4R analysis. Our results suggest that the polymer-silica contact distance and the mobility of interfacial polymer chains significantly decreased as the hydration level at the interface was reduced. The reduced mobility of the PDMS chains in the interfacial domain reduced the overall, bulk, motional properties of the polymer, thus causing an effective ''stiffening'' of the polymer matrix. The role of the long-ranged Coulombic interactions on the structural features and chain dynamics of the polymer were also examined. Both are found to be strongly influenced by the electrostatic interactions as identified by the bond orientation time correlation function and local density distribution functions. These results have important implications for the design of nanocomposite silica-siloxane materials.

  19. Analysis of interlaminar stress and nonlinear dynamic response for composite laminated plates with interfacial damage

    NASA Astrophysics Data System (ADS)

    Zhu, F. H.; Fu, Y. M.

    2008-12-01

    By considering the effect of interfacial damage and using the variation principle, three-dimensional nonlinear dynamic governing equations of the laminated plates with interfacial damage are derived based on the general six-degrees-of-freedom plate theory towards the accurate stress analysis. The solutions of interlaminar stress and nonlinear dynamic response for a simply supported laminated plate with interfacial damage are obtained by using the finite difference method, and the results are validated by comparison with the solution of nonlinear finite element method. In numerical calculations, the effects of interfacial damage on the stress in the interface and the nonlinear dynamic response of laminated plates are discussed.

  20. Thermoplastic starch/wood composites: interfacial interactions and functional properties.

    PubMed

    Müller, Péter; Renner, Károly; Móczó, János; Fekete, Erika; Pukánszky, Béla

    2014-02-15

    Thermoplastic starch (TPS)/wood composites were prepared from starch plasticized with 36 wt% glycerol. The components were homogenized by dry-blending, extruded and injection molded to tensile bars. Tensile properties, structure, deformation, water adsorption and shrinkage were determined as a function of wood content, which changed between 0 and 40 vol% in 7 steps. The modification of TPS with wood particles improves several properties considerably. Stiffness and strength increases, and the effect is stronger for fibers with larger aspect ratio. Wood fibers reinforce TPS considerably due to poor matrix properties and strong interfacial interactions, the latter resulting in the decreased mobility of starch molecules and in the fracture of large wood particles during deformation. Strong interfacial adhesion leads to smaller water absorption than predicted from additivity, but water uptake remains relatively large even in the presence of wood particles. The shrinkage of injection molded TPS parts is very large, around 10%, and dimensional changes occur on a very long timescale of several hundred hours. Shrinkage decreases to a low level already at 15-20 vol% wood content rendering the composites good dimensional stability. PMID:24507352

  1. Linear interfacial polymerization: theory and simulations with dissipative particle dynamics.

    PubMed

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2014-11-21

    Step-growth alternating interfacial polymerization between two miscible or immiscible monomer melts is investigated theoretically and by dissipative particle dynamics simulations. In both cases the kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film of nearly uniform density. It is demonstrated that the reaction proceeds in a narrow zone, which expands much slower than the whole film, so that newly formed polymer is extruded from the reaction zone. This concept of "reactive extrusion" is used to analytically predict the degree of polymerization and distribution of all components (monomers, polymer, and end groups) within the film in close agreement with the simulations. Increasing the comonomer incompatibility leads to thinner and more uniform films with the higher average degree of polymerization. The final product is considerably more polydisperse than expected for the homogeneous step-growth polymerization. The results extend the previous theoretical reports on interfacial polymerization and provide new insights into the internal film structure and polymer characteristics, which are important for membrane preparation, microencapsulation, and 3D printing technologies. A systematic way of mapping the simulation data onto laboratory scales is discussed. PMID:25416911

  2. Linear interfacial polymerization: theory and simulations with dissipative particle dynamics.

    PubMed

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2014-11-21

    Step-growth alternating interfacial polymerization between two miscible or immiscible monomer melts is investigated theoretically and by dissipative particle dynamics simulations. In both cases the kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film of nearly uniform density. It is demonstrated that the reaction proceeds in a narrow zone, which expands much slower than the whole film, so that newly formed polymer is extruded from the reaction zone. This concept of "reactive extrusion" is used to analytically predict the degree of polymerization and distribution of all components (monomers, polymer, and end groups) within the film in close agreement with the simulations. Increasing the comonomer incompatibility leads to thinner and more uniform films with the higher average degree of polymerization. The final product is considerably more polydisperse than expected for the homogeneous step-growth polymerization. The results extend the previous theoretical reports on interfacial polymerization and provide new insights into the internal film structure and polymer characteristics, which are important for membrane preparation, microencapsulation, and 3D printing technologies. A systematic way of mapping the simulation data onto laboratory scales is discussed.

  3. Rheological and interfacial properties at the equilibrium of almond gum tree exudate (Prunus dulcis) in comparison with gum arabic.

    PubMed

    Mahfoudhi, Nesrine; Sessa, Mariarenata; Ferrari, Giovanna; Hamdi, Salem; Donsi, Francesco

    2016-06-01

    Almond gum contains an arabinogalactan-type polysaccharide, which plays an important role in defining its interfacial and rheological properties. In this study, rheological and interfacial properties of almond gum and gum arabic aqueous dispersions were comparatively investigated. The interfacial tension of almond gum and gum arabic aqueous dispersions was measured using the pendant drop method in hexadecane. The asymptotic interfacial tension values for almond gum were significantly lower than the corresponding values measured for gum arabic, especially at high concentration. Rheological properties were characterized by steady and oscillatory tests using a coaxial geometry. Almond gum flow curves exhibited a shear thinning non-Newtonian behavior with a tendency to a Newtonian plateau at low shear rate, while gum arabic flow curves exhibited such behavior only at high shear rate. The influence of temperature (5-50  ℃) on the flow curves was studied at 4% (m/m) gum concentration and the Newtonian viscosities at infinite and at zero shear rate, for gum arabic and almond gum, respectively, were accurately fitted by an Arrhenius-type equation. The dynamic properties of the two gum dispersions were also studied. Both gum dispersions exhibited viscoelastic properties, with the viscous component being predominant in a wider range of concentrations for almond gum, while for gum arabic the elastic component being higher than the elastic one especially at higher concentrations.The rheological and interfacial tension properties of almond gum suggest that it may represent a possible substitute of gum arabic in different food applications.

  4. Effect of confinement and molecular architecture on interfacial dynamics

    NASA Astrophysics Data System (ADS)

    Chrissopoulou, K.; Androulaki, K.; Prevosto, D.; Labardi, M.; Anastasiadis, S. H.

    2016-05-01

    The dynamics of polyester polyols in the bulk, under confinement when the polymers are intercalated within the galleries of a hydrophilic clay and close to the inorganic surfaces is investigated utilizing Dielectric Relaxation Spectroscopy (DRS). A series of linear biobased polyesters with hydroxyl end groups were utilized in the bulk and in nanohybrids and the results were compared with the case of hyperbranched polymers of similar chemistry but non-linear architecture. A broad range of temperatures below and above the bulk polymer glass transition temperature, Tg, was investigated covering both the regimes of beta-like local processes and segmental (alpha-process) dynamics. The polymer dynamics observed in all the nanocomposites are quite different compared to the bulk due to the different interactions whereas differences are seen due to the architecture as well. Moreover, non-standard local dielectric spectroscopy has been used to investigate the nanocomposites dynamics at the local scale: polymer relaxation has been investigated in the same material both close and far from the MMT surfaces. The comparison of the results from the two techniques allowed the understanding, in more detail, of the influence of the complex interfacial interactions on the relaxation dynamics.

  5. The importance of experimental design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems

    SciTech Connect

    Reichert, Matthew D.; Alvarez, Nicolas J.; Brooks, Carlton F.; Grillet, Anne M.; Mondy, Lisa A.; Anna, Shelley L.; Walker, Lynn M.

    2014-09-24

    Pendant bubble and drop devices are invaluable tools in understanding surfactant behavior at fluid–fluid interfaces. The simple instrumentation and analysis are used widely to determine adsorption isotherms, transport parameters, and interfacial rheology. However, much of the analysis performed is developed for planar interfaces. Moreover, the application of a planar analysis to drops and bubbles (curved interfaces) can lead to erroneous and unphysical results. We revisit this analysis for a well-studied surfactant system at air–water interfaces over a wide range of curvatures as applied to both expansion/contraction experiments and interfacial elasticity measurements. The impact of curvature and transport on measured properties is quantified and compared to other scaling relationships in the literature. Our results provide tools to design interfacial experiments for accurate determination of isotherm, transport and elastic properties.

  6. Mixed Functionality Semiconductor Surfaces: Formation, Characterization, Interfacial Dynamics, and Applications

    NASA Astrophysics Data System (ADS)

    O'Leary, Leslie Esther

    The properties of any semiconductor device rely on the charge separation characteristics at interfaces within that device. The charge separation characteristics include relative energetics, interfacial electronic states, and the presence or absence of insulating layers. More importantly, the interfacial properties determine the maximum solar conversion efficiency for a photoelectrochemical or photovoltaic device. Solution-based halogenation/alkylation chemistry was used to functionalize Si surfaces. The chemistry was adapted to allow for the controlled formation of multicomponent molecular monolayers. Functional molecules were incorporated by the mixed monolayer approach, and lowered densities of surface electronic defect states and increased resistance toward the formation of deleterious Si oxides were observed. Heck coupoling reactions were developed at thiophene-containing monolayers. Thiophene terminated Si(111) surfaces had defect frequencies of > 1 defect per 1,000 surface atoms, too large for solar energy conversion applications, while multicomponent CH3/thiophene monolayers had defect densities of < 1 per 500,000 surface atoms. Robust secondary chemistry at Si(111) with facile charge transfer to covalently linked molecules with preservation of surface electronic properties was shown for the first time. Molecular adsorbates with interesting electronic dipoles, such as bromothiophene, were incorporated into mixed monolayers. The electron distribution across the surface dipole caused a shift in the work function of Si by > 600 mV. The fundamental mechanism of Wf shift was elucidated by a combined ab initio and experimental study, and the dependence of Si band-edge positions on pH was relieved using Si-C bonds. Designer surface chemistry was used to covalently link Si microwires within a flexible PDMS matrix, and a direct correlation between the surface bonding mechanism and interfacial adhesion strength was unambiguously observed. The formation and electronic

  7. Non-equilibrium dynamics and structure of interfacial ice

    NASA Astrophysics Data System (ADS)

    Andreussi, Oliviero; Donadio, Davide; Parrinello, Michele; Zewail, Ahmed H.

    2006-07-01

    Stimulated by recent experiments [C.-Y. Ruan et al. Science 304, (2004) 81], we have performed molecular dynamics and ab initio structural studies of the laser-induced heating and restructuring processes of nanometer-scale ice on a substrate of chlorine terminated Si(1 1 1). Starting from proton disordered cubic ice configurations the thin film behavior has been characterized at several temperatures up to the melting point. The surface induces order with crystallization in the Ic lattice, but with void amorphous regions. The structure changes on the ultrashort time scale and restructures by heat dissipation depending on the relaxation time and final temperature. Our results show the general behavior observed experimentally, thus providing the nature of forces in the atomic-scale description of interfacial ice.

  8. Interfacial properties of asphaltenes at toluene-water interfaces.

    PubMed

    Zarkar, Sharli; Pauchard, Vincent; Farooq, Umer; Couzis, Alexander; Banerjee, Sanjoy

    2015-05-01

    Asphaltenes are "n-alkane insoluble" species in crude oil that stabilize water-in-oil emulsions. To understand asphaltene adsorption mechanisms at oil-water interfaces and coalescence blockage, we first studied the behavior in aliphatic oil-water systems in which asphaltenes are almost insoluble. They adsorbed as monomers, giving a unique master curve relating interfacial tension (IFT) to interfacial coverage through a Langmuir equation of state (EoS). The long-time surface coverage was independent of asphaltene bulk concentration and asymptotically approached the 2-D packing limit for polydisperse disks. On coalescence, the surface coverage exceeded the 2-D limit and the asphaltene film appeared to become solidlike, apparently undergoing a transition to a soft glassy material and blocking further coalescence. However, real systems consist of mixtures of aliphatic and aromatic components in which asphaltenes may be quite soluble. To understand solubility effects, we focus here on how the increased bulk solubility of asphaltenes affects their interfacial properties in comparison to aliphatic oil-water systems. Unlike the "almost irreversible" adsorption of asphaltenes where the asymptotic interfacial coverage was independent of the bulk concentration, an equilibrium surface pressure, dependent on bulk concentration, was obtained for toluene-water systems because of adsorption being balanced by desorption. The equilibrium surface coverage could be obtained from the short- and long-term Ward-Tordai approximations. The behavior of the equilibrium surface pressure with the equilibrium surface coverage was then derived. These data for various asphaltene concentrations were used to determine the EoS, which for toluene-water could also be fitted by the Langmuir EoS with Γ∞ = 3.3 molecule/nm(2), the same value as that found for these asphaltenes in aliphatic media. Asphaltene solubility in the bulk phase only appears to affect the adsorption isotherm but not the Eo

  9. The importance of experimental design on measurement of dynamic interfacial tension and interfacial rheology in diffusion-limited surfactant systems

    DOE PAGESBeta

    Reichert, Matthew D.; Alvarez, Nicolas J.; Brooks, Carlton F.; Grillet, Anne M.; Mondy, Lisa A.; Anna, Shelley L.; Walker, Lynn M.

    2014-09-24

    Pendant bubble and drop devices are invaluable tools in understanding surfactant behavior at fluid–fluid interfaces. The simple instrumentation and analysis are used widely to determine adsorption isotherms, transport parameters, and interfacial rheology. However, much of the analysis performed is developed for planar interfaces. Moreover, the application of a planar analysis to drops and bubbles (curved interfaces) can lead to erroneous and unphysical results. We revisit this analysis for a well-studied surfactant system at air–water interfaces over a wide range of curvatures as applied to both expansion/contraction experiments and interfacial elasticity measurements. The impact of curvature and transport on measured propertiesmore » is quantified and compared to other scaling relationships in the literature. Our results provide tools to design interfacial experiments for accurate determination of isotherm, transport and elastic properties.« less

  10. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    SciTech Connect

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  11. The effects of a soluble surfactant on the interfacial dynamics of stationary bubbles in inclined tubes

    NASA Astrophysics Data System (ADS)

    Cavanagh, Daniel P.; Eckmann, David M.

    2002-10-01

    We have experimentally examined the effects of a common soluble surfactant on gas bubbles in liquid flows in inclined tubes. Air bubbles of known size ([lambda] = 0.8, 1.0, 1.5) are held stationary under minimum flow conditions in tubes inclined at fixed angles ([omega] = 25°, 45°, 65°, 90°). Sodium dodecyl sulphate (SDS) is infused into the bulk flow at two bulk concentrations (C = 10% or 100% critical micelle concentration (CMC)). In addition to recording pressure and flow waveforms, we capture video images of bubbles before and during exposure to the surfactant. Modification of the interfacial properties by the surfactant results in extremely dynamic bubble behaviour including interfacial deformation, deformation plus axial translation, and bubble detachment from the wall plus translation. We measure the corresponding time-dependent pressure gradient within the tube. The surfactant mediated responses observed are dependent upon the interrelated effects of C, [lambda] and [omega]. A high bulk concentration of surfactant may produce more rapid modification of bubble shape and influence wetting, thus increasing the potential for bubble detachment. The likelihood that detachment will occur increases further as bubble volume in increased. In both vertical tubes in which contact forces are absent and in non-vertical tubes, the infusion of surfactant may result in axial translation either in the direction of, or opposite to, the direction of the bulk flow. Critical to the translation and/or detachment of the bubble is the surfactant-mediated modification of contact line mechanics. Contact line velocities corresponding to rates of shrinkage of dewetted surface area are extracted from experimental data. We also explore the potential effects of surfactants on interfacial remobilization. This investigation demonstrates the potential use of surfactants to be used for dislodging dewetted gas bubbles by the intentional manipulation of interfacial properties.

  12. Interfacial ionic ‘liquids’: connecting static and dynamic structures

    DOE PAGESBeta

    Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T.; Fulvio, Pasquale F.; Dai, Sheng; McDonough, John K.; Gogotsi, Yury; et al

    2014-12-05

    It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. In this study, we used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can bemore » described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. Finally, the results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (~0.15 eV).« less

  13. Interfacial ionic ‘liquids’: connecting static and dynamic structures

    SciTech Connect

    Uysal, Ahmet; Zhou, Hua; Feng, Guang; Lee, Sang Soo; Li, Song; Cummings, Peter T.; Fulvio, Pasquale F.; Dai, Sheng; McDonough, John K.; Gogotsi, Yury; Fenter, Paul

    2014-12-05

    It is well known that room temperature ionic liquids (RTILs) often adopt a charge-separated layered structure, i.e. with alternating cation- and anion-rich layers, at electrified interfaces. However, the dynamic response of the layered structure to temporal variations in applied potential is not well understood. In this study, we used in situ, real-time x-ray reflectivity to study the potential-dependent electric double layer (EDL) structure of an imidazolium-based RTIL on charged epitaxial graphene during potential cycling as a function of temperature. The results suggest that the graphene–RTIL interfacial structure is bistable in which the EDL structure at any intermediate potential can be described by the combination of two extreme-potential structures whose proportions vary depending on the polarity and magnitude of the applied potential. This picture is supported by the EDL structures obtained by fully atomistic molecular dynamics simulations at various static potentials. The potential-driven transition between the two structures is characterized by an increasing width but with an approximately fixed hysteresis magnitude as a function of temperature. Finally, the results are consistent with the coexistence of distinct anion- and cation-adsorbed structures separated by an energy barrier (~0.15 eV).

  14. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    PubMed Central

    Haghighatpanah, Shayesteh; Bohlén, Martin; Bolton, Kim

    2014-01-01

    Molecular dynamics (MD) and molecular mechanics (MM) methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube (SWNT)—polyethylene and SWNT—polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the SWNT with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1 to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the SWNT wall. PMID:25229056

  15. Molecular level computational studies of polyethylene and polyacrylonitrile composites containing single walled carbon nanotubes: effect of carboxylic acid functionalization on nanotube-polymer interfacial properties

    NASA Astrophysics Data System (ADS)

    Haghighatpanah, Shayesteh; Bohlén, Martin; Bolton, Kim

    2014-09-01

    Molecular dynamics and molecular mechanics methods have been used to investigate additive-polymer interfacial properties in single walled carbon nanotube - polyethylene and single walled carbon nanotube - polyacrylonitrile composites. Properties such as the interfacial shear stress and bonding energy are similar for the two composites. In contrast, functionalizing the single walled carbon nanotubes with carboxylic acid groups leads to an increase in these properties, with a larger increase for the polar polyacrylonitrile composite. Increasing the percentage of carbon atoms that were functionalized from 1% to 5% also leads to an increase in the interfacial properties. In addition, the interfacial properties depend on the location of the functional groups on the single walled carbon nanotube wall.

  16. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    NASA Astrophysics Data System (ADS)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  17. A Thermodynamic Study of Dopant Interfacial Segregation Effect on Nanostability and Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Wu, Longjia

    Nanoparticles, with great surface area and high surface to volume ratio, have been widely applied in many applications due to their unique size related effects. However, this high surface area character of nanoparticles also brings great excess energy to the whole system, making the system unstable and even causing the failure of nanoparticles, especially at higher temperatures. In order to maintain nanocrystalline structure of the materials, nanostability enhancement is of great significance in nanotechnology. It is well known that the global driving force for particles growth is to eliminate the excess energy brought by surface and grain boundary. Therefore, interfacial energetics has a great influence on the nanostability of the materials. And according to previous studies, dopant interfacial segregation could be a potential way to control the interfacial energetics of the nanoparticles and possibly lead to an improved nanostability. Furthermore, the interfacial energetics even can affect mechanical properties of nano-grain ceramic materials based on recent research. The main goals of the present work were to experimentally measure the interfacial energies of nanoparticles as well as nano-grain ceramics, modify the interfacial energetics through dopant segregation effect and engineer the nanostability and mechanical properties of the nanocrystalline materials through interfacial energetics modification. To achieve this goal, Mn cation has been chosen to introduce Mn interfacial segregation on ceria nanoparticles, and La cation has been added to 12 mol% yttria stabilized zirconia (12YSZ) and magnesium aluminate spinel (MAO) two-phase nano-grain ceramics to cause La interfacial segregation. Both of the dopant segregation phenomena were directly proved by electron energy loss spectroscopy (EELS). To quantify the dopant segregation effect on the interfacial energies, high-temperature oxide melt drop solution calorimetry, water adsorption calorimetry and differential

  18. Field theoretic simulations of the interfacial properties of complex coacervates

    NASA Astrophysics Data System (ADS)

    Riggleman, Robert; Fredrickson, Glenn

    2011-03-01

    Many biological processes and emerging technologies, such as wet adhesives and biosensors, rely on the association between oppositely charged polyelectrolytes. Such association is driven not only by the electrostatic interactions between the polyelectrolytes, but there is also a substantial entropy gain associated with counterion release upon complexation. In some cases, the association between oppositely charged polymers can lead to a solid precipitate while others can result in a fluid phase rich in polyelectrolytes (coacervate phase) coexisting with a polyelectrolyte-dilute solvent phase. For many of the applications seeking to exploit coacervation, characterization of the interface between the solvent phase and the coacervate is of paramount importance. In this talk, we will present the results of field-theoretic simulations for a coarse-grained polyelectrolyte model that exhibits complex coacervation. Our simulations sample the fully-fluctuating fields in three-dimensions and provide a detailed characterization of the interface between the solvent and the coacervate phase for symmetric polyelectrolytes (where both the polycations and the polyanions carry identical charge densities) as a function of salt concentration and strength of the electrostatic fields. Finally, we characterize the interfacial properties for a select set of asymmetric conditions.

  19. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    NASA Astrophysics Data System (ADS)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and

  20. Interfacial and mechanical properties of self-assembling systems

    NASA Astrophysics Data System (ADS)

    Carvajal, Daniel

    Self-assembly is a fascinating phenomena where interactions between small subunits allow them to aggregate and form complex structures that can span many length scales. These self-assembled structures are especially important in biology where they are necessary for life as we know it. This dissertation is a study of three very different self-assembling systems, all of which have important connections to biology and biological systems. Drop shape analysis was used to study the interfacial assembly of amphiphilic block copolymers at the oil/water interface. When biologically functionalyzed copolymers are used, this system can serve as a model for receptor-ligand interactions that are used by cells to perform many activities, such as interact with their surroundings. The physical properties of a self-assembling membrane system were quantified using membrane inflation and swelling experiments. These types of membranes may have important applications in medicine such as drug eluting (growth factor eluting) scaffolds to aid in wound healing. The factors affecting the properties of bis(leucine) oxalamide gels were also explored. We believe that this particular system will serve as an appropriate model for biological gels that are made up of fiber-like and/or rod-like structures. During the course of the research presented in this dissertation, many new techniques were developed specifically to allow/aid the study of these distinct self-assembling systems. For example, numerical methods were used to predict drop stability for drop shape analysis experiments and the methods used to create reproducibly create self-assembling membranes were developed specifically for this purpose. The development of these new techniques is an integral part of the thesis and should aid future students who work on these projects. A number ongoing projects and interesting research directions for each one of the projects is also presented.

  1. Interfacial and emulsifying properties of soybean peptides with different degrees of hydrolysis.

    PubMed

    Imura, Tomohiro; Nakayama, Mio; Taira, Toshiaki; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2015-01-01

    In this study, the effects of the degree of hydrolysis on the interfacial and emulsifying properties of soybean peptides were evaluated based on surface and interfacial tension, dynamic light scattering (DLS), and freeze-fracture transmission electron microscopy (FF-TEM) analyses. Of the five evaluated soybean peptides (SP95, SP87, SP75, SP49, and SP23), those with higher degrees of hydrolysis (SP95 and SP87) did not exhibit noticeable surface-active properties in water, whereas those with relatively low degrees of hydrolysis (SP75, SP49, and SP23) exhibited remarkable surface tension-lowering activity. The latter set (SP75, SP49, and SP23) also formed giant associates with average sizes ranging from 64.5 nm to 82.6 nm above their critical association concentration (CAC). Moreover, SP23 with the lowest degree of hydrolysis exhibited excellent emulsifying activity for soybean oil, and FF-TEM analysis demonstrated that the emulsions were stabilized by a lamella-like multilayer peptide structure on the oil droplets that prevented coagulation. The peptide with the lowest degree of hydrolysis (SP23) was effective not only for soybean oil emulsification, but also for the emulsification of liquid paraffin and silicon oil that are generally difficult to emulsify.

  2. The role of dispersants' dynamic interfacial tension in effective crude oil spill dispersion.

    PubMed

    Riehm, David A; McCormick, Alon V

    2014-07-15

    The dispersion effectiveness of dispersants containing Tween 80, Span 80, and dioctyl sodium sulfosuccinate (DOSS) was characterized using a modified Swirling Flask test, and was correlated with both initial and dynamic interfacial tension produced by those dispersants at an oil-water interface. Compositional trends in effectiveness were shown to be governed by: (1) initial oil-water interfacial tension observed upon dispersant-oil-saltwater contact; (2) rate of increase (or decrease) from the initial interfacial tension as DOSS was rapidly lost to the aqueous phase; and (3) gradually slowing kinetics of dispersant adsorption to the oil-water interface as Span 80 concentration was increased, which ultimately diminished dispersion effectiveness considerably even as dynamic interfacial tension remained <10(-3) mN/m. It is proposed that this third phenomenon results not only from the hydrophobicity of Span 80, but also from the dependence of mixed Tween-Span-DOSS reverse micelles' stability in crude oil on dispersant composition.

  3. On the influence of interfacial properties to the bending rigidity of layered structures

    NASA Astrophysics Data System (ADS)

    Peng, Shenyou; Wei, Yujie

    2016-07-01

    Layered structures are ubiquitous, from one-atom thick layers in two-dimensional materials, to nanoscale lipid bi-layers, and to micro and millimeter thick layers in composites. The mechanical behavior of layered structures heavily depends on the interfacial properties and is of great interest in engineering practice. In this work, we give an analytical solution of the bending rigidity of bilayered structures as a function of the interfacial shear strength. Our results show that while the critical bending stiffness when the interface starts to slide plastically is proportional to the interfacial shear strength, there is a strong nonlinearity between the rigidity and the applied bending after interfacial plastic shearing. We further give semi-analytical solutions to the bending of bilayers when both interfacial shearing and pre-existing crack are present in the interface of rectangular and circular bilayers. The analytical solutions are validated by using finite element simulations. Our analysis suggests that interfacial shearing resistance, interfacial stiffness and preexisting cracks dramatically influence the bending rigidity of bilayers. The results can be utilized to understand the significant stiffness difference in typical biostructures and novel materials, and may also be used for non-destructive detection of interfacial crack in composites when stiffness can be probed through vibration techniques.

  4. Structural characterization of interfacial n-octanol and 3-octanol using molecular dynamic simulations.

    PubMed

    Napoleon, Raeanne L; Moore, Preston B

    2006-03-01

    Structurally isomeric octanol interfacial systems, water/vapor, 3-octanol/vapor, n-octanol/vapor, 3-octanol/water, and n-octanol/water are investigated at 298 K using molecular dynamics simulation techniques. The present study is intended to investigate strongly associated liquid/liquid interfaces and probe the atomistic structure of these interfaces. The octanol and water molecules were initially placed randomly into a box and were equilibrated using constant pressure techniques to minimize bias within the initial conditions as well as to fully sample the structural conformations of the interface. An interface formed via phase separation during equilibration and resulted in a slab geometry with a molecularly sharp interface. However, some water molecules remained within the octanol phase with a mole fraction of 0.12 after equilibration. The resulting "wet" octanol interfaces were analyzed using density profiles and orientational order parameters. Our results support the hypothesis of an ordered interface only 1 or 2 molecular layers deep before bulk properties are reached for both the 3-octanol and water systems. However, in contrast to most other interfacial systems studied by molecular dynamics simulations, the n-octanol interface extends for several molecular layers. The octanol hydroxyl groups form a hydrogen-bonding network with water which orders the surface molecules toward a preferred direction and produces a hydrophilic/hydrophobic layering. The ordered n-octanol produces an oscillating low-high density of oxygen atoms out of phase with a high-low density of carbon atoms, consistent with an oscillating dielectric. In contrast, the isomeric 3-octanol has only a single carbon-rich layer directly proximal to the interface, which is a result of the different molecular topology. Both 3-octanol and n-octanol roughen the water interface with respect to the water/vapor interface. The "wet" octanol phases, in the octanol/water systems reach bulk properties in a

  5. Surfactant induced complex formation and their effects on the interfacial properties of seawater.

    PubMed

    Guzmán, Eduardo; Santini, Eva; Benedetti, Alessandro; Ravera, Francesca; Ferrari, Michele; Liggieri, Libero

    2014-11-01

    The effect of a cationic surfactant, hexadecyltrimethylammonium bromide (CTAB), on the interfacial properties of seawater has been studied by dynamic and equilibrium surface tension and by dilational rheology essays. Important modifications of the surface tension and dilational rheology response have been observed already at the very low CTAB concentrations, where the effects due to the high ionic strength are negligible. The comparison with the effects of CTAB in different seawater models, or in natural seawater fractions, points out the establishment of strong interactions between the surfactant molecules and the lipophilic fraction of organic material dispersed/dissolved in seawater, affecting the interfacial activity of the molecules. Considering the biochemical richness of seawater, these results can be explained assuming interaction mechanisms and adsorption schemes similar to those speculated for protein and other macromolecules in the presence of surfactants, which in fact show similar features. Thus already at the low concentrations the surfactant molecules form highly surface-active complexes with part of the organic fraction of seawater. At the larger surfactant concentrations these complexes compete for adsorption with an excess of free CTAB molecules which, according to the thermodynamic conditions, are most favoured to occupy the liquid interface. The results of this study underline the important role of the sea organic content in enhancing the surface-activity of surfactants, which is relevant for a deeper understand of the direct and indirect effects of these types of pollutants on the physico-chemical environment in the sea coastal areas and develop mitigation strategies.

  6. Liquid-vapor equilibria and interfacial properties of n-alkanes and perfluoroalkanes by molecular simulation.

    PubMed

    Amat, Miguel A; Rutledge, Gregory C

    2010-03-21

    A molecular dynamics study is presented to assess the performance of a united-atom model in the prediction of liquid-vapor interfacial properties for short-chain perfluoroalkanes and their alkane counterparts. In particular, the ability of this model to discriminate between the surface-energy values of these two types of compounds was investigated over a wide temperature range corresponding to the liquid-vapor region. Comparisons with available experimental data and surface-tension predictions given by other force-field parameterizations, including those based on the more computationally demanding all-atom method, were performed to gauge the viability of this model. It was found that the model used in this study captures qualitatively the expected behavior of surface energy between alkanes and perfluoroalkanes and yields values that are in excellent agreement with experimental data, especially in the high-temperature limit as the critical temperature is approached. PMID:20331313

  7. Liquid-vapor equilibria and interfacial properties of n-alkanes and perfluoroalkanes by molecular simulation

    NASA Astrophysics Data System (ADS)

    Amat, Miguel A.; Rutledge, Gregory C.

    2010-03-01

    A molecular dynamics study is presented to assess the performance of a united-atom model in the prediction of liquid-vapor interfacial properties for short-chain perfluoroalkanes and their alkane counterparts. In particular, the ability of this model to discriminate between the surface-energy values of these two types of compounds was investigated over a wide temperature range corresponding to the liquid-vapor region. Comparisons with available experimental data and surface-tension predictions given by other force-field parameterizations, including those based on the more computationally demanding all-atom method, were performed to gauge the viability of this model. It was found that the model used in this study captures qualitatively the expected behavior of surface energy between alkanes and perfluoroalkanes and yields values that are in excellent agreement with experimental data, especially in the high-temperature limit as the critical temperature is approached.

  8. Liquid-vapor equilibria and interfacial properties of n-alkanes and perfluoroalkanes by molecular simulation.

    PubMed

    Amat, Miguel A; Rutledge, Gregory C

    2010-03-21

    A molecular dynamics study is presented to assess the performance of a united-atom model in the prediction of liquid-vapor interfacial properties for short-chain perfluoroalkanes and their alkane counterparts. In particular, the ability of this model to discriminate between the surface-energy values of these two types of compounds was investigated over a wide temperature range corresponding to the liquid-vapor region. Comparisons with available experimental data and surface-tension predictions given by other force-field parameterizations, including those based on the more computationally demanding all-atom method, were performed to gauge the viability of this model. It was found that the model used in this study captures qualitatively the expected behavior of surface energy between alkanes and perfluoroalkanes and yields values that are in excellent agreement with experimental data, especially in the high-temperature limit as the critical temperature is approached.

  9. Evaluation of the interfacial mechanical properties in fiber-reinforced ceramic composites

    SciTech Connect

    Ferber, M.K.; Wereszczak, A.A.; Riester, L.; Lowden, R.A.; Chawla, K.K.

    1993-06-01

    The present study examined the application of a micro-indentation technique to the measurement of interfacial properties in fiber reinforced ceramic composites. Specific fiber/matrix systems included SiC/glass, SiC/macro-defect-free (MDF) cement, SiC/SiC, and mullite/glass. The effect of fiber coatings upon the interfacial properties was also investigated. These properties, which included the debond strength, interfacial shear stress, and residual axial fiber stress, were evaluated by measuring the force-displacement curves generated during load-unload cycles. Estimates of these three stress values were obtained by matching the experimental force-displacement curves with data predicted from an existing model. In general the SiC/glass composites exhibited the lowest values of the interfacial shear and debond stresses. The sliding characteristics of the SiC/MDF cement and SiC/SiC composites were strongly influenced by the residual axial stress and the nature of the fiber coating. In the case of the mullite/glass composite, the high values of the interfacial shear and debond stresses reduced the measurement sensitivity, thereby increasing the uncertainty in the estimates of the interfacial properties. 17 refs, 6 figs, 1 tab.

  10. Understanding about How Different Foaming Gases Effect the Interfacial Array Behaviors of Surfactants and the Foam Properties.

    PubMed

    Sun, Yange; Qi, Xiaoqing; Sun, Haoyang; Zhao, Hui; Li, Ying

    2016-08-01

    In this paper, the detailed behaviors of all the molecules, especially the interfacial array behaviors of surfactants and diffusion behaviors of gas molecules, in foam systems with different gases (N2, O2, and CO2) being used as foaming agents were investigated by combining molecular dynamics simulation and experimental approaches for the purpose of interpreting how the molecular behaviors effect the properties of the foam and find out the key factors which fundamentally determine the foam stability. Sodium dodecyl sulfate SDS was used as the foam stabilizer. The foam decay and the drainage process were determined by Foamscan. A texture analyzer (TA) was utilized to measure the stiffness and viscoelasticity of the foam films. The experimental results agreed very well with the simulation results by which how the different gas components affect the interfacial behaviors of surfactant molecules and thereby bring influence on foam properties was described.

  11. Sound-induced Interfacial Dynamics in a Microfluidic Two-phase Flow

    NASA Astrophysics Data System (ADS)

    Mak, Sze Yi; Shum, Ho Cheung

    2014-11-01

    Retrieving sound wave by a fluidic means is challenging due to the difficulty in visualizing the very minute sound-induced fluid motion. This work studies the interfacial response of multiphase systems towards fluctuation in the flow. We demonstrate a direct visualization of music in the form of ripples at a microfluidic aqueous-aqueous interface with an ultra-low interfacial tension. The interface shows a passive response to sound of different frequencies with sufficiently precise time resolution, enabling the recording of musical notes and even subsequent reconstruction with high fidelity. This suggests that sensing and transmitting vibrations as tiny as those induced by sound could be realized in low interfacial tension systems. The robust control of the interfacial dynamics could be adopted for droplet and complex-fiber generation.

  12. Molecular Dynamics Study of Freezing Point and Solid-Liquid Interfacial Free Energy of Stockmayer Fluids

    SciTech Connect

    Wang, J.; Apte, Pankaj; Morris, James R; Zeng, X.C.

    2013-01-01

    Freezing temperatures of Stockmayer fluids with different dipolar strength at zero pressure are estimated and computed using three independent molecular-dynamics (MD) simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature (NPT) two phase coexistence method, and the constant-pressure and constant-enthalpy (NPH) coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with a reduced dipole moment is 0.656 0.001, 0.726 0.002 and 0.835 0.005, respectively. The freezing temperature increases with the dipolar strength. The solid-liquid interfacial free energies of the (111), (110) and (100) interface are calculated for the first time using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, that is, .

  13. Tunable Magnetization Dynamics in Interfacially Modified Ni81Fe19/Pt Bilayer Thin Film Microstructures

    PubMed Central

    Ganguly, Arnab; Azzawi, Sinan; Saha, Susmita; King, J. A.; Rowan-Robinson, R. M.; Hindmarch, A. T.; Sinha, Jaivardhan; Atkinson, Del; Barman, Anjan

    2015-01-01

    Interface modification for control of ultrafast magnetic properties using low-dose focused ion beam irradiation is demonstrated for bilayers of two technologically important materials: Ni81Fe19 and Pt. Magnetization dynamics were studied using an all-optical time-resolved magneto-optical Kerr microscopy method. Magnetization relaxation, precession, damping and the spatial coherence of magnetization dynamics were studied. Magnetization precession was fitted with a single-mode damped sinusoid to extract the Gilbert damping parameter. A systematic study of the damping parameter and frequency as a function of irradiation dose varying from 0 to 3.3 pC/μm2 shows a complex dependence upon ion beam dose. This is interpreted in terms of both intrinsic effects and extrinsic two-magnon scattering effects resulting from the expansion of the interfacial region and the creation of a compositionally graded alloy. The results suggest a new direction for the control of precessional magnetization dynamics, and open the opportunity to optimize high-speed magnetic devices. PMID:26621499

  14. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles.

    PubMed

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-01-01

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials.

  15. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles

    PubMed Central

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-01-01

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701

  16. Interfacial effect on physical properties of composite media: Interfacial volume fraction with non-spherical hard-core-soft-shell-structured particles.

    PubMed

    Xu, Wenxiang; Duan, Qinglin; Ma, Huaifa; Chen, Wen; Chen, Huisu

    2015-01-01

    Interfaces are known to be crucial in a variety of fields and the interfacial volume fraction dramatically affects physical properties of composite media. However, it is an open problem with great significance how to determine the interfacial property in composite media with inclusions of complex geometry. By the stereological theory and the nearest-surface distribution functions, we first propose a theoretical framework to symmetrically present the interfacial volume fraction. In order to verify the interesting generalization, we simulate three-phase composite media by employing hard-core-soft-shell structures composed of hard mono-/polydisperse non-spherical particles, soft interfaces, and matrix. We numerically derive the interfacial volume fraction by a Monte Carlo integration scheme. With the theoretical and numerical results, we find that the interfacial volume fraction is strongly dependent on the so-called geometric size factor and sphericity characterizing the geometric shape in spite of anisotropic particle types. As a significant interfacial property, the present theoretical contribution can be further drawn into predicting the effective transport properties of composite materials. PMID:26522701

  17. An ab initio molecular dynamics study of the liquid-vapor interface of an aqueous NaCl solution: inhomogeneous density, polarity, hydrogen bonds, and frequency fluctuations of interfacial molecules.

    PubMed

    Choudhuri, Jyoti Roy; Chandra, Amalendu

    2014-11-21

    We have presented a first principles simulation study of the structural and dynamical properties of a liquid-vapor interfacial system of a concentrated (5.3 M) aqueous NaCl solution. We have used ab initio molecular dynamics to examine the structural and dynamical properties of the bulk and interfacial regions. The structural aspects of the system that have been considered here include the inhomogeneous density profiles of ions and water molecules, hydrogen bond distributions, orientational profiles, and also vibrational frequency distributions in the bulk and interfacial regions. It is found that the sodium ions are mostly located in the interior, while the chloride anions occupy a significant portion of the interface of the slab. The water dipoles at the interface prefer to orient parallel to the surface. The dynamical aspects of the interfaces are investigated in terms of diffusion, orientational relaxation, hydrogen bond dynamics, and vibrational spectral diffusion. The results of the interfacial dynamics are compared with those of the corresponding bulk region. It is observed that the interfacial molecules exhibit faster diffusion and orientational relaxation with respect to the bulk. However, the interfacial molecules are found to have longer hydrogen bond lifetimes than those of the bulk. We have also investigated the correlations of hydrogen bond relaxation with the vibrational frequency fluctuations of interfacial water molecules.

  18. Tailoring Interfacial Properties by Controlling Carbon Nanotube Coating Thickness on Glass Fibers Using Electrophoretic Deposition.

    PubMed

    Tamrakar, Sandeep; An, Qi; Thostenson, Erik T; Rider, Andrew N; Haque, Bazle Z Gama; Gillespie, John W

    2016-01-20

    The electrophoretic deposition (EPD) method was used to deposit polyethylenimine (PEI) functionalized multiwall carbon nanotube (CNT) films onto the surface of individual S-2 glass fibers. By varying the processing parameters of EPD following Hamaker's equation, the thickness of the CNT film was controlled over a wide range from 200 nm to 2 μm. The films exhibited low electrical resistance, providing evidence of coating uniformity and consolidation. The effect of the CNT coating on fiber matrix interfacial properties was investigated through microdroplet experiments. Changes in interfacial properties due to application of CNT coatings onto the fiber surface with and without a CNT-modified matrix were studied. A glass fiber with a 2 μm thick CNT coating and the unmodified epoxy matrix showed the highest increase (58%) in interfacial shear strength (IFSS) compared to the baseline. The increase in the IFSS was proportional to CNT film thickness. Failure analysis of the microdroplet specimens indicated higher IFSS was related to fracture morphologies with higher levels of surface roughness. EPD enables the thickness of the CNT coating to be adjusted, facilitating control of fiber/matrix interfacial resistivity. The electrical sensitivity provides the opportunity to fabricate a new class of sizing with tailored interfacial properties and the ability to detect damage initiation.

  19. Tailoring Interfacial Properties by Controlling Carbon Nanotube Coating Thickness on Glass Fibers Using Electrophoretic Deposition.

    PubMed

    Tamrakar, Sandeep; An, Qi; Thostenson, Erik T; Rider, Andrew N; Haque, Bazle Z Gama; Gillespie, John W

    2016-01-20

    The electrophoretic deposition (EPD) method was used to deposit polyethylenimine (PEI) functionalized multiwall carbon nanotube (CNT) films onto the surface of individual S-2 glass fibers. By varying the processing parameters of EPD following Hamaker's equation, the thickness of the CNT film was controlled over a wide range from 200 nm to 2 μm. The films exhibited low electrical resistance, providing evidence of coating uniformity and consolidation. The effect of the CNT coating on fiber matrix interfacial properties was investigated through microdroplet experiments. Changes in interfacial properties due to application of CNT coatings onto the fiber surface with and without a CNT-modified matrix were studied. A glass fiber with a 2 μm thick CNT coating and the unmodified epoxy matrix showed the highest increase (58%) in interfacial shear strength (IFSS) compared to the baseline. The increase in the IFSS was proportional to CNT film thickness. Failure analysis of the microdroplet specimens indicated higher IFSS was related to fracture morphologies with higher levels of surface roughness. EPD enables the thickness of the CNT coating to be adjusted, facilitating control of fiber/matrix interfacial resistivity. The electrical sensitivity provides the opportunity to fabricate a new class of sizing with tailored interfacial properties and the ability to detect damage initiation. PMID:26699906

  20. Molecular dynamics simulations of the microstructure of the aluminum/alumina interfacial layer

    NASA Astrophysics Data System (ADS)

    Mei, Hai; Liu, Qiwen; Liu, Lisheng; Lai, Xin; She, Wuchang; Zhai, Pengcheng

    2015-01-01

    The atomic structure and charge distribution pattern of the Al/α-Al2O3 interface were studied utilizing molecular dynamics simulations. In order to accurately describe the interactions between the atoms around the interface, the charge transfer ionic and embedded atom method potential was used. Energetically preferable Al/α-Al2O3 interface systems were first determined to study the layer structures of the interface systems. Two energetically preferable Al/α-Al2O3 interface systems with a [ 1 bar 1 0 ](1 1 1) Al ∥ [ 1 0 1 bar 0 ](0 0 0 1) Al2O3 orientation relationship were obtained, corresponding to the atop-O Al-terminated and atop-O O-terminated relaxed models, respectively. Further studies revealed the presence of an interfacial layer, which is consistent with experimental results. The models predict a thickness of the interfacial layer between 12.14 Å and 16.82 Å. It is composed of aluminum suboxide (with an Al to O atomic ratio between 1:1.07 and 1:1.17). In addition, both the combination between the interfacial layer and the metallic Al layer and the interfacial layer and the ceramic α-Al2O3 were perfect. In order to further study the atomic structure of the Al/α-Al2O3 interfacial layer, it was isolated from the system and modeled separately. An analysis of the radial distribution function revealed that the interfacial layer inherits its structure from the α-Al2O3 moiety. The study of the charge distributions in the interface systems indicates that the charge of the Al atoms in the interfacial layer is mainly in the range from +2.1 e to +2.6 e while the charge of the O atoms is at the saturated state of -2e.

  1. Finite-size effects on molecular dynamics interfacial thermal-resistance predictions

    NASA Astrophysics Data System (ADS)

    Liang, Zhi; Keblinski, Pawel

    2014-08-01

    Using molecular dynamics simulations, we study the role of finite size effects on the determination of interfacial thermal resistance between two solids characterized by high phonon mean free paths. In particular, we will show that a direct, heat source-sink method leads to strong size effect, associated with ballistic phonon transport to and from, and specular reflections at the simulation domain boundary. Lack of proper account for these effects can lead to incorrect predictions about the role of interfacial bonding and structure on interfacial thermal resistance. We also show that the finite size effect can be dramatically reduced by introduction of rough external boundaries leading to diffuse phonon scattering, as explicitly demonstrated by phonon wave-packet simulations. Finally, we demonstrate that when careful considerations are given to the effects associated with the finite heat capacity of the simulation domains and phonon scattering from the external surfaces, a size-independent interfacial resistance can be properly extracted from the time integral of the correlation function of heat power across the interface. Our work demonstrates that reliable and consistent values of the interfacial thermal resistance can be obtained by equilibrium and nonequilibrium methods with a relatively small computational cost.

  2. The role of dispersants' dynamic interfacial tension in effective crude oil spill dispersion.

    PubMed

    Riehm, David A; McCormick, Alon V

    2014-07-15

    The dispersion effectiveness of dispersants containing Tween 80, Span 80, and dioctyl sodium sulfosuccinate (DOSS) was characterized using a modified Swirling Flask test, and was correlated with both initial and dynamic interfacial tension produced by those dispersants at an oil-water interface. Compositional trends in effectiveness were shown to be governed by: (1) initial oil-water interfacial tension observed upon dispersant-oil-saltwater contact; (2) rate of increase (or decrease) from the initial interfacial tension as DOSS was rapidly lost to the aqueous phase; and (3) gradually slowing kinetics of dispersant adsorption to the oil-water interface as Span 80 concentration was increased, which ultimately diminished dispersion effectiveness considerably even as dynamic interfacial tension remained <10(-3) mN/m. It is proposed that this third phenomenon results not only from the hydrophobicity of Span 80, but also from the dependence of mixed Tween-Span-DOSS reverse micelles' stability in crude oil on dispersant composition. PMID:24889318

  3. Influence of interfacial properties on thermal transport at gold:silicon contacts

    NASA Astrophysics Data System (ADS)

    Duda, J. C.; Yang, C.-Y. P.; Foley, B. M.; Cheaito, R.; Medlin, D. L.; Jones, R. E.; Hopkins, P. E.

    2013-02-01

    We measure the Kapitza conductances at Au:Si contacts from 100 to 296 K via time-domain thermoreflectance. Contacts are fabricated by evaporating Au films onto Si substrates. Prior to Au deposition, the Si substrates receive pretreatments in order to modify interfacial properties, i.e., bonding and structural disorder. Through the inclusion of a Ti adhesion layer and the removal of the native oxide, Kapitza conductance can be enhanced by a factor of four at 296 K. Furthermore, interfacial roughness is found to have a negligible effect, which we attribute to the already low conductances of poorly bonded Au:Si contacts.

  4. Determination of interfacial properties using a PC-SAFT based classical density functional theory for fluid mixtures of industrial interest

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Cristancho, Diego; Srivastava, Rakesh

    In this paper, a recent development of a PC-SAFT based classical density functional theory (DFT) is applied to the determination of interfacial properties of pure fluids and mixtures of industrial interest. Initially, the DFT formalism is described and the methodology for the property calculations explained. The consistency of this approach allows the determination of interfacial properties for fluids using the PC-SAFT equation of state parameters determined from bulk physical property data, such as vapor-liquid-equilibrium and densities. This methodology is an excellent alternative for the predictions of interfacial property of fluids and extrapolation to high pressure ranges where experimental measurements becomes challenging.

  5. Probing model tumor interfacial properties using piezoelectric cantilevers

    PubMed Central

    Yegingil, Hakki; Shih, Wan Y.; Shih, Wei-Heng

    2010-01-01

    Invasive malignant breast cancers are typically branchy and benign breast tumors are typically smooth. It is of interest to characterize tumor branchiness (roughness) to differentiate invasive malignant breast cancer from noninvasive ones. In this study, we examined the shear modulus (G) to elastic modulus (E) ratio, G∕E, as a quantity to describe model tumor interfacial roughness using a piezoelectric cantilever capable of measuring both tissue elastic modulus and tissue shear modulus. The piezoelectric cantilever used had two lead zirconate titanate layers to facilitate all-electrical elastic (shear) modulus measurements using one single device. We constructed model tissues with tumors by embedding one-dimensional (1D) corrugated inclusions and three-dimensional (3D) spiky-ball inclusions made of modeling clay in gelatin. We showed that for smooth inclusions, G∕E was 0.3 regardless of the shear direction. In contrast, for a 1D corrugated rough inclusion G∕E was 0.3 only when the shear was parallel to corrugation and G∕E increased with an increasing angle between the shear direction and the corrugation. When the shear was perpendicular to corrugation, G∕E became >0.7. For 3D isotropic spiky-ball inclusions we showed that the G∕E depended on the degree of the roughness. Using the ratio s∕r of the spike length (s) to the overall inclusion radius (r) as a roughness parameter, we showed that for inclusions with s∕r larger than or equal to 0.28, the G∕E ratio over the inclusions was larger than 0.7 whereas for inclusions with s∕r less than 0.28, the G∕E decreased with decreasing s∕r to around 0.3 at s∕r=0. In addition, we showed that the depth limit of the G∕E measurement is twice the width of the probe area of the piezoelectric cantilever. PMID:20887005

  6. Molecular dynamics study of interfacial thermal transport between silicene and substrates.

    PubMed

    Zhang, Jingchao; Hong, Yang; Tong, Zhen; Xiao, Zhihuai; Bao, Hua; Yue, Yanan

    2015-10-01

    In this work, the interfacial thermal transport across silicene and various substrates, i.e., crystalline silicon (c-Si), amorphous silicon (a-Si), crystalline silica (c-SiO2) and amorphous silica (a-SiO2) are explored by classical molecular dynamics (MD) simulations. A transient pulsed heating technique is applied in this work to characterize the interfacial thermal resistance in all hybrid systems. It is reported that the interfacial thermal resistances between silicene and all substrates decrease nearly 40% with temperature from 100 K to 400 K, which is due to the enhanced phonon couplings from the anharmonicity effect. Analysis of phonon power spectra of all systems is performed to interpret simulation results. Contradictory to the traditional thought that amorphous structures tend to have poor thermal transport capabilities due to the disordered atomic configurations, it is calculated that amorphous silicon and silica substrates facilitate the interfacial thermal transport compared with their crystalline structures. Besides, the coupling effect from substrates can improve the interface thermal transport up to 43.5% for coupling strengths χ from 1.0 to 2.0. Our results provide fundamental knowledge and rational guidelines for the design and development of the next-generation silicene-based nanoelectronics and thermal interface materials.

  7. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    PubMed Central

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  8. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  9. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  10. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  11. Dynamically­ Reconfigurable Complex Emulsions via Tunable Interfacial Tensions

    NASA Astrophysics Data System (ADS)

    Swager, Timothy

    This lecture will focus on the design of systems wherein a reconfiguration of the materials can be triggered chemically of mechanically. The utility of these methods is to generate transduction mechanisms by which chemical and biological sensors can be developed. Three different types of systems will be discussed. (1) Particles wherein a protease enzyme releases strain in the particle by breaking crosslinks. (2) Assemblies of polymers at air water interfaces and the demonstration of a luminescence strain response upon compression. (3) Dynamic colloids produced from immiscible fluorocarbon/hydrocarbon mixtures and ability to convert the core and shell layers of the particles as well as the conversion to Janus particles. The latter system's morphology changes can be triggered chemically or optically.

  12. Time-resolved x-ray photoelectron spectroscopy techniques for real-time studies of interfacial charge transfer dynamics

    SciTech Connect

    Shavorskiy, Andrey; Hertlein, Marcus; Guo Jinghua; Tyliszczak, Tolek; Cordones, Amy; Vura-Weis, Josh; Siefermann, Katrin; Slaughter, Daniel; Sturm, Felix; Weise, Fabian; Khurmi, Champak; Belkacem, Ali; Weber, Thorsten; Gessner, Oliver; Bluhm, Hendrik; Strader, Matthew; Cho, Hana; Coslovich, Giacomo; Kaindl, Robert A.; Lin, Ming-Fu; and others

    2013-04-19

    X-ray based spectroscopy techniques are particularly well suited to gain access to local oxidation states and electronic dynamics in complex systems with atomic pinpoint accuracy. Traditionally, these techniques are applied in a quasi-static fashion that usually highlights the steady-state properties of a system rather than the fast dynamics that often define the system function on a molecular level. Novel x-ray spectroscopy techniques enabled by free electron lasers (FELs) and synchrotron based pump-probe schemes provide the opportunity to monitor intramolecular and interfacial charge transfer processes in real-time and with element and chemical specificity. Two complementary time-domain xray photoelectron spectroscopy techniques are presented that are applied at the Linac Coherent Light Source (LCLS) and the Advanced Light Source (ALS) to study charge transfer processes in N3 dye-sensitized ZnO semiconductor nanocrystals, which are at the heart of emerging light-harvesting technologies.

  13. Interfacial properties of binary mixtures of square-well molecules from Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Martínez-Ruiz, F. J.; Blas, F. J.

    2016-04-01

    We determine the interfacial properties of mixtures of spherical square-well molecules from direct simulation of the vapor-liquid interface. We consider mixtures with the same molecular size and intermolecular potential range but different dispersive energy parameter values. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of mixtures of square-well molecules. In particular, we determine the pressure tensor using the mechanical (virial) route and the vapor-liquid interfacial tension evaluated using the Irving-Kirkwood method. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, and interfacial thickness as functions of pressure, at a given temperature. This work can be considered as the extension of our previous work [F. J. Martínez-Ruiz and F. J. Blas, Mol. Phys. 113, 1217 (2015)] to deal with mixtures of spherical molecules that interact through a discontinuous intermolecular potential. According to our results, the main effect of increasing the ratio between the dispersive energy parameters of the mixture, ɛ22/ɛ11, is to sharpen the vapor-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative maximum in the density profiles of the more volatile component at the interface. This maximum is related with adsorption or accumulation of these molecules at the interface, since there are stronger attractive interactions between these molecules in comparison with the rest of intermolecular interactions. Also, the interfacial thickness decreases and the surface tension increases as ɛ22/ɛ11 is larger, a direct consequence of the increasing of the cohesive energy of the system.

  14. Interfacial properties of binary mixtures of square-well molecules from Monte Carlo simulation.

    PubMed

    Martínez-Ruiz, F J; Blas, F J

    2016-04-21

    We determine the interfacial properties of mixtures of spherical square-well molecules from direct simulation of the vapor-liquid interface. We consider mixtures with the same molecular size and intermolecular potential range but different dispersive energy parameter values. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of mixtures of square-well molecules. In particular, we determine the pressuretensor using the mechanical (virial) route and the vapor-liquid interfacial tension evaluated using the Irving-Kirkwood method. In addition to the pressuretensor and the surface tension, we also obtain density profiles, coexistence densities, and interfacial thickness as functions of pressure, at a given temperature. This work can be considered as the extension of our previous work [F. J. Martínez-Ruiz and F. J. Blas, Mol. Phys. 113, 1217 (2015)] to deal with mixtures of spherical molecules that interact through a discontinuous intermolecular potential. According to our results, the main effect of increasing the ratio between the dispersive energy parameters of the mixture, ϵ22/ϵ11, is to sharpen the vapor-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative maximum in the density profiles of the more volatile component at the interface. This maximum is related with adsorption or accumulation of these molecules at the interface, since there are stronger attractive interactions between these molecules in comparison with the rest of intermolecular interactions. Also, the interfacial thickness decreases and the surface tension increases as ϵ22/ϵ11 is larger, a direct consequence of the increasing of the cohesive energy of the system. PMID:27389232

  15. Elucidating the role of interfacial materials properties in microfluidic packages.

    SciTech Connect

    Edwards, Thayne L.

    2013-01-01

    The purpose of this work was to discover a method to investigate the properties of interfaces as described by a numerical physical model. The model used was adopted from literature and applied to a commercially available multiphysics software package. By doing this the internal properties of simple structures could be elucidated and then readily applied to more complex structures such as valves and pumps in laminate microfluidic structures. A numerical finite element multi-scale model of a cohesive interface comprised of heterogeneous material properties was used to elucidate irreversible damage from applied strain energy. An unknown internal state variable was applied to characterize the damage process. Using a constrained blister test, this unknown internal state variable could be determined for an adherend/adhesive/adherend body. This is particularly interesting for laminate systems with microfluidic and microstructures contained within the body. A laminate structure was designed and fabricated that could accommodate a variety of binary systems joined using nearly any technique such as adhesive, welding (solvent, laser, ultrasonic, RF, etc.), or thermal. The adhesive method was the most successful and easy to implement but also one of the more difficult to understand, especially over long periods of time. Welding methods are meant to achieve a bond that is similar to bulk properties and so are easier to predict. However, methods of welding often produce defects in the bonds.. Examples of the test structures used to elucidate the internal properties of the model were shown and demonstrated. The real life examples used this research to improve upon current designs and aided in creating complex structures for sensor and other applications.

  16. Dynamic interfacial trapping of flexural waves in structured plates

    PubMed Central

    Craster, R. V.; Movchan, A. B.; Movchan, N. V.; Jones, I. S.

    2016-01-01

    The paper presents new results on the localization and transmission of flexural waves in a structured plate containing a semi-infinite two-dimensional array of rigid pins. In particular, localized waves are identified and studied at the interface boundary between the homogeneous part of the flexural plate and the part occupied by rigid pins. A formal connection has been made with the dispersion properties of flexural Bloch waves in an infinite doubly periodic array of rigid pins. Special attention is given to regimes corresponding to standing waves of different types as well as Dirac-like points that may occur on the dispersion surfaces. A single half-grating problem, hitherto unreported in the literature, is also shown to bring interesting solutions. PMID:27118892

  17. Monitoring interfacial dynamics by pulsed laser techniques. Final report

    SciTech Connect

    Richmond, G.

    1995-12-31

    The research is aimed at understanding the structural, electronic, and reactive properties of semiconductors in solutions. Focus is on Si and GaAs surfaces because they are used in photovoltaic devices, etc. The pulsed laser techniques used included surface second harmonic generation in Si and laser induced photoluminescence in GaAs. SHG can measure space charge effects in the semiconductor under various conditions, ie, immersed in electrolyte, in presence of oxide overlayers, and under UHV conditions. The Si studies demonstrated the sensitivity of the phase of the SH response to space charge effects. With GaAs, time-correlated single photon counting methods were used in the picosecond time regime to examine the recombination luminescence following above band gap excitation (surface trapping velocities).

  18. Effect of Cu2+ Activation on Interfacial Water Structure at the Sphalerite Surface as Studied by Molecular Dynamics Simulation

    SciTech Connect

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.; Wick, Collin D.

    2015-12-10

    In the first part of this paper, an experimental contact angle study of the fresh and Cu2+ activated sphalerite-ZnS surface as well as the covellite-CuS (001) surface is reported describing the increased hydrophobic character of the surface during Cu2+ activation. In addition to these experimental results, the fresh sphalerite-ZnS (110), copper-zinc sulfide-CuZnS2 (110), villamaninite- CuS2 (100), and covellite-CuS (001) surfaces were examined using Molecular Dynamics Simulation (MDS). Our MDS results on the behavior of interfacial water at the fresh sphalerite-ZnS (110), copper-zinc sulfide-CuZnS2 (110), villamaninite-CuS2 (100), and covellite-CuS (001) surfaces include simulated contact angles, water number density distribution, water dipole orientation, water residence time, and hydrogen-bonding considerations. The copper content at the Cu2+ activated sphalerite surface seems to account for the increased hydrophobicity as revealed by both experimental and MD simulated contact angle measurements. The relatively greater hydrophobic character developed at the Cu2+ activated sphalerite surface and at the copper-zinc sulfide surface has been described by MDS, based on the structure of interfacial water and its dynamic properties. L.X.D. acknowledges funding from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences.

  19. Anodization of carbon fibers on interfacial mechanical properties of epoxy matrix composites.

    PubMed

    Park, Soo-Jin; Chang, Yong-Hwan; Kim, Yeong-Cheol; Rhee, Kyong-Yop

    2010-01-01

    The influence of anodic oxidation on the mechanical interfacial properties of carbon-fiber-reinforced epoxy resin composites was investigated. The surface properties of the anodized carbon fibers were studied through the measurement of contact angles and through SEM, XPS, and FT-IR analyses. The mechanical interfacial properties of the composites were studied through measurements of interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and critical strain energy release rate (G(IC)). It was shown that the surface functional groups containing oxygen on the anodized carbon fibers exert great effects on the surface energetics of fibers and the mechanical interfacial properties, e.g., ILSS, of the resulting composites. Contact angle measurements based on the wicking rate of a test liquid showed that anodic oxidation lead to an increase in the surface free energy of the carbon fibers, mainly in its specific (or polar) component. In terms of surface energetics, it was found that wetting played an important role in increasing the degree of adhesion at interfaces between the fibers and the resin matrices of the composites. PMID:20352820

  20. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.

    PubMed

    Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie

    2016-09-01

    Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems.

  1. Subcritical Water Induced Complexation of Soy Protein and Rutin: Improved Interfacial Properties and Emulsion Stability.

    PubMed

    Chen, Xiao-Wei; Wang, Jin-Mei; Yang, Xiao-Quan; Qi, Jun-Ru; Hou, Jun-Jie

    2016-09-01

    Rutin is a common dietary flavonoid with important antioxidant and pharmacological activities. However, its application in the food industry is limited mainly because of its poor water solubility. The subcritical water (SW) treatment provides an efficient technique to solubilize and achieve the enrichment of rutin in soy protein isolate (SPI) by inducing their complexation. The physicochemical, interfacial, and emulsifying properties of the complex were investigated and compared to the mixtures. SW treatment had much enhanced rutin-combined capacity of SPI than that of conventional method, ascribing to the well-contacted for higher water solubility of rutin with stronger collision-induced hydrophobic interactions. Compared to the mixtures of rutin with proteins, the complex exhibited an excellent surface activity and improved the physical and oxidative stability of its stabilized emulsions. This improving effect could be attributed to the targeted accumulation of rutin at the oil-water interface accompanied by the adsorption of SPI resulting in the thicker interfacial layer, as evidenced by higher interfacial protein and rutin concentrations. This study provides a novel strategy for the design and enrichment of nanovehicle providing water-insoluble hydrophobic polyphenols for interfacial delivery in food emulsified systems. PMID:27467966

  2. Single-molecule interfacial electron transfer dynamics manipulated by an external electric current.

    PubMed

    Zhang, Guofeng; Xiao, Liantuan; Chen, Ruiyun; Gao, Yan; Wang, Xiaobo; Jia, Suotang

    2011-08-14

    Interfacial electron transfer (IET) dynamics in a 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbocyanine (DiD) dye molecule/indium tin oxide (ITO) film system have been probed at the ensemble and single-molecule levels. By comparing the difference in the external electric current (EEC) dependence of the fluorescence intensities and lifetimes of the ensembles and single molecules, it is shown that the single-molecule probe can effectively demonstrate IET dynamics. The backward electron transfer and electron transfer from the ground state induce single-molecule fluorescence quenching when an EEC is applied to the DiD/ITO film system.

  3. Compositional Effects on Interfacial Properties in Contaminated Systems: Implications for Organic Liquid Migration and Recovery

    SciTech Connect

    Abriola, Linda M.; Demond, Avery H.; Hsu, Hsin-lan; O'Carroll, Denis M.; Phelan, Thoams, J.; Polityka, Catherine A.; Ryder, Jodi L.

    2003-03-27

    An understanding of the transport behavior of dense non-aqueous phase organic liquids (DNAPLs) is a prerequisite for the accurate assessment of chemical exposure and the design of effective subsurface remediation strategies. This paper highlights results of an ongoing EMSP research project designed to explore the influence of solid and organic phase composition on DNAPL migration, entrapment and recovery from contaminated aquifers. The integrated research program includes small-scale laboratory investigations to examine the dependence of organic contaminant constitutive relationships (e.g., capillary pressure-saturation, relative permeability, residual saturation and interphase mass transfer rates) on interfacial properties. Models developed from these observations are being incorporated into a compositional multiphase simulator to facilitate prediction of DNAPL behavior under conditions representative of field sites. Two-dimensional sand box experiments are also being undertaken to validate the modeling approach. Results from this research demonstrate the dramatic influence of interfacial property variation on DNAPL migration and retention.

  4. Determination of the Si-conducting polymer interfacial properties using A-C impedance techniques

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Di Stefano, Salvador; Moacanin, Jovan

    1985-01-01

    A study was made of the interfacial properties of poly(pyrrole) (PP) deposited electrochemically onto single crystal p-Si surfaces. The interfacial properties are dependent upon the counterions. The formation of 'quasi-ohmic' and 'nonohmic' contacts, respectively, of PP(ClO4) and PP films doped with other counterions (BF4 and para-toluene sulfonate) with p-Si, are explained in terms of the conductivity of these films and the flat band potential, V(fb), of PP relative to that of p-Si. The PP film seems to passivate or block intrinsic surface states present on the p-Si surface. The differences in the impedance behavior of para-toluene sulfonate doped and ClO4 doped PP are compared.

  5. Effects of inclination and vorticity on interfacial flow dynamics in horizontal and inclined pipes

    NASA Astrophysics Data System (ADS)

    Kiara, Areti; Hendrickson, Kelli; Liu, Yuming

    2015-11-01

    The transport of oil and gas in long horizontal pipelines can be significantly affected by the development of violent roll waves and slugs, but the mechanics causing such transitions have not been well understood. To enable the improvement of the prediction of flow transition criteria in long pipelines we perform theoretical analysis and direct numerical simulations of multiphase pipe flows to quantify the roles of inclination and vorticity in the flow dynamics. We find that backflow or flooding may occur even in the absence of disturbances due to inclination effects and obtain criteria on the maximum pipe length for steady flows. We identify and compare the effects of inclination and vorticity on the stability of interfacial wave disturbances. We discuss the mechanisms of non-linear energy transfer between stable and unstable wave disturbances and present results from direct numerical simulations for the predictions of spectrum evolutions for broad-banded interfacial disturbances in inclined pipes.

  6. Mass-Transfer-Controlled Dynamic Interfacial Tension in Microfluidic Emulsification Processes.

    PubMed

    Wang, Kai; Zhang, Liming; Zhang, Wanlu; Luo, Guangsheng

    2016-04-01

    Varied interfacial tension caused by the unsaturated adsorption of surfactants on dripping droplet surfaces is experimentally studied. The mass transfer and adsorption of surfactants, as well as the generation of fresh interfaces, are considered the main factors dominating the surfactant adsorption ratio on droplet surfaces. The diffusion and convective mass transfer of the surfactants are first distinguished by comparing the adsorption depth and the mass flux boundary layer thickness. A characterized mass transfer time is then calculated by introducing an effective diffusion coefficient. A time ratio is furthermore defined by dividing the droplet generation time by the characteristic mass transfer time, t/tm, in order to compare the rates of surfactant mass transfer and droplet generation. Different control mechanisms for different surfactants are analyzed based on the range of t/t(m), and a criterion time ratio using a simplified characteristic mass transfer time, t(m)*, is finally proposed for predicting the appearance of dynamic interfacial tension.

  7. Role of dynamic interfacial tensions in numerical simulation of cosurfactant/alkaline polymer floods

    SciTech Connect

    Islam, M.R. ); Chakma, A.

    1988-01-01

    This paper presents a new mathematical formulation that provides a realistic and complete representation of surfactant-enhanced alkaline and alkaline/polymer processes. The model accounts for transient interfacial tension (IFT) and non-equilibrium mass transfer phenomena. The proposed model uses a newly developed surface excess model for adsorption and incorporates dispersion and diffusion in both oleic and aqueous phases. Also considered are the resistance factor and the modification in IFT behaviour due to the presence of polymer. The mathematical model is tested against experimental results, showing good agreement both in alkaline/cosurfactant and the new surface excess model for adsorption is much more effective than the conventional Langmuir-type model. Numerical runs are also conducted to investigate the impact of dynamic interfacial tension on oil recovery. A detailed study has been performed to investigate the effect of surfactant and polymer concentrations, slug sizes, and oil viscosity.

  8. Electrochemical evaluation of the p-Si/conducting polymer interfacial properties

    NASA Technical Reports Server (NTRS)

    Nagasubramanian, G.; Distefano, S.; Moacanin, J.

    1988-01-01

    Results are presented from an experimental investigation of the contact resistance and interfacial properties of a p-Si/conducting polymer interface for solar cell applications. The electronic character of the polymer/semiconductor function is determined by studying the electrochemical behavior of both poly(isothianapthene) (PITN) and polypyrrole (PP) in an acetonitrile solution on p-silicon electrodes. The results obtained indicate that while PITN is intrinsically more conductive than PP, neither passivates surface states nor forms ohmic contact.

  9. Non-Contact Method for Measurement of Surface/Interfacial Liquid Properties with Laser Manipulation Technique

    SciTech Connect

    Mitani, Shujiro; Sakai, Keiji

    2008-07-07

    The laser manipulation technique is a powerful tool for studying the liquid surface properties such as surface tension and viscosity. This method has several remarkable features, for example, non-contact, wide range and high sensitivity. Ultra-low interfacial tension, {approx}l{mu}N/m, was measured with this method on the water/heptane interface containing surfactant. This method is also applicable to the observation of highly-viscous and colloidal liquids.

  10. Interfacial antiwear and physicochemical properties of alkylborate-dithiophosphates.

    PubMed

    Shah, Faiz Ullah; Glavatskih, Sergei; Höglund, Erik; Lindberg, Mats; Antzutkin, Oleg N

    2011-04-01

    Boron compounds have become of interest in tribology because of their unique tribochemical and tribological properties. At the same time, dialkyldithiophosphates (DTPs) of transition metals have been extensively used as multifunctional additives in lubricants to control friction and reduce wear in mechanical systems. Because of the environmental pollution and health hazards of these compounds, ashless compounds with reduced amounts of sulfur and phosphorus are desirable. This work reports on the synthesis, characterization, and tribological properties of a new class of compounds, alkylborate-dithiophosphates. This class combines two high-iron-affinity surface active groups, borate and dialkyldithiophosphate, into a single molecule. The final products, viscous liquids, were characterized by FT-IR, multinuclear (1)H, (13)C, (31)P, and (11)B NMR spectroscopy and thermal analyses. Residues of one representative compound from this class, DPB-EDTP, after thermal analyses were additionally characterized by multinuclear (13)C, (31)P and (11)B MAS and (31)P CP/MAS NMR spectroscopy. Solid-state NMR data suggest that a dominant part of the solid residue of DPB-EDTP consists of borophosphates. Antiwear and friction properties of a mineral oil with these novel additives were evaluated in a four-ball tribometer in comparison with O,O'-di-n-butyl-dithiophosphato-zinc(II), Zn-BuDTP, as a reference lubricant additive. The surface morphology and the elemental composition of the tribofilms were characterized using scanning electron microscopy with energy-dispersive X-rays spectroscopy (SEM/EDS). The results show that alkylborate-dithiophosphates, with substantially reduced amounts of sulfur and phosphorus compared with Zn-BuDTP, have considerably better antiwear and friction performance.

  11. Interfacial Ga-As suboxide: Structural and electronic properties

    SciTech Connect

    Colleoni, Davide Pasquarello, Alfredo

    2015-07-20

    The structural and electronic properties of Ga-As suboxide representative of the transition region at the GaAs/oxide interface are studied through density functional calculations. Two amorphous models generated by quenches from the melt are taken under consideration. The absence of As–O bonds indicates that the structure is a mixture of GaAs and Ga-oxide, in accordance with photoemission experiments. The band edges of the models are found to be closely aligned to those of GaAs. The simulation of charging and discharging processes leads to the identification of an As-related defect with an energy level at ∼0.7 eV above the GaAs valence band maximum, in good agreement with the experimental density of interface states.

  12. Interfacial Ga-As suboxide: Structural and electronic properties

    NASA Astrophysics Data System (ADS)

    Colleoni, Davide; Pasquarello, Alfredo

    2015-07-01

    The structural and electronic properties of Ga-As suboxide representative of the transition region at the GaAs/oxide interface are studied through density functional calculations. Two amorphous models generated by quenches from the melt are taken under consideration. The absence of As-O bonds indicates that the structure is a mixture of GaAs and Ga-oxide, in accordance with photoemission experiments. The band edges of the models are found to be closely aligned to those of GaAs. The simulation of charging and discharging processes leads to the identification of an As-related defect with an energy level at ˜0.7 eV above the GaAs valence band maximum, in good agreement with the experimental density of interface states.

  13. Interfacial properties of three different bioactive dentine substitutes.

    PubMed

    Gjorgievska, Elizabeta S; Nicholson, John W; Apostolska, Sonja M; Coleman, Nichola J; Booth, Samantha E; Slipper, Ian J; Mladenov, Mitko I

    2013-12-01

    Three different bioactive materials suitable as dentine substitutes in tooth repair have been studied: glass-ionomer cement, particulate bioglass, and calcium-silicate cement. On 15 permanent human molars, Class V cavities were prepared and the bottom of each cavity was de-mineralized by an artificial caries gel. After the de-mineralization, the teeth were restored with: (1) Bioglass®45S5 and ChemFil® Superior; (2) Biodentine™ and ChemFil® Superior; and (3) ChemFil® Superior for a complete repair. The teeth were stored for 6 weeks in artificial saliva, then cut in half along the longitudinal axis: the first half was imaged in a scanning electron microscope (SEM) and the other half was embedded in resin and analyzed by SEM using energy-dispersive X-ray analysis. The glass-ionomer and the bioglass underwent ion exchange with the surrounding tooth tissue, confirming their bioactivity. However, the particle size of the bioglass meant that cavity adaptation was poor. It is concluded that smaller particle size bioglasses may give more acceptable results. In contrast, both the glass-ionomer and the calcium-silicate cements performed well as dentine substitutes. The glass-ionomer showed ion exchange properties, whereas the calcium silicate gave an excellent seal resulting from its micromechanical attachment.

  14. Interfacial Properties and Design of Functional Energy Materials

    SciTech Connect

    Sumpter, Bobby G; Liang, Liangbo; Nicolai, Adrien; Meunier, V.

    2014-01-01

    The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality, such as efficient energy conversion/storage/transmission, over multiple length scales. This demand can potentially be realized by harnessing the power of self-assembly a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately non-covalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, e.g., lithographic approach. However, while function (e.g., charge mobility) in simple systems such as single crystals can often be predicted, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale (long-range) order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various substrates. Typically molecular self-assembly involves poorly understood non-covalent intermolecular and substrate-molecule interactions compounded by local and/or collective influences from the substrate atomic lattice (symmetry and/or topological features) and electronic structure. Thus, progress towards unraveling the underlying physicochemical processes that control the structure and macroscopic physical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling and simulation with precision synthesis, advanced experimental characterization, and device measurements. In this mode, theory and simulation can greatly accelerate the

  15. Probing interfacial electron dynamics with time-resolved X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Neppl, Stefan

    2015-05-01

    Time-resolved core-level spectroscopy techniques using laser pulses to initiate and short X-ray pulses to probe photo-induced processes have the potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics at complex interfaces. We describe the implementation of femto- and picosecond time-resolved photoelectron spectroscopy at the Linac Coherent Light Source (LCLS) and at the Advanced Light Source (ALS) in order to follow light-driven electron dynamics at dye-semiconductor interfaces on femto- to nanosecond timescales, and from the perspective of individual atomic sites. A distinct transient binding-energy shift of the Ru3d photoemission lines originating from the metal centers of N3 dye-molecules adsorbed on nanoporous ZnO is observed 500 fs after resonant HOMO-LUMO excitation with a visible laser pulse. This dynamical chemical shift is accompanied by a characteristic surface photo-voltage response of the semiconductor substrate. The two phenomena and their correlation will be discussed in the context of electronic bottlenecks for efficient interfacial charge-transfer and possible charge recombination and relaxation pathways leading to the neutralization of the transiently oxidized dye following ultrafast electron injection. First steps towards in operando time-resolved X-ray absorption spectroscopy techniques to monitor interfacial chemical dynamics will be presented.

  16. Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact

    NASA Astrophysics Data System (ADS)

    Yang, Chunyan; Persson, Bo

    2008-03-01

    We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load [1-4]. For high load the contact area approaches to the nominal contact area (i.e., complete contact), and the interfacial separation approaches to zero. The present results may be very important for soft solids, e.g., rubber, or for very smooth surfaces, where complete contact can be reached at moderate high loads without plastic deformation of the solids. References: [1] C. Yang and B.N.J. Persson, arXiv:0710.0276, (to appear in Phys. Rev. Lett.) [2] B.N.J. Persson, Phys. Rev. Lett. 99, 125502 (2007) [3] L. Pei, S. Hyun, J.F. Molinari and M.O. Robbins, J. Mech. Phys. Sol. 53, 2385 (2005) [4] M. Benz, K.J. Rosenberg, E.J. Kramer and J.N. Israelachvili, J. Phy. Chem. B.110, 11884 (2006)

  17. Influence of interfacial properties and inhomogeneity on formation of microdamage in bone

    NASA Astrophysics Data System (ADS)

    Nakade, Rugved

    Microdamage accumulation at the nanoscopic level of bone affects the overall mechanical behavior of the bone. This makes it necessary to study the mechanisms through which microdamage accumulation can take place at the nanoscopic level. Experiments on bone's different hierarchy are difficult because of the small sizes of these hierarchical structures. Prevention of bone fractures is greatly enhanced with the help of predictive computational tools and hence used to evaluate the effects of microdamage in bone. There are two main types of microdamage that can form in the bone; linear cracks and diffuse damage. The bone nanostructure consists of mineral platelets embedded in soft protein called collagen and can be treated as a composite material. In this study, a two-dimensional probabilistic finite element model of the bone nanostructure was developed to evaluate the likely formation of the microdamage in the nanostructure due to changes in material properties of the nanostructure. The influence of the microdamage formation due to the collagen-mineral interface strength and also the effects of inhomogeneity were studied. To study interfacial strength effects, cohesive elements using bilinear traction separation laws were used to simulate the behavior of the interface (by way of interfacial debonding) between the collegen-mineral layers. Random field theory was used to assign spatially correlated random variables in order to assign inhomogeneous material properties to the bone. Correlation lengths were used to control the level of inhomogeneity in the model. The analysis showed that the type of microdamage was significantly influenced by the strength of the mineral-collagen interface. Probabilistic failure analyses indicated that strong interfaces resulted in limited interfacial debonding and narrow stress concentrations around an initial defect in the mineral-collagen composite, thereby suggesting that the likely location of failure was in same plane of the initial

  18. Effect of molecular flexibility of Lennard-Jones chains on vapor-liquid interfacial properties.

    PubMed

    Blas, F J; Moreno-Ventas Bravo, A I; Algaba, J; Martínez-Ruiz, F J; MacDowell, L G

    2014-03-21

    We have determined the interfacial properties of short fully flexible chains formed from tangentially bonded Lennard-Jones monomeric units from direct simulation of the vapor-liquid interface. The results obtained are compared with those corresponding to rigid-linear chains formed from the same chain length, previously determined in the literature [F. J. Blas, A. I. M.-V. Bravo, J. M. Míguez, M. M. Piñeiro, and L. G. MacDowell, J. Chem. Phys. 137, 084706 (2012)]. The full long-range tails of the potential are accounted for by means of an improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 129, 6264 (2006)] proposed recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2008)] valid for spherical as well as for rigid and flexible molecular systems. Three different model systems comprising of 3, 5, and 6 monomers per molecule are considered. The simulations are performed in the canonical ensemble, and the vapor-liquid interfacial tension is evaluated using the test-area method. In addition to the surface tension, we also obtained density profiles, coexistence densities, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the chain length and rigidity on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapor-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. Comparison between predictions for fully flexible and rigid-linear chains, formed by the same number of monomeric units, indicates that the main effects of increasing the flexibility, i.e., passing from a rigid-linear to a fully flexible chain, are: (a) to decrease the difference between the liquid and vapor densities; (b) to decrease the critical temperature and

  19. Interfacial properties and design of functional energy materials.

    PubMed

    Sumpter, Bobby G; Liang, Liangbo; Nicolaï, Adrien; Meunier, Vincent

    2014-11-18

    CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design

  20. Interfacial properties and design of functional energy materials.

    PubMed

    Sumpter, Bobby G; Liang, Liangbo; Nicolaï, Adrien; Meunier, Vincent

    2014-11-18

    CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design

  1. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions

    NASA Astrophysics Data System (ADS)

    Armas-Pérez, Julio C.; Quintana-H, Jacqueline; Chapela, Gustavo A.

    2013-01-01

    Liquid-vapor coexistence and interfacial properties of square wells in two dimensions are calculated. Orthobaric densities, vapor pressures, surface tensions, and interfacial thicknesses are reported. Results are presented for a series of potential widths λ* = 1.4, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5, where λ* is given in units of the hard core diameter σ. Critical and triple points are explored. No critical point was found for λ* < 1.4. Corresponding states principle analysis is performed for the whole series. For λ* = 1.4 and 1.5 evidence is presented that at an intermediate temperature between the critical and the triple point temperatures the liquid branch becomes an amorphous solid. This point is recognized in Armas-Pérez et al. [unpublished] as a hexatic phase transition. It is located at reduced temperatures T* = 0.47 and 0.35 for λ* = 1.4 and 1.5, respectively. Properties such as the surface tension, vapor pressure, and interfacial thickness do not present any discontinuity at these points. This amorphous solid branch does not follow the corresponding state principle, which is only applied to liquids and gases.

  2. Effect of chemical treatment of Kevlar fibers on mechanical interfacial properties of composites.

    PubMed

    Park, Soo-Jin; Seo, Min-Kang; Ma, Tae-Jun; Lee, Douk-Rae

    2002-08-01

    In this work, the effects of chemical treatment on Kevlar 29 fibers have been studied in a composite system. The surface characteristics of Kevlar 29 fibers were characterized by pH, acid-base value, X-ray photoelectron spectroscopy (XPS), and FT-IR. The mechanical interfacial properties of the final composites were studied by interlaminar shear strength (ILSS), critical stress intensity factor (K(IC)), and specific fracture energy (G(IC)). Also, impact properties of the composites were investigated in the context of differentiating between initiation and propagation energies and ductile index (DI) along with maximum force and total energy. As a result, it was found that chemical treatment with phosphoric acid solution significantly affected the degree of adhesion at interfaces between fibers and resin matrix, resulting in improved mechanical interfacial strength in the composites. This was probably due to the presence of chemical polar groups on Kevlar surfaces, leading to an increment of interfacial binding force between fibers and matrix in a composite system.

  3. Liquid-vapor equilibrium and interfacial properties of square wells in two dimensions.

    PubMed

    Armas-Pérez, Julio C; Quintana-H, Jacqueline; Chapela, Gustavo A

    2013-01-28

    Liquid-vapor coexistence and interfacial properties of square wells in two dimensions are calculated. Orthobaric densities, vapor pressures, surface tensions, and interfacial thicknesses are reported. Results are presented for a series of potential widths λ* = 1.4, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, and 5, where λ* is given in units of the hard core diameter σ. Critical and triple points are explored. No critical point was found for λ* < 1.4. Corresponding states principle analysis is performed for the whole series. For λ* = 1.4 and 1.5 evidence is presented that at an intermediate temperature between the critical and the triple point temperatures the liquid branch becomes an amorphous solid. This point is recognized in Armas-Pérez et al. [unpublished] as a hexatic phase transition. It is located at reduced temperatures T* = 0.47 and 0.35 for λ* = 1.4 and 1.5, respectively. Properties such as the surface tension, vapor pressure, and interfacial thickness do not present any discontinuity at these points. This amorphous solid branch does not follow the corresponding state principle, which is only applied to liquids and gases. PMID:23387606

  4. Understanding the interfacial properties of nanostructured liquid crystalline materials for surface-specific delivery applications.

    PubMed

    Dong, Yao-Da; Larson, Ian; Barnes, Timothy J; Prestidge, Clive A; Allen, Stephanie; Chen, Xinyong; Roberts, Clive J; Boyd, Ben J

    2012-09-18

    Nonlamellar liquid crystalline dispersions such as cubosomes and hexosomes have great potential as novel surface-targeted active delivery systems. In this study, the influence of internal nanostructure, chemical composition, and the presence of Pluronic F127 as a stabilizer, on the surface and interfacial properties of different liquid crystalline particles and surfaces, was investigated. The interfacial properties of the bulk liquid crystalline systems with coexisting excess water were dependent on the internal liquid crystalline nanostructure. In particular, the surfaces of the inverse cubic systems were more hydrophilic than that of the inverse hexagonal phase. The interaction between F127 and the bulk liquid crystalline systems depended on the internal liquid crystalline structure and chemical composition. For example, F127 adsorbed to the surface of the bulk phytantriol cubic phase, while for monoolein cubic phase, F127 was integrated into the liquid crystalline structure. Last, the interfacial adsorption behavior of the dispersed liquid crystalline particles also depended on both the internal nanostructure and the chemical composition, despite the dispersions all being stabilized using F127. The findings highlight the need to understand the specific surface characteristics and the nature of the interaction with colloidal stabilizer for understanding and optimizing the behavior of nonlamellar liquid crystalline systems in surface delivery applications.

  5. Particle-matrix interfacial bonding: Effect on the fracture properties of rubber-modified epoxy polymers

    SciTech Connect

    Huang, Y.; Kinloch, A.J.; Bertsch, R.J.; Siebert, A.R.

    1993-12-31

    This study employed various butadiene-acrylonitrile rubbers and showed that both the functionality of the end groups and the acrylonitrile content have a strong influence on the microstructure and the interfacial bonding that are observed in the resulting rubber-toughened epoxy. For the rubbers examined, significant toughening is recorded only when the rubber forms a separate phase in the epoxy matrix with a particle size on the order of micrometers. These microstructural features are affected by both the functionality of the end groups and the acrylonitrile content of the rubber employed. However, once phase separation of the rubber has been achieved to give particles on the order of micrometers in size, then the interfacial bonding between the rubber particles and the epoxy matrix has only a small effect on the fracture properties of the rubber-toughened epoxy polymers. 28 refs., 6 figs., 3 tabs.

  6. Anion Effects on Interfacial Absorption of Gases in Ionic Liquids. A Molecular Dynamics Study

    SciTech Connect

    Wick, Collin D.; Dang, Liem X.

    2011-06-02

    Molecular dynamics simulations with many-body interactions were carried out to systematic study the effect of anion type, tetrafluoroborate [BF4] or hexafluorophosphate [PF6], paired with the cation 1-butyl-3-methylimidazolium [bmim], on the interfacial absorption of gases in room temperature ionic liquids (RTILs). The potentials of mean force (PMF) of CO2 and H2O at 350 K were calculated across the air-liquid interfaces of [bmim][BF4] and [bmim][PF6]. We found that the PMFs for H2O exhibited no interfacial minima at both interfaces, while the corresponding PMFs for CO2 had significant free energy minima there. However, the PMFs for H2O showed a much higher interfacial free energy than in the bulk for [bmim][BF4], but only a slightly higher interfacial free energy for [bmim][PF6] than in bulk. The reason for this was due to the more hydrophilic nature of the [BF4] anion, and the fact that [BF4] was found to have little propensity for the interface. Our results show that H2O is much more likely to be found at the air-[bmim][PF6] interface than at the air-[bmim][BF4] interface. The free energies of solvation were found to be more negative for [bmim][BF4] than [bmim][PF6] for water and similar for CO2. This observation is consistent with experimental Henry’s law coefficients. Our results show that anion type, in addition to affecting the free energy of solvation into RTILs, should also significantly influence the uptake mechanism. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  7. Determination of Interfacial Properties by Surface Active Impurities in an Organic Waste Liquid

    NASA Astrophysics Data System (ADS)

    Hsu, H.; Demond, A. H.

    2001-12-01

    Wettability and interfacial tension play an important role in governing the transport and distribution of the organic contaminants in the vadose zone. Organic liquids, like waste tetrachloroethylene (PCE) or gasoline, contain surface active impurities that alter the interfacial properties and, in some cases, invert the wettability depending on the pH which is controlled by the geochemistry of the system. Most studies looking at interfacial property changes utilize a single surface active impurity, while this study seeks to understand the behavior of a binary surfactant system. Individually, octanoic acid (OA) does not alter the wettability of quartz since it exists only in a netural or anionic form and cannot sorb to the negatively charged quartz surface. Dodecylamine (DDA), in its cationic form, sorbs to quartz and changes the contact angle from 5¡V70 degree, but the surface remains weakly water wetting. However, a mixture of the two changes quartz to oil wet, giving a contact angle of up to 130 degree. Similarly, the interfacial tension decreases in the mixtures more than expected based on the individual behavior of the compounds. An anionic-cationic surfactant complex is proposed to account for the change. Evidence to support this species is based on comparing the equilibrium pH values of several OA/DDA aqueous solutions with the expected pH values assuming no mutual interaction. The discrepancy between these two sets of pH values suggests that a positive-charged surfactant complex forms that may sorb on quartz. Taken together, these data show the role of pH in the formation of a hydrophobic cationic-anionic surface-active complex, and point to the importance of the synergy between geochemistry and the surface-active solutes.

  8. Interfacial Layer Properties of a Polyaromatic Compound and its Role in Stabilizing Water-in-Oil Emulsions.

    PubMed

    Bi, Jiebin; Yang, Fan; Harbottle, David; Pensini, Erica; Tchoukov, Plamen; Simon, Sébastien; Sjöblom, Johan; Dabros, Tadek; Czarnecki, Jan; Liu, Qingxia; Xu, Zhenghe

    2015-09-29

    Physical properties of interfacial layers formed at the xylene-water interface by the adsorption of a polyaromatic organic compound, N-(1-hexylheptyl)-N'-(5-carbonylicpentyl) perylene-3,4,9,10-tetracarboxylic bisimide (in brief, C5Pe), were studied systematically. The deprotonation of the carboxylic group of C5Pe at alkaline pH made it highly interfacially active, significantly reducing the xylene-water interfacial tension. Thin liquid film experiments showed a continuous buildup of heterogeneous C5Pe interfacial layers at the xylene-water interfaces, which contributed to the formation of stable W/O emulsions. Continual accumulation and rearrangement of C5Pe aggregates at the xylene-water interface to form a thick layer was confirmed by in situ Brewster angle microscopy (BAM) and atomic force microscopy (AFM). The rheology measurement of the interfacial layer by double-wall ring interfacial rheometry under oscillatory shear showed that the interfacial layers formed from C5Pe solutions of high concentrations were substantially more elastic and rigid. The presence of elastically dominant interfacial layers of C5Pe led to the formation of stable water-in-xylene emulsions.

  9. Combining molecular dynamics simulation and transition state theory to evaluate solid-liquid interfacial friction in carbon nanotube membranes

    NASA Astrophysics Data System (ADS)

    Babu, Jeetu S.; Sathian, Sarith P.

    2012-05-01

    A molecular dynamics (MD) methodology based on Eyring theory of reaction rates is proposed for investigating solid-liquid interfacial properties crucial to the development of many nanotechnology applications. The method involves the calculation of activation energy required for the flow process directly from the MD trajectory information. We have applied this methodology to study the behavior of water in hydrophobic confinement in carbon nanotubes (CNTs) and also between graphene sheets. In the case of confined water molecules in CNTs and between graphene sheets the degree of confinement and curvature effects were found to have more influence on the solid-liquid interfacial friction, with almost negligible friction below a certain characteristic dimension in both the cases. This behavior of confined and unconfined water molecules is explained on the basis of molecular interactions and subsequent changes in the activation energy. Analysis based on this method also revealed that a finite amount of friction does exist at the channel entry and exit region. This could limit the flow of liquid molecules through the nanochannels and hence needs to be taken into account in the design of nanofluidic devices.

  10. Emulsifying and interfacial properties of vicilins: role of conformational flexibility at quaternary and/or tertiary levels.

    PubMed

    Liang, Han-Ni; Tang, Chuan-He

    2013-11-20

    Although the functionality of plant proteins (and soy proteins in particular) has been widely investigated in the last decades, the importance of conformational characteristics to their functionalities is still far away from being understood. The aim of the present work was to unravel the role of conformational flexibility at the quaternary and/or tertiary levels in the emulsifying and interfacial properties of phaseolin, an ideal vicilin (or 7S globulin) from red kidney bean. The conformational flexibility at quaternary and tertiary levels of phaseolin was modulated by urea with increasing concentrations from 0 to 8 M, as characterized by using dynamic light scattering (DLS), intrinsic fluorescence and derivative UV spectroscopy, and differential scanning calorimetry (DSC). The emulsifying and interfacial properties, including emulsifying ability, flocculated state of oil droplets (in fresh emulsions), emulsion stability against creaming, and adsorption dynamics at the oil-water interface, were characterized at a specific protein concentration of 0.5% (w/v). The results indicated that increasing the urea concentration resulted in a progressive dissociation of trimeric phaseolin molecules into monomeric subunits, and even a structural unfolding of dissociated subunits; the urea-induced conformational changes at quaternary and/or tertiary levels were reversible, and the molecules at high urea concentrations shared similar structural features to the "molten globule state". On the other hand, increasing the urea concentration progressively improved the emulsifying ability of the protein, and flocculated extent of oil droplets in the fresh emulsions, but led to a progressive decrease in interfacial protein concentration. The improvement of the emulsifying ability was not related to diffusion (during initial adsorption) and penetration at the interface, but highly dependent on ease of structural rearrangement of the adsorbed proteins. These observations clearly

  11. Comparisons of Interfacial Phe, Tyr, and Trp Residues as Determinants of Orientation and Dynamics for GWALP Transmembrane Peptides

    PubMed Central

    2015-01-01

    Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane–water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this work, we compare the influence of interfacial Trp, Tyr, or Phe residues upon the properties of tilted helical transmembrane peptides. For such comparisons, it has been critical to start with no more than one interfacial aromatic residue near each end of a transmembrane helix, for example, that of GWALP23 (acetyl-GGALW5(LA)6LW19LAGA-[ethanol]amide). To this end, we have employed 2H-labeled alanines and solid-state NMR spectroscopy to investigate the consequences of moving or replacing W5 or W19 in GWALP23 with selected Tyr, Phe, or Trp residues at the same or proximate locations. We find that GWALP23 peptides having F5, Y5, or W5 exhibit essentially the same average tilt and similar dynamics in bilayer membranes of 1,2-dilauroylphosphatidylcholine (DLPC) or 1,2-dioleoylphosphatidylcholine (DOPC). When double Tyr anchors are present, in Y4,5GWALP23 the NMR observables are markedly more subject to dynamic averaging and at the same time are less responsive to the bilayer thickness. Decreased dynamics are nevertheless observed when ring hydrogen bonding is removed, such that F4,5GWALP23 exhibits a similar extent of low dynamic averaging as GWALP23 itself. When F5 is the sole aromatic group in the N-interfacial region, the dynamic averaging is (only) slightly more extensive than with W5, Y5, or Y4 alone or with F4,5, yet it is much less than that observed for Y4,5GWALP23. Interestingly, moving Y5 to Y4 or W19 to W18, while retaining only one hydrogen-bond-capable aromatic ring at each interface, maintains the low level of dynamic averaging but alters the helix azimuthal rotation. The rotation change is about 40° for Y4 regardless of whether the host lipid bilayer is DLPC or

  12. Comparisons of interfacial Phe, Tyr, and Trp residues as determinants of orientation and dynamics for GWALP transmembrane peptides.

    PubMed

    Sparks, Kelsey A; Gleason, Nicholas J; Gist, Renetra; Langston, Rebekah; Greathouse, Denise V; Koeppe, Roger E

    2014-06-10

    Aromatic amino acids often flank the transmembrane alpha helices of integral membrane proteins. By favoring locations within the membrane-water interface of the lipid bilayer, aromatic residues Trp, Tyr, and sometimes Phe may serve as anchors to help stabilize a transmembrane orientation. In this work, we compare the influence of interfacial Trp, Tyr, or Phe residues upon the properties of tilted helical transmembrane peptides. For such comparisons, it has been critical to start with no more than one interfacial aromatic residue near each end of a transmembrane helix, for example, that of GWALP23 (acetyl-GGALW(5)(LA)6LW(19)LAGA-[ethanol]amide). To this end, we have employed (2)H-labeled alanines and solid-state NMR spectroscopy to investigate the consequences of moving or replacing W5 or W19 in GWALP23 with selected Tyr, Phe, or Trp residues at the same or proximate locations. We find that GWALP23 peptides having F5, Y5, or W5 exhibit essentially the same average tilt and similar dynamics in bilayer membranes of 1,2-dilauroylphosphatidylcholine (DLPC) or 1,2-dioleoylphosphatidylcholine (DOPC). When double Tyr anchors are present, in Y(4,5)GWALP23 the NMR observables are markedly more subject to dynamic averaging and at the same time are less responsive to the bilayer thickness. Decreased dynamics are nevertheless observed when ring hydrogen bonding is removed, such that F(4,5)GWALP23 exhibits a similar extent of low dynamic averaging as GWALP23 itself. When F5 is the sole aromatic group in the N-interfacial region, the dynamic averaging is (only) slightly more extensive than with W5, Y5, or Y4 alone or with F4,5, yet it is much less than that observed for Y(4,5)GWALP23. Interestingly, moving Y5 to Y4 or W19 to W18, while retaining only one hydrogen-bond-capable aromatic ring at each interface, maintains the low level of dynamic averaging but alters the helix azimuthal rotation. The rotation change is about 40° for Y4 regardless of whether the host lipid bilayer is

  13. Wetting and Interfacial Tension Dynamics of Oil-Nanofluids-Surface Minerals System

    NASA Astrophysics Data System (ADS)

    Bai, L.; Li, C.; Darnault, C. J. G.; Korte, C.; Ladner, D.; Daigle, H.

    2015-12-01

    Among the techniques used in enhanced oil recovery (EOR), chemical injection involves the injection of surfactants to increase the oil mobility and decrease the interfacial tension (IFT). With the nanotechnology revolution, the use of nanoparticles has shown unique opportunities in petroleum engineering due to their physico-chemical properties. Our research examines the potential application of nanoparticles as a means of EOR by studying the influence of silicon oxide nanoparticles on the wettability and IFT of oil-nanofluids-surface systems. Batch studies were conducted to assess the stability of the nanoparticle suspensions of different concentrations (0, 0.001, 0.005, 0.01, 0.05 and 0.1 wt. %) in different reservoir conditions with and without the addition of surfactants (i.e. 5% brine, and Tween 20 at 0.5 and 2 cmc). Testing of oil-nanofluids and oil-nanofluids-minerals interactions was performed using crude oils from West Texas (light, API 40), Prudhoe Bay (medium, API 28), and Lloydminster (heavy, API 20). The dynamic behavior of IFT was measured using a pendant drop method. Results for 5% brine-nanoparticle systems indicated that 0.001 and 0.01 wt.% of nanoparticles contributed to a significant decrease of IFT for West Texas and Prudhoe Bay oils, while the highest decrease of IFT for Lloydminster was reported with 0.1 wt.% nanoparticles. IFT decrease was also enhanced by surfactant, and the addition of nanoparticles at 0.001 wt.% to surfactant resulted in significant decrease of IFT in most of the tested oil-nanofluid systems. The sessile drop method was used to measure the dynamic behavior of the contact angle of these oil droplets on minerals surface made of thin sections from Berea and Boise sandstone cores through a wetting test. Different nanofluid and surfactant concentrations were tested for the optimization of changes in wettability, which is a critical phase in assessing the behavior of nanofluids for optimal EOR with the selected crude oils.

  14. Influence of interfacial properties on Ostwald ripening in crosslinked multilayered oil-in-water emulsions.

    PubMed

    Zeeb, Benjamin; Gibis, Monika; Fischer, Lutz; Weiss, Jochen

    2012-12-01

    The influence of interfacial crosslinking, layer thickness and layer density on the kinetics of Ostwald ripening in multilayered emulsions at different temperatures was investigated. Growth rates of droplets were measured by monitoring changes in the droplet size distributions of 0.5% (w/w) n-octane, n-decane, and n-dodecane oil-in-water emulsions using static light scattering. Lifshitz-Slyozov-Wagner theory was used to calculate Ostwald ripening rates. A sequential two step process, based on electrostatic deposition of sugar beet pectin onto fish gelatin or whey protein isolate (WPI) interfacial membranes, was used to manipulate the interfacial properties of the oil droplets. Laccase was added to the fish gelatin-beet pectin emulsions to promote crosslinking of adsorbed pectin molecules via ferulic acid groups, whereas heat was induced to promote crosslinking of WPI and helix coil transitions of fish gelatin. Ripening rates of single-layered, double-layered and crosslinked emulsions increased as the chain length of the n-alkanes decreased. Emulsions containing crosslinked fish gelatin-beet pectin coated droplets had lower droplet growth rates (3.1±0.3×10(-26) m(3)/s) than fish gelatin-stabilized droplets (7.3±0.2×10(-26) m(3)/s), which was attributed to the formation of a protective network. Results suggest that physical or enzymatic biopolymer-crosslinking of interfaces may reduce the molecular transport of alkanes between the droplets in the continuous phase.

  15. Insight into interfacial effect on effective physical properties of fibrous materials. I. The volume fraction of soft interfaces around anisotropic fibers

    NASA Astrophysics Data System (ADS)

    Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao

    2016-01-01

    With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.

  16. Insight into interfacial effect on effective physical properties of fibrous materials. I. The volume fraction of soft interfaces around anisotropic fibers.

    PubMed

    Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao

    2016-01-01

    With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series. PMID:26747814

  17. Effects of surface pressure on the properties of Langmuir monolayers and interfacial water at the air-water interface.

    PubMed

    Lin, Wei; Clark, Anthony J; Paesani, Francesco

    2015-02-24

    The effects of surface pressure on the physical properties of Langmuir monolayers of palmitic acid (PA) and dipalmitoylphosphatidic acid (DPPA) at the air/water interface are investigated through molecular dynamics simulations with atomistic force fields. The structure and dynamics of both monolayers and interfacial water are compared across the range of surface pressures at which stable monolayers can form. For PA monolayers at T = 300 K, the untilted condensed phase with a hexagonal lattice structure is found at high surface pressure, while the uniformly tilted condensed phase with a centered rectangular lattice structure is observed at low surface pressure, in agreement with the available experimental data. A state with uniform chain tilt but no periodic spatial ordering is observed for DPPA monolayers on a Na(+)/water subphase at both high and low surface pressures. The hydrophobic acyl chains of both monolayers pack efficiently at all surface pressures, resulting in a very small number of gauche defects. The analysis of the hydrogen-bonding structure/dynamics at the monolayer/water interface indicates that water molecules hydrogen-bonded to the DPPA head groups reorient more slowly than those hydrogen-bonded to the PA head groups, with the orientational dynamics becoming significantly slower at high surface pressure. Possible implications for physicochemical processes taking place on marine aerosols in the atmosphere are discussed.

  18. Interfacial electron transfer dynamics of ru(II)-polypy6ridine sensitized TiO2

    SciTech Connect

    Jakubikova, Elena; Martin, Richard L; Batista, Enrique R; Snoeberger, Robert C; Batista, Victor S

    2009-01-01

    Quantum dynamics simulations combined with density functional theory calculations are applied to study interfacial electron transfer (IET) from pyridine-4-phosphonic acid, [Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 2+} and [Ru(tpy)(bpy)(H{sub 2}O)-Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 4+} into the (101) surface of anatase TiO{sub 2}. IET rate from pyridine-4-phosphonic acid attached to the nanoparticle in bidentate mode ({tau} {approx} 100 fs) is an order of magnitude faster than the IET rate of the adsorbate attached in the monodentate mode ({tau} {approx} 1 ps). Upon excitation with visible light, [Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 2+} attached to TiO{sub 2} in bidentate binding mode will undergo IET with the rate of {approx} 1-10 ps, which is competitive with the excited state decay into the ground state. The probability of electron injection from [Ru(tpy)(bpy)(H{sub 2}O)-Ru(tpy)(tpy(PO{sub 3}H{sub 2}))]{sup 4+} is rather low, as the excitation with visible light localizes the excited electron in the tpy-tpy bridge, which does not have favorable coupling with the TiO{sub 2} nanoparticle. The results are relevant to better understanding of the adsorbate features important for promoting efficient interfacial electron transfer into the semiconductor.

  19. Dynamics of interfacial reactions between O(3 P) atoms and long-chain liquid hydrocarbons

    NASA Astrophysics Data System (ADS)

    Allan, Mhairi; Bagot, Paul A. J.; Köhler, Sven P. K.; Reed, Stewart K.; Westacott, Robin E.; Costen, Matthew L.; McKendrick, Kenneth G.

    2007-09-01

    Recent progress that has been made towards understanding the dynamics of collisions at the gas-liquid interface is summarized briefly. We describe in this context a promising new approach to the experimental study of gas-liquid interfacial reactions that we have introduced. This is based on laser-photolytic production of reactive gas-phase atoms above the liquid surface and laser-spectroscopic probing of the resulting nascent products. This technique is illustrated for reaction of O(3P) atoms at the surface of the long-chain liquid hydrocarbon squalane (2,6,10,15,19,23-hexamethyltetracosane). Laser-induced fluorescence detection of the nascent OH has revealed mechanistically diagnostic correlations between its internal and translational energy distributions. Vibrationally excited OH molecules are able to escape the surface. At least two contributions to the product rotational distributions are identified, confirming and extending previous hypotheses of the participation of both direct and trapping-desorption mechanisms. We speculate briefly on future experimental and theoretical developments that might be necessary to address the many currently unanswered mechanistic questions for this, and other, classes of gas-liquid interfacial reaction.

  20. Dynamics of interfacial layers-experimental feasibilities of adsorption kinetics and dilational rheology.

    PubMed

    Mucic, N; Javadi, A; Kovalchuk, N M; Aksenenko, E V; Miller, R

    2011-10-14

    Each experimental method has a certain range of application, and so do the instruments for measuring dynamic interfacial tension and dilational rheology. While the capillary pressure tensiometry provides data for the shortest adsorption times starting from milliseconds at liquid/gas and tens of milliseconds at liquid/liquid interfaces, the drop profile tensiometry allows measurements in a time window from seconds to many hours. Although both methods together cover a time range of about eight orders of magnitude (10(-3) s to 10(5) s), not all surfactants can be investigated with these techniques in the required concentration range. The same is true for studies of the dilational rheology. While drop profile tensiometry allows oscillations between 10(-3) Hz and 0.2 Hz, which can be complemented by measurements with capillary pressure oscillating drops and the capillary wave damping method (up to 10(3) Hz) these six orders of magnitude in frequency are often insufficient for a complete characterization of interfacial dilational relaxations of surfactant adsorption layers. The presented analysis provides a guide to select the most suitable experimental method for a given surfactant to be studied. The analysis is based on a diffusion controlled adsorption kinetics and a Langmuir adsorption model.

  1. Synergistic behaviour of ZnO nanoparticles and gemini surfactants on the dynamic and equilibrium oil/water interfacial tension.

    PubMed

    Fereidooni Moghadam, Tahereh; Azizian, Saeid; Wettig, Shawn

    2015-03-21

    In this work the effect of ZnO nanoparticles on the interfacial behaviour of gemini surfactants (12-3-12 and 14-3-14) at the oil/water interface was investigated. Equilibrium and dynamic interfacial tension in the absence and presence of ZnO was measured and compared. The results show that the synergistic interactions between the surfactants and nanoparticles decrease the interfacial tension beyond that observed for each component, alone. Modelling of dynamic data with two different models indicates that the mechanism of surfactant migration (with and without ZnO) is mixed diffusion-kinetic-control. The Gibbs free energy of micellization and the Gibbs free energy of adsorption in the absence and presence of ZnO were calculated and compared. Finally the effect of addition of ZnO nanoparticles on emulsion stability was also examined.

  2. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    SciTech Connect

    Martínez-Ruiz, F. J.; Blas, F. J.; Moreno-Ventas Bravo, A. I.

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ{sub 11} = σ{sub 22}, with the same dispersive energy between like species, ϵ{sub 11} = ϵ{sub 22}, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janecek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances r{sub c} and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance r{sub c} is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related

  3. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture

    NASA Astrophysics Data System (ADS)

    Martínez-Ruiz, F. J.; Moreno-Ventas Bravo, A. I.; Blas, F. J.

    2015-09-01

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ11 = σ22, with the same dispersive energy between like species, ɛ11 = ɛ22, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janec̆ek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances rc and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance rc is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the molecules

  4. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture.

    PubMed

    Martínez-Ruiz, F J; Moreno-Ventas Bravo, A I; Blas, F J

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ11 = σ22, with the same dispersive energy between like species, ϵ11 = ϵ22, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janec̆ek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances rc and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance rc is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the molecules

  5. Liquid-liquid interfacial properties of a symmetrical Lennard-Jones binary mixture.

    PubMed

    Martínez-Ruiz, F J; Moreno-Ventas Bravo, A I; Blas, F J

    2015-09-14

    We determine the interfacial properties of a symmetrical binary mixture of equal-sized spherical Lennard-Jones molecules, σ11 = σ22, with the same dispersive energy between like species, ϵ11 = ϵ22, but different dispersive energies between unlike species low enough to induce phase separation. We use the extensions of the improved version of the inhomogeneous long-range corrections of Janec̆ek [J. Phys. Chem. B 110, 6264 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] and Martínez-Ruiz et al. [J. Chem. Phys. 141, 184701 (2014)], to deal with the interaction energy and microscopic components of the pressure tensor. We perform Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of the symmetrical mixture with different cut-off distances rc and in combination with the inhomogeneous long-range corrections. The pressure tensor is obtained using the mechanical (virial) and thermodynamic route. The liquid-liquid interfacial tension is also evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the test-area methodology. This allows to check the validity of the recent extensions presented to deal with the contributions due to long-range corrections for intermolecular energy and pressure tensor in the case of binary mixtures that exhibit liquid-liquid immiscibility. In addition to the pressure tensor and the surface tension, we also obtain density profiles and coexistence densities and compositions as functions of pressure, at a given temperature. According to our results, the main effect of increasing the cut-off distance rc is to sharpen the liquid-liquid interface and to increase the width of the biphasic coexistence region. Particularly interesting is the presence of a relative minimum in the total density profiles of the symmetrical mixture. This minimum is related with a desorption of the molecules

  6. Dynamic oligomeric properties.

    PubMed

    Seidler, Norbert W

    2013-01-01

    This chapter provides a foundation for further research into the relationship between dynamic oligomeric properties and functional diversity. The structural basis that underlies the conformational sub-states of the GAPDH oligomer is discussed. The issue of protein stability is given a thorough analysis, since it is well-established that the primary strategy for protein oligomerization is to stabilize conformation. Several factors that affect oligomerization are described, including chemical modification by synthetic reagents. The effects of native substrates and coenzymes are also discussed. The curious feature of chloride ions having a de-stabilizing effect on native GAPDH structure is described. Additionally, the role of adenine dinucleotides in tetramer-dimer equilibrium dynamics is suggested to be a major part of the physiological regulation of GAPDH structure and function. This chapter also contends that a vast amount of useful information can come from comparative analyses of diverse species, particularly regarding protein stability and subunit-subunit interaction. Lastly, the concept of domain exchange is introduced as a means of understanding the stabilization of dynamic oligomers, suggesting that inter-subunit contacts may also be a way of masking docking sites to other proteins.

  7. A molecular dynamics study of local pressures and interfacial tensions of SDS micelles and dodecane droplets in water

    NASA Astrophysics Data System (ADS)

    Kitabata, Masahiro; Fujimoto, Kazushi; Yoshii, Noriyuki; Okazaki, Susumu

    2016-06-01

    To obtain the radial (normal) and lateral (transverse) components of the local pressure tensor, PN(R) and PT(R), respectively, and the interfacial tension of micelles, molecular dynamics (MD) calculations were performed for spherical sodium dodecyl sulfate (SDS) micelles. The local pressure tensor was calculated as a function of radial distance R using the Irving-Kirkwood formula. Similar MD calculations were also carried out for an n-dodecane droplet in water to compare the differences in the local pressure and interfacial tension values with those of the micelles. The calculated interfacial tensions were 20 ± 5 and 44 ± 10 mN/m for the SDS micelles and dodecane droplets, respectively. The excess free energies due to the interfacial tension were 340 and 1331 kJ/mol for the SDS micelle and dodecane droplet, respectively. The micelles are stabilized by 991 kJ/mol by covering their hydrophobic cores with hydrophilic groups. The dodecane droplet has a large interfacial tension caused by the zero or positive values of PN(R) - PT(R) at all values of R. In contrast, the small interfacial tension in the SDS micelles comes from the negative PN(R) - PT(R) values over a wide range of R. The pressure difference between the inside and outside of the oil droplet and its interfacial tension well satisfies the Laplace equation. However, the hydrophobic core of the SDS micelle is quite different from the liquid alkane, and the SDS micelles do not follow Laplace's picture. Decomposing the interfacial tension into contributions from various interactions, it is found that those between charged and polar groups dominate the interfacial tension of the SDS micelles. The positive electrostatic potential (1.3 V) on the micelle surface and the negative potential (-0.15 V) on the oil droplet contribute to the interfacial tensions by 19 and 0.5 mN/m, respectively. Thus, the interfacial tension of the SDS micelles is produced by electrostatic interactions, in contrast to the dodecane

  8. Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid.

    PubMed

    Bettini, Luca Giacomo; Della Foglia, Flavio; Piseri, Paolo; Milani, Paolo

    2016-03-18

    Nanostructured carbon sp(2) (ns-C) thin films with up to 30% of sp-coordinated atoms (carbynes) were produced in a high vacuum by the low kinetic energy deposition of carbon clusters produced in the gas phase and accelerated by a supersonic expansion. Immediately after deposition the ns-C films were immersed in situ in an ionic liquid electrolyte. The interfacial properties of ns-C films in the ionic liquid electrolyte were characterized by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The so-prepared carbyne-rich electrodes showed superior electric double layer (EDL) capacitance and electric conductivity compared to ns-C electrodes containing only sp(2) carbon, showing the substantial influence of carbynes on the electrochemical properties of nanostructured carbon electrodes.

  9. Interfacial phenomena and dynamic contact angle modulation in microcapillary flows subjected to electroosmotic actuation.

    PubMed

    Chakraborty, Debapriya; Chakraborty, Suman

    2008-09-01

    The dynamic evolution of an incompressible liquid meniscus inside a microcapillary is investigated, under the combined influences of viscous, capillary, intermolecular, pondermotive, and electroosmotic effects. In the limit of small capillary numbers, an advancing meniscus shape is shown to merge smoothly with the precursor film, using matched asymptotic analysis. A scaling relationship is also established for the dynamic contact angle as a nondimensional function of the capillary number and the applied electrical voltage. The analysis is further generalized by invoking a kinetic slip model for overcoming the constraints of meniscus tip singularity. The kinetic slip model is subsequently utilized to analyze the interfacial dynamics from the perspective of the results obtained from the matched asymptotic analysis. A generalization is achieved in this regard, which may provide a sound basis for controlling the topographical features of a dynamically evolving meniscus in a microcapillary subjected to electrokinetic effects. These results are also in excellent agreement with the experimental findings over a wide range of capillary number values.

  10. Viscosity and interfacial properties in a mussel-inspired adhesive coacervate.

    PubMed

    Hwang, Dong Soo; Zeng, Hongbo; Srivastava, Aasheesh; Krogstad, Daniel V; Tirrell, Matthew; Israelachvili, Jacob N; Waite, J Herbert

    2010-07-21

    The chemistry of mussel adhesion has commanded the focus of much recent research activity on wet adhesion. By comparison, the equally critical adhesive processing by marine organisms has been little examined. Using a mussel-inspired coacervate formed by mixing a recombinant mussel adhesive protein (fp-151-RGD) with hyaluronic acid (HA), we have examined the nanostructure, viscosity, friction, and interfacial energy of fluid-fluid phase-separated coacervates using the surface forces apparatus and microscopic techniques. At mixing ratios of fp-151-RGD:HA resulting in marginal coacervation, the coacervates showed shear-thickening viscosity and no structure by cryo-transmission electron microscopy (cryo-TEM). However, at the mixing ratio producing maximum coacervation, the coacervate showed shear-thinning viscosity and a transition to a bicontinuous phase by cryo-TEM. The shear-thinning viscosity, high friction coefficient (>1.2), and low interfacial energy (<1 mJ m(-2)) observed at the optimal mixing ratio for coacervation are promising delivery, spreading and adhesion properties for future wet adhesive and coating technologies.

  11. Magnetic properties and interfacial characteristics of all-epitaxial Heusler-compound stacking structures

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Honda, S.; Hirayama, J.; Kawano, M.; Santo, K.; Tanikawa, K.; Kanashima, T.; Itoh, H.; Hamaya, K.

    2016-09-01

    We study magnetic properties and interfacial characteristics of all-epitaxial D 03-Fe3Si /L 21 - Fe3 -xMnxSi /L 21-Co2FeSi Heusler-compound trilayers grown on Ge(111) by room-temperature molecular beam epitaxy. We find that the magnetization reversal processes can be intentionally designed by changing the chemical composition of the intermediate Fe3 -xMnxSi layers because of their tunable ferromagnetic-paramagnetic phase-transition temperature. From first-principles calculations, interfacial half metallicity in the Co2FeSi layer is nearly expected when the sequence of stacking layers along <111 > of the Fe2MnSi /Co2FeSi interface includes the atomic row of L 21 - or B 2 -ordered structures. We believe that Co2FeSi /Fe2MnSi /Co2FeSi trilayer systems stacked along <111 > will open a new avenue for high-performance current-perpendicular-to-plane giant magnetoresistive devices with Heusler compounds.

  12. Redox-Controllable Interfacial Properties of Zwitterionic Surfactant Featuring Selenium Atoms.

    PubMed

    Kong, Weiwei; Guo, Shuang; Wu, Shaoqi; Liu, Xuefeng; Zhang, Yongmin

    2016-09-27

    Control of interfacial properties (foaming and emulsification) plays an important role in industry. Here we developed a novel redox-responsive surfactant, 3-(11-benzylselanyl-undecyl)-dimethylammonium acetate (BSeUCB), using selenium atoms as an environmentally sensitive group. In a reduced state, BSeUCB aqueous solution showed good foaming and emulsification abilities as well as conventional betaine surfactants. After oxidization, BSeUCB transformed into a bola-type structure because of the presence of a new hydrophilic group (selenoxide), and thus the critical micellar concentration, equilibrium surface/interfacial tension, and molecular area at the interface correspondingly increase from 0.32 mM, 46.43 mN·m(-1), 5.30 mN·m(-1), and 0.61 nm(2) to 4.98 mM, 59.15 mN·m(-1), 18.29 mN·m(-1), and 1.22 nm(2), respectively, resulting in a greater amount of energy input required to produce foam or emulsion, and a less dense adsorption layer, i.e., poor foaming and emulsification ability. Such a conversion was reversibly controlled by simply adding a trace amount (<0.06 wt % of the dispersion) of oxidant (H2O2) and reductant (Na2SO3). The products of the redox reaction did not interfere in the switchability except at the first cycle. The oxidization was generally time-consuming, whereas the reduction was very fast. PMID:27595739

  13. Interfacial dynamics of two immiscible fluids in spatially periodic porous media: The role of substrate wettability

    NASA Astrophysics Data System (ADS)

    Mondal, Pranab Kumar; DasGupta, Debabrata; Chakraborty, Suman

    2014-07-01

    We delineate the contact line dynamics of two immiscible fluids in a medium having spatially periodic porous structures. The flow is driven by an external applied pressure gradient. We bring out the combined consequences of the solid fraction distribution and the substrate wettability on the resulting dynamics of the contact line, by employing phase-field formalism. We capture the sequence of spatiotemporal events leading to formation of liquid bridges by trapping a small amount of displaced phase fluid between two consecutive porous blocks, as dictated by the combinations of substrate wettability and solid fraction. We also demonstrate the existence of a regime of complete interfacial recovery, depending on the parametric space of the governing parameters under concern. Our results essentially demonstrate the intricate mechanisms by virtue of which the wettabilities of the substrates alter the dynamical evolutions of interfaces and the subsequent shapes and sizes of the adsorbed dispersed phases, bearing far-ranging consequences in several practical applications ranging from oil recovery to groundwater flow.

  14. Interfacial rheology in complex flow

    NASA Astrophysics Data System (ADS)

    Martin, Jeffrey; Hudson, Steven

    2009-03-01

    Multiphase liquid systems are omnipresent in and essential to everyday life, e.g. foods, pharmaceutics, cosmetics, paints, oil recovery, etc. The morphology and stability of such systems depend on dynamic interfacial properties and processes. Typical methods utilized to measure such interfacial properties often employ drops that are much larger and flows that are much simpler than those encountered in typical processing applications. A microfluidic approach is utilized to measure dynamic structure and kinetics in multiphase systems with drop sizes comparable to those encountered in applications and flow complexity that is easily adjustable. The internal circulation and deformation of an aqueous droplet in clear mineral oil is measured using particle tracers and a detailed shape analysis, which is capable of measuring sub-micron deviations in drop shape. Deformation dynamics, detailed drop shape, interfacial tension, and internal circulation patterns and velocities are measured in Poiseuille and transient elongational flows. Flow kinematics are adjusted by varying the microchannel geometry, relative drop size, and drop height. The effects of confinement on interfacial dynamics and circulation patterns and velocities are also explored.

  15. Properties of halloysite nanotube epoxy resin hybrids and the interfacial reactions in the systems

    NASA Astrophysics Data System (ADS)

    Liu, Mingxian; Guo, Baochun; Du, Mingliang; Cai, Xiaojia; Jia, Demin

    2007-11-01

    A naturally occurred microtubullar silicate, halloysite nanotubes (HNTs), was co-cured with epoxy/cyanate ester resin to form organic-inorganic hybrids. The coefficient of thermal expansion (CTE) of the hybrids with low HNT concentration was found to be substantially lower than that of the plain cured resin. The moduli of the hybrids in the glassy state and rubbery state were significantly higher than those for the plain cured resin. The dispersion of HNTs in the resin matrix was very uniform as revealed by the transmission electron microscopy (TEM) results. The interfacial reactions between the HNTs and cyanate ester (CE) were revealed by the results of Fourier transform infrared spectroscopy (FTIR) and x-ray photoelectron spectroscopy (XPS). The substantially increased properties of the hybrids were attributed to the covalent bonding between the nanotubes and the matrix.

  16. Interfacial properties of hydrosoluble polymers. Final report, June 15, 1993--June 15, 1996

    SciTech Connect

    1996-12-31

    During this period, the authors treated a myriad of problems associated with the interfacial properties of macromolecules. Many of them concerned indirect interactions between surfaces engendered by intervening species. The issues ranged from colloidal forces to membrane induced coupling between embedded macromolecules (membrane-bound proteins). This report presents summaries of the following papers published as a result of this study: membrane interactions with polymers and colloids; escape transitions and force laws for compressed polymer mushrooms; interaction between finite-sized particles and end grafted polymers; one long chain among shorter chains--the Flory approach revisited; conformation of star polymers in high molecular weight solvents; membrane-induced interactions between inclusions; filled polymer brushes--a hydrodynamic analogy; polymer adsorption at liquid/air interfaces under lateral pressure; flow induced instability of the interface between a fluid and a gel at low Reynolds number; and fluctuation-induced forces in stacked fluid membranes.

  17. Poly(N-isopropylacrylamide) microgels at the oil-water interface: interfacial properties as a function of temperature.

    PubMed

    Monteux, Cécile; Marlière, Claire; Paris, Pauline; Pantoustier, Nadège; Sanson, Nicolas; Perrin, Patrick

    2010-09-01

    Highly monodisperse poly(N-isopropylacrylamide), PNiPAM, microgels were prepared by the conventional radical polymerization of NiPAM in the presence of dimethylamino ethyl methacrylate (DMAEMA) monomers at various concentrations. The effect of DMAEMA on the polymerization of PNiPAM microgels was examined at constant initiator (V50) and cross-linker (MBA) concentrations. The presence of DMAEMA in the synthesis batch allows for the preparation of PNiPAM microgels with controlled size and a narrow size distribution. The oil(dodecane)/water interfacial properties of the model PNiPAM microgels were then investigated. The pendant drop technique was used to measure the interfacial tensions as a function of temperature. Over the whole range of temperature (20-45 degrees C), the interfacial tension remains low (on the order of 17 mN/m) and goes through a minimum (12 mN/m) at a temperature of about 34 degrees C, which well matches the volume phase transition temperature (VPTT) of PNiPAM microgels. Below the VPTT, the decrease in the interfacial tension with temperature is likely to be due to the adsorption of dense layers because of the decrease of the excluded volume interactions. Above the VPTT, we suggest that the increase in the interfacial tension with temperature comes from the adsorption of loosely packed PNiPAM microgels. We also studied the effect of temperature on the stability of emulsions. Dodecane in water emulsions, which form at ambient temperature, are destabilized as the temperature exceeds the VPTT. In light of the interfacial tension results, we suggest that emulsion destabilization arises from the adsorption of aggregates above the VPTT and not from an important desorption of microgels. Aggregate adsorption would bring a sufficiently high number of dodecane molecules into contact with water to induce coalescence without changing the interfacial tension very much. PMID:20681739

  18. Tyrosine crosslinking reveals interfacial dynamics in adeno-associated viral capsids during infection

    PubMed Central

    Horowitz, Eric D.; Finn, M.G.; Asokan, Aravind

    2012-01-01

    Viral capsid dynamics are often observed during infectious events such as cell surface attachment, entry and genome release. Structural analysis of adeno-associated virus (AAV), a helper-dependent parvovirus, revealed a cluster of surface-exposed tyrosine residues at the icosahedral two-fold symmetry axis. We exploited the latter observation to carry out selective oxidation of Tyr residues, which yielded crosslinked viral protein (VP) subunit dimers, effectively “stitching” together the AAV capsid two-fold interface. Characterization of different Tyr-to-Phe mutants confirmed that the formation of crosslinked VP dimers is mediated by dityrosine adducts and requires the Tyr704 residue, which crosses over from one neighboring VP subunit to the other. When compared to unmodified capsids, Tyr-crosslinked AAV displayed decreased transduction efficiency in cell culture. Surprisingly, further biochemical and quantitative microscopy studies revealed that restraining the two-fold interface hinders externalization of buried VP N-termini, which contain a phospholipase A2 domain and nuclear localization sequences critical for infection. These adverse effects caused by tyrosine oxidation support the notion that interfacial dynamics at the AAV capsid two-fold symmetry axis play a role in externalization of VP N-termini during infection. PMID:22458529

  19. Ultrafast interfacial charge transfer dynamics in dye-sensitized and quantum dot solar cell

    NASA Astrophysics Data System (ADS)

    Ghosh, Hirendra N.

    2013-02-01

    Dye sensitized solar cell (DSSC) appeared to be one of the good discovery for the solution of energy problem. We have been involved in studying ultrafast interfacial electron transfer dynamics in DSSC using femtosecond laser spectroscopy. However it has been realized that it is very difficult to design and develop higher efficient one, due to thermodynamic limitation. Again in DSSC most of the absorbed photon energy is lost as heat within the cell, which apart from decreasing the efficiency also destabilizes the device. It has been realized that quantum dot solar cell (QDSC) are the best bet where the sensitizer dye molecules can be replaced by suitable quantum dot (QD) materials in solar cell. The quantum-confinement effect in semiconductors modifies their electronic structure, which is a very important aspect of these materials. For photovoltaic applications, a long-lived charge separation remains one of the most essential criteria. One of the problems in using QDs for photovoltaic applications is their fast charge recombination caused by nonradiative Auger processes, which occur predominantly at lower particle sizes due to an increase in the Coulomb interaction between electrons and holes. Various approaches, such as the use of metal-semiconductor composites, semiconductor-polymer composite, and semiconductor core-shell heterostructures, have been attempted to minimize the fast recombination between electrons and holes. To make higher efficient solar devices it has been realised that it is very important to understand charge carrier and electron transfer dynamics in QD and QD sensitized semiconductor nanostructured materials. In the present talk, we are going to discuss on recent works on ultrafast electron transfer dynamics in dye-sensitized TiO2 nanoparticles/film [1-12] and charge (electron/hole) transfer dynamics in quantum dot core-shell nano-structured materials [13-17].

  20. Dynamic Properties of Polyurea

    NASA Astrophysics Data System (ADS)

    Youssef, George H.

    The aim of this thesis was to understand the dynamic behavior of polyurea at rates of loading that is outside the reach of plate impact and split-Hopkinson bar experiments. This was motivated by the desire to design polyurea-based armors against hypervelocity impacts such as those arising from shaped charges and explosively formed projectiles with speeds in the range of 9,000 to 30,000 ft/s. By employing the laser-induced stress waves, the tensile strength and fracture energy of polyurea were measured at peak strain rate of 10 7s-1. Tensile strength of 93.1 ±5 MPa and fracture energy values of 6.75 (± 0.5) J/m2 were measured. It was also shown that the Time Temperature Superposition Principle holds for polyurea even at strain rates as high as 105s-1. This strain rate is two orders of magnitude higher than those reported recently by the Caltech group (Zhao, et al.). This important finding suggests that blast simulations of large-scale structures and those of armors involving polyurea can be based on constitutive data gathered under quasi-static conditions. This is quite powerful. With a view towards future reach, preliminary experiments were performed to inquire how polyurca behaves in the presence of other armor materials when subjected to impacts in the nanoseconds timeframe. That is, does it synergistically add its intrinsic impact-mitigating properties to other known defeat mechanisms? To this end, sections in which I to 2 mm thick polyurea layers were sandwiched between glass, acrylic, polyurethane, Al, Steel, and PMMA plates were subjected to laser-generated stress waves. The sections were evaluated based on the amplitude and time profile of the stress wave that exited the sections. Both metal plates resulted in a significant reduction in the transmitted stress wave amplitude. This was due to the large impedance mismatch between the polyurea and the metal which essentially resulted in trapping of the stress wave within the incident substrate. An unexpected

  1. Improvement of interfacial property between PBO fibers and epoxy resin by surface grafting of polyhedral oligomeric silsesquioxanes (POSS)

    NASA Astrophysics Data System (ADS)

    Song, B.; Meng, L. H.; Huang, Y. D.

    2012-10-01

    PBO fiber as reinforced material has been widely applied in various fields such as aerospace, automobile and sport apparatus due to excellent mechanic property during past two decades. However, poor interfacial adhesion limits the further application of PBO fiber. To solve this problem, plenty of work has been done. In the present study, the surface of PBO fibers was treated through surface grafting of polyhedral oligomeric silsequioxanes (POSS). The effect of POSS grafting on bulk mechanic property and interfacial property of PBO fiber were studied. Surface chemical composition, surface morphologies, surface free energy, single-fiber tensile strength of untreated and treated PBO fiber were characterized. The results show that POSS nanoparticles were grafted on the fiber surface successfully. The surface characteristics of treated PBO fiber were different from that of untreated one. Oxygen-containing polar functional groups, elemental ratio of oxygen to carbon, surface roughness and surface free energy increased significantly. In addition, interfacial shear strength between treated PBO fibers and epoxy resin increased to 54.9 MPa comparative with untreated one. Meanwhile tensile strength of treated PBO fibers only very little decreased. Therefore, POSS surface grafting can be utilized to enhance the interfacial adhesion between PBO fibers and epoxy resin matrix.

  2. Interfacial dynamic and dilational rheology of polyelectrolyte/surfactant two-component nanoparticle systems at air-water interface

    NASA Astrophysics Data System (ADS)

    Tong, L. J.; Bao, M. T.; Li, Y. M.; Gong, H. Y.

    2014-10-01

    The interfacial characteristics of nanoparticles and consequent inter-particle interactions at the interface are poorly understood. In this work, the interfacial dynamic and corresponding dilational surface rheology of self-assembled polyelectrolyte/surfactant nanoparticles at the air-water interface are characterized. The nanoparticles are prepared from dodecyltrimethylammonium (DTAB) and poly (sodium 4-styrene-sulfonate) (PSS) by mixing them in aqueous solution. The interfacial dynamic characteristics have been carried out by comparing the surface pressure with the dilational rheological response of these nanoparticles at interface. The results indicate that this type of nanoparticles can adsorb at the interface forming a nanoparticle monolayer, which leads to the surface tension decreased markedly. The dependence of surface pressure on time shows the instability and disassembly process of nanoparticles at the interface. On the basis of these observations, it is proposed that the nanoparticles undergo a dynamic process that interface induced nanoparticles disassembly into DTAB/PSS complexes. The presence of PSS in the subphase can promote the process of nanoparticles disassembly. A transition point in dilational elasticity and viscosity response of the nanoparticles versus oscillation frequency further validate the micro dynamic process of nanoparticles and the formation of polyelectrolyte/surfactant complex monolayer at the interface.

  3. In-phase and out-of-phase tensile properties of polypropylene/mica composites modified by a novel industrial waste based interfacial agent. Responses at the α and β transitions of the polymer phase

    NASA Astrophysics Data System (ADS)

    García-Martínez, Jesús María; Collar, Emilia P.

    2016-05-01

    This work deals with the study of the evolution with temperature of the in-phase and the out-of-phase responses of polypropylene/mica composites with improved interfacial interactions due to the presence of an industrial waste based interfacial modifier. This one is a p-phenylen-bis-maleamic acid grafted atactic polypropylene (aPP-pPBMA) with 15% w/w grafted pPBMA (5.0.10-4 g.mol-1). This work has been two-fold planned. On one hand, we have used dynamic mechanical parameters to evidence the interfacial improve caused by the addition of the interfacial modifier (aPP-pPBMA). The other purpose has been to obtain a mathematical to predict the overall behaviour of the heterogeneous system for whatever temperature considered. In our case we have merely used the dynamic-mechanical analysis (DMA) for just the α and β transition temperatures. Hence, a Box-Wilson experimental design considering the amount of mica particles and of interfacial agent as independent variables was used to obtain the mathematical model. The study has been tackled by considering the different transitions of the polypropylene matrix in the temperature interval scanned and further application of the Statistical Design of Experiments (sDOE) to each transition temperature in order to make forecasts for the property (E', E") as a function of the composite components and of the type of temperature dependent relaxation phenomena taking place.

  4. Ice-nucleating bacteria control the order and dynamics of interfacial water.

    PubMed

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A; Fischer, Sean A; Pfaendtner, Jim; Backus, Ellen H G; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F; Knopf, Daniel A; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-04-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  5. Ice-nucleating bacteria control the order and dynamics of interfacial water.

    PubMed

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A; Fischer, Sean A; Pfaendtner, Jim; Backus, Ellen H G; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F; Knopf, Daniel A; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-04-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.

  6. Molecular dynamics simulations of interfacial interactions between small nanoparticles during diffusion-limited aggregation

    NASA Astrophysics Data System (ADS)

    Lu, Jing; Liu, Dongmei; Yang, Xiaonan; Zhao, Ying; Liu, Haixing; Tang, Huan; Cui, Fuyi

    2015-12-01

    Due to the limitations of experimental methods at the atomic level, research on the aggregation of small nanoparticles (D < 5 nm) in aqueous solutions is quite rare. The aggregation of small nanoparticles in aqueous solutions is very different than that of normal sized nanoparticles. The interfacial interactions play a dominant role in the aggregation of small nanoparticles. In this paper, molecular dynamics simulations, which can explore the microscopic behavior of nanoparticles during the diffusion-limited aggregation at an atomic level, were employed to reveal the aggregation mechanism of small nanoparticles in aqueous solutions. First, the aggregation processes and aggregate structure were depicted. Second, the particle-particle interaction and surface diffusion of nanoparticles during aggregation were investigated. Third, the water-mediated interactions during aggregation were ascertained. The results indicate that the aggregation of nanoparticle in aqueous solutions is affected by particle size. The strong particle-particle interaction and high surface diffusion result in the formation of particle-particle bonds of 2 nm TiO2 nanoparticles, and the water-mediated interaction plays an important role in the aggregation process of 3 and 4 nm TiO2 nanoparticles.

  7. Effects of Molecular Size and Surface Hydrophobicity on Oligonucleotide Interfacial Dynamics

    PubMed Central

    Monserud, Jon H.; Schwartz, Daniel K.

    2012-01-01

    Single-molecule total internal reflection fluorescence microscopy was used to observe the dynamic behavior of (poly)-cytosine ssDNA (1–50 nucleotides long) at the interface between aqueous solution and hydrophilic (oligoethylene oxide-modified fused silica, OEG) and hydrophobic (octadecyltriethoxysilane-modified fused silica, OTES) solid surfaces. High throughput molecular tracking was used to determine >75,000 molecular trajectories for each molecular length, which were then used to calculate surface residence time and squared displacement (i.e. “step-size”) distributions. On hydrophilic OEG surfaces, the surface residence time increased systematically with ssDNA chain length, as expected due to increasing molecule-surface interactions. Interestingly, the residence time decreased with increasing ssDNA length on the hydrophobic OTES surface, particularly for longer chains. Similarly, the interfacial mobility of polynucleotides slowed with increasing chain length on OEG, but became faster on OTES. On OTES surfaces, the rates associated with desorption and surface diffusion exhibited the distinctive anomalous temperature dependence that is characteristic of hydrophobic interactions for short chain species but not for longer chains. These combined observations suggest that long oligonucleotides adopt conformations minimizing hydrophobic interactions, e.g. by internal sequestration of hydrophobic nucleobases. PMID:23127250

  8. Strain-Mediated Interfacial Dynamics during Au-PbS Core-Shell Nanostructure Formation.

    PubMed

    Niu, Kai-Yang; Liu, Miao; Persson, Kristin A; Han, Yu; Zheng, Haimei

    2016-06-28

    An understanding of the hierarchical nanostructure formation is of significant importance for the design of advanced functional materials. Here, we report the in situ study of lead sulfide (PbS) growth on gold (Au) nanorod seeds using liquid cell transmission electron microscopy (TEM). By tracking the formation dynamics of Au-PbS core-shell nanoparticles, we found the preferential heterogeneous nucleation of PbS on the ends of a Au nanorod prior to the development of a complete PdS shell. During PbS shell growth, drastic sulfidation of Au nanorod was observed, leading to large volume shrinkage (up to 50%) of the initial Au nanorod seed. We also captured intriguing wavy interfacial behavior, which can be explained by our DFT calculation results that the local strain gradient at the core-shell interface facilitates the mass transport and mediates reversible phase transitions of Au ↔ Au2S during the PbS shell growth. PMID:27214625

  9. Ice-nucleating bacteria control the order and dynamics of interfacial water

    PubMed Central

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A.; Fischer, Sean A.; Pfaendtner, Jim; Backus, Ellen H. G.; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F.; Knopf, Daniel A.; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-01-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy. PMID:27152346

  10. Investigation of the effect of coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels: Final report, July 1, 1994-June 30, 1996

    SciTech Connect

    Kihm, K.D.

    1996-10-01

    The scope of the project is two fold: (1) examining particle size effect on interfacial properties of CWS fuels by measuring static and dynamic surface tension properties of specially prepared CWS samples containing different ranges of coal particle sizes, and (2) studying the effect of particle size on CWS atomization characteristics by measuring mean diameters of several different CWS sprays generated by sonic air blasting. The results show that both static and dynamic surface tensions decrease with increasing coal particle size and mean droplet diameter of CW-S sprays also decreases with increasing coal particle size. Based on the experimental evidence we conjecture that three different energies are competing in slurry atomization: (1) the internal capillary holding between particles and water, (2) the interfacial surface tensile energy at the slurry surface contacting air, and (3) the external air blast shear energy acting against the former two energies. The internal capillary holding force decreases with increasing particle size. This force is believed to play a major role in determining the effect of particle size on CWS atomization.

  11. Dynamics and mechanisms of interfacial photoinduced electron transfer processes of third generation photovoltaics and photocatalysis.

    PubMed

    Bauer, Christophe; Teuscher, Joël; Brauer, Jan C; Punzi, Angela; Marchioro, Arianna; Ghadiri, Elham; De Jonghe, Jelissa; Wielopolski, Mateusz; Banerji, Natalie; Moser, Jacques E

    2011-01-01

    Photoinduced electron transfer (PET) across molecular/bulk interfaces has gained attention only recently and is still poorly understood. These interfaces offer an excellent case study, pertinent to a variety of photovoltaic systems, photo- and electrochemistry, molecular electronics, analytical detection, photography, and quantum confinement devices. They play in particular a key role in the emerging fields of third-generation photovoltaic energy converters and artificial photosynthetic systems aimed at the production of solar fuels, creating a need for a better understanding and theoretical treatment of the dynamics and mechanisms of interfacial PET processes. We aim to achieve a fundamental understanding of these phenomena by designing experiments that can be used to test and alter modern theory and computational modeling. One example illustrating recent investigations into the details of the ultrafast processes that form the basis for photoinduced charge separation at a molecular/bulk interface relevant to dye-sensitized solar cells is briefly presented here: Kinetics of interfacial PET and charge recombination processes were measured by fs and ns transient spectroscopy in a heterogeneous donor-bridge-acceptor (D-B-A) system, where D is a Ru(II)(terpyridyl-PO3)(NCS)3 complex, B an oligo-p-phenylene bridge, and A nanocrystalline TiO2. The forward ET reaction was found to be faster than vibrational relaxation of the vibronic excited state of the donor. Instead, the back ET occurred on the micros time scale and involved fully thermalized species. The D-A distance dependence of the electron transfer rate was studied by varying the number of p-phenylene units contained in the bridge moiety. The remarkably low damping factor beta = 0.16 angstroms(-1) observed for the ultrafast charge injection from the dye excited state into the conduction band of TiO2 is attributed to the coupling of electron tunneling with nonequilibrium vibrations redistributed on the bridge

  12. A Quantitative Exploration of the Effect of Interfacial Phenomena on the Thermomechanical Properties of Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Natarajan, Bharath

    Polymer nanocomposites (PNC) are complex material systems in which the prevailing length scales, i.e., the particle size, radii of gyration of the polymer and the interparticle spacing, converge. This convergence leads to an increased dominance of the interface polymer over bulk properties, when compared to conventional "microcomposites". The development of fascinating nanoscopic filler materials (C60, nanotubes, graphene, quantum dots) along with this potential gain in interfacial area has fueled the expansion of PNCs. Nanocomposites literature has demonstrated a myriad of potential chemistries and self assembled structures that could significantly impact a diverse range of applications. However, most noteworthy results in this field are serendipitous and/or are outcomes of resource-intensive "trial and error" experiments supplemented by intuition. Intuition suggests, qualitatively, that the properties of PNCs depend on the individual properties of the participating species, the interphase and the spatial distribution of filler particles. However, the individual roles of these parameters are difficult to identify, since they are interrelated due to their co-dependence on the chemical constitution of the filler and matrix. A quantitative unifying picture is yet to emerge and the commercialization of this material class has been severely hampered by the lack of design rules and structure-property constitutive relationships that would aid in the prediction of bulk properties. In this thesis, a quantitative understanding of interfacial phenomena was sought and structure-property relationships between the filler/matrix interface chemistry and the dispersion and thermomechanical properties of PNCs were obtained by systematic experiments on 2 distinct kinds of nanocomposite systems (a) Enthalpic short silane modified fillers and (b) Entropic long polymer chain grafted filler embedded PNCs. In order to quantitatively understand the role of enthalpic compatibility, an

  13. Investigation of optical and interfacial properties of Ag/Ta{sub 2}O{sub 5} metal dielectric multilayer structure

    SciTech Connect

    Sarkar, P. Jena, S.; Tokas, R. B.; Thakur, S.; Sahoo, N. K.; Rao, K. D.; Misal, J. S.; Prathap, C.

    2015-06-24

    One-dimensional periodic metal-dielectric multilayer thin film structures consisting of Ag and Ta{sub 2}O{sub 5} alternating layers are deposited on glass substrate using RF magnetron sputtering technique. The spectral property of the multilayers has been investigated using spectrophotometry technique. The optical parameters such as refractive index, extinction coefficient, band gap etc., along with film thickness as well as the interfacial layer properties which influence these properties have been probed with spectroscopic ellipsometry technique. Atomic force microscopy has been employed to characterize morphological properties of this metal-dielectric multilayer.

  14. Heat-induced aggregation of thylakoid membranes affect their interfacial properties.

    PubMed

    Östbring, Karolina; Rayner, Marilyn; Albertsson, Per-Åke; Erlanson-Albertsson, Charlotte

    2015-04-01

    Many of our most popular lipid containing foods are in emulsion form. These foods are often highly palatable with high caloric density, that subsequently increases the risk of overconsumption and possibly lead to obesity. Regulating the lipid bioavailability of high-fat foods is one approach to prevent overconsumption. Thylakoids, the chloroplast membrane, creates a barrier around lipid droplets, which prolong lipolysis and increase satiety as demonstrated both in animal and human studies. However, a reduced lipase inhibiting capacity has been reported after heat treatment but the mechanism has not yet been fully established. The aim of this study was to investigate thylakoids' emulsifying properties post heat-treatment and possible links to alterations in lipase inhibiting capacity and chlorophyll degradation. Heat-treatment of thylakoids at either 60 °C, 75 °C or 90 °C for time interval ranging from 15 s to 4 min reduced ability to stabilise emulsions, having increased lipid droplets sizes, reduced emulsification capacity, and elevated surface load as consequence. Emulsifying properties were also found to display a linear relationship to both chlorophyll and lipase inhibiting capacity. The correlations support the hypothesis that heat-treatment induce chlorophyll degradation which promote aggregation within proteins inside the thylakoid membrane known to play a decisive role in interfacial processes. Therefore, heat-treatment of thylakoids affects both chlorophyll content, lipase inhibiting capacity and ability to stabilise the oil-water interface. Since the thylakoid's appetite reducing properties are a surface-related phenomenon, the results are useful to optimize the effect of thylakoids as an appetite reducing agent.

  15. An evaluation of the interfacial bond properties between carbon phenolic and glass phenolic composites

    NASA Technical Reports Server (NTRS)

    Jordan, Kelvin; Clinton, Raymond; Jeelani, Shaik

    1989-01-01

    The effects of moisture and surface finish on the mechanical and physical properties of the interfacial bond between the carbon/phenolic (C/P) and glass/phenolic (G/P) composite materials are presented. Four flat panel laminates were fabricated using the C/P and G/P materials. Of the four laminates, one panel was fabricated in which the C/P and G/P materials were cured simultaneously. It was identified as the cocure. The remaining laminates were processed with an initial simultaneous cure of the three C/P billets. Two surface finishes, one on each half, were applied to the top surface. Prior to the application and cure of the G/P material to the machined surface of the three C/P panels, each was subjected to the specific environmental conditioning. Types of conditioning included: (1) nominal fabrication environment, (2) a prescribed drying cycle, and (3) a total immersion in water at 160 F. Physical property tests were performed on specimens removed from the C/P materials of each laminate for determination of the specific gravity, residual volatiles and and resin content. Comparisons of results with shuttle solid rocket motor (SRM) nozzle material specifications verified that the materials used in fabricating the laminates met acceptance criteria and were representative of SRM nozzle materials. Mechanical property tests were performed at room temperature on specimens removed from the G/P, the C/P and the interface between the two materials for each laminate. The double-notched shear strength test was used to determine the ultimate interlaminar shear strength. Results indicate no appreciable difference in the C/P material of the four laminates with the exception of the cocure laminate, where 20 percent reduction in the strength was observed. The most significant effect and the ultimate strength was significantly reduced in the wet material. No appreciable variation was noted between the surface finishes in the wet laminate.

  16. Interfacial and mechanical property analysis of waste printed circuit boards subject to thermal shock.

    PubMed

    Li, Jinhui; Duan, Huabo; Yu, Keli; Wang, Siting

    2010-02-01

    Waste printed circuit boards (PCBs) are the focal points for handling electric and electronic waste. In this paper, a thermal shock method was used to pretreat waste PCBs for the improvement of crushing performance. The influence of the thermal shock process on interfacial modification and mechanical property attenuation of PCB waste was studied. The appearance and layer spacing of the basal plane began to change slightly when the temperature reached 200 degrees C. By 250 degrees C, apparent bulging, cracking, and delamination were observed. However, pyrolysis of PCBs occurred when the temperature reached 275 degrees C, where PCBs were carbonized. The thermogravimetric analysis of PCB particles under vacuum showed that 270 degrees C was the starting point of pyrolysis. The tensile and impact strength of PCBs were reduced as shock temperature rose gradually, with a reduction by 2.6 and 16.5%, respectively, at 250 degrees C from its unheated strength. The PCBs that were heated to 250 degrees C achieved 100% liberation, increasing linearly from 13.6% for unheated PCBs through a single-level shear-crusher (2-mm mesh) and resulting in an obvious reduction of 9.5% (dB) in dust and noise at 250 degrees C. These parameters could be helpful for establishing the operational setup for industrial-scale facilities with the aim of achieving a compact process and a highly efficient recovery for waste PCBs compared with those of the traditional combination mechanical technologies.

  17. Effect of the environmental humidity on the bulk, interfacial and nanoconfined properties of an ionic liquid.

    PubMed

    Jurado, L Andres; Kim, Hojun; Rossi, Antonella; Arcifa, Andrea; Schuh, Jonathon K; Spencer, Nicholas D; Leal, Cecilia; Ewoldt, Randy H; Espinosa-Marzal, Rosa M

    2016-08-10

    With reference to our previous surface-force study on 1-hexyl-3-methylimidazolium ethylsulfate ([HMIM] EtSO4) using an extended surface forces apparatus, which showed an ordered structure within the nanoconfined dry ionic liquid (IL) between mica surfaces that extended up to ∼60 nm from the surface, this work focuses on the influence of the environmental humidity on the bulk, interfacial and nanoconfined structure of [HMIM] EtSO4. Infrared spectroscopy and rheometry reflect the changes in chemical and physical properties of the bulk IL due to the uptake of water when exposed to ambient humidity, while wide-angle X-ray scattering shows a mild swelling of the bulk nanostructure, and the AFM sharp tip reveals an additional surface layer at the mica-IL interface. When the water-containing [HMIM] EtSO4 is nanoconfined between two mica surfaces, no long-range order is detected, in contrast to the results obtained for the dry IL, which demonstrates that the presence of water can prevent the liquid-to-solid transformation of this IL. A combination of techniques and the calculated Bjerrum length indicate that water molecules weaken interionic electrostatic and hydrogen-bonding interactions, which lessens ion-ion correlations. Our work shows that the solid-like behavior of the nanoconfined IL strongly depends on the presence of absorbed water and hence, it has implications with regard to the correct interpretation of laboratory studies and their extension to real applications in lubrication. PMID:27430333

  18. The control of stoichiometry in Epitaxial semiconductor structures. Interfacial Chemistry: Property relations. A workshop review

    NASA Technical Reports Server (NTRS)

    Bachmann, Klaus J.

    1995-01-01

    A workshop on the control of stoichiometry in epitaxial semiconductor structures was held on August 21-26, 1995 in the hotel Stutenhaus at Vesser in Germany. The secluded location of the workshop in the forest of Thuringia and its informal style stimulated extensive private discussions among the participants and promoted new contacts between young scientists from Eastern and Western Europe and the USA. Topics addressed by the presentations were interactions of precursors to heteroepitaxy and doping with the substrate surface, the control of interfacial properties under the conditions of heteroepitaxy for selected materials systems, methods of characterization of interfaces and native point defects in semiconductor heterostructures and an in depth evaluation of the present status of the control and characterization of the point defect chemistry for one specific semiconductor (ZnGeP2), including studies of both heterostructures and bulk single crystals. The selected examples of presentations and comments given here represent individual choices - made by the author to highlight major points of the discussions.

  19. Control of interfacial properties of Pr-oxide/Ge gate stack structure by introduction of nitrogen

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Kondo, Hiroki; Sakashita, Mitsuo; Nakatsuka, Osamu; Zaima, Shigeaki

    2011-06-01

    We have demonstrated the control of interfacial properties of Pr-oxide/Ge gate stack structure by the introduction of nitrogen. From C- V characteristics of Al/Pr-oxide/Ge 3N 4/Ge MOS capacitors, the interface state density decreases without the change of the accumulation capacitance after annealing. The TEM and TED measurements reveal that the crystallization of Pr-oxide is enhanced with annealing and the columnar structure of cubic-Pr 2O 3 is formed after annealing. From the depth profiles measured using XPS with Ar sputtering for the Pr-oxide/Ge 3N 4/Ge stack structure, the increase in the Ge component is not observed in a Pr-oxide film and near the interface between a Pr-oxide film and a Ge substrate. In addition, the N component segregates near the interface region, amorphous Pr-oxynitride (PrON) is formed at the interface. As a result, Pr-oxide/PrON/Ge stacked structure without the Ge-oxynitride interlayer is formed.

  20. Ultrasonic Spot and Torsion Welding of Aluminum to Titanium Alloys: Process, Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Balle, Frank; Magin, Jens

    Hybrid lightweight structures shape the development of future vehicles in traffic engineering and the aerospace industry. For multi-material concepts made out of aluminum and titanium alloys, the ultrasonic welding technique is an alternative effective joining technology. The overlapped structures can be welded in the solid state, even without gas shielding. In this paper the conventional ultrasonic spot welding with longitudinal oscillation mode is compared to the recent ultrasonic torsion welding with a torsional mode at 20 kHz working frequency. For each technique the process parameters welding force, welding energy and oscillation amplitude were optimized for the hybrid joints using design of experiments. Relationships between the process parameters, mechanical properties and related welding zone should be understood. Central aspects of the research project are microscopic studies of the joining zone in cross section and extensive fracture surface analysis. Detailed electron microscopy and spectroscopy of the hybrid interface help to understand the interfacial formation during ultrasonic welding as well as to transfer the gained knowledge for further multi-metal joints.

  1. A method to characterize the dielectric and interfacial properties of metal-insulator-semiconductor structures by microwave measurement

    NASA Astrophysics Data System (ADS)

    Lue, Hang-Ting; Tseng, Tseung-Yuen; Huang, Guo-Wei

    2002-04-01

    We have developed a method to investigate the dielectric and interfacial properties of gate dielectric thin films by microwave measurement. Ba0.5Sr0.5TiO3 (BST) thin films were deposited on 10 Ω cm (normal) and 10 k Ω cm [high-resistivity, (HR)] silicon substrates at the same time by rf magnetron sputtering. For the BST/HR-silicon, coplanar waveguides (CPW) were fabricated and measured at microwave frequencies with thru-reflect-line calibration while capacitance (C-V) measurements were carried out for BST/normal silicon. From the phase change of CPW transmission line and the maximum capacitance in C-V measurement, the dielectric constants of both the BST thin film and interface layer can be determined. Furthermore, the behaviors of insertion loss versus bias voltage were investigated. The results indicate that our method can provide useful information to study the dielectric and interfacial properties of metal-insulator-semiconductor structures.

  2. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.; Wise, J.L.

    1993-09-01

    Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.

  3. Interfacial roughening, segregation and dynamic behaviour in a generalized Schelling model

    NASA Astrophysics Data System (ADS)

    Albano, Ezequiel V.

    2012-03-01

    The Schelling model is widely used for the study of segregation behaviour in sociodynamics, econophysics, and related disciplines. Agents of two types placed in a lattice or network are allowed to exchange their locations on the basis of a transfer rule (T(S, A)), which depends on the satisfaction that the agent already has in her/his present position (S), and the attractiveness of the future position (A). The satisfaction and the attractiveness that the agent feels are measured in terms of the fraction between the number of agents of the same type that are present in the neighbourhood of the agent under consideration and the total number of neighbours. In this work we propose a generalization of the Schelling model such that the relative influence of satisfaction and attractiveness can be enhanced or depleted by means of an exponent q, i.e. T(S, A) = (1 - S)qA. We report extensive Monte Carlo numerical simulations performed for the two-dimensional square lattice with initial conditions of two different types: (i) fully disordered configurations of randomly located agents; and (ii) fully segregated configurations with a flat interface between two domains of unlike agents. We show that the proposed model exhibits a rich and interesting complex behaviour that emerges from the competitive interplay between interfacial roughening and the diffusion of isolated agents in the bulk of clusters of unlike agents. The first process dominates the early time regime, while the second one prevails for longer times after a suitable crossover time. Our numerical results are rationalized in terms of a dynamic finite-size scaling ansatz.

  4. Spatial mosaic and interfacial dynamics in a Müllerian mimicry system.

    PubMed

    Sasaki, Akira; Kawaguchi, Isao; Yoshimori, Akira

    2002-02-01

    Uncovering why spatial mosaics of mimetic morphs are maintained in a Müllerian mimicry system has been a challenging issue in evolutionary biology. In this article, we analyze the reaction diffusion system that describes two-species Müllerian mimicry in one- and two-dimensional habitats. Due to positive frequency-dependent selection, a local population first approaches the state where one of the comimicking patterns predominates, which is followed by slow movement of boundaries where different patterns meet. We then analyze the interfacial dynamics of the boundaries to find whether a stable cline is maintained and to obtain the wave speed if the cline is unstable. The results are: (1) In a spatially uniform habitat the morph with greater base fitness spreads both in one and two species system. (2) The strength of cross-species interaction determines whether the mimetic morph clines of model and mimic species coalesce into the same geographical region or pass through each other. The joint wave speed of clines decreases by increasing the number of comimicking species in the mimicry ring. (3) In spatial heterogeneous habitats, stable clines can be maintained due to the balance between the base fitness gradient and the biased gene flow by negative curvature of boundary. This allows the persistence of a spatial mosaic even if one of the morphs is in every place advantageous over the other. A balanced cline is also maintained if there is a gradient in the population density. (4) A new advantageous morph occurring at a local region is doomed to go to extinction in a finite time if the "radius" of initial distribution is below a threshold. Possible applications to the heliconiine butterfly mimicry ring, heterozygous disadvantage systems of chromosomal rearrangement and hybrid zone, the third phase of Wright's Shifting Balance theory, and cytoplasmic incompatibility are discussed.

  5. Production of glycolipid biosurfactants, mannosylerythritol lipids, using sucrose by fungal and yeast strains, and their interfacial properties.

    PubMed

    Morita, Tomotake; Ishibashi, Yuko; Fukuoka, Tokuma; Imura, Tomohiro; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2009-10-01

    Glycolipid biosurfactants, mannosylerythritol lipids (MELs), were produced from glucose and sucrose without vegetable oils. Pseudozyma antarctica JCM 10317, Ustilago maydis NBRC 5346, U. scitaminea NBRC 32730, and P. siamensis CBS 9960 produced mainly MEL-A, MEL-A, MEL-B, and MEL-C respectively. The sucrose-derived MELs showed excellent interfacial properties: low critical micelle concentration as well as that of oil-derived MELs. PMID:19809166

  6. Interfacial stress transfer and property mismatch in discontinuous nanofiber/nanotube composite materials.

    PubMed

    Xu, L Roy; Sengupta, Sreeparna

    2005-04-01

    Novel nanotubes/nanofibers with high strength and stiffness did not lead to high failure strengths/strains of nanocomposite materials. Therefore, the interfacial stress transfer and possible stress singularities, arising at the interfacial ends of discontinuous nanofibers embedded in a matrix, subjected to tensile and shear loading, were investigated by finite element analysis. The effects of Young's moduli and volume fractions on interfacial stress distributions were studied. Round-ended nanofibers were proposed to remove the interfacial singular stresses, which were caused by high stiffness mismatch of the nanoscale reinforcement and the matrix. However, the normal stress induced in the nanofiber through interfacial stress transfer was still less than 2 times that in the matrix. This stress value is far below the high strength of the nanofiber. Therefore, the load transfer efficiency of discontinuous nanofibers or nanotube composites is very low. Hence, nanofibers or nanotubes in continuous forms, which also preclude the formation of singular interfacial stress zones, are recommended over discontinuous nanofibers to achieve high strengths in nanocomposite materials. PMID:16004129

  7. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations.

  8. Production of a novel glycolipid biosurfactant, mannosylmannitol lipid, by Pseudozyma parantarctica and its interfacial properties.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Yamamoto, Shuhei; Kitagawa, Masaru; Sogabe, Atsushi; Kitamoto, Dai

    2009-07-01

    The development of a novel glycolipid biosurfactant was undertaken using the high-level producers of mannosylerythritol lipids (MELs) such as Pseudozyma parantarctica, Pseudozyma antarctica, and Pseudozyma rugulosa. Besides the conventional MELs (MEL-A, MEL-B, and MEL-C), these yeasts produced an unknown glycolipid when they were cultivated in a medium containing 4% (w/v) olive oil and 4% (w/w) mannitol as the carbon source. The unknown glycolipid extracted from the culture medium of P. parantarctica JCM 11752(T) displayed the spot with lower mobility than that of known MELs on TLC and provided mainly two peaks identical to mannose and mannitol on high-performance liquid chromatography after acid hydrolysis. Based on structural analysis by (1)H and (13)C nuclear magnetic resonance, the novel glycolipid was composed of mannose and mannitol as the hydrophilic sugar moiety and was identified as mannosylmannitol lipid (MML). Of the strains tested, P. parantarctica JCM 11752(T) gave the best yield of MML (18.2 g/L), which comprised approximately 35% of all glycolipids produced. We further investigated the interfacial properties of the MML, considering the unique hydrophilic structure. The observed critical micelle concentration (CMC) and the surface tension at CMC of the MML were 2.6 x 10(-6) M and 24.2 mN/m, respectively. In addition, on a water-penetration scan, the MML efficiently formed not only the lamella phase (Lalpha) but also the myelins at a wide range of concentrations, indicating its excellent self-assembling properties and high hydrophilicity. The present glycolipid should thus facilitate the application of biosurfactants as new functional materials. PMID:19296097

  9. Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties.

    PubMed

    Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Basheva, Elka S; Ivanova, Veronika I; Petkov, Jordan T

    2015-11-01

    The interest to sulfonated methyl esters of fatty acids (SME) has been growing during the last decade, because these surfactants are considered as an environmentally friendly and renewable alternative of the linear alkyl-benzene sulfonates (LAS). Here, we present a quantitative study on the properties of aqueous SME solutions, and especially on their surface tension isotherms, critical micelle concentration (CMC) and its dependence on the concentration of added NaCl. It is demonstrated that the CMC of an ionic surfactant determined by electrical conductivity is insensitive to the presence of a small nonionic admixture, so that the CMC values determined by conductivity represent the CMC of the pure surfactant. Using SME as an example, we have demonstrated the application of a new and powerful method for determining the physicochemical parameters of the pure ionic surfactant by theoretical data analysis ("computer purification") if the used surfactant sample contains nonionic admixtures, which are present as a rule. This method involves fits of the experimental data for surface tension and conductivity by a physicochemical model based on a system of mass-balance, chemical-equilibrium and electric-double-layer equations, which allows us to determine the adsorption and micellization parameters of C12-, C14-, C16- and C18-SME, as well the fraction of nonionic admixtures (if any). Having determined these parameters, we can further predict the interfacial and micellization properties of the surfactant solutions, such as surface tension, adsorption, degree of counterion binding, and surface electric potential at every surfactant, salt and co-surfactant concentrations. PMID:26196714

  10. Influence of carbon nanotubes coatings onto carbon fiber by oxidative treatments combined with electrophoretic deposition on interfacial properties of carbon fiber composite

    NASA Astrophysics Data System (ADS)

    Deng, Chao; Jiang, Jianjun; Liu, Fa; Fang, Liangchao; Wang, Junbiao; Li, Dejia; Wu, Jianjun

    2015-12-01

    To improve the interfacial performance of carbon fiber (CF) and epoxy resin, carbon nanotubes (CNTs) coatings were utilized to achieve this purpose through coating onto CF by the treatment with hydrogen peroxide and concentrated nitric acid combined with electrophoretic deposition (EPD) process. The influence of electrophoretically deposited CNTs coatings on the surface properties of CFs were investigated by Fourier transform infrared spectrometer, atomic force microscopy, scanning electron microscopy and dynamic contact angle analysis. The results indicated that the deposition of carbon nanotubes introduced some polar groups to carbon fiber surfaces, enhanced surface roughness and changed surface morphologies of carbon fibers. Surface wettability of carbon fibers may be significantly improved by increasing surface free energy of the fibers due to the deposition of CNTs. The thickness and density of the coatings increases with the introduction of pretreatment of the CF during the EPD process. Short beam shear test was performed to examine the effect of carbon fiber functionalization on mechanical properties of the carbon fiber/epoxy resin composites. The interfacial adhesion of CNTs/CF reinforced epoxy composites showed obvious enhancement of interlaminar shear strength by 60.2% and scanning electron microscope photographs showed that the failure mode of composites was changed after the carbon fibers were coated with CNTs.

  11. Effect of magnesium cation on the interfacial properties of aqueous salt solutions.

    PubMed

    Callahan, Karen M; Casillas-Ituarte, Nadia N; Xu, Man; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J

    2010-08-19

    Sodium chloride solutions have been used extensively as a model of seawater in both theoretical and experimental studies of the chemistry of sea salt aerosol. Many groups have found that chloride anions are present at the air-solution interface. This observation has been important for the development of a mechanism for the heterogeneous production of molecular chlorine from chloride in sea salt aerosol. However, while sodium chloride is a major constituent of seawater, it is by no means the only salt present. Seawater contains one Mg(2+) for every eight Na(+). Mg(2+) is naturally occurring in ocean waters from mineral deposits in the Earth's crust and biological sources. Mg(2+) forms a hexahydrate structure, rather than contact ion pairs with chloride anion, and this impacts the ordering of water in solution. In this study, we use molecular dynamics simulations, ab initio calculations, and vibrational sum frequency generation (SFG) spectroscopy to explore the effect of the Mg(2+) cation and its tightly bound solvation shell on the surface propensity of chloride, ion-ion interactions, and water structure of the air-solution interface of concentrated chloride salt solutions. In addition, we provide molecular level details that may be relevant to the heterogeneous reactions of chloride in deliquesced sea salt aerosols. In particular, we show that the presence of the divalent Mg(2+) cation does not modify the surface propensity of chloride compared to Na(+) and hence, its availability to interfacial reaction, although some differences in the behavior of chloride may occur due to specific ion interactions. In this work, we also discuss the SFG free OH band at the surface of salt solutions and conclude that it is often not straightforward to interpret.

  12. Assessment of measurement techniques to determine the interfacial properties of bilayer dental ceramics

    NASA Astrophysics Data System (ADS)

    Anunmana, Chuchai

    The clinical success of all-ceramic dental restorations depends on the quality of interfacial bonding between ceramic layers. In addition, the residual stress in the structure that developed during ceramic processing is one of the important factors that contributes to the quality of the bond. Because all-ceramic restorations are usually fabricated as bilayer or trilayer structures and failures of all-ceramic restorations have been frequently reported as chipping or delamination of the veneer layers, the interfacial quality of bilayer dental ceramic restorations was investigated. However, most of the published bond test data reflect strength values that are inversely related to cross-sectional areas and failure locations are frequently disregarded or bond strength values are misinterpreted. In addition, residual tensile stresses that develop in the structures because of thermal expansion/contraction mismatches may also adversely affect interfacial fracture resistance. The first objective of this study was to determine the interfacial toughness of bonded bilayer ceramics using two different approaches. The results indicate that the short-bar chevron-notch test and a controlled-flaw microtensile test can induce interfacial failure that represents true bonding quality. The second objective of this study was to test the hypothesis that residual stresses estimated from an indentation technique are not significantly different from residual stresses that are calculated based on fractography and flexural strength. The indentation technique may be useful as a simplified method to determine residual stresses in bilayer dental ceramics. The results of this study demonstrate that there is no significant difference in mean residual stresses determined from the two techniques. Because of relationship between residual stresses and apparent interfacial toughness, estimates of residual stresses can now be estimated more rapidly by measuring the apparent interfacial toughness of

  13. Functionalization enhancement on interfacial shear strength between graphene and polyethylene

    NASA Astrophysics Data System (ADS)

    Jin, Yikuang; Duan, Fangli; Mu, Xiaojing

    2016-11-01

    Pull-out processes were simulated to investigate the interfacial mechanical properties between the functionalized graphene sheet (FGS) and polyethylene (PE) matrix by using molecular dynamics simulation with ReaxFF reactive force field. The interfacial structure of polymer and the interfacial interaction in the equilibrium FGS/PE systems were also analyzed to reveal the enhancement mechanism of interfacial shear strength. We observed the insertion of functional groups into polymer layer in the equilibrium FGS/PE systems. During the pull-out process, some interfacial chains were attached on the FGS and pulled out from the polymer matrix. The behavior of these pulled out chains was further analyzed to clarify the different traction action of functional groups applied on them. The results show that the traction effect of functional groups on the pulled-out chains is agreement with their enhancement influence on the interfacial shear strength of the FGS/PE systems. They both are basically dominated by the size of functional groups, suggesting the enhancement mechanism of mechanical interlocking. However, interfacial binding strength also exhibits an obvious influence on the interfacial shear properties of the hybrid system. Our simulation show that geometric constrains at the interface is the principal contributor to the enhancement of interfacial shear strength in the FGS/PE systems, which could be further strengthened by the wrinkled morphology of graphene in experiments.

  14. Relating foam and interfacial rheological properties of β-lactoglobulin solutions.

    PubMed

    Lexis, M; Willenbacher, N

    2014-12-28

    We have determined bulk rheology of β-lactoglobulin (BLG) foams and surface viscoelasticity of corresponding protein solutions by varying pH as well as type, valency and concentration of the added salt in a wide range. Foam rheology was characterized by the storage modulus G0, the apparent yield stress τy, and the critical strain γc,foam defining the cessation of the linear viscoelastic response. These quantities were determined at gas volume fractions ϕ between 82% and 96%. Surface viscoelasticity was characterized in shear and dilation, corresponding shear and dilational moduli G, E' as well as the critical stress τc,surface and strain γc,surface marking the onset of non-linear response in oscillatory surface shear experiments were determined at fixed frequency. Beyond the widely accepted assumption that G0 and τy are solely determined by the Laplace pressure within the droplets and the gas volume fraction we have found that both quantities strongly depend on corresponding interfacial properties. G0 increases linearly with G and even stronger with E', τy varies proportional to τc,surface and γc,foam scales linearly with γc,surface. Furthermore, deviations from these simple scaling laws with significantly higher reduced G0 and τy values are observed only for foams at pH 5 and when a trivalent salt was added. Then also the dependence of these quantities on ϕ is unusually weak and we attribute these findings to protein aggregation and structure formation across the lamellae than the dominating bulk rheology.

  15. Wetting on a spherical wall: influence of liquid-gas interfacial properties.

    PubMed

    Nold, Andreas; Malijevský, Alexandr; Kalliadasis, Serafim

    2011-08-01

    We study the equilibrium of a liquid film on an attractive spherical substrate for an intermolecular interaction model exhibiting both fluid-fluid and fluid-wall long-range forces. We first reexamine the wetting properties of the model in the zero-curvature limit, i.e., for a planar wall, using an effective interfacial Hamiltonian approach in the framework of the well known sharp-kink approximation (SKA). We obtain very good agreement with a mean-field density functional theory (DFT), fully justifying the use of SKA in this limit. We then turn our attention to substrates of finite curvature and appropriately modify the so-called soft-interface approximation (SIA) originally formulated by Napiórkowski and Dietrich [Phys. Rev. B34, 6469 (1986)] for critical wetting on a planar wall. A detailed asymptotic analysis of SIA confirms the SKA functional form for the film growth. However, it turns out that the agreement between SKA and our DFT is only qualitative. We then show that the quantitative discrepancy between the two is due to the overestimation of the liquid-gas surface tension within SKA. On the other hand, by relaxing the assumption of a sharp interface, with, e.g., a simple "smoothing" of the density profile there, markedly improves the predictive capability of the theory, making it quantitative and showing that the liquid-gas surface tension plays a crucial role when describing wetting on a curved substrate. In addition, we show that in contrast to SKA, SIA predicts the expected mean-field critical exponent of the liquid-gas surface tension.

  16. Relating foam and interfacial rheological properties of β-lactoglobulin solutions.

    PubMed

    Lexis, M; Willenbacher, N

    2014-12-28

    We have determined bulk rheology of β-lactoglobulin (BLG) foams and surface viscoelasticity of corresponding protein solutions by varying pH as well as type, valency and concentration of the added salt in a wide range. Foam rheology was characterized by the storage modulus G0, the apparent yield stress τy, and the critical strain γc,foam defining the cessation of the linear viscoelastic response. These quantities were determined at gas volume fractions ϕ between 82% and 96%. Surface viscoelasticity was characterized in shear and dilation, corresponding shear and dilational moduli G, E' as well as the critical stress τc,surface and strain γc,surface marking the onset of non-linear response in oscillatory surface shear experiments were determined at fixed frequency. Beyond the widely accepted assumption that G0 and τy are solely determined by the Laplace pressure within the droplets and the gas volume fraction we have found that both quantities strongly depend on corresponding interfacial properties. G0 increases linearly with G and even stronger with E', τy varies proportional to τc,surface and γc,foam scales linearly with γc,surface. Furthermore, deviations from these simple scaling laws with significantly higher reduced G0 and τy values are observed only for foams at pH 5 and when a trivalent salt was added. Then also the dependence of these quantities on ϕ is unusually weak and we attribute these findings to protein aggregation and structure formation across the lamellae than the dominating bulk rheology. PMID:25363684

  17. Improved interfacial and electrical properties of Ge MOS capacitor by using TaON/LaON dual passivation interlayer

    NASA Astrophysics Data System (ADS)

    Cheng, Z. X.; Xu, J. P.; Liu, L.; Huang, Y.; Lai, P. T.; Tang, W. M.

    2016-07-01

    The effects of TaON/LaON dual passivation interlayer on the interfacial and electrical properties of Ge metal-oxide-semiconductor (MOS) capacitor with HfO2 gate dielectric are investigated. As compared to its counterpart with only LaON as passivation interlayer, the formation of HfGeOx and LaHfOx, which would degrade the interfacial quality, is effectively suppressed due to the strong blocking role of the TaON barrier layer against Hf diffusion. As a result, excellent interfacial and electrical properties are achieved for the Ge MOS device with the TaON/LaON dual passivation interlayer: high k value (20.9), low interface-state density (5.32 × 1011 cm-2 eV-1) and oxide-charge density (-3.90 × 1012 cm-2), low gate leakage current density (1.77 × 10-4 A/cm2 at Vg = Vfb + 1 V), and high reliability under high-field stress.

  18. Grafting Poly(3-hexylthiophene) from Silicon Nanocrystal Surfaces: Synthesis and Properties of a Functional Hybrid Material with Direct Interfacial Contact.

    PubMed

    Islam, Muhammad Amirul; Purkait, Tapas K; Mobarok, Md Hosnay; Hoehlein, Ignaz M D; Sinelnikov, Regina; Iqbal, Muhammad; Azulay, Doron; Balberg, Isaac; Millo, Oded; Rieger, Bernhard; Veinot, Jonathan G C

    2016-06-20

    Hybrid functional materials (HFMs) comprised of semiconductor nanoparticles and conjugated polymers offer the potential of synergetic photophysical properties. We have developed HFMs based upon silicon nanocrystals (SiNCs) and the conductive polymer poly(3-hexylthiophene) (SiNC@P3HT) by applying surface-initiated Kumada catalyst transfer polycondensation (SI-KCTP). One unique characteristic of the developed SiNC@P3HT is the formation of a direct covalent bonding between SiNCs and P3HT. The presented method for obtaining direct interfacial attachment, which is not accessible using other methods, may allow for the development of materials with efficient electronic communication at the donor-acceptor interfaces. Systematic characterization provides evidence of a core-shell structure, enhanced interfacial electron and/or energy transfer between the P3HT and SiNC components, as well as formation of a type-II heterostructure.

  19. Dynamic properties of force fields.

    PubMed

    Vitalini, F; Mey, A S J S; Noé, F; Keller, B G

    2015-02-28

    Molecular-dynamics simulations are increasingly used to study dynamic properties of biological systems. With this development, the ability of force fields to successfully predict relaxation timescales and the associated conformational exchange processes moves into focus. We assess to what extent the dynamic properties of model peptides (Ac-A-NHMe, Ac-V-NHMe, AVAVA, A10) differ when simulated with different force fields (AMBER ff99SB-ILDN, AMBER ff03, OPLS-AA/L, CHARMM27, and GROMOS43a1). The dynamic properties are extracted using Markov state models. For single-residue models (Ac-A-NHMe, Ac-V-NHMe), the slow conformational exchange processes are similar in all force fields, but the associated relaxation timescales differ by up to an order of magnitude. For the peptide systems, not only the relaxation timescales, but also the conformational exchange processes differ considerably across force fields. This finding calls the significance of dynamic interpretations of molecular-dynamics simulations into question.

  20. Interfacial and gravitationally-related properties of liquid crystals and other fluids

    NASA Astrophysics Data System (ADS)

    Mahajan, Milind Prabhakar

    This thesis describes a series of experiments on liquid crystals and other fluids to investigate behavior related to interfacial constraints, surface tension, and gravitational acceleration. The first part of the thesis deals with liquid crystal alignment surfaces. The grooved surface topography created by a buffing cloth on spin-coated polyimide films was characterized using Atomic Force Microscope (AFM). The shape of grooves was correlated to the microstructure on the lateral surface of rubbing fiber. The orientation induced in the rubbed polyimide was probed using optical retardation measurements. The retardation as a function of rubbing strength was shown to exhibit threshold-like behavior that was sensitive to rubbing history. AFM probe was used to "write" alignment pattern on sub-micron length-scale pixel. Two possible device geometries were constructed and analyzed. In the second half, the thesis discusses the static and dynamic behavior of fluid zones. MnCl2·4H2O was dissolved in water and the solution was magnetically levitated to stimulate low gravity. Static stability of a "bridge" (a fluid zone supported by two equal coaxial disks) was studied as a function of effective gravity and volume of the fluid. The ability of the levitation setup to temporally control effective gravity was exploited to investigate the dynamics of bridge collapse. A sudden change of magnetic current, corresponding to a change in gravity, beyond stability limit resulted in deformation and ultimate collapse of a bridge. A scaling relationship was found for collapse time as a function of the step change in gravity. The results were compared to predictions of a 1-D slice model. The levitated bridges were subjected to axial and lateral oscillations of gravity. The first resonance frequency was found to be maximum at zero effective gravity and decreased with increasing gravity. Comparable results were obtained by numerical simulations. Low gravity experiments on liquid crystals are

  1. Dynamics of the gas-liquid interfacial reaction of O(1D) with a liquid hydrocarbon.

    PubMed

    Waring, Carla; King, Kerry L; Costen, Matthew L; McKendrick, Kenneth G

    2011-06-30

    The dynamics of the gas-liquid interfacial reaction of the first electronically excited state of the oxygen atom, O((1)D), with the surface of a liquid hydrocarbon, squalane (C(30)H(62); 2,6,10,15,19,23-hexamethyltetracosane) has been studied experimentally. Translationally hot O((1)D) atoms were generated by 193 nm photolysis of a low pressure (nominally 1 mTorr) of N(2)O a short distance (mean = 6 mm) above a continually refreshed liquid squalane surface. Nascent OH (X(2)Π, v' = 0) reaction products were detected by laser-induced fluorescence (LIF) on the OH A(2)Σ(+)-X(2)Π (1,0) band at the same distance above the surface. The speed distribution of the recoiling OH was characterized by measuring the appearance profiles as a function of photolysis-probe delay for selected rotational levels, N'. The rotational (and, partially, fine-structure) state distributions were also measured by recording LIF excitation spectra at selected photolysis-probe delays. The OH v' = 0 rotational distribution is bimodal and can be empirically decomposed into near thermal (~300 K) and much hotter (~6000 K) Boltzmann-temperature components. There is a strong positive correlation between rotational excitation and translation energy. However, the colder rotational component still represents a significant fraction (~30%) of the fastest products, which have substantially superthermal speeds. We estimate an approximate upper limit of 3% for the quantum yield of OH per O((1)D) atom that collides with the surface. By comparison with established mechanisms for the corresponding reactions in the gas phase, we conclude that the rotationally and translationally hot products are formed via a nonstatistical insertion mechanism. The rotationally cold but translationally hot component is most likely produced by direct abstraction. Secondary collisions at the liquid surface of products of either of the previous two mechanisms are most likely responsible for the rotationally and translationally cold

  2. Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2008-05-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MELs), was undertaken on the basis of the analysis of ribosomal DNA sequences of yeast strains of the genus Pseudozyma. In the course of the investigation, Pseudozyma siamensis CBS 9960, which is closely related to Pseudozyma shanxiensis, a known MEL-C producer but with a different morphology, was found to accumulate a large amount of glycolipids. On thin layer chromatography, the extracellular glycolipids showed nearly the same spots as those of the MELs produced by P. shanxiensis. However, the result of high-performance liquid chromatography analysis revealed that the present strain has a much higher glycolipid production yield than P. shanxiensis. From the structural characterization by (1)H and (13)C NMR, the major glycolipid (more than 84% of the total) was identified as a mixture of 4-O-[(2',4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, both of which are types of MEL-C. The present MEL-C possessed a short-chain acid (C(2) or C(4)) at the C-2' position and a long-chain acid (C(16)) at the C-3' position of the mannose moiety, and thus, the hydrophobic part was considerably different from that of conventional MELs, which mainly possess two medium-chain acids (C(10)) at the C-2' and C-3' positions. Under optimal growth conditions with safflower oil in a shake culture, the total amount of MELs reached approximately 19 g/l after 9 d at 25 degrees C. We further investigated the interfacial properties of the present MEL-C, considering its unique hydrophobic structure. The observed critical micelle concentration (CMC) and the surface tension at the CMC of the MEL were 4.5 x 10(-6) M and 30.7 mN/m, respectively. In addition, on a water penetration scan, the MEL efficiently formed the liquid crystal phases such as hexagonal (H) and lamella (L(a)) at a wide range of

  3. Production of glycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS 9960 and their interfacial properties.

    PubMed

    Morita, Tomotake; Konishi, Masaaki; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2008-05-01

    The search for a novel producer of glycolipid biosurfactants, mannosylerythritol lipids (MELs), was undertaken on the basis of the analysis of ribosomal DNA sequences of yeast strains of the genus Pseudozyma. In the course of the investigation, Pseudozyma siamensis CBS 9960, which is closely related to Pseudozyma shanxiensis, a known MEL-C producer but with a different morphology, was found to accumulate a large amount of glycolipids. On thin layer chromatography, the extracellular glycolipids showed nearly the same spots as those of the MELs produced by P. shanxiensis. However, the result of high-performance liquid chromatography analysis revealed that the present strain has a much higher glycolipid production yield than P. shanxiensis. From the structural characterization by (1)H and (13)C NMR, the major glycolipid (more than 84% of the total) was identified as a mixture of 4-O-[(2',4'-di-O-acetyl-3'-O-alka(e)noyl)-beta-D-mannopyranosyl]-D-erythritol and 4-O-[(4'-O-acetyl-3'-O-alka(e)noyl-2'-O-butanoyl)-beta-D-mannopyranosyl]-D-erythritol, both of which are types of MEL-C. The present MEL-C possessed a short-chain acid (C(2) or C(4)) at the C-2' position and a long-chain acid (C(16)) at the C-3' position of the mannose moiety, and thus, the hydrophobic part was considerably different from that of conventional MELs, which mainly possess two medium-chain acids (C(10)) at the C-2' and C-3' positions. Under optimal growth conditions with safflower oil in a shake culture, the total amount of MELs reached approximately 19 g/l after 9 d at 25 degrees C. We further investigated the interfacial properties of the present MEL-C, considering its unique hydrophobic structure. The observed critical micelle concentration (CMC) and the surface tension at the CMC of the MEL were 4.5 x 10(-6) M and 30.7 mN/m, respectively. In addition, on a water penetration scan, the MEL efficiently formed the liquid crystal phases such as hexagonal (H) and lamella (L(a)) at a wide range of

  4. Thermodynamic properties of methane/water interface predicted by molecular dynamics simulations.

    PubMed

    Sakamaki, Ryuji; Sum, Amadeu K; Narumi, Tetsu; Ohmura, Ryo; Yasuoka, Kenji

    2011-04-14

    Molecular dynamics simulations have been performed to examine the thermodynamic properties of methane/water interface using two different water models, the TIP4P/2005 and SPC/E, and two sets of combining rules. The density profiles, interfacial tensions, surface excesses, surface pressures, and coexisting densities are calculated over a wide range of pressure conditions. The TIP4P/2005 water model was used, with an optimized combining rule between water and methane fit to the solubility, to provide good predictions of interfacial properties. The use of the infinite dilution approximation to calculate the surface excesses from the interfacial tensions is examined comparing the surface pressures obtained by different approaches. It is shown that both the change of methane solubilities in pressure and position of maximum methane density profile at the interface are independent of pressure up to about 2 MPa. We have also calculated the adsorption enthalpies and entropies to describe the temperature dependency of the adsorption. PMID:21495767

  5. Spin dynamics induced by ultrafast heating with ferromagnetic/antiferromagnetic interfacial exchange in perpendicularly magnetized hard/soft bilayers

    SciTech Connect

    Ma, Q. L. E-mail: mizukami@wpi-aimr.tohoku.ac.jp; Miyazaki, T.; Mizukami, S. E-mail: mizukami@wpi-aimr.tohoku.ac.jp; Iihama, S.; Zhang, X. M.

    2015-11-30

    The laser-induced spin dynamics of FeCo in perpendicularly magnetized L1{sub 0}-MnGa/FeCo bilayers with ferromagnetic and antiferromagnetic interfacial exchange coupling (IEC) are examined using the time-resolved magneto-optical Kerr effect. We found a precessional phase reversal of the FeCo layer as the IEC changes from ferromagnetic to antiferromagnetic. Moreover, a precession-suspension window was observed when the magnetic field was applied in a certain direction for the bilayer with ferromagnetic IEC. Our observations reveal that the spin dynamics modulation is strongly dependent on the IEC type within the Landau-Lifshitz-Gilbert depiction. The IEC dependence of the precessional phase and amplitude suggests the interesting method for magnetization dynamics modulation.

  6. The influence of surface properties on carbon fiber/epoxy matrix interfacial adhesion

    SciTech Connect

    Zhuang, H.; Wightman, J.P.

    1996-12-31

    In recent years, as composites become increasingly sophisticated to meet ever-increasing performance requirements, it has become more important to control the interaction between the reinforcing fibers and matrix materials. The major challenge here is the lack of fundamental understanding and knowledge about the reinforcement/matrix system which contribute to the establishment of the interphase. It has been recognized that the state of the fiber surface substantially effects the quality of interfacial adhesion. However, basic and specific correlation is still incomplete. The possible mechanisms by which the fiber surface parameters contribute to the constitution of the fiber/matrix interface include the interfacial chemical and physical interactions caused by fiber surface functionality and surface energy, the mechanical interlocking due to fiber surface irregularity, and, the interfacial wetting based on fiber surface energy. It was the objective of this work to explore the effects of physical and chemical aspects of fiber surfaces on the durability of interfacial adhesion in carbon fiber reinforced composites.

  7. Mechanical and interfacial properties of poly(vinyl chloride) based composites reinforced by cassava stillage residue with different surface treatments

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjuan; Gan, Tao; Li, Qian; Su, Jianmei; Lin, Ye; Wei, Yongzuo; Huang, Zuqiang; Yang, Mei

    2014-09-01

    Cassava stillage residue (CSR), a kind of agro-industrial plant fiber, was modified by coupling agent (CA), mechanical activation (MA), and MA-assisted CA (MACA) surface treatments, respectively. The untreated and different surface treated CSRs were used to prepare plant fibers/polymer composites (PFPC) with poly(vinyl chloride) (PVC) as polymer matrix, and the properties of these CSR/PVC composites were compared. Surface treated CSR/PVC composites possessed better mechanical properties, water resistance and dimensional stability compared with the untreated CSR/PVC composite, attributing to the improvement of interfacial properties between CSR and PVC matrix. MACA-treated CSR was the best reinforcement among four types of CSRs (untreated, MA-treated, CA-treated, and MACA-treated CSRs) because MACA treatment led to the significant improvement of dispersion, interfacial adhesion and compatibility between CSR and PVC. MACA treatment could be considered as an effective and green method for enhancing reinforcement efficiency of plant fibers and the properties of PFPC.

  8. Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite

    NASA Astrophysics Data System (ADS)

    Ma, Quansheng; Gu, Yizhuo; Li, Min; Wang, Shaokai; Zhang, Zuoguang

    2016-08-01

    This paper aims to study the effects of surface treating methods, including electrolysis of anodic oxidation, sizing and heat treatment at 200 °C, on physical and chemical properties of T700 grade high-strength carbon fiber GQ4522. The fiber surface roughness, surface energy and chemical properties were analyzed for different treated carbon fibers, using atom force microscopy, contact angle, Fourier transformed infrared and X-ray photoelectron spectroscopy, respectively. The results show that the adopted surface treating methods significantly affect surface roughness, surface energy and active chemical groups of the studied carbon fibers. Electrolysis and sizing can increase the roughness, surface energy and chemical groups on surface, while heat treatment leads to decreases in surface energy and chemical groups due to chemical reaction of sizing. Then, unidirectional epoxy 5228 matrix composite laminates were prepared using different treated GQ4522 fibers, and interlaminar shear strength and flexural property were measured. It is revealed that the composite using electrolysis and sizing-fiber has the strongest interfacial bonding strength, indicating the important roles of the two treating processes on interfacial adhesion. Moreover, the composite using heat-treating fiber has lower mechanical properties, which is attributed to the decrease of chemical bonding between fiber surface and matrix after high temperature treatment of fiber.

  9. Rheology and interfacial properties of aqueous solutions of the diblock polyelectrolyte poly(styrene-block-acrylic acid)

    NASA Astrophysics Data System (ADS)

    Kimerling, Abigail

    In aqueous solutions diblock polyelectrolytes with amphiphilic character form aggregate structures, which affect physical properties such as viscosity, elasticity, surface tension, and film hydrophilicity. Potential applications for diblock polyelectrolyte solutions include coatings, inks, oil recovery agents, personal care products, and biomaterials. By varying the diblock polyelectrolyte and solution properties, the solutions can be tuned to meet the needs of particular applications. The research objective was to identify the influences of block length, pH, and ionic strength on the rheological and interfacial properties of poly(styrene- b-acrylic acid) (PS-PAA) solutions. Six polymers with varied PS and PAA block lengths were examined, all at 1.0 wt% in aqueous solutions. The hydrophobicity of the PS block causes the formation of spherical micelles in aqueous solutions. Increasing the solution pH ionizes the PAA block, which leads to an increase in micelle corona thickness due to repulsions between chains. Major trends observed in the rheological and interfacial properties can be understood in terms of expected changes in the micelle size and interfacial self-assembly with pH, ionic strength, and block length. Addition of NaOH was found to increase the solution pH and initially led to increases in solution viscosity, elasticity, surface tension, and film hydrophilicity. This effect was attributed to creation of larger micelles and greater inter-micellar repulsions as the PAA chain became more fully charged. However, when the concentration of NaOH exceeded a critical value, the solution viscosity, elasticity, and film hydrophilicity decreased. It is believed this was due to charge shielding by excess sodium ions, leading to shrinkage of the micelle corona and smaller micelles. Increasing the PS-PAA solution ionic strength by adding NaCl also provided charge shielding, as observed by decreases in solution viscosity and elasticity. Increasing the length of either

  10. Interfacial water on crystalline silica: A comparative molecular dynamics simulation study

    SciTech Connect

    Ho, Tuan A.; Argyris, D.; Cole, David; Striolo, Alberto

    2011-01-01

    All-atom molecular dynamics simulations were conducted to study the dynamics of aqueous electrolyte solutions confined in slit-shaped silica nanopores of various degrees of protonation. Five degrees of protonation were prepared by randomly removing surface hydrogen atoms from fully protonated crystalline silica surfaces. Aqueous electrolyte solutions containing NaCl or CsCl salt were simulated at ambient conditions. In all cases, the ionic concentration was 1 M. The results were quantified in terms of atomic density distributions within the pores, and the self-diffusion coefficient along the direction parallel to the pore surface. We found evidence for ion-specific properties that depend on ion surface, water ion, and only in some cases ion ion correlations. The degree of protonation strongly affects the structure, distribution, and the dynamic behavior of confined water and electrolytes. Cl ions adsorb on the surface at large degrees of protonation, and their behavior does not depend significantly on the cation type (either Na+ or Cs+ ions are present in the systems considered). The cations show significant ion-specific behavior. Na+ ions occupy different positions within the pore as the degree of protonation changes, while Cs+ ions mainly remain near the pore center at all conditions considered. For a given degree of protonation, the planar self-diffusion coefficient of Cs+ is always greater than that of Na+ ions. The results are useful for better understanding transport under confinement, including brine behavior in the subsurface, with important applications such as environmental remediation.

  11. A Comparative Study on the Adsorption of Triton X-100 and Tween 20 onto Latexes with Different Interfacial Properties

    PubMed

    Martín-Rodríguez; Cabrerizo-Vílchez; Hidalgo-Álvarez

    1997-03-01

    In this paper we have studied the adsorption of two nonionic surfactants, Triton X-100 and Tween 20 (polyoxyethylene (20) sorbitan monolaurate) onto latexes with different interfacial properties. Four different samples of polystyrene beads were used in this study. A hydrophobic sample was prepared by conventional emulsion polymerization of styrene. Hydrophilic polymer colloids were prepared by the emulsifier-free emulsion copolymerization of styrene and 2-hydroxyethylmethacrylate in different proportions and acrylic acid. In all cases potassium persulfate was used as initiator. In order to consider the mechanism of the adsorption at the different liquid-solid interfaces, adsorption isotherms under different pH and ionic strength conditions were performed. Electrokinetic characterization and colloidal stability of bare hydrophobic and hydrophilic latexes and the surfactant-latex complexes were compared to understand the effect of the nonionic surfactant on the electric double layer structure. The results showed that Tween 20 and Triton X-100 are adsorbed in the same way on surfaces with different polarity but in different amounts. Hydrophobic interaction is the main driving force in the adsorption. The effect of the adsorption on the electrokinetic properties and stability of the latexes was found to be different for hydrophobic and hydrophilic latexes as a consequence of the dissimilar interfacial properties of these two latex samples. PMID:9245323

  12. Influence of interfacial oxide on the optical properties of single layer CdTe/CdS quantum dots in porous silicon scaffolds

    SciTech Connect

    Gaur, Girija; Fleetwood, Daniel M.; Weller, Robert A.; Reed, Robert A.; Weiss, Sharon M.; Koktysh, Dmitry S.

    2015-08-10

    Using a combination of continuous wave and time-resolved spectroscopy, we study the effects of interfacial conditions on the radiative lifetimes and photoluminescence intensities of sub-monolayer colloidal CdTe/CdS quantum dots (QDs) embedded in a three-dimensional porous silicon (PSi) scaffold. The PSi matrix was thermally oxidized under different conditions to change the interfacial oxide thickness. QDs embedded in a PSi matrix with ∼0.4 nm of interfacial oxide exhibited reduced photoluminescence intensity and nearly five times shorter radiative lifetimes (∼16 ns) compared to QDs immobilized within completely oxidized, porous silica (PSiO{sub 2}) frameworks (∼78 ns). The exponential dependence of QD lifetime on interfacial oxide thickness in the PSi scaffolds suggests charge transfer plays an important role in the exciton dynamics.

  13. Fabrication of interfacial functionalized porous polymer monolith and its adsorption properties of copper ions.

    PubMed

    Han, Jiaxi; Du, Zhongjie; Zou, Wei; Li, Hangquan; Zhang, Chen

    2014-07-15

    The interfacial functionalized poly (glycidyl methacrylate) (PGMA) porous monolith was fabricated and applied as a novel porous adsorbent for copper ions (Cu(2+)). PGMA porous material with highly interconnected pore network was prepared by concentrated emulsion polymerization template. Then polyacrylic acid (PAA) was grafted onto the interface of the porous monolith by the reaction between the epoxy group on PGMA and a carboxyl group on PAA. Finally, the porous monolith was interfacial functionalized by rich amount of carboxyl groups and could adsorb copper ions effectively. The chemical structure and porous morphology of the porous monolith were measured by Fourier transform infrared spectroscopy and scanning electron microscopy. Moreover, the effects of pore size distribution, pH value, co-existing ions, contacting time, and initial concentrations of copper ions on the adsorption capacity of the porous adsorbents were studied.

  14. Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix.

    PubMed

    Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew J; Rudd, Chris D; Walker, Gavin S; Scotchford, Colin A

    2013-09-01

    Eight different chemicals were investigated as potential candidate coupling agents for phosphate glass fibre reinforced polylactic acid composites. Evidence of reaction of the coupling agents with phosphate glass and their effect on surface wettability and glass degradation were studied along with their principle role of improving the interface between glass reinforcement and polymer matrix. It was found that, with an optimal amount of coupling agent on the surface of the glass/polymer, interfacial shear strength improved by a factor of 5. Evidence of covalent bonding between agent and glass was found for three of the coupling agents investigated, namely: 3-aminopropyltriethoxysilane; etidronic acid and hexamethylene diisocyanate. These three coupling agents also improved the interfacial shear strength and increased the hydrophobicity of the glass surface. It is expected that this would provide an improvement in the macroscopic properties of full-scale composites fabricated from the same materials which may also help to retain these properties for the desired length of time by retarding the breakdown of the fibre/matrix interface within these composites.

  15. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-04-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. There are two MEL diastereomers, in which the configurations of the erythritol moieties are opposite. The 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) or 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) is the hydrophilic domain. In this study, we prepared S- and R-form MEL homologs with similar fatty acyl groups, and compared their interfacial properties. Among the four diastereomers (S-MEL-B and -D/R-MEL-B and -D), R-form MELs showed a higher critical aggregation concentration and hydrophilicity compared to the corresponding S-form. R-form MELs also efficiently formed relatively large vesicles compared to S-form. Moreover, we estimated the binary phase diagram of the MEL-water system and compared the aqueous phase behavior among the four diastereomers. The present MELs self-assembled into a lamellar (L(α)) structure at all concentration ranges. Meanwhile, the one-phase L(α) region of R-form MELs was wider than those of S-form MELs. R-form MELs may maintain more water between the polar layers in accordance with an extension of the interlayer spacing. These results suggest that the differences in MEL carbohydrate configurations significantly affect interfacial properties, self-assembly, and hydrate ability. PMID:22341919

  16. The diastereomers of mannosylerythritol lipids have different interfacial properties and aqueous phase behavior, reflecting the erythritol configuration.

    PubMed

    Fukuoka, Tokuma; Yanagihara, Takashi; Imura, Tomohiro; Morita, Tomotake; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2012-04-01

    Mannosylerythritol lipids (MELs) produced by yeasts are one of the most promising glycolipid biosurfactants. There are two MEL diastereomers, in which the configurations of the erythritol moieties are opposite. The 4-O-β-D-mannopyranosyl-(2S,3R)-erythritol (S-form) or 4-O-β-D-mannopyranosyl-(2R,3S)-erythritol (R-form) is the hydrophilic domain. In this study, we prepared S- and R-form MEL homologs with similar fatty acyl groups, and compared their interfacial properties. Among the four diastereomers (S-MEL-B and -D/R-MEL-B and -D), R-form MELs showed a higher critical aggregation concentration and hydrophilicity compared to the corresponding S-form. R-form MELs also efficiently formed relatively large vesicles compared to S-form. Moreover, we estimated the binary phase diagram of the MEL-water system and compared the aqueous phase behavior among the four diastereomers. The present MELs self-assembled into a lamellar (L(α)) structure at all concentration ranges. Meanwhile, the one-phase L(α) region of R-form MELs was wider than those of S-form MELs. R-form MELs may maintain more water between the polar layers in accordance with an extension of the interlayer spacing. These results suggest that the differences in MEL carbohydrate configurations significantly affect interfacial properties, self-assembly, and hydrate ability.

  17. Investigating the use of coupling agents to improve the interfacial properties between a resorbable phosphate glass and polylactic acid matrix.

    PubMed

    Hasan, Muhammad Sami; Ahmed, Ifty; Parsons, Andrew J; Rudd, Chris D; Walker, Gavin S; Scotchford, Colin A

    2013-09-01

    Eight different chemicals were investigated as potential candidate coupling agents for phosphate glass fibre reinforced polylactic acid composites. Evidence of reaction of the coupling agents with phosphate glass and their effect on surface wettability and glass degradation were studied along with their principle role of improving the interface between glass reinforcement and polymer matrix. It was found that, with an optimal amount of coupling agent on the surface of the glass/polymer, interfacial shear strength improved by a factor of 5. Evidence of covalent bonding between agent and glass was found for three of the coupling agents investigated, namely: 3-aminopropyltriethoxysilane; etidronic acid and hexamethylene diisocyanate. These three coupling agents also improved the interfacial shear strength and increased the hydrophobicity of the glass surface. It is expected that this would provide an improvement in the macroscopic properties of full-scale composites fabricated from the same materials which may also help to retain these properties for the desired length of time by retarding the breakdown of the fibre/matrix interface within these composites. PMID:22781920

  18. Modification of soy protein hydrolysates by Maillard reaction: Effects of carbohydrate chain length on structural and interfacial properties.

    PubMed

    Li, Weiwei; Zhao, Haibo; He, Zhiyong; Zeng, Maomao; Qin, Fang; Chen, Jie

    2016-02-01

    This study investigated the effects of carbohydrate chain length on the structural and interfacial properties of the Maillard reaction conjugates of soy protein hydrolysates (Mw>30 kDa). The covalent attachment of sugars to soy peptides was confirmed by amino acid analysis and examination of the Fourier-transform infrared spectra. The results suggested that the emulsion stability of the conjugates increased as the length of the carbohydrate chains increased. The surface activity measurement revealed that the soy peptide-dextran conjugates were closely packed and that each molecule occupied a small area of the interface. It was further confirmed that the soy peptide-dextran conjugates formed a thick adsorbed layer at the oil-water interface, as observed in the confocal laser scanning micrographs. The interfacial layer of soy peptides was rheologically complex with broad linear viscoelastic region and strong elastic modulus, and the soy peptide-dextran conjugates might form multilayer adsorption at the interface. This study suggested that the improved surface properties of the soy peptide-dextran conjugates were a result of the strong membrane formed by the closely packed molecular and multilayer adsorption at the interface, which provided steric hindrance to flocculation. PMID:26655794

  19. Probing interfacial dynamics and mechanics using submerged particle microrheology. I. Theory

    NASA Astrophysics Data System (ADS)

    Shlomovitz, Roie; Evans, Arthur A.; Boatwright, Thomas; Dennin, Michael; Levine, Alex J.

    2014-07-01

    Microrheology relies on tracking the thermal or driven motion of microscopic particles in a soft material. It is well suited to the study of materials that have no three-dimensional realization, which makes them difficult to study using a macroscopic rheometer. For this reason, microrheology is becoming an important rheological probe of Langmuir monolayers and membranes. Interfacial microrheology, however, has been difficult to reconcile quantitatively with more traditional macroscopic approaches. We suggest that uncertainties in accounting for the mechanical coupling of the tracer particle to the interface or membrane are responsible for these discrepancies. To resolve them, we propose a new non-contact approach to interfacial microrheology that uses particles submerged in the subphase a known distance below the interface. In this first of two papers, we present calculations of the response function (and thus the equilibrium fluctuation spectrum) of a spherical particle submerged below a viscoelastic surface that has a finite surface tension and/or bending modulus. In the second paper, we compare these results to submerged particle microrheology in a few example systems, showing quantitative agreement.

  20. Estimation of the Thermodynamic Limit of Overheating for Bulk Water from Interfacial Properties

    NASA Astrophysics Data System (ADS)

    Imre, A. R.; Baranyai, A.; Deiters, U. K.; Kiss, P. T.; Kraska, T.; Quiñones Cisneros, S. E.

    2013-11-01

    The limit of overheating or expanding is an important property of liquids, which is relevant for the design and safety assessment of processes involving pressurized liquids. In this work, the thermodynamic stability limit—the so-called spinodal—of water is calculated by molecular dynamics computer simulation, using the molecular potential model of Baranyai and Kiss. The spinodal pressure is obtained from the maximal tangential pressure within a liquid-vapor interface layer. The results are compared to predictions of various equations of state. Based on these comparisons, a set of equations of state is identified which gives reliable results in the metastable (overheated or expanded) liquid region of water down to MPa.

  1. SiC-Si interfacial thermal and mechanical properties of reaction bonded SiC/Si ceramic composites

    NASA Astrophysics Data System (ADS)

    Hsu, Chun-Yen; Deng, Fei; Karandikar, Prashant; Ni, Chaoying

    Reaction bonded SiC/Si (RBSC) ceramic composites are broadly utilized in military, semiconductor and aerospace industries. RBSC affords advanced specific stiffness, hardness and thermal. Interface is a key region that has to be considered when working with any composites. Both thermal and mechanical behaviors of the RBSC are highly dependent on the SiC-Si interface. The SiC-Si interface had been found to act as a thermal barrier in restricting heat transferring at room temperature and to govern the energy absorption ability of the RBSC. However, up to present, the role of the SiC-Si interface to transport heat at higher temperatures and the interfacial properties in the nanoscale have not been established. This study focuses on these critically important subjects to explore scientific phenomena and underlying mechanisms. The RBSC thermal conductivity with volume percentages of SiC at 80 and 90 vol% was measured up to 1,200 °C, and was found to decrease for both samples with increasing environmental temperature. The RBSC with 90 vol% SiC has a higher thermal conductivity than that of the 80 vol%; however, is still significantly lower than that of the SiC. The interfacial thermal barrier effect was found to decrease at higher temperatures close 1200 °C. A custom-made in-situ tensile testing device which can be accommodated inside a ZEISS Auriga 60 FIB/SEM has been setup successfully. The SiC-Si interfacial bonding strength was measured at 98 MPa. The observation and analysis of crack propagation along the SiC-Si interface was achieved with in-situ TEM.

  2. Improved interfacial and electrical properties of vanadyl-phthalocyanine metal-insulator-semiconductor devices with silicon nitride as gate insulator

    SciTech Connect

    Wang, Lijuan Song, Xiaofeng; Liu, Xin; Zhang, Long; Li, Yiping; Yan, Donghang

    2013-12-09

    We have investigated the interfacial and electrical properties of vanadyl-phthalocyanine (VOPc) metal-insulator-semiconductor devices by the measurement of capacitance and conductance. The devices have been fabricated on ordered para-sexiphenyl (p-6P) layer with silicon nitride (SiN{sub x}) as gate insulator. The VOPc/p-6P/SiN{sub x} devices have shown a negligible hysteresis, low series resistance, and high operated frequency. Bulk traps have been distinguished from interface traps by two loss peaks in conductance measurement. Trap densities and distribution of trap energy level have been obtained. The improved properties indicate that VOPc/ p-6P devices with SiN{sub x} insulator hold a great promise of application in flexible displays.

  3. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  4. Surface grafting of Kevlar fibers for improved interfacial properties of fiber-reinforced composites

    SciTech Connect

    Ravichandran, Vasudha.

    1991-01-01

    Matrix-specific chemical modification of the Kevlar fiber surfaces was carried out with the aim of enhancing adhesion, through covalent bonding, to selected thermoset matrix resins such as vinyl ester, unsaturated polyester and epoxy. A two-step grafting method, involving initial metalation followed by subsequent substitution, was used to graft vinyl and epoxy terminated groups onto Kevlar fiber surfaces. The physical changes in fiber surface were characterized by scanning-electron microscopy and surface area measurement and the chemical changes due to grafting were measured by contact angle measurement and neutron activation analysis; high concentrations of double bonds and epoxy groups were measured. The change in interfacial sear strength due to the surface grafting was measured by means of a single fiber pull out test. The results show a nearly twofold increase in the interfacial shear strength due to vinyl terminated grafts in the case of Kevlar/vinyl ester and Kevlar/polyester composites. Kevlar fibers containing the epoxy functionality on the surface had enhanced adhesion to epoxy matrix resin.

  5. A Pore Network Model Evaluation of the Types of Fluid/Fluid Interfacial Area Measured by Static and Dynamic Water-Phase Tracer Methods

    NASA Astrophysics Data System (ADS)

    Kibbey, T. C.; Chen, L.

    2010-12-01

    Tracer methods have gained acceptance for measuring fluid/fluid interfacial areas in porous media, and have been applied in both laboratory and field settings. Tracer methods make use of chemicals (typically surfactants or other surface-active chemicals) which adsorb to fluid/fluid interfaces, leading to changes (retardation of transport, depletion of solution concentration, or mobilization of fluid) which can be used to calculate the amount of interfacial area. Advantages of tracer methods include that they are inexpensive to use, don’t require specialized equipment, and can potentially be applied in field settings. The primary disadvantages include uncertainty about the types of interfacial area measured, and questions about whether the tracers themselves produce interfacial area changes. Interfacial areas in porous media containing multiple fluids are often categorized as capillary area (area corresponding to fluids held by capillary forces) and film area (area corresponding to molecular films of the wetting phase on porous medium surfaces). Total area is a measure of area that includes both capillary and film area. The focus of this work was on examining the types of interfacial area measured by both static and dynamic water-phase advective transport tracer methods. Static advective transport methods were introduced in the late 1990s (e.g., Kim et al., Water Resour. Res., 1997, 33, 2705-2711), and involve measuring the retardation of a tracer passed through a porous medium maintained at a preset degree of saturation (interfaces are presumed to be static). Dynamic advective transport methods were introduced in 2006 (Chen and Kibbey, Langmuir, 2006, 22, 6874-6880), and involve measuring depletion of tracer during drainage from a specially-constructed low volume soil cell. As new interfacial area is formed during drainage, tracer adsorbs to the interface, depleting the bulk solution; mass balance calculations are used to determine interfacial area as a function

  6. Measurements of interfacial dynamics of gas–liquid displacement in a capillary

    NASA Astrophysics Data System (ADS)

    Yan, Changfei; Qiu, Huihe

    2016-06-01

    Measurement of liquid film thickness in gas–liquid plug/slug flows is a challenging task. A novel laser interference method for measuring the interfacial film thickness of gas–liquid displacement in a plug flow has been developed. This novel technique utilizes light scattering from different liquid/gas interfaces in forming interference fringes. The interference fringes are used for calculating the film thickness. A set of simultaneous equations is derived based on geometrical optics. The experiment set up is not complex and is easy to install. The fringes are recorded by a charge-coupled device high speed camera and the image data are calculated using fast Fourier transform (FFT) and a non-linear least squares Levenberg–Marquardt algorithm. The uncertainty of this measurement technique is quite small (0.3 μm) and the entire film thickness profile can be measured at the same time.

  7. Interfacial properties of oleosins and phospholipids from rapeseed for the stability of oil bodies in aqueous medium.

    PubMed

    Deleu, Magali; Vaca-Medina, Guadalupe; Fabre, Jean-François; Roïz, Julie; Valentin, Romain; Mouloungui, Zéphirin

    2010-10-15

    Oleosins are plant proteins associated with phospholipids in seed oil bodies. The ability of oleosins to aid in the emulsification and stabilization of oil bodies is well known, but little information is available on their interaction with phospholipids at the interface between oil bodies and aqueous medium. Oil body reconstitution at various phospholipid/oleosin ratios was carried out to observe how rapeseed oleosins of 20kDa and rapeseed phospholipids affect oil body stability. Phospholipids are needed to stabilize oil droplets, but oleosins are mandatory to avoid coalescence. We thus characterized how phospholipids affect the interfacial properties of oleosins at pHs 5.5 and 8.5, by analyzing the adsorption kinetics and interfacial dilational rheology. We observed a synergic effect between oleosins and phospholipids in increasing surface pressure at both pHs. This kind of effect was also observed for the dilational modulus at pH 5.5. A thermodynamic approach highlights these synergic interactions between oleosins and phospholipids through a positive deviation from ideality.

  8. Interfacial properties and electron structure of Al/B4C interface: A first-principles study

    NASA Astrophysics Data System (ADS)

    Xian, Yajiang; Qiu, Ruizhi; Wang, Xin; Zhang, Pengcheng

    2016-09-01

    This research aims at investigating the structural, mechanical and electronic properties of the Al (111)/B4C (0001) interface by first-principles calculations. This model geometry Al (111)/B4C (0001) is chosen because the close-packed planes of Al and B4C have the (111) and (0001) orientation, respectively, and the lattice mismatch is only ∼2.1%. Among four B4C (0001) surfaces with different terminations, our calculation of surface free energies predicted that C-terminated B4C (0001) surface is the most stable one. Relaxed atomic geometries, the work of adhesion and interfacial free energies were calculated for three C-terminated B4C (0001)/Al (111) interfaces with different stacking sequences (top-site, hollow-site, and bridge-site). Results reveal that the relaxed top-site (hollow-site-like) Al/B4C interface has the best adhesion force and also be the most stable. The interfacial electron structure including charge density difference, Bader charge and density of states (DOS) is analyzed to determine the nature of metal/carbide bonding and we find the formation of Alsbnd C bond and possibly the formation of Al4C3 in the interface.

  9. Interfacial properties of the enhanced visible-light plasmonic Ag/Bi2WO6 (0 0 1) nanocomposite

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Cao, Kun; Wu, Yi; Zhang, Kun-Hao; Zhou, Ying

    2016-01-01

    First principle calculations are performed to study the interfacial photoelectric properties of Agn/Bi2WO6 (0 0 1) (n = 1, 2, 3, 4) hybrid photocatalyst. The parallel adsorption of Ag cluster leads to more energetic favorable structures due to stronger interfacial interactions. The positive charged Ag cluster may act as excited electron traps and facilitate the electron-hole separation. In particular, hybridization between Ag 5s and O 2p leads to the formation of isolated energy levels above the valence bands, and they become more dispersed with broader bandwidth with the increment of silver cluster size, which is responsible for the enhanced absorption in visible-light region. In the deep valence region, Ag 4d orbital turns more delocalized and hybrid with O 2p states as the cluster size increases, which contributes to more covalent bond feature of Ag-O. Moreover, optical spectra demonstrate obvious red-shifts of the absorption edge with the increment of silver content, which enhances efficiently the visible-light photocatalytic activities of Bi2WO6 (0 0 1). The study provides insights into the enhanced photocatalyic mechanism of Ag/Bi2WO6 (0 0 1) and aids in the design of noble metal loaded visible-light plasmonic photocatalyst.

  10. Interfacial dilational properties of tea polyphenols and milk proteins with gut epithelia and the role of mucus in nutrient adsorption.

    PubMed

    Guri, Anilda; Li, Yang; Corredig, Milena

    2015-12-01

    By interacting with nutrients, the mucus layer covering the intestinal epithelium may mediate absorption. This study aimed to determine possible interactions between epigallocatechin-3-gallate (EGCG), skim milk proteins or their complexes with human intestinal mucin films. The films were extracted from postconfluent monolayers of HT29-MTX, a human intestinal cell line, and a model system was created using drop shape tensiometry. The EGCG uptake tested in vitro on postconfluent Caco-2 cells or co-cultures of Caco-2/HT29-MTX (mucus producing) showed recovery of bioavailable EGCG only for Caco-2 cell monolayers, suggesting an effect of mucus on absorption. Interfacial dilational rheology was employed to characterize the properties of the interface mixed with mucus dispersion. Adsorption of polyphenols greatly enhanced the viscoelastic modulus of the mucus film, showing the presence of interactions between the nutrient molecules and mucus films. On the other hand, in situ digestion of milk proteins using trypsin showed higher surface activities as a result of protein unfolding and competitive adsorption of the hydrolyzed products. There was an increase of viscoelastic modulus over the drop ageing time for the mixed interfaces, indicating the formation of a stiffer interfacial network. These results bring new insights into the role of the mucus layer in nutrient absorption and the interactions of mucus and dairy products. PMID:26328543

  11. Dissimilar Laser Welding/Brazing of 5754 Aluminum Alloy to DP 980 Steel: Mechanical Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Yulong; Zhang, Hua; Guo, Wei; Weckman, David; Zhou, Norman

    2015-11-01

    A diode laser welding/brazing technique was used for lap joining of 5754 aluminum alloy to DP 980 steel with Al-Si filler metal. The correlation between joint interfacial microstructure, wettability of filler metal, and mechanical properties was systematically investigated. At low laser power (1.4 kW), a layer of intermetallic compounds, composed of θ-Fe(Al,Si)3 and τ 5 -Al7.2Fe1.8Si, was observed at the interface between fusion zone and steel. Because of the poor wettability of filler metal on the steel substrate, the joint strength was very low and the joint failed at the FZ/steel interface. When medium laser power (2.0 kW) was applied, the wettability of filler metal was enhanced, which improved the joint strength and led to FZ failure. With further increase of laser power to 2.6 kW, apart from θ and τ 5, a new hard and brittle η-Fe2(Al,Si)5 IMC with microcracks was generated at the FZ/steel interface. The formation of η significantly degraded the joint strength. The failure mode changed back to interfacial failure.

  12. Interfacial dilational properties of tea polyphenols and milk proteins with gut epithelia and the role of mucus in nutrient adsorption.

    PubMed

    Guri, Anilda; Li, Yang; Corredig, Milena

    2015-12-01

    By interacting with nutrients, the mucus layer covering the intestinal epithelium may mediate absorption. This study aimed to determine possible interactions between epigallocatechin-3-gallate (EGCG), skim milk proteins or their complexes with human intestinal mucin films. The films were extracted from postconfluent monolayers of HT29-MTX, a human intestinal cell line, and a model system was created using drop shape tensiometry. The EGCG uptake tested in vitro on postconfluent Caco-2 cells or co-cultures of Caco-2/HT29-MTX (mucus producing) showed recovery of bioavailable EGCG only for Caco-2 cell monolayers, suggesting an effect of mucus on absorption. Interfacial dilational rheology was employed to characterize the properties of the interface mixed with mucus dispersion. Adsorption of polyphenols greatly enhanced the viscoelastic modulus of the mucus film, showing the presence of interactions between the nutrient molecules and mucus films. On the other hand, in situ digestion of milk proteins using trypsin showed higher surface activities as a result of protein unfolding and competitive adsorption of the hydrolyzed products. There was an increase of viscoelastic modulus over the drop ageing time for the mixed interfaces, indicating the formation of a stiffer interfacial network. These results bring new insights into the role of the mucus layer in nutrient absorption and the interactions of mucus and dairy products.

  13. Interfacial properties of two-carbon fiber reinforced polycarbonate composites using two-synthesized graft copolymers as coupling agents

    SciTech Connect

    Park, J.M.

    2000-05-15

    Two model coupling agents, water-dispersible (WDGP) and tetrahydrofuran (THF)-soluble graft copolymers (TSGP), were synthesized for carbon fiber/polycarbonate (PC) composites. WDGP contains a long polyacrylamide (PAAm) chain grafted on a PC backbone, whereas TSGP contains a short grafted PAAm Chain. Measurements of the interfacial shear strength (IFSS) and other interfacial properties were evaluated using a fragmentation test for two-fiber composites (TFC) to provide the same loading state. Optimal conditions for the treatment was established as a function of treatment time, temperature, initial concentration, and melting procedure. The amount adsorbed on the carbon fiber was higher for WDGP and TSGP were 54% and 74%, respectively. Mechanisms of energy adsorption for WDGP and intermolecular interaction for TSGP can be considered to contribute differently to IFSS improvement. The improvement in IFSS for both coupling agents may be due to chemical and hydrogen bonding in the interface between functional groups in the carbon fiber and PAAm in the coupling agents and to interdiffusion in the interface between PC in coupling agents and matrix PC.

  14. Nanoscale confinement and interfacial effects on the dynamics and glass transition/crystallinity of thin adsorbed films on silica nanoparticles

    NASA Astrophysics Data System (ADS)

    Madathingal, Rajesh Raman

    The research investigated in this dissertation has focused on understanding the structure-property-function relationships of polymer nanocomposites. The properties of composite systems are dictated by the properties of their components, typically fillers in a polymer matrix. In nanocomposites, the polymer near an interface has significantly different properties compared with the bulk polymer, and the contribution of the adsorbed polymer to composite properties becomes increasingly important as the filler size decreases. Despite many reports of highly favorable properties, the behavior of polymer nanocomposites is not generally predictable, and thus requires a better understanding of the interfacial region. The ability to tailor the filler/matrix interaction and an understanding of the impact of the interface on macroscopic properties are keys in the design of nanocomposite properties. In this original work the surface of silica nanoparticles was tailored by: (a) Changing the number of sites for polymer attachment by varying the surface silanols and, (b) By varying the size/curvature of nanoparticles. The effect of surface tailoring on the dynamic properties after the adsorption of two model polymers, amorphous polymethyl methacrylate (PMMA) and semicrystalline polyethylene oxide (PEO) was observed. The interphase layer of polymers adsorbed to silica surfaces is affected by the surface silanol density as well as the relative size of the polymer compared with the size of the adsorbing substrate. The non-equilibrium adsorption of PMMA onto individual colloidal Stober silica (SiO2) particles, where Rparticle (100nm) > RPMMA (˜6.5nm) was compared with the adsorption onto fumed silica, where Rparticle (7nm) ˜ RPMMA (6.5nm) < Raggregate (˜1000nm), both as a function of silanol density [SiOH] and hydrophobility. In the former case, TEM images showed that the PMMA adsorbed onto individual nanoparticles, so that the number of PMMA chains/bead could be calculated, whereas

  15. Chemical Imaging and Dynamical Studies of Reactivity and Emergent Behavior in Complex Interfacial Systems. Final Technical Report

    SciTech Connect

    Sibener, Steven J.

    2014-03-11

    This research program explored the efficacy of using molecular-level manipulation, imaging and scanning tunneling spectroscopy in conjunction with supersonic molecular beam gas-surface scattering to significantly enhance our understanding of chemical processes occurring on well-characterized interfaces. One program focus was on the spatially-resolved emergent behavior of complex reaction systems as a function of the local geometry and density of adsorbate-substrate systems under reaction conditions. Another focus was on elucidating the emergent electronic and related reactivity characteristics of intentionally constructed single and multicomponent atom- and nanoparticle-based materials. We also examined emergent chirality and self-organization in adsorbed molecular systems where collective interactions between adsorbates and the supporting interface lead to spatial symmetry breaking. In many of these studies we combined the advantages of scanning tunneling (STM) and atomic force (AFM) imaging, scanning tunneling local electronic spectroscopy (STS), and reactive supersonic molecular beams to elucidate precise details of interfacial reactivity that had not been observed by more traditional surface science methods. Using these methods, it was possible to examine, for example, the differential reactivity of molecules adsorbed at different bonding sites in conjunction with how reactivity is modified by the local configuration of nearby adsorbates. At the core of this effort was the goal of significantly extending our understanding of interfacial atomic-scale interactions to create, with intent, molecular assemblies and materials with advanced chemical and physical properties. This ambitious program addressed several key topics in DOE Grand Challenge Science, including emergent chemical and physical properties in condensed phase systems, novel uses of chemical imaging, and the development of advanced reactivity concepts in combustion and catalysis including carbon

  16. Studies of Mn/ZnO (0001¯) Interfacial Formation and Electronic Properties with Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Zou, C. W.; Xu, P. S.; Wu, Y. Y.; Sun, B.; Xu, F. Q.; Pan, H. B.; Yuan, H. T.; Du, X. L.

    2007-01-01

    The initial growth, interfacial reaction and Fermi level movement of Mn on the O-terminated Zn (000 1¯) surface have been investigated by using synchrotron radiation photoelectron spectroscopy (SRPES) and X-ray photoemission (XPS). Mn is found to be grown on the surface in the layer-by-layer (Frank-van der Merwe) mode and be quite stable on the O-terminated surface at room temperature. With increasing the coverage of Mn, a downward Fermi level movement in band structure measurement of SRPES is observed and the resultant Schottky Barrier Height (SBH) is calculated to be about 1.1eV. Annealing behavior of the interface is investigated and we find that annealing at 600 °C induces a pronounced Mn-Zn atoms exchange reaction at the interface.

  17. Role of reactant transport in determining the properties of NIF shells made by interfacial polycondensation

    SciTech Connect

    Hamilton, K.E.; Letts, S.A.; Buckley, S.R.; Fearon, E.M.; Wilemski, G.; Cook, R.C.; Schroen-Carey, D.

    1997-03-01

    Polymer shells up to 2 mm in diameter were prepared using an interfacial polycondensation / cross-linking reaction occurring at the surface of an oil drop. The oil phase is comprised of a solution (20 wt% or less) of isophthaloyl dichloride (IPC) dissolved in an organic solvent. An interfacial reaction is initiated when the IPC-loaded oil drop is submerged in an aqueous solution of poly(p-vinylphenol) (PVP), a poly(electrolyte) at elevated pH. Composition, structure, and surface finish for fully-formed dry shells were assessed using a number of techniques including scanning electron microscopy (SEM), atomic force microscopy (AFM), fourier-transform infrared spectroscopy (FTIR), pyrolysis-gas chromatography (GC) mass spectroscopy (MS), microhardness measurements, gas permeability, and solvent permeability measurements. From deposition rate data, a reaction mechanism and key reaction parameters were identified. The deposition rate of shell membrane material was found to be a diffusion limited reaction of IPC through the forming membrane to the exterior shell interface (which is believed to be the reaction front). The final thickness of the film deposited at the interface and the rate of deposition were found to be strong functions of the IPC concentration and oil phase solvent. Films made with diethyl phthalate (DEP) were thinner and harder than films made using 1,6-dichlorohexane (DCH) as a solvent. Differences in solubility of the forming membrane in DCH and DEP appear to be able to account for the differences in deposition rate and the hardness (related to cross-linking density). The deposition can be thought of as a phase separation which is affected by both the poly(electrolyte) / ionomer transition and the amount of cross-linking. Finally, it was found that the choice of oil phase solvent profoundly affects the evolution of the outer surface roughness.

  18. Dielectric studies on the heterogeneity and interfacial property of composites made of polyacene quinone radical polymers and sulfonated polyurethanes.

    PubMed

    Zhu, Dan; Zhang, Juan; Bin, Yuezhen; Xu, Chunye; Shen, Jian; Matsuo, Masaru

    2012-03-01

    Sulfonated polyurethane (PUI, matrix) is synthesized and composited with polyacene quinone radical polymers (PAQRs, filler). The polarization mechanism of these polymers and composites were investigated in terms of their frequency, temperature, and filler-concentration-dependent dielectric properties. We found that PUI/PAQR composites have a high permittivity, which is attributed to the filler-matrix interfacial polarization and the contact effect. The PAQR-concentration-dependent permittivity of different PUI/PAQR composites reveals a percolation threshold at 20-30 wt % with scaling exponents that indicate the intercluster polarization. The frequency dependence of dielectric response is well-fitted by using the Debye and Cole-Cole functions on the basis of the structural diagrams and equivalent circuit, leading to a detailed evaluation on heterogeneous structures of different PUI/PAQR composites.

  19. Interfacial electronic properties of the heterojunctions C{sub 60}/rubrene/Au and rubrene/C{sub 60}/Au

    SciTech Connect

    Cheng, Chiu-Ping; Chan, Yi-Wei; Hsueh, Chih-Feng; Pi, Tun-Wen

    2012-07-15

    Using synchrotron-radiation photoemission, we have studied the electronic structures of rubrene:C{sub 60} heterojunctions on Au substrates. The photoelectron spectra show that the interfacial properties at the C{sub 60}/rubrene/Au and rubrene/C{sub 60}/Au interfaces are asymmetric and do not follow the commutation rule. In the C{sub 60}/rubrene case, a gap state appearing in the initial deposition stage results from negative charges transferred from rubrene to C{sub 60}, while in the inverse deposition process, no strong chemical reaction could be found. A significant shift of the vacuum level induced by alignment of the charge neutrality levels of the two materials was observed in both cases. Furthermore, the charge transfer strongly enhances the dipole potential of the C{sub 60}/rubrene interface. The energy level diagrams show that the C{sub 60}-on-rubrene process has a superior number of advantages in the photovoltaic applications.

  20. Effect of Surface Oxidation on Interfacial Water Structure at a Pyrite (100) Surface as Studied by Molecular Dynamics Simulation

    SciTech Connect

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.; Wick, Collin D.

    2015-06-01

    In the first part of this paper, a Scanning Electron Microscopy and contact angle study of a pyrite surface (100) is reported describing the relationship between surface oxidation and the hydrophilic surface state. In addition to these experimental results, the following simulated surface states were examined using Molecular Dynamics Simulation (MDS): fresh unoxidized (100) surface; polysulfide at the (100) surface; elemental sulfur at the (100) surface. Crystal structures for the polysulfide and elemental sulfur at the (100) surface were simulated using Density Functional Theory (DFT) quantum chemical calculations. The well known oxidation mechanism which involves formation of a metal deficient layer was also described with DFT. Our MDS results of the behavior of interfacial water at the fresh and oxidized pyrite (100) surfaces without/with the presence of ferric hydroxide include simulated contact angles, number density distribution for water, water dipole orientation, water residence time, and hydrogen-bonding considerations. The significance of the formation of ferric hydroxide islands in accounting for the corresponding hydrophilic surface state is revealed not only from experimental contact angle measurements but also from simulated contact angle measurements using MDS. The hydrophilic surface state developed at oxidized pyrite surfaces has been described by MDS, on which basis the surface state is explained based on interfacial water structure. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE funded work performed by Liem X. Dang. Battelle operates the Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES.

  1. Dynamics of the gas-liquid interfacial reaction of O(3P) atoms with hydrocarbons

    NASA Astrophysics Data System (ADS)

    Kelso, Hailey; Köhler, Sven P. K.; Henderson, David A.; McKendrick, Kenneth G.

    2003-11-01

    We describe an experimental approach to the determination of the nascent internal state distribution of gas-phase products of a gas-liquid interfacial reaction. The system chosen for study is O(3P) atoms with the surface of liquid deuterated squalane, a partially branched long-chain saturated hydrocarbon, C30D62. The nascent OD products are detected by laser-induced fluorescence. Both OD (v'=0) and (v'=1) were observed in significant yield. The rotational distributions in both vibrational levels are essentially the same, and are characteristic of a Boltzmann distribution at a temperature close to that of the liquid surface. This contrasts with the distributions in the corresponding homogeneous gas-phase reactions. We propose a preliminary interpretation in terms of a dominant trapping-desorption mechanism, in which the OD molecules are retained at the surface sufficiently long to cause rotational equilibration but not complete vibrational relaxation. The significant yield of vibrationally excited OD also suggests that the surface is not composed entirely of -CD3 endgroups, but that secondary and/or tertiary units along the backbone are exposed.

  2. Dynamical properties of piano soundboards.

    PubMed

    Chaigne, Antoine; Cotté, Benjamin; Viggiano, Roberto

    2013-04-01

    In pianos, the transfer of energy from strings to soundboard and the radiation of sound are highly dependent on the dynamical properties of the soundboard. In this paper, a numerical study is conducted for various rib configurations, showing that even slight irregularities in rib spacing can induce a strong localization of the soundboard velocity pattern. The effective vibrating area can be further reduced due to the spatial filtering effect of the bridge. Numerical predictions of modal shapes and operating deflection shapes are confirmed by series of measurements made on upright piano soundboards. Simulations of radiated pressure based on measured and calculated soundboard velocity fields show that localization tends to broaden the cone of directivity and to reduce the number of lobes. PMID:23556610

  3. Dynamical properties of piano soundboards.

    PubMed

    Chaigne, Antoine; Cotté, Benjamin; Viggiano, Roberto

    2013-04-01

    In pianos, the transfer of energy from strings to soundboard and the radiation of sound are highly dependent on the dynamical properties of the soundboard. In this paper, a numerical study is conducted for various rib configurations, showing that even slight irregularities in rib spacing can induce a strong localization of the soundboard velocity pattern. The effective vibrating area can be further reduced due to the spatial filtering effect of the bridge. Numerical predictions of modal shapes and operating deflection shapes are confirmed by series of measurements made on upright piano soundboards. Simulations of radiated pressure based on measured and calculated soundboard velocity fields show that localization tends to broaden the cone of directivity and to reduce the number of lobes.

  4. Improved mechanical properties of polylactide nanocomposites-reinforced with cellulose nanofibrils through interfacial engineering via amine-functionalization.

    PubMed

    Lu, Yuan; Cueva, Mario Calderón; Lara-Curzio, Edgar; Ozcan, Soydan

    2015-10-20

    One of the main factors responsible for the mechanical and physical properties of nanocomposites is the effectiveness of the interfacial region to transfer loads and mechanical vibrations between the nano-reinforcements and the matrix. Surface functionalization has been the preferred approach to engineer the interfaces in polymer nanocomposites in order to maximize their potential in structural and functional applications. In this study, amine-functionalized cellulose nanofibrils (mCNF-G1) were synthesized via silylation of the hydroxyl groups on the CNF surface using 3-aminopropyltrimethoxysilane (APTMS). To further increase the amine density (mCNF-G2), dendritic polyamidoamine (PAMAM) was grafted onto mCNF-G1 by the Michael addition of methacrylate onto mCNF-G1, followed by the transamidation of the ester groups of methacrylate using ethylenediamine. Compared to native CNF-reinforced, poly(l-lactide) (PLLA) nanocomposites, amine-functionalized CNF exhibited significantly improved dispersion and interfacial properties within the PLLA matrix due to the grafting of PLLA chains via aminolysis. It is also a more effective nucleating agent, with 15% mCNF-G1 leading to a crystallinity of 32.5%, compared to 0.1 and 8.7% for neat PLLA and native CNF-reinforced composites. We have demonstrated that APTMS-functionalized CNF (mCNF-G1) significantly improved the tensile strength compared to native CNF, with 10% mCNF-G1 being the most effective (i.e., >100% increase in tensile strength). However, we also found that excessive amines on the CNF surface (i.e., mCNF-G2) resulted in decreased tensile strength and modulus due to PLLA degradation via aminolysis. These results demonstrate the potential of optimized amine-functionalized CNF for future renewable material applications.

  5. Comparison of hydrolytic and non-hydrolytic atomic layer deposition chemistries: Interfacial electronic properties at alumina-silicon interfaces

    NASA Astrophysics Data System (ADS)

    Marstell, Roderick J.; Strandwitz, Nicholas C.

    2015-11-01

    We report the differences in the passivation and electronic properties of aluminum oxide (Al2O3) deposited on silicon via traditional hydrolytic atomic layer deposition (ALD) and non-hydrolytic (NH) ALD chemistries. Traditional films were grown using trimethylaluminum (TMA) and water and NHALD films grown using TMA and isopropanol at 300 °C. Hydrolytically grown ALD films contain a smaller amount of fixed charge than NHALD films (oxide fixed charge Qf Traditional = -8.1 × 1011 cm-2 and Qf NHALD = -3.6 × 1012 cm-2), and a larger degree of chemical passivation than NHALD films (density of interface trap states, Dit Traditional = 5.4 × 1011 eV-1 cm-2 and Dit NHALD = 2.9 × 1012 eV-1 cm-2). Oxides grown with both chemistries were found to have a band gap of 7.1 eV. The conduction band offset was 3.21 eV for traditionally grown films and 3.38 eV for NHALD. The increased Dit for NHALD films may stem from carbon impurities in the oxide layer that are at and near the silicon surface, as evidenced by both the larger trap state time constant (τTraditional = 2.2 × 10-9 s and τNHALD = 1.7 × 10-7 s) and the larger carbon concentration. We have shown that the use of alcohol-based oxygen sources in NHALD chemistry can significantly affect the resulting interfacial electronic behavior presenting an additional parameter for understanding and controlling interfacial electronic properties at semiconductor-dielectric interfaces.

  6. Ferroic Properties in Individual and Multi-Component Nanostructures: The Influence of Size, Shape, and Interfacial Coupling

    NASA Astrophysics Data System (ADS)

    Johnson, Stephanie Howell

    Extrinsic magnetoelectric heterostructure materials receive increased interest because of the potential to tune the magnetoelectric properties through material selection and actively, through applied electric and magnetic field. Understanding the strength of the coupling of ferroic properties in composite solids and the roles of size, shape, and arrangement of the constituent phases is central to realizing high-performance magnetoelectrics and their applications. Nanoscale magnetoelectric materials are excellent candidate systems to study the aforementioned effects of shape and finite size, to meet the growing demand for faster, more efficient, low cost, and above all smaller device components for use in advanced magnetic memories, actuators, transducers, and sensors. Nanoscale materials offer increased interfacial surface area compared with bulk, making them appealing in the design of an enhanced magnetoelectric composite because the magnetoelectric effect in a composite system is driven by interfacial coupling mechanisms. However, nanoscale (approximately 100 nm or less) ferroic materials often exhibit a dimensionality-dependent suppression of ferroic and piezoelectric properties below a critical size. By controlling e.g. the surface chemical environment, introducing strain engineering of films through epitaxy or through the shape of a nanostructure, the ferroelectric phase stability can be tuned for a given material and temperature. In this dissertation nanoscale ferroic and multiferroic properties were investigated, highlighting five characteristic systems: ferromagnetic nanoparticles, ferroelectric nanocubes, extrinsic magnetoelectric nanowires, and resonant beams and resonant membranes. An experimental study of ferromagnetic nanoparticles is presented to underscore the importance of understanding the growth and interfacial coupling mechanisms in ferromagnetic nanoparticle systems. To investigate the finite-size driven ferroelectric phase transition at the

  7. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization.

    PubMed

    Liu, Guang-Chen; He, Yi-Song; Zeng, Jian-Bing; Li, Qiu-Tong; Wang, Yu-Zhong

    2014-11-10

    A fully biobased and supertough thermoplastic vulcanizate (TPV) consisting of polylactide (PLA) and a biobased vulcanized unsaturated aliphatic polyester elastomer (UPE) was fabricated via peroxide-induced dynamic vulcanization. Interfacial compatibilization between PLA and UPE took place during dynamic vulcanization, which was confirmed by gel measurement and NMR analysis. After vulcanization, the TPV exhibited a quasi cocontinuous morphology with vulcanized UPE compactly dispersed in PLA matrix, which was different from the pristine PLA/UPE blend, exhibiting typically phase-separated morphology with unvulcanized UPE droplets discretely dispersed in matrix. The TPV showed significantly improved tensile and impact toughness with values up to about 99.3 MJ/m(3) and 586.6 J/m, respectively, compared to those of 3.2 MJ/m(3) and 16.8 J/m for neat PLA, respectively. The toughening mechanisms under tensile and impact tests were investigated and deduced as massive shear yielding of the PLA matrix triggered by internal cavitation of VUPE. The fully biobased supertough PLA vulcanizate could serve as a promising alternative to traditional commodity plastics. PMID:25287757

  8. Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization.

    PubMed

    Liu, Guang-Chen; He, Yi-Song; Zeng, Jian-Bing; Li, Qiu-Tong; Wang, Yu-Zhong

    2014-11-10

    A fully biobased and supertough thermoplastic vulcanizate (TPV) consisting of polylactide (PLA) and a biobased vulcanized unsaturated aliphatic polyester elastomer (UPE) was fabricated via peroxide-induced dynamic vulcanization. Interfacial compatibilization between PLA and UPE took place during dynamic vulcanization, which was confirmed by gel measurement and NMR analysis. After vulcanization, the TPV exhibited a quasi cocontinuous morphology with vulcanized UPE compactly dispersed in PLA matrix, which was different from the pristine PLA/UPE blend, exhibiting typically phase-separated morphology with unvulcanized UPE droplets discretely dispersed in matrix. The TPV showed significantly improved tensile and impact toughness with values up to about 99.3 MJ/m(3) and 586.6 J/m, respectively, compared to those of 3.2 MJ/m(3) and 16.8 J/m for neat PLA, respectively. The toughening mechanisms under tensile and impact tests were investigated and deduced as massive shear yielding of the PLA matrix triggered by internal cavitation of VUPE. The fully biobased supertough PLA vulcanizate could serve as a promising alternative to traditional commodity plastics.

  9. Effect of Sophorolipid n-Alkyl Ester Chain Length on Its Interfacial Properties at the Almond Oil-Water Interface.

    PubMed

    Koh, Amanda; Linhardt, Robert J; Gross, Richard

    2016-06-01

    Sophorolipids (SLs), produced by Candida bombicola, are of interest as potential replacements for hazardous commercial surfactants. For the first time, a series of molecularly edited SLs with ethyl (EE), n-hexyl (HE), and n-decyl (DE) esters were evaluated at an oil (almond oil)-water interface for their ability to reduce interfacial tension (IFT) and generate stable emulsions. An increase in the n-alkyl ester chain length from ethyl to hexyl resulted in a maximum % decrease in the IFT from 86.1 to 95.3, respectively. Furthermore, the critical aggregation concentrations (CACs) decreased from 0.035 to 0.011 and 0.006 mg/mL as the ester chain length was increased from ethyl to n-hexyl and n-decyl, respectively. In contrast, the CAC of natural SL, composed of 50/50 acidic and LSL, is 0.142 mg/mL. Dynamic IFT analysis showed significant differences in diffusion coefficients for all SLs studied. Almond oil emulsions with up to 200:1 (by weight) oil/SL-DE were stable against oil separation for up to 1 week with average droplet sizes below 5 μm. Emulsions of almond oil with natural SLs showed consistent oil separation 24 h after emulsification. A unique connection between IFT and emulsification was found as SL-DE has both the lowest CAC and the best emulsification performance of all natural and modified SLs studied herein. This connection between CAC and emulsification may be generally applicable, providing a tool for the prediction of optimal surfactants in other oil-water interfacial applications. PMID:27159768

  10. Effects of interfacial layer structures on crystal structural properties of ZnO films

    SciTech Connect

    Park, J. S.; Minegishi, T.; Lee, S. H.; Im, I. H.; Park, S. H.; Hanada, T.; Goto, T.; Cho, M. W.; Yao, T.; Hong, S. K.; Chang, J. H.

    2008-01-15

    Single crystalline ZnO films were grown on Cr compound buffer layers on (0001) Al{sub 2}O{sub 3} substrates by plasma assisted molecular beam epitaxy. In terms of lattice misfit reduction between ZnO and substrate, the CrN and Cr{sub 2}O{sub 3}/CrN buffers are investigated. The structural and optical qualities of ZnO films suggest the feasibility of Cr compound buffers for high-quality ZnO films growth on (0001) Al{sub 2}O{sub 3} substrates. Moreover, the effects of interfacial structures on selective growth of different polar ZnO films are investigated. Zn-polar ZnO films are grown on the rocksalt CrN buffer and the formation of rhombohedral Cr{sub 2}O{sub 3} results in the growth of O-polar films. The possible mechanism of polarity conversion is proposed. By employing the simple patterning and regrowth procedures, a periodical polarity converted structure in lateral is fabricated. The periodical change of the polarity is clearly confirmed by the polarity sensitive piezo response microscope images and the opposite hysteretic characteristic of the piezo response curves, which are strict evidences for the validity of the polarity controlling method as well as the successful fabrication of the periodical polarity controlled ZnO structure.

  11. "a" interfacial parameter in Nicolais-Narkis model for yield strength of polymer particulate nanocomposites as a function of material and interphase properties.

    PubMed

    Zare, Yasser

    2016-05-15

    In this paper, "a" interfacial parameter in Nicolais-Narkis model is expressed by thickness "ri" and strength "σi" of interphase between polymer and nanoparticles as well as material properties. "a" parameter is connected to "B1" interfacial parameter in modified Pukanszky model and the effects of "ri" and "σi" on "a" are explained. The negligible difference between "a" values calculated by fitting the experimental results to Nicolais-Narkis model and also, by "B1" results confirms the accurateness of the suggested relation between "a" and "B1" parameters. Additionally, an inverse relation is found between "a" and "B1" parameters for nanocomposites containing spherical nanoparticles. The results demonstrate that the slight levels of "ri" and "σi" data give a large value of "a" which indicates the poor interfacial adhesion.

  12. Ultrafast Study of Dynamic interfacial Exchange Coupling in Ferromagnet/Oxide/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Ou, Yu-Sheng; Chiu, Yi-Hsin; Harmon, Nicholas; Odenthal, Patrick; Sheffield, Matthew; Chilcote, Michael; Kawakami, Roland; Flatté, Michael; Johnston-Halperin, Ezekiel

    Time-resolved Kerr/Faraday rotation (TRKR/TRFR) is employed to study GaAs spin dynamics in the regime of strong and dynamic exchange coupling to an adjacent MgO/Fe layer. This study reveals a dramatic, resonant suppression in the inhomogeneous spin lifetime (T2*) in the GaAs layer. Further investigation of the magnetization dynamics of the neighboring Fe layer, also using TRKR/TRFR, reveals not only the expected Kittel-dispersion but also additional lower frequency modes with very short lifetime (65 ps) that are not easily observed with conventional ferromagnetic resonance (FMR) techniques. These results suggest the intriguing possibility of resonant dynamic spin transfer between the GaAs and Fe spin systems. We discuss the potential for this work to establish GaAs spin dynamics as an efficient detector of spin dissipation and transport in the regime of dynamically-driven spin injection in ferromagnet/semiconductor heterostructures. Center for Emergent Materials; U.S. Department of Energy.

  13. Separating the effects of repulsive and attractive forces on the phase diagram, interfacial, and critical properties of simple fluids

    NASA Astrophysics Data System (ADS)

    Fuentes-Herrera, M.; Moreno-Razo, J. A.; Guzmán, O.; López-Lemus, J.; Ibarra-Tandi, B.

    2016-06-01

    Molecular simulations in the canonical and isothermal-isobaric ensembles were performed to study the effect of varying the shape of the intermolecular potential on the phase diagram, critical, and interfacial properties of model fluids. The molecular interactions were modeled by the Approximate Non-Conformal (ANC) theory potentials. Unlike the Lennard-Jones or Morse potentials, the ANC interactions incorporate parameters (called softnesses) that modulate the steepness of the potential in their repulsive and attractive parts independently. This feature allowed us to separate unambiguously the role of each region of the potential on setting the thermophysical properties. In particular, we found positive linear correlation between all critical coordinates and the attractive and repulsive softness, except for the critical density and the attractive softness which are negatively correlated. Moreover, we found that the physical properties related to phase coexistence (such as span of the liquid phase between the critical and triple points, variations in the P-T vaporization curve, interface width, and surface tension) are more sensitive to changes in the attractive softness than to the repulsive one. Understanding the different roles of attractive and repulsive forces on phase coexistence may contribute to developing more accurate models of liquids and their mixtures.

  14. Preparation and interfacial properties of a novel biodegradable polymer surfactant: poly(ethylene oxide monooleate-block-DL-lactide).

    PubMed

    Nishino, Satoru; Kitamura, Yoshiro; Kishida, Akio; Yoshizawa, Hidekazu

    2005-11-01

    In this paper, we report a novel synthesis of poly(ethylene oxide monooleate-block-DL-lactide) (MOPEO-PLA) in the presence of stannous 2-ethylhexanoate catalyst. By utilizing the surfactant property and the reactive double bond of the amphiphilic MOPEO-PLA, various characteristics of PLA microspheres, such as surface and internal structure, surface morphology, release property, and so on, may potentially be controlled. MOPEO-PLA was found to be hydrophobic enough to prevent loss by dissolution into aqueous solution, which is often a problem for MOPEO. Furthermore, the interfacial tension measurements of a MOPEO-PLA/toluene/water system revealed that MOPEO-PLA had a good surface activity almost equal to that of MOPEO. The MOPEO-PLA/PLA blend films were prepared by solvent casting on a water layer. Contact-angle measurements of MOPEO-PLA/PLA blend films confirmed that the hydrophilic PEO segments were selectivity accumulated at the oil/water interface. Moreover, the surface free energy on the 'water side' of the MOPEO-PLA/PLA blend films was increased because of the increase in polar components as a result of the ether bonds of the PEO segments. Schematic illustration of the adsorption property of a) MOPEO-PLA with a high-molecular-weight PLA segment and b) MOPEO-PLA with a low-molecular-weight PLA segment at an ethyl acetate/water interface. PMID:16245272

  15. Interfacial properties of α / β-Bi2O3 homo-junction from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Li, Qiu-Yi; Zhao, Zong-Yan

    2015-10-01

    To construct hetero-/homo-junction is an effective way to improve the performance of photocatalyst. However, some basic and important issues about the underlying mechanism of this strategy still need to be further confirmed and explained. In the present work, the interfacial properties of α / β-Bi2O3 composite photocatalyst with homo-junction are in-depth investigated by density functional theory calculations. Owing to partially saturated dangling bonds, the electronic structure of interface model exhibits both the features of bulk and surface models. Importantly, the interfacial states are mainly arising from the layer of β-Bi2O3@Interface. At the interface of α / β-Bi2O3 homo-junction, the energy bands of β-Bi2O3 are relatively down-shifting compared with those of α-Bi2O3, resulting in form the staggered gaps (type II), which is very favorable for the improvement of photocatalytic performance. Moreover, the built-in electric field of homo-junction points from β-Bi2O3 layer to α-Bi2O3 layer under equilibrium, so the photon-generated electron-hole pairs can be spatially separated by the α / β-Bi2O3 homo-junction. Furthermore, to construct α / β-Bi2O3 homo-junction not only keep the advantageous of visible-light absorption of β-Bi2O3, but also improve the visible-light absorption of α-Bi2O3.

  16. Improved interfacial and electrical properties of Ge MOS devices with ZrON/GeON dual passivation layer

    NASA Astrophysics Data System (ADS)

    Wenyu, Yuan; Jingping, Xu; Lu, Liu; Yong, Huang; Zhixiang, Cheng

    2016-05-01

    The interfacial and electrical characteristics of Ge metal-oxide-semiconductor (MOS) devices with a dual passivation layer of ZrON/GeON formed by NH3- or N2-plasma treatment are investigated. The experimental results show that the NH3-plasma treated sample exhibits significantly improved interfacial and electrical properties as compared to the samples with N2-plasma treatment and no treatment: a lower interface-state density at the midgap (1.64 × 1011 cm-2 · eV-1) and gate leakage current (9.32 × 10-5 A/cm2 at Vfb + 1 V), a small capacitance equivalent thickness (1.11 nm) and a high k value (32). X-ray photoelectron spectroscopy is used to analyze the involved mechanisms. It is indicated that more GeON and less GeOx (x < 2) are formed on the Ge surface during NH3-plasma treatment than the N2-plasma treatment, resulting in a high-quality high-k/Ge interface, because H atoms and NH radicals in NH3-plasma can enhance volatilization of the unstable low-k GeOx, creating high-quality GeON passivation layer. Moreover, more nitrogen incorporation in ZrON/GeON induced by NH3-plasma treatment can build a stronger N barrier and thus more effectively inhibit in-diffusion of O and Ti from high-k gate dielectric and out-diffusion of Ge. Project supported by the National Natural Science Foundation of China (Nos. 6127411261176100, 61404055).

  17. Hybrid approach combining dissipative particle dynamics and finite-difference diffusion model: simulation of reactive polymer coupling and interfacial polymerization.

    PubMed

    Berezkin, Anatoly V; Kudryavtsev, Yaroslav V

    2013-10-21

    A novel hybrid approach combining dissipative particle dynamics (DPD) and finite difference (FD) solution of partial differential equations is proposed to simulate complex reaction-diffusion phenomena in heterogeneous systems. DPD is used for the detailed molecular modeling of mass transfer, chemical reactions, and phase separation near the liquid∕liquid interface, while FD approach is applied to describe the large-scale diffusion of reactants outside the reaction zone. A smooth, self-consistent procedure of matching the solute concentration is performed in the buffer region between the DPD and FD domains. The new model is tested on a simple model system admitting an analytical solution for the diffusion controlled regime and then applied to simulate practically important heterogeneous processes of (i) reactive coupling between immiscible end-functionalized polymers and (ii) interfacial polymerization of two monomers dissolved in immiscible solvents. The results obtained due to extending the space and time scales accessible to modeling provide new insights into the kinetics and mechanism of those processes and demonstrate high robustness and accuracy of the novel technique.

  18. Tensile properties and interfacial bonding of multi-layered, high-purity titanium strips fabricated by ARB process.

    PubMed

    Ghafari-Gousheh, Soroush; Nedjad, Syamak Hossein; Khalil-Allafi, Jafar

    2015-11-01

    Severe plastic deformation (SPD) processing has shown very effective in promotion of mechanical properties of metals and alloys. In this study, the results of investigating mechanical properties and also inter-layer bond performance of accumulative roll bonded high purity titanium (HP-Ti) strips are presented. High purity titanium plates were severely deformed by use of a combination of cold rolling (CR) to a thickness reduction of approximately 87% and then accumulative roll bonding (ARB) for three cycles (N=3) at ambient temperature. Optical and scanning electron microscopy, tensile testing, and hardness measurements were conducted. The ARB strips exhibited lower tensile strength and ductility in comparison to cold rolled one which can basically be attributed to the poor function of the latest bonds established in the centerlines of the strips. Fractographic examinations revealed the interfacial de-bonding along the centerline between the layers having undergone roll bonding for just one cycle. It was while the interfaces having experienced roll bonding for more cycles showed much higher resistance against delaminating. PMID:26253205

  19. Influence of interfacial shear strength on the mechanical properties of SiC fiber reinforced reaction-bonded silicon nitride matrix composites

    NASA Technical Reports Server (NTRS)

    Bhatt, Ramakrishna T.

    1990-01-01

    The influence of fiber/matrix interface microstructure and interfacial shear strength on the mechanical properties of a fiber-reinforced ceramic composite was evaluated. The composite consisted of approximately 30 vol percent uniaxially aligned 142 microns diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix (SiC/RBSN). The interface microstructure was varied by controlling the composite fabrication conditions and by heat treating the composite in an oxidizing environment. Interfacial shear strength was determined by the matrix crack spacing method. The results of microstructural examination indicate that the carbon-rich coating provided with the as-produced SiC fibers was stable in composites fabricated at 1200 C in a nitrogen or in a nitrogen plus 4 percent hydrogen mixture for 40 hr. However this coating degraded in composites fabricated at 1350 C in N2 + 4 percent H2 for 40 and 72 hr and also in composites heat treated in an oxidizing environment at 600 C for 100 hr after fabrication at 1200 C in a nitrogen. It was determined that degradation occurred by carbon removal which in turn had a strong influence on interfacial shear strength and other mechanical properties. Specifically, as the carbon coating was removed, the composite interfacial shear strength, primary elastic modulus, first matrix cracking stress, and ultimate tensile strength decreased, but the first matrix cracking strain remained nearly the same.

  20. Single fiber push-out characterization of interfacial mechanical properties in unidirectional CVI-C/SiC composites by the nano-indentation technique

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Ren, Chengzu; Zhou, Changling; Xu, Hongzhao; Jin, Xinmin

    2015-12-01

    The characterization of interfaces in woven ceramic matrix composites is one of the most challenging problems in composite application. In this investigation, a new model material consisting of the chemical vapor infiltration unidirectional C/SiC composites with PyC fiber coating were prepared and evaluated to predict the interfacial mechanic properties of woven composites. Single fiber push-out/push-back tests with the Berkovich indenter were conducted on the thin sliced specimens using nano-indentation technique. To give a detailed illustration of the interfacial crack propagation and failure mechanism, each sector during the push-out process was analyzed at length. The test results show that there is no detectable difference between testing a fiber in a direct vicinity to an already tested fiber and testing a fiber in vicinity to not-pushed fibers. Moreover, the interface debonding and fiber sliding mainly occur at the PyC coating, and both the fiber and surrounding matrix have no plastic deformation throughout the process. Obtained from the load-displacement curve, the interfacial debonding strength (IDS) and friction stress (IFS) amount to, respectively, 35 ± 5 MPa and 10 ± 1 MPa. Based on the findings, the interfacial properties with PyC fiber coating can be predicted. Furthermore, it is expected to provide a useful guideline for the design, evaluation and optimal application of CVI-C/SiC.

  1. Interfacial wicking dynamics and its impact on critical heat flux of boiling heat transfer

    NASA Astrophysics Data System (ADS)

    Kim, Beom Seok; Lee, Hwanseong; Shin, Sangwoo; Choi, Geehong; Cho, Hyung Hee

    2014-11-01

    Morphologically driven dynamic wickability is essential for determining the hydrodynamic status of solid-liquid interface. We demonstrate that the dynamic wicking can play an integral role in supplying and propagating liquid through the interface, and govern the critical heat flux (CHF) against surface dry-out during boiling heat transfer. For the quantitative control of wicking, we manipulate the characteristic lengths of hexagonally arranged nanopillars within sub-micron range through nanosphere lithography combined with top-down metal-assisted chemical etching. Strong hemi-wicking over the manipulated interface (i.e., wicking coefficients) of 1.28 mm/s0.5 leads to 164% improvement of CHF compared to no wicking. As a theoretical guideline, our wickability-CHF model can make a perfect agreement with improved CHF, which cannot be predicted by the classic models pertaining to just wettability and roughness effects, independently.

  2. Capturing interfacial photoelectrochemical dynamics with picosecond time-resolved X-ray photoelectron spectroscopy.

    PubMed

    Neppl, Stefan; Shavorskiy, Andrey; Zegkinoglou, Ioannis; Fraund, Matthew; Slaughter, Daniel S; Troy, Tyler; Ziemkiewicz, Michael P; Ahmed, Musahid; Gul, Sheraz; Rude, Bruce; Zhang, Jin Z; Tremsin, Anton S; Glans, Per-Anders; Liu, Yi-Sheng; Wu, Cheng Hao; Guo, Jinghua; Salmeron, Miquel; Bluhm, Hendrik; Gessner, Oliver

    2014-01-01

    Time-resolved core-level spectroscopy using laser pulses to initiate and short X-ray pulses to trace photoinduced processes has the unique potential to provide electronic state- and atomic site-specific insight into fundamental electron dynamics in complex systems. Time-domain studies using transient X-ray absorption and emission techniques have proven extremely valuable to investigate electronic and structural dynamics in isolated and solvated molecules. Here, we describe the implementation of a picosecond time-resolved X-ray photoelectron spectroscopy (TRXPS) technique at the Advanced Light Source (ALS) and its application to monitor photoinduced electron dynamics at the technologically pertinent interface formed by N3 dye molecules anchored to nanoporous ZnO. Indications for a dynamical chemical shift of the Ru3d photoemission line originating from the N3 metal centre are observed ∼30 ps after resonant HOMO-LUMO excitation with a visible laser pump pulse. The transient changes in the TRXPS spectra are accompanied by a characteristic surface photovoltage (SPV) response of the ZnO substrate on a pico- to nanosecond time scale. The interplay between the two phenomena is discussed in the context of possible electronic relaxation and recombination pathways that lead to the neutralisation of the transiently oxidised dye after ultrafast electron injection. A detailed account of the experimental technique is given including an analysis of the chemical modification of the nano-structured ZnO substrate during extended periods of solution-based dye sensitisation and its relevance for studies using surface-sensitive spectroscopy techniques.

  3. Computational analysis of the interfacial bonding between feed-powder particles and the substrate in the cold-gas dynamic-spray process

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Saylor, J. R.; Beasley, D. E.; DeRosset, W. S.; Helfritch, D.

    2003-12-01

    The cold-gas dynamic-spray process is analyzed by numerical modeling of the impact between a single spherical feed-powder particle and a semi-infinite substrate. The numerical modeling approach is applied to the copper-aluminum system to help explain experimentally observed higher deposition efficiencies of the copper deposition on aluminum than the ones associated with the aluminum deposition on copper. To properly account for the high strain, high strain-rate deformation behavior of the two materials, the appropriate linear-elastic rate-dependent, temperature-dependent, strain-hardening materials constitutive models are used. The results obtained indicate that the two main factors contributing to the observed higher deposition efficiency in the case of copper deposition on aluminum are larger particle/substrate interfacial area and higher contact pressures. Both of these are the result of a larger kinetic energy associated with a heavier copper feed-powder particle. The character of the dominant particle/substrate bonding mechanism is also discussed in the present paper. It is argued that an interfacial instability which can lead to the formation of interfacial roll-ups and vortices can play a significant role in attaining the high strength of interfacial bonding.

  4. Clay/Polyaniline Hybrid through Diazonium Chemistry: Conductive Nanofiller with Unusual Effects on Interfacial Properties of Epoxy Nanocomposites.

    PubMed

    Jlassi, Khouloud; Chandran, Sarath; Poothanari, Mohammed A; Benna-Zayani, Mémia; Thomas, Sabu; Chehimi, Mohamed M

    2016-04-12

    The concept of conductive network structure in thermoset matrix without sacrificing the inherent mechanical properties of thermoset polymer (e.g., epoxy) is investigated here using "hairy" bentonite fillers. The latter were prepared through the in situ polymerization of aniline in the presence of 4-diphenylamine diazonium (DPA)-modified bentonite (B-DPA) resulting in a highly exfoliated bentonite-DPA/polyaniline (B-DPA/PANI). The nanocomposite filler was mixed with diglycidyl ether of bisphenol A (DGEBA), and the curing agent (4,4'-diaminodiphenylsulfone) (DDS) at high temperature in order to obtain nanocomposites through the conventional melt mixing technique. The role of B-DPA in the modification of the interface between epoxy and B-DPA/polyaniline (B-DPA/PANI) is investigated and compared with the filler B/PANI prepared without any diazonium modification of the bentonite. Synergistic improvement in dielectric properties and mechanical properties points to the fact that the DPA aryl groups from the diazonium precursor significantly modify the interface by acting as an efficient stress transfer medium. In DPA-containing nanocomposites, unique fibril formation was observed on the fracture surface. Moreover, dramatic improvement (210-220%) in fracture toughness of epoxy composite was obtained with B-DPA/PANI filler as compared to the weak improvement of 20-30% noted in the case of the B/PANI filler. This work shows that the DPA diazonium salt has an important effect on the improvement of the interfacial properties and adhesion of DGEBA and clay/PANI nanofillers.

  5. Comparison of hydrolytic and non-hydrolytic atomic layer deposition chemistries: Interfacial electronic properties at alumina-silicon interfaces

    SciTech Connect

    Marstell, Roderick J.; Strandwitz, Nicholas C.

    2015-11-14

    We report the differences in the passivation and electronic properties of aluminum oxide (Al{sub 2}O{sub 3}) deposited on silicon via traditional hydrolytic atomic layer deposition (ALD) and non-hydrolytic (NH) ALD chemistries. Traditional films were grown using trimethylaluminum (TMA) and water and NHALD films grown using TMA and isopropanol at 300 °C. Hydrolytically grown ALD films contain a smaller amount of fixed charge than NHALD films (oxide fixed charge Q{sub f} {sub Traditional} = −8.1 × 10{sup 11 }cm{sup −2} and Q{sub f} {sub NHALD} = −3.6 × 10{sup 12 }cm{sup −2}), and a larger degree of chemical passivation than NHALD films (density of interface trap states, D{sub it} {sub Traditional} = 5.4 × 10{sup 11 }eV{sup −1 }cm{sup −2} and D{sub it} {sub NHALD} = 2.9 × 10{sup 12 }eV{sup −1 }cm{sup −2}). Oxides grown with both chemistries were found to have a band gap of 7.1 eV. The conduction band offset was 3.21 eV for traditionally grown films and 3.38 eV for NHALD. The increased D{sub it} for NHALD films may stem from carbon impurities in the oxide layer that are at and near the silicon surface, as evidenced by both the larger trap state time constant (τ{sub Traditional} = 2.2 × 10{sup −9} s and τ{sub NHALD} = 1.7 × 10{sup −7} s) and the larger carbon concentration. We have shown that the use of alcohol-based oxygen sources in NHALD chemistry can significantly affect the resulting interfacial electronic behavior presenting an additional parameter for understanding and controlling interfacial electronic properties at semiconductor-dielectric interfaces.

  6. Charge Recombination, Transport Dynamics, and Interfacial Effects in Organic Solar Cells

    SciTech Connect

    Heeger, Alan; Bazan, Guillermo; Nguyen, Thuc-Quyen; Wudl, Fred

    2015-02-27

    The need for renewable sources of energy is well known. Conversion of sunlight to electricity using solar cells is one of the most important opportunities for creating renewable energy sources. The research carried out under DE-FG02-08ER46535 focused on the science and technology of “Plastic” solar cells comprised of organic (i.e. carbon based) semiconductors. The Bulk Heterojunction concept involves a phase separated blend of two organic semiconductors each with dimensions in the nano-meter length scale --- one a material that functions as a donor for electrons and the other a material that functions as an acceptor for electrons. The nano-scale inter-penetrating network concept for “Plastic” solar cells was created at UC Santa Barbara. A simple measure of the impact of this concept can be obtained from a Google search which gives 244,000 “hits” for the Bulk Heterojunction solar cell. Research funded through this program focused on four major areas: 1. Interfacial effects in organic photovoltaics, 2. Charge transfer and photogeneration of mobile charge carriers in organic photovoltaics, 3. Transport and recombination of the photogenerated charge carriers in organic photovoltaics, 4. Synthesis of novel organic semiconducting polymers and semiconducting small molecules, including conjugated polyelectrolytes. Following the discovery of ultrafast charge transfer at UC Santa Barbara in 1992, the nano-organic (Bulk Heterojunction) concept was formulated. The need for a morphology comprising two interpenetrating bicontinuous networks was clear: one network to carry the photogenerated electrons (negative charge) to the cathode and one network to carry the photo-generated holes (positive charge) to the anode. This remarkable self-assembled network morphology has now been established using Transmission electron Microscopy (TEM) either in the Phase Contrast mode or via TEM-Tomography. The steps involved in delivering power from a solar cell to an external circuit

  7. Molecular dynamics study of interfacial confinement effects of aqueous NaCl brines in nanoporous carbon

    SciTech Connect

    Wander, M. C. F.; Shuford, K. L.

    2010-12-09

    In this paper, studies of aqueous electrolyte solutions in contact with a family of porous carbon geometries using classical molecular dynamics simulations are presented. These simulations provide an atomic scale depiction of ion transport dynamics in different environments to elucidate power of aqueous electrolyte supercapacitors. The electrolyte contains alkali metal and halide ions, which allow for the examination of size trends within specific geometries as well as trends in concentration. The electrode pores are modeled as planar graphite sheets and carbon nanotubes with interstices ranging from one to four nanometers. Ordered layers form parallel to the carbon surface, which facilitates focused ion motion under slightly confining conditions. As a result, the ion’s diffusivities are enhanced in the direction of the slit or pore. Further confining the system leads to decreased ion diffusivities. The ions are fully hydrated in all but the smallest slits and pores with those sizes showing increased ion pairing. There is strong evidence of charge separation perpendicular to the surface at all size scales, concentrations, and ion types, providing a useful baseline for examining differential capacitance behavior and future studies on energy storage. These systems show promise as high-power electrical energy storage devices.

  8. Development of DPD coarse-grained models: From bulk to interfacial properties.

    PubMed

    Solano Canchaya, José G; Dequidt, Alain; Goujon, Florent; Malfreyt, Patrice

    2016-08-01

    A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve. PMID:27497539

  9. Development of DPD coarse-grained models: From bulk to interfacial properties

    NASA Astrophysics Data System (ADS)

    Solano Canchaya, José G.; Dequidt, Alain; Goujon, Florent; Malfreyt, Patrice

    2016-08-01

    A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG and atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.

  10. Crossing Interfacial Frontiers: Surface Chemical Dynamics at the Temporal and Spatial Limit (435th Brookhaven Lecture)

    SciTech Connect

    Camillone III, Nicholas

    2008-04-16

    Surface chemical reactions are ubiquitous in nature and industry: they have been used successfully to remove environmental pollutants, fabricate microelectronics, and produce vital chemicals such as fertilizer, fuel and food. But understanding the chemical dynamics of these reactions is limited, and the ability to study real-time surface chemistry is just being developed. The lecturer will discuss recent results of studies of the oxidation of carbon monoxide on the surface of palladium, which have resulted in new insights into molecule-molecule and molecule-surface interactions. In addition, he will describe a new project at the Center for Functional Nanomaterials that combines ultra-fast laser excitation with a new, state-of-the-art scanning tunneling microscope to probe electronic excitation and photo-induced chemistry at surfaces. It will have a resolution in both space and time that will allow the speaker and his colleagues to watch fast chemical processes at a molecule's eye-view.

  11. Coupled dynamics of interfacial waves and bed forms in fluid muds over erodible seabeds in oscillatory flows

    NASA Astrophysics Data System (ADS)

    Trowbridge, J. H.; Traykovski, P.

    2015-08-01

    Recent field investigations of the damping of ocean surface waves over fluid muds have revealed waves on the interface between the thin layer of fluid mud and the overlying much thicker column of clear water, accompanied by bed forms on the erodible seabed beneath the fluid mud. The frequencies and wavelengths of the observed interfacial waves are qualitatively consistent with the linear dispersion relationship for long interfacial waves, but the forcing mechanism is not known. To understand the forcing, a linear model is proposed, based on the layer-averaged hydrostatic equations for the fluid mud, together with the Meyer-Peter-Mueller equation for the sediment transport within the underlying seabed, both subject to oscillatory forcing by the surface waves. If the underlying seabed is nonerodible and flat, the model indicates parametric instability to interfacial waves, but the threshold for instability is not met by the observations. If the underlying seabed is erodible, the model indicates that perturbations to the seabed elevation in the presence of the oscillatory forcing create interfacial waves, which in turn produce stresses within the fluid mud that force a net transport of sediment within the seabed toward the bed form crests, thus causing growth of both bed forms and interfacial waves. The frequencies, wavelengths, and growth rates are in qualitative agreement with the observations. A competition between mixing created by the interfacial waves and gravitational settling might control the thickness, density, and viscosity of the fluid muds during periods of strong forcing.

  12. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations

    PubMed Central

    Zhong, Hongxia; Quhe, Ruge; Wang, Yangyang; Ni, Zeyuan; Ye, Meng; Song, Zhigang; Pan, Yuanyuan; Yang, Jinbo; Yang, Li; Lei, Ming; Shi, Junjie; Lu, Jing

    2016-01-01

    Although many prototype devices based on two-dimensional (2D) MoS2 have been fabricated and wafer scale growth of 2D MoS2 has been realized, the fundamental nature of 2D MoS2-metal contacts has not been well understood yet. We provide a comprehensive ab initio study of the interfacial properties of a series of monolayer (ML) and bilayer (BL) MoS2-metal contacts (metal = Sc, Ti, Ag, Pt, Ni, and Au). A comparison between the calculated and observed Schottky barrier heights (SBHs) suggests that many-electron effects are strongly suppressed in channel 2D MoS2 due to a charge transfer. The extensively adopted energy band calculation scheme fails to reproduce the observed SBHs in 2D MoS2-Sc interface. By contrast, an ab initio quantum transport device simulation better reproduces the observed SBH in 2D MoS2-Sc interface and highlights the importance of a higher level theoretical approach beyond the energy band calculation in the interface study. BL MoS2-metal contacts generally have a reduced SBH than ML MoS2-metal contacts due to the interlayer coupling and thus have a higher electron injection efficiency. PMID:26928583

  13. Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions

    NASA Astrophysics Data System (ADS)

    Spohr, E.

    1997-10-01

    The consequences of the choice of electrostatic boundary conditions on the interfacial properties of water and on the free energy of ion adsorption from aqueous solution have been investigated. The Ewald summation method for lattices, which are periodic in two dimensions, is considered to be the most adequate method in slabs of finite thickness in one dimension. In agreement with the physics of the problem a field-free region in the bulk phases is observed. The use of spherical truncation methods like the shifted-force method leads to unphysical results. The electrostatic potential depends on the size of the system. Ewald summation methods for three-dimensional lattices lead to results in qualitative agreement with the corresponding two-dimensional lattice sum. The computed value of the electrostatic potential depends on an additional parameter, namely the lattice constant c in the direction perpendicular to the interface. The results for Ewald summation in three dimensions converge to the results for Ewald summation in two dimensions for large c, the shifted-force results converge to the same limit, when the surface area of the simulation cell becomes very large and the cut-off distance increases accordingly.

  14. Mesoscopic properties of interfacial ordering in amorphous germanium on Si(111) determined by quantitative digital image series matching.

    PubMed

    Thiel, K; Borgardt, N I; Plikat, B; Seibt, M

    2013-03-01

    For the quantitative characterization of atomic ordering in the transition region between crystalline and amorphous materials we have previously described a method based on averaging HREM images along the interface, simulation of averaged images with the use of the averaged projected potential approximation and determination of the atom arrangement by means of an iterative matching procedure for high-resolution focus series. In order to study mesoscopic properties of crystal induced ordering a fully quantitative procedure is developed in this work. For this purpose, the width of the averaging region is defined as a compromise providing necessary accuracy of calculations and desirable locality of characterization of the atom distribution. Fluctuations of the obtained atom distribution on the amorphous side of the interface are estimated by means a of special Monte-Carlo simulation technique. As a result, distribution functions obtained from different regions can be quantitatively compared and statistically significant differences can be identified and related to the atomic structure. The method is applied to investigate the near interfacial atom order at the interface between atomically flat crystalline Si(111) and amorphous Ge. It is shown that significant variations in the atomic density distribution occur on a 5-10nm scale for germanium atoms in the second and third atomic layer lying parallel to the interface.

  15. The Changes in Electrical and Interfacial Properties of Polyimide Exposed to Dielectric Barrier Discharge in SF6 Medium

    PubMed Central

    Alisoy, Hafiz Z.; Koseoglu, Murat

    2013-01-01

    The formation mechanism of space charges in polyimide (PI) which was exposed to dielectric barrier discharge (DBD) in SF6 medium and the effects of the space charges on interfacial and electrical properties of PI were investigated. The variation of normalized surface charge density on PI sample was calculated and illustrated for different DBD exposure times. The surface potential was measured to determine the effect of the space charges on the sample. Then, the contact angle values were measured to obtain the relation between the surface energy and the surface charge density. The expressions for the total charge and the concentration of trapped electrons were derived by using Poisson and continuity equations at stationary state. The space charges were determined experimentally by using thermally stimulated depolarization current (TSDC) method. Also, SEM image and FTIR spectrum of virgin and treated samples were presented to observe the structural variations. It was seen that the approach for the formation mechanism of the space charges agreed with the experimental data. However, it was concluded particularly for the short-time DBD treatments that the space charges accumulated in the sample should be considered besides the effects of surface functionalization in the determination of the surface energy. PMID:23844414

  16. Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions.

    PubMed

    Kolanthai, Elayaraja; Bose, Suryasarathi; Bhagyashree, K S; Bhat, S V; Asokan, K; Kanjilal, D; Chatterjee, Kaushik

    2015-09-21

    A unique strategy for scavenging free radicals in situ on exposure to gamma irradiation in polyethylene (PE) nanocomposites is presented. Blends of ultra-high molecular weight PE and linear low-density PE (PEB) and their nanocomposites with graphene (GPEB) were prepared by melt mixing to develop materials for biomedical implants. The effect of gamma irradiation on the microstructure and mechanical properties was systematically investigated. The neat blend and the nanocomposite were subjected to gamma-ray irradiation in order to improve the interfacial adhesion between PE and graphene sheets. Structural and thermal characterization revealed that irradiation induced crosslinking and increased the crystallinity of the polymer blend. The presence of graphene further enhanced the crystallinity via crosslinks between the polymer matrix and the filler on irradiation. Graphene was found to scavenge free radicals as confirmed by electron paramagnetic resonance spectroscopy. Irradiation of graphene-containing polymer composites resulted in the largest increase in modulus and hardness compared to either irradiation or addition of graphene to PEB alone. This study provides new insight into the role of graphene in polymer matrices during irradiation and suggests that irradiated graphene-polymer composites could emerge as promising materials for use as articulating surfaces in biomedical implants. PMID:26266702

  17. Interfacial, electrical, and spin-injection properties of epitaxial Co2MnGa grown on GaAs(100)

    NASA Astrophysics Data System (ADS)

    Damsgaard, C. D.; Hickey, M. C.; Holmes, S. N.; Feidenhans'l, R.; Mariager, S. O.; Jacobsen, C. S.; Hansen, J. B.

    2009-06-01

    The interfacial, electrical, and magnetic properties of the Heusler alloy Co2MnGa grown epitaxially on GaAs(100) are presented with an emphasis on the use of this metal-semiconductor combination for a device that operates on the principles of spin-injection between the two materials. Through systematic growth optimization the stoichiometry in the bulk Co2MnGa can be controlled to better than ±2%, although the interface is disordered and limits the spin-injection efficiency in a practical spintronic device irrespective of the half-metallic nature of the bulk metal. Molecular beam epitaxial growth was monitored in situ by reflection high energy electron diffraction and the bulk composition was measured ex situ with inductively coupled plasma optical emission spectroscopy. The Co2MnGa L21 cubic structure is strained below a thickness of 20 nm on GaAs(100) but relaxed in films thicker than 20 nm. Electrical measurements on the Co2MnGa reveal general characteristics of a disordered electron system with insulating behavior for layer thicknesses <4 nm. Thicker layers show a negative magnetoresistance with extraordinary Hall effect constants up to 30 Ω T-1. Spin polarization transfer across the interface between Co2MnGa and GaAs is approximately 6.4% at 5 K in the current of a GaAs p-i-n diode even with compositional disorder at the interface.

  18. Effect of polycarboxylate ether comb-type polymer on viscosity and interfacial properties of kaolinite clay suspensions.

    PubMed

    Zhang, Ling; Lu, Qingye; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2012-07-15

    The interactions between kaolinite clay particles and a comb-type polymer (polycarboxylate ether or PCE), so-called PCE super-plasticizer, were investigated through viscosity and surface forces measurements by a rheometer and a Surface Forces Apparatus (SFA). The addition of PCE shows a strong impact on the viscosity of concentrated kaolinite suspensions in alkaline solutions (pH=8.3) but a weak effect under acidic conditions (pH=3.4). In acidic solutions, the high viscosity measured is attributed to the strong electrostatic interaction between negatively charged basal planes and positively charged edge surfaces of clay particles. Under the alkaline condition, the suspension viscosity was found to first increase significantly and then decrease with increasing PCE dosages. The results from surface forces measurement show that PCE molecules at low dosages can bridge the kaolinite particles in the concentrated suspensions via hydrogen bonding, leading to the formation of a kaolinite-PCE "network" and hence an increased suspension viscosity. At high PCE dosages, clay particles are fully covered by PCE molecules, leading to a more dispersed kaolinite suspensions and hence lower suspension viscosity due to steric repulsion between the adsorbed PCE molecules. The insights derived from measuring viscosity and interfacial properties of kaolinite suspensions containing varying amount of comb-type super-plasticizer PCE at different pH provide the foundation for many engineering applications and optimizing industrial processes. PMID:22591681

  19. Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions.

    PubMed

    Kolanthai, Elayaraja; Bose, Suryasarathi; Bhagyashree, K S; Bhat, S V; Asokan, K; Kanjilal, D; Chatterjee, Kaushik

    2015-09-21

    A unique strategy for scavenging free radicals in situ on exposure to gamma irradiation in polyethylene (PE) nanocomposites is presented. Blends of ultra-high molecular weight PE and linear low-density PE (PEB) and their nanocomposites with graphene (GPEB) were prepared by melt mixing to develop materials for biomedical implants. The effect of gamma irradiation on the microstructure and mechanical properties was systematically investigated. The neat blend and the nanocomposite were subjected to gamma-ray irradiation in order to improve the interfacial adhesion between PE and graphene sheets. Structural and thermal characterization revealed that irradiation induced crosslinking and increased the crystallinity of the polymer blend. The presence of graphene further enhanced the crystallinity via crosslinks between the polymer matrix and the filler on irradiation. Graphene was found to scavenge free radicals as confirmed by electron paramagnetic resonance spectroscopy. Irradiation of graphene-containing polymer composites resulted in the largest increase in modulus and hardness compared to either irradiation or addition of graphene to PEB alone. This study provides new insight into the role of graphene in polymer matrices during irradiation and suggests that irradiated graphene-polymer composites could emerge as promising materials for use as articulating surfaces in biomedical implants.

  20. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations

    NASA Astrophysics Data System (ADS)

    Zhong, Hongxia; Quhe, Ruge; Wang, Yangyang; Ni, Zeyuan; Ye, Meng; Song, Zhigang; Pan, Yuanyuan; Yang, Jinbo; Yang, Li; Lei, Ming; Shi, Junjie; Lu, Jing

    2016-03-01

    Although many prototype devices based on two-dimensional (2D) MoS2 have been fabricated and wafer scale growth of 2D MoS2 has been realized, the fundamental nature of 2D MoS2-metal contacts has not been well understood yet. We provide a comprehensive ab initio study of the interfacial properties of a series of monolayer (ML) and bilayer (BL) MoS2-metal contacts (metal = Sc, Ti, Ag, Pt, Ni, and Au). A comparison between the calculated and observed Schottky barrier heights (SBHs) suggests that many-electron effects are strongly suppressed in channel 2D MoS2 due to a charge transfer. The extensively adopted energy band calculation scheme fails to reproduce the observed SBHs in 2D MoS2-Sc interface. By contrast, an ab initio quantum transport device simulation better reproduces the observed SBH in 2D MoS2-Sc interface and highlights the importance of a higher level theoretical approach beyond the energy band calculation in the interface study. BL MoS2-metal contacts generally have a reduced SBH than ML MoS2-metal contacts due to the interlayer coupling and thus have a higher electron injection efficiency.

  1. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations.

    PubMed

    Zhong, Hongxia; Quhe, Ruge; Wang, Yangyang; Ni, Zeyuan; Ye, Meng; Song, Zhigang; Pan, Yuanyuan; Yang, Jinbo; Yang, Li; Lei, Ming; Shi, Junjie; Lu, Jing

    2016-03-01

    Although many prototype devices based on two-dimensional (2D) MoS2 have been fabricated and wafer scale growth of 2D MoS2 has been realized, the fundamental nature of 2D MoS2-metal contacts has not been well understood yet. We provide a comprehensive ab initio study of the interfacial properties of a series of monolayer (ML) and bilayer (BL) MoS2-metal contacts (metal = Sc, Ti, Ag, Pt, Ni, and Au). A comparison between the calculated and observed Schottky barrier heights (SBHs) suggests that many-electron effects are strongly suppressed in channel 2D MoS2 due to a charge transfer. The extensively adopted energy band calculation scheme fails to reproduce the observed SBHs in 2D MoS2-Sc interface. By contrast, an ab initio quantum transport device simulation better reproduces the observed SBH in 2D MoS2-Sc interface and highlights the importance of a higher level theoretical approach beyond the energy band calculation in the interface study. BL MoS2-metal contacts generally have a reduced SBH than ML MoS2-metal contacts due to the interlayer coupling and thus have a higher electron injection efficiency.

  2. Mixing antiferromagnets to tune NiFe-[IrMn/FeMn] interfacial spin-glasses, grains thermal stability, and related exchange bias properties

    NASA Astrophysics Data System (ADS)

    Akmaldinov, K.; Ducruet, C.; Portemont, C.; Joumard, I.; Prejbeanu, I. L.; Dieny, B.; Baltz, V.

    2014-05-01

    Spintronics devices and in particular thermally assisted magnetic random access memories require a wide range of ferromagnetic/antiferromagnetic (F/AF) exchange bias (EB) properties and subsequently of AF materials to fulfil diverse functionality requirements for the reference and storage. For the reference layer, large EB energies and high blocking temperature (TB) are required. In contrast, for the storage layer, mostly moderate TB are needed. One of the present issues is to find a storage layer with properties intermediate between those of IrMn and FeMn and in particular: (i) with a TB larger than FeMn for better stability at rest-T but lower than IrMn to reduce power consumption at write-T and (ii) with improved magnetic interfacial quality, i.e., with reduced interfacial glassy character for lower properties dispersions. To address this issue, the EB properties of F/AF based stacks were studied for various mixed [IrMn/FeMn] AFs. In addition to EB loop shifts, the F/AF magnetic interfacial qualities and the AF grains thermal stability are probed via measurements of the low- and high-temperature contributions to the TB distributions, respectively. A tuning of the above three parameters is observed when evolving from IrMn to FeMn via [IrMn/FeMn] repetitions.

  3. Mixing antiferromagnets to tune NiFe-[IrMn/FeMn] interfacial spin-glasses, grains thermal stability, and related exchange bias properties

    SciTech Connect

    Akmaldinov, K.; Ducruet, C.; Portemont, C.; Joumard, I.; Prejbeanu, I. L.; Dieny, B.; Baltz, V.

    2014-05-07

    Spintronics devices and in particular thermally assisted magnetic random access memories require a wide range of ferromagnetic/antiferromagnetic (F/AF) exchange bias (EB) properties and subsequently of AF materials to fulfil diverse functionality requirements for the reference and storage. For the reference layer, large EB energies and high blocking temperature (T{sub B}) are required. In contrast, for the storage layer, mostly moderate T{sub B} are needed. One of the present issues is to find a storage layer with properties intermediate between those of IrMn and FeMn and in particular: (i) with a T{sub B} larger than FeMn for better stability at rest-T but lower than IrMn to reduce power consumption at write-T and (ii) with improved magnetic interfacial quality, i.e., with reduced interfacial glassy character for lower properties dispersions. To address this issue, the EB properties of F/AF based stacks were studied for various mixed [IrMn/FeMn] AFs. In addition to EB loop shifts, the F/AF magnetic interfacial qualities and the AF grains thermal stability are probed via measurements of the low- and high-temperature contributions to the T{sub B} distributions, respectively. A tuning of the above three parameters is observed when evolving from IrMn to FeMn via [IrMn/FeMn] repetitions.

  4. New insights into the Mo/Cu(In,Ga)Se2 interface in thin film solar cells: Formation and properties of the MoSe2 interfacial layer

    NASA Astrophysics Data System (ADS)

    Klinkert, T.; Theys, B.; Patriarche, G.; Jubault, M.; Donsanti, F.; Guillemoles, J.-F.; Lincot, D.

    2016-10-01

    Being at the origin of an ohmic contact, the MoSe2 interfacial layer at the Mo/Cu(In,Ga)Se2 interface in CIGS (Cu(In,Ga)Se2 and related compounds) based solar cells has allowed for very high light-to-electricity conversion efficiencies up to 22.3%. This article gives new insights into the formation and the structural properties of this interfacial layer. Different selenization-steps of a Mo covered glass substrate prior to the CIGS deposition by co-evaporation led to MoSe2 interfacial layers with varying thickness and orientation, as observed by x-ray diffraction and atomic resolution transmission electron microscopy. A novel model based on the anisotropy of the Se diffusion coefficient in MoSe2 is proposed to explain the results. While the series resistance of finished CIGS solar cells is found to correlate with the MoSe2 orientation, the adhesion forces between the CIGS absorber layer and the Mo substrate stay constant. Their counter-intuitive non-correlation with the configuration of the MoSe2 interfacial layer is discussed and related to work from the literature.

  5. Multiscale modeling of interfacial physics in particle-solidification front dynamics

    NASA Astrophysics Data System (ADS)

    Garvin, Justin Wayne

    Depending on thermosolutal conditions, the interaction of solidification fronts with embedded particles can result in pushing or engulfment of the particles by the front. Such interactions are important in several applications, including metal matrix composite manufacture, frost heaving, and cryobiology. The development of the solidified microstructure in such systems depends on interactions between non-planar solidification fronts and multiple particles. The interaction between an advancing solidification front and a micron-size particle is an inherently multiscale heat and mass transport problem. Transport at the micro-scale (i.e. the scale of the particle dimension) couples with intermolecular interactions and lubrication forces in a thin layer of melt between the particle and the front to determine the overall dynamics of the interaction. A multiscale model is developed to simulate such front-particle interactions. Lubrication equations are employed to quantify the fluid flow (pressure field) and thermal transport (temperature field) in the thin gap region ("inner region") between the particle and front. The lubrication equations include disjoining pressure effects due to intermolecular forces that are important at the nano-meter length scale. The solution to the lubrication equations in the melt layer ("inner region") is coupled to the solution of the Navier-Stokes equations for the overall particle-front system ("outer region''). Techniques are developed for coupling the dynamics at the two disparate scales ("inner" and "outer") at a common "matching region". All interfaces are represented and tracked using the level-set approach. A sharp-interface technique is employed for solution of the governing equations in the resulting moving boundary problem. Validation of the coupling strategy and results for the particle-front interaction phenomenon with the multiscale approach are presented. Results show that particle pushing can only occur when the thermal

  6. Single Molecule Spectroelectrochemistry of Interfacial Charge Transfer Dynamics In Hybrid Organic Solar Cell

    SciTech Connect

    Pan, Shanlin

    2014-11-16

    Our research under support of this DOE grant is focused on applied and fundamental aspects of model organic solar cell systems. Major accomplishments are: 1) we developed a spectroelectorchemistry technique of single molecule single nanoparticle method to study charge transfer between conjugated polymers and semiconductor at the single molecule level. The fluorescence of individual fluorescent polymers at semiconductor surfaces was shown to exhibit blinking behavior compared to molecules on glass substrates. Single molecule fluorescence excitation anisotropy measurements showed the conformation of the polymer molecules did not differ appreciably between glass and semiconductor substrates. The similarities in molecular conformation suggest that the observed differences in blinking activity are due to charge transfer between fluorescent polymer and semiconductor, which provides additional pathways between states of high and low fluorescence quantum efficiency. Similar spectroelectrochemistry work has been done for small organic dyes for understand their charge transfer dynamics on various substrates and electrochemical environments; 2) We developed a method of transferring semiconductor nanoparticles (NPs) and graphene oxide (GO) nanosheets into organic solvent for a potential electron acceptor in bulk heterojunction organic solar cells which employed polymer semiconductor as the electron donor. Electron transfer from the polymer semiconductor to semiconductor and GO in solutions and thin films was established through fluorescence spectroscopy and electroluminescence measurements. Solar cells containing these materials were constructed and evaluated using transient absorption spectroscopy and dynamic fluorescence techniques to understand the charge carrier generation and recombination events; 3) We invented a spectroelectorchemistry technique using light scattering and electroluminescence for rapid size determination and studying electrochemistry of single NPs in an

  7. Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO3.

    PubMed

    Gao, Ran; Dong, Yongqi; Xu, Han; Zhou, Hua; Yuan, Yakun; Gopalan, Venkatraman; Gao, Chen; Fong, Dillon D; Chen, Zuhuang; Luo, Zhenlin; Martin, Lane W

    2016-06-15

    Epitaxial strain can be used to tune the properties of complex oxides with perovskite structure. Beyond just lattice mismatch, the use of octahedral rotation mismatch at heterointerfaces could also provide an effective route to manipulate material properties. Here, we examine the evolution of the structural motif (i.e., lattice parameters, symmetry, and octahedral rotations) of SrRuO3 films grown on substrates engineered to have the same lattice parameters, but different octahedral rotations. SrRuO3 films grown on SrTiO3 (001) (no octahedral rotations) and GdScO3-buffered SrTiO3 (001) (with octahedral rotations) substrates are found to exhibit monoclinic and tetragonal symmetry, respectively. Electrical transport and magnetic measurements reveal that the tetragonal films exhibit higher resistivity, lower magnetic Curie temperatures, and more isotropic magnetism as compared to those with monoclinic structure. Synchrotron-based quantification of the octahedral rotation network reveals that the tilting pattern in both film variants is the same (albeit with slightly different magnitudes of in-plane rotation angles). The abnormal rotation pattern observed in tetragonal SrRuO3 indicates a possible decoupling between the internal octahedral rotation and lattice symmetry, which could provide new opportunities to engineer thin-film structure and properties.

  8. Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties

    SciTech Connect

    Baggetto, Loic; Charvillat, Cedric; Thebault, Yannick; Esvan, Jerome; Lafont, Marie-Christine; Scheid, Emmanuel; Veith, Gabriel M.; Vahlas, Constantin

    2015-12-02

    Ti/Al2O3 bilayer stacks are used as model systems to investigate the role of atomic layer deposition (ALD) and chemical vapor deposition (CVD) to prepare 30-180 nm thick amorphous alumina films as protective barriers for the medium temperature oxidation (500-600⁰C) of titanium, which is employed in aeronautic applications. X-ray diffraction (XRD), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) results show that the films produced from the direct liquid injection (DLI) CVD of aluminum tri-isopropoxide (ATI) are poor oxygen barriers. The films processed using the ALD of trimethylaluminum (TMA) show good barrier properties but an extensive intermixing with Ti which subsequently oxidizes. In contrast, the films prepared from dimethyl aluminum isopropoxide (DMAI) by CVD are excellent oxygen barriers and show little intermixing with Ti. Overall, these measurements correlate the effect of the alumina coating thickness, morphology, and stoichiometry resulting from the preparation method to the oxidation barrier properties, and show that compact and stoichiometric amorphous alumina films offer superior barrier properties.

  9. Amorphous alumina thin films deposited on titanium: Interfacial chemistry and thermal oxidation barrier properties

    DOE PAGESBeta

    Baggetto, Loic; Charvillat, Cedric; Thebault, Yannick; Esvan, Jerome; Lafont, Marie-Christine; Scheid, Emmanuel; Veith, Gabriel M.; Vahlas, Constantin

    2015-12-02

    Ti/Al2O3 bilayer stacks are used as model systems to investigate the role of atomic layer deposition (ALD) and chemical vapor deposition (CVD) to prepare 30-180 nm thick amorphous alumina films as protective barriers for the medium temperature oxidation (500-600⁰C) of titanium, which is employed in aeronautic applications. X-ray diffraction (XRD), transmission electron microscopy (TEM) with selected area electron diffraction (SAED), and X-ray photoelectron spectroscopy (XPS) results show that the films produced from the direct liquid injection (DLI) CVD of aluminum tri-isopropoxide (ATI) are poor oxygen barriers. The films processed using the ALD of trimethylaluminum (TMA) show good barrier properties butmore » an extensive intermixing with Ti which subsequently oxidizes. In contrast, the films prepared from dimethyl aluminum isopropoxide (DMAI) by CVD are excellent oxygen barriers and show little intermixing with Ti. Overall, these measurements correlate the effect of the alumina coating thickness, morphology, and stoichiometry resulting from the preparation method to the oxidation barrier properties, and show that compact and stoichiometric amorphous alumina films offer superior barrier properties.« less

  10. Aqua Ions-Graphene Interfacial and Confinement Behavior: Insights from isobaric-isothermal molecular dynamics

    SciTech Connect

    Chialvo, Ariel A; Cummings, Peter T

    2011-01-01

    We carry out a systematic micro-structural characterization of the solidfluid interface (SFI) of water and simple metal chloride aqueous solutions in contact with a free standing plate or with two such plates separated by an inter-plate distance 0 ! h( ) ! 30 at ambient conditions via isothermalisobaric molecular dynamics. With this characterization we target the interrogation of the system in search for answers to fundamental questions regarding the structure of the external and internal (confined) SFI s, the effect of the differential hydration behavior among species and its link to species expulsion from confinement. For water at ambient conditions we found that the structure of the external SFI s is independent of the interplate distance h in the range 0 ! h( ) ! 30 , i.e., the absence of wallmediated correlation effects between external and internal SFI s, and that for h < 9 the slit-pores de-wet. Moreover, we observed a selective expulsion of ions caused by the differential hydration between the anion and the cations with a consequent charging of the slit-pore. All these observations were interpreted in terms of the axial profiles for precisely defined order parameters including tetrahedral configuration, hydrogen bonding, and species coordination numbers.

  11. Glassy Interfacial Dynamics of Ni Nanoparticles: Part II Discrete Breathers as an Explanation of Two-Level Energy Fluctuations

    PubMed Central

    Zhang, Hao; Douglas, Jack F.

    2012-01-01

    Recent studies of the dynamics of diverse condensed amorphous materials have indicated significant heterogeneity in the local mobility and a progressive increase in collective particle motion upon cooling that takes the form of string-like particle rearrangements. In a previous paper (Part I), we examined the possibility that fluctuations in potential energy E and particle mobility μ associated with this ‘dynamic heterogeneity’ might offer information about the scale of collective motion in glassy materials based on molecular dynamics simulations of the glassy interfacial region of Ni nanoparticles (NPs) at elevated temperatures. We found that the noise exponent associated with fluctuations in the Debye-Waller factor, a mobility related quantity, was directly proportional to the scale of collective motion L under a broad range of conditions, but the noise exponent associated with E(t) fluctuations was seemingly unrelated to L. In the present work, we focus on this unanticipated difference between potential energy and mobility fluctuations by examining these quantities at an atomic scale. We find that the string atoms exhibit a jump-like motion between two well-separated bands of energy states and the rate at which these jumps occur seems to be consistent with the phenomenology of the ‘slow-beta’ relaxation process of glass-forming liquids. Concurrently with these local E(t) jumps, we also find ‘quake-like’ particle displacements having a power-law distribution in magnitude so that particle displacement fluctuations within the strings are strikingly different from local E(t) fluctuations. An analysis of these E(t) fluctuations suggests that we are dealing with ‘discrete breather’ excitations in which large energy fluctuations develop in arrays of non-linear oscillators by virtue of large anharmonicity in the interparticle interactions and discreteness effects associated with particle packing. We quantify string collective motions on a fast caging

  12. Angular intensity of nonequilibrium interfacial dynamic light scattering: Succinonitrile and naphthalene

    NASA Astrophysics Data System (ADS)

    Williams, L. M.; Cummins, H. Z.; Ladeira, L. O.; Mesquita, O. N.

    1992-03-01

    We have investigated the phenomenon of intense dynamic light scattering at the nonequilibrium crystal-melt interface in succinonitrile and naphthalene, in order to resolve the ongoing controversy over its origin. Of the several models that have been proposed to explain this phenomenon, the microbubble model of H. Z. Cummins et al. [Solid State Commun. 60, 857 (1986)] and the mesophase model proposed by J. Bilgram and co-workers [P. Boni, J. H. Bilgram, and W. Kanzig, Phys. Rev. A 28, 2953 (1983)] are the only two still considered to be consistent with most of the experimental observations. In these experiments the angular dependence of the scattered light was investigated. In the mesophase model the angular dependence of the scattered light is described by the Ornstein-Zernike form I(q)=I0(1+q2ξ2)-1, whereas light scattered by bubbles can be modeled by the Mie scattering theory. The data for both materials were found to be incompatible with the Ornstein-Zernike form, but could be reasonably well fit by the Mie theory. The behavior of the onset of scattering was also investigated, and it was found that the product R0t0v2g was a constant, where R0 is the onset radius, t0 the onset time, and vg the crystal growth velocity. This result is consistent with the analysis of Mesquita et al. [Phys. Rev. B 38, 1550 (1988)], in which the onset of the scattering was modeled by considering the rate of buildup of dissolved gas at the advancing crystal-melt interface. The time taken for the disappearance of the scattering after growth was terminated was also investigated. Lastly, the gases dissolved in our samples of succinonitrile were identified by mass spectroscopy and found to have a composition similar to air.

  13. Impact of interfacial magnetism on magnetocaloric properties of thin film heterostructures

    NASA Astrophysics Data System (ADS)

    Kirby, B. J.; Lau, J. W.; Williams, D. V.; Bauer, C. A.; Miller, Casey W.

    2011-03-01

    Polarized neutron reflectometry was used to determine the depth profile of the magnetic moment per Gd atom, mGd, in a Gd(30 nm)/W(5 nm) multilayer. Despite sharp interfaces observed by transmission electron microscopy, mGd is systematically suppressed near the Gd-W interfaces. Because the peak magnetic entropy change is proportional to mGd2/3, this results in a reduction of the maximum achievable magnetocaloric effect in Gd-W heterostructures. By extension, our results suggest that creating materials with Gd-ferromagnet interfaces may increase the mGd relative to the bulk, leading to enhanced magnetocaloric properties.

  14. On the Interfacial Properties of Polymers/Functionalized Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Ansari, R.; Rouhi, S.; Ajori, S.

    2016-06-01

    Molecular dynamics (MD) simulations is used to study the adsorption of polyethylene (PE) and poly(ethylene oxide) (PEO) on the functionalized single-walled carbon nanotubes (SWCNTs). The effects of functionalization factor weight percent on the interaction energies of polymer chains with nanotubes are studied. Besides, the influences of different functionalization factors on the SWCNT/polymer interactions are investigated. It is shown that for both types of polymer chains, the largest interaction energies associates with the random O functionalized nanotubes. Besides, increasing temperature results in increasing the nanotube/polymer interaction energy. Considering the final shapes of adsorbed polymer chains on the SWCNTs, it is observed that the adsorbed conformations of PE chains are more contracted than those of PEO chains.

  15. Molecular assembly, interfacial rheology and foaming properties of oligofructose fatty acid esters.

    PubMed

    van Kempen, Silvia E H J; Schols, Henk A; van der Linden, Erik; Sagis, Leonard M C

    2014-01-01

    Two major types of food-grade surfactants used to stabilize foams are proteins and low molecular weight (LMW) surfactants. Proteins lower the surface tension of interfaces and tend to unfold and stabilize the interface by the formation of a visco-elastic network, which leads to high surface moduli. In contrast, LMW surfactants lower the surface tension more than proteins, but do not form interfaces with a high modulus. Instead, they stabilize the interface through the Gibbs-Marangoni mechanism that relies on rapid diffusion of surfactants, when surface tension gradients develop as a result of deformations of the interface. A molecule than can lower the surface tension considerably, like a LMW surfactant, but also provide the interface with a high modulus, like a protein, would be an excellent foam stabilizer. In this article we will discuss molecules with those properties: oligofructose fatty acid esters, both in pure and mixed systems. First, we will address the synthesis and structural characterization of the esters. Next, we will address self-assembly and rheological properties of air/water interfaces stabilized by the esters. Subsequently, this paper will deal with mixed systems of mono-esters with either di-esters and lauric acid, or proteins. Then, the foaming functionality of the esters is discussed.

  16. Antibiofilm properties of interfacially active lipase immobilized porous polycaprolactam prepared by LB technique.

    PubMed

    Prabhawathi, Veluchamy; Boobalan, Thulasinathan; Sivakumar, Ponnurengam Malliappan; Doble, Mukesh

    2014-01-01

    Porous biomaterial is the preferred implant due to the interconnectivity of the pores. Chances of infection due to biofilm are also high in these biomaterials because of the presence of pores. Although biofilm in implants contributes to 80% of human infections, there are no commercially available natural therapeutics against it. In the current study, glutaraldehyde cross linked lipase was transferred onto a activated porous polycaprolactam surface using Langmuir-Blodgett deposition technique, and its thermostability, slimicidal, antibacterial, biocompatibility and surface properties were studied. There was a 20% increase in the activity of the covalently crosslinked lipase when compared to its free form. This immobilized surface was thermostable and retained activity and stability until 100°C. There was a 2 and 7 times reduction in carbohydrate and 9 and 5 times reduction in biofilm protein of Staphylococcus aureus and Escherichia coli respectively on lipase immobilized polycaprolactam (LIP) when compared to uncoated polycaprolactam (UP). The number of live bacterial colonies on LIP was four times less than on UP. Lipase acted on the cell wall of the bacteria leading to its death, which was confirmed from AFM, fluorescence microscopic images and amount of lactate dehydrogenase released. LIP allowed proliferation of more than 90% of 3T3 cells indicating that it was biocompatible. The fact that LIP exhibits antimicrobial property at the air-water interface to hydrophobic as well as hydrophilic bacteria along with lack of cytotoxicity makes it an ideal biomaterial for biofilm prevention in implants. PMID:24798482

  17. Antibiofilm Properties of Interfacially Active Lipase Immobilized Porous Polycaprolactam Prepared by LB Technique

    PubMed Central

    Prabhawathi, Veluchamy; Boobalan, Thulasinathan; Sivakumar, Ponnurengam Malliappan; Doble, Mukesh

    2014-01-01

    Porous biomaterial is the preferred implant due to the interconnectivity of the pores. Chances of infection due to biofilm are also high in these biomaterials because of the presence of pores. Although biofilm in implants contributes to 80% of human infections [1], there are no commercially available natural therapeutics against it. In the current study, glutaraldehyde cross linked lipase was transferred onto a activated porous polycaprolactam surface using Langmuir-Blodgett deposition technique, and its thermostability, slimicidal, antibacterial, biocompatibility and surface properties were studied. There was a 20% increase in the activity of the covalently crosslinked lipase when compared to its free form. This immobilized surface was thermostable and retained activity and stability until 100°C. There was a 2 and 7 times reduction in carbohydrate and 9 and 5 times reduction in biofilm protein of Staphylococcus aureus and Escherichia coli respectively on lipase immobilized polycaprolactam (LIP) when compared to uncoated polycaprolactam (UP). The number of live bacterial colonies on LIP was four times less than on UP. Lipase acted on the cell wall of the bacteria leading to its death, which was confirmed from AFM, fluorescence microscopic images and amount of lactate dehydrogenase released. LIP allowed proliferation of more than 90% of 3T3 cells indicating that it was biocompatible. The fact that LIP exhibits antimicrobial property at the air-water interface to hydrophobic as well as hydrophilic bacteria along with lack of cytotoxicity makes it an ideal biomaterial for biofilm prevention in implants. PMID:24798482

  18. Ligand Layer Engineering To Control Stability and Interfacial Properties of Nanoparticles.

    PubMed

    Schulz, Florian; Dahl, Gregor T; Besztejan, Stephanie; Schroer, Martin A; Lehmkühler, Felix; Grübel, Gerhard; Vossmeyer, Tobias; Lange, Holger

    2016-08-01

    The use of mixed ligand layers including poly(ethylene glycol)-based ligands for the functionalization of nanoparticles is a very popular strategy in the context of nanomedicine. However, it is challenging to control the composition of the ligand layer and maintain high colloidal and chemical stability of the conjugates. A high level of control and stability are crucial for reproducibility, upscaling, and safe application. In this study, gold nanoparticles with well-defined mixed ligand layers of α-methoxypoly(ethylene glycol)-ω-(11-mercaptoundecanoate) (PEGMUA) and 11-mercaptoundecanoic acid (MUA) were synthesized and characterized by ATR-FTIR spectroscopy and gel electrophoresis. The colloidal and chemical stability of the conjugates was tested by dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and UV/vis spectroscopy based experiments, and their interactions with cells were analyzed by elemental analysis. We demonstrate that the alkylene spacer in PEGMUA is the key feature for the controlled synthesis of mixed layer conjugates with very high colloidal and chemical stability and that a controlled synthesis is not possible using regular PEG ligands without the alkylene spacer. With the results of our stability tests, the molecular structure of the ligands can be clearly linked to the colloidal and chemical stabilization. We expect that the underlying design principle can be generalized to improve the level of control in nanoparticle surface chemistry. PMID:27458652

  19. Static and dynamic properties of poly(3-hexylthiophene) films at liquid/vacuum interfaces.

    PubMed

    Yimer, Yeneneh Y; Tsige, Mesfin

    2012-11-28

    All-atom molecular dynamics simulations are used to study static and dynamic properties of poly(3-hexylthiophene) (P3HT) films at liquid/vacuum interfaces with regards to their dependence on both temperature and molecular weight. The static properties of the films are characterized by calculating specific volume, interfacial width, orientational ordering of the hexyl groups, and surface tension. The specific volume found to be a monotonically decreasing function of the molecular weight while its dependence on temperature follows the Simha-Somcynsky's equation of state. The orientational ordering calculations show the hexyl groups protruding from the vacuum side of the interface, where the degree of order at the interface is found to be strongly dependent on both temperature and molecular weight. The surface tension values show a linear dependence on temperature and the molecular weight dependence is equally described by both M(-2∕3) and M(-1) power law models. The dynamic properties are quantified by calculating diffusion coefficients for the chain centers-of-mass and thiophene ring segments as well as first-order and second-order end-to-end vector autocorrelations and chain backbone torsion autocorrelation. All calculated dynamic properties show strong dependence on both temperature and molecular weight. All the autocorrelations are well described by Kohlrausch-Williams-Watts equation. Our detailed analysis of the static and dynamic properties of P3HT films show that the calculated static and dynamic properties data can be fit with well-known polymer models.

  20. Engineering interfacial properties of organic semiconductors through soft-contact lamination and surface functionalization

    NASA Astrophysics Data System (ADS)

    Shu, Andrew Leo

    Organic electronics is a topic of interest due to its potential for low temperature and solution processing for large area and flexible applications. Examples of organic electronic devices are already available on the market; however these are, in general, still rather expensive. In order to fully realize inexpensive and efficient organic electronics, the properties of organic films need to be understood and strategies developed to take advantage of these properties to improve device performance. This work focuses on two strategies that can be used to control charge transport at interfaces with active organic semiconducting thin films. These strategies are studied and verified with a range of photoemission spectroscopy, surface probe microscopy, and electrical measurements. Vacuum evaporated molecular organic devices have long used layer stacking of different materials as a method of dividing roles in a device and modifying energy level alignment to improve device performance and efficiency. Applying this type of architecture for solution-processed devices, on the other hand, is nontrivial, as an issue of removal of or mixing with underlying layers arises. We present and examine here soft-contact lamination as a viable technique for depositing solution-processed multilayer structures. The energetics at homojunctions of a couple of air-stable polymers is investigated. Charge transport is then compared between a two-layer film and a single-layer film of equivalent thicknesses. The interface formed by soft-contact lamination is found to be transparent with respect to electronic charge carriers. We also propose a technique for modifying electronic level alignment at active organic-organic heterojunctions using dipolar self-assembled monolayers (SAM). An ultra-thin metal oxide is first deposited via a gentle low temperature chemical vapor deposition as an adhesion layer for the SAM. The deposition is shown to be successful for a variety of organic films. A series of

  1. Challenges in Modelling of Lightning-Induced Delamination; Effect of Temperature-Dependent Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Naghipour, P.; Pineda, E. J.; Arnold, S.

    2014-01-01

    Lightning is a major cause of damage in laminated composite aerospace structures during flight. Due to the dielectric nature of Carbon fiber reinforced polymers (CFRPs), the high energy induced by lightning strike transforms into extreme, localized surface temperature accompanied with a high-pressure shockwave resulting in extensive damage. It is crucial to develop a numerical tool capable of predicting the damage induced from a lightning strike to supplement extremely expensive lightning experiments. Delamination is one of the most significant failure modes resulting from a lightning strike. It can be extended well beyond the visible damage zone, and requires sophisticated techniques and equipment to detect. A popular technique used to model delamination is the cohesive zone approach. Since the loading induced from a lightning strike event is assumed to consist of extreme localized heating, the cohesive zone formulation should additionally account for temperature effects. However, the sensitivity to this dependency remains unknown. Therefore, the major focus point of this work is to investigate the importance of this dependency via defining various temperature dependency profiles for the cohesive zone properties, and analyzing the corresponding delamination area. Thus, a detailed numerical model consisting of multidirectional composite plies with temperature-dependent cohesive elements in between is subjected to lightning (excessive amount of heat and pressure) and delamination/damage expansion is studied under specified conditions.

  2. CVD graphene as interfacial layer to engineer the organic donor-acceptor heterojunction interface properties.

    PubMed

    Zhong, Shu; Zhong, Jian Qiang; Mao, Hong Ying; Wang, Rui; Wang, Yu; Qi, Dong Chen; Loh, Kian Ping; Wee, Andrew Thye Shen; Chen, Zhi Kuan; Chen, Wei

    2012-06-27

    We demonstrate the use of chemical-vapor-deposited (CVD) graphene as an effective indium-tin-oxide (ITO) electrode surface modifier to engineer the organic donor-acceptor heterojunction interface properties in an inverted organic solar cell device configuration. As revealed by in situ near-edge X-ray adsorption fine structure measurement, the organic donor-acceptor heterojunction, comprising copper-hexadecafluoro-phthalocyanine (F16CuPc) and copper phthalocyanine (CuPc), undergoes an obvious orientation transition from a standing configuration (molecular π-plane nearly perpendicular to the substrate surface) on the bare ITO electrode to a less standing configuration with the molecular π-plane stacking adopting a large projection along the direction perpendicular to the electrode surface on the CVD graphene-modified ITO electrode. Such templated less-standing configuration of the organic heterojunction could significantly enhance the efficiency of charge transport along the direction perpendicular to the electrode surface in the planar heterojunction-based devices. Compared with the typical standing organic-organic heterojunction on the bare ITO electrode, our in situ ultraviolet photoelectron spectroscopy experiments reveal that the heterojunction on the CVD graphene modified ITO electrode possesses better aligned energy levels with respective electrodes, hence facilitating effective charge collection. PMID:22662875

  3. Electronic and Interfacial Properties of PD/6H-SiC Schottky Diode Gas Sensors

    NASA Technical Reports Server (NTRS)

    Chen, Liang-Yu; Hunter, Gary W.; Neudeck, Philip G.; Bansal, Gaurav; Petit, Jeremy B.; Knight, Dak; Liu, Chung-Chiun; Wu, Qinghai

    1996-01-01

    Pd/SiC Schottky diodes detect hydrogen and hydrocarbons with high sensitivity. Variation of the diode temperature from 100 C to 200 C shows that the diode sensitivity to propylene is temperature dependent. Long-term heat treating at 425 C up to 140 hours is carried out to determine the effect of extended heat treating on the diode properties and gas sensitivity. The heat treating significantly affects the diode's capacitive characteristics, but the diode's current carrying characteristics are much more stable with a large response to hydrogen. Scanning Electron Microscopy and X-ray Spectrometry studies of the Pd surface after the heating show cluster formation and background regions with grain structure observed in both regions. The Pd and Si concentrations vary between grains. Auger Electron Spectroscopy depth profiles revealed that the heat treating promoted interdiffusion and reaction between the Pd and SiC dw broadened the interface region. This work shows that Pd/SiC Schottky diodes have significant potential as high temperature gas sensors, but stabilization of the structure is necessary to insure their repeatability in long-term, high temperature applications.

  4. CRADA Final Report for CRADA No. ORNL99-0544, Interfacial Properties of Electron Beam Cured Composites

    SciTech Connect

    Janke, C.J.

    2005-10-17

    Electron beam (EB) curing is a technology that promises, in certain applications, to deliver lower cost and higher performance polymer matrix composite (PMC) structures compared to conventional thermal curing processes. PMCs enhance performance by making products lighter, stronger, more durable, and less energy demanding. They are essential in weight- and performance-dominated applications. Affordable PMCs can enhance US economic prosperity and national security. US industry expects rapid implementation of electron beam cured composites in aircraft and aerospace applications as satisfactory properties are demonstrated, and implementation in lower performance applications will likely follow thereafter. In fact, at this time and partly because of discoveries made in this project, field demonstrations are underway that may result in the first fielded applications of electron beam cured composites. Serious obstacles preventing the widespread use of electron beam cured PMCs in many applications are their relatively poor interfacial properties and resin toughness. The composite shear strength and resin toughness of electron beam cured carbon fiber reinforced epoxy composites were about 25% and 50% lower, respectively, than those of thermally cured composites of similar formulations. The essential purpose of this project was to improve the mechanical properties of electron beam cured, carbon fiber reinforced epoxy composites, with a specific focus on composite shear properties for high performance aerospace applications. Many partners, sponsors, and subcontractors participated in this project. There were four government sponsors from three federal agencies, with the US Department of Energy (DOE) being the principal sponsor. The project was executed by Oak Ridge National Laboratory (ORNL), NASA and Department of Defense (DOD) participants, eleven private CRADA partners, and two subcontractors. A list of key project contacts is provided in Appendix A. In order to properly

  5. Comparison of united-atom potentials for the simulation of vapor-liquid equilibria and interfacial properties of long-chain n-alkanes up to n-C100.

    PubMed

    Müller, Erich A; Mejía, Andrés

    2011-11-10

    Canonical ensemble molecular dynamics (MD) simulations are reported which compute both the vapor-liquid equilibrium properties (vapor pressure and liquid and vapor densities) and the interfacial properties (density profiles, interfacial tensions, entropy and enthalpy of surface formation) of four long-chained n-alkanes: n-decane (n-C(10)), n-eicosane (n-C(20)), n-hexacontane (n-C(60)), and n-decacontane (n-C(100)). Three of the most commonly employed united-atom (UA) force fields for alkanes (SKS: Smit, B.; Karaborni, S.; Siepmann, J. I. J. Chem. Phys. 1995,102, 2126-2140; J. Chem. Phys. 1998,109, 352; NERD: Nath, S. K.; Escobedo, F. A.; de Pablo, J. J. J. Chem. Phys. 1998, 108, 9905-9911; and TraPPE: Martin M. G.; Siepmann, J. I. J. Phys. Chem. B1998, 102, 2569-2577.) are critically appraised. The computed results have been compared to the available experimental data and those fitted using the square gradient theory (SGT). In the latter approach, the Lennard-Jones chain equation of state (EoS), appropriately parametrized for long hydrocarbons, is used to model the homogeneous bulk phase Helmholtz energy. The MD results for phase equilibria of n-decane and n-eicosane exhibit sensible agreement both to the experimental data and EoS correlation for all potentials tested, with the TraPPE potential showing the lowest deviations. However, as the molecular chain increases to n-hexacontane and n-decacontane, the reliability of the UA potentials decreases, showing notorious subpredictions of both saturated liquid density and vapor pressure. Based on the recommended data and EoS results for the heaviest hydrocarbons, it is possible to attest, that in this extreme, the TraPPE potential shows the lowest liquid density deviations. The low absolute values of the vapor pressure preclude the discrimination among the three UA potentials studied. On the other hand, interfacial properties are very sensitive to the type of UA potential thus allowing a differentiation of the

  6. Interfacial properties of asymmetrically functionalized citrate-stabilized gold and silver nanoparticles related to molecular adsorption

    NASA Astrophysics Data System (ADS)

    Park, Jong-Won

    A detailed understanding of the conformation of adsorbed molecules and regional surface functionalization of metal nanoparticles (MNPs) is challenging for nanometer-size (10 -- 100 m) materials and necessary for fundamental studies and applications. The studies are motivated by open questions related to surface chemistry of noble MNPs. Although citrate-stabilized gold NPs (AuNPs) have been widely used, the citrate layer is not well-understood. Thiols have been suggested to displace citrate anions adsorbed on metal surfaces due to strong gold-sulfur interaction, but quantitative experimental evidence of the extent of ligand-exchange has not been reported. Whereas asymmetrically-functionalized AuNPs are utilized for nanoparticle assembly due to the interparticle coupling of localized surface plasmons, the interface between asymmetric nanoparticles in single assemblies has not been studied. Noble MNPs with sizes smaller than citrate-stabilized AuNPs also need to be surface-modified for stability in water for biological applications. The dissertation presents investigations of the chemical and physical properties of gold and silver NPs (AgNPs) related to ligand adsorption at the metal surface. Firstly, self-assembled layers of citrate adsorbed on AuNP (111), (110), and (100) surfaces were proposed, based on geometric considerations and spectroscopic investigations by infrared (IR) and X-ray photoelectron spectroscopy (XPS). Adsorption characteristics of citrate are the unique structure of adsorbed species, intermolecular interactions through hydrogen bonds and van der Waals attractions, bilayer formation, surface coverage, nanoparticle-stabilization role, and chirality. Secondly, IR and XPS studies showed coadsorption of thiolate on the surface of citrate-stabilized AuNPs. Steric, chelating effects and intermolecular interactions are the origins of the strong adsorption of citrate on AuNP surfaces. Surface coverage was determined from XPS analyses. Thirdly, an

  7. Strong improvement of interfacial properties can result from slight structural modifications of proteins: the case of native and dry-heated lysozyme.

    PubMed

    Desfougères, Yann; Saint-Jalmes, Arnaud; Salonen, Anniina; Vié, Véronique; Beaufils, Sylvie; Pezennec, Stéphane; Desbat, Bernard; Lechevalier, Valérie; Nau, Françoise

    2011-12-20

    Identification of the key physicochemical parameters of proteins that determine their interfacial properties is still incomplete and represents a real stake challenge, especially for food proteins. Many studies have thus consisted in comparing the interfacial behavior of different proteins, but it is difficult to draw clear conclusions when the molecules are completely different on several levels. Here the adsorption process of a model protein, the hen egg-white lysozyme, and the same protein that underwent a thermal treatment in the dry state, was characterized. The consequences of this treatment have been previously studied: net charge and hydrophobicity increase and lesser protein stability, but no secondary and tertiary structure modification (Desfougères, Y.; Jardin, J.; Lechevalier, V.; Pezennec, S.; Nau, F. Biomacromolecules 2011, 12, 156-166). The present study shows that these slight modifications dramatically increase the interfacial properties of the protein, since the adsorption to the air-water interface is much faster and more efficient (higher surface pressure). Moreover, a thick and strongly viscoelastic multilayer film is created, while native lysozyme adsorbs in a fragile monolayer film. Another striking result is that completely different behaviors were observed between two molecular species, i.e., native and native-like lysozyme, even though these species could not be distinguished by usual spectroscopic methods. This suggests that the air-water interface could be considered as a useful tool to reveal very subtle differences between protein molecules. PMID:22040020

  8. Role of specific interfacial area in controlling properties of immiscible blends of biodegradable polylactide and poly[(butylene succinate)-co-adipate].

    PubMed

    Ojijo, Vincent; Sinha Ray, Suprakas; Sadiku, Rotimi

    2012-12-01

    Binary blends of two biodegradable polymers: polylactide (PLA), which has high modulus and strength but is brittle, and poly[(butylene succinate)-co-adipate] (PBSA), which is flexible and tough, were prepared through batch melt mixing. The PLA/PBSA compositions were 100/0, 90/10, 70/30, 60/40, 50/50, 40/60, 30/70, 10/90, and 0/100. Fourier-transform infrared measurements revealed the absence of any chemical interaction between the two polymers, resulting in a phase-separated morphology as shown by scanning electron microscopy (SEM). SEM micrographs showed that PLA-rich blends had smaller droplet sizes when compared to the PBSA-rich blends, which got smaller with the reduction in PBSA content due to the differences in their melt viscosities. The interfacial area of PBSA droplets per unit volume of the blend reached a maximum in the 70PLA/30PBSA blend. Thermal stability and mechanical properties were not only affected by the composition of the blend, but also by the interfacial area between the two polymers. Through differential scanning calorimetry, it was shown that molten PBSA enhanced crystallization of PLA while the stiff PLA hindered cold crystallization of PBSA. Optimal synergies of properties between the two polymers were found in the 70PLA/30PBSA blend because of the maximum specific interfacial area of the PBSA droplets.

  9. Interfacial Microstructure and Enhanced Mechanical Properties of Carbon Fiber Composites Caused by Growing Generation 1-4 Dendritic Poly(amidoamine) on a Fiber Surface.

    PubMed

    Gao, Bo; Zhang, Ruliang; Gao, Fucheng; He, Maoshuai; Wang, Chengguo; Liu, Lei; Zhao, Lifen; Cui, Hongzhi

    2016-08-23

    In an attempt to improve the mechanical properties of carbon fiber composites, propagation of poly(amidoamine) (PAMAM) dendrimers by in situ polymerization on a carbon fiber surface was performed. During polymerization processes, PAMAM was grafted on carbon fiber by repeated Michael addition and amidation reactions. The changes in surface microstructure and the chemical composition of carbon fibers before and after modification were investigated by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. All the results indicated that PAMAM was successfully grown on the carbon fiber surface. Such propagation could significantly increase the surface roughness and introduce sufficient polar groups onto the carbon fiber surface, enhancing the surface wettability of carbon fiber. The fractured surface of carbon fiber-reinforced composites showed a great enhancement of interfacial adhesion. Compared with those of desized fiber composites, the interlaminar shear strength and interfacial shear strength of PAMAM/fiber-reinforced composites showed increases of 55.49 and 110.94%, respectively.

  10. Polyhedral oligomeric silsesquioxanes/carbon nanotube/carbon fiber multiscale composite: Influence of a novel hierarchical reinforcement on the interfacial properties

    NASA Astrophysics Data System (ADS)

    Zhang, R. L.; Wang, C. G.; Liu, L.; Cui, H. Z.; Gao, B.

    2015-10-01

    A novel hierarchical reinforcing carbon fiber through co-grafting carbon nanotube (CNTs) and polyhedral oligomeric silsesquioxanes (POSS) was prepared in this paper. The structure and surface characteristics of the grafted carbon fiber were investigated by Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), thermogravimetry (TG) and scanning electron microscope (SEM), respectively. The surface energy and the functional groups of the carbon fiber surface were increased obviously after modification. The ILSS results showed that there was a remarkable improvement in the interfacial properties of the new hybrid CF-CNTs-POSS composites. The investigation can prove an effective way to increase the interfacial adhesion and improve the mechanical performance of the fiber/resin composites on the desired application.

  11. Metal/dielectric thermal interfacial transport considering cross-interface electron-phonon coupling: Theory, two-temperature molecular dynamics, and thermal circuit

    NASA Astrophysics Data System (ADS)

    Lu, Zexi; Wang, Yan; Ruan, Xiulin

    2016-02-01

    The standard two-temperature equations for electron-phonon coupled thermal transport across metal/nonmetal interfaces are modified to include the possible coupling between metal electrons with substrate phonons. The previous two-temperature molecular dynamics (TT-MD) approach is then extended to solve these equations numerically at the atomic scale, and the method is demonstrated using Cu/Si interface as an example. A key parameter in TT-MD is the nonlocal coupling distance of metal electrons and nonmetal phonons, and here we use two different approximations. The first is based on Overhauser's "joint-modes" concept, while we use an interfacial reconstruction region as the length scale of joint region rather than the phonon mean-free path as in Overhauser's original model. In this region, the metal electrons can couple to the joint phonon modes. The second approximation is the "phonon wavelength" concept where electrons couple to phonons nonlocally within the range of one phonon wavelength. Compared with the original TT-MD, including the cross-interface electron-phonon coupling can slightly reduce the total thermal boundary resistance. Whether the electron-phonon coupling within the metal block is nonlocal or not does not make an obvious difference in the heat transfer process. Based on the temperature profiles from TT-MD, we construct a new mixed series-parallel thermal circuit. We show that such a thermal circuit is essential for understanding metal/nonmetal interfacial transport, while calculating a single resistance without solving temperature profiles as done in most previous studies is generally incomplete. As a comparison, the simple series circuit that neglects the cross-interface electron-phonon coupling could overestimate the interfacial resistance, while the simple parallel circuit in the original Overhauser's model underestimates the total interfacial resistance.

  12. Dynamic properties of interfaces in soft matter: Experiments and theory

    NASA Astrophysics Data System (ADS)

    Sagis, Leonard M. C.

    2011-10-01

    The dynamic properties of interfaces often play a crucial role in the macroscopic dynamics of multiphase soft condensed matter systems. These properties affect the dynamics of emulsions, of dispersions of vesicles, of biological fluids, of coatings, of free surface flows, of immiscible polymer blends, and of many other complex systems. The study of interfacial dynamic properties, surface rheology, is therefore a relevant discipline for many branches of physics, chemistry, engineering, and life sciences. In the past three to four decades a vast amount of literature has been produced dealing with the rheological properties of interfaces stabilized by low molecular weight surfactants, proteins, (bio)polymers, lipids, colloidal particles, and various mixtures of these surface active components. In this paper recent experiments are reviewed in the field of surface rheology, with particular emphasis on the models used to analyze surface rheological data. Most of the models currently used are straightforward generalizations of models developed for the analysis of rheological data of bulk phases. In general the limits on the validity of these generalizations are not discussed. Not much use is being made of recent advances in nonequilibrium thermodynamic formalisms for multiphase systems, to construct admissible models for the stress-deformation behavior of interfaces. These formalisms are ideally suited to construct thermodynamically admissible constitutive equations for rheological behavior that include the often relevant couplings to other fluxes in the interface (heat and mass), and couplings to the transfer of mass from the bulk phase to the interface. In this review recent advances in the application of classical irreversible thermodynamics, extended irreversible thermodynamics, rational thermodynamics, extended rational thermodynamics, and the general equation for the nonequilibrium reversible-irreversible coupling formalism to multiphase systems are also discussed

  13. Interfacial properties and electronic structure of β-SiC(111)/α-Ti(0001): A first principle study

    NASA Astrophysics Data System (ADS)

    Li, Jian; Yang, Yanqing; Li, Lili; Lou, Juhong; Luo, Xian; Huang, Bin

    2013-01-01

    First-principles calculations of β-SiC(111)/α-Ti(0001) interface have been performed and the adhesion strength, interface energy, interfacial fracture toughness, and electronic structure are obtained. Six C-terminated β-SiC(111)/α-Ti(0001) interface models are investigated to clarify the influence of stacking sites and Ti atoms tilt direction on the interface bonding and fracture toughness. The hollow-site-stacked interfaces, in which Ti atoms locate on the hollow site of interfacial C atoms (cases III and IV), are more thermodynamically stable with larger work of adhesion, and interfacial fracture toughness. The center-site-stacked (cases I and II) and top-site-stacked (cases V and VI) interfaces have a decreasing interface adhesion as the order. The electronic structure of hollow-site-stacked interface (case IV) gives the evidence that atomic bonding exists between interfacial C, Si, and Ti atoms, and the C-Ti bonds exhibit more covalent features than Si-Ti. The tilt direction of Ti atoms, namely the stacking style of Ti, has a subtle and secondary effect on the interface stability.

  14. The influence of interfacial properties on the two-phase liquid flow of organic contaminants in groundwater. Final report, July 1, 1989--June 30, 1992

    SciTech Connect

    Demond, A.H.; Desai, F.N.; Hayes, K.F.

    1992-12-31

    DOE`s waste sites are contaminated with a variety of organic liquids. Because of their low solubility in water, organic liquids such as these will persist as separate liquid phases and be transported as such in the subsurface. Thus, an improved understanding of the factors influencing the movement of a separate organic liquid phase in the subsurface is important to DOE`s efforts to control groundwater contamination. Wettability is sometimes cited as the most important factor influencing two-phase flow in porous media. The wetting phase migrates preferentially through the smaller pores, whereas the nonwetting phase is concentrated in the larger pores. Typically, aquifers are thought of as strongly water-wet, implying that the organic liquid preferentially occupies the larger pores. But in fact, that state depends on the properties of the three interfaces of the system: between the organic liquid and water, water and the solid, and the organic liquid and the solid. Characteristics of the system which affect the interfacial properties also impact the wettability, such as the nature of the aquifer solids` surfaces, the composition of the goundwater and the properties of the organic contaminant. The alteration of wettability at DOE waste sites may be dominated by the presence of co-contaminants such as organic acids and bases which behave as surface-active agents or surfactants. Because of their physicochemical nature, surfactants will sorb preferentially at the interfaces of the system, thereby impacting the wettability and the distribution of the liquids in the porous medium. The over-all objective of this research was to determine how changes in interfacial properties affect two-phase flow. Specifically, the objective was to examine the effect of surfactant sorption on capillary pressure relationships by correlating measurements of sorption, zeta potential, interfacial tension and contact angle, with changes in the capillary pressure-saturation relationships.

  15. Molecular dynamics studies of material property effects on thermal boundary conductance.

    PubMed

    Zhou, X W; Jones, R E; Duda, J C; Hopkins, P E

    2013-07-14

    Thermal boundary resistance (inverse of conductance) between different material layers can dominate the overall thermal resistance in nanostructures and therefore impact the performance of the thermal property limiting nano devices. Because relationships between material properties and thermal boundary conductance have not been fully understood, optimum devices cannot be developed through a rational selection of materials. Here we develop generic interatomic potentials to enable material properties to be continuously varied in extremely large molecular dynamics simulations to explore the dependence of thermal boundary conductance on the characteristic properties of materials such as atomic mass, stiffness, and interfacial crystallography. To ensure that our study is not biased to a particular model, we employ different types of interatomic potentials. In particular, both a Stillinger-Weber potential and a hybrid embedded-atom-method + Stillinger-Weber potential are used to study metal-on-semiconductor compound interfaces, and the results are analyzed considering previous work based upon a Lennard-Jones (LJ) potential. These studies, therefore, reliably provide new understanding of interfacial transport phenomena particularly in terms of effects of material properties on thermal boundary conductance. Our most important finding is that thermal boundary conductance increases with the overlap of the vibrational spectra between metal modes and the acoustic modes of the semiconductor compound, and increasing the metal stiffness causes a continuous shift of the metal modes. As a result, the maximum thermal boundary conductance occurs at an intermediate metal stiffness (best matched to the semiconductor stiffness) that maximizes the overlap of the vibrational modes.

  16. Dynamical properties of Discrete Reaction Networks.

    PubMed

    Paulevé, Loïc; Craciun, Gheorghe; Koeppl, Heinz

    2014-07-01

    Reaction networks are commonly used to model the dynamics of populations subject to transformations that follow an imposed stoichiometry. This paper focuses on the efficient characterisation of dynamical properties of Discrete Reaction Networks (DRNs). DRNs can be seen as modeling the underlying discrete nondeterministic transitions of stochastic models of reaction networks. In that sense, a proof of non-reachability in a given DRN has immediate implications for any concrete stochastic model based on that DRN, independent of the choice of kinetic laws and constants. Moreover, if we assume that stochastic kinetic rates are given by the mass-action law (or any other kinetic law that gives non-vanishing probability to each reaction if the required number of interacting substrates is present), then reachability properties are equivalent in the two settings. The analysis of two types of global dynamical properties of DRNs is addressed: irreducibility, i.e., the ability to reach any discrete state from any other state; and recurrence, i.e., the ability to return to any initial state. Our results consider both the verification of such properties when species are present in a large copy number, and in the general case. The necessary and sufficient conditions obtained involve algebraic conditions on the network reactions which in most cases can be verified using linear programming. Finally, the relationship of DRN irreducibility and recurrence with dynamical properties of stochastic and continuous models of reaction networks is discussed.

  17. Physical properties and mantle dynamics

    SciTech Connect

    Shankland, T.J.; Johnson, P.A.; McCall, K.R.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Because planetary interiors are remote, laboratory methods and associated theory are an essential step for interpreting geophysical measurements in terms of quantities that are needed for understanding Earth--temperature, composition, stress state, history, and hazards. One objective is the study of minerals and rocks as materials using experimental methods; another is to develop new methods, as in high pressure research, codes for computation in rock/soil physics, or nuclear-based analysis. Accomplishments include developing a single-crystal x-ray diffraction apparatus with application to materials at extremely high pressure and temperature; P-V-T equations of state and seismic velocity measurements for understanding the composition of Earth`s outer 1,000 km; creating computational tools to explain complex stress-strain histories of rocks; and measuring tungsten/thorium ratios W/Th that agree with the hypothesis that Earth accreted heterogeneously. Work performed in this project applies to geosciences, geothermal energy, mineral and rock properties, seismic detection, and isotope dating.

  18. Interfacial Effects in Polymer Membranes for Clean Energy

    NASA Astrophysics Data System (ADS)

    Soles, Christopher

    2013-03-01

    Polymeric membranes are critical components in several emerging clean energy technologies. Examples include proton exchange membranes for hydrogen fuel cells, anion exchange membranes for alkaline fuel cells, flow batteries, and even block copolymer membranes for solid electrolytes/separators in lithium ion and other battery technologies. In all of these examples the function of the membrane is to physically separate two reactive electrodes or reactants, but allow the transport or exchange of specific ions through the membrane between the active electrodes. The flow of the charged ionic species between the electrodes can be used to balance the flow of electrons through an external electrical circuit that connects the electrodes, thereby storing or delivering charge electrochemically. In this presentation I will review the use of polymeric membranes in electrochemical energy storage technologies and discuss the critical issues related to the membranes that hinder these technologies. In particular I will also focus on the role the polymer membrane interface on device performance. At some point the polymer membrane must be interfaced with an active electrode or catalyst and the nature of this interface can significantly impact performance. Simulations of device performance based on bulk membrane transport properties often fail to predict the actual performance and empirical interfacial impedance terms usually added to capture the device performance. In this presentation I will explore the origins of this interfacial impedance in the different types of fuel cell membranes (proton and alkaline) by creating model thin film membranes where all of the membrane can be considered interfacial. We then use these thin films as a surrogate for the interfacial regions of a bulk membrane and then quantify the structure, dynamics, and transport properties of water and ions in the confined interfacial films. Using neutron reflectivity, grazing incidence X-ray diffraction, and

  19. Investigating hydroxide anion interfacial activity by classical and multi-state empirical valence bond molecular dynamics simulations

    SciTech Connect

    Dang, Liem X.; Wick, Collin D.

    2009-06-04

    Molecular dynamics simulations were carried out to understand the propensity of the hydroxide anion for the air-water interface. Two classes of molecular models were used, a classical polarizable model, and a polarizable multi-state empirical valence bond (MS-EVB) potential. The latter model was parameterized to reproduce the structures of small hydroxide-water clusters based on proton reaction coordinates. Furthermore, nuclear quantum effects were introduced into the MS-EVB model implicitly by refitting its potential energy function to account for them. The final MS-EVB model showed reasonable agreement with experiment and ab initio molecular dynamics simulations for dynamical and structural properties. The free energy profiles for both the classical and MS-EVB models were mapped out across the air-water interface, and the classical model gave a higher free energy at the interface with respect to bulk. The MS-EVB model gave a hydroxide anion that approached very close to the interface before it had a sharp increase in free energy at the Gibbs dividing surface. This showed a hydroxide anion that was present at the interface, but strongly repelled from its outer edge near the air. This work was supported by the US Department of Energy's Office of Basec Energy Sciences, Chemical Sciences program. Pacific northwest national Laboratory is operated by Battelle for DOE.

  20. Rapid thermal annealing: An efficient method to improve the electrical properties of tellurium compensated Interfacial Misfit GaSb/GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Aziz, Mohsin; Felix, Jorlandio F.; Jameel, Dler; Al Saqri, Noor; Al Mashary, Faisal S.; Alghamdi, Haifaa M.; Albalawi, Hind M. A.; Taylor, David; Henini, Mohamed

    2015-12-01

    The effect of thermal annealing on Te compensated Interfacial Misfit GaSb/GaAs heterostructures is investigated by using two different thermal annealing procedures, namely rapid thermal annealing and furnace annealing. The electrical properties of the devices are studied by using Current-Voltage, Capacitance-Voltage and Deep Level Transient Spectroscopy techniques. It is observed that rapid thermal annealing treatment is superior in terms of improvement of the electrical characteristics compared to furnace annealing treatment. The lowest leakage current and defect concentration are obtained when rapid thermal annealing is employed.

  1. Dynamical simulation of dipolar Janus colloids: dynamical properties.

    PubMed

    Hagy, Matthew C; Hernandez, Rigoberto

    2013-05-14

    The dynamical properties of dipolar Janus particles are studied through simulation using our previously-developed detailed pointwise (PW) model and an isotropically coarse-grained (CG) model [M. C. Hagy and R. Hernandez, J. Chem. Phys. 137, 044505 (2012)]. The CG model is found to have accelerated dynamics relative to the PW model over a range of conditions for which both models have near identical static equilibrium properties. Physically, this suggests dipolar Janus particles have slower transport properties (such as diffusion) in comparison to isotropically attractive particles. Time rescaling and damping with Langevin friction are explored to map the dynamics of the CG model to that of the PW model. Both methods map the diffusion constant successfully and improve the velocity autocorrelation function and the mean squared displacement of the CG model. Neither method improves the distribution of reversible bond durations f(tb) observed in the CG model, which is found to lack the longer duration reversible bonds observed in the PW model. We attribute these differences in f(tb) to changes in the energetics of multiple rearrangement mechanisms. This suggests a need for new methods that map the coarse-grained dynamics of such systems to the true time scale. PMID:23676070

  2. Investigation on the Microstructure, Interfacial IMC Layer, and Mechanical Properties of Cu/Sn-0.7Cu- xNi/Cu Solder Joints

    NASA Astrophysics Data System (ADS)

    Yang, Li; Ge, Jinguo; Zhang, Yaocheng; Dai, Jun; Liu, Haixiang; Xiang, Jicen

    2016-07-01

    Sn-0.7Cu- xNi composite solder has been fabricated via mechanical mixing of different weight percentages of Ni particles with Sn-0.7Cu solder paste, and the effect of the Ni concentration on the microstructure, wettability, and tensile properties of Cu/Sn-0.7Cu- xNi/Cu solder joints investigated. The results show that refined dot-shaped particles of intermetallic compounds (IMCs) are uniformly dispersed in a primary β-Sn matrix in the Cu/Sn-0.7Cu-(0.05-0.1)Ni/Cu solder joints. The interfacial IMC layer thickness increased slightly when adding Ni content to 0.05 wt.%, then rapidly when further increasing the Ni concentration to 0.4 wt.%. Excellent wettability with bright appearance was obtained for the Sn-0.7Cu-0.05Ni solder due to diminished interfacial tension. The tensile properties improved after adding Ni content to 0.05 wt.% due to the presence of the refined dot-like IMC particles, in agreement with theoretical predictions based on the combination of dispersion and grain-refinement strengthening mechanisms. Refined microstructure and enhanced mechanical properties were obtained for the Cu/Sn-0.7Cu-0.05Ni/Cu solder joint.

  3. Surface and Interfacial Properties of Nonaqueous-Phase Liquid Mixtures Released to the Subsurface at the Hanford Site

    SciTech Connect

    Nellis, Scott; Yoon, Hongkyu; Werth, Charlie; Oostrom, Martinus; Valocchi, Albert J.

    2009-05-01

    Surface and interfacial tensions that arise at the interface between different phases are key parameters affecting Nonaqueous Phase Liquid (NAPL) movement and redistribution in the vadose zone after spill events. In this study, the impact of major additive components on surface and interfacial tensions for organic mixtures and wastewater was investigated. Organic mixture and wastewater compositions are based upon carbon tetrachloride (CT) mixtures released at the Hanford site, where CT was discharged simultaneously with dibutyl butyl phosphonate (DBBP), tributyl phosphate (TBP), dibutyl phosphate (DBP), and a machining lard oil (LO). A considerable amount of wastewater consisting primarily of nitrates and metal salts was also discharged. The tension values measured in this study revealed that the addition of these additive components caused a significant lowering of the interfacial tension with water or wastewater and the surface tension of the wastewater phase in equilibrium with the organic mixtures, compared to pure CT, but had minimal effect on the surface tension of the NAPL itself. These results lead to large differences in spreading coefficients for several mixtures, where the additives caused both a higher (more spreading) initial spreading coefficient and a lower (less spreading) equilibrium spreading coefficient. This indicates that if these mixtures migrate into uncontaminated areas, they will tend to spread quickly, but form a higher residual NAPL saturation after equilibrium, as compared to pure CT. Over time, CT likely volatilizes more rapidly than other components in the originally disposed mixtures and the lard oil and phosphates would become more concentrated in the remaining NAPL, resulting in a lower interfacial tension for the mixture. Spreading coefficients are expected to increase and perhaps change the equilibrated organic mixtures from nonspreading to spreading in water-wetting porous media. These results show that the behavior of organic

  4. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-07-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation.

  5. Nano-Wilhelmy investigation of dynamic wetting properties of AFM tips through tip-nanobubble interaction

    PubMed Central

    Wang, Yuliang; Wang, Huimin; Bi, Shusheng; Guo, Bin

    2016-01-01

    The dynamic wetting properties of atomic force microscopy (AFM) tips are of much concern in many AFM-related measurement, fabrication, and manipulation applications. In this study, the wetting properties of silicon and silicon nitride AFM tips are investigated through dynamic contact angle measurement using a nano-Wilhelmy balance based method. This is done by capillary force measurement during extension and retraction motion of AFM tips relative to interfacial nanobubbles. The working principle of the proposed method and mathematic models for dynamic contact angle measurement are presented. Geometric models of AFM tips were constructed using scanning electronic microscopy (SEM) images taken from different view directions. The detailed process of tip-nanobubble interaction was investigated using force-distance curves of AFM on nanobubbles. Several parameters including nanobubble height, adhesion and capillary force between tip and nanobubbles are extracted. The variation of these parameters was studied over nanobubble surfaces. The dynamic contact angles of the AFM tips were calculated from the capillary force measurements. The proposed method provides direct measurement of dynamic contact angles for AFM tips and can also be taken as a general approach for nanoscale dynamic wetting property investigation. PMID:27452115

  6. Phase behavior and interfacial properties of a switchable ethoxylated amine surfactant at high temperature and effects on CO2-in-water foams.

    PubMed

    Chen, Yunshen; Elhag, Amro S; Reddy, Prathima P; Chen, Hao; Cui, Leyu; Worthen, Andrew J; Ma, Kun; Quintanilla, Heriberto; Noguera, Jose A; Hirasaki, George J; Nguyen, Quoc P; Biswal, Sibani L; Johnston, Keith P

    2016-05-15

    The interfacial properties for surfactants at the supercritical CO2-water (C-W) interface at temperatures above 80°C have very rarely been reported given limitations in surfactant solubility and chemical stability. These limitations, along with the weak solvent strength of CO2, make it challenging to design surfactants that adsorb at the C-W interface, despite the interest in CO2-in-water (C/W) foams (also referred to as macroemulsions). Herein, we examine the thermodynamic, interfacial and rheological properties of the surfactant C12-14N(EO)2 in systems containing brine and/or supercritical CO2 at elevated temperatures and pressures. Because the surfactant is switchable from the nonionic state to the protonated cationic state as the pH is lowered over a wide range in temperature, it is readily soluble in brine in the cationic state below pH 5.5, even up to 120°C, and also in supercritical CO2 in the nonionic state. As a consequence of the affinity for both phases, the surfactant adsorption at the CO2-water interface was high, with an area of 207Å(2)/molecule. Remarkably, the surfactant lowered the interfacial tension (IFT) down to ∼5mN/m at 120°C and 3400 psia (23MPa), despite the low CO2 density of 0.48g/ml, indicating sufficient solvation of the surfactant tails. The phase behavior and interfacial properties of the surfactant in the cationic form were favorable for the formation and stabilization of bulk C/W foam at high temperature and high salinity. Additionally, in a 1.2 Darcy glass bead pack at 120°C, a very high foam apparent viscosity of 146 cP was observed at low interstitial velocities given the low degree of shear thinning. For a calcium carbonate pack, C/W foam was formed upon addition of Ca(2+) and Mg(2+) in the feed brine to keep the pH below 4, by the common ion effect, in order to sufficiently protonate the surfactant. The ability to form C/W foams at high temperatures is of interest for a variety of applications in chemical synthesis

  7. Molecular simulation study of dynamical properties of room temperature ionic liquids with carbon pieces

    DOE PAGESBeta

    Feng, Guang; Zhao, Wei; Cummings, Peter T.; Li, Song

    2016-03-29

    Room temperature ionic liquids (RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. In order to explore the molecular mechanism, RTILs/carbon pieces mixture we investigated it by molecular dynamics (MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide ([Bmim][DCA]). Our study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presencemore » of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. Furthermore, this work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.« less

  8. Coexistence and interfacial properties of a triangle-well mimicking the Lennard-Jones fluid and a comparison with noble gases.

    PubMed

    Bárcenas, M; Reyes, Y; Romero-Martínez, A; Odriozola, G; Orea, P

    2015-02-21

    Coexistence and interfacial properties of a triangle-well (TW) fluid are obtained with the aim of mimicking the Lennard-Jones (LJ) potential and approach the properties of noble gases. For this purpose, the scope of the TW is varied to match vapor-liquid densities and surface tension. Surface tension and coexistence curves of TW systems with different ranges were calculated with replica exchange Monte Carlo and compared to those data previously reported in the literature for truncated and shifted (STS), truncated (ST), and full Lennard-Jones (full-LJ) potentials. We observed that the scope of the TW potential must be increased to approach the STS, ST, and full-LJ properties. In spite of the simplicity of TW expression, a remarkable agreement is found. Furthermore, the variable scope of the TW allows for a good match of the experimental data of argon and xenon. PMID:25702023

  9. Coexistence and interfacial properties of a triangle-well mimicking the Lennard-Jones fluid and a comparison with noble gases.

    PubMed

    Bárcenas, M; Reyes, Y; Romero-Martínez, A; Odriozola, G; Orea, P

    2015-02-21

    Coexistence and interfacial properties of a triangle-well (TW) fluid are obtained with the aim of mimicking the Lennard-Jones (LJ) potential and approach the properties of noble gases. For this purpose, the scope of the TW is varied to match vapor-liquid densities and surface tension. Surface tension and coexistence curves of TW systems with different ranges were calculated with replica exchange Monte Carlo and compared to those data previously reported in the literature for truncated and shifted (STS), truncated (ST), and full Lennard-Jones (full-LJ) potentials. We observed that the scope of the TW potential must be increased to approach the STS, ST, and full-LJ properties. In spite of the simplicity of TW expression, a remarkable agreement is found. Furthermore, the variable scope of the TW allows for a good match of the experimental data of argon and xenon.

  10. Sorting cells by their dynamical properties

    PubMed Central

    Henry, Ewan; Holm, Stefan H.; Zhang, Zunmin; Beech, Jason P.; Tegenfeldt, Jonas O.; Fedosov, Dmitry A.; Gompper, Gerhard

    2016-01-01

    Recent advances in cell sorting aim at the development of novel methods that are sensitive to various mechanical properties of cells. Microfluidic technologies have a great potential for cell sorting; however, the design of many micro-devices is based on theories developed for rigid spherical particles with size as a separation parameter. Clearly, most bioparticles are non-spherical and deformable and therefore exhibit a much more intricate behavior in fluid flow than rigid spheres. Here, we demonstrate the use of cells’ mechanical and dynamical properties as biomarkers for separation by employing a combination of mesoscale hydrodynamic simulations and microfluidic experiments. The dynamic behavior of red blood cells (RBCs) within deterministic lateral displacement (DLD) devices is investigated for different device geometries and viscosity contrasts between the intra-cellular fluid and suspending medium. We find that the viscosity contrast and associated cell dynamics clearly determine the RBC trajectory through a DLD device. Simulation results compare well to experiments and provide new insights into the physical mechanisms which govern the sorting of non-spherical and deformable cells in DLD devices. Finally, we discuss the implications of cell dynamics for sorting schemes based on properties other than cell size, such as mechanics and morphology. PMID:27708337

  11. Sorting cells by their dynamical properties

    NASA Astrophysics Data System (ADS)

    Henry, Ewan; Holm, Stefan H.; Zhang, Zunmin; Beech, Jason P.; Tegenfeldt, Jonas O.; Fedosov, Dmitry A.; Gompper, Gerhard

    2016-10-01

    Recent advances in cell sorting aim at the development of novel methods that are sensitive to various mechanical properties of cells. Microfluidic technologies have a great potential for cell sorting; however, the design of many micro-devices is based on theories developed for rigid spherical particles with size as a separation parameter. Clearly, most bioparticles are non-spherical and deformable and therefore exhibit a much more intricate behavior in fluid flow than rigid spheres. Here, we demonstrate the use of cells’ mechanical and dynamical properties as biomarkers for separation by employing a combination of mesoscale hydrodynamic simulations and microfluidic experiments. The dynamic behavior of red blood cells (RBCs) within deterministic lateral displacement (DLD) devices is investigated for different device geometries and viscosity contrasts between the intra-cellular fluid and suspending medium. We find that the viscosity contrast and associated cell dynamics clearly determine the RBC trajectory through a DLD device. Simulation results compare well to experiments and provide new insights into the physical mechanisms which govern the sorting of non-spherical and deformable cells in DLD devices. Finally, we discuss the implications of cell dynamics for sorting schemes based on properties other than cell size, such as mechanics and morphology.

  12. Determining the Absolute Concentration of Nanoparticles without Calibration Factor by Visualizing the Dynamic Processes of Interfacial Adsorption.

    PubMed

    Wo, Xiang; Li, Zhimin; Jiang, Yingyan; Li, Minghe; Su, Yu-Wen; Wang, Wei; Tao, Nongjian

    2016-02-16

    Previous approaches of determining the molar concentration of nanoparticles often relied on the calibration factors extracted from standard samples or required prior knowledge regarding the geometry, optical, or chemical properties. In the present work, we proposed an absolute quantification method that determined the molar concentration of nano-objects without any calibration factor or prior knowledge. It was realized by monitoring the dynamic adsorption processes of individual nanoparticles with a high-speed surface plasmon resonance microscopy. In this case, diffusing nano-objects stochastically collided onto an adsorption interface and stayed there ("hit-n-stay" scenario), resulting in a semi-infinite diffusion system. The dynamic processes were analyzed with a theoretical model consisting of Fick's laws of diffusion and random-walk assumption. The quantification of molar concentration was achieved on the basis of an analytical expression, which involved only physical constants and experimental parameters. By using spherical polystyrene nanoparticles as a model, the present approach provided a molar concentration with excellent accuracy. PMID:26781326

  13. Transport properties of interfacial Si-rich layers formed on silicate minerals during weathering: Implications for environmental concerns

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Rémusat, Laurent; Bernard, Sylvain; Wild, Bastien; Micha, Jean-Sébastien; Rieutord, François; Fernandez-Martinez, Alejandro

    2015-04-01

    The dissolution of silicate minerals is of primary importance for various processes ranging from chemical weathering to CO2 sequestration. Whether it determines the rates of soil formation, CO2 uptake and its impact on climate change, channeling caused by hydrothermal circulation in reservoirs of geothermal power plants, durability of radioactive waste confinement glasses or geological sequestration of CO2, the same strategy is commonly applied for determining the long term evolution of fluid-rock interactions. This strategy relies on a bottom-up approach, where the kinetic rate laws governing silicate mineral dissolution are determined from laboratory experiments. However, a long-standing problem regarding this approach stems from the observation that laboratory-derived dissolution rates overestimate their field counterparts by orders of magnitude, casting doubt on the accuracy and relevance of predictions based on reactive-transport simulations. Recently [1], it has been suggested that taking into account the formation of amorphous Si-rich surface layers (ASSL) as a consequence of mineral dissolution may contribute to decrease the large gap existing between laboratory and natural rates. Our ongoing study is aimed at deciphering the extent to which ASSL may represent a protective entity which affects the dissolution rate of the underlying minerals, both physically (passivation) and chemically (by promoting the formation of a local chemical medium which significantly differs from that of the bulk solution). Our strategy relies on the nm-scale measurement of the physicochemical properties (diffusivity, thickness and density) of ASSL formed on cleavages of a model mineral (wollastonite) and their evolution as a function of reaction progress. Our preliminary results indicate that the diffusivity of nm-thick ASSL formed on wollastonite surface is ~1,000,000 times smaller than that reported for an aqueous medium, as estimated from the monitoring of the progression of a

  14. Enhanced electroactive and mechanical properties of poly(vinylidene fluoride) by controlling crystallization and interfacial interactions with low loading polydopamine coated BaTiO₃.

    PubMed

    Jia, Nan; Xing, Qian; Liu, Xu; Sun, Jing; Xia, Guangmei; Huang, Wei; Song, Rui

    2015-09-01

    Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer and the polar β-phase of PVDF shows superb electroactive properties. In order to enhance the β-phase of PVDF, extreme low content of BaTiO3 nanoparticles (BT-NPs) coated with polydopamine (Pdop) were incorporated into PVDF matrix by solution casting. The β-phase of the resulting PVDF nanocomposites film was dramatically increased and the d33 value reached 34.3±0.4 pCN(-1). It is found that the Pdop layer could improve the dispersibility and stability of the BT NPs in solution and endow the BT NPs good dispersity in the PVDF matrix. Moreover, the interfacial interaction between PVDF chains and the surface of BT-Pdop nanoparticles (BT-Pdop NPs) were revealed, in which the CF2 groups on PVDF could interact with the electron-rich plane of aromatic ring of Pdop moiety. This interaction, led to the increase of the crystallization activation energy as derived from the DSC nonisothermal crystallization measurement. The α-β crystal transformation, organization of interfacial interactions as well as the prevention of agglomeration of BT-NPs confer the improvement of mechanical and thermal properties of PVDF, such as toughness, tensile strength, elongation at break, and thermal conductivity. PMID:25985420

  15. Effect of dispersive long-range corrections to the pressure tensor: The vapour-liquid interfacial properties of the Lennard-Jones system revisited

    SciTech Connect

    Martínez-Ruiz, F. J.; Blas, F. J.; Mendiboure, B.; Moreno-Ventas Bravo, A. I.

    2014-11-14

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264–6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r{sub c} = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r{sub c} = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial

  16. Effect of dispersive long-range corrections to the pressure tensor: the vapour-liquid interfacial properties of the Lennard-Jones system revisited.

    PubMed

    Martínez-Ruiz, F J; Blas, F J; Mendiboure, B; Moreno-Ventas Bravo, A I

    2014-11-14

    We propose an extension of the improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 110, 6264-6269 (2006)], presented recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] to account for the intermolecular potential energy of spherical, rigid, and flexible molecular systems, to deal with the contributions to the microscopic components of the pressure tensor due to the dispersive long-range corrections. We have performed Monte Carlo simulations in the canonical ensemble to obtain the interfacial properties of spherical Lennard-Jones molecules with different cutoff distances, r(c) = 2.5, 3, 4, and 5σ. In addition, we have also considered cutoff distances r(c) = 2.5 and 3σ in combination with the inhomogeneous long-range corrections proposed in this work. The normal and tangential microscopic components of the pressure tensor are obtained using the mechanical or virial route in combination with the recipe of Irving and Kirkwood, while the macroscopic components are calculated using the Volume Perturbation thermodynamic route proposed by de Miguel and Jackson [J. Chem. Phys. 125, 164109 (2006)]. The vapour-liquid interfacial tension is evaluated using three different procedures, the Irving-Kirkwood method, the difference between the macroscopic components of the pressure tensor, and the Test-Area methodology. In addition to the pressure tensor and the surface tension, we also obtain density profiles, coexistence densities, vapour pressure, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the cutoff distance and the long-range corrections on these properties. According to our results, the main effect of increasing the cutoff distance (at fixed temperature) is to sharpen the vapour-liquid interface, to decrease the vapour pressure, and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness

  17. Role of the interfacial area for structure and dynamics in polymer nanocomposites: molecular dynamics simulations of polystyrene with silica nanoparticles of different shapes

    NASA Astrophysics Data System (ADS)

    Liu, Shengyuan; Böhm, Michael C.; Müller-Plathe, Florian

    2016-10-01

    Polystyrene nanocomposites containing a fraction of silica nanoparticles of different geometries (sphere, cube and regular tetrahedron) have been investigated by coarse-grained molecular dynamics simulations. Structural and dynamic properties of the polymer chains in the presence of the nanoparticles have been analyzed as a function of the nanoparticle mass fraction and geometrical shape. It has been found that the dimension of the polymer chains in the interphase expands due to the polymer–nanoparticle interaction. Their global dimension (averaged over the whole sample), however, shrinks when increasing the total surface area of the nanoparticles. The conformational changes of polymer chains in the interphase are monitored by a chain orientation parameter. The profiles of the chain dimension and orientation as a function of their distance from the nanoparticle center of mass show that the interphase thickness is roughly equal to the radius of gyration of the polymer chains. Moreover, the dynamic behavior of the polymer chains in nanocomposites is analyzed by the center of mass diffusion coefficient, the relaxation time of the chain end-to-end vector and the characteristic escape time of the polymer chains from the interphase. Compared with neat polymers, both the global and local chain dynamics in nanocomposites are hindered with an increasing nanoparticle mass fraction and with an increasing surface area. The local chain dynamics in the interphase is stronger affected by the surface area of the nanoparticles than the global one. Specifically, the global diffusion coefficient of polymer chains is almost linearly reduced with the total surface area of the nanoparticles, whereas the global relaxation time of the chain end-to-end vector increases almost linearly with it. The interphase relaxation time of the polymer chains increases superlinearly with the surface area of an individual nanoparticle. Additionally, the characteristic escape time of polymer chains from

  18. Multifractal properties of ball milling dynamics

    SciTech Connect

    Budroni, M. A. Pilosu, V.; Rustici, M.; Delogu, F.

    2014-06-15

    This work focuses on the dynamics of a ball inside the reactor of a ball mill. We show that the distribution of collisions at the reactor walls exhibits multifractal properties in a wide region of the parameter space defining the geometrical characteristics of the reactor and the collision elasticity. This feature points to the presence of restricted self-organized zones of the reactor walls where the ball preferentially collides and the mechanical energy is mainly dissipated.

  19. Dynamic molecular crystals with switchable physical properties.

    PubMed

    Sato, Osamu

    2016-06-21

    The development of molecular materials whose physical properties can be controlled by external stimuli - such as light, electric field, temperature, and pressure - has recently attracted much attention owing to their potential applications in molecular devices. There are a number of ways to alter the physical properties of crystalline materials. These include the modulation of the spin and redox states of the crystal's components, or the incorporation within the crystalline lattice of tunable molecules that exhibit stimuli-induced changes in their molecular structure. A switching behaviour can also be induced by changing the molecular orientation of the crystal's components, even in cases where the overall molecular structure is not affected. Controlling intermolecular interactions within a molecular material is also an effective tool to modulate its physical properties. This Review discusses recent advances in the development of such stimuli-responsive, switchable crystalline compounds - referred to here as dynamic molecular crystals - and suggests how different approaches can serve to prepare functional materials. PMID:27325090

  20. SiC (SCS-6) Fiber Reinforced-Reaction Formed SiC Matrix Composites: Microstructure and Interfacial Properties

    NASA Technical Reports Server (NTRS)

    Singh, M.; Dickerson, R. M.; Olmstead, Forrest A.; Eldridge, J. I.

    1997-01-01

    Microstructural and interfacial characterization of unidirectional SiC (SCS-6) fiber reinforced-reaction formed SiC (RFSC) composites has been carried out. Silicon-1.7 at.% molybdenum alloy was used as the melt infiltrant, instead of pure silicon, to reduce the activity of silicon in the melt as well as to reduce the amount of free silicon in the matrix. Electron microprobe analysis was used to evaluate the microstructure and phase distribution in these composites. The matrix is SiC with a bi-modal grain-size distribution and small amounts of MoSi2, silicon, and carbon. Fiber push-outs tests on these composites showed that a desirably low interfacial shear strength was achieved. The average debond shear stress at room temperature varied with specimen thickness from 29 to 64 MPa, with higher values observed for thinner specimens. Initial frictional sliding stresses showed little thickness dependence with values generally close to 30 MPa. Push-out test results showed very little change when the test temperature was increased to 800 C from room temperature, indicating an absence of significant residual stresses in the composite.

  1. Direct spontaneous growth and interfacial structural properties of inclined GaN nanopillars on r-plane sapphire

    SciTech Connect

    Adikimenakis, A.; Aretouli, K. E.; Tsagaraki, K.; Androulidaki, M.; Georgakilas, A.; Lotsari, A.; Dimitrakopulos, G. P. Kehagias, Th.; Komninou, Ph.

    2015-06-28

    The spontaneous growth of GaN nanopillars (NPs) by direct plasma-assisted molecular beam epitaxy on nitridated r-plane sapphire substrates has been studied. The emanation of metal-polarity NPs from inside an a-plane nonpolar GaN film was found to depend on both the substrate nitridation and the growth conditions. The density of NPs increased with increasing the duration of the nitridation process and the power applied on the radio-frequency plasma source, as well as the III/V flux ratio, while variation of the first two parameters enhanced the roughness of the substrate's surface. Transmission electron microscopy (TEM) techniques were employed to reveal the structural characteristics of the NPs and their nucleation mechanism from steps on the sapphire surface and/or interfacial semipolar GaN nanocrystals. Lattice strain measurements showed a possible Al enrichment of the first 5–6 monolayers of the NPs. By combining cross-sectional and plan-view TEM observations, the three-dimensional model of the NPs was constructed. The orientation relationship and interfacial accommodation between the NPs and the nonpolar a-plane GaN film were also elucidated. The NPs exhibited strong and narrow excitonic emission, suggesting an excellent structural quality.

  2. Brazing ZrO{sub 2} ceramic to Ti–6Al–4V alloy using NiCrSiB amorphous filler foil: Interfacial microstructure and joint properties

    SciTech Connect

    Cao, J.; Song, X.G.; Li, C.; Zhao, L.Y.; Feng, J.C.

    2013-07-15

    Reliable brazing of ZrO{sub 2} ceramic and Ti–6Al–4V alloy was achieved using NiCrSiB amorphous filler foil. The interfacial microstructure of ZrO{sub 2}/Ti–6Al–4V joints was characterized by scanning electron microscope, energy dispersive spectrometer and micro-focused X-ray diffractometer. The effects of brazing temperature on the interfacial microstructure and joining properties of brazed joints were investigated in detail. Active Ti of Ti–6Al–4V alloy dissolved into molten filler metal and reacted with ZrO{sub 2} ceramic to form a continuous TiO reaction layer, which played an important role in brazing. Various reaction phases including Ti{sub 2}Ni, Ti{sub 5}Si{sub 3} and β-Ti were formed in brazed joints. With an increasing of brazing temperature, the TiO layer thickened gradually while the Ti{sub 2}Ni amount reduced. Shear test indicated that brazed joints tend to fracture at the interface between ZrO{sub 2} ceramic and brazing seam or Ti{sub 2}Ni intermetallic layer. The maximum average shear strength reached 284.6 MPa when brazed at 1025 °C for 10 min. - Graphical Abstract: Interfacial microstructure of ZrO{sub 2}/TC4 joint brazed using NiCrSiB amorphous filler foil was: ZrO{sub 2}/TiO/Ti{sub 2}Ni + β-Ti + Ti{sub 5}Si{sub 3}/β-Ti/Widmanstätten structure/TC4. - Highlights: • Brazing of ZrO{sub 2} ceramic and Ti-6Al-4V alloy was achieved. • Interfacial microstructure was TiO/Ti{sub 2}Ni + β + Ti{sub 5}Si{sub 3}/β/Widmanstätten structure. • The formation of TiO produced the darkening effect of ZrO{sub 2} ceramic. • The highest joining strength of 284.6MPa was obtained.

  3. Annealing-induced interfacial reactions and the effects on the electrical properties of Ga doped ZnO/CuxS contacts to p-GaN

    NASA Astrophysics Data System (ADS)

    Gu, Wen; Wu, Xingyang; Song, Peng; Zhang, Jianhua

    2015-03-01

    Ga-doped ZnO (GZO) contacts to p-GaN were investigated by using CuxS interlayers under different annealing temperatures. It is shown that the GZO/CuxS contacts annealed at 300 and 400 °C for 3 min in air exhibited non-ohmic characteristics. However, annealing the contacts at 500 and 600 °C in air resulted in linear current-voltage characteristics. The lowest specific contact resistivity of 1.66 × 10-2 Ω cm2 was obtained for the contact annealed at 500 °C. To account for the formation mechanism of the ohmic contact, AES and XPS were used to analyze the interfacial properties of the GZO/CuxS/p-GaN and CuxS/p-GaN interfaces, respectively. The possible reasons were discussed in detail, suggesting that the interfacial reactions and atomic diffusions are thought to be responsible for forming such a low contact resistance.

  4. Influence of post-deposition annealing on interfacial properties between GaN and ZrO{sub 2} grown by atomic layer deposition

    SciTech Connect

    Ye, Gang; Wang, Hong Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Ang, Kian Siong; Geok Ng, Serene Lay; Ji, Rong; Liu, Zhi Hong

    2014-10-13

    Influence of post-deposition annealing on interfacial properties related to the formation/annihilation of interfacial GaO{sub x} layer of ZrO{sub 2} grown by atomic layer deposition (ALD) on GaN is studied. ZrO{sub 2} films were annealed in N{sub 2} atmospheres in temperature range of 300 °C to 700 °C and analyzed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that Ga-O bond to Ga-N bond area ratio decreases in the samples annealed at temperatures lower than 500 °C, which could be attributed to the thinning of GaO{sub x} layer associated with low surface defect states due to “clean up” effect of ALD-ZrO{sub 2} on GaN. However, further increase in annealing temperature results in deterioration of interface quality, which is evidenced by increase in Ga-O bond to Ga-N bond area ratio and the reduction of Ga-N binding energy.

  5. Interfacial Microstructure and Enhanced Mechanical Properties of Carbon Fiber Composites Caused by Growing Generation 1-4 Dendritic Poly(amidoamine) on a Fiber Surface.

    PubMed

    Gao, Bo; Zhang, Ruliang; Gao, Fucheng; He, Maoshuai; Wang, Chengguo; Liu, Lei; Zhao, Lifen; Cui, Hongzhi

    2016-08-23

    In an attempt to improve the mechanical properties of carbon fiber composites, propagation of poly(amidoamine) (PAMAM) dendrimers by in situ polymerization on a carbon fiber surface was performed. During polymerization processes, PAMAM was grafted on carbon fiber by repeated Michael addition and amidation reactions. The changes in surface microstructure and the chemical composition of carbon fibers before and after modification were investigated by atomic force microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. All the results indicated that PAMAM was successfully grown on the carbon fiber surface. Such propagation could significantly increase the surface roughness and introduce sufficient polar groups onto the carbon fiber surface, enhancing the surface wettability of carbon fiber. The fractured surface of carbon fiber-reinforced composites showed a great enhancement of interfacial adhesion. Compared with those of desized fiber composites, the interlaminar shear strength and interfacial shear strength of PAMAM/fiber-reinforced composites showed increases of 55.49 and 110.94%, respectively. PMID:27472250

  6. Influence of post-deposition annealing on interfacial properties between GaN and ZrO2 grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ye, Gang; Wang, Hong; Geok Ng, Serene Lay; Ji, Rong; Arulkumaran, Subramaniam; Ng, Geok Ing; Li, Yang; Liu, Zhi Hong; Ang, Kian Siong

    2014-10-01

    Influence of post-deposition annealing on interfacial properties related to the formation/annihilation of interfacial GaOx layer of ZrO2 grown by atomic layer deposition (ALD) on GaN is studied. ZrO2 films were annealed in N2 atmospheres in temperature range of 300 °C to 700 °C and analyzed by X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. It has been found that Ga-O bond to Ga-N bond area ratio decreases in the samples annealed at temperatures lower than 500 °C, which could be attributed to the thinning of GaOx layer associated with low surface defect states due to "clean up" effect of ALD-ZrO2 on GaN. However, further increase in annealing temperature results in deterioration of interface quality, which is evidenced by increase in Ga-O bond to Ga-N bond area ratio and the reduction of Ga-N binding energy.

  7. Conformational and adsorptive characteristics of albumin affect interfacial protein boundary lubrication: from experimental to molecular dynamics simulation approaches.

    PubMed

    Fang, Hsu-Wei; Hsieh, Man-Ching; Huang, Huei-Ting; Tsai, Cheng-Yen; Chang, Min-Hui

    2009-02-01

    The lifetime of artificial joints is mainly determined by their biotribological properties. Synovial fluid which consists of various biological molecules acts as the lubricant. Among the compositions of synovial fluid, albumin is the most abundant protein. Under high load and low sliding speed articulation of artificial joint, it is believed the lubricants form protective layers on the sliding surfaces under the boundary lubrication mechanism. The protective molecular layer keeps two surfaces from direct collision and thus decreases the possibility of wear damage. However, the lubricating ability of the molecular layer may vary due to the conformational change of albumin in the process. In this study, we investigated the influence of albumin conformation on the adsorption behaviors on the articulating surfaces and discuss the relationship between adsorbed albumin and its tribological behaviors. We performed the friction tests to study the effects of albumin unfolding on the frictional behaviors. The novelty of this research is to further carry out molecular dynamics simulation, and protein adsorption experiments to investigate the mechanisms of the albumin-mediated boundary lubrication of arthroplastic materials. It was observed that the thermal processes induce the loss of secondary structure of albumin. The compactness of the unfolded structure leads to a higher adsorption rate onto the articulating material surface and results in the increase of friction coefficient.

  8. Structural and dynamical properties of complex networks

    NASA Astrophysics Data System (ADS)

    Ghoshal, Gourab

    Recent years have witnessed a substantial amount of interest within the physics community in the properties of networks. Techniques from statistical physics coupled with the widespread availability of computing resources have facilitated studies ranging from large scale empirical analysis of the worldwide web, social networks, biological systems, to the development of theoretical models and tools to explore the various properties of these systems. Following these developments, in this dissertation, we present and solve for a diverse set of new problems, investigating the structural and dynamical properties of both model and real world networks. We start by defining a new metric to measure the stability of network structure to disruptions, and then using a combination of theory and simulation study its properties in detail on artificially generated networks; we then compare our results to a selection of networks from the real world and find good agreement in most cases. In the following chapter, we propose a mathematical model that mimics the structure of popular file-sharing websites such as Flickr and CiteULike and demonstrate that many of its properties can solved exactly in the limit of large network size. The remaining part of the dissertation primarily focuses on the dynamical properties of networks. We first formulate a model of a network that evolves under the addition and deletion of vertices and edges, and solve for the equilibrium degree distribution for a variety of cases of interest. We then consider networks whose structure can be manipulated by adjusting the rules by which vertices enter and leave the network. We focus in particular on degree distributions and show that, with some mild constraints, it is possible by a suitable choice of rules to arrange for the network to have any degree distribution we desire. In addition we define a simple local algorithm by which appropriate rules can be implemented in practice. Finally, we conclude our

  9. Three-Dimensional Adhesion Map Based on Surface and Interfacial Cutting Analysis System for Predicting Adhesion Properties of Composite Electrodes.

    PubMed

    Kim, Kyuman; Byun, Seoungwoo; Cho, Inseong; Ryou, Myung-Hyun; Lee, Yong Min

    2016-09-14

    Using a surface and interfacial cutting analysis system (SAICAS) that can measure the adhesion strength of a composite electrode at a specific depth from the surface, we can subdivide the adhesion strength of a composite electrode into two classes: (1) the adhesion strength between the Al current collector and the cathode composite electrode (FAl-Ca) and (2) the adhesion strength measured at the mid-depth of the cathode composite electrode (Fmid). Both adhesion strengths, FAl-Ca and Fmid, increase with increasing electrode density and loading level. From the SAICAS measurement, we obtain a mathematical equation that governs the adhesion strength of the composite electrodes. This equation revealed a maximum accuracy of 97.2% and 96.1% for FAl-Ca and Fmid, respectively, for four randomly chosen composite electrodes varying in electrode density and loading level. PMID:27398829

  10. Influence of string-like cooperative atomic motion on surface diffusion in the (110) interfacial region of crystalline Ni

    PubMed Central

    Zhang, Hao; Yang, Ying; Douglas, Jack F.

    2015-01-01

    Although we often think about crystalline materials in terms of highly organized arrays of atoms, molecules, or even colloidal particles, many of the important properties of this diverse class of materials relating to their catalytic behavior, thermodynamic stability, and mechanical properties derive from the dynamics and thermodynamics of their interfacial regions, which we find they have a dynamics more like glass-forming (GF) liquids than crystals at elevated temperatures. This is a general problem arising in any attempt to model the properties of naturally occurring crystalline materials since many aspects of the dynamics of glass-forming liquids remain mysterious. We examine the nature of this phenomenon in the “simple” case of the (110) interface of crystalline Ni, based on a standard embedded-atom model potential, and we then quantify the collective dynamics in this interfacial region using newly developed methods for characterizing the cooperative dynamics of glass-forming liquids. As in our former studies of the interfacial dynamics of grain-boundaries and the interfacial dynamics of crystalline Ni nanoparticles (NPs), we find that the interface of bulk crystalline Ni exhibits all the characteristics of glass-forming materials, even at temperatures well below the equilibrium crystal melting temperature, Tm. This perspective offers a new approach to modeling and engineering the properties of crystalline materials. PMID:25725748

  11. Numerical study of the influence of interfacial roughness on the exchange bias properties of ferromagnetic/antiferromagnetic bilayers

    NASA Astrophysics Data System (ADS)

    Moritz, J.; Bacher, P.; Dieny, B.

    2016-09-01

    Exchange bias and coercivity are both studied numerically in antiferromagnetic/ferromagnetic (AFM/FM) bilayers in the presence of a rough interface. The roughness is modeled by an AFM atomic mesa of variable width, in a periodic bidimensional system. Unlike the flat interface case, roughness can favor the presence of magnetic interfacial frustration or the formation of sharp magnetic domain walls pinned within the first AFM planes, inside the AFM mesa, in a Peierls potential well. We demonstrate by using athermal steepest-descent calculations that irreversible processes can occur during the hysteresis loops, when the AFM mesa width is less than half of the system period. In this case, the depinning of the domain wall from the Peierls potential well during the descending branch is not followed by its rewinding in a certain range of the AFM anisotropy. This leads to a large increase of both exchange bias and coercivity at low temperature and to an athermal training effect. When the thermal activation is taken into account by using Monte Carlo simulations, we show that a random walk of the domain wall occurs within the AFM layer. These processes induce changes in the AFM spin configuration when the system is cycled several times and produce a thermally activated training effect. Our simulations, interpreted in the context of periodic Peierls potential, provide an explanation for two important features of the exchange bias phenomenon, i.e., the thermal variation of its characteristic fields and the different contributions giving rise to the training effect (AFM bulk vs interface). More generally, the presence of interfacial atomic roughness reduces both exchange bias and coercivity with respect to the perfect interface case.

  12. A preliminary study on the dynamic-mechanical behaviour of compression moulded polypropylene/carbon fiber composites interfacially modified by a succinic anhydride grafted atactic polypropylene from polymer wastes

    NASA Astrophysics Data System (ADS)

    García-Martínez, Jesús María; Areso, Susana; Collar, Emilia P.

    2016-05-01

    Present communication is devoted to the study of the effect of a novel interfacial agent in polypropylene/carbon fibre composites. The interfacial agent used is a succinic anhydride grafted atactic polypropylene containing both succinic bridges and side grafts (aPP-SASA) and with 5.6% (5.6.10-4g/mol) of grafting content obtained at the GIP labs. The study considers the study dynamic-mechanical behaviour with temperature at a frequency of 1 hz to ascertain the differences in the interfacial activity. The samples were compression molded in order to isolate as far as possible the effect of the solely aPP-SASA in absence of those synergetic effects due to the preferential orientation of the fibres.

  13. The effects of Bi4Ti3O12 interfacial ferroelectric layer on the dielectric properties of Au/n-Si structures

    NASA Astrophysics Data System (ADS)

    Gökçen, Muharrem; Yıldırım, Mert

    2015-06-01

    Au/n-Si metal-semiconductor (MS) and Au/Bi4Ti3O12/n-Si metal-ferroelectric-semiconductor (MFS) structures were fabricated and admittance measurements were held between 5 kHz and 1 MHz at room temperature so that dielectric properties of these structures could be investigated. The ferroelectric interfacial layer Bi4Ti3O12 decreased the polarization voltage by providing permanent dipoles at metal/semiconductor interface. Depending on different mechanisms, dispersion behavior was observed in dielectric constant, dielectric loss and loss tangent versus bias voltage plots of both MS and MFS structures. The real and imaginary parts of complex modulus of MFS structure take smaller values than those of MS structure, because permanent dipoles in ferroelectric layer cause a large spontaneous polarization mechanism. While the dispersion in AC conductivity versus frequency plots of MS structure was observed at high frequencies, for MFS structure it was observed at lower frequencies.

  14. Influences of acid-base property of membrane on interfacial interactions related with membrane fouling in a membrane bioreactor based on thermodynamic assessment.

    PubMed

    Zhao, Leihong; Qu, Xiaolu; Zhang, Meijia; Lin, Hongjun; Zhou, Xiaoling; Liao, Bao-Qiang; Mei, Rongwu; Hong, Huachang

    2016-08-01

    Failure of membrane hydrophobicity in predicting membrane fouling requires a more reliable indicator. In this study, influences of membrane acid base (AB) property on interfacial interactions in two different interaction scenarios in a submerged membrane bioreactor (MBR) were studied according to thermodynamic approaches. It was found that both the polyvinylidene fluoride (PVDF) membrane and foulant samples in the MBR had relatively high electron donor (γ(-)) component and low electron acceptor (γ(+)) component. For both of interaction scenarios, AB interaction was the major component of the total interaction. The results showed that, the total interaction monotonically decreased with membrane γ(-), while was marginally affected by membrane γ(+), suggesting that γ(-) could act as a reliable indicator for membrane fouling prediction. This study suggested that membrane modification for fouling mitigation should orient to improving membrane surface γ(-) component rather than hydrophilicity. PMID:27155263

  15. Ionic Effects on Supercritical CO2-Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation with Ionic Strength, Temperature, and Pressure.

    PubMed

    Zhao, Lingling; Ji, Jiayuan; Tao, Lu; Lin, Shangchao

    2016-09-13

    For geological CO2 storage in deep saline aquifers, the interfacial tension (IFT) between supercritical CO2 and brine is critical for the storage security and design of the storage capacitance. However, currently, no predictive model exists to determine the IFT of supercritical CO2 against complex electrolyte solutions involving various mixed salt species at different concentrations and compositions. In this paper, we use molecular dynamics (MD) simulations to investigate the effect of salt ions on the incremental IFT at the supercritical CO2-brine interface with respect to that at the reference supercritical CO2-water interface. Supercritical CO2-NaCl solution, CO2-CaCl2 solution and CO2-(NaCl+CaCl2) mixed solution systems are simulated at 343 K and 20 MPa under different salinities and salt compositions. We find that the valence of the cations is the primary contributor to the variation in IFT, while the Lennard-Jones potentials for the cations pose a smaller impact on the IFT. Interestingly, the incremental IFT exhibits a general linear correlation with the ionic strength in the above three electrolyte systems, and the slopes are almost identical and independent of the solution types. Based on this finding, a universal predictive formula for IFTs of CO2-complex electrolyte solution systems is established, as a function of ionic strength, temperature, and pressure. The predicted IFTs using the established formula agree perfectly (with a high statistical confidence level of ∼96%) with a wide range of experimental data for CO2 interfacing with different electrolyte solutions, such as those involving MgCl2 and Na2SO4. This work provides an efficient and accurate route to directly predict IFTs in supercritical CO2-complex electrolyte solution systems for practical engineering applications, such as geological CO2 sequestration in deep saline aquifers and other interfacial systems involving complex electrolyte solutions.

  16. Relating the variation of secondary structure of gelatin at fish oil-water interface to adsorption kinetics, dynamic interfacial tension and emulsion stability.

    PubMed

    Liu, Huihua; Wang, Bo; Barrow, Colin J; Adhikari, Benu

    2014-01-15

    The objectives of this study were to quantify the relationship between secondary structure of gelatin and its adsorption at the fish-oil/water interface and to quantify the implication of the adsorption on the dynamic interfacial tension (DST) and emulsion stability. The surface hydrophobicity of the gelatin solutions decreased when the pH increased from 4.0 to 6.0, while opposite tend was observed in the viscosity of the solution. The DST values decreased as the pH increased from 4.0 to 6.0, indicating that higher positive charges (measured trough zeta potential) in the gelatin solution tended to result in higher DST values. The adsorption kinetics of the gelatin solution was examined through the calculated diffusion coefficients (Deff). The addition of acid promoted the random coil and β-turn structures at the expense of α-helical structure. The addition of NaOH decreased the β-turn and increased the α-helix and random coil. The decrease in the random coil and triple helix structures in the gelatin solution resulted into increased Deff values. The highest diffusion coefficients, the highest emulsion stability and the lowest amount of random coil and triple helix structures were observed at pH=4.8. The lowest amount of random coil and triple helix structures in the interfacial protein layer correlated with the highest stability of the emulsion (highest ESI value). The lower amount of random coil and triple helix structures allowed higher coverage of the oil-water interface by relatively highly ordered secondary structure of gelatin.

  17. Ionic Effects on Supercritical CO2-Brine Interfacial Tensions: Molecular Dynamics Simulations and a Universal Correlation with Ionic Strength, Temperature, and Pressure.

    PubMed

    Zhao, Lingling; Ji, Jiayuan; Tao, Lu; Lin, Shangchao

    2016-09-13

    For geological CO2 storage in deep saline aquifers, the interfacial tension (IFT) between supercritical CO2 and brine is critical for the storage security and design of the storage capacitance. However, currently, no predictive model exists to determine the IFT of supercritical CO2 against complex electrolyte solutions involving various mixed salt species at different concentrations and compositions. In this paper, we use molecular dynamics (MD) simulations to investigate the effect of salt ions on the incremental IFT at the supercritical CO2-brine interface with respect to that at the reference supercritical CO2-water interface. Supercritical CO2-NaCl solution, CO2-CaCl2 solution and CO2-(NaCl+CaCl2) mixed solution systems are simulated at 343 K and 20 MPa under different salinities and salt compositions. We find that the valence of the cations is the primary contributor to the variation in IFT, while the Lennard-Jones potentials for the cations pose a smaller impact on the IFT. Interestingly, the incremental IFT exhibits a general linear correlation with the ionic strength in the above three electrolyte systems, and the slopes are almost identical and independent of the solution types. Based on this finding, a universal predictive formula for IFTs of CO2-complex electrolyte solution systems is established, as a function of ionic strength, temperature, and pressure. The predicted IFTs using the established formula agree perfectly (with a high statistical confidence level of ∼96%) with a wide range of experimental data for CO2 interfacing with different electrolyte solutions, such as those involving MgCl2 and Na2SO4. This work provides an efficient and accurate route to directly predict IFTs in supercritical CO2-complex electrolyte solution systems for practical engineering applications, such as geological CO2 sequestration in deep saline aquifers and other interfacial systems involving complex electrolyte solutions. PMID:27564433

  18. Exact dynamic properties of molecular motors

    NASA Astrophysics Data System (ADS)

    Boon, N. J.; Hoyle, R. B.

    2012-08-01

    Molecular motors play important roles within a biological cell, performing functions such as intracellular transport and gene transcription. Recent experimental work suggests that there are many plausible biochemical mechanisms that molecules such as myosin-V could use to achieve motion. To account for the abundance of possible discrete-stochastic frameworks that can arise when modeling molecular motor walks, a generalized and straightforward graphical method for calculating their dynamic properties is presented. It allows the calculation of the velocity, dispersion, and randomness ratio for any proposed system through analysis of its structure. This article extends work of King and Altman ["A schematic method of deriving the rate laws of enzyme-catalyzed reactions," J. Phys. Chem. 60, 1375-1378 (1956)], 10.1021/j150544a010 on networks of enzymatic reactions by calculating additional dynamic properties for spatially hopping systems. Results for n-state systems are presented: single chain, parallel pathway, divided pathway, and divided pathway with a chain. A novel technique for combining multiple system architectures coupled at a reference state is also demonstrated. Four-state examples illustrate the effectiveness and simplicity of these methods.

  19. Auxins action on Glycine max secretory phospholipase A2 is mediated by the interfacial properties imposed by the phytohormones.

    PubMed

    Mariani, María Elisa; Madoery, Ricardo Román; Fidelio, Gerardo Daniel

    2015-07-01

    Secretory phospholipase A2 (sPLA2) are soluble enzymes that catalyze the conversion of phospholipids to lysophospholipids and free fatty acids at membrane interfaces. The effect of IAA and IPA auxins over the activity of recombinant sPLA2 isoforms from Glycine max was studied using membrane model systems including mixed micelles and Langmuir lipid monolayers. Both phytohormones stimulate the activity of both plant sPLA2 using DLPC/Triton mixed micelles as substrate. To elucidate the mechanism of action of the phytohormones, we showed that both auxins are able to self-penetrate lipid monolayers and cause an increment in surface pressure and an expansion of lipid/phytohormone mixed interfaces. The stimulating effect of auxins over phospholipase A2 activity was still present when using Langmuir mixed monolayers as organized substrate regardless of sPLA2 source (plant or animal). All the data suggest that the stimulating effect of auxins over sPLA2 is due to a more favorable interfacial environment rather to a direct effect over the enzyme.

  20. Multilayered poly(vinylidene fluoride) composite membranes with improved interfacial compatibility: correlating pervaporation performance with free volume properties.

    PubMed

    An, Quanfu; Chen, Jung-Tsai; De Guzman, Manuel; Hung, Wei-Song; Lee, Kueir-Rarn; Lai, Juin-Yih

    2011-09-01

    A spin-coating process integrated with an ozone-induced graft polymerization technique was applied in this study. The purpose was to improve the poor interfacial compatibility between a selective layer of poly(2-hydroxyethyl methacrylate) (PHEMA) and the surface of a poly(vinylidene fluoride) (PVDF) substrate. The composite membranes thus fabricated were tested for their pervaporation performance in dehydrating an ethyl acetate/water mixture. Furthermore, the composite membranes were characterized by field emission scanning electron microscopy (FE-SEM) for morphological change observation and by Fourier transform infrared spectroscopy equipped with attenuated total reflectance (ATR-FTIR) for surface chemical composition analysis. Effects of grafting density and spin-coating speed on pervaporation performance were examined. The composite membrane pervaporation performance was elucidated by means of free volume and depth profile data obtained with the use of a variable monoenergy slow positron beam (VMSPB). Results indicated that a smaller free volume was correlated with a higher pervaporation performance of a composite membrane consisting of a selective layer of spin-coated PHEMA on a PHEMA-grafted PVDF substrate (S-PHEMA/PHEMA-g-PVDF). The composite membrane depth profile illustrated that an S-PHEMA layer spin-coated at a higher revolutions per minute (rpm) was thinner and denser than that at a lower rpm.

  1. Auxins action on Glycine max secretory phospholipase A2 is mediated by the interfacial properties imposed by the phytohormones.

    PubMed

    Mariani, María Elisa; Madoery, Ricardo Román; Fidelio, Gerardo Daniel

    2015-07-01

    Secretory phospholipase A2 (sPLA2) are soluble enzymes that catalyze the conversion of phospholipids to lysophospholipids and free fatty acids at membrane interfaces. The effect of IAA and IPA auxins over the activity of recombinant sPLA2 isoforms from Glycine max was studied using membrane model systems including mixed micelles and Langmuir lipid monolayers. Both phytohormones stimulate the activity of both plant sPLA2 using DLPC/Triton mixed micelles as substrate. To elucidate the mechanism of action of the phytohormones, we showed that both auxins are able to self-penetrate lipid monolayers and cause an increment in surface pressure and an expansion of lipid/phytohormone mixed interfaces. The stimulating effect of auxins over phospholipase A2 activity was still present when using Langmuir mixed monolayers as organized substrate regardless of sPLA2 source (plant or animal). All the data suggest that the stimulating effect of auxins over sPLA2 is due to a more favorable interfacial environment rather to a direct effect over the enzyme. PMID:25987194

  2. Brownian Dynamics Simulation of Protein Solutions: Structural and Dynamical Properties

    SciTech Connect

    Mereghetti, Paolo; Gabdoulline, Razif; Wade, Rebecca C.

    2010-12-01

    The study of solutions of biomacromolecules provides an important basis for understanding the behavior of many fundamental cellular processes, such as protein folding, self-assembly, biochemical reactions, and signal transduction. Here, we describe a Brownian dynamics simulation procedure and its validation for the study of the dynamic and structural properties of protein solutions. In the model used, the proteins are treated as atomically detailed rigid bodies moving in a continuum solvent. The protein-protein interaction forces are described by the sum of electrostatic interaction, electrostatic desolvation, nonpolar desolvation, and soft-core repulsion terms. The linearized Poisson-Boltzmann equation is solved to compute electrostatic terms. Simulations of homogeneous solutions of three different proteins with varying concentrations, pH, and ionic strength were performed. The results were compared to experimental data and theoretical values in terms of long-time self-diffusion coefficients, second virial coefficients, and structure factors. The results agree with the experimental trends and, in many cases, experimental values are reproduced quantitatively. There are no parameters specific to certain protein types in the interaction model, and hence the model should be applicable to the simulation of the behavior of mixtures of macromolecules in cell-like crowded environments.

  3. The influence of interfacial properties on two-phase liquid flow of organic contaminants in groundwater. Progress report, September 1, 1993--August 31, 1994

    SciTech Connect

    Demond, A.H.; Hayes, K.F.

    1994-04-01

    Wettability is sometimes described as the most important factor influencing two-phase flow in porous media. A groundwater aquifer is often thought of as water-wet. But that state, in reality, depends on the nature of the aquifer solids, the composition of the groundwater and the properties of the organic liquid contaminant. The primary purpose of the research conducted here is to examine quantitatively the impact on wettability of a range of factors which may be critical at actual DOE waste sites. The goal is to understand how sorption at the various interfaces of the system modifies interfacial properties, primarily wettability, and then how, in turn, wettability determines the soil transport property of capillary pressure as a function of saturation. Specifically, this research seeks to (1) determine the range of wettability changes that may occur for DOE waste sites using wettability measures suitable for complex systems, (2) establish a correlation between these alternate measures of wettability and the contact angle, (3) establish the mechanism by which metals, organic solutes and soil particle coatings impact wettability, (4) evaluate whether the methodology developed in previous project periods among sorption, contact angle, and capillary pressure can be extended to more complex systems.

  4. Nondestructive Investigation of Heterojunction Interfacial Properties Using Two-Wavelength Raman Spectroscopy on Thin-Film CdS/CdTe Solar Cells.

    PubMed

    Zeng, Guanggen; Harrison, Paul; Kidman, Ali; Al-Mebir, Alaa; Feng, Lianghuan; Wu, Judy

    2016-09-01

    Raman spectra specific to CdS and CdTe were obtained on the CdS/CdTe heterojunction interface by employing two excitation wavelengths of λ1 = 488 nm and λ2 = 633 nm, respectively, from the glass side of Glass/FTO/CdS/CdTe/HgTe:Cu:graphite/Ag solar cells fabricated using pulsed-laser deposition (PLD). This two-wavelength Raman spectroscopy approach, with one wavelength selected below the absorption edge of the window layer (λ2 in this case), allows nondestructive characterization of the CdS/CdTe heterojunction and therefore correlation of the interfacial properties with the solar cell performance. In this study, the evolution of the interfacial strain relaxation during cell fabrication process was found to be affected not only by the inter-diffusion of S and Te corresponding to the formation of CdSxTe1-x ternary alloy with a various x from ∼0.01 to ∼0.067, but also by the variation in misfit dislocations (MDs) at CdS/CdTe interface from Raman TO/LO ratio ∼2.85 for as-deposited sample to TO/LO ∼4.44 for the cells post treatment. This is consistent with the change of the Urbach energy from 0.03 eV to 0.09 eV, indicative of the deterioration of crystalline quality of CdTe at interface although improved CdTe crystalline quality was observed away from the interface after the CdCl2 annealing. This difference crucially impacted on the rectification characteristics of the CdS/CdTe heterojunction and therefore the solar cell performance.

  5. An approach towards tailoring interfacial structures and properties of multiphase renewable thermoplastics from lignin–nitrile rubber

    DOE PAGESBeta

    Bova, Tony; Tran, Chau D.; Balakshin, Mikhail Y.; Chen, Jihua; Capanema, Ewellyn A.; Naskar, Amit K.

    2016-08-08

    Lignin-derived thermoplastics and elastomers with both versatile performance and commercialization potential have been an elusive pursuit for the past several decades. Lignin content has been limited to about 30 wt %, often requiring chemical modification, solvent fractionation of lignin, or prohibitively expensive additives. Each of these factors is a deterrent to industrial adoption of lignin-based polymers, limiting the potential of this renewable resource. Herein we describe high-performance multiphase thermoplastics made with a blend of 41 wt % unmodified industrial lignin and low-cost additives in a matrix of general-purpose acrylonitrile-butadiene rubber (NBR). Hardwood soda lignin (HSL) and softwood kraft lignin (SKL)more » were blended under high shear conditions with NBR, carbon black (CB), polyethylene oxide (PEO), boric acid (BA), and dicumyl peroxide (DCP). This combination with SKL lignin in the proper proportions resulted in a thermoplastic with a tensile strength and failure strain of 25.2 MPa and 9 %, respectively; it exhibited an unexpected tensile yield, similar to that of ABS, a commodity thermoplastic. The analogous HSL lignin compositions are tough materials with tensile strengths of 7.3 16.7 MPa and failure strain of 80 140 %. The contrasting ductility and yield stress behavior were analyzed based on the compositions morphology and interfacial structure arising from the nature of each lignin studied. Lastly, the roles of CB as a reinforcement in the rubbery phase, DCP and BA as cross-linkers to create multiphase networks, and PEO to promote the adhesion and compatibility of lignin in commercial-grade NBR are also discussed in detail.« less

  6. Effect of Interfacial Microstructure Evolution on Mechanical Properties and Fracture Behavior of Friction Stir-Welded Al-Cu Joints

    NASA Astrophysics Data System (ADS)

    Xue, P.; Xiao, B. L.; Ma, Z. Y.

    2015-07-01

    The interfacial microstructure evolution of Al-Cu joints during friction stir welding and post-welding annealing and its influence on the tensile strength and the fracture behavior were investigated in detail. An obvious interface including three sub-layers of α-Al, Al2Cu, and Al4Cu9 intermetallic compound (IMC) layers is generated in the as-FSW joint. With the development of annealing process, the α-Al layer disappeared and a new IMC layer of AlCu formed between initial two IMC layers of Al2Cu and Al4Cu9. The growth rate of IMC layers was diffusion controlled before the formation of Kirkendall voids, with activation energy of 117 kJ/mol. When the total thickness of IMC layers was less than the critical value of 2.5 μm, the FSW joints fractured at the heat-affected zone of Al side with a high ultimate tensile strength (UTS) of ~100 MPa. When the thickness of IMC layers exceeded 2.5 μm, the joints fractured at the interface. For relatively thin IMC layer, the joints exhibited a slightly decreased UTS of ~90 MPa and an inter-granular fracture mode with crack propagating mainly between the Al2Cu and AlCu IMC layers. However, when the IMC layer was very thick, crack propagated in the whole IMC layers and the fracture exhibited trans-granular mode with a greatly decreased UTS of 50-60 MPa.

  7. Understanding the interfacial behavior in isopycnic Lennard-Jones mixtures by computer simulations.

    PubMed

    Garrido, José Matías; Piñeiro, Manuel M; Mejía, Andrés; Blas, Felipe J

    2016-01-14

    The physical characterization of the singular interfacial behavior of heterogeneous fluid systems is a very important step in preliminary stages of the design process, and also in the subsequent procedures for the determination of the optimal operating conditions. Molar isopycnicity or molar density inversion is a special case of phase equilibrium behavior that directly affects the relative position of phases in heterogeneous mixtures, without being affected by gravitational fields. This work is dedicated to characterize the impact of molar density inversion on the interfacial properties of Lennard-Jones binary mixtures. The results and specific trends of the molar density inversion phenomena on the peculiar calculated composition profiles across the interface and interfacial tensions are explored by using canonical molecular dynamics simulations of the Lennard-Jones binary mixtures. Our results show that the density inversion causes drastic changes in the density profiles of the mixtures. In particular, symmetrical and equal-sized Lennard-Jones mixtures always exhibit desorption along the interfacial zone, i.e. the interfacial concentration profiles show a relative minimum at the interface of the total density profiles that increases when the dispersive energy parameter (ε(ij)) between unlike species decreases. However, as the asymmetry of the Lennard-Jones mixtures increases (σ(i) ≠ σ(j)), the concentration profiles display a relative maximum at the interface, which implies the adsorption of the total density profiles along the interfacial zone. PMID:26660062

  8. Understanding the interfacial behavior in isopycnic Lennard-Jones mixtures by computer simulations.

    PubMed

    Garrido, José Matías; Piñeiro, Manuel M; Mejía, Andrés; Blas, Felipe J

    2016-01-14

    The physical characterization of the singular interfacial behavior of heterogeneous fluid systems is a very important step in preliminary stages of the design process, and also in the subsequent procedures for the determination of the optimal operating conditions. Molar isopycnicity or molar density inversion is a special case of phase equilibrium behavior that directly affects the relative position of phases in heterogeneous mixtures, without being affected by gravitational fields. This work is dedicated to characterize the impact of molar density inversion on the interfacial properties of Lennard-Jones binary mixtures. The results and specific trends of the molar density inversion phenomena on the peculiar calculated composition profiles across the interface and interfacial tensions are explored by using canonical molecular dynamics simulations of the Lennard-Jones binary mixtures. Our results show that the density inversion causes drastic changes in the density profiles of the mixtures. In particular, symmetrical and equal-sized Lennard-Jones mixtures always exhibit desorption along the interfacial zone, i.e. the interfacial concentration profiles show a relative minimum at the interface of the total density profiles that increases when the dispersive energy parameter (ε(ij)) between unlike species decreases. However, as the asymmetry of the Lennard-Jones mixtures increases (σ(i) ≠ σ(j)), the concentration profiles display a relative maximum at the interface, which implies the adsorption of the total density profiles along the interfacial zone.

  9. Mechanics of interfacial composite materials.

    PubMed

    Subramaniam, Anand Bala; Abkarian, Manouk; Mahadevan, L; Stone, Howard A

    2006-11-21

    Recent experiments and simulations have demonstrated that particle-covered fluid/fluid interfaces can exist in stable nonspherical shapes as a result of the steric jamming of the interfacially trapped particles. The jamming confers the interface with solidlike properties. We provide an experimental and theoretical characterization of the mechanical properties of these armored objects, with attention given to the two-dimensional granular state of the interface. Small inhomogeneous stresses produce a plastic response, while homogeneous stresses produce a weak elastic response. Shear-driven particle-scale rearrangements explain the basic threshold needed to obtain the near-perfect plastic deformation that is observed. Furthermore, the inhomogeneous stress state of the interface is exhibited experimentally by using surfactants to destabilize the particles on the surface. Since the interfacially trapped particles retain their individual characteristics, armored interfaces can be recognized as a kind of composite material with distinct chemical, structural, and mechanical properties.

  10. Self-organization, interfacial interaction and photophysical properties of gold nanoparticle complexes derived from resilin-mimetic fluorescent protein rec1-resilin.

    PubMed

    Mayavan, Sundar; Dutta, Naba K; Choudhury, Namita R; Kim, Misook; Elvin, Christopher M; Hill, Anita J

    2011-04-01

    In this investigation we report the synthesis of optically coupled hybrid architectures based on a new biomimetic fluorescent protein rec1-resilin and nanometer-scale gold nanoparticles (AuNPs) in a one-step method using a non-covalent mode of binding protocol. The presence of uniformly distributed fluorophore sequences, -Ser(Thr)-Tyr-Gly- along the molecular structure of rec1-resilin provides significant opportunity to synthesize fluorophore-modified AuNPs bioconjugates with unique photophysical properties. The detailed analyses of the AuNP-bioconjugates, synthesized under different experimental conditions using spectroscopic, microscopic and scattering techniques demonstrate the organizational pathways and the electronic and photophysical properties of the developed AuNP-rec1-resilin bioconjugates. The calculation of the bimolecular quenching constant using the Stern-Volmer equation confirms that the dominant mechanism involved in quenching of fluorescence of rec1-resilin in the presence of AuNP is static. Photoacoustic infrared spectroscopy was employed to understand the nature of the interfacial interaction between the AuNP and rec1-resilin and its evolution with pH. In such bioconjugates the quenched emission of fluorescence by AuNP on the fluorophore moiety of rec1-resilin in the immediate vicinity of the AuNP has significant potential for fluorescence-based detection schemes, sensors and also can be incorporated into nanoparticle-based devices.

  11. Amino-Functionalized Multiwalled Carbon Nanotubes Lead to Successful Ring-Opening Polymerization of Poly(ε-caprolactone): Enhanced Interfacial Bonding and Optimized Mechanical Properties.

    PubMed

    Roumeli, Eleftheria; Papageorgiou, Dimitrios G; Tsanaktsis, Vasilios; Terzopoulou, Zoe; Chrissafis, Konstantinos; Avgeropoulos, Apostolos; Bikiaris, Dimitrios N

    2015-06-01

    In this work, the synthesis, structural characteristics, interfacial bonding, and mechanical properties of poly(ε-caprolactone) (PCL) nanocomposites with small amounts (0.5, 1.0, and 2.5 wt %) of amino-functionalized multiwalled carbon nanotubes (f-MWCNTs) prepared by ring-opening polymerization (ROP) are reported. This method allows the creation of a covalent-bonding zone on the surface of nanotubes, which leads to efficient debundling and therefore satisfactory dispersion and effective load transfer in the nanocomposites. The high covalent grafting extent combined with the higher crystallinity provide the basis for a significant enhancement of the mechanical properties, which was detected in the composites with up to 1 wt % f-MWCNTs. Increasing filler concentration encourages intrinsic aggregation forces, which allow only minor grafting efficiency and poorer dispersion and hence inferior mechanical performance. f-MWCNTs also cause a significant improvement on the polymerization reaction of PCL. Indeed, the in situ polymerization kinetics studies reveal a significant decrease in the reaction temperature, by a factor of 30-40 °C, combined with accelerated the reaction kinetics during initiation and propagation and a drastically reduced effective activation energy.

  12. The influence of starch oxidization and aluminate coupling agent on interfacial interaction, rheological behavior, mechanical and thermal properties of poly(propylene carbonate)/starch blends

    NASA Astrophysics Data System (ADS)

    Jiang, Guo; Zhang, Shui-Dong; Huang, Han-Xiong; The Key Laboratory of Polymer Processing Engineering of the Ministry of Education Team

    Poly(propylene carbonate) (PPC) is a kind of new biodegradable polymer that is synthesized by copolymerization of propylene oxide and carbon dioxide. In this work, PPC end-capped with maleic anhydride (PPCMA)/thermoplastic starch (TPS), PPCMA/thermoplastic oxidized starch (TPOS) and PPCMA/AL-TPOS (TPOS modified by aluminate coupling agent) blends were prepared by melt blending to improve its thermal and mechanical properties. FTIR results showed that there existed hydrogen-bonding interaction between PPCMA and starch. SEM observation revealed that the compatibility between PPCMA and TPOS was improved by the oxidation of starch. The enhanced interfacial interactions between PPCMA and TPOS led to a better performance of PPC blends such as storage modulus (G'), loss modulus (G''), complex viscosity (η*), tensile strength and thermal properties. Furthermore, the modification of TPOS by aluminate coupling agent (AL) facilitated the dispersion of oxidized starch in PPC matrix, and resulted in increasing the tensile strength and thermal stability. National Natural Science Foundation of China, National Science Fund of Guangdong Province.

  13. Dynamic Properties of Langmuir Films by Laser Light Scattering

    NASA Astrophysics Data System (ADS)

    Sanders, John Newell

    A technique and instrumentation for measuring visco-elastic properties of Langmuir film organic monolayers has been developed. This technique is used to characterize certain films used in the manufacture of Langmuir-Blodgett solid films. Furthermore a comparison of the dynamic viscous and elastic moduli determined by this technique is made with static values determined from the Pressure versus Area Isotherm. Briefly, a Langmuir film consists of amphiphilic organic molecules spread in a trough filled with pure water. The hydrophobic ends of the molecules trap them on the water surface. When spread at a dilute concentration the molecules exhibit two dimensional ideal gas behavior. By increasing the surface concentration one obtains two dimensional liquid and finally two dimensional solid behavior. The measurement is performed by electrodynamically driving the liquid surface with the electric field from a razor blade brought to within less than 1 mm of the surface. A sinusoidally varying electric field induces dipoles in the water subphase and generates waves at twice the driving frequency (Attractive dipoles are generated whether the field is positive or negative). The space propagation and damping of these waves is measured by laser light scattering. A focused laser beam incident on the surface is reflected at an angle due to the slope of the waves on the surface. By observing the movement of the beam the amplitude and phase of the oscillation with respect to the driving function may be determined (via a Lock-In amplifier) at various distances from the razor blade. One may directly profile the waves by translating the profiler, or one may observe the variation in amplitude and phase while scanning the frequency or surface pressure. In the latter cases one uses a known reference state to determine the wavelength and damping from the amplitude and phase change. This data is fit by a non-linear least squares curve fitting program to determine the wavelength and space

  14. Dynamical properties of the Watsonia asteroid family

    NASA Astrophysics Data System (ADS)

    Tsirvoulis, G.; Novakovic, B.; Knezevic, Z.; Cellino, A.

    2014-07-01

    Introduction: In recent years, a rare class of asteroids has been discovered [1], with its distinguishing characteristic being the anomalous polarimetric properties of its members. Named Barbarians, after (234) Barbara, the prototype of the class, these asteroids show negative polarization at unusually high phase-angles compared to normal asteroids. Motivated by the fact that some of the few discovered Barbarians seemed to be related to the Watsonia asteroid family, Cellino et al. [2] performed a search for more Barbarians among its members. A positive result of this search led to the conclusion that Watsonia is indeed an important repository of Barbarian asteroids. Based on these findings, we decided to analyze this family in detail. Basic information: According to available data, Watsonia is an L-type asteroid family, located in the middle of the main asteroid belt (2.68 < a_{p} < 2.82 au), with low to moderate orbital eccentricities (0.1 < e_{p} < 0.15) and relatively high inclinations (16.5^{o} < i_{p} < 18^{o}). Methodology: The first step in our study is to derive a reliable list of Watsonia family members. To that purpose, we first calculate the synthetic proper elements [3] of an extended catalogue including numbered, as well as multi and single opposition asteroids, in a wide region around the family. To this catalogue we apply the Hierarchical Clustering Method (HCM)[4] to determine the membership of the family, coinciding with the requirement that all confirmed neighboring Barbarians are included (see figure). To detect potential interlopers and refine the membership list, additional data such as the SDSS colors and WISE albedos are used. Moreover, we identify all relevant resonances and analyze the dynamical characteristics of the region occupied by the family. Then we estimate the age of the family, and finally, we perform numerical integrations of test particles to investigate possible dynamical links to other known Barbarians and to the near

  15. Effect of time on the interfacial and foaming properties of beta-lactoglobulin/acacia gum electrostatic complexes and coacervates at pH 4.2.

    PubMed

    Schmitt, Christophe; da Silva, Tânia Palma; Bovay, Claudine; Rami-Shojaei, Sabrina; Frossard, Philippe; Kolodziejczyk, Eric; Leser, Martin E

    2005-08-16

    The electrostatic complexation between beta-lactoglobulin and acacia gum was investigated at pH 4.2 and 25 degrees C. The binding isotherm revealed a spontaneous exothermic reaction, leading to a DeltaHobs = -2108 kJ mol(-1) and a saturation protein to polysaccharide weight mixing ratio of 2:1. Soluble electrostatic complexes formed in these conditions were characterized by a hydrodynamic diameter of 119 +/- 0.6 nm and a polydispersity index of 0.097. The effect of time on the interfacial and foaming properties of these soluble complexes was investigated at a concentration of 0.1 wt % at two different times after mixing (4 min, referred as t approximately 0 h and t = 24 h). At t approximately 0 h, the mixture is mainly made of aggregating soluble electrostatic complexes, whereas after 24 h these complexes have already insolubilize to form liquid coacervates. The surface elasticity, viscosity and phase angle obtained at low frequency (0.01 Hz) using oscillating bubble tensiometry revealed higher fluidity and less rigidity in the film formed at t approximately 0 h. This observation was confirmed by diminishing bubble experiments coupled with microscopy of the thin film. It was thicker, more homogeneous and contained more water at t approximately 0 h as compared to t = 24 h (thinner film, less water). This led to very different gas permeability's of Kt approximately 0 h = 0.021 cm s(-1) and Kt=24 h) = 0.449 cm s(-1), respectively. Aqueous foams produced with the beta-lactoglobulin/acacia gum electrostatic complexes or coacervates exhibited very different stability. The former (t approximately 0 h) had a stable volume, combining low drainage rate and mainly air bubble disproportionation as the destabilization mechanism. By contrast, using coacervates aged for 24 h, the foam was significantly less stable, combining fast liquid drainage and air bubble destabilization though fast gas diffusion followed by film rupture and bubble coalescence. The strong effect of time on

  16. An Investigation into the Effects of Interface Stress and Interfacial Arrangement on Temperature Dependent Thermal Properties of a Biological and a Biomimetic Material

    SciTech Connect

    Tomar, Vikas

    2015-01-12

    A significant effort in the biomimetic materials research is on developing materials that can mimic and function in the same way as biological tissues, on bio-inspired electronic circuits, on bio-inspired flight structures, on bio-mimetic materials processing, and on structural biomimetic materials, etc. Most structural biological and biomimetic material properties are affected by two primary factors: (1) interfacial interactions between an organic and an inorganic phase usually in the form of interactions between an inorganic mineral phase and organic protein network; and (2) structural arrangement of the constituents. Examples are exoskeleton structures such as spicule, nacre, and crustacean exoskeletons. A significant effort is being directed towards making synthetic biomimetic materials based on a manipulation of the above two primary factors. The proposed research is based on a hypothesis that in synthetic materials with biomimetic morphology thermal conductivity, k, (how fast heat is carried away) and thermal diffusivity, D, (how fast a material’s temperature rises: proportional to the ratio of k and heat capacity) can be engineered to be either significantly low or significantly high based on a combination of chosen interface orientation and interfacial arrangement in comparison to conventional material microstructures with the same phases and phase volume fractions. METHOD DEVELOPMENT 1. We have established a combined Raman spectroscopy and nanomechanical loading based experimental framework to perform environment (liquid vs. air vs. vacuum) dependent and temperature dependent (~1000 degree-C) in-situ thermal diffusivity measurements in biomaterials at nanoscale to micron scale along with the corresponding analytical theoretic calculations. (Zhang and Tomar, 2013) 2. We have also established a new classical molecular simulation based framework to measure thermal diffusivity in biomolecular interfaces. We are writing a publication currently (Qu and Tomar

  17. Interfacial Control of Magnetic Properties at LaMnO3/LaNiO3 Interfaces.

    PubMed

    Gibert, M; Viret, M; Torres-Pardo, A; Piamonteze, C; Zubko, P; Jaouen, N; Tonnerre, J-M; Mougin, A; Fowlie, J; Catalano, S; Gloter, A; Stéphan, O; Triscone, J-M

    2015-11-11

    The functional properties of oxide heterostructures ultimately rely on how the electronic and structural mismatches occurring at interfaces are accommodated by the chosen materials combination. We discuss here LaMnO3/LaNiO3 heterostructures, which display an intrinsic interface structural asymmetry depending on the growth sequence. Using a variety of synchrotron-based techniques, we show that the degree of intermixing at the monolayer scale allows interface-driven properties such as charge transfer and the induced magnetic moment in the nickelate layer to be controlled. Further, our results demonstrate that the magnetic state of strained LaMnO3 thin films dramatically depends on interface reconstructions.

  18. Effect of plasma surface treatment of recycled carbon fiber on carbon fiber-reinforced plastics (CFRP) interfacial properties

    NASA Astrophysics Data System (ADS)

    Lee, Hooseok; Ohsawa, Isamu; Takahashi, Jun

    2015-02-01

    We studied the effects of plasma surface treatment of recycled carbon fiber on adhesion of the fiber to polymers after various treatment times. Conventional surface treatment methods have been attempted for recycled carbon fiber, but most require very long processing times, which may increase cost. Hence, in this study, plasma processing was performed for 0.5 s or less. Surface functionalization was quantified by X-ray photoelectron spectroscopy. O/C increased from approximately 11% to 25%. The micro-droplet test of adhesion properties and the mechanical properties of CFRP were also investigated.

  19. Influence of the micro- and nanoscale local mechanical properties of the interfacial transition zone on impact behavior of concrete made with different aggregates

    SciTech Connect

    Erdem, Savas Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-02-15

    The influence of the microscale local mechanical properties of the interfacial transition zone (ITZ) on macro-level mechanical response and impact behavior is studied for concretes made with copper slag and gravel aggregates. 3D nanotech vertical scanning interferometry, scanning electron microscopy coupled with energy dispersive X-ray micro-analysis, digital image analysis, and 3D X-ray computed tomography were used to characterize the microstructures and the ITZs. It was deduced that a stronger and denser ITZ in the copper slag specimen would reduce its vulnerability to stiffness loss and contribute to its elastic and more ductile response under impact loading. The analysis also indicated that a significant degeneration in the pore structure of the gravel specimen associated with a relatively weaker and non-homogeneous ITZ occurred under impact. Finally, it was also concluded that increased roughness of ITZ may contribute to the load-carrying capacity of concrete under impact by improving contact point interactions and energy dissipation.

  20. Interfacial effect on the electrochemical properties of the layered graphene/metal sulfide composites as anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Lv, Yagang; Chen, Biao; Zhao, Naiqin; Shi, Chunsheng; He, Chunnian; Li, Jiajun; Liu, Enzuo

    2016-09-01

    The layered graphene/metal sulfide composites exhibit excellent electrochemical properties as anode materials for lithium ion battery, due to the synergistic effect between metal sulfide and graphene which still needs to be further understood. In this study, Li adsorption and diffusion on MoS2 and SnS2 monolayers and Li2S surface, as well as at their interfaces with graphene, are systematically investigated through first-principles calculations. The analysis of charge density difference, Bader charge, and density of states indicates that the adsorbed Li atoms interact with both the S atoms at metal sulfide surfaces and C atoms in graphene, resulting in larger Li adsorption energies at the interfaces compared with that on the corresponding surfaces, but with almost no enhancement of the energy barriers for Li atom diffusion. The enhanced Li adsorption capability at Li2S/G interface contributes to the extra storage capacity of graphene/metal sulfide composites. Furthermore, the synergistic mechanism between metal sulfide and graphene is revealed. Moreover, band structure analysis shows the electronic conductivity is enhanced with the incorporation of graphene. The results corroborate the interfacial pseudocapacity-like Li atom storage mechanism, and are helpful for the design of layered graphene/metal sulfide composites as anode materials for lithium ion batteries.

  1. Magnetic-field-induced synthesis of Fe{sub 3}O{sub 4} nanorods by a gas–liquid interfacial process: Microstructure control, magnetic and photocatalytic properties

    SciTech Connect

    Zhang, Chun; Mo, Zunli Guo, Ruibin; Teng, Guixiang; Zhao, Guoping

    2014-05-01

    Highlights: • Fe{sub 3}O{sub 4} nanorods were synthesized via a MFI gas–liquid interfacial route. • The morphology of the Fe{sub 3}O{sub 4} nanoparticle can be changed during its growth process. • MF render Fe{sub 3}O{sub 4} nanorods higher degree of crystallinity and better magnetic property. - Abstract: In this paper, we designed a magnetic field (MF) induced gas–liquid interface route to synthesize magnetic Fe{sub 3}O{sub 4} nanorods (NRs). The results showed that the MF can significantly affect the morphology of the particles. In this original method, only relatively inexpensive and environmental chemicals were used. The structure and morphology of the Fe{sub 3}O{sub 4} NRs were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and vibrating sample magnetometry technique. The crystal growth mechanisms in the magnetic field induced process were expounded in detail. The as-synthesized Fe{sub 3}O{sub 4} NRs were successfully used as a catalytic carrier for the photo degradation of phenol.

  2. Interfacial behavior of polymer electrolytes

    SciTech Connect

    Kerr, John; Kerr, John B.; Han, Yong Bong; Liu, Gao; Reeder, Craig; Xie, Jiangbing; Sun, Xiaoguang

    2003-06-03

    Evidence is presented concerning the effect of surfaces on the segmental motion of PEO-based polymer electrolytes in lithium batteries. For dry systems with no moisture the effect of surfaces of nano-particle fillers is to inhibit the segmental motion and to reduce the lithium ion transport. These effects also occur at the surfaces in composite electrodes that contain considerable quantities of carbon black nano-particles for electronic connection. The problem of reduced polymer mobility is compounded by the generation of salt concentration gradients within the composite electrode. Highly concentrated polymer electrolytes have reduced transport properties due to the increased ionic cross-linking. Combined with the interfacial interactions this leads to the generation of low mobility electrolyte layers within the electrode and to loss of capacity and power capability. It is shown that even with planar lithium metal electrodes the concentration gradients can significantly impact the interfacial impedance. The interfacial impedance of lithium/PEO-LiTFSI cells varies depending upon the time elapsed since current was turned off after polarization. The behavior is consistent with relaxation of the salt concentration gradients and indicates that a portion of the interfacial impedance usually attributed to the SEI layer is due to concentrated salt solutions next to the electrode surfaces that are very resistive. These resistive layers may undergo actual phase changes in a non-uniform manner and the possible role of the reduced mobility polymer layers in dendrite initiation and growth is also explored. It is concluded that PEO and ethylene oxide-based polymers are less than ideal with respect to this interfacial behavior.

  3. Interfacial Control of Magnetic Properties at LaMnO3/LaNiO3 Interface

    NASA Astrophysics Data System (ADS)

    Gibert, Marta; Viret, Michel; Torres-Pardo, Almudena; Piamonteze, Cinthia; Zubko, Pavlo; Jaouen, Nicolas; Tonnerre, Jean-Marc; Mougin, Alexandra; Fowlie, Jennifer; Catalano, Sara; Gloter, Alexandre; Stéphan, Odile; Triscone, Jean-Marc

    The functional properties of oxide heterostructures ultimately rely on how the electronic and structural mismatches occurring at interfaces are accommodated by the chosen materials combination. We discuss here LaMnO3/LaNiO3 heterostructures, which display an intrinsic interface structural asymmetry depending on the growth sequence with the LaMnO3-on-LaNiO3 interface being sharper than the LaNiO3-on-LaMnO3 one, which exhibits 2-3 unit cells intermixing. Using a variety of synchrotron-based techniques, we show that the degree of intermixing at the monolayer scale allows interface-driven properties such as charge transfer and the induced magnetic moment in the nickelate layer to be controlled. Further, our results demonstrate that the magnetic state of strained LaMnO3 thin films dramatically depends on interface reconstructions.

  4. Three-Dimensional Visualization of Interfacial Phenomena Using Confocal Microscopy

    NASA Astrophysics Data System (ADS)

    Shieh, Ian C.

    Surfactants play an integral role in numerous functions ranging from stabilizing the emulsion in a favorite salad dressing to organizing the cellular components that make life possible. We are interested in lung surfactant, which is a mixture of lipids and proteins essential for normal respiration because it modulates the surface tension of the air-liquid interface of the thin fluid lining in the lungs. Through this surface tension modulation, lung surfactant ensures effortless lung expansion and prevents lung collapse during exhalation, thereby effecting proper oxygenation of the bloodstream. The function of lung surfactant, as well as numerous interfacial lipid systems, is not solely dictated by the behavior of materials confined to the two-dimensional interface. Rather, the distributions of materials in the liquid subphase also greatly influence the performance of interfacial films of lung surfactant. Therefore, to better understand the behavior of lung surfactant and other interfacial lipid systems, we require a three-dimensional characterization technique. In this dissertation, we have developed a novel confocal microscopy methodology for investigating the interfacial phenomena of surfactants at the air-liquid interface of a Langmuir trough. Confocal microscopy provides the excellent combination of in situ, fast, three-dimensional visualization of multiple components of the lung surfactant system that other characterization techniques lack. We detail the solutions to the numerous challenges encountered when imaging a dynamic air-liquid interface with a high-resolution technique like confocal microscopy. We then use confocal microscopy to elucidate the distinct mechanisms by which a polyelectrolyte (chitosan) and nonadsorbing polymer (polyethylene glycol) restore the function of lung surfactant under inhibitory conditions mimicking the effects of lung trauma. Beyond this physiological model, we also investigate several one- and two-component interfacial films

  5. Influence of Zn Interlayer on Interfacial Microstructure and Mechanical Properties of TIG Lap-Welded Mg/Al Joints

    NASA Astrophysics Data System (ADS)

    Gao, Qiong; Wang, Kehong

    2016-03-01

    This study explored 6061 Al alloy and AZ31B Mg alloy joined by TIG lap welding with Zn foils of varying thicknesses, with the additional Zn element being imported into the fusion zone to alloy the weld seam. The microstructures and chemical composition in the fusion zone near the Mg substrate were examined by SEM and EDS, and tensile shear strength tests were conducted to investigate the mechanical properties of the Al/Mg joints, as well as the fracture surfaces, and phase compositions. The results revealed that the introduction of an appropriate amount of Zn transition layer improves the microstructure of Mg/Al joints and effectively reduces the formation of Mg-Al intermetallic compounds (IMCs). The most common IMCs in the fusion zone near the Mg substrate were Mg-Zn and Mg-Al-Zn IMCs. The type and distribution of IMCs generated in the weld zone differed according to Zn additions; Zn interlayer thickness of 0.4 mm improved the sample's mechanical properties considerably compared to thicknesses of less than 0.4 mm; however, any further increase in Zn interlayer thickness of above 0.4 mm caused mechanical properties to deteriorate.

  6. Ordered mesoporous materials based on interfacial assembly and engineering.

    PubMed

    Li, Wei; Yue, Qin; Deng, Yonghui; Zhao, Dongyuan

    2013-10-01

    Ordered mesoporous materials have inspired prominent research interest due to their unique properties and functionalities and potential applications in adsorption, separation, catalysis, sensors, drug delivery, energy conversion and storage, and so on. Thanks to continuous efforts over the past two decades, great achievements have been made in the synthesis and structural characterization of mesoporous materials. In this review, we summarize recent progresses in preparing ordered mesoporous materials from the viewpoint of interfacial assembly and engineering. Five interfacial assembly and synthesis are comprehensively highlighted, including liquid-solid interfacial assembly, gas-liquid interfacial assembly, liquid-liquid interfacial assembly, gas-solid interfacial synthesis, and solid-solid interfacial synthesis, basics about their synthesis pathways, princples and interface engineering strategies.

  7. The influence of interfacial growth patterns on the transmission properties of carriers through nonabrupt GaAs/Al xGa 1- xAs single barriers

    NASA Astrophysics Data System (ADS)

    Lima, M. C. A.; Junior, J. M. Pereira; Farias, G. A.; Freire, V. N.

    1995-06-01

    The influence of interfacial growth patterns on the tunelling of carriers through nonabrupt GaAs/Al xCa 1- xAs single barriers is studied. Five interfacial growth patterns are considered, all of them representative of interfacial alloy variations generated by different growth techniques. With a generalization of the scheme proposed previously by Freire et al [Superlatt. Microstruct. 1, 17 (1992)], the inter-related single barrier potential and effective mass is obtained. The envelope function equation with a position dependent kinetic energy operator is solved with a multistep scheme. The position of the resonant peaks, their peak-to-valley ratios, and the mean width of the resonance structures are shown to depend on the interfacial growth patterns.

  8. Understanding controls on interfacial wetting at epitaxial graphene: Experiment and Theory

    SciTech Connect

    Zhou, Hua; Ganesh, Panchapakesan; Presser, Volker; Wander, Matthew C; Fenter, Paul; Kent, Paul R; Jiang, Deen; Chialvo, Ariel A; Mcdonough, John; Shuford, Kevin L; Gogotsi, Yury G.

    2012-01-01

    The interaction of interfacial water with graphitic carbon at the atomic scale is studied as a function of the hydrophobicity of epitaxial graphene. High resolution x-ray reflectivity shows that the graphene-water contact angle is controlled by the average graphene thickness, due to the fraction of the film surface expressed as the epitaxial buffer layer whose contact angle (contact angle c = 73 ) is substantially smaller than that of multilayer graphene ( c = 93 ). Classical and ab initio molecular dynamics simulations show that the reduced contact angle of the buffer layer is due to both its epitaxy with the SiC substrate and the presence of interfacial defects. This insight clarifies the relationship between interfacial water structure and hydrophobicity, in general, and suggests new routes to control interface properties of epitaxial graphene.

  9. Understanding controls on interfacial wetting at epitaxial graphene: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Ganesh, P.; Presser, Volker; Wander, Matthew C. F.; Fenter, Paul; Kent, Paul R. C.; Jiang, De-En; Chialvo, Ariel A.; McDonough, John; Shuford, Kevin L.; Gogotsi, Yury

    2012-01-01

    The interaction of interfacial water with graphitic carbon at the atomic scale is studied as a function of the hydrophobicity of epitaxial graphene. High resolution x-ray reflectivity shows that the graphene-water contact angle is controlled by the average graphene thickness, due to the fraction of the film surface expressed as the epitaxial buffer layer whose contact angle (contact angle θc = 73°) is substantially smaller than that of multilayer graphene (θc = 93°). Classical and ab initio molecular dynamics simulations show that the reduced contact angle of the buffer layer is due to both its epitaxy with the SiC substrate and the presence of interfacial defects. This insight clarifies the relationship between interfacial water structure and hydrophobicity, in general, and suggests new routes to control interface properties of epitaxial graphene.

  10. Understanding controls on interfacial wetting at epitaxial graphene: Experiment and Theory

    SciTech Connect

    Kent, Paul R

    2011-01-01

    The interaction of interfacial water with graphitic carbon at the atomic scale is studied as a function of the hydrophobicity of epitaxial graphene. High resolution x-ray reflectivity shows that the graphene-water contact angle is controlled by the average graphene thickness, due to the fraction of the film surface expressed as the epitaxial buffer layer whose contact angle (contact angle {Theta}{sub c} = 73{sup o}) is substantially smaller than that of multilayer graphene ({Theta}{sub c} = 93{sup o}). Classical and ab initio molecular dynamics simulations show that the reduced contact angle of the buffer layer is due to both its epitaxy with the SiC substrate and the presence of interfacial defects. This insight clarifies the relationship between interfacial water structure and hydrophobicity, in general, and suggests new routes to control interface properties of epitaxial graphene.

  11. Microrheology and Particle Dynamics at Liquid-Liquid Interfaces

    NASA Astrophysics Data System (ADS)

    Song, Yanmei

    The rheological properties at liquid-liquid interfaces are important in many industrial processes such as manufacturing foods, pharmaceuticals, cosmetics, and petroleum products. This dissertation focuses on the study of linear viscoelastic properties at liquid-liquid interfaces by tracking the thermal motion of particles confined at the interfaces. The technique of interfacial microrheology is first developed using one- and two-particle tracking, respectively. In one-particle interfacial microrheology, the rheological response at the interface is measured from the motion of individual particles. One-particle interfacial microrheology at polydimethylsiloxane (PDMS) oil-water interfaces depends strongly on the surface chemistry of different tracer particles. In contrast, by tracking the correlated motion of particle pairs, two-particle interfacial microrheology significantly minimizes the effects from tracer particle surface chemistry and particle size. Two-particle interfacial microrheology is further applied to study the linear viscoelastic properties of immiscible polymer-polymer interfaces. The interfacial loss and storage moduli at PDMS-polyethylene glycol (PEG) interfaces are measured over a wide frequency range. The zero-shear interfacial viscosity, estimated from the Cross model, falls between the bulk viscosities of two individual polymers. Surprisingly, the interfacial relaxation time is observed to be an order of magnitude larger than that of the PDMS bulk polymers. To explore the fundamental basis of interfacial nanorheology, molecular dynamics (MD) simulations are employed to investigate the nanoparticle dynamics. The diffusion of single nanoparticles in pure water and low-viscosity PDMS oils is reasonably consistent with the prediction by the Stokes-Einstein equation. To demonstrate the potential of nanorheology based on the motion of nanoparticles, the shear moduli and viscosities of the bulk phases and interfaces are calculated from single

  12. Dynamics at the Polymer/Nanoparticle Interface in Poly(2-vinylpyridine) Nanocomposites

    NASA Astrophysics Data System (ADS)

    Holt, Adam; Bocharova, Vera; Griffin, Philip; Agaprov, Alexander; Imel, Adam; Dadmun, Mark; Sangoro, Joshua; Sokolov, Alexei

    2014-03-01

    The intriguing thermodynamic properties of polymer nanocomposites (PNCs) have often been attributed to the formation of an interfacial polymer region at the nanoparticle surface and a better understanding of how the interfacial region affects the PNC dynamics is desired. The static and dynamic properties of poly(2-vinylpyridine)/silica nanocomposites are investigated by temperature modulated differential scanning calorimetry, broadband dielectric spectroscopy (BDS), and small angle x-ray scattering (SAXS). The SAXS data revealed a core-shell structure formed in interfacial region and BDS data detected the slower relaxation process associated with the interfacial polymer layer. Both static and dynamic measurements estimated the layer thickness to be 4-6 nm. We also demonstrated that the presence of interfacial polymer layer has negligible influence on the glass transition temperature and segmental dynamics of the remaining polymer. These results potentially offer an explanation to recent controversies in studies of polymer nanocomposites due to different experimental techniques.

  13. Interfacial Properties of Organic Semiconductor-Inorganic Magnetic Oxide Hybrid Spintronic Systems Fabricated Using Pulsed Laser Deposition.

    PubMed

    Majumdar, Sayani; Grochowska, Katarzyna; Sawczak, Miroslaw; Śliwiński, Gerard; Huhtinen, Hannu; Dahl, Johnny; Tuominen, Marjukka; Laukkanen, Pekka; Majumdar, Himadri S

    2015-10-14

    We report fabrication of a hybrid organic semiconductor-inorganic complex oxide interface of rubrene and La0.67Sr0.33MnO3 (LSMO) for spintronic devices using pulsed laser deposition (PLD) and investigate the interface structure and chemical bonding-dependent magnetic properties. Our results demonstrate that with proper control of growth parameters, thin films of organic semiconductor rubrene can be deposited without any damage to the molecular structure. Rubrene, a widely used organic semiconductor with high charge-carrier mobility and spin diffusion length, when grown as thin films on amorphous and crystalline substrates such as SiO2-glass, indium-tin oxide (ITO), and LSMO by PLD at room temperature and a laser fluence of 0.19 J/cm2, reveals amorphous structure. The Raman spectra verify the signatures of both Ag and Bg Raman active modes of rubrene molecules. X-ray reflectivity measurements indicate a well-defined interface formation between surface-treated LSMO and rubrene, whereas X-ray photoelectron spectra indicate the signature of hybridization of the electronic states at this interface. Magnetic measurements show that the ferromagnetic property of the rubrene-LSMO interface improves by >230% compared to the pristine LSMO surface due to this proposed hybridization. Intentional disruption of the direct contact between LSMO and rubrene by insertion of a dielectric AlOx layer results in an observably decreased ferromagnetism. These experimental results demonstrate that by controlling the interface formation between organic semiconductor and half-metallic oxide thin films, it is possible to engineer the interface spin polarization properties. Results also confirm that by using PLD for consecutive growth of different layers, contamination-free interfaces can be obtained, and this finding is significant for the well-controlled and reproducible design of spin-polarized interfaces for future hybrid spintronics devices.

  14. Interfacial Properties of Organic Semiconductor-Inorganic Magnetic Oxide Hybrid Spintronic Systems Fabricated Using Pulsed Laser Deposition.

    PubMed

    Majumdar, Sayani; Grochowska, Katarzyna; Sawczak, Miroslaw; Śliwiński, Gerard; Huhtinen, Hannu; Dahl, Johnny; Tuominen, Marjukka; Laukkanen, Pekka; Majumdar, Himadri S

    2015-10-14

    We report fabrication of a hybrid organic semiconductor-inorganic complex oxide interface of rubrene and La0.67Sr0.33MnO3 (LSMO) for spintronic devices using pulsed laser deposition (PLD) and investigate the interface structure and chemical bonding-dependent magnetic properties. Our results demonstrate that with proper control of growth parameters, thin films of organic semiconductor rubrene can be deposited without any damage to the molecular structure. Rubrene, a widely used organic semiconductor with high charge-carrier mobility and spin diffusion length, when grown as thin films on amorphous and crystalline substrates such as SiO2-glass, indium-tin oxide (ITO), and LSMO by PLD at room temperature and a laser fluence of 0.19 J/cm2, reveals amorphous structure. The Raman spectra verify the signatures of both Ag and Bg Raman active modes of rubrene molecules. X-ray reflectivity measurements indicate a well-defined interface formation between surface-treated LSMO and rubrene, whereas X-ray photoelectron spectra indicate the signature of hybridization of the electronic states at this interface. Magnetic measurements show that the ferromagnetic property of the rubrene-LSMO interface improves by >230% compared to the pristine LSMO surface due to this proposed hybridization. Intentional disruption of the direct contact between LSMO and rubrene by insertion of a dielectric AlOx layer results in an observably decreased ferromagnetism. These experimental results demonstrate that by controlling the interface formation between organic semiconductor and half-metallic oxide thin films, it is possible to engineer the interface spin polarization properties. Results also confirm that by using PLD for consecutive growth of different layers, contamination-free interfaces can be obtained, and this finding is significant for the well-controlled and reproducible design of spin-polarized interfaces for future hybrid spintronics devices. PMID:26402298

  15. Impact of Copper-Doped Titanium Dioxide Interfacial Layers on the Interface-State and Electrical Properties of Si-based MOS Devices

    NASA Astrophysics Data System (ADS)

    Akin, Seçkİn; Sönmezoğlu, Savaş

    2015-09-01

    The current study presents the interface-state and electrical properties of silicon (Si)-based metal-oxide-semiconductor (MOS) devices using copper-doped titanium dioxide (Cu:TiO2) nanoparticles for possible applications as an interfacial layer in scaled high-k/metal gate MOSFET technology. The structural properties of the Cu:TiO2 nanoparticles have been obtained by means of X-ray diffraction (XRD), UV-Vis-NIR spectrometry, atomic force microscopy, and scanning electron microscopy measurements; they were compared with pure TiO2 thin film. With the incorporation of Cu, rutile-dominated anatase/rutile multiphase crystalline was revealed by XRD analysis. To understand the nature of this structure, the electronic parameters controlling the device performance were calculated using current-voltage ( I- V), capacitance-voltage ( C- V), and conductance-voltage ( G- V) measurements. The ideality factor ( n) was 1.21 for the Al/Cu:TiO2/ p-Si MOS device, while the barrier height ϕ b was 0.75 eV with semi-log I- V characteristics. This is in good agreement with 0.78 eV measured by the Norde model. Possible reasons for the deviation of the ideality factor from unity have been addressed. From the C- V measurements, the values of diffusion potential, barrier height, and carrier concentration were extracted as 0.67, 0.98 eV, and 8.73 × 1013 cm-3, respectively. Our results encourage further work to develop process steps that would allow the Cu-doped TiO2 film/Si interface to play a major role in microelectronic applications.

  16. Enhanced Bulk and Interfacial Charge Transfer Dynamics for Efficient Photoelectrochemical Water Splitting: The Case of Hematite Nanorod Arrays.

    PubMed

    Wang, Jian; Feng, Bo; Su, Jinzhan; Guo, Liejin

    2016-09-01

    Charge transport in the bulk and across the semiconductor/electrolyte interface is one of the major issues that limits photoelectrochemical (PEC) performance in hematite photoelectrodes. Efficient charge transport in the entire hematite is of great importance to obtaining high photoelectrochemical properties. Herein, to reach this goal, we employed both TiO2 underlayer and overlayer deposition on hematite nanorod films, followed by a fast annealing treatment. The TiO2 underlayer and overlayer not only serve as dopant sources for carrier density increase but also reduce charge recombination at the fluorine-doped tin oxide (FTO)/hematite interface and accelerate charge transfer across the hematite/electrolyte interface. This synergistic doping and interface modifying effects give rise to an enhanced photoelectrochemical water oxidation performance of hematite nanorod arrays, generating an impressive photocurrent density of 1.49 mA cm(-2) at 1.23 V vs RHE. This is the first report on using both underlayer and overlayer modification with the same material to improve charge transport through the entire electron transport path in hematite, which provides a novel way to manipulate charge transfer across the semiconductor interface for a high-performance photoelectrode. PMID:27508404

  17. Interfacial Effects on the Thermal and Mechanical Properties of Graphite/Copper Composites. Final Contractor Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Devincent, Sandra Marie

    1995-01-01

    Graphite surfaces are not wet by pure copper. This lack of wetting has been responsible for a debonding phenomenon that has been found in continuous graphite fiber reinforced copper matrix composites subjected to elevated temperatures. By suitably alloying copper, its ability to wet graphite surfaces can be enhanced. Information obtained during sessile drop testing has led to the development of a copper-chromium alloy that suitably wets graphite. Unidirectionally reinforced graphite/copper composites have been fabricated using a pressure infiltration casting procedure. P100 pitch-based fibers have been used to reinforce copper and copper-chromium alloys. X-ray radiography and optical microscopy have been used to assess the fiber distribution in the cast composites. Scanning electron microscopy and Auger electron spectroscopy analyses were conducted to study the distribution and continuity of the chromium carbide reaction phase that forms at the fiber/matrix interface in the alloyed matrix composites. The effects of the chromium in the copper matrix on the mechanical and thermal properties of P100Gr/Cu composites have been evaluated through tensile testing, three-point bend testing, thermal cycling and thermal conductivity calculations. The addition of chromium has resulted in an increased shear modulus and essentially zero thermal expansion in the P100Gr/Cu-xCr composites through enhanced fiber/matrix bonding. The composites have longitudinal tensile strengths in excess of 700 MPa with elastic moduli of 393 GPa. After 100 hr at 760 deg C 84 percent of the as-cast strength is retained in the alloyed matrix composites. The elastic moduli are unchanged by the thermal exposure. It has been found that problems with spreading of the fiber tows strongly affect the long transverse tensile properties and the short transverse thermal conductivity of the P100Gr/Cu-xCr composites. The long transverse tensile strength is limited by rows of touching fibers which are paths of

  18. Electrical and interfacial properties of GaAs/GaSb metal-organic vapour phase epitaxy heterostructures

    NASA Astrophysics Data System (ADS)

    Parisini, A.; Baldini, M.; Gombia, E.; Frigeri, C.; Jakomin, R.; Tarricone, L.

    2013-01-01

    The electrical properties of GaAs/GaSb heterojunctions grown by metal-organic vapour phase epitaxy were carefully investigated. The structures were formed by heavily p(Zn)-doped GaAs layers deposited on n(Te)-doped GaSb bulk crystal used as substrates. The current-voltage characteristics showed the formation of a GaSb p-n homojunction, which was expected to be induced by Zn diffusion into GaSb. Nevertheless, secondary ion mass spectrometry pointed out a small penetration depth of Zn atoms in the GaSb substrate, resulting unaffected by post-growth annealing processes. Electron beam induced current analysis demonstrated that the p-n junction interface was located more deeply into the substrate (˜1 μm). This result was confirmed by capacitance-voltage (C-V) and electrochemical C-V characterizations. Admittance spectroscopy led to attribute the change of conduction type from n to p in GaSb to the formation of additional shallow acceptor levels, activated by GaAs growth and post-growth thermal annealing processes. An attempt to explain the formation of the buried junction in terms of atomic interdiffusion is provided, in order to justify, from the microscopic point of view, the low diffusivity of Zn in GaSb, and the apparently uncorrelated depth of the p-n junction interface in the substrate.

  19. Influence of interfacial interactions on deformation mechanism and interface viscosity in α-chitin-calcite interfaces.

    PubMed

    Qu, Tao; Verma, Devendra; Alucozai, Milad; Tomar, Vikas

    2015-10-01

    The interfaces between organic and inorganic phases in natural materials have a significant effect on their mechanical properties. This work presents a quantification of the interface stress as a function of interface chemical changes (water, organic molecules) in chitin-calcite (CHI-CAL) interfaces using classical non-equilibrium molecular dynamics (NEMD) simulations and steered molecular dynamics (SMD) simulations. NEMD is used to investigate interface stress as a function of applied strain based on the virial stress formulation. SMD is used to understand interface separation mechanism and to calculate interfacial shear stress based on a viscoplastic interfacial sliding model. Analyses indicate that interfacial shear stress combined with shear viscosity can result in variations to the mechanical properties of the examined interfacial material systems. It is further verified with Kelvin-Voigt and Maxwell viscoelastic analytical models representing viscous interfaces and outer matrix. Further analyses show that overall mechanical deformation depends on maximization of interface shear strength in such materials. This work establishes lower and upper bounds of interface strength in the interfaces examined. PMID:26143601

  20. Influence of interfacial interactions on deformation mechanism and interface viscosity in α-chitin-calcite interfaces.

    PubMed

    Qu, Tao; Verma, Devendra; Alucozai, Milad; Tomar, Vikas

    2015-10-01

    The interfaces between organic and inorganic phases in natural materials have a significant effect on their mechanical properties. This work presents a quantification of the interface stress as a function of interface chemical changes (water, organic molecules) in chitin-calcite (CHI-CAL) interfaces using classical non-equilibrium molecular dynamics (NEMD) simulations and steered molecular dynamics (SMD) simulations. NEMD is used to investigate interface stress as a function of applied strain based on the virial stress formulation. SMD is used to understand interface separation mechanism and to calculate interfacial shear stress based on a viscoplastic interfacial sliding model. Analyses indicate that interfacial shear stress combined with shear viscosity can result in variations to the mechanical properties of the examined interfacial material systems. It is further verified with Kelvin-Voigt and Maxwell viscoelastic analytical models representing viscous interfaces and outer matrix. Further analyses show that overall mechanical deformation depends on maximization of interface shear strength in such materials. This work establishes lower and upper bounds of interface strength in the interfaces examined.

  1. Dynamic mechanical properties and thermal stability of furfuryl alcohol and nano-SiO2 treated poplar wood

    NASA Astrophysics Data System (ADS)

    Dong, Youming; Shen, Xiaoyan; Zhang, Shifeng; Li, Jianzhang

    2015-07-01

    Wood polymer nanocomposites (WPNC) were prepared from the furfuryl alcohol and nano-SiO2 using a method of vacuum impregnation. Dynamic mechanical properties in storage modulus and mechanical loss factor, as well as the thermal stability of the WPNC were evaluated. The interface interaction between the organic and inorganic compounds was also studied by the scanning electron microscope and energy dispersive X-ray spectrometer. The dynamic mechanical analysis showed the improvement in the storage modulus and mechanical loss factor of WPNC as a result of the strong interfacial interaction between the organic and inorganic matrix. Additionally, with an increase in nanoparticles content in the composites, the thermo-stability of WPNC improved significantly.

  2. Properties of dynamically compacted WIPP salt

    SciTech Connect

    Brodsky, N.S.; Hansen, F.D.; Pfeifle, T.W.

    1996-07-01

    Dynamic compaction of mine-run salt is being investigated for the Waste Isolation Pilot Plant (WIPP), where compacted salt is being considered for repository sealing applications. One large-scale and two intermediate-scale dynamic compaction demonstrations were conducted. Initial fractional densities of the compacted salt range form 0.85 to 0.90, and permeabilities vary. Dynamically-compacted specimens were further consolidated in the laboratory by application of hydrostatic pressure. Permeability as a function of density was determined, and consolidation microprocesses were studied. Experimental results, in conjunction with modeling results, indicate that the compacted salt will function as a viable seal material.

  3. Interfacial characterization of Pluronic PE9400 at biocompatible (air-water and limonene-water) interfaces.

    PubMed

    Pérez-Mosqueda, Luis M; Maldonado-Valderrama, Julia; Ramírez, Pablo; Cabrerizo-Vílchez, Miguel A; Muñoz, José

    2013-11-01

    In this work, we provide an accurate characterization of non-ionic triblock copolymer Pluronic PE9400 at the air-water and limonene-water interfaces, comprising a systematic analysis of surface tension isotherms, dynamic curves, dilatational rheology and desorption profiles. The surface pressure isotherms display two different slopes of the Π-c plot suggesting the existence of two adsorption regimes for PE9400 at both interfaces. Application of a theoretical model, which assumes the coexistence of different adsorbed states characterized by their molar areas, allows quantification of the conformational changes occurring at the adsorbed layer, indentifying differences between the conformations adopted at the air-water and the limonene-water interface. The presence of two maxima in the dilatational modulus vs. interfacial pressure importantly corroborates this conformational change from a 2D flat conformation to 3D brush one. Moreover, the dilatational response provides mechanical diferences between the interfacial layers formed at the two interfaces analyzed. Dynamic surface pressure data were transformed into a dimensionless form and fitted to another model which considers the influence of the reorganization process on the adsorption dynamics. Finally, the desorption profiles reveal that Pluronic PE9400 is irreversibly adsorbed at both interfaces regardless of the interfacial conformation and nature of the interface. The systematic characterization presented in this work provides important new findings on the interfacial properties of pluronics which can be applied in the rational development of new products, such as biocompatible limonene-based emulsions and/or microemulsions.

  4. Interfacial, electrical, and spin-injection properties of epitaxial Co{sub 2}MnGa grown on GaAs(100)

    SciTech Connect

    Damsgaard, C. D.; Hickey, M. C.; Holmes, S. N.; Feidenhans'l, R.; Mariager, S. O.; Jacobsen, C. S.; Hansen, J. B.

    2009-06-15

    The interfacial, electrical, and magnetic properties of the Heusler alloy Co{sub 2}MnGa grown epitaxially on GaAs(100) are presented with an emphasis on the use of this metal-semiconductor combination for a device that operates on the principles of spin-injection between the two materials. Through systematic growth optimization the stoichiometry in the bulk Co{sub 2}MnGa can be controlled to better than +-2%, although the interface is disordered and limits the spin-injection efficiency in a practical spintronic device irrespective of the half-metallic nature of the bulk metal. Molecular beam epitaxial growth was monitored in situ by reflection high energy electron diffraction and the bulk composition was measured ex situ with inductively coupled plasma optical emission spectroscopy. The Co{sub 2}MnGa L2{sub 1} cubic structure is strained below a thickness of 20 nm on GaAs(100) but relaxed in films thicker than 20 nm. Electrical measurements on the Co{sub 2}MnGa reveal general characteristics of a disordered electron system with insulating behavior for layer thicknesses <4 nm. Thicker layers show a negative magnetoresistance with extraordinary Hall effect constants up to 30 OMEGA T{sup -1}. Spin polarization transfer across the interface between Co{sub 2}MnGa and GaAs is approximately 6.4% at 5 K in the current of a GaAs p-i-n diode even with compositional disorder at the interface.

  5. High temperature interfacial superconductivity

    SciTech Connect

    Bozovic, Ivan; Logvenov, Gennady; Gozar, Adrian Mihai

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  6. Investigation of the efect of the coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels

    SciTech Connect

    Kihm, K.D.; Deignan, P.

    1995-11-01

    Experiments were conducted to investigate the effect of particle size on coal-water slurry (CWS) surface tension properties. Two different coal powder samples of different size ranges were obtained through sieving of coal from the Upper Elkhorn Seam. The surfactant (anionic DDBS-soft, dodecylbenzene sulfonic acid) concentration varied from 0 to 1.0% in weight while the coal loading remained at 40% in weight for all the cases. A du Nouy ring tensiometer and a maximum bubble pressure tensiometer measured the static and dynamic surface tensions, respectively, The results show that both static and dynamic surface tensions tend to increase with decreasing coal particle sizes suspended in CWS fuels. Examination of the peak pressure, minimum pressure, surfactant diffusion time, and dead time were also made to correlate these microscopic pressure behavior with the macroscopic dynamic surface tension and to examine the accuracy of the experiment.

  7. Fluid displacement fronts in porous media: pore scale interfacial jumps, pressure bursts and acoustic emissions

    NASA Astrophysics Data System (ADS)

    Moebius, Franziska; Or, Dani

    2014-05-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.

  8. Interfacial stress transfer in graphene oxide nanocomposites.

    PubMed

    Li, Zheling; Young, Robert J; Kinloch, Ian A

    2013-01-23

    Raman spectroscopy has been used for the first time to monitor interfacial stress transfer in poly(vinyl alcohol) nanocomposites reinforced with graphene oxide (GO). The graphene oxide nanocomposites were prepared by a simple mixing method and casting from aqueous solution. They were characterized using scanning electron microscopy, X-ray diffraction, and polarized Raman spectroscopy and their mechanical properties determined by tensile testing and dynamic mechanical thermal analysis. It was found that GO was fully exfoliated during the nanocomposite preparation process and that the GO nanoplatelets tended align in the plane of the films. The stiffness and yield stress of the nanocomposites were found to increase with GO loading but the extension to failure decreased. It was shown that the Raman D band at ~1335 cm(-1) downshifted as the nanocomposites were strained as a result of the interfacial stress transfer between the polymer matrix and GO reinforcement. From knowledge of the Grüneisen parameter for graphene, it was possible to estimate the effective Young's modulus of the GO from the Raman D band shift rate per unit strain to be of the order of 120 GPa. A similar value of effective modulus was found from the tensile mechanical data using the "rule of mixtures" that decreased with GO loading. The accepted value of Young's modulus for GO is in excess of 200 GPa and it is suggested that the lower effective Young's modulus values determined may be due to a combination of finite flake dimensions, waviness and wrinkles, aggregation, and misalignment of the GO flakes.

  9. Dilution method study on the interfacial composition, thermodynamic properties and structural parameters of W/O microemulsions stabilized by 1-pentanol and surfactants in absence and presence of sodium chloride.

    PubMed

    Paul, Bidyut K; Nandy, Debdurlav

    2007-12-15

    The phase behaviors, interfacial composition, thermodynamic properties and structural characteristics of water-in-oil microemulsions under varied molar ratio of water to surfactant (omega) at 303 K and also by varying temperatures at a fixed omega(=40) by mixing with 1-pentanol and decane or dodecane in absence and presence of sodium chloride have been studied by the method of dilution. The surfactants used were cetyl pyridinium chloride (CPC), sodium dodecyl sulfate (SDS) and polyoxyethylene (23) lauryl ether (Brij-35). The compositions of 1-pentanol and the surfactant at the interfacial region, the distribution of 1-pentanol between the interfacial region and the continuous oil phase, and the effective packing parameter (P(eff)) at the threshold level of stability have been estimated. The thermodynamics of transfer of 1-pentanol from the continuous oil phase to the interface have been evaluated. The structural parameters viz. radii of the droplet (R(e)) and the waterpool (R(w)), effective thickness of the interfacial layer (d(I)), average aggregation numbers of surfactants (N (s)) and the cosurfactant (1-pentanol) (N (a)) and the number of droplets (N(d)) have also been estimated. The prospect of using these w/o microemulsions for the synthesis of nanoparticles with small size, have been discussed in the light of the radii of the droplet, and waterpool, the extent of variation of effective thickness of the droplet under varied molar ratio of water to surfactant and temperature. An attempt has been made to rationalize the results in a comprehensive manner.

  10. Interfacial dislocation motion and interactions in single-crystal superalloys

    SciTech Connect

    Liu, B.; Raabe, D.; Roters, F.; Arsenlis, A.

    2014-10-01

    The early stage of high-temperature low-stress creep in single-crystal superalloys is characterized by the rapid development of interfacial dislocation networks. Although interfacial motion and dynamic recovery of these dislocation networks have long been expected to control the subsequent creep behavior, direct observation and hence in-depth understanding of such processes has not been achieved. Incorporating recent developments of discrete dislocation dynamics models, we simulate interfacial dislocation motion in the channel structures of single-crystal superalloys, and investigate how interfacial dislocation motion and dynamic recovery are affected by interfacial dislocation interactions and lattice misfit. Different types of dislocation interactions are considered: self, collinear, coplanar, Lomer junction, glissile junction, and Hirth junction. The simulation results show that strong dynamic recovery occurs due to the short-range reactions of collinear annihilation and Lomer junction formation. The misfit stress is found to induce and accelerate dynamic recovery of interfacial dislocation networks involving self-interaction and Hirth junction formation, but slow down the steady interfacial motion of coplanar and glissile junction forming dislocation networks. The insights gained from these simulations on high-temperature low-stress creep of single-crystal superalloys are also discussed.

  11. Interfacial band alignment and structural properties of nanoscale TiO{sub 2} thin films for integration with epitaxial crystallographic oriented germanium

    SciTech Connect

    Jain, N.; Zhu, Y.; Hudait, M. K.; Maurya, D.; Varghese, R.; Priya, S.

    2014-01-14

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO{sub 2}) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO{sub 2} thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO{sub 2} thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO{sub 2}/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33 ± 0.02 eV was determined for the amorphous TiO{sub 2} thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2 eV was obtained at the TiO{sub 2}/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO{sub 2}/Ge system were found to be smaller than 1 eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ΔE{sub V}(100) > ΔE{sub V}(111) > ΔE{sub V}(110) and a conduction band-offset relation of ΔE{sub C}(110) > ΔE{sub C}(111) > ΔE{sub C}(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO{sub 2} for potential high-κ dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  12. Thermodynamics of interfacial energy in binary metallic systems: influence of adsorption on dihedral angles

    SciTech Connect

    Shimizu, I. . E-mail: ichiko@eps.s.u-tiokyo.ac.jp; Takei, Y.

    2005-02-01

    The solid-liquid interfacial energy (or interfacial tension) was investigated by the lattice-liquid statistical calculation and by the Cahn-Hilliard theory of interface. Interfacial energies in binary metallic systems were estimated from a few bulk thermodynamic properties, i.e., melting temperature, entropy of fusion, and the critical temperature of the liquid phase. In eutectic systems, interfacial energy gradually increases with decreasing concentration of the solid species in the liquid. In monotectic systems, interfacial thickening occurs and interfacial energy is reduced around the liquid immiscibility gap. The results of calculation explain the experimental data of dihedral angles fairly well.

  13. Convection and interfacial mass exchange

    NASA Astrophysics Data System (ADS)

    Colinet, P.; Legros, J. C.; Dauby, P. C.; Lebon, G.; Bestehorn, M.; Stephan, P.; Tadrist, L.; Cerisier, P.; Poncelet, D.; Barremaecker, L.

    2005-10-01

    Mass-exchange through fluid interfaces is ubiquitous in many natural and industrial processes. Yet even basic phase-change processes such as evaporation of a pure liquid are not fully understood, in particular when coupled with fluid motions in the vicinity of the phase-change interface, or with microscopic physical phenomena in the vicinity of a triple line (where the interface meets a solid). Nowadays, many industries recognise that this lack of fundamental knowledge is hindering the optimisation of existing processes. Their modelling tools are too dependent on empirical correlations with a limited - and often unknown - range of applicability. In addition to the intrinsic multiscale nature of the phenomena involved in typical industrial processes linked to interfacial mass exchange, their study is highly multi-disciplinary, involving tools and techniques belonging to physical chemistry, chemical engineering, fluid dynamics, non-linear physics, non-equilibrium thermodynamics, chemistry and statistical physics. From the experimental point of view, microgravity offers a unique environment to obtain valuable data on phase-change processes, greatly reducing the influence of body forces and allowing the detailed and accurate study of interfacial dynamics. In turn, such improved understanding leads to optimisation of industrial processes and devices involving phase-change, both for space and ground applications.

  14. Optical techniques for determining dynamic material properties

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1996-12-31

    Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.

  15. Dynamic mechanical properties of an inlay composite.

    PubMed

    Dionysopoulos, P; Watts, D C

    1989-06-01

    A visible light-cured composite resin (Brilliant DI) has been studied over a wide range of temperature and frequency by a dynamic mechanical flexural method. The derived data of logarithmic modulus and loss tangent (tan delta) show considerable changes following a secondary-cure process applied to the material. This involved the application of heat and intense light with temperatures rising to 120 degrees C in 7 min. Following this oven-cure the resin phase exhibited enhanced stiffness with the activation-energy barrier for molecular motion at the glass-transition rising from 220 to 291 kJ/mol. This study clarifies the nature and extent of the internal molecular changes which may be produced in the fabrication of a composite inlay.

  16. Emulsions for interfacial filtration.

    SciTech Connect

    Grillet, Anne Mary; Bourdon, Christopher Jay; Souza, Caroline Ann; Welk, Margaret Ellen; Hartenberger, Joel David; Brooks, Carlton, F.

    2006-11-01

    We have investigated a novel emulsion interfacial filter that is applicable for a wide range of materials, from nano-particles to cells and bacteria. This technology uses the interface between the two immiscible phases as the active surface area for adsorption of targeted materials. We showed that emulsion interfaces can effectively collect and trap materials from aqueous solution. We tested two aqueous systems, a bovine serum albumin (BSA) solution and coal bed methane produced water (CBMPW). Using a pendant drop technique to monitor the interfacial tension, we demonstrated that materials in both samples were adsorbed to the liquid-liquid interface, and did not readily desorb. A prototype system was built to test the emulsion interfacial filter concept. For the BSA system, a protein assay showed a progressive decrease in the residual BSA concentration as the sample was processed. Based on the initial prototype operation, we propose an improved system design.

  17. Dynamic and rheological properties of soft biological cell suspensions

    PubMed Central

    Yazdani, Alireza; Li, Xuejin

    2016-01-01

    Quantifying dynamic and rheological properties of suspensions of soft biological particles such as vesicles, capsules, and red blood cells (RBCs) is fundamentally important in computational biology and biomedical engineering. In this review, recent studies on dynamic and rheological behavior of soft biological cell suspensions by computer simulations are presented, considering both unbounded and confined shear flow. Furthermore, the hemodynamic and hemorheological characteristics of RBCs in diseases such as malaria and sickle cell anemia are highlighted. PMID:27540271

  18. Dynamical properties of water-methanol solutions.

    PubMed

    Mallamace, Francesco; Corsaro, Carmelo; Mallamace, Domenico; Vasi, Cirino; Vasi, Sebastiano; Stanley, H Eugene

    2016-02-14

    We study the relaxation times tα in the water-methanol system. We examine new data and data from the literature in the large temperature range 163 < T < 335 K obtained using different experimental techniques and focus on how tα affects the hydrogen bond structure of the system and the hydrophobicity of the alcohol methyl group. We examine the relaxation times at a fixed temperature as a function of the water molar fraction XW and observe two opposite behaviors in their curvature when the system moves from high to low T regimes. This behavior differs from that of an ideal solution in that it has excess values located at different molar fractions (XW = 0.5 for high T and 0.75 in the deep supercooled regime). We analyze the data and find that above a crossover temperature T ∼ 223 K, hydrophobicity plays a significant role and below it the water tetrahedral network dominates. This temperature is coincident with the fragile-to-strong dynamical crossover observed in confined water and supports the liquid-liquid phase transition hypothesis. At the same time, the reported data suggest that this crossover temperature (identified as the Widom line temperature) also depends on the alcohol concentration.

  19. CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES: Shielding Effect and Emission Criterion of a Screw Dislocation Near an Interfacial Crisscross Crack

    NASA Astrophysics Data System (ADS)

    Song, Hao-Peng; Fang, Qi-Hong; Liu, You-Wen

    2010-04-01

    Shielding effect and emission criterion of a screw dislocation near an interfacial crisscross crack are dealt with in this paper. Utilizing the conformal mapping technique, the closed-form solutions are derived for complex potentials and stress fields due to a screw dislocation located near the interfacial crisscross crack. The stress intensity factor on the crack tips and the critical stress intensity factor for dislocation emission are also calculated. The influence of the orientation of the dislocation and the morphology of the crisscross crack as well as the material elastic dissimilarity on the shielding effect and the emission criterion is discussed in detail. The results show that positive screw dislocations can reduce the stress intensity factor of the interfacial crisscross crack tip (shielding effect). The shielding effect increases with the increase of the shear modulus of the lower half-plane, but it decreases with the increase of the dislocation azimuth angle and the distance between the dislocation and the crack tip. The critical loads at infinity for dislocation emission increases with the increase of emission angle and the vertical length of the crisscross crack, and the most probable angle for screw dislocation emission is zero. The present solutions contain previous results as special cases.

  20. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  1. Interfacial Shear Strength of Multilayer Graphene Oxide Films.

    PubMed

    Daly, Matthew; Cao, Changhong; Sun, Hao; Sun, Yu; Filleter, Tobin; Singh, Chandra Veer

    2016-02-23

    Graphene oxide (GO) is considered as one of the most promising layered materials with tunable physical properties and applicability in many important engineering applications. In this work, the interfacial behavior of multilayer GO films was directly investigated via GO-to-GO friction force microscopy, and the interfacial shear strength (ISS) was measured to be 5.3 ± 3.2 MPa. Based on high resolution atomic force microscopy images and the available chemical data, targeted molecular dynamics simulations were performed to evaluate the influence of functional structure, topological defects, and interlayer registry on the shear response of the GO films. Theoretical values for shear strength ranging from 17 to 132 MPa were predicted for the different structures studied, providing upper bounds for the ISS. Computational results also revealed the atomic origins of the stochastic nature of friction measurements. Specifically, the wide scatter in experimental measurements was attributed to variations in functional structure and topological defects within the sliding volume. The findings of this study provide important insight for understanding the significant differences in strength between monolayer and bulk graphene oxide materials and can be useful for engineering topological structures with tunable mechanical properties.

  2. Universal nanopatternable interfacial bonding.

    PubMed

    Ding, Yuzhe; Garland, Shaun; Howland, Michael; Revzin, Alexander; Pan, Tingrui

    2011-12-01

    A nanopatternable polydimethylsiloxane (PDMS) oligomer layer is demonstrated as an interfacial adhesive for its intrinsic transferability and universal adhesiveness. Utilizing the well-established surface modification and bonding techniques of PDMS surfaces, irreversible bonding is formed (up to 400 kPa) between a wide range of substrate pairs, representing ones within and across different materials categories, including metals, ceramics, thermoset, and thermoplastic polymers.

  3. Effect of poly(vinyl alcohol-co-vinyl acetate) copolymer blockiness on the dynamic interfacial tension and dilational viscoelasticity of polymer-anionic surfactant complex at the water-1-chlorobutane interface.

    PubMed

    Atanase, Leonard Ionut; Bistac, Sophie; Riess, Gérard

    2015-04-01

    Poly(vinyl alcohol-co-vinyl acetate) (PVA) copolymers obtained by partial hydrolysis of poly(vinyl acetate) (PVAc) are of practical importance for many applications, including emulsion and suspension polymerization processes. Their molecular characteristics have a major influence on the colloidal and interfacial properties. The most significant characteristics are represented by the average degree of hydrolysis D̅H̅, average degree of polymerization D̅P̅w̅ but also by the average acetate sequence length n(VAc)(0) which designates the so-called blockiness. Colloidal aggregates were observed in the aqueous PVA solutions having a D̅H̅ value of 73 mol%. The volume fraction of these aggregates at a given D̅H̅ value is directly correlated to the blockiness. Three PVA samples with identical D̅H̅ and D̅P̅w̅ but different blockiness were examined. By pendant drop and oscillating pendant drop techniques it was shown that the PVA sample having the lowest blockiness and thus the lowest volume fraction of colloidal aggregates has lower interfacial tension and elastic modulus E' values. On the contrary, the corresponding values are highest for PVA sample of higher blockiness. In the presence of sodium dodecyl sulfate (SDS), the colloidal aggregates are disaggregated by complex formation due to the hydrophobic-hydrophobic interactions. The PVA-SDS complex acts as a partial polyelectrolyte that induces the stretching of the chains and thus a reduction of the interface thickness. In this case, the interfacial tension and the elastic modulus both increase with increasing SDS concentration for all three PVA samples and the most significant effect was noticed for the most "blocky" copolymer sample.

  4. Temporal properties of dynamic processes on complex networks

    NASA Astrophysics Data System (ADS)

    Turalska, Malgorzata A.

    Many social, biological and technological systems can be viewed as complex networks with a large number of interacting components. However despite recent advancements in network theory, a satisfactory description of dynamic processes arising in such cooperative systems is a subject of ongoing research. In this dissertation the emergence of dynamical complexity in networks of interacting stochastic oscillators is investigated. In particular I demonstrate that networks of two and three state stochastic oscillators present a second-order phase transition with respect to the strength of coupling between individual units. I show that at the critical point fluctuations of the global order parameter are characterized by an inverse-power law distribution and I assess their renewal properties. Additionally, I study the effect that different types of perturbation have on dynamical properties of the model. I discuss the relevance of those observations for the transmission of information between complex systems.

  5. Static and dynamic properties of supercooled water in small nanotubes.

    PubMed

    Khademi, Mahdi; Sahimi, Muhammad

    2016-07-14

    The static and dynamic properties of water in small silicon-carbide and carbon nanotubes have been studied over the temperature range 100 K-298 K, using extensive molecular dynamics simulations. The computed properties include the radial distribution function, the cage correlation function, the space-time autocorrelation function, the velocity autocorrelation function, and the self-diffusivity. They all indicate that, under the conditions that we study, water does not freeze in small nanotubes; the Stokes-Einstein relation breaks down, and the self-diffusivity exhibits a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. The cage correlation function C(t) decays according to a stretched-exponential function, C(t) ∼ exp[ - (t/τ)(β)], where τ is a relaxation time and β is a topological exponent. PMID:27421415

  6. Static and dynamic properties of supercooled water in small nanotubes

    NASA Astrophysics Data System (ADS)

    Khademi, Mahdi; Sahimi, Muhammad

    2016-07-01

    The static and dynamic properties of water in small silicon-carbide and carbon nanotubes have been studied over the temperature range 100 K-298 K, using extensive molecular dynamics simulations. The computed properties include the radial distribution function, the cage correlation function, the space-time autocorrelation function, the velocity autocorrelation function, and the self-diffusivity. They all indicate that, under the conditions that we study, water does not freeze in small nanotubes; the Stokes-Einstein relation breaks down, and the self-diffusivity exhibits a transition around 230 K, very close to 228 K, the temperature at which a fragile-to-strong dynamic crossover is supposed to happen. The cage correlation function C(t) decays according to a stretched-exponential function, C(t) ˜ exp[ - (t/τ)β], where τ is a relaxation time and β is a topological exponent.

  7. Particle-laden interfaces: direct calculation of interfacial stress from a discrete particle simulation of a pendant drop

    NASA Astrophysics Data System (ADS)

    Gu, Chuan; Botto, Lorenzo

    2015-11-01

    The adsorption of solid particles to fluid interfaces is exploited in several multiphase flow technologies, and plays a fundamental role in the dynamics of particle-laden drops. A fundamental question is how the particles modify the effective mechanical properties of the interface. Using a fast Eulerian-Lagrangian model for interfacial colloids, we have simulated a pendant drop whose surface is covered with spherical particles having short-range repulsion. The interface curvature induces non-uniform and anisotropic interfacial stresses, which we calculate by an interfacial extension of the Irving-Kirkwood formula. The isotropic component of this stress, related to the effective surface tension, is in good agreement with that calculated by fitting the drop shape to the Young-Laplace equation. The anisotropic component, related to the interfacial shear elasticity, is highly non uniform: small at the drop apex, significant along the drop sides. The reduction in surface tension can be substantial even below maximum surface packing. We illustrate this point by simulating phase-coarsening of a two-phase mixture in which the presence of interfacial particles ``freezes'' the coarsening process, for surface coverage well below maximum packing This work is supported by the EU through the Marie Curie Grant FLOWMAT (618335).

  8. Effect of Pr Valence State on Interfacial Structure and Electrical Properties of Pr Oxide/PrON/Ge Gate Stack Structure

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Sakashita, Mitsuo; Takeuchi, Wakana; Kondo, Hiroki; Nakatsuka, Osamu; Zaima, Shigeaki

    2011-04-01

    In this study, we investigated the valence state and chemical bonding state of Pr in a Pr oxide/PrON/Ge structure. We clarified the relationship between the valence state of Pr and the Pr oxide/Ge interfacial reaction using Pr oxide/Ge and Pr oxide/PrON/Ge samples. We found the formation of three Pr oxide phases in Pr oxide films; hexagonal Pr2O3 (h-Pr2O3) (Pr3+), cubic Pr2O3 (c-Pr2O3) (Pr3+), and c-PrO2 (Pr4+). We also investigated the effect of a nitride interlayer on the interfacial reaction in Pr oxide/Ge gate stacks. In a sample with a nitride interlayer (Pr oxide/PrON/Ge), metallic Pr-Pr bonds are also formed in the c-Pr2O3 film. After annealing in H2 ambient, the diffusion of Ge into Pr oxide is not observed in this sample. Pr-Pr bonds probably prevent the interfacial reaction and Ge oxide formation, considering that the oxygen chemical potential of this film is lower than that of a GeO2/Ge system. On the other hand, the rapid thermal oxidation (RTO) treatment terminates the O vacancies and defects in c-Pr2O3. As a result, c-PrO2 with tetravalent Pr is formed in the Pr oxide/PrON/Ge sample with RTO. In this sample, the leakage current density is effectively decreased in comparison with the sample without RTO. Hydrogen termination works effectively in Pr oxide/PrON/Ge samples with and without RTO, and we can achieve an interface state density of as low as 4 ×1011 eV-1·cm-2.

  9. A novel weighted density functional theory for adsorption, fluid-solid interfacial tension, and disjoining properties of simple liquid films on planar solid surfaces.

    PubMed

    Yu, Yang-Xin

    2009-07-14

    A novel weighted density functional theory (WDFT) for an inhomogeneous 12-6 Lennard-Jones fluid is proposed based on the modified fundamental measure theory for repulsive contribution, the mean-field approximation for attractive contribution, and the first-order mean-spherical approximation with a weighted density for correlation contribution. Extensive comparisons of the theoretical results with molecular simulation and experimental data indicate that the new WDFT yields accurate density profiles, adsorption isotherms, fluid-solid interfacial tensions, as well as disjoining potentials and pressures of simple gases such as argon, nitrogen, methane, ethane, and neon confined in slitlike pores or near graphitic solid surfaces. The present WDFT performs better than the nonlocal density functional theory, which is frequently used in the study of adsorption on porous materials. Since the proposed theory possesses a good dimensional crossover and is able to correctly reduce to two-dimensional case, it performs very well even in very narrow pores. In addition, the present WDFT reproduces very well the supercritical fluid-solid interfacial tensions, whereas the theory of Sweatman underestimates them at high bulk densities. The present WDFT predicts that the increase in the fluid-wall attraction may change the sign of the interfacial tension and hence may make the wall from "phobic" to "philic" with respect to the fluid. The new WDFT is computationally as simple and efficient as the mean-field theory and avoids the second-order direct correlation function as an input. It provides a universal way to construct the excess Helmholtz free-energy functional for inhomogeneous fluids such as Yukawa, square-well, and Sutherland fluids.

  10. Electrical properties and interfacial issues of high-k/Si MIS capacitors characterized by the thickness of Al2O3 interlayer

    NASA Astrophysics Data System (ADS)

    Wang, Xing; Liu, Hongxia; Fei, Chenxi; Zhao, Lu; Chen, Shupeng; Wang, Shulong

    2016-06-01

    A thin Al2O3 interlayer deposited between La2O3 layer and Si substrate was used to scavenge the interfacial layer (IL) by blocking the out-diffusion of substrate Si. Some advantages and disadvantages of this method were discussed in detail. Evident IL reduction corroborated by the transmission electron microscopy results suggested the feasibility of this method in IL scavenging. Significant improvements in oxygen vacancy and leakage current characteristics were achieved as the thickness of Al2O3 interlayer increase. Meanwhile, some disadvantages such as the degradations in interface trap and oxide trapped charge characteristics were also observed.

  11. Molecular dynamics study of grain boundary structure and properties at high temperatures

    NASA Astrophysics Data System (ADS)

    Fensin, Saryu Jindal

    This thesis reports research involving the development and application of atomistic simulation methods to study the effects of high homologous temperatures on the structural, thermodynamic, kinetic and mechanical properties of grain boundaries in metals. Our interest in these properties is due to the role they play in governing the evolution of microstructure and deformation of metals during solidification processing. The interest in developing more predictive models for the formation of solidification defects highlights a need to better understand the thermodynamic driving forces underlying grain-boundary premelting and the mobility and shear strength of these interfaces at high temperatures. In this work we study two different elemental systems, namely Ni and Cu, and consider a variety of grain boundary structures characterized by different misorientation angles, twist/tilt character and zero-temperature energies. A method to calculate the disjoining potential from molecular dynamics (MD) is developed and applied to grain boundaries in Ni. The disjoining potential characterizes the variation in grain-boundary free energy as a function of the width of a premelted interfacial layer. The MD method for the calculation of this property is applied to grain boundaries that display continuous premelting transitions, as well as a boundary characterized by a disordered atomic structure displaying a finite interfacial width at the melting temperature. The disjoining potential represents an important input property to larger scale models of solidification and grain coalescence. We further develop analysis methods to characterize the change in the atomic structure of an asymmetric tilt grain boundary in elemental Cu as a function of temperature. This boundary is characterized by a potential-energy surface with multiple minima as a function of the relative translation of the grains parallel to the interface plane. The more complex structure of this boundary, relative to the

  12. Dynamic modulation of the transport properties of the LaAl O3/SrTi O3 interface using uniaxial strain

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Fang, Yue-Wen; Chan, Ngai Yui; Lo, Wing Chong; Li, Dan Feng; Duan, Chun-Gang; Ding, Feng; Dai, Ji Yan

    2016-06-01

    Among the interfacial transport modulations to the LaAl O3/SrTi O3 (LAO/STO) heterostructure, mechanical strain has been proven to be an effective approach by growing the LAO/STO films on different substrates with varying lattice mismatches to STO. However, this lattice-mismatch-induced strain effect is static and biaxial, hindering the study of the strain effect in a dynamic way. In this work we realize dynamic and uniaxial strain to the LAO/STO oxide heterostructure at low temperature, through mechanical coupling from a magnetostrictive template. This anisotropic strain results in symmetry breaking at the interface and induces further splitting of the electronic band structure and therefore produces different conductivities along the x and y in-plane directions. In particular, we observe that along the strained direction the interface conductivity decreases by up to 70 % under a tensile strain, while it increases by 6.8 % under a compressive strain at 2 K. Also, it is revealed that the modulation on the interfacial transport property can be anisotropic, i.e., the resistance changes differently when an excitation current is parallel or perpendicular to the strain direction. This approach of strain engineering provides another degree of freedom for control of transport properties of oxide heterostructures and opens an additional way to investigate strain effects in materials science.

  13. Identification of dynamic properties from ambient vibration measurements

    SciTech Connect

    Farrar, C.R.; James, G.H. III

    1995-09-01

    To better understand the dynamic behavior of structures under normal dynamic loads as well as extreme loads such as those caused by seismic events or high winds, it is desirable to measure the dynamic properties (resonant frequencies, mode shapes and modal damping) of these structures. The cross-correlation function between two response measurements made on an ambiently excited structure is shown to have the same form as the system`s impulse response function. Therefore, standard time-domain curve-fitting procedures such as the complex exponential method, which are typically applied to impulse response functions, can now be applied to the cross-correlation functions to estimate the resonant frequencies and modal damping of the structure. A direct comparison of resonant frequencies identified by curve-fitting the cross-correlation functions, using traffic excitation as the ambient vibration source, and modal properties identified by standard forced vibration testing of a highway bridge, after traffic was removed, showed a maximum discrepancy of 3.63%. Similar comparisons for the average modal damping values identified by the two methods showed a 9.82% difference. This experimental verification implies that the proposed method of analyzing ambient vibration data has the potential to accurately assess the dynamic properties of large structures subjected to seismic excitations and small structures that are tested on a shake table.

  14. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  15. Statistical properties of chaotic dynamical systems which exhibit strange attractors

    SciTech Connect

    Jensen, R.V.; Oberman, C.R.

    1981-07-01

    A path integral method is developed for the calculation of the statistical properties of turbulent dynamical systems. The method is applicable to conservative systems which exhibit a transition to stochasticity as well as dissipative systems which exhibit strange attractors. A specific dissipative mapping is considered in detail which models the dynamics of a Brownian particle in a wave field with a broad frequency spectrum. Results are presented for the low order statistical moments for three turbulent regimes which exhibit strange attractors corresponding to strong, intermediate, and weak collisional damping.

  16. Structural and dynamical properties of hot dense matter by a Thomas-Fermi-Dirac molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lambert, F.; Clérouin, J.; Mazevet, S.

    2006-09-01

    We use a model combining, in a consistent way, orbital-free density functional theory (OF-DFT) and molecular dynamics (MD), to compute the thermodynamical, structural and dynamical properties of Fe and Au plasmas at conditions relevant to astrophysics and inertial confinement fusion (ICF). The newly developed parallel numerical scheme presented here allows to propagate hundreds of particles and to obtain accurate transport properties. This allows us to investigate the validity of the commonly used one-component plasma (OCP) model in predicting the pair correlation, the diffusion and viscosity coefficients for these two high-temperature high-density plasmas.

  17. Use of Mixed CH3-/HC(O)CH2CH2-Si(111) Functionality to Control Interfacial Chemical and Electronic Properties During the Atomic-Layer Deposition of Ultrathin Oxides on Si(111).

    PubMed

    O'Leary, Leslie E; Strandwitz, Nicholas C; Roske, Christopher W; Pyo, Suyeon; Brunschwig, Bruce S; Lewis, Nathan S

    2015-02-19

    Silicon surfaces terminated with a mixed monolayer containing both a propyl aldehyde functionality and methyl groups were prepared and used to control the interfacial chemical and electronic properties of Si(111) surfaces during atomic-layer deposition (ALD) of Al2O3 or MnO. Si(111) surfaces functionalized only with the aldehyde moiety exhibited surface recombination velocities, S, of 2500 ± 600 cm s(-1) whereas the mixed CH3-/HC(O)CH2CH2-Si(111) surfaces displayed S = 25 ± 7 cm s(-1). During the ALD growth of either Al2O3 or MnO, both the HC(O)CH2CH2-Si(111) and CH3-/HC(O)CH2CH2-Si(111) surfaces produced increased metal oxide deposition at low cycle number, relative to H-Si(111) or CH3-Si(111) surfaces. As detected by X-ray photoelectron spectroscopy after the ALD process, the CH3- and mixed CH3-/HC(O)CH2CH2- functionalized Si(111) surfaces exhibited less interfacial SiOx than was observed for ALD of metal oxides on H-Si(111) substrates.

  18. Iridium Interfacial Stack (IRIS)

    NASA Technical Reports Server (NTRS)

    Spry, David James (Inventor)

    2015-01-01

    An iridium interfacial stack ("IrIS") and a method for producing the same are provided. The IrIS may include ordered layers of TaSi.sub.2, platinum, iridium, and platinum, and may be placed on top of a titanium layer and a silicon carbide layer. The IrIS may prevent, reduce, or mitigate against diffusion of elements such as oxygen, platinum, and gold through at least some of its layers.

  19. The influence of a compatibilizer on the thermal and dynamic mechanical properties of PEEK/carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Díez-Pascual, A. M.; Naffakh, M.; Gómez, M. A.; Marco, C.; Ellis, G.; González-Domínguez, J. M.; Ansón, A.; Martínez, M. T.; Martínez-Rubi, Y.; Simard, B.; Ashrafi, B.

    2009-08-01

    The effect of polyetherimide (PEI) as a compatibilizing agent on the morphology, thermal, electrical and dynamic mechanical properties of poly(ether ether ketone) (PEEK)/single-walled carbon nanotube (SWCNT) nanocomposites, has been investigated for different CNT loadings. After a pre-processing step based on ball milling and pre-mixing under mechanical treatment in ethanol, the samples were prepared by melt extrusion. A more homogeneous distribution of the CNTs throughout the matrix is found for composites containing PEI, as revealed by scanning electron microscopy. Thermogravimetric analysis demonstrates an increase in the matrix degradation temperatures under dry air and nitrogen atmospheres with the addition of SWCNTs; the level of thermal stability of these nanocomposites is maintained when PEI is incorporated. Both differential scanning calorimetry and synchrotron x-ray scattering studies indicate a slight decrease in the crystallization temperatures of the compatibilized samples, and suggest the existence of reorganization phenomena during the heating, which are favoured in the composites incorporating the compatibilizer, due to their smaller crystal size. Dynamic mechanical studies show an increase in the glass transition temperature of the nanocomposites upon the addition of PEI. Furthermore, the presence of PEI causes an enhancement in the storage modulus, and hence in the rigidity of these systems, attributed to an improved interfacial adhesion between the reinforcement and the matrix. The electrical and thermal conductivities of these composites decrease with the incorporation of PEI. Overall, the compatibilized samples exhibit improved properties and are promising for their use in industrial applications.

  20. Interfacial adhesion: Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Bozzolo, Guillermo H.; Finley, Clarence W.; Banerjea, Amitava

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along wiith recommendations for future progress and needs.

  1. Interfacial adhesion - Theory and experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Banerjea, Amitava; Bozzolo, Guillermo H.; Finley, Clarence W.

    1988-01-01

    Adhesion, the binding of different materials at an interface, is of general interest to many branches of technology, e.g., microelectronics, tribology, manufacturing, construction, etc. However, there is a lack of fundamental understanding of such diverse interfaces. In addition, experimental techniques generally have practical objectives, such as the achievement of sufficient strength to sustain mechanical or thermal effects and/or have the proper electronic properties. In addition, the theoretical description of binding at interfaces is quite limited, and a proper data base for such theoretical analysis does not exist. This presentation will review both experimental and theoretical aspects of adhesion in nonpolymer materials. The objective will be to delineate the critical parameters needed, governing adhesion testing along with an outline of testing objectives. A distinction will be made between practical and fundamental objectives. Examples are given where interfacial bonding may govern experimental consideration. The present status of theory is presented along with recommendations for future progress and needs.

  2. Interfacial fracture between highly crosslinked polymer networks and a solid surface: Effect of interfacial bond density

    SciTech Connect

    STEVENS,MARK J.

    2000-03-23

    For highly crosslinked, polymer networks bonded to a solid surface, the effect of interfacial bond density as well as system size on interfacial fracture is studied molecular dynamics simulations. The correspondence between the stress-strain curve and the sequence of molecular deformations is obtained. The failure strain for a fully bonded surface is equal to the strain necessary to make taut the average minimal path through the network from the bottom solid surface to the top surface. At bond coverages less than full, nanometer scale cavities form at the surface yielding an inhomogeneous strain profile. The failure strain and stress are linearly proportional to the number of bonds at the interface unless the number of bonds is so few that van der Waals interactions dominate. The failure is always interfacial due to fewer bonds at the interface than in the bulk.

  3. Dynamic properties of helium ions in the solar wind

    NASA Technical Reports Server (NTRS)

    Zurbuchen, Th.; Bochsler, P.; von Steiger, R.

    1995-01-01

    We characterize the dynamic properties of He ions of the solar wind. Because of the non-negligible abundance and the significant fraction of momentum flux inherent in helium ions, this species has an influence on the state of turbulence. Especially, we analyze the helium dynamic properties of different solar wind types. After a discussion of the influence of measurement errors on the statistical analysis of He bulk velocities, we investigate the structure function dependency on the solar wind state. We find a self-similar sealing in the range of minutes to days with characteristic structure function slopes deviating from the canonical Kolmogorov values. For comparison with previous studies, we also analyze H structure functions of the same time periods and discuss differences of coinciding He and H structure functions in the framework of the concept of intermittency.

  4. On the fundamental properties of dynamically hot galaxies

    NASA Astrophysics Data System (ADS)

    Kritsuk, Alexei G.

    1997-01-01

    A two-component isothermal equilibrium model is applied to reproduce basic structural properties of dynamically hot stellar systems immersed in their massive dark haloes. The origin of the fundamental plane relation for giant ellipticals is naturally explained as a consequence of dynamical equilibrium in the context of the model. The existence of two galactic families displaying different behaviour in the luminosity-surface-brightness diagram is shown to be a result of a smooth transition from dwarfs, dominated by dark matter near the centre, to giants dominated by the luminous stellar component. The comparison of empirical scaling relations with model predictions suggests that probably a unique dissipative process was operating during the violent stage of development of stellar systems in the dark haloes, and the depth of the potential well controlled the observed luminosity of the resulting galaxies. The interpretation also provides some restrictions on the properties of dark haloes implied by the fundamental scaling laws.

  5. Dynamic properties of bovine temporomandibular joint disks change with age.

    PubMed

    Tanaka, E; Aoyama, J; Tanaka, M; Murata, H; Hamada, T; Tanne, K

    2002-09-01

    The temporomandibular joint disk exhibits morphological and biochemical age-related changes. However, the possible age-related changes of the dynamic viscoelasticity in the disk are unclear. We tested the hypothesis that the dynamic viscoelastic properties of the disk change with age. Thirty-six disks from young-adult, adult, and mature-adult cattle were used for dynamic tensile tests. In all disks, the magnitudes of the complex modulus, the storage modulus, and the loss modulus increased as the frequency increased. The mature-adult disks had higher values of these moduli than did the younger disks. The loss tangent ranged from 0.1 to 0.3, which means that the disk has relatively large elasticity and relatively small viscosity. It was concluded that both the elasticity and viscosity of the disk increase with age. This may reflect age-related changes in biochemical composition.

  6. Dynamical topology and statistical properties of spatiotemporal chaos.

    PubMed

    Zhuang, Quntao; Gao, Xun; Ouyang, Qi; Wang, Hongli

    2012-12-01

    For spatiotemporal chaos described by partial differential equations, there are generally locations where the dynamical variable achieves its local extremum or where the time partial derivative of the variable vanishes instantaneously. To a large extent, the location and movement of these topologically special points determine the qualitative structure of the disordered states. We analyze numerically statistical properties of the topologically special points in one-dimensional spatiotemporal chaos. The probability distribution functions for the number of point, the lifespan, and the distance covered during their lifetime are obtained from numerical simulations. Mathematically, we establish a probabilistic model to describe the dynamics of these topologically special points. In spite of the different definitions in different spatiotemporal chaos, the dynamics of these special points can be described in a uniform approach.

  7. Investigation of interfacial rheology & foam stability.

    SciTech Connect

    Yaklin, Melissa A.; Cote, Raymond O.; Grillet, Anne Mary; Walker, Lynn M.; Koehler, Timothy P.; Reichert, Matthew D.; Castaneda, Jaime N.; Mondy, Lisa Ann; Brooks, Carlton, F.

    2010-05-01

    The rheology at gas-liquid interfaces strongly influences the stability and dynamics of foams and emulsions. Several experimental techniques are employed to characterize the rheology at liquid-gas interfaces with an emphasis on the non-Newtonian behavior of surfactant-laden interfaces. The focus is to relate the interfacial rheology to the foamability and foam stability of various aqueous systems. An interfacial stress rheometer (ISR) is used to measure the steady and dynamic rheology by applying an external magnetic field to actuate a magnetic needle suspended at the interface. Results are compared with those from a double wall ring attachment to a rotational rheometer (TA Instruments AR-G2). Micro-interfacial rheology (MIR) is also performed using optical tweezers to manipulate suspended microparticle probes at the interface to investigate the steady and dynamic rheology. Additionally, a surface dilatational rheometer (SDR) is used to periodically oscillate the volume of a pendant drop or buoyant bubble. Applying the Young-Laplace equation to the drop shape, a time-dependent surface tension can be calculated and used to determine the effective dilatational viscosity of an interface. Using the ISR, double wall ring, SDR, and MIR, a wide range of sensitivity in surface forces (fN to nN) can be explored as each experimental method has different sensitivities. Measurements will be compared to foam stability.

  8. Dynamic and mechanical properties of supported lipid bilayers

    NASA Astrophysics Data System (ADS)

    Wu, Hsing-Lun; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2016-04-01

    Supported lipid bilayers (SLBs) offer an excellent model system for investigating the physico-chemical properties of the cell membrane. In this work, dynamic and mechanical properties of SLBs are explored by dissipative particle dynamics simulations for lipids with different architectures (chain length, kink, and asymmetry associated with lipid tails). It is found that the lateral diffusivity (Dx) and flip-flop rate (FF) grow with increasing temperature in both gel and liquid phases and can be described by an Arrhenius-like expression. Three regimes can be clearly identified for symmetric and asymmetric saturated lipids but only two regimes are observed for kinked lipids. Both Dx and FF grow with decreasing tail length and increasing number of kinks. The stretching (KA) and apparent bending (KB) moduli exhibit concave upward curves with temperature and the minima are attained at Tm. In general, the minima of KA and KB decrease with the chain length and increase with number of kinks. The typical relation among the bending modulus, area stretching modulus, and bilayer thickness is still followed, KB = βKAh2 and β is much smaller in the gel phase. The dynamic and mechanical properties of lipids with asymmetric tails are found to situate between their symmetric counterparts.

  9. Dynamic and mechanical properties of supported lipid bilayers.

    PubMed

    Wu, Hsing-Lun; Tsao, Heng-Kwong; Sheng, Yu-Jane

    2016-04-21

    Supported lipid bilayers (SLBs) offer an excellent model system for investigating the physico-chemical properties of the cell membrane. In this work, dynamic and mechanical properties of SLBs are explored by dissipative particle dynamics simulations for lipids with different architectures (chain length, kink, and asymmetry associated with lipid tails). It is found that the lateral diffusivity (Dx) and flip-flop rate (FF) grow with increasing temperature in both gel and liquid phases and can be described by an Arrhenius-like expression. Three regimes can be clearly identified for symmetric and asymmetric saturated lipids but only two regimes are observed for kinked lipids. Both Dx and FF grow with decreasing tail length and increasing number of kinks. The stretching (KA) and apparent bending (KB) moduli exhibit concave upward curves with temperature and the minima are attained at Tm. In general, the minima of KA and KB decrease with the chain length and increase with number of kinks. The typical relation among the bending modulus, area stretching modulus, and bilayer thickness is still followed, KB = βKAh(2) and β is much smaller in the gel phase. The dynamic and mechanical properties of lipids with asymmetric tails are found to situate between their symmetric counterparts. PMID:27389237

  10. Interfacial characteristics and properties of a low-clad-ratio AA4045/AA3003 cladding billet fabricated by semi-continuous casting

    NASA Astrophysics Data System (ADS)

    Han, Xing; Zhang, Hai-tao; Shao, Bo; Li, Lei; Qin, Ke; Cui, Jian-zhong

    2016-09-01

    A low-clad-ratio AA4045/AA3003 cladding billet was fabricated using a semi-continuous casting process and was subsequently extruded indirectly into a cladding pipe. The temperature distribution near the interface was measured. The microstructures, elemental distribution, Vickers hardness around the bonding interface, and the interfacial shear strength were examined. The results showed that the interface temperature rebounded when AA4045 melt contacted the supporting layer. The two alloys bonded well, with few defects, via the diffusion of Si and Mn in the temperature range from 569°C to 632°C. The mean shear strength of the bonding interface was 82.3 MPa, which was greater than that of AA3003 (75.8 MPa), indicating that the two alloys bonded with each other metallurgically via elemental interdiffusion. Moreover, no relative slip occurred between the two alloys during the extrusion process.

  11. Effects of plasma surface modification on interfacial behaviors and mechanical properties of carbon nanotube-Al{sub 2}O{sub 3} nanocomposites

    SciTech Connect

    Guo Yan; Cho, Hoonsung; Shi Donglu; Lian Jie; Song Yi; Abot, Jandro; Poudel, Bed; Ren Zhifeng; Wang Lumin; Ewing, Rodney C.

    2007-12-24

    The effects of plasma surface modification on interfacial behaviors in carbon nanotube (CNT) reinforced alumina (Al{sub 2}O{sub 3}) nanocomposites were studied. A unique plasma polymerization method was used to modify the surfaces of CNTs and Al{sub 2}O{sub 3} nanoparticles. The CNT-Al{sub 2}O{sub 3} nanocomposites were processed by both ambient pressure and hot-press sintering. The electron microscopy results showed ultrathin polymer coating on the surfaces of CNTs and Al{sub 2}O{sub 3} nanoparticles. A distinctive stress-strain curve difference related to the structural interfaces and plasma coating was observed from the nanocomposites. The mechanical performance and thermal stability of CNT-Al{sub 2}O{sub 3} nanocomposites were found to be significantly enhanced by the plasma-polymerized coating.

  12. Dynamic properties of three-dimensional piezoelectric Kagome grids

    NASA Astrophysics Data System (ADS)

    Wu, Zhi-Jing; Li, Feng-Ming

    2015-07-01

    Piezoelectric Kagome grids can be considered as a kind of functional material because they have vibration isolation performance and can transform mechanical energy to electric energy. In this study, the dynamic properties of three-dimensional (3D) piezoelectric Kagome grids without and with material defects are studied based on the frequency-domain responses. The spectral element method (SEM) is adopted to solve a 3D piezoelectric beam which contains bending components in two planes, tensional components, and torsional components. The dynamic stiffness matrix of a spectral piezoelectric beam is derived. Highly accurate solutions in the frequency-domain are obtained by solving the equation of motion of the whole structure. Compared with the results from the FEM and those in the existing literature, it can be seen that the SEM can be effectively used to study the 3D piezoelectric Kagome grids. The band-gap properties of Kagome grid and defect state properties of Kagome grid with material defects are analyzed. The effect of the piezoelectric parameter on the band-gap property is investigated further.

  13. Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation

    SciTech Connect

    Wilson, S. R.; Mendelev, M. I.

    2015-01-08

    Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni50.0Zr50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni50.0Zr50.0alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observed that anisotropies in both the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.

  14. Anisotropy of the solid–liquid interface properties of the Ni–Zr B33 phase from molecular dynamics simulation

    DOE PAGESBeta

    Wilson, S. R.; Mendelev, M. I.

    2015-01-08

    Solid–liquid interface (SLI) properties of the Ni–Zr B33 phase were determined from molecular dynamics simulations. In order to perform these measurements, a new semi-empirical potential for Ni–Zr alloy was developed that well reproduces the material properties required to model SLIs in the Ni50.0Zr50.0 alloy. In particular, the developed potential is shown to provide that the solid phase emerging from the liquid Ni50.0Zr50.0alloy is B33 (apart from a small fraction of point defects), in agreement with the experimental phase diagram. The SLI properties obtained using the developed potential exhibit an extraordinary degree of anisotropy. It is observed that anisotropies in bothmore » the interfacial free energy and mobility are an order of magnitude larger than those measured to date in any other metallic compound. Moreover, the [0 1 0] interface is shown to play a significant role in the observed anisotropy. Our data suggest that the [0 1 0] interface simultaneously corresponds to the lowest mobility, the lowest free energy and the highest stiffness of all inclinations in B33 Ni–Zr. This finding can be understood by taking into account a rather complicated crystal structure in this crystallographic direction.« less

  15. Characterization of interfacial bonding using a scanning Kelvin probe

    SciTech Connect

    Li, W.; Li, D.Y.

    2005-01-01

    Interfaces play a crucial role in determining the ultimate properties and service life of coating and film materials. However, the characterization and measurement of interfacial bonding, in particular of the local strength, is difficult. The high sensitivity of the electron work fun