Science.gov

Sample records for dynamic inverse computation

  1. Fast Parallel Computation Of Manipulator Inverse Dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Bejczy, Antal K.

    1991-01-01

    Method for fast parallel computation of inverse dynamics problem, essential for real-time dynamic control and simulation of robot manipulators, undergoing development. Enables exploitation of high degree of parallelism and, achievement of significant computational efficiency, while minimizing various communication and synchronization overheads as well as complexity of required computer architecture. Universal real-time robotic controller and simulator (URRCS) consists of internal host processor and several SIMD processors with ring topology. Architecture modular and expandable: more SIMD processors added to match size of problem. Operate asynchronously and in MIMD fashion.

  2. Efficient mapping algorithms for scheduling robot inverse dynamics computation on a multiprocessor system

    NASA Technical Reports Server (NTRS)

    Lee, C. S. G.; Chen, C. L.

    1989-01-01

    Two efficient mapping algorithms for scheduling the robot inverse dynamics computation consisting of m computational modules with precedence relationship to be executed on a multiprocessor system consisting of p identical homogeneous processors with processor and communication costs to achieve minimum computation time are presented. An objective function is defined in terms of the sum of the processor finishing time and the interprocessor communication time. The minimax optimization is performed on the objective function to obtain the best mapping. This mapping problem can be formulated as a combination of the graph partitioning and the scheduling problems; both have been known to be NP-complete. Thus, to speed up the searching for a solution, two heuristic algorithms were proposed to obtain fast but suboptimal mapping solutions. The first algorithm utilizes the level and the communication intensity of the task modules to construct an ordered priority list of ready modules and the module assignment is performed by a weighted bipartite matching algorithm. For a near-optimal mapping solution, the problem can be solved by the heuristic algorithm with simulated annealing. These proposed optimization algorithms can solve various large-scale problems within a reasonable time. Computer simulations were performed to evaluate and verify the performance and the validity of the proposed mapping algorithms. Finally, experiments for computing the inverse dynamics of a six-jointed PUMA-like manipulator based on the Newton-Euler dynamic equations were implemented on an NCUBE/ten hypercube computer to verify the proposed mapping algorithms. Computer simulation and experimental results are compared and discussed.

  3. Analysis and inverse substructuring computation on dynamic quality of mechanical assembly

    NASA Astrophysics Data System (ADS)

    Lü, Guangqing; Yi, Chuijie; Fang, Ke

    2016-05-01

    Mechanical assembly has its own dynamic quality directly affecting the dynamic quality of whole product and should be considered in quality inspection and estimation of mechanical assembly. Based on functional relations between dynamic characteristics involved in mechanical assembly, the effects of assembling process on dynamic characteristics of substructural components of an assembly system are investigated by substructuring analysis. Assembly-coupling dynamic stiffness is clarified as the dominant factor of the effects and can be used as a quantitative measure of assembly dynamic quality. Two computational schemes using frequency response functions(FRFs) to determine the stiffness are provided and discussed by inverse substructuring analysis, including their applicable conditions and implementation procedure in application. Eigenvalue analysis on matrix-ratios of FRFs before and after assembling is employed and well validates the analytical outcomes and the schemes via both a lumped-parameter model and its analogic experimental counterpart. Applying the two schemes to inspect the dynamic quality provides the message of dynamic performance of the assembly system, and therefore improves conventional quality inspection and estimation of mechanical assembly in completeness.

  4. Computational fluid dynamics vs. inverse dynamics methods to determine passive drag in two breaststroke glide positions.

    PubMed

    Costa, L; Mantha, V R; Silva, A J; Fernandes, R J; Marinho, D A; Vilas-Boas, J P; Machado, L; Rouboa, A

    2015-07-16

    Computational fluid dynamics (CFD) plays an important role to quantify, understand and "observe" the water movements around the human body and its effects on drag (D). We aimed to investigate the flow effects around the swimmer and to compare the drag and drag coefficient (CD) values obtained from experiments (using cable velocimetry in a swimming pool) with those of CFD simulations for the two ventral gliding positions assumed during the breaststroke underwater cycle (with shoulders flexed and upper limbs extended above the head-GP1; with shoulders in neutral position and upper limbs extended along the trunk-GP2). Six well-trained breaststroke male swimmers (with reasonable homogeneity of body characteristics) participated in the experimental tests; afterwards a 3D swimmer model was created to fit within the limits of the sample body size profile. The standard k-ε turbulent model was used to simulate the fluid flow around the swimmer model. Velocity ranged from 1.30 to 1.70 m/s for GP1 and 1.10 to 1.50 m/s for GP2. Values found for GP1 and GP2 were lower for CFD than experimental ones. Nevertheless, both CFD and experimental drag/drag coefficient values displayed a tendency to jointly increase/decrease with velocity, except for GP2 CD where CFD and experimental values display opposite tendencies. Results suggest that CFD values obtained by single model approaches should be considered with caution due to small body shape and dimension differences to real swimmers. For better accuracy of CFD studies, realistic individual 3D models of swimmers are required, and specific kinematics respected.

  5. STATE-SPACE SOLUTIONS TO THE DYNAMIC MAGNETOENCEPHALOGRAPHY INVERSE PROBLEM USING HIGH PERFORMANCE COMPUTING.

    PubMed

    Long, Christopher J; Purdon, Patrick L; Temereanca, Simona; Desai, Neil U; Hämäläinen, Matti S; Brown, Emery N

    2011-06-01

    Determining the magnitude and location of neural sources within the brain that are responsible for generating magnetoencephalography (MEG) signals measured on the surface of the head is a challenging problem in functional neuroimaging. The number of potential sources within the brain exceeds by an order of magnitude the number of recording sites. As a consequence, the estimates for the magnitude and location of the neural sources will be ill-conditioned because of the underdetermined nature of the problem. One well-known technique designed to address this imbalance is the minimum norm estimator (MNE). This approach imposes an L(2) regularization constraint that serves to stabilize and condition the source parameter estimates. However, these classes of regularizer are static in time and do not consider the temporal constraints inherent to the biophysics of the MEG experiment. In this paper we propose a dynamic state-space model that accounts for both spatial and temporal correlations within and across candidate intra-cortical sources. In our model, the observation model is derived from the steady-state solution to Maxwell's equations while the latent model representing neural dynamics is given by a random walk process. We show that the Kalman filter (KF) and the Kalman smoother [also known as the fixed-interval smoother (FIS)] may be used to solve the ensuing high-dimensional state-estimation problem. Using a well-known relationship between Bayesian estimation and Kalman filtering, we show that the MNE estimates carry a significant zero bias. Calculating these high-dimensional state estimates is a computationally challenging task that requires High Performance Computing (HPC) resources. To this end, we employ the NSF Teragrid Supercomputing Network to compute the source estimates. We demonstrate improvement in performance of the state-space algorithm relative to MNE in analyses of simulated and actual somatosensory MEG experiments. Our findings establish the

  6. Computation of inverse magnetic cascades

    NASA Technical Reports Server (NTRS)

    Montgomery, D.

    1981-01-01

    Inverse cascades of magnetic quantities for turbulent incompressible magnetohydrodynamics are reviewed, for two and three dimensions. The theory is extended to the Strauss equations, a description intermediate between two and three dimensions appropriate to Tokamak magnetofluids. Consideration of the absolute equilibrium Gibbs ensemble for the system leads to a prediction of an inverse cascade of magnetic helicity, which may manifest itself as a major disruption. An agenda for computational investigation of this conjecture is proposed.

  7. Integration of gravitational torques in cerebellar pathways allows for the dynamic inverse computation of vertical pointing movements of a robot arm.

    PubMed

    Gentili, Rodolphe J; Papaxanthis, Charalambos; Ebadzadeh, Mehdi; Eskiizmirliler, Selim; Ouanezar, Sofiane; Darlot, Christian

    2009-01-01

    Several authors suggested that gravitational forces are centrally represented in the brain for planning, control and sensorimotor predictions of movements. Furthermore, some studies proposed that the cerebellum computes the inverse dynamics (internal inverse model) whereas others suggested that it computes sensorimotor predictions (internal forward model). This study proposes a model of cerebellar pathways deduced from both biological and physical constraints. The model learns the dynamic inverse computation of the effect of gravitational torques from its sensorimotor predictions without calculating an explicit inverse computation. By using supervised learning, this model learns to control an anthropomorphic robot arm actuated by two antagonists McKibben artificial muscles. This was achieved by using internal parallel feedback loops containing neural networks which anticipate the sensorimotor consequences of the neural commands. The artificial neural networks architecture was similar to the large-scale connectivity of the cerebellar cortex. Movements in the sagittal plane were performed during three sessions combining different initial positions, amplitudes and directions of movements to vary the effects of the gravitational torques applied to the robotic arm. The results show that this model acquired an internal representation of the gravitational effects during vertical arm pointing movements. This is consistent with the proposal that the cerebellar cortex contains an internal representation of gravitational torques which is encoded through a learning process. Furthermore, this model suggests that the cerebellum performs the inverse dynamics computation based on sensorimotor predictions. This highlights the importance of sensorimotor predictions of gravitational torques acting on upper limb movements performed in the gravitational field.

  8. The representation and computation of generalized inverse

    NASA Astrophysics Data System (ADS)

    Sheng, Xingping; Chen, Guoliang; Gong, Yi

    2008-03-01

    This paper presents a novel representation for the generalized inverse . Based on this, we give an algorithm to compute this generalized inverse. As an application, we use Gauss-Jordan elimination to compute the weighted Moore-Penrose inverse and the Drazin inverse Ad.

  9. Integration of Gravitational Torques in Cerebellar Pathways Allows for the Dynamic Inverse Computation of Vertical Pointing Movements of a Robot Arm

    PubMed Central

    Gentili, Rodolphe J.; Papaxanthis, Charalambos; Ebadzadeh, Mehdi; Eskiizmirliler, Selim; Ouanezar, Sofiane; Darlot, Christian

    2009-01-01

    Background Several authors suggested that gravitational forces are centrally represented in the brain for planning, control and sensorimotor predictions of movements. Furthermore, some studies proposed that the cerebellum computes the inverse dynamics (internal inverse model) whereas others suggested that it computes sensorimotor predictions (internal forward model). Methodology/Principal Findings This study proposes a model of cerebellar pathways deduced from both biological and physical constraints. The model learns the dynamic inverse computation of the effect of gravitational torques from its sensorimotor predictions without calculating an explicit inverse computation. By using supervised learning, this model learns to control an anthropomorphic robot arm actuated by two antagonists McKibben artificial muscles. This was achieved by using internal parallel feedback loops containing neural networks which anticipate the sensorimotor consequences of the neural commands. The artificial neural networks architecture was similar to the large-scale connectivity of the cerebellar cortex. Movements in the sagittal plane were performed during three sessions combining different initial positions, amplitudes and directions of movements to vary the effects of the gravitational torques applied to the robotic arm. The results show that this model acquired an internal representation of the gravitational effects during vertical arm pointing movements. Conclusions/Significance This is consistent with the proposal that the cerebellar cortex contains an internal representation of gravitational torques which is encoded through a learning process. Furthermore, this model suggests that the cerebellum performs the inverse dynamics computation based on sensorimotor predictions. This highlights the importance of sensorimotor predictions of gravitational torques acting on upper limb movements performed in the gravitational field. PMID:19384420

  10. Fast Computation of the Inverse CMH Model

    NASA Technical Reports Server (NTRS)

    Patel, Umesh D.; Torre, Edward Della; Day, John H. (Technical Monitor)

    2001-01-01

    A fast computational method based on differential equation approach for inverse DOK model has been extended for the inverse CMH model. Also, a cobweb technique for calculating the inverse CMH model is also presented. The two techniques are differed from the point of view of flexibility and computation time.

  11. Inversion based on computational simulations

    SciTech Connect

    Hanson, K.M.; Cunningham, G.S.; Saquib, S.S.

    1998-09-01

    A standard approach to solving inversion problems that involve many parameters uses gradient-based optimization to find the parameters that best match the data. The authors discuss enabling techniques that facilitate application of this approach to large-scale computational simulations, which are the only way to investigate many complex physical phenomena. Such simulations may not seem to lend themselves to calculation of the gradient with respect to numerous parameters. However, adjoint differentiation allows one to efficiently compute the gradient of an objective function with respect to all the variables of a simulation. When combined with advanced gradient-based optimization algorithms, adjoint differentiation permits one to solve very large problems of optimization or parameter estimation. These techniques will be illustrated through the simulation of the time-dependent diffusion of infrared light through tissue, which has been used to perform optical tomography. The techniques discussed have a wide range of applicability to modeling including the optimization of models to achieve a desired design goal.

  12. Location identification for indoor instantaneous point contaminant source by probability-based inverse Computational Fluid Dynamics modeling.

    PubMed

    Liu, X; Zhai, Z

    2008-02-01

    Indoor pollutions jeopardize human health and welfare and may even cause serious morbidity and mortality under extreme conditions. To effectively control and improve indoor environment quality requires immediate interpretation of pollutant sensor readings and accurate identification of indoor pollution history and source characteristics (e.g. source location and release time). This procedure is complicated by non-uniform and dynamic contaminant indoor dispersion behaviors as well as diverse sensor network distributions. This paper introduces a probability concept based inverse modeling method that is able to identify the source location for an instantaneous point source placed in an enclosed environment with known source release time. The study presents the mathematical models that address three different sensing scenarios: sensors without concentration readings, sensors with spatial concentration readings, and sensors with temporal concentration readings. The paper demonstrates the inverse modeling method and algorithm with two case studies: air pollution in an office space and in an aircraft cabin. The predictions were successfully verified against the forward simulation settings, indicating good capability of the method in finding indoor pollutant sources. The research lays a solid ground for further study of the method for more complicated indoor contamination problems. The method developed can help track indoor contaminant source location with limited sensor outputs. This will ensure an effective and prompt execution of building control strategies and thus achieve a healthy and safe indoor environment. The method can also assist the design of optimal sensor networks.

  13. Dynamically consistent Jacobian inverse for mobile manipulators

    NASA Astrophysics Data System (ADS)

    Ratajczak, Joanna; Tchoń, Krzysztof

    2016-06-01

    By analogy to the definition of the dynamically consistent Jacobian inverse for robotic manipulators, we have designed a dynamically consistent Jacobian inverse for mobile manipulators built of a non-holonomic mobile platform and a holonomic on-board manipulator. The endogenous configuration space approach has been exploited as a source of conceptual guidelines. The new inverse guarantees a decoupling of the motion in the operational space from the forces exerted in the endogenous configuration space and annihilated by the dual Jacobian inverse. A performance study of the new Jacobian inverse as a tool for motion planning is presented.

  14. Computationally efficient Bayesian inference for inverse problems.

    SciTech Connect

    Marzouk, Youssef M.; Najm, Habib N.; Rahn, Larry A.

    2007-10-01

    Bayesian statistics provides a foundation for inference from noisy and incomplete data, a natural mechanism for regularization in the form of prior information, and a quantitative assessment of uncertainty in the inferred results. Inverse problems - representing indirect estimation of model parameters, inputs, or structural components - can be fruitfully cast in this framework. Complex and computationally intensive forward models arising in physical applications, however, can render a Bayesian approach prohibitive. This difficulty is compounded by high-dimensional model spaces, as when the unknown is a spatiotemporal field. We present new algorithmic developments for Bayesian inference in this context, showing strong connections with the forward propagation of uncertainty. In particular, we introduce a stochastic spectral formulation that dramatically accelerates the Bayesian solution of inverse problems via rapid evaluation of a surrogate posterior. We also explore dimensionality reduction for the inference of spatiotemporal fields, using truncated spectral representations of Gaussian process priors. These new approaches are demonstrated on scalar transport problems arising in contaminant source inversion and in the inference of inhomogeneous material or transport properties. We also present a Bayesian framework for parameter estimation in stochastic models, where intrinsic stochasticity may be intermingled with observational noise. Evaluation of a likelihood function may not be analytically tractable in these cases, and thus several alternative Markov chain Monte Carlo (MCMC) schemes, operating on the product space of the observations and the parameters, are introduced.

  15. Linear inverse problem of the reactor dynamics

    NASA Astrophysics Data System (ADS)

    Volkov, N. P.

    2017-01-01

    The aim of this work is the study transient processes in nuclear reactors. The mathematical model of the reactor dynamics excluding reverse thermal coupling is investigated. This model is described by a system of integral-differential equations, consisting of a non-stationary anisotropic multispeed kinetic transport equation and a delayed neutron balance equation. An inverse problem was formulated to determine the stationary part of the function source along with the solution of the direct problem. The author obtained sufficient conditions for the existence and uniqueness of a generalized solution of this inverse problem.

  16. Inverse dynamics: Simultaneous trajectory tracking and vibration reduction with distributed actuators

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh; Bayo, Eduardo

    1993-01-01

    This paper addresses the problem of inverse dynamics for articulated flexible structures with both lumped and distributed actuators. This problem arises, for example, in the combined vibration minimization and trajectory control of space robots and structures. A new inverse dynamics scheme for computing the nominal lumped and distributed inputs for tracking a prescribed trajectory is given.

  17. Inverse dynamics: Simultaneous trajectory tracking and vibration reduction with distributed actuators

    NASA Astrophysics Data System (ADS)

    Devasia, Santosh; Bayo, Eduardo

    1993-02-01

    This paper addresses the problem of inverse dynamics for articulated flexible structures with both lumped and distributed actuators. This problem arises, for example, in the combined vibration minimization and trajectory control of space robots and structures. A new inverse dynamics scheme for computing the nominal lumped and distributed inputs for tracking a prescribed trajectory is given.

  18. Double inverse stochastic resonance with dynamic synapses

    NASA Astrophysics Data System (ADS)

    Uzuntarla, Muhammet; Torres, Joaquin J.; So, Paul; Ozer, Mahmut; Barreto, Ernest

    2017-01-01

    We investigate the behavior of a model neuron that receives a biophysically realistic noisy postsynaptic current based on uncorrelated spiking activity from a large number of afferents. We show that, with static synapses, such noise can give rise to inverse stochastic resonance (ISR) as a function of the presynaptic firing rate. We compare this to the case with dynamic synapses that feature short-term synaptic plasticity and show that the interval of presynaptic firing rate over which ISR exists can be extended or diminished. We consider both short-term depression and facilitation. Interestingly, we find that a double inverse stochastic resonance (DISR), with two distinct wells centered at different presynaptic firing rates, can appear.

  19. Robust dynamic inversion control laws for aircraft control

    NASA Technical Reports Server (NTRS)

    Balas, Gary J.; Garrard, William L.; Reiner, Jakob

    1992-01-01

    Dynamic inversion is a technique for control law design in which feedback is used to simultaneously cancel system dynamics and achieve desired dynamic response characteristics. However, dynamic inversion control laws lack robustness to modeling errors if improperly designed. This paper examines a simple linear example, control of roll rate about the body axis of high performance aircraft, to illustrate some robustness problems which may occur with a simple dynamic inversion control law. The paper demonstrates how structured singular value synthesis techniques can be used to enhance the robustness properties of the dynamic inversion controller.

  20. Computing the Moore-Penrose Inverse of a Matrix with a Computer Algebra System

    ERIC Educational Resources Information Center

    Schmidt, Karsten

    2008-01-01

    In this paper "Derive" functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems--and to have the blueprint…

  1. Computing the Moore-Penrose Inverse of a Matrix with a Computer Algebra System

    ERIC Educational Resources Information Center

    Schmidt, Karsten

    2008-01-01

    In this paper "Derive" functions are provided for the computation of the Moore-Penrose inverse of a matrix, as well as for solving systems of linear equations by means of the Moore-Penrose inverse. Making it possible to compute the Moore-Penrose inverse easily with one of the most commonly used Computer Algebra Systems--and to have the blueprint…

  2. A physiology based inverse dynamic analysis of human gait: potential and perspectives.

    PubMed

    De Groote, F; Pipeleers, G; Jonkers, I; Demeulenaere, B; Patten, C; Swevers, J; De Schutter, J

    2009-10-01

    One approach to compute the musculotendon forces that underlie human motion is to combine an inverse dynamic analysis with a static optimisation procedure. Although computationally efficient, this classical inverse approach fails to incorporate constraints imposed by muscle physiology. The present paper reports on a physiological inverse approach (PIA) that combines an inverse dynamic analysis with a dynamic optimisation procedure. This allows the incorporation of a full description of muscle activation and contraction dynamics, without loss of computational efficiency. A comparison of muscle excitations and MT-forces predicted by the classical and the PIA is presented for normal and pathological gait. Inclusion of muscle physiology primarily affects the rate of active muscle force build-up and decay and allows the estimation of passive muscle force. Consequently, it influences the onset and cessation of the predicted muscle excitations as well as the level of co-contraction.

  3. Solving the inverse problem of noise-driven dynamic networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Zheng, Zhigang; Niu, Haijing; Mi, Yuanyuan; Wu, Si; Hu, Gang

    2015-01-01

    Nowadays, massive amounts of data are available for analysis in natural and social systems and the tasks to depict system structures from the data, i.e., the inverse problems, become one of the central issues in wide interdisciplinary fields. In this paper, we study the inverse problem of dynamic complex networks driven by white noise. A simple and universal inference formula of double correlation matrices and noise-decorrelation (DCMND) method is derived analytically, and numerical simulations confirm that the DCMND method can accurately depict both network structures and noise correlations by using available output data only. This inference performance has never been regarded possible by theoretical derivation, numerical computation, and experimental design.

  4. Dynamic data integration and stochastic inversion of a confined aquifer

    NASA Astrophysics Data System (ADS)

    Wang, D.; Zhang, Y.; Irsa, J.; Huang, H.; Wang, L.

    2013-12-01

    Much work has been done in developing and applying inverse methods to aquifer modeling. The scope of this paper is to investigate the applicability of a new direct method for large inversion problems and to incorporate uncertainty measures in the inversion outcomes (Wang et al., 2013). The problem considered is a two-dimensional inverse model (50×50 grid) of steady-state flow for a heterogeneous ground truth model (500×500 grid) with two hydrofacies. From the ground truth model, decreasing number of wells (12, 6, 3) were sampled for facies types, based on which experimental indicator histograms and directional variograms were computed. These parameters and models were used by Sequential Indicator Simulation to generate 100 realizations of hydrofacies patterns in a 100×100 (geostatistical) grid, which were conditioned to the facies measurements at wells. These realizations were smoothed with Simulated Annealing, coarsened to the 50×50 inverse grid, before they were conditioned with the direct method to the dynamic data, i.e., observed heads and groundwater fluxes at the same sampled wells. A set of realizations of estimated hydraulic conductivities (Ks), flow fields, and boundary conditions were created, which centered on the 'true' solutions from solving the ground truth model. Both hydrofacies conductivities were computed with an estimation accuracy of ×10% (12 wells), ×20% (6 wells), ×35% (3 wells) of the true values. For boundary condition estimation, the accuracy was within × 15% (12 wells), 30% (6 wells), and 50% (3 wells) of the true values. The inversion system of equations was solved with LSQR (Paige et al, 1982), for which coordinate transform and matrix scaling preprocessor were used to improve the condition number (CN) of the coefficient matrix. However, when the inverse grid was refined to 100×100, Gaussian Noise Perturbation was used to limit the growth of the CN before the matrix solve. To scale the inverse problem up (i.e., without smoothing

  5. Direct inversion of rigid-body rotational dynamics

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1990-01-01

    The global linearization (inversion) of rigid-body rotational dynamics is reviewed, and representations in terms of quaternions and direction cosines are compared. Certain properties common to quaternions and direction cosines that make their use preferable to Euler angles and that simplify the inversion procedure are described. Applications of the inversion procedure for state estimation and attitude control are discussed. To avoid complexities caused by aerodynamics, an example of direct inversion for linear feedback control of spacecraft attitude is given.

  6. Direct inversion of rigid-body rotational dynamics

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1990-01-01

    The global linearization (inversion) of rigid-body rotational dynamics is reviewed, and representations in terms of quaternions and direction cosines are compared. Certain properties common to quaternions and direction cosines that make their use preferable to Euler angles and that simplify the inversion procedure are described. Applications of the inversion procedure for state estimation and attitude control are discussed. To avoid complexities caused by aerodynamics, an example of direct inversion for linear feedback control of spacecraft attitude is given.

  7. Direct inversion of rigid-body rotational dynamics

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1990-01-01

    The global linearization (inversion) of rigid-body rotational dynamics is reviewed and representations in terms of quaternions and direction cosines are compared. Certain properties common to quaternions and direction cosines that make their use preferable to Euler angles and that simplify the inversion procedure are described. Applications of the inversion procedure for state estimation and attitude control are discussed. To avoid complexities caused by aerodynamics, an example of direct inversion for linear feedback control of spacecraft attitude is given.

  8. An inverse dynamic method yielding flexible manipulator state trajectories

    NASA Technical Reports Server (NTRS)

    Kwon, Dong-Soo; Book, Wayne J.

    1990-01-01

    An inverse dynamic equation for a flexible manipulator is derived in a state form. By dividing the inverse system into the causal part and the anticausal part, torque is calculated in the time domain for a certain end point trajectory, as well as trajectories of all state variables. The open loop control of the inverse dynamic method shows an excellent result in simulation. For practical applications, a control strategy adapting feedback tracking control to the inverse dynamic feedforward control is illustrated, and its good experimental result is presented.

  9. An inverse dynamic method yielding flexible manipulator state trajectories

    NASA Technical Reports Server (NTRS)

    Kwon, Dong-Soo; Book, Wayne J.

    1990-01-01

    An inverse dynamic equation for a flexible manipulator is derived in a state form. By dividing the inverse system into the causal part and the anticausal part, one can calculate torque in the time domain for a certain end-point trajectory, as well as trajectories of all state variables. The open-loop control of the inverse dynamic method shows an excellent result in simulation. For practical applications, a control strategy adapting feedback tracking control to the inverse dynamic feedforward control is illustrated, and experimental results are presented.

  10. Effects of Tape and Exercise on Dynamic Ankle Inversion

    PubMed Central

    Ricard, Mark D.; Sherwood, Stephen M.; Schulthies, Shane S.; Knight, Kenneth L.

    2000-01-01

    Objective: To compare the effects of tape, with and without prewrap, on dynamic ankle inversion before and after exercise. Design and Setting: Doubly multivariate analyses of variance were used to compare the taping and exercise conditions. Subjects were randomly assigned to a fixed treatment order as determined by a balanced latin square. The independent variables were tape application (no tape, tape with prewrap, tape to skin) and exercise (before and after). The dependent variables were average inversion velocity, total inversion, maximum inversion velocity, and time to maximum inversion. Subjects: Thirty college-age male and female students (17 males, 13 females; mean age = 24.9 ± 4.3 years, range, 19 to 39 years) were tested. Subjects were excluded from the study if they exhibited a painful gait or painful range of motion or had a past history of ankle surgery or an ankle sprain within the past 4 weeks. Measurements: We collected data using electronic goniometers while subjects balanced on the right leg on an inversion platform tilted about the medial-lateral axis to produce 15° of plantar flexion. Sudden ankle inversion was induced by pulling the inversion platform support, allowing the platform support base to rotate 37°. Ten satisfactory trials were recorded on the inversion platform before and after a prescribed exercise bout. We calculated total inversion, time to maximum inversion, average inversion velocity, and maximum inversion velocity after sudden inversion. Results: We found no significant differences between taping to the skin and taping over prewrap for any of the variables measured. There were significant differences between both taping conditions and no-tape postexercise for average inversion velocity, maximum inversion, maximum inversion velocity, and time to maximum inversion. The total inversion mean for no-tape postexercise was 38.8° ± 6.3°, whereas the means for tape and skin and for tape and prewrap were 28.3° ± 4.6° and 29.1°

  11. Dynamics of Computing Structures

    NASA Astrophysics Data System (ADS)

    Huberman, B. A.

    1985-01-01

    Complex systems, such as biological organisms and computing structures, lie between the realms of statistical mechanics and the physics of a few degrees of freedom. Moreover, they can exhibit self-organized behavior which in many cases is characterized by learning, recognition and fault tolerance. This talk will describe studies of adaptive parallel computers which are capable of reliable learning and recognition. The existence of attractors in their dynamical behavior leads to a novel self-repairing mechanism which has been tested by quantitative experiments. Moreover, we will show how these highly concurrent structures, which are capable of universal computation, can be used to study simple, fault-tolerant, perceptual tasks.

  12. Breast ultrasound computed tomography using waveform inversion with source encoding

    NASA Astrophysics Data System (ADS)

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the speed-of-sound distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Computer-simulation studies are conducted to demonstrate the use of the WISE method. Using a single graphics processing unit card, each iteration can be completed within 25 seconds for a 128 × 128 mm2 reconstruction region. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  13. Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets

    NASA Astrophysics Data System (ADS)

    Johansen, Øyvind; Brataas, Arne

    2017-06-01

    Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2,FeF2, and NiO. Near the spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin pumping is independent of the external magnetic field when the driving field has the optimal circular polarization. In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.

  14. Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Chung, T. J.

    2002-03-01

    Computational fluid dynamics (CFD) techniques are used to study and solve complex fluid flow and heat transfer problems. This comprehensive text ranges from elementary concepts for the beginner to state-of-the-art CFD for the practitioner. It discusses and illustrates the basic principles of finite difference (FD), finite element (FE), and finite volume (FV) methods, with step-by-step hand calculations. Chapters go on to examine structured and unstructured grids, adaptive methods, computing techniques, and parallel processing. Finally, the author describes a variety of practical applications to problems in turbulence, reacting flows and combustion, acoustics, combined mode radiative heat transfer, multiphase flows, electromagnetic fields, and relativistic astrophysical flows. Students and practitioners--particularly in mechanical, aerospace, chemical, and civil engineering--will use this authoritative text to learn about and apply numerical techniques to the solution of fluid dynamics problems.

  15. Dynamic Architecture Computer

    DTIC Science & Technology

    1988-12-01

    of Engineering of the Air Force Institute of Tecnology Air University In Partial Fulfillment of Master of Science in Electrical Engineering Accession...architecture. The review assured that this study did not duplicate previous studies and provided the background information for this study. 4 Analysis of...a dynamic architecture computer based on the information obtained from the analysis outlined in the steps above. Analysis of Results. This concluding

  16. Computational reacting gas dynamics

    NASA Technical Reports Server (NTRS)

    Lam, S. H.

    1993-01-01

    In the study of high speed flows at high altitudes, such as that encountered by re-entry spacecrafts, the interaction of chemical reactions and other non-equilibrium processes in the flow field with the gas dynamics is crucial. Generally speaking, problems of this level of complexity must resort to numerical methods for solutions, using sophisticated computational fluid dynamics (CFD) codes. The difficulties introduced by reacting gas dynamics can be classified into three distinct headings: (1) the usually inadequate knowledge of the reaction rate coefficients in the non-equilibrium reaction system; (2) the vastly larger number of unknowns involved in the computation and the expected stiffness of the equations; and (3) the interpretation of the detailed reacting CFD numerical results. The research performed accepts the premise that reacting flows of practical interest in the future will in general be too complex or 'untractable' for traditional analytical developments. The power of modern computers must be exploited. However, instead of focusing solely on the construction of numerical solutions of full-model equations, attention is also directed to the 'derivation' of the simplified model from the given full-model. In other words, the present research aims to utilize computations to do tasks which have traditionally been done by skilled theoreticians: to reduce an originally complex full-model system into an approximate but otherwise equivalent simplified model system. The tacit assumption is that once the appropriate simplified model is derived, the interpretation of the detailed numerical reacting CFD numerical results will become much easier. The approach of the research is called computational singular perturbation (CSP).

  17. Dynamics of computational ecosystems

    NASA Astrophysics Data System (ADS)

    Kephart, J. O.; Hogg, T.; Huberman, B. A.

    1989-07-01

    Recently, Huberman and Hogg [in The Ecology of Computation, edited by B. A. Huberman (North-Holland, 1988), pp. 77-115] analyzed the dynamics of resource allocation in a model of computational ecosystems which incorporated many of the features endemic to large distributed processing systems, including distributed control, asynchrony, resource contention, and cooperation among agents and the concomitant problems of incomplete knowledge and delayed information. In this paper we supplement an analysis of several simple examples of computational ecosystems with computer simulations to gain insight into the effects of time delays, cooperation, multiple resources, inhomogeneity, etc. The simulations verify Huberman and Hogg's prediction of persistent oscillations and chaos, and confirm the Ceccatto-Huberman [Proc. Natl. Acad. Sci. U.S.A. 86, 3443 (1989)] prediction of extremely long-lived metastable states in computational ecosystems. Extending the analysis to inhomogeneous systems, we show that they can be more stable than homogeneous systems because agents with different computational needs settle into different strategic niches, and that overly clever local decision-making algorithms can induce chaotic behavior.

  18. Influence of the 3D inverse dynamic method on the joint forces and moments during gait.

    PubMed

    Dumas, R; Nicol, E; Chèze, L

    2007-10-01

    The joint forces and moments are commonly used in gait analysis. They can be computed by four different 3D inverse dynamic methods proposed in the literature, either based on vectors and Euler angles, wrenches and quaternions, homogeneous matrices, or generalized coordinates and forces. In order to analyze the influence of the inverse dynamic method, the joint forces and moments were computed during gait on nine healthy subjects. A ratio was computed between the relative dispersions (due to the method) and the absolute amplitudes of the gait curves. The influence of the inverse dynamic method was negligible at the ankle (2%) but major at the knee and the hip joints (40%). This influence seems to be due to the dynamic computation rather than the kinematic computation. Compared to the influence of the joint center location, the body segment inertial parameter estimation, and more, the influence of the inverse dynamic method is at least of equivalent importance. This point should be confirmed with other subjects, possibly pathologic, and other movements.

  19. Computer Model Inversion and Uncertainty Quantification in the Geosciences

    NASA Astrophysics Data System (ADS)

    White, Jeremy T.

    The subject of this dissertation is use of computer models as data analysis tools in several different geoscience settings, including integrated surface water/groundwater modeling, tephra fallout modeling, geophysical inversion, and hydrothermal groundwater modeling. The dissertation is organized into three chapters, which correspond to three individual publication manuscripts. In the first chapter, a linear framework is developed to identify and estimate the potential predictive consequences of using a simple computer model as a data analysis tool. The framework is applied to a complex integrated surface-water/groundwater numerical model with thousands of parameters. Several types of predictions are evaluated, including particle travel time and surface-water/groundwater exchange volume. The analysis suggests that model simplifications have the potential to corrupt many types of predictions. The implementation of the inversion, including how the objective function is formulated, what minimum of the objective function value is acceptable, and how expert knowledge is enforced on parameters, can greatly influence the manifestation of model simplification. Depending on the prediction, failure to specifically address each of these important issues during inversion is shown to degrade the reliability of some predictions. In some instances, inversion is shown to increase, rather than decrease, the uncertainty of a prediction, which defeats the purpose of using a model as a data analysis tool. In the second chapter, an efficient inversion and uncertainty quantification approach is applied to a computer model of volcanic tephra transport and deposition. The computer model simulates many physical processes related to tephra transport and fallout. The utility of the approach is demonstrated for two eruption events. In both cases, the importance of uncertainty quantification is highlighted by exposing the variability in the conditioning provided by the observations used for

  20. Maps and inverse maps in open quantum dynamics

    SciTech Connect

    Jordan, Thomas F.

    2010-10-15

    Two kinds of maps that describe evolution of states of a subsystem coming from dynamics described by a unitary operator for a larger system, maps defined for fixed mean values and maps defined for fixed correlations, are found to be quite different for the same unitary dynamics in the same situation in the larger system. An affine form is used for both kinds of maps to find necessary and sufficient conditions for inverse maps. All the different maps with the same homogeneous part in their affine forms have inverses if and only if the homogeneous part does. Some of these maps are completely positive; others are not, but the homogeneous part is always completely positive. The conditions for an inverse are the same for maps that are not completely positive as for maps that are. For maps defined for fixed mean values, the homogeneous part depends only on the unitary operator for the dynamics of the larger system, not on any state or mean values or correlations. Necessary and sufficient conditions for an inverse are stated several different ways: in terms of the maps of matrices, basis matrices, density matrices, or mean values. The inverse maps are generally not tied to the dynamics the way the maps forward are. A trace-preserving completely positive map that is unital cannot have an inverse that is obtained from any dynamics described by any unitary operator for any states of a larger system.

  1. Kalman filtering, smoothing and recursive robot arm forward and inverse dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1986-01-01

    The inverse and forward dynamics problems for multi-link serial manipulators are solved by using recursive techniques from linear filtering and smoothing theory. The pivotal step is to cast the system dynamics and kinematics as a two-point boundary-value problem. Solution of this problem leads to filtering and smoothing techniques identical to the equations of Kalman filtering and Bryson-Frazier fixed time-interval smoothing. The solutions prescribe an inward filtering recursion to compute a sequence of constraint moments and forces followed by an outward recursion to determine a corresponding sequence of angular and linear accelerations. In addition to providing techniques to compute joint accelerations from applied joint moments (and vice versa), the report provides an approach to evaluate recursively the composite multi-link system inertia matrix and its inverse. The report lays the foundation for the potential use of filtering and smoothing techniques in robot inverse and forward dynamics and in robot control design.

  2. A GPU-computing Approach to Solar Stokes Profile Inversion

    NASA Astrophysics Data System (ADS)

    Harker, Brian J.; Mighell, Kenneth J.

    2012-09-01

    We present a new computational approach to the inversion of solar photospheric Stokes polarization profiles, under the Milne-Eddington model, for vector magnetography. Our code, named GENESIS, employs multi-threaded parallel-processing techniques to harness the computing power of graphics processing units (GPUs), along with algorithms designed to exploit the inherent parallelism of the Stokes inversion problem. Using a genetic algorithm (GA) engineered specifically for use with a GPU, we produce full-disk maps of the photospheric vector magnetic field from polarized spectral line observations recorded by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectromagnetograph (VSM) instrument. We show the advantages of pairing a population-parallel GA with data-parallel GPU-computing techniques, and present an overview of the Stokes inversion problem, including a description of our adaptation to the GPU-computing paradigm. Full-disk vector magnetograms derived by this method are shown using SOLIS/VSM data observed on 2008 March 28 at 15:45 UT.

  3. A GPU-COMPUTING APPROACH TO SOLAR STOKES PROFILE INVERSION

    SciTech Connect

    Harker, Brian J.; Mighell, Kenneth J. E-mail: mighell@noao.edu

    2012-09-20

    We present a new computational approach to the inversion of solar photospheric Stokes polarization profiles, under the Milne-Eddington model, for vector magnetography. Our code, named GENESIS, employs multi-threaded parallel-processing techniques to harness the computing power of graphics processing units (GPUs), along with algorithms designed to exploit the inherent parallelism of the Stokes inversion problem. Using a genetic algorithm (GA) engineered specifically for use with a GPU, we produce full-disk maps of the photospheric vector magnetic field from polarized spectral line observations recorded by the Synoptic Optical Long-term Investigations of the Sun (SOLIS) Vector Spectromagnetograph (VSM) instrument. We show the advantages of pairing a population-parallel GA with data-parallel GPU-computing techniques, and present an overview of the Stokes inversion problem, including a description of our adaptation to the GPU-computing paradigm. Full-disk vector magnetograms derived by this method are shown using SOLIS/VSM data observed on 2008 March 28 at 15:45 UT.

  4. Computed inverse MRI for magnetic susceptibility map reconstruction

    PubMed Central

    Chen, Zikuan; Calhoun, Vince

    2015-01-01

    Objective This paper reports on a computed inverse magnetic resonance imaging (CIMRI) model for reconstructing the magnetic susceptibility source from MRI data using a two-step computational approach. Methods The forward T2*-weighted MRI (T2*MRI) process is decomposed into two steps: 1) from magnetic susceptibility source to fieldmap establishment via magnetization in a main field, and 2) from fieldmap to MR image formation by intravoxel dephasing average. The proposed CIMRI model includes two inverse steps to reverse the T2*MRI procedure: fieldmap calculation from MR phase image and susceptibility source calculation from the fieldmap. The inverse step from fieldmap to susceptibility map is a 3D ill-posed deconvolution problem, which can be solved by three kinds of approaches: Tikhonov-regularized matrix inverse, inverse filtering with a truncated filter, and total variation (TV) iteration. By numerical simulation, we validate the CIMRI model by comparing the reconstructed susceptibility maps for a predefined susceptibility source. Results Numerical simulations of CIMRI show that the split Bregman TV iteration solver can reconstruct the susceptibility map from a MR phase image with high fidelity (spatial correlation≈0.99). The split Bregman TV iteration solver includes noise reduction, edge preservation, and image energy conservation. For applications to brain susceptibility reconstruction, it is important to calibrate the TV iteration program by selecting suitable values of the regularization parameter. Conclusions The proposed CIMRI model can reconstruct the magnetic susceptibility source of T2*MRI by two computational steps: calculating the fieldmap from the phase image and reconstructing the susceptibility map from the fieldmap. The crux of CIMRI lies in an ill-posed 3D deconvolution problem, which can be effectively solved by the split Bregman TV iteration algorithm. PMID:22446372

  5. Computational fluid dynamic applications

    SciTech Connect

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  6. Dynamic inversion method based on the time-staggered stereo-modeling scheme and its acceleration

    NASA Astrophysics Data System (ADS)

    Jing, Hao; Yang, Dinghui; Wu, Hao

    2016-12-01

    A set of second-order differential equations describing the space-time behaviour of derivatives of displacement with respect to model parameters (i.e. waveform sensitivities) is obtained via taking the derivative of the original wave equations. The dynamic inversion method obtains sensitivities of the seismic displacement field with respect to earth properties directly by solving differential equations for them instead of constructing sensitivities from the displacement field itself. In this study, we have taken a new perspective on the dynamic inversion method and used acceleration approaches to reduce the computational time and memory usage to improve its ability of performing high-resolution imaging. The dynamic inversion method, which can simultaneously use different waves and multicomponent observation data, is appropriate for directly inverting elastic parameters, medium density or wave velocities. Full wavefield information is utilized as much as possible at the expense of a larger amount of calculations. To mitigate the computational burden, two ways are proposed to accelerate the method from a computer-implementation point of view. One is source encoding which uses a linear combination of all shots, and the other is to reduce the amount of calculations on forward modeling. We applied a new finite-difference (FD) method to the dynamic inversion to improve the computational accuracy and speed up the performance. Numerical experiments indicated that the new FD method can effectively suppress the numerical dispersion caused by the discretization of wave equations, resulting in enhanced computational efficiency with less memory cost for seismic modeling and inversion based on the full wave equations. We present some inversion results to demonstrate the validity of this method through both checkerboard and Marmousi models. It shows that this method is also convergent even with big deviations for the initial model. Besides, parallel calculations can be easily

  7. Equivalence Between Approximate Dynamic Inversion and Proportional-Integral Control

    DTIC Science & Technology

    2008-09-29

    systems that renders the closed-loop error dynamics independent of the reference model dynamics. The equivalent PI controller will be derived and both of...integral control, PI control . I. INTRODUCTION DYNAMIC inversion (DI) or feedback linearization isa popular control design method that is well suited for...Proportional-Integral (PI) model reference controller realiza- tion. The key characteristic of the equivalent PI controller is that it is largely independent

  8. Computational astrophysical fluid dynamics

    NASA Technical Reports Server (NTRS)

    Norman, Michael L.; Clarke, David A.; Stone, James M.

    1991-01-01

    The field of astrophysical fluid dynamics (AFD) is described as an emerging discipline which derives historically from both the theory of stellar evolution and space plasma physics. The fundamental physical assumption behind AFD is that fluid equations of motion accurately describe the evolution of plasmas on scales that are large in comparison with particle interaction length scales. Particular attention is given to purely fluid models of large-scale astrophysical plasmas. The role of computer simulation in AFD research is also highlighted and a suite of general-purpose application codes for AFD research is discussed. The codes are called ZEUS-2D and ZEUS-3D and solve the equations of AFD in two and three dimensions, respectively, in several coordinate geometries for general initial and boundary conditions. The topics of bipolar outflows from protostars, galactic superbubbles and supershells, and extragalactic radio sources are addressed.

  9. On the Forward and Inverse Computational Wave Propagation Problems

    NASA Astrophysics Data System (ADS)

    Vaziri Astaneh, Ali

    This dissertation provides efficient algorithms for forward and inverse modeling of wave propagation problems. The presented methods are verified with synthetic examples and validated with real-life experiments in near surface imaging and nondestructive testing applications. First, we study the dispersion analysis of guided waves in the layered waveguides and half-spaces which involves solution of eigenvalue problems. This mathematical model is often used in applications such as near surface imaging, pavement structures characterization and thickness gauging of pipelines. We apply the new discretization technique termed Complex- Length Finite Element Method (CFEM) which increases the efficiency of forward modeling for such piecewise homogenous media, thus reducing the computational cost of associated inverse problems that rely on multiple forward solves. Second, we consider the near surface imaging problem and propose an approximate analytical gradient that facilitates more efficient inversion using surface waves. We show that the improvements in both venues, i.e. forward modeling and inversion scheme, leads to an order-of-magnitude reduction in computational cost. Third, we focus on efficient simulation of immersed waveguides and propose the use of Perfectly Matched Discrete Layer (PMDL) for modeling the surrounding fluid. Immersed plates, fluid-filled pipes and immersed waveguides with arbitrary cross-section are considered and the guidelines for choosing the discretization parameters are provided. Numerical examples demonstrate the increased efficacy in obtaining the dispersion characteristics. Finally, we explore large-scale problems governed by the Helmholtz equation that can be practically solved only through parallel computation. These problems often involve oscillating solutions that pose issues in the performance and scalability of parallel solvers. We propose an improved domain decomposition technique as a preconditioner for iterative solvers, which

  10. Dynamic Inversion based Control of a Docking Mechanism

    NASA Technical Reports Server (NTRS)

    Kulkarni, Nilesh V.; Ippolito, Corey; Krishnakumar, Kalmanje

    2006-01-01

    The problem of position and attitude control of the Stewart platform based docking mechanism is considered motivated by its future application in space missions requiring the autonomous docking capability. The control design is initiated based on the framework of the intelligent flight control architecture being developed at NASA Ames Research Center. In this paper, the baseline position and attitude control system is designed using dynamic inversion with proportional-integral augmentation. The inverse dynamics uses a Newton-Euler formulation that includes the platform dynamics, the dynamics of the individual legs along with viscous friction in the joints. Simulation results are presented using forward dynamics simulated by a commercial physics engine that builds the system as individual elements with appropriate joints and uses constrained numerical integration,

  11. Spatial operator approach to flexible manipulator inverse and forward dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1990-01-01

    This study extends to flexible multibody manipulators the recent results of the author on the use of spatially recursive filtering and smoothing techniques for robot arm dynamics. The configuration analyzed is that of a mechanical system of flexible bodies joined together by articulated joints. The inverse and forward dynamics problems are solved using the techniques of spatially recursive Kalman filtering and smoothing. The algorithms are easily developed using a set of identities associated with mass matrix factorization and inversion. The identities are easily derived using a spatial operator algebra developed by the author.

  12. Structure of polydisperse inverse ferrofluids: theory and computer simulation.

    PubMed

    Jian, Y C; Gao, Y; Huang, J P; Tao, R

    2008-01-24

    By using theoretical analysis and molecular dynamics simulations, we investigate the structure of colloidal crystals formed by nonmagnetic microparticles (or magnetic holes) suspended in ferrofluids (called inverse ferrofluids), by taking into account the effect of polydispersity in size of the nonmagnetic microparticles. Such polydispersity often exists in real situations. We obtain an analytical expression for the interaction energy of monodisperse, bidisperse, and polydisperse inverse ferrofluids. Body-centered tetragonal (bct) lattices are shown to possess the lowest energy when compared with other sorts of lattices and thus serve as the ground state of the systems. Also, the effect of microparticle size distributions (namely, polydispersity in size) plays an important role in the formation of various kinds of structural configurations. Thus, it seems possible to fabricate colloidal crystals by choosing appropriate polydispersity in size.

  13. Applications of generalized inverses to estimation in dynamic systems.

    NASA Technical Reports Server (NTRS)

    Prochaska, B. J.

    1971-01-01

    Generalized matrix inverses are used to obtain an estimation procedure for estimation of the state vector of a dynamic system. This sequential procedure is studied analytically with respect to the choice of an arbitrary vector. The covariance matrix of the estimator is determined and compared to the optimal Kalman type procedure. A numerical example illustrates the procedure and compares it to the optimal one.

  14. Computational Fluid Dynamics Library

    SciTech Connect

    Kashiwa, B. A.; Padial, N. T.; Rauenzahn, R. M.; VanderHeyden, & W.B.

    2005-03-04

    CFDLib05 is the Los Alamos Computational Fluid Dynamics LIBrary. This is a collection of hydrocodes using a common data structure and a common numerical method, for problems ranging from single-field, incompressible flow, to multi-species, multi-field, compressible flow. The data structure is multi-block, with a so-called structured grid in each block. The numerical method is a Finite-Volume scheme employing a state vector that is fully cell-centered. This means that the integral form of the conservation laws is solved on the physical domain that is represented by a mesh of control volumes. The typical control volume is an arbitrary quadrilateral in 2D and an arbitrary hexahedron in 3D. The Finite-Volume scheme is for time-unsteady flow and remains well coupled by means of time and space centered fluxes; if a steady state solution is required, the problem is integrated forward in time until the user is satisfied that the state is stationary.

  15. Dynamic inverse models in human-cyber-physical systems

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan M.; Scobee, Dexter R. R.; Burden, Samuel A.; Sastry, S. Shankar

    2016-05-01

    Human interaction with the physical world is increasingly mediated by automation. This interaction is characterized by dynamic coupling between robotic (i.e. cyber) and neuromechanical (i.e. human) decision-making agents. Guaranteeing performance of such human-cyber-physical systems will require predictive mathematical models of this dynamic coupling. Toward this end, we propose a rapprochement between robotics and neuromechanics premised on the existence of internal forward and inverse models in the human agent. We hypothesize that, in tele-robotic applications of interest, a human operator learns to invert automation dynamics, directly translating from desired task to required control input. By formulating the model inversion problem in the context of a tracking task for a nonlinear control system in control-a_ne form, we derive criteria for exponential tracking and show that the resulting dynamic inverse model generally renders a portion of the physical system state (i.e., the internal dynamics) unobservable from the human operator's perspective. Under stability conditions, we show that the human can achieve exponential tracking without formulating an estimate of the system's state so long as they possess an accurate model of the system's dynamics. These theoretical results are illustrated using a planar quadrotor example. We then demonstrate that the automation can intervene to improve performance of the tracking task by solving an optimal control problem. Performance is guaranteed to improve under the assumption that the human learns and inverts the dynamic model of the altered system. We conclude with a discussion of practical limitations that may hinder exact dynamic model inversion.

  16. Computational and methodological developments towards 3D full waveform inversion

    NASA Astrophysics Data System (ADS)

    Etienne, V.; Virieux, J.; Hu, G.; Jia, Y.; Operto, S.

    2010-12-01

    Full waveform inversion (FWI) is one of the most promising techniques for seismic imaging. It relies on a formalism taking into account every piece of information contained in the seismic data as opposed to more classical techniques such as travel time tomography. As a result, FWI is a high resolution imaging process able to reach a spatial accuracy equal to half a wavelength. FWI is based on a local optimization scheme and therefore the main limitation concerns the starting model which has to be closed enough to the real one in order to converge to the global minimum. Another counterpart of FWI is the required computational resources when considering models and frequencies of interest. The task becomes even more tremendous when one tends to perform the inversion using the elastic equation instead of using the acoustic approximation. This is the reason why until recently most studies were limited to 2D cases. In the last few years, due to the increase of the available computational power, FWI has focused a lot of interests and continuous efforts towards inversion of 3D models, leading to remarkable applications up to the continental scale. We investigate the computational burden induced by FWI in 3D elastic media and propose some strategic features leading to the reduction of the numerical cost while providing a great flexibility in the inversion parametrization. First, in order to release the memory requirements, we developed our FWI algorithm in the frequency domain and take benefit of the wave-number redundancy in the seismic data to process a quite reduced number of frequencies. To do so, we extract frequency solutions from time marching techniques which are efficient for 3D structures. Moreover, this frequency approach permits a multi-resolution strategy by proceeding from low to high frequencies: the final model at one frequency is used as the starting model for the next frequency. This procedure overcomes partially the non-linear behavior of the inversion

  17. Computational neural learning formalisms for manipulator inverse kinematics

    NASA Technical Reports Server (NTRS)

    Gulati, Sandeep; Barhen, Jacob; Iyengar, S. Sitharama

    1989-01-01

    An efficient, adaptive neural learning paradigm for addressing the inverse kinematics of redundant manipulators is presented. The proposed methodology exploits the infinite local stability of terminal attractors - a new class of mathematical constructs which provide unique information processing capabilities to artificial neural systems. For robotic applications, synaptic elements of such networks can rapidly acquire the kinematic invariances embedded within the presented samples. Subsequently, joint-space configurations, required to follow arbitrary end-effector trajectories, can readily be computed. In a significant departure from prior neuromorphic learning algorithms, this methodology provides mechanisms for incorporating an in-training skew to handle kinematics and environmental constraints.

  18. Gait analysis of transfemoral amputees: errors in inverse dynamics are substantial and depend on prosthetic design.

    PubMed

    Dumas, Raphael; Branemark, Rickard; Frossard, Laurent

    2016-08-18

    Quantitative assessments of prostheses performances rely more and more frequently on gait analysis focusing on prosthetic knee joint forces and moments computed by inverse dynamics. However, this method is prone to errors, as demonstrated in comparison with direct measurements of these forces and moments. The magnitude of errors reported in the literature seems to vary depending on prosthetic components. Therefore, the purposes of this study were (A) to quantify and compare the magnitude of errors in knee joint forces and moments obtained with inverse dynamics and direct measurements on ten participants with transfemoral amputation during walking and (B) to investigate if these errors can be characterised for different prosthetic knees. Knee joint forces and moments computed by inverse dynamics presented substantial errors, especially during the swing phase of gait. Indeed, the median errors in percentage of the moment magnitude were 4% and 26% in extension/flexion, 6% and 19% in adduction/abduction as well as 14% and 27% in internal/external rotation during stance and swing phase, respectively. Moreover, errors varied depending on the prosthetic limb fitted with mechanical or microprocessorcontrolled knees. This study confirmed that inverse dynamics should be used cautiously while performing gait analysis of amputees. Alternatively, direct measurements of joint forces and moments could be relevant for mechanical characterising of components and alignments of prosthetic limbs.

  19. Robust inverse kinematics using damped least squares with dynamic weighting

    NASA Technical Reports Server (NTRS)

    Schinstock, D. E.; Faddis, T. N.; Greenway, R. B.

    1994-01-01

    This paper presents a general method for calculating the inverse kinematics with singularity and joint limit robustness for both redundant and non-redundant serial-link manipulators. Damped least squares inverse of the Jacobian is used with dynamic weighting matrices in approximating the solution. This reduces specific joint differential vectors. The algorithm gives an exact solution away from the singularities and joint limits, and an approximate solution at or near the singularities and/or joint limits. The procedure is here implemented for a six d.o.f. teleoperator and a well behaved slave manipulator resulted under teleoperational control.

  20. Inverse and forward dynamics: models of multi-body systems.

    PubMed Central

    Otten, E

    2003-01-01

    Connected multi-body systems exhibit notoriously complex behaviour when driven by external and internal forces and torques. The problem of reconstructing the internal forces and/or torques from the movements and known external forces is called the 'inverse dynamics problem', whereas calculating motion from known internal forces and/or torques and resulting reaction forces is called the 'forward dynamics problem'. When stepping forward to cross the street, people use muscle forces that generate angular accelerations of their body segments and, by virtue of reaction forces from the street, a forward acceleration of the centre of mass of their body. Inverse dynamics calculations applied to a set of motion data from such an event can teach us how temporal patterns of joint torques were responsible for the observed motion. In forward dynamics calculations we may attempt to create motion from such temporal patterns, which is extremely difficult, because of the complex mechanical linkage along the chains forming the multi-body system. To understand, predict and sometimes control multi-body systems, we may want to have mathematical expressions for them. The Newton-Euler, Lagrangian and Featherstone approaches have their advantages and disadvantages. The simulation of collisions and the inclusion of muscle forces or other internal forces are discussed. Also, the possibility to perform a mixed inverse and forward dynamics calculation are dealt with. The use and limitations of these approaches form the conclusion. PMID:14561340

  1. Instant well-log inversion with a parallel computer

    SciTech Connect

    Kimminau, S.J.; Trivedi, H.

    1993-08-01

    Well-log analysis requires several vectors of input data to be inverted with a physical model that produces more vectors of output data. The problem is inherently suited to either vectorization or parallelization. PLATO (parallel log analysis, timely output) is a research prototype system that uses a parallel architecture computer with memory-mapped graphics to invert vector data and display the result rapidly. By combining this high-performance computing and display system with a graphical user interface, the analyst can interact with the system in real time'' and can visualize the result of changing parameters on up to 1,000 levels of computed volumes and reconstructed logs. It is expected that such instant'' inversion will remove the main disadvantages frequently cited for simultaneous analysis methods, namely difficulty in assessing sensitivity to different parameters and slow output response. Although the prototype system uses highly specific features of a parallel processor, a subsequent version has been implemented on a conventional (Serial) workstation with less performance but adequate functionality to preserve the apparently instant response. PLATO demonstrates the feasibility of petroleum computing applications combining an intuitive graphical interface, high-performance computing of physical models, and real-time output graphics.

  2. Direct Fourier Inversion Reconstruction Algorithm for Computed Laminography.

    PubMed

    Voropaev, Alexey; Myagotin, Anton; Helfen, Lukas; Baumbach, Tilo

    2016-05-01

    Synchrotron radiation computed laminography (CL) was developed to complement the conventional computed tomography as a non-destructive 3D imaging method for the inspection of flat thin objects. Recent progress in hardware at synchrotron sources allows one to record internal evolution of specimens at the micrometer scale and sub-second range but also requires increased reconstruction speed to follow structural changes online. A 3D image of the sample interior is usually reconstructed by the well-established filtered backprojection (FBP) approach. Despite of a great success in the reduction of reconstruction time via parallel computations, the FBP algorithm still remains a time-consuming procedure. A promising way to significantly shorten computation time is to directly perform backprojection in frequency domain (a direct Fourier inversion approach). The corresponding algorithms are rarely considered in the literature because of a poor performance or inferior reconstruction quality resulted from inaccurate interpolation in Fourier domain. In this paper, we derive a Fourier-based reconstruction equation designed for the CL scanning geometry. Furthermore, we outline the translation of the continuous solution to a discrete version, which utilizes 3D sinc interpolation. A projection resampling technique allowing for the reduction of the expensive interpolation to its 1D version is proposed. A series of numerical experiments confirms that the resulting image quality is well comparable with the FBP approach while reconstruction time is drastically reduced.

  3. A fast algorithm for sparse matrix computations related to inversion

    SciTech Connect

    Li, S.; Wu, W.; Darve, E.

    2013-06-01

    We have developed a fast algorithm for computing certain entries of the inverse of a sparse matrix. Such computations are critical to many applications, such as the calculation of non-equilibrium Green’s functions G{sup r} and G{sup <} for nano-devices. The FIND (Fast Inverse using Nested Dissection) algorithm is optimal in the big-O sense. However, in practice, FIND suffers from two problems due to the width-2 separators used by its partitioning scheme. One problem is the presence of a large constant factor in the computational cost of FIND. The other problem is that the partitioning scheme used by FIND is incompatible with most existing partitioning methods and libraries for nested dissection, which all use width-1 separators. Our new algorithm resolves these problems by thoroughly decomposing the computation process such that width-1 separators can be used, resulting in a significant speedup over FIND for realistic devices — up to twelve-fold in simulation. The new algorithm also has the added advantage that desired off-diagonal entries can be computed for free. Consequently, our algorithm is faster than the current state-of-the-art recursive methods for meshes of any size. Furthermore, the framework used in the analysis of our algorithm is the first attempt to explicitly apply the widely-used relationship between mesh nodes and matrix computations to the problem of multiple eliminations with reuse of intermediate results. This framework makes our algorithm easier to generalize, and also easier to compare against other methods related to elimination trees. Finally, our accuracy analysis shows that the algorithms that require back-substitution are subject to significant extra round-off errors, which become extremely large even for some well-conditioned matrices or matrices with only moderately large condition numbers. When compared to these back-substitution algorithms, our algorithm is generally a few orders of magnitude more accurate, and our produced round

  4. Inverse problem of HIV cell dynamics using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    González, J. A.; Guzmán, F. S.

    2017-01-01

    In order to describe the cell dynamics of T-cells in a patient infected with HIV, we use a flavour of Perelson's model. This is a non-linear system of Ordinary Differential Equations that describes the evolution of healthy, latently infected, infected T-cell concentrations and the free viral cells. Different parameters in the equations give different dynamics. Considering the concentration of these types of cells is known for a particular patient, the inverse problem consists in estimating the parameters in the model. We solve this inverse problem using a Genetic Algorithm (GA) that minimizes the error between the solutions of the model and the data from the patient. These errors depend on the parameters of the GA, like mutation rate and population, although a detailed analysis of this dependence will be described elsewhere.

  5. GARCH modelling of covariance in dynamical estimation of inverse solutions

    NASA Astrophysics Data System (ADS)

    Galka, Andreas; Yamashita, Okito; Ozaki, Tohru

    2004-12-01

    The problem of estimating unobserved states of spatially extended dynamical systems poses an inverse problem, which can be solved approximately by a recently developed variant of Kalman filtering; in order to provide the model of the dynamics with more flexibility with respect to space and time, we suggest to combine the concept of GARCH modelling of covariance, well known in econometrics, with Kalman filtering. We formulate this algorithm for spatiotemporal systems governed by stochastic diffusion equations and demonstrate its feasibility by presenting a numerical simulation designed to imitate the situation of the generation of electroencephalographic recordings by the human cortex.

  6. Bimolecular dynamics by computer analysis

    SciTech Connect

    Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.

    1984-01-01

    As numerical tools (computers and display equipment) become more powerful and the atomic structures of important biological molecules become known, the importance of detailed computation of nonequilibrium biomolecular dynamics increases. In this manuscript we report results from a well developed study of the hydrogen bonded polypeptide crystal acetanilide, a model protein. Directions for future research are suggested. 9 references, 6 figures.

  7. Computer animation challenges for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine

    2012-07-01

    Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.

  8. Computational Workbench for Multibody Dynamics

    NASA Technical Reports Server (NTRS)

    Edmonds, Karina

    2007-01-01

    PyCraft is a computer program that provides an interactive, workbenchlike computing environment for developing and testing algorithms for multibody dynamics. Examples of multibody dynamic systems amenable to analysis with the help of PyCraft include land vehicles, spacecraft, robots, and molecular models. PyCraft is based on the Spatial-Operator- Algebra (SOA) formulation for multibody dynamics. The SOA operators enable construction of simple and compact representations of complex multibody dynamical equations. Within the Py-Craft computational workbench, users can, essentially, use the high-level SOA operator notation to represent the variety of dynamical quantities and algorithms and to perform computations interactively. PyCraft provides a Python-language interface to underlying C++ code. Working with SOA concepts, a user can create and manipulate Python-level operator classes in order to implement and evaluate new dynamical quantities and algorithms. During use of PyCraft, virtually all SOA-based algorithms are available for computational experiments.

  9. A generalized computationally efficient inverse characterization approach combining direct inversion solution initialization with gradient-based optimization

    NASA Astrophysics Data System (ADS)

    Wang, Mengyu; Brigham, John C.

    2017-03-01

    A computationally efficient gradient-based optimization approach for inverse material characterization from incomplete system response measurements that can utilize a generally applicable parameterization (e.g., finite element-type parameterization) is presented and evaluated. The key to this inverse characterization algorithm is the use of a direct inversion strategy with Gappy proper orthogonal decomposition (POD) response field estimation to initialize the inverse solution estimate prior to gradient-based optimization. Gappy POD is used to estimate the complete (i.e., all components over the entire spatial domain) system response field from incomplete (e.g., partial spatial distribution) measurements obtained from some type of system testing along with some amount of a priori information regarding the potential distribution of the unknown material property. The estimated complete system response is used within a physics-based direct inversion procedure with a finite element-type parameterization to estimate the spatial distribution of the desired unknown material property with minimal computational expense. Then, this estimated spatial distribution of the unknown material property is used to initialize a gradient-based optimization approach, which uses the adjoint method for computationally efficient gradient calculations, to produce the final estimate of the material property distribution. The three-step [(1) Gappy POD, (2) direct inversion, and (3) gradient-based optimization] inverse characterization approach is evaluated through simulated test problems based on the characterization of elastic modulus distributions with localized variations (e.g., inclusions) within simple structures. Overall, this inverse characterization approach is shown to efficiently and consistently provide accurate inverse characterization estimates for material property distributions from incomplete response field measurements. Moreover, the solution procedure is shown to be capable

  10. Computer-Assisted Inverse Design of Inorganic Electrides

    NASA Astrophysics Data System (ADS)

    Zhang, Yunwei; Wang, Hui; Wang, Yanchao; Zhang, Lijun; Ma, Yanming

    2017-01-01

    Electrides are intrinsic electron-rich materials enabling applications as excellent electron emitters, superior catalysts, and strong reducing agents. There are a number of organic electrides; however, their instability at room temperature and sensitivity to moisture are bottlenecks for their practical uses. Known inorganic electrides are rare, but they appear to have greater thermal stability at ambient conditions and are thus better characterized for application. Here, we develop a computer-assisted inverse-design method for searching for a large variety of inorganic electrides unbiased by any known electride structures. It uses the intrinsic property of interstitial electron localization of electrides as the global variable function for swarm intelligence structure searches. We construct two rules of thumb on the design of inorganic electrides pointing to electron-rich ionic systems and low electronegativity of the cationic elements involved. By screening 99 such binary compounds through large-scale computer simulations, we identify 24 stable and 65 metastable new inorganic electrides that show distinct three-, two-, and zero-dimensional conductive properties, among which 18 are existing compounds that have not been pointed to as electrides. Our work reveals the rich abundance of inorganic electrides by providing 33 hitherto unexpected structure prototypes of electrides, of which 19 are not in the known structure databases.

  11. Computational Fluid Dynamics.

    DTIC Science & Technology

    1986-06-01

    dual variable method can be applied to the predictive model of the fluid dynamics associated with an axially symmetric centerbody combustor being...general nonlinear, parameter-dependent equations of the form F(z,A) - 0 where F is a nonlinear mapping, z is the state variable representing the solu...represents, in general, a differentiable manifold in the combined space of the state variable and the parameter vector. This requires a regularity assumption

  12. Parallel processing architecture for computing inverse differential kinematic equations of the PUMA arm

    NASA Technical Reports Server (NTRS)

    Hsia, T. C.; Lu, G. Z.; Han, W. H.

    1987-01-01

    In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced.

  13. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  14. Inversions

    ERIC Educational Resources Information Center

    Brown, Malcolm

    2009-01-01

    Inversions are fascinating phenomena. They are reversals of the normal or expected order. They occur across a wide variety of contexts. What do inversions have to do with learning spaces? The author suggests that they are a useful metaphor for the process that is unfolding in higher education with respect to education. On the basis of…

  15. Dynamical structure underlying inverse stochastic resonance and its implications

    NASA Astrophysics Data System (ADS)

    Uzuntarla, Muhammet; Cressman, John R.; Ozer, Mahmut; Barreto, Ernest

    2013-10-01

    We investigate inverse stochastic resonance (ISR), a recently reported phenomenon in which the spiking activity of a Hodgkin-Huxley model neuron subject to external noise exhibits a pronounced minimum as the noise intensity increases. We clarify the mechanism that underlies ISR and show that its most surprising features are a consequence of the dynamical structure of the model. Furthermore, we show that the ISR effect depends strongly on the procedures used to measure it. Our results are important for the experimentalist who seeks to observe the ISR phenomenon.

  16. Paleo Structure of the Earth's mantle derived from Fluid Dynamic Inverse Theory

    NASA Astrophysics Data System (ADS)

    Bunge, H.-P.; Horbach, A.

    2012-04-01

    Fluid dynamic conservation equations, akin to those that govern the evolution of the atmosphere and oceans describe the motion of the mantle. While powerful computer models exist to simulate the circulation of the mantle, sophisticated fluid dynamic inverse theory is now at hand that makes it possible to track mantle motion back into the recent geologic past. A major opportunity exists in applying this theory to our understanding of the paleo-circulation of Earth's mantle and constructing a quantitative model of past Earth structure (PaleoEarth). Important in its own right, such model would provide vital information on the history of plate driving forces, the temporal evolution of the core mantle boundary and its associated impact upon the geodynamo, time variability of Earth's geoid, as well as a deeper understanding into the development of sedimentary basins. We will explore some early applications of the approach, focusing on uncertainty in particular on the choice of residuals that drive the inverse problem.

  17. Inverse compositional estimation of 3D pose and lighting in dynamic scenes.

    PubMed

    Xu, Yilei; Roy-Chowdhury, Amit

    2008-07-01

    In this paper, we show how to estimate, accurately and efficiently, the 3D motion of a rigid object and time-varying lighting in a dynamic scene. This is achieved in an inverse compositional tracking framework with a novel warping function that involves a 2D --> 3D --> 2D transformation. This also allows us to extend traditional two frame inverse compositional tracking to a sequence of frames, leading to even higher computational savings. We prove the theoretical convergence of this method and show that it leads to significant reduction in computational burden. Experimental analysis on multiple video sequences shows impressive speed-up over existing methods while retaining a high level of accuracy.

  18. Goal Directed Model Inversion: A Study of Dynamic Behavior

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.; Compton, Michael; Raghavan, Bharathi; Lum, Henry, Jr. (Technical Monitor)

    1994-01-01

    Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize supervised learning to the case where target outputs are not available to the learning system. The output of the learning system becomes the input to some external device or transformation, and only the output of this device or transformation can be compared to a desired target. The fundamental driving mechanism of GDMI is to learn from success. Given that a wrong outcome is achieved, one notes that the action that produced that outcome 0 "would have been right if the outcome had been the desired one." The algorithm then proceeds as follows: (1) store the action that produced the wrong outcome as a "target" (2) redefine the wrong outcome as a desired goal (3) submit the new desired goal to the system (4) compare the new action with the target action and modify the system by using a suitable algorithm for credit assignment (Back propagation in our example) (5) resubmit the original goal. Prior publications by our group in this area focused on demonstrating empirical results based on the inverse kinematic problem for a simulated robotic arm. In this paper we apply the inversion process to much simpler analytic functions in order to elucidate the dynamic behavior of the system and to determine the sensitivity of the learning process to various parameters. This understanding will be necessary for the acceptance of GDMI as a practical tool.

  19. UCODE, a computer code for universal inverse modeling

    USGS Publications Warehouse

    Poeter, E.P.; Hill, M.C.

    1999-01-01

    This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating

  20. UCODE, a computer code for universal inverse modeling

    NASA Astrophysics Data System (ADS)

    Poeter, Eileen P.; Hill, Mary C.

    1999-05-01

    This article presents the US Geological Survey computer program UCODE, which was developed in collaboration with the US Army Corps of Engineers Waterways Experiment Station and the International Ground Water Modeling Center of the Colorado School of Mines. UCODE performs inverse modeling, posed as a parameter-estimation problem, using nonlinear regression. Any application model or set of models can be used; the only requirement is that they have numerical (ASCII or text only) input and output files and that the numbers in these files have sufficient significant digits. Application models can include preprocessors and postprocessors as well as models related to the processes of interest (physical, chemical and so on), making UCODE extremely powerful for model calibration. Estimated parameters can be defined flexibly with user-specified functions. Observations to be matched in the regression can be any quantity for which a simulated equivalent value can be produced, thus simulated equivalent values are calculated using values that appear in the application model output files and can be manipulated with additive and multiplicative functions, if necessary. Prior, or direct, information on estimated parameters also can be included in the regression. The nonlinear regression problem is solved by minimizing a weighted least-squares objective function with respect to the parameter values using a modified Gauss-Newton method. Sensitivities needed for the method are calculated approximately by forward or central differences and problems and solutions related to this approximation are discussed. Statistics are calculated and printed for use in (1) diagnosing inadequate data or identifying parameters that probably cannot be estimated with the available data, (2) evaluating estimated parameter values, (3) evaluating the model representation of the actual processes and (4) quantifying the uncertainty of model simulated values. UCODE is intended for use on any computer operating

  1. Inverse Methods. Interdisciplinary Elements of Methodology, Computation, and Applications

    NASA Astrophysics Data System (ADS)

    Jacobsen, Bo Holm; Mosegaard, Klaus; Sibani, Paolo

    Over the last few decades inversion concepts have become an integral part of experimental data interpretation in several branches of science. In numerous cases similar inversion-like techniques were developed independently in separate disciplines, sometimes based on different lines of reasoning, but not always to the same level of sophistication. This book is based on the Interdisciplinary Inversion Conference held at the University of Aarhus, Denmark. For scientists and graduate students in geophysics, astronomy, oceanography, petroleum geology, and geodesy, the book offers a wide variety of examples and theoretical background in the field of inversion techniques.

  2. Molecular interactions of agonist and inverse agonist ligands at serotonin 5-HT2C G protein-coupled receptors: computational ligand docking and molecular dynamics studies validated by experimental mutagenesis results

    NASA Astrophysics Data System (ADS)

    Córdova-Sintjago, Tania C.; Liu, Yue; Booth, Raymond G.

    2015-02-01

    To understand molecular determinants for ligand activation of the serotonin 5-HT2C G protein-coupled receptor (GPCR), a drug target for obesity and neuropsychiatric disorders, a 5-HT2C homology model was built according to an adrenergic β2 GPCR (β2AR) structure and validated using a 5-HT2B GPCR crystal structure. The models were equilibrated in a simulated phosphatidyl choline membrane for ligand docking and molecular dynamics studies. Ligands included (2S, 4R)-(-)-trans-4-(3'-bromo- and trifluoro-phenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalene-2-amine (3'-Br-PAT and 3'-CF3-PAT), a 5-HT2C agonist and inverse agonist, respectively. Distinct interactions of 3'-Br-PAT and 3'-CF3-PAT at the wild-type (WT) 5-HT2C receptor model were observed and experimental 5-HT2C receptor mutagenesis studies were undertaken to validate the modelling results. For example, the inverse agonist 3'-CF3-PAT docked deeper in the WT 5-HT2C binding pocket and altered the orientation of transmembrane helices (TM) 6 in comparison to the agonist 3'-Br-PAT, suggesting that changes in TM orientation that result from ligand binding impact function. For both PATs, mutation of 5-HT2C residues S3.36, T3.37, and F5.47 to alanine resulted in significantly decreased affinity, as predicted from modelling results. It was concluded that upon PAT binding, 5-HT2C residues T3.37 and F5.47 in TMs 3 and 5, respectively, engage in inter-helical interactions with TMs 4 and 6, respectively. The movement of TMs 5 and 6 upon agonist and inverse agonist ligand binding observed in the 5-HT2C receptor modelling studies was similar to movements reported for the activation and deactivation of the β2AR, suggesting common mechanisms among aminergic neurotransmitter GPCRs.

  3. What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor.

    PubMed

    Takamuku, Shinya; Gomi, Hiroaki

    2015-07-22

    How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the 'inverse' computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  4. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim.

    PubMed

    Pizzolato, C; Reggiani, M; Modenese, L; Lloyd, D G

    2017-03-01

    Real-time estimation of joint angles and moments can be used for rapid evaluation in clinical, sport, and rehabilitation contexts. However, real-time calculation of kinematics and kinetics is currently based on approximate solutions or generic anatomical models. We present a real-time system based on OpenSim solving inverse kinematics and dynamics without simplifications at 2000 frame per seconds with less than 31.5 ms of delay. We describe the software architecture, sensitivity analyses to minimise delays and errors, and compare offline and real-time results. This system has the potential to strongly impact current rehabilitation practices enabling the use of personalised musculoskeletal models in real-time.

  5. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  6. Success Stories in Control: Nonlinear Dynamic Inversion Control

    NASA Technical Reports Server (NTRS)

    Bosworth, John T.

    2010-01-01

    NASA plays an important role in advancing the state of the art in flight control systems. In the case of Nonlinear Dynamic Inversion (NDI) NASA supported initial implementation of the theory in an aircraft and demonstration in a space vehicle. Dr. Dale Enns of Honeywell Aerospace Advanced Technology performed this work in cooperation with NASA and under NASA contract. Honeywell and Lockheed Martin were subsequently contracted by AFRL to create "Design Guidelines for Multivariable Control Theory". This foundational work directly contributed to the advancement of the technology and the credibility of the control law as a design option. As a result Honeywell collaborated with Lockheed Martin to produce a Nonlinear Dynamic Inversion controller for the X-35 and subsequently Lockheed Martin did the same for the production Lockheed Martin F-35 vehicle. The theory behind NDI is to use a systematic generalized approach to controlling a vehicle. Using general aircraft nonlinear equations of motion and onboard aerodynamic, mass properties, and engine models specific to the vehicle, a relationship between control effectors and desired aircraft motion can be formulated. Using this formulation a control combination is used that provides a predictable response to commanded motion. Control loops around this formulation shape the response as desired and provide robustness to modeling errors. Once the control law is designed it can be used on a similar class of vehicle with only an update to the vehicle specific onboard models.

  7. Fair and Square Computation of Inverse "Z"-Transforms of Rational Functions

    ERIC Educational Resources Information Center

    Moreira, M. V.; Basilio, J. C.

    2012-01-01

    All methods presented in textbooks for computing inverse "Z"-transforms of rational functions have some limitation: 1) the direct division method does not, in general, provide enough information to derive an analytical expression for the time-domain sequence "x"("k") whose "Z"-transform is "X"("z"); 2) computation using the inversion integral…

  8. Fair and Square Computation of Inverse "Z"-Transforms of Rational Functions

    ERIC Educational Resources Information Center

    Moreira, M. V.; Basilio, J. C.

    2012-01-01

    All methods presented in textbooks for computing inverse "Z"-transforms of rational functions have some limitation: 1) the direct division method does not, in general, provide enough information to derive an analytical expression for the time-domain sequence "x"("k") whose "Z"-transform is "X"("z"); 2) computation using the inversion integral…

  9. Computational dynamics of soft machines

    NASA Astrophysics Data System (ADS)

    Hu, Haiyan; Tian, Qiang; Liu, Cheng

    2017-06-01

    Soft machine refers to a kind of mechanical system made of soft materials to complete sophisticated missions, such as handling a fragile object and crawling along a narrow tunnel corner, under low cost control and actuation. Hence, soft machines have raised great challenges to computational dynamics. In this review article, recent studies of the authors on the dynamic modeling, numerical simulation, and experimental validation of soft machines are summarized in the framework of multibody system dynamics. The dynamic modeling approaches are presented first for the geometric nonlinearities of coupled overall motions and large deformations of a soft component, the physical nonlinearities of a soft component made of hyperelastic or elastoplastic materials, and the frictional contacts/impacts of soft components, respectively. Then the computation approach is outlined for the dynamic simulation of soft machines governed by a set of differential-algebraic equations of very high dimensions, with an emphasis on the efficient computations of the nonlinear elastic force vector of finite elements. The validations of the proposed approaches are given via three case studies, including the locomotion of a soft quadrupedal robot, the spinning deployment of a solar sail of a spacecraft, and the deployment of a mesh reflector of a satellite antenna, as well as the corresponding experimental studies. Finally, some remarks are made for future studies.

  10. Validation of computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Sacher, P. W.; Bradley, R. G., Jr.; Schmidt, W.

    1989-05-01

    The Fluid Dynamics Panel AGARD Symposium entitled Validation of Computational Fluid Dynamics is reviewed and evaluated. The purpose of the Symposium was to assess the state of the art of Validation of Computer Codes and to ensure that the mathematical and numerical schemes employed in the codes correctly model the critical physics of the flow field under consideration. The evaluator addresses each of the papers presented separately and makes general comments on the seven major topic sessions. In addition, a Poster Session is reviewed in detail. It is evident that the new possibilities of CFD provide efficient tools for Analysis and Design in the Aeronautical Industry, but it is also evident that in spite of the existence of a number of excellent experimental databases, there is still a need for efforts in validating the computer programs both by experiment as well as by numerical exercises.

  11. A fully integrated CMOS inverse sine circuit for computational systems

    NASA Astrophysics Data System (ADS)

    Seon, Jong-Kug

    2010-08-01

    An inverse trigonometric function generator using CMOS technology is presented and implemented. The development and synthesis of inverse trigonometric functional circuits based on the simple approximation equations are also introduced. The proposed inverse sine function generator has the infinite input range and can be used in many measurement and instrumentation systems. The nonlinearity of less than 2.8% for the entire input range of 0.5 Vp-p with a small-signal bandwidth of 3.2 MHz is achieved. The chip implemented in 0.25 μm CMOS process operates from a single 1.8 V supply. The measured power consumption and the active chip area of the inverse sine function circuit are 350 μW and 0.15 mm2, respectively.

  12. A Computationally Efficient Parallel Levenberg-Marquardt Algorithm for Large-Scale Big-Data Inversion

    NASA Astrophysics Data System (ADS)

    Lin, Y.; O'Malley, D.; Vesselinov, V. V.

    2015-12-01

    Inverse modeling seeks model parameters given a set of observed state variables. However, for many practical problems due to the facts that the observed data sets are often large and model parameters are often numerous, conventional methods for solving the inverse modeling can be computationally expensive. We have developed a new, computationally-efficient Levenberg-Marquardt method for solving large-scale inverse modeling. Levenberg-Marquardt methods require the solution of a dense linear system of equations which can be prohibitively expensive to compute for large-scale inverse problems. Our novel method projects the original large-scale linear problem down to a Krylov subspace, such that the dimensionality of the measurements can be significantly reduced. Furthermore, instead of solving the linear system for every Levenberg-Marquardt damping parameter, we store the Krylov subspace computed when solving the first damping parameter and recycle it for all the following damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved by using these computational techniques. We apply this new inverse modeling method to invert for a random transitivity field. Our algorithm is fast enough to solve for the distributed model parameters (transitivity) at each computational node in the model domain. The inversion is also aided by the use regularization techniques. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). Julia is an advanced high-level scientific programing language that allows for efficient memory management and utilization of high-performance computational resources. By comparing with a Levenberg-Marquardt method using standard linear inversion techniques, our Levenberg-Marquardt method yields speed-up ratio of 15 in a multi-core computational environment and a speed-up ratio of 45 in a single-core computational environment. Therefore, our new inverse modeling method is a

  13. X-38 Application of Dynamic Inversion Flight Control

    NASA Technical Reports Server (NTRS)

    Wacker, Roger; Munday, Steve; Merkle, Scott

    2001-01-01

    This paper summarizes the application of a nonlinear dynamic inversion (DI) flight control system (FCS) to an autonomous flight test vehicle in NASA's X-38 Project, a predecessor to the International Space Station (ISS) Crew Return Vehicle (CRV). Honeywell's Multi-Application Control-H (MACH) is a parameterized FCS design architecture including both model-based DI rate-compensation and classical P+I command-tracking. MACH was adopted by X-38 in order to shorten the design cycle time for different vehicle shapes and flight envelopes and evolving aerodynamic databases. Specific design issues and analysis results are presented for the application of MACH to the 3rd free flight (FF3) of X-38 Vehicle 132 (V132). This B-52 drop test, occurring on March 30, 2000, represents the first flight test of MACH and one of the first few known applications of DI in the primary FCS of an autonomous flight test vehicle.

  14. Nonlinear Dynamic Inversion Baseline Control Law: Architecture and Performance Predictions

    NASA Technical Reports Server (NTRS)

    Miller, Christopher J.

    2011-01-01

    A model reference dynamic inversion control law has been developed to provide a baseline control law for research into adaptive elements and other advanced flight control law components. This controller has been implemented and tested in a hardware-in-the-loop simulation; the simulation results show excellent handling qualities throughout the limited flight envelope. A simple angular momentum formulation was chosen because it can be included in the stability proofs for many basic adaptive theories, such as model reference adaptive control. Many design choices and implementation details reflect the requirements placed on the system by the nonlinear flight environment and the desire to keep the system as basic as possible to simplify the addition of the adaptive elements. Those design choices are explained, along with their predicted impact on the handling qualities.

  15. Inverse dynamics of adaptive space cranes with tip point adjustment

    NASA Technical Reports Server (NTRS)

    Das, S. K.; Utku, S.; Wada, B. K.

    1990-01-01

    The 'space crane', which resembles a conventional solid-link robot but employs truss sections in place of links and length-adjustable bars in place of torque-generating motors, is presently characterized by means of two different inverse-dynamics schemes. While in the first of these the nominal angles are maintained between the links constituting the crane, the second scheme adjusts the nominal angles as a function of time in order to always maintain the tip of the crane along the desired (nomical) trajectory. Attention is given to the second scheme, and to a tip-adjustment method which keeps the high frequency flexibility vibration within limits and ensures numerical stability.

  16. Inverse dynamics of adaptive space cranes with tip point adjustment

    NASA Technical Reports Server (NTRS)

    Das, S. K.; Utku, S.; Wada, B. K.

    1990-01-01

    The 'space crane', which resembles a conventional solid-link robot but employs truss sections in place of links and length-adjustable bars in place of torque-generating motors, is presently characterized by means of two different inverse-dynamics schemes. While in the first of these the nominal angles are maintained between the links constituting the crane, the second scheme adjusts the nominal angles as a function of time in order to always maintain the tip of the crane along the desired (nomical) trajectory. Attention is given to the second scheme, and to a tip-adjustment method which keeps the high frequency flexibility vibration within limits and ensures numerical stability.

  17. Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling Quantum Molecular Dynamics Simulations

    SciTech Connect

    Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; Bock, Nicolas; Wall, Michael E.; Niklasson, Anders Mauritz

    2016-06-06

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.

  18. Combined dynamic inversion and QFT flight control of an unstable high performance aircraft

    NASA Astrophysics Data System (ADS)

    Stout, Perry Walter

    Quantitative Feedback Theory (QFT) is a control system synthesis, technique that directly considers system uncertainties and disturbance magnitudes when formulating closed-loop control algorithms. Dynamic Inversion is a nonlinear control system design technique that relies on accurate mathematical models to compute control inputs producing arbitrary system responses. Both techniques have been applied to unstable high performance aircraft flight control, and produced effective aircraft controllers. Both techniques have certain drawbacks: Nonlinear QFT controllers tend to be unnecessarily conservative (the computed controllers have excessive bandwidth) because known system properties are treated as "unknown" disturbances during loop synthesis. Meanwhile Dynamic Inversion control is sensitive to differences between assumed mathematical models and actual system dynamic properties. Combining the two control techniques provides the benefit of both while suffering the drawbacks of neither, as demonstrated by Single Input, Single Output (SISO) control of a constant airspeed, no roll, no yaw nonlinear model of the F-16 aircraft, and by Multi-Input, Multi-Output (MIMO) control of a full six-degree-of-freedom version. Design performance of the combined controllers is verified by reduced actuator efforts and by reduced sensor noise to actuator input (U( s)/n(s)) transfer function magnitudes compared to standard QFT versions.

  19. Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling Quantum Molecular Dynamics Simulations

    DOE PAGES

    Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...

    2016-06-06

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less

  20. Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations.

    PubMed

    Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N

    2016-07-12

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.

  1. Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling Quantum Molecular Dynamics Simulations

    SciTech Connect

    Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; Bock, Nicolas; Wall, Michael E.; Niklasson, Anders Mauritz

    2016-06-06

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.

  2. Dynamic Inversion for Hydrological Process Monitoring with Electrical Resistance Tomography Under Model Uncertainty

    SciTech Connect

    Lehikoinen, A.; Huttunen, J.M.J.; Finsterle, S.; Kowalsky, M.B.; Kaipio, J.P.

    2009-08-01

    We propose an approach for imaging the dynamics of complex hydrological processes. The evolution of electrically conductive fluids in porous media is imaged using time-lapse electrical resistance tomography. The related dynamic inversion problem is solved using Bayesian filtering techniques, that is, it is formulated as a sequential state estimation problem in which the target is an evolving posterior probability density of the system state. The dynamical inversion framework is based on the state space representation of the system, which involves the construction of a stochastic evolution model and an observation model. The observation model used in this paper consists of the complete electrode model for ERT, with Archie's law relating saturations to electrical conductivity. The evolution model is an approximate model for simulating flow through partially saturated porous media. Unavoidable modeling and approximation errors in both the observation and evolution models are considered by computing approximate statistics for these errors. These models are then included in the construction of the posterior probability density of the estimated system state. This approximation error method allows the use of approximate - and therefore computationally efficient - observation and evolution models in the Bayesian filtering. We consider a synthetic example and show that the incorporation of an explicit model for the model uncertainties in the state space representation can yield better estimates than a frame-by-frame imaging approach.

  3. What you feel is what you see: inverse dynamics estimation underlies the resistive sensation of a delayed cursor

    PubMed Central

    Takamuku, Shinya; Gomi, Hiroaki

    2015-01-01

    How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the ‘inverse’ computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions. PMID:26156766

  4. A time domain inverse dynamic method for the end point tracking control of a flexible manipulator

    NASA Technical Reports Server (NTRS)

    Kwon, Dong-Soo; Book, Wayne J.

    1991-01-01

    The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, we calculated the torque and the trajectories of all state variables for a given end point trajectory. The interpretation of this method in the frequency domain was explained in detail using the two-sided Laplace transform and the convolution integral. The open loop control of the inverse dynamic method shows an excellent result in simulation. For real applications, a practical control strategy is proposed by adding a feedback tracking control loop to the inverse dynamic feedforward control, and its good experimental performance is presented.

  5. Full tensor gravity gradiometry data inversion: Performance analysis of parallel computing algorithms

    NASA Astrophysics Data System (ADS)

    Hou, Zhen-Long; Wei, Xiao-Hui; Huang, Da-Nian; Sun, Xu

    2015-09-01

    We apply reweighted inversion focusing to full tensor gravity gradiometry data using message-passing interface (MPI) and compute unified device architecture (CUDA) parallel computing algorithms, and then combine MPI with CUDA to formulate a hybrid algorithm. Parallel computing performance metrics are introduced to analyze and compare the performance of the algorithms. We summarize the rules for the performance evaluation of parallel algorithms. We use model and real data from the Vinton salt dome to test the algorithms. We find good match between model and real density data, and verify the high efficiency and feasibility of parallel computing algorithms in the inversion of full tensor gravity gradiometry data.

  6. Reentry Vehicle Flight Controls Design Guidelines: Dynamic Inversion

    NASA Technical Reports Server (NTRS)

    Ito, Daigoro; Georgie, Jennifer; Valasek, John; Ward, Donald T.

    2002-01-01

    This report addresses issues in developing a flight control design for vehicles operating across a broad flight regime and with highly nonlinear physical descriptions of motion. Specifically it addresses the need for reentry vehicles that could operate through reentry from space to controlled touchdown on Earth. The latter part of controlled descent is achieved by parachute or paraglider - or by all automatic or a human-controlled landing similar to that of the Orbiter. Since this report addresses the specific needs of human-carrying (not necessarily piloted) reentry vehicles, it deals with highly nonlinear equations of motion, and then-generated control systems must be robust across a very wide range of physics. Thus, this report deals almost exclusively with some form of dynamic inversion (DI). Two vital aspects of control theory - noninteracting control laws and the transformation of nonlinear systems into equivalent linear systems - are embodied in DI. Though there is no doubt that the mathematical tools and underlying theory are widely available, there are open issues as to the practicality of using DI as the only or primary design approach for reentry articles. This report provides a set of guidelines that can be used to determine the practical usefulness of the technique.

  7. An inverse dynamic tracking control for bracing a flexible manipulator

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The goal of this research is to produce a braced manipulator that is flexible. In order to brace the manipulator against a surface, a tip position tracking control becomes essential to avoid large impacts on contact, and to control the force after contact. If we consider the characteristics of the flexible manipulator, the control task may be characterized as a tracking control of a nonlinear, noncolocated, nonminimum-phase system with uncertainties. First, the author introduces the staged positioning concept and provides a conceptual background for the bracing strategy. Second, a single link flexible manipulator is modeled by the assumed-modes method, and the validity of the model is verified with experimental results. Third, a time domain inverse dynamic method is proposed to cancel out the nonminimum-phase positive zeros which cannot be cancelled by feedback controls. Fourth, a tracking controller is designed to control the end point of a flexible manipulator without any overshoot or residual vibrations. Its perfect tracking or asymptotic tracking performance is analyzed and discussed for zero and non-zero initial condition cases. Finally, impact phenomena are investigated, and contact force control of a flexible bracing manipulator is presented to set up a control scenerio for such a manipulator. The proposed control scheme is implemented on a single link flexible manipulator, and analyzed and evaluated with simulations and experiments.

  8. Bayesian geoacoustic inversion in a dynamic shallow water environment.

    PubMed

    Jiang, Yong-Min; Chapman, N Ross

    2008-06-01

    This paper presents results for matched field Bayesian geoacoustic inversion of multitonal continuous wave data collected on the New Jersey continental shelf. To account for effects of significant spatial and temporal variation of the water column sound speed, the sound speed profile was represented by empirical orthogonal functions. Data error information for the inversion was estimated from multiple time windows of the data. Inversion results for the sediment sound speeds at three ranges are in excellent agreement with the ground truth.

  9. PREFACE: First International Congress of the International Association of Inverse Problems (IPIA): Applied Inverse Problems 2007: Theoretical and Computational Aspects

    NASA Astrophysics Data System (ADS)

    Uhlmann, Gunther

    2008-07-01

    This volume represents the proceedings of the fourth Applied Inverse Problems (AIP) international conference and the first congress of the Inverse Problems International Association (IPIA) which was held in Vancouver, Canada, June 25 29, 2007. The organizing committee was formed by Uri Ascher, University of British Columbia, Richard Froese, University of British Columbia, Gary Margrave, University of Calgary, and Gunther Uhlmann, University of Washington, chair. The conference was part of the activities of the Pacific Institute of Mathematical Sciences (PIMS) Collaborative Research Group on inverse problems (http://www.pims.math.ca/scientific/collaborative-research-groups/past-crgs). This event was also supported by grants from NSF and MITACS. Inverse Problems (IP) are problems where causes for a desired or an observed effect are to be determined. They lie at the heart of scientific inquiry and technological development. The enormous increase in computing power and the development of powerful algorithms have made it possible to apply the techniques of IP to real-world problems of growing complexity. Applications include a number of medical as well as other imaging techniques, location of oil and mineral deposits in the earth's substructure, creation of astrophysical images from telescope data, finding cracks and interfaces within materials, shape optimization, model identification in growth processes and, more recently, modelling in the life sciences. The series of Applied Inverse Problems (AIP) Conferences aims to provide a primary international forum for academic and industrial researchers working on all aspects of inverse problems, such as mathematical modelling, functional analytic methods, computational approaches, numerical algorithms etc. The steering committee of the AIP conferences consists of Heinz Engl (Johannes Kepler Universität, Austria), Joyce McLaughlin (RPI, USA), William Rundell (Texas A&M, USA), Erkki Somersalo (Helsinki University of Technology

  10. Oleuropein: Molecular Dynamics and Computation.

    PubMed

    Gentile, Luigi; Uccella, Nicola A; Sivakumar, Ganapathy

    2017-09-11

    Olive oil and table olive biophenols have been shown to significantly enrich the hedonic-sensory and nutritional quality of the Mediterranean diet. Oleuropein is one of the predominate biophenols in green olives and leaves, which not only has noteworthy free-radical quenching activity but also putatively reduces the incidence of various cancers. Clinical trials suggest that the consumption of extra virgin olive oil reduces the risk of several degenerative diseases. The oleuropein-based bioactives in olive oil could reduce tumor necrosis factor α, interleukin-1β and nitric oxide. Therefore, olive bioactives quality should be preserved and even improved due to their disease-fighting properties. Understanding the molecular dynamics of oleuropein is crucial to increase olive oil and table olive quality. The objective of this review is to provide the molecular dynamics and computational mapping of oleuropein. It is a biophenol-secoiridoid expressing different functionalities such as two π-bonds, two esters, two acetals, one catechol, and four hexose hydroxyls within 540 mw. The molecular bond sequential breaking mechanisms were analyzed through unimolecular reactions under electron spray ionization, collision activated dissociations, and fast atom bombardment mass spectrometry. The oleuropein solvent-free reactivity is leading to glucose loss and bioactive aglycone-dialdehydes via secoiridoid ring opening. Oleuropein electron distribution revealed that the free-radical non-polar processes occur from its highest occupied molecular orbital, while the lowest unoccupied molecular orbital is clearly devoted to nucleophilic and base site reactivity. This molecular dynamics and computational mapping of oleuropein could contribute to the engineering of olive-based biomedicine and/or functional food. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Computer modeling of inversion layer MOS solar cells and arrays

    NASA Technical Reports Server (NTRS)

    Ho, Fat Duen

    1991-01-01

    A two dimensional numerical model of the inversion layer metal insulator semiconductor (IL/MIS) solar cell is proposed by using the finite element method. The two-dimensional current flow in the device is taken into account in this model. The electrostatic potential distribution, the electron concentration distribution, and the hole concentration distribution for different terminal voltages are simulated. The results of simple calculation are presented. The existing problems for this model are addressed. Future work is proposed. The MIS structures are studied and some of the results are reported.

  12. Computational Methods for Structural Mechanics and Dynamics

    NASA Technical Reports Server (NTRS)

    Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)

    1989-01-01

    Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.

  13. Dynamic Source Inversion of Intermediate Depth Earthquakes in Mexico

    NASA Astrophysics Data System (ADS)

    Yuto Sho Mirwald, Aron; Cruz-Atienza, Victor Manuel; Krishna Singh-Singh, Shri

    2017-04-01

    The source mechanisms of earthquakes at intermediate depth (50-300 km) are still under debate. Due to the high confining pressure at depths below 50 km, rocks ought to deform by ductile flow rather than brittle failure, which is the mechanism originating most earthquakes. Several source mechanisms have been proposed, but for neither of them conclusive evidence has been found. One of two viable mechanisms is Dehydration Embrittlement, where liberation of water lowers the effective pressure and enables brittle fracture. The other is Thermal Runaway, a highly localized ductile deformation (Prieto et. al., Tecto., 2012). In the Mexican subduction zone, intermediate depth earthquakes represent a real hazard in central Mexico due to their proximity to highly populated areas and the large accelerations induced on ground motion (Iglesias et. al., BSSA, 2002). To improve our understanding of these rupture processes, we use a recently introduced inversion method (Diaz-Mojica et. al., JGR, 2014) to analyze several intermediate depth earthquakes in Mexico. The method inverts strong motion seismograms to determine the dynamic source parameters based on a genetic algorithm. It has been successfully used for the M6.5 Zumpango earthquake that occurred at a depth of 62 km in the state of Guerrero, Mexico. For this event, high radiated energy, low radiation efficiency and low rupture velocity were determined. This indicates a highly dissipative rupture process, suggesting that Thermal Runaway could probably be the dominant source process. In this work we improved the inversion method by introducing a theoretical consideration for the nucleation process that minimizes the effects of rupture initiation and guarantees self-sustained rupture propagation (Galis et. al., GJInt., 2014). Preliminary results indicate that intermediate depth earthquakes in central Mexico may vary in their rupture process. For instance, for a M5.9 normal-faulting earthquake at 55 km depth that produced very

  14. From seismic images to plate dynamics: Towards the full inverse

    NASA Astrophysics Data System (ADS)

    Gurnis, M.; Ratnaswamy, V.; Stadler, G.; Ghattas, O.; Alisic, L.

    2014-12-01

    Three-dimensional seismic images of slabs and other mantle structures provide a first order constraint on the forces driving plate motions. Previous attempts to invert for plate motions from seismic images have blurry slabs that do not act as stress guides. Using forward models, we describe characteristics needed to capture the coupling between mantle structures and plates. In forward models, we capitalized on advances in adaptive mesh refinement and scalable solvers to simulate global mantle flow and plate motions, with plate margins resolved down to 1 km. Cold thermal anomalies within the lower mantle are coupled into oceanic plates through narrow high-viscosity slabs, altering the velocity of oceanic plates. Back-arc extension and slab rollback are emergent consequences of slab descent in the upper mantle. The forward models require the solution of a highly ill-conditioned non-linear Stokes equation. Based on a realistic rheological model with yielding and strain rate weakening from dislocation creep, we formulate inverse problems casted as PDE-constrained optimization problems and derive adjoints of the nonlinear Stokes and incompressibility equations. An inexact-Gauss Newton method is used to infer the rheological parameters while quantifying the uncertainty using the Hessian at the maximum a posteriori (MAP) point. Through 2-D numerical experiments we demonstrate that when the temperature field is known from seismic images, we can recover all of these properties to varying levels of certainty: strength of plate boundaries, yield stress and strain rate exponent in the upper mantle. When the system becomes more unconstrained (when all three mechanical properties are unknown), there can be tradeoffs depending on how well the data approximates the realistic dynamics. As plate boundaries become weaker beyond a limiting value, the uncertainty of the inferred parameters increases due to insensitivity of plate motion to plate coupling. Using the inverse of the

  15. Dynamic Shape Reconstruction of Three-Dimensional Frame Structures Using the Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander

    2011-01-01

    A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.

  16. Nonlinear dynamics as an engine of computation.

    PubMed

    Kia, Behnam; Lindner, John F; Ditto, William L

    2017-03-06

    Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'.

  17. Nonlinear dynamics as an engine of computation

    NASA Astrophysics Data System (ADS)

    Kia, Behnam; Lindner, John F.; Ditto, William L.

    2017-03-01

    Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation. This article is part of the themed issue 'Horizons of cybernetical physics'.

  18. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    NASA Astrophysics Data System (ADS)

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2-D and a random hydraulic conductivity field in 3-D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ˜101 to ˜102 in a multicore computational environment. Therefore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate to large-scale problems.

  19. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    SciTech Connect

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~101 to ~102 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.

  20. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    DOE PAGES

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of themore » problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~101 to ~102 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.« less

  1. A computationally efficient parallel Levenberg-Marquardt algorithm for highly parameterized inverse model analyses

    SciTech Connect

    Lin, Youzuo; O'Malley, Daniel; Vesselinov, Velimir V.

    2016-09-01

    Inverse modeling seeks model parameters given a set of observations. However, for practical problems because the number of measurements is often large and the model parameters are also numerous, conventional methods for inverse modeling can be computationally expensive. We have developed a new, computationally-efficient parallel Levenberg-Marquardt method for solving inverse modeling problems with a highly parameterized model space. Levenberg-Marquardt methods require the solution of a linear system of equations which can be prohibitively expensive to compute for moderate to large-scale problems. Our novel method projects the original linear problem down to a Krylov subspace, such that the dimensionality of the problem can be significantly reduced. Furthermore, we store the Krylov subspace computed when using the first damping parameter and recycle the subspace for the subsequent damping parameters. The efficiency of our new inverse modeling algorithm is significantly improved using these computational techniques. We apply this new inverse modeling method to invert for random transmissivity fields in 2D and a random hydraulic conductivity field in 3D. Our algorithm is fast enough to solve for the distributed model parameters (transmissivity) in the model domain. The algorithm is coded in Julia and implemented in the MADS computational framework (http://mads.lanl.gov). By comparing with Levenberg-Marquardt methods using standard linear inversion techniques such as QR or SVD methods, our Levenberg-Marquardt method yields a speed-up ratio on the order of ~101 to ~102 in a multi-core computational environment. Furthermore, our new inverse modeling method is a powerful tool for characterizing subsurface heterogeneity for moderate- to large-scale problems.

  2. An inverse dynamic trajectory planning for the end-point tracking control of a flexible manipulator

    SciTech Connect

    Kwon, D.S.; Babcock, S.M.; Book, W.J.

    1992-11-01

    A manipulator system that needs significantly large workspace volume and high payload capacity has greater link flexibility than typical industrial robots and teleoperators. If link flexibility is significant, position control of the manipulator`s end-effecter exhibits the nonminimum phase, noncollocated, and flexible structure system control problems. This paper addresses inverse dynamic trajectory planning issues of a flexible manipulator. The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, the inverse dynamic method calculates the feedforward torque and the trajectories of all state variables that do not excite structural vibrations for a given end-point trajectory. Through simulation and experiment with a single-link flexible manipulator, the effectiveness of the inverse dynamic method has been demonstrated.

  3. An inverse dynamic trajectory planning for the end-point tracking control of a flexible manipulator

    SciTech Connect

    Kwon, D.S.; Babcock, S.M. ); Book, W.J. . School of Mechanical Engineering)

    1992-01-01

    A manipulator system that needs significantly large workspace volume and high payload capacity has greater link flexibility than typical industrial robots and teleoperators. If link flexibility is significant, position control of the manipulator's end-effecter exhibits the nonminimum phase, noncollocated, and flexible structure system control problems. This paper addresses inverse dynamic trajectory planning issues of a flexible manipulator. The inverse dynamic equation of a flexible manipulator was solved in the time domain. By dividing the inverse system equation into the causal part and the anticausal part, the inverse dynamic method calculates the feedforward torque and the trajectories of all state variables that do not excite structural vibrations for a given end-point trajectory. Through simulation and experiment with a single-link flexible manipulator, the effectiveness of the inverse dynamic method has been demonstrated.

  4. Visualization of Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Gerald-Yamasaki, Michael; Hultquist, Jeff; Bryson, Steve; Kenwright, David; Lane, David; Walatka, Pamela; Clucas, Jean; Watson, Velvin; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    Scientific visualization serves the dual purpose of exploration and exposition of the results of numerical simulations of fluid flow. Along with the basic visualization process which transforms source data into images, there are four additional components to a complete visualization system: Source Data Processing, User Interface and Control, Presentation, and Information Management. The requirements imposed by the desired mode of operation (i.e. real-time, interactive, or batch) and the source data have their effect on each of these visualization system components. The special requirements imposed by the wide variety and size of the source data provided by the numerical simulation of fluid flow presents an enormous challenge to the visualization system designer. We describe the visualization system components including specific visualization techniques and how the mode of operation and source data requirements effect the construction of computational fluid dynamics visualization systems.

  5. Dynamic Load Balancing for Computational Plasticity on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Pramono, Eddy; Simon, Horst

    1994-01-01

    The simulation of the computational plasticity on a complex structure remains a formidable computational task, especially when a highly nonlinear, complex material model was used. It appears that the computational requirements for a such problem can only be satisfied by massively parallel architectures. In order to effectively harness the tremendous computational power provided by such architectures, it is imperative to investigate and to study the algorithmic and implementation issues pertaining to dynamic load balancing for computational plasticity on a highly parallel, distributed-memory, multiple-instruction, multiple-data computers. This paper will measure the effectiveness of the algorithms developed in handling the dynamic load balancing.

  6. Force and Moment Approach for Achievable Dynamics Using Nonlinear Dynamic Inversion

    NASA Technical Reports Server (NTRS)

    Ostroff, Aaron J.; Bacon, Barton J.

    1999-01-01

    This paper describes a general form of nonlinear dynamic inversion control for use in a generic nonlinear simulation to evaluate candidate augmented aircraft dynamics. The implementation is specifically tailored to the task of quickly assessing an aircraft's control power requirements and defining the achievable dynamic set. The achievable set is evaluated while undergoing complex mission maneuvers, and perfect tracking will be accomplished when the desired dynamics are achievable. Variables are extracted directly from the simulation model each iteration, so robustness is not an issue. Included in this paper is a description of the implementation of the forces and moments from simulation variables, the calculation of control effectiveness coefficients, methods for implementing different types of aerodynamic and thrust vectoring controls, adjustments for control effector failures, and the allocation approach used. A few examples illustrate the perfect tracking results obtained.

  7. A combined direct/inverse three-dimensional transonic wing design method for vector computers

    NASA Technical Reports Server (NTRS)

    Weed, R. A.; Carlson, L. A.; Anderson, W. K.

    1984-01-01

    A three-dimensional transonic-wing design algorithm for vector computers is developed, and the results of sample computations are presented graphically. The method incorporates the direct/inverse scheme of Carlson (1975), a Cartesian grid system with boundary conditions applied at a mean plane, and a potential-flow solver based on the conservative form of the full potential equation and using the ZEBRA II vectorizable solution algorithm of South et al. (1980). The accuracy and consistency of the method with regard to direct and inverse analysis and trailing-edge closure are verified in the test computations.

  8. A combined direct/inverse three-dimensional transonic wing design method for vector computers

    NASA Technical Reports Server (NTRS)

    Weed, R. A.; Carlson, L. A.; Anderson, W. K.

    1984-01-01

    A three-dimensional transonic-wing design algorithm for vector computers is developed, and the results of sample computations are presented graphically. The method incorporates the direct/inverse scheme of Carlson (1975), a Cartesian grid system with boundary conditions applied at a mean plane, and a potential-flow solver based on the conservative form of the full potential equation and using the ZEBRA II vectorizable solution algorithm of South et al. (1980). The accuracy and consistency of the method with regard to direct and inverse analysis and trailing-edge closure are verified in the test computations.

  9. An inverse method for computation of structural stiffness distributions of aeroelastically optimized wings

    NASA Astrophysics Data System (ADS)

    Schuster, David M.

    1993-04-01

    An inverse method has been developed to compute the structural stiffness properties of wings given a specified wing loading and aeroelastic twist distribution. The method directly solves for the bending and torsional stiffness distribution of the wing using a modal representation of these properties. An aeroelastic design problem involving the use of a computational aerodynamics method to optimize the aeroelastic twist distribution of a tighter wing operating at maneuver flight conditions is used to demonstrate the application of the method. This exercise verifies the ability of the inverse scheme to accurately compute the structural stiffness distribution required to generate a specific aeroelastic twist under a specified aeroelastic load.

  10. Computer programs for forward and inverse modeling of acoustic and electromagnetic data

    USGS Publications Warehouse

    Ellefsen, Karl J.

    2011-01-01

    A suite of computer programs was developed by U.S. Geological Survey personnel for forward and inverse modeling of acoustic and electromagnetic data. This report describes the computer resources that are needed to execute the programs, the installation of the programs, the program designs, some tests of their accuracy, and some suggested improvements.

  11. Approximated Stable Inversion for Nonlinear Systems with Nonhyperbolic Internal Dynamics. Revised

    NASA Technical Reports Server (NTRS)

    Devasia, Santosh

    1999-01-01

    A technique to achieve output tracking for nonminimum phase nonlinear systems with non- hyperbolic internal dynamics is presented. The present paper integrates stable inversion techniques (that achieve exact-tracking) with approximation techniques (that modify the internal dynamics) to circumvent the nonhyperbolicity of the internal dynamics - this nonhyperbolicity is an obstruction to applying presently available stable inversion techniques. The theory is developed for nonlinear systems and the method is applied to a two-cart with inverted-pendulum example.

  12. A Modular Environment for Geophysical Inversion and Run-time Autotuning using Heterogeneous Computing Systems

    NASA Astrophysics Data System (ADS)

    Myre, Joseph M.

    Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that

  13. Inverse Force Determination on a Small Scale Launch Vehicle Model Using a Dynamic Balance

    NASA Technical Reports Server (NTRS)

    Ngo, Christina L.; Powell, Jessica M.; Ross, James C.

    2017-01-01

    A launch vehicle can experience large unsteady aerodynamic forces in the transonic regime that, while usually only lasting for tens of seconds during launch, could be devastating if structural components and electronic hardware are not designed to account for them. These aerodynamic loads are difficult to experimentally measure and even harder to computationally estimate. The current method for estimating buffet loads is through the use of a few hundred unsteady pressure transducers and wind tunnel test. Even with a large number of point measurements, the computed integrated load is not an accurate enough representation of the total load caused by buffeting. This paper discusses an attempt at using a dynamic balance to experimentally determine buffet loads on a generic scale hammer head launch vehicle model tested at NASA Ames Research Center's 11' x 11' transonic wind tunnel. To use a dynamic balance, the structural characteristics of the model needed to be identified so that the natural modal response could be and removed from the aerodynamic forces. A finite element model was created on a simplified version of the model to evaluate the natural modes of the balance flexures, assist in model design, and to compare to experimental data. Several modal tests were conducted on the model in two different configurations to check for non-linearity, and to estimate the dynamic characteristics of the model. The experimental results were used in an inverse force determination technique with a psuedo inverse frequency response function. Due to the non linearity, the model not being axisymmetric, and inconsistent data between the two shake tests from different mounting configuration, it was difficult to create a frequency response matrix that satisfied all input and output conditions for wind tunnel configuration to accurately predict unsteady aerodynamic loads.

  14. Computational Fluid Dynamics in the United Kingdom.

    DTIC Science & Technology

    1987-04-01

    D-A14 589 COMPUTATIONAL FLUID DYNAMICS IN THE UNITED KINGDOM (U) /i ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUGH ( ENGLAND ) UNCLASIFIED HALL ET AL APR...COMPUTATIONAL FLUID DYNAMICS IN THE UNITED KINGDOM by N M. G. Hall S. P. Fiddes April 1987 .,DTI [ ELECTE It ’ji .1 .SEP 11 1987 Procurement Executive...Memorandum Aero 2098 Received for printing 3 April 1987 COMPUTATIONAL FLUID DYNAMICS IN THE UNITED KINGDOM * by M. G. Hall S. P. Fiddes SUMMARY A review

  15. Waveform inversion with source encoding for breast sound speed reconstruction in ultrasound computed tomography.

    PubMed

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A

    2015-03-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden.

  16. Waveform Inversion with Source Encoding for Breast Sound Speed Reconstruction in Ultrasound Computed Tomography

    PubMed Central

    Wang, Kun; Matthews, Thomas; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A.

    2016-01-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer-simulation and experimental phantom studies are conducted to demonstrate the use of the WISE method. The results suggest that the WISE method maintains the high spatial resolution of waveform inversion methods while significantly reducing the computational burden. PMID:25768816

  17. FOREWORD: 5th International Workshop on New Computational Methods for Inverse Problems

    NASA Astrophysics Data System (ADS)

    Vourc'h, Eric; Rodet, Thomas

    2015-11-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific research presented during the 5th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2015 (http://complement.farman.ens-cachan.fr/NCMIP_2015.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 29, 2015. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011, and secondly at the initiative of Institut Farman, in May 2012, May 2013 and May 2014. The New Computational Methods for Inverse Problems (NCMIP) workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, Kernel methods, learning methods

  18. FOREWORD: 4th International Workshop on New Computational Methods for Inverse Problems (NCMIP2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 4th International Workshop on New Computational Methods for Inverse Problems, NCMIP 2014 (http://www.farman.ens-cachan.fr/NCMIP_2014.html). This workshop took place at Ecole Normale Supérieure de Cachan, on May 23, 2014. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 and May 2013, (http://www.farman.ens-cachan.fr/NCMIP_2012.html), (http://www.farman.ens-cachan.fr/NCMIP_2013.html). The New Computational Methods for Inverse Problems (NCMIP) Workshop focused on recent advances in the resolution of inverse problems. Indeed, inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the

  19. Inverse algorithms for 2D shallow water equations in presence of wet dry fronts: Application to flood plain dynamics

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Couderc, F.; Dartus, D.; Larnier, K.; Madec, R.; Vila, J.-P.

    2016-11-01

    The 2D shallow water equations adequately model some geophysical flows with wet-dry fronts (e.g. flood plain or tidal flows); nevertheless deriving accurate, robust and conservative numerical schemes for dynamic wet-dry fronts over complex topographies remains a challenge. Furthermore for these flows, data are generally complex, multi-scale and uncertain. Robust variational inverse algorithms, providing sensitivity maps and data assimilation processes may contribute to breakthrough shallow wet-dry front dynamics modelling. The present study aims at deriving an accurate, positive and stable finite volume scheme in presence of dynamic wet-dry fronts, and some corresponding inverse computational algorithms (variational approach). The schemes and algorithms are assessed on classical and original benchmarks plus a real flood plain test case (Lèze river, France). Original sensitivity maps with respect to the (friction, topography) pair are performed and discussed. The identification of inflow discharges (time series) or friction coefficients (spatially distributed parameters) demonstrate the algorithms efficiency.

  20. Research on Computational Fluid Dynamics and Turbulence

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Preconditioning matrices for Chebyshev derivative operators in several space dimensions; the Jacobi matrix technique in computational fluid dynamics; and Chebyshev techniques for periodic problems are discussed.

  1. An inverse dynamics approach to trajectory optimization and guidance for an aerospace plane

    NASA Technical Reports Server (NTRS)

    Lu, Ping

    1992-01-01

    The optimal ascent problem for an aerospace planes is formulated as an optimal inverse dynamic problem. Both minimum-fuel and minimax type of performance indices are considered. Some important features of the optimal trajectory and controls are used to construct a nonlinear feedback midcourse controller, which not only greatly simplifies the difficult constrained optimization problem and yields improved solutions, but is also suited for onboard implementation. Robust ascent guidance is obtained by using combination of feedback compensation and onboard generation of control through the inverse dynamics approach. Accurate orbital insertion can be achieved with near-optimal control of the rocket through inverse dynamics even in the presence of disturbances.

  2. Inverse computational feedback optimization imaging applied to time varying changes in a homogeneous structure.

    PubMed

    Evans, Daniel J; Manwaring, Mark L; Soule, Terence

    2008-01-01

    The technique of inverse computational feedback optimization imaging allows for the imaging of varying tissue without the continuous need of a complex imaging systems such as an MRI or CT. Our method trades complex imaging equipment for computing power. The objective is to use a baseline scan from an imaging system along with finite element method computational software to calculate the physically measurable parameters (such as voltage or temperature). As the physically measurable parameters change the computational model is iteratively run until it matches the measured values. Optimization routines are implemented to accelerate the process of finding the new values. Presented is a computational model demonstrating how the inverse imaging technique would work with a simple homogeneous sample with a circular structure. It demonstrates the ability to locate an object with only a few point measurements. The presented computational model uses swarm optimization techniques to help find the object location from the measured data (which in this case is voltage).

  3. Non-recursive augmented Lagrangian algorithms for the forward and inverse dynamics of constrained flexible multibodies

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Ledesma, Ragnar

    1993-01-01

    A technique is presented for solving the inverse dynamics of flexible planar multibody systems. This technique yields the non-causal joint efforts (inverse dynamics) as well as the internal states (inverse kinematics) that produce a prescribed nominal trajectory of the end effector. A non-recursive global Lagrangian approach is used in formulating the equations for motion as well as in solving the inverse dynamics equations. Contrary to the recursive method previously presented, the proposed method solves the inverse problem in a systematic and direct manner for both open-chain as well as closed-chain configurations. Numerical simulation shows that the proposed procedure provides an excellent tracking of the desired end effector trajectory.

  4. Computational Methods for Sparse Solution of Linear Inverse Problems

    DTIC Science & Technology

    2009-03-01

    methods from harmonic analysis [5]. For example, natural images can be approximated with relatively few wavelet coefficients. As a consequence, in many...performed efficiently. For example, the cost of these products is O(N logN) when Φ is constructed from Fourier or wavelet bases. For algorithms that...stream community has proposed efficient algorithms for computing near-optimal histograms and wavelet -packet approximations from compressive samples [4

  5. Computational dynamics for robotics systems using a non-strict computational approach

    NASA Technical Reports Server (NTRS)

    Orin, David E.; Wong, Ho-Cheung; Sadayappan, P.

    1989-01-01

    A Non-Strict computational approach for real-time robotics control computations is proposed. In contrast to the traditional approach to scheduling such computations, based strictly on task dependence relations, the proposed approach relaxes precedence constraints and scheduling is guided instead by the relative sensitivity of the outputs with respect to the various paths in the task graph. An example of the computation of the Inverse Dynamics of a simple inverted pendulum is used to demonstrate the reduction in effective computational latency through use of the Non-Strict approach. A speedup of 5 has been obtained when the processes of the task graph are scheduled to reduce the latency along the crucial path of the computation. While error is introduced by the relaxation of precedence constraints, the Non-Strict approach has a smaller error than the conventional Strict approach for a wide range of input conditions.

  6. Model dynamics for quantum computing

    NASA Astrophysics Data System (ADS)

    Tabakin, Frank

    2017-08-01

    A model master equation suitable for quantum computing dynamics is presented. In an ideal quantum computer (QC), a system of qubits evolves in time unitarily and, by virtue of their entanglement, interfere quantum mechanically to solve otherwise intractable problems. In the real situation, a QC is subject to decoherence and attenuation effects due to interaction with an environment and with possible short-term random disturbances and gate deficiencies. The stability of a QC under such attacks is a key issue for the development of realistic devices. We assume that the influence of the environment can be incorporated by a master equation that includes unitary evolution with gates, supplemented by a Lindblad term. Lindblad operators of various types are explored; namely, steady, pulsed, gate friction, and measurement operators. In the master equation, we use the Lindblad term to describe short time intrusions by random Lindblad pulses. The phenomenological master equation is then extended to include a nonlinear Beretta term that describes the evolution of a closed system with increasing entropy. An external Bath environment is stipulated by a fixed temperature in two different ways. Here we explore the case of a simple one-qubit system in preparation for generalization to multi-qubit, qutrit and hybrid qubit-qutrit systems. This model master equation can be used to test the stability of memory and the efficacy of quantum gates. The properties of such hybrid master equations are explored, with emphasis on the role of thermal equilibrium and entropy constraints. Several significant properties of time-dependent qubit evolution are revealed by this simple study.

  7. Predictive Dynamic Security Assessment through Advanced Computing

    SciTech Connect

    Huang, Zhenyu; Diao, Ruisheng; Jin, Shuangshuang; Chen, Yousu

    2014-11-30

    Abstract— Traditional dynamic security assessment is limited by several factors and thus falls short in providing real-time information to be predictive for power system operation. These factors include the steady-state assumption of current operating points, static transfer limits, and low computational speed. This addresses these factors and frames predictive dynamic security assessment. The primary objective of predictive dynamic security assessment is to enhance the functionality and computational process of dynamic security assessment through the use of high-speed phasor measurements and the application of advanced computing technologies for faster-than-real-time simulation. This paper presents algorithms, computing platforms, and simulation frameworks that constitute the predictive dynamic security assessment capability. Examples of phasor application and fast computation for dynamic security assessment are included to demonstrate the feasibility and speed enhancement for real-time applications.

  8. Computational simulation of transition to turbulence through inverse modeling

    NASA Technical Reports Server (NTRS)

    Sepri, Paavo

    1989-01-01

    The present investigation has focused on a computational methodology for the fundamental case of transition in channel flow, in which recently published experimental data are utilized both as a stimulus and as a measure of merit of the method. The research has proceeded along three avenues in parallel. The first task has consisted of the development and verification of a computer code which calculates the mean evolution of flow in a channel similar to the one employed experimentally by Blair and Anderson. An analytical test case was created for the dual purposes of code verification and of highlighting the interactions between the Reynolds stress and the mean velocity profile. This test case generated a Reynolds stress by the residue in the momentum equation which is produced by a typical analytical velocity profile. By a substitution of this Reynolds stress into the appropriate code module, the correctness of the code may be verified, along with the accuracy of the computational method. The second task pursued has involved the development of a triple layer model for the Reynolds stress profile, which was suggested and derived from experimental velocity profiles. It is demonstrated that the innermost length scale is based on the local friction velocity, the intermediate layer corresponds to the usual logarithmic law of the wall region in which the normalized Reynolds stress is approximately unity, and the outermost layer is represented by a closed mathematical form depending explicitly on the velocity profile in the wake region. The third task was comprised of scrutiny of the excellent databases developed by Blair and others, and the planning of its incorporation into the transition analysis. These extensive measurements indicate that turbulent statistics in the transition regime may be considered to alternate between laminar and fully turbulent types, the proportions of which are quantified by a measured intermittency function.

  9. Complete RNA inverse folding: computational design of functional hammerhead ribozymes

    PubMed Central

    Dotu, Ivan; Garcia-Martin, Juan Antonio; Slinger, Betty L.; Mechery, Vinodh; Meyer, Michelle M.; Clote, Peter

    2014-01-01

    Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/. PMID:25209235

  10. Viscous compressible flow direct and inverse computation and illustrations

    NASA Technical Reports Server (NTRS)

    Yang, T. T.; Ntone, F.

    1986-01-01

    An algorithm for laminar and turbulent viscous compressible two dimensional flows is presented. For the application of precise boundary conditions over an arbitrary body surface, a body-fitted coordinate system is used in the physical plane. A thin-layer approximation of tne Navier-Stokes equations is introduced to keep the viscous terms relatively simple. The flow field computation is performed in the transformed plane. A factorized, implicit scheme is used to facilitate the computation. Sample calculations, for Couette flow, developing pipe flow, an isolated airflow, two dimensional compressor cascade flow, and segmental compressor blade design are presented. To a certain extent, the effective use of the direct solver depends on the user's skill in setting up the gridwork, the time step size and the choice of the artificial viscosity. The design feature of the algorithm, an iterative scheme to correct geometry for a specified surface pressure distribution, works well for subsonic flows. A more elaborate correction scheme is required in treating transonic flows where local shock waves may be involved.

  11. Use of reduced basis technique in the inverse dynamics of large space cranes

    NASA Technical Reports Server (NTRS)

    Das, S. K.; Utku, S.; Wada, B. K.

    1990-01-01

    The inverse dynamics of adaptive structures used as space cranes can prove computationally expensive in the case of large structures, due to the large number of degrees of freedom involved. Consequently, reduced basis techniques (reduction techniques) are frequently used to reduce the problem size to a time manageable level (for possible use in real time control). A reduced basis technique is proposed which is different from, but related to, the path-derivatives reduction technique. A linearly independent set of deflection n-tuples is used, chosen at the beginning of the time range in which it is wished to reduce the equations, in whose subspace it is assumed that the deflection vectors of the unreduced problem will lie (approximately).

  12. Computational experiment on the numerical solution of some inverse problems of mathematical physics

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. I.; Kardashevsky, A. M.; Sivtsev, PV

    2016-11-01

    In this article the computational experiment on the numerical solution of the most popular linear inverse problems for equations of mathematical physics are presented. The discretization of retrospective inverse problem for parabolic equation is performed using difference scheme with non-positive weight multiplier. Similar difference scheme is also used for the numerical solution of Cauchy problem for two-dimensional Laplace equation. The results of computational experiment, performed on model problems with exact solution, including ones with randomly perturbed input data are presented and discussed.

  13. Modified Dynamic Inversion to Control Large Flexible Aircraft: What's Going On?

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    1999-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper explores dynamic inversion application to an advanced highly flexible aircraft. An initial application has been made to a large flexible supersonic aircraft. In the course of controller design for this advanced vehicle, modifications were made to the standard dynamic inversion methodology. The results of this application were deemed rather promising. An analytical study has been undertaken to better understand the nature of the made modifications and to determine its general applicability. This paper presents the results of this initial analytical look at the modifications to dynamic inversion to control large flexible aircraft.

  14. A MEASURE-THEORETIC COMPUTATIONAL METHOD FOR INVERSE SENSITIVITY PROBLEMS I: METHOD AND ANALYSIS

    PubMed Central

    Breidt, J.; Butler, T.; Estep, D.

    2012-01-01

    We consider the inverse sensitivity analysis problem of quantifying the uncertainty of inputs to a deterministic map given specified uncertainty in a linear functional of the output of the map. This is a version of the model calibration or parameter estimation problem for a deterministic map. We assume that the uncertainty in the quantity of interest is represented by a random variable with a given distribution, and we use the law of total probability to express the inverse problem for the corresponding probability measure on the input space. Assuming that the map from the input space to the quantity of interest is smooth, we solve the generally ill-posed inverse problem by using the implicit function theorem to derive a method for approximating the set-valued inverse that provides an approximate quotient space representation of the input space. We then derive an efficient computational approach to compute a measure theoretic approximation of the probability measure on the input space imparted by the approximate set-valued inverse that solves the inverse problem. PMID:23637467

  15. Validation of net joint loads calculated by inverse dynamics in case of complex movements: application to balance recovery movements.

    PubMed

    Robert, T; Chèze, L; Dumas, R; Verriest, J-P

    2007-01-01

    The joint forces and moments driving the motion of a human subject are classically computed by an inverse dynamic calculation. However, even if this process is theoretically simple, many sources of errors may lead to huge inaccuracies in the results. Moreover, a direct comparison with in vivo measured loads or with "gold standard" values from literature is only possible for very specific studies. Therefore, assessing the inaccuracy of inverse dynamic results is not a trivial problem and a simple method is still required. This paper presents a simple method to evaluate both: (1) the consistency of the results obtained by inverse dynamics; (2) the influence of possible modifications in the inverse dynamic hypotheses. This technique concerns recursive calculation performed on full kinematic chains, and consists in evaluating the loads obtained by two different recursive strategies. It has been applied to complex 3D whole body movements of balance recovery. A recursive Newton-Euler procedure was used to compute the net joint loads. Two models were used to represent the subject bodies, considering or not the upper body as a unique rigid segment. The inertial parameters of the body segments were estimated from two different sets of scaling equations [De Leva, P., 1996. Adjustments to Zatsiorsky-Suleyanov's segment inertia parameters. Journal of Biomechanics 29, 1223-1230; Dumas, R., Chèze, L., Verriest, J.-P., 2006b. Adjustments to McConville et al. and Young et al. Body Segment Inertial Parameters. Journal of Biomechanics, in press]. Using this comparison technique, it has been shown that, for the balance recovery motions investigated: (1) the use of the scaling equations proposed by Dumas et al., instead of those proposed by De Leva, improves the consistency of the results (average relative influence up to 30% for the transversal moment); (2) the arm motions dynamically influence the recovery motion in a non negligible way (average relative influence up to 15% and 30

  16. Molecular dynamics on hypercube parallel computers

    NASA Astrophysics Data System (ADS)

    Smith, W.

    1991-03-01

    The implementation of molecular dynamics on parallel computers is described, with particular reference to hypercube computers. Three particular algorithms are described: replicated data (RD); systolic loop (SLS-G), and parallelised link-cells (PLC), all of which have good load balancing. The performance characteristics of each algorithm and the factors affecting their scaling properties are discussed. The article is pedagogic in intent, to introduce a novice to the main aspects of parallel computing in molecular dynamics.

  17. Dance Dynamics: Computers and Dance.

    ERIC Educational Resources Information Center

    Gray, Judith A., Ed.; And Others

    1983-01-01

    Five articles discuss the use of computers in dance and dance education. They describe: (1) a computerized behavioral profile of a dance teacher; (2) computer-based dance notation; (3) elementary school computer-assisted dance instruction; (4) quantified analysis of dance criticism; and (5) computerized simulation of human body movements in a…

  18. Dance Dynamics: Computers and Dance.

    ERIC Educational Resources Information Center

    Gray, Judith A., Ed.; And Others

    1983-01-01

    Five articles discuss the use of computers in dance and dance education. They describe: (1) a computerized behavioral profile of a dance teacher; (2) computer-based dance notation; (3) elementary school computer-assisted dance instruction; (4) quantified analysis of dance criticism; and (5) computerized simulation of human body movements in a…

  19. VLSI architectures for computing multiplications and inverses in GF(2-m)

    NASA Technical Reports Server (NTRS)

    Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.

    1983-01-01

    Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  20. VLSI architectures for computing multiplications and inverses in GF(2m)

    NASA Technical Reports Server (NTRS)

    Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.

    1985-01-01

    Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.

  1. Dynamic source inversion for physical parameters controlling the 2016 Amatrice, Central Italy, earthquakes

    NASA Astrophysics Data System (ADS)

    Kostka, Filip; Gallovic, Frantisek

    2017-04-01

    We perform dynamic finite-extent source inversion to study the source processes of three earthquakes that occurred close to Amatrice and Norcia, Central Italy, in August-October 2016. The events had moment magnitudes of 6.1-6.5 and resulted in >300 fatalities. To that end, we utilize a modified version of dynamic inversion code by Twardzik et al. (2014). The direct problem is solved by 3D fourth-order staggered-grid finite difference method in a box assuming linear slip-weakening friction law on a planar fault (Madariaga et al., 1998). The optimal solution is sought using the Neighborhood Algorithm by Sambridge (1999). We invert displacement waveforms from the 20-30 nearest stations. The distribution and evolution of slip calculated from physical parameters (stress drop, frictional properties) obtained from the dynamic inversion are compared with results of kinematic inversions and discussed in terms of fault mechanics.

  2. Preliminary assessment of the robustness of dynamic inversion based flight control laws

    NASA Technical Reports Server (NTRS)

    Snell, S. A.

    1992-01-01

    Dynamic-inversion-based flight control laws present an attractive alternative to conventional gain-scheduled designs for high angle-of-attack maneuvering, where nonlinearities dominate the dynamics. Dynamic inversion is easily applied to the aircraft dynamics requiring a knowledge of the nonlinear equations of motion alone, rather than an extensive set of linearizations. However, the robustness properties of the dynamic inversion are questionable especially when considering the uncertainties involved with the aerodynamic database during post-stall flight. This paper presents a simple analysis and some preliminary results of simulations with a perturbed database. It is shown that incorporating integrators into the control loops helps to improve the performance in the presence of these perturbations.

  3. Factors Affecting Energy Barriers for Pyramidal Inversion in Amines and Phosphines: A Computational Chemistry Lab Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2013-01-01

    An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…

  4. Factors Affecting Energy Barriers for Pyramidal Inversion in Amines and Phosphines: A Computational Chemistry Lab Exercise

    ERIC Educational Resources Information Center

    Montgomery, Craig D.

    2013-01-01

    An undergraduate exercise in computational chemistry that investigates the energy barrier for pyramidal inversion of amines and phosphines is presented. Semiempirical calculations (PM3) of the ground-state and transition-state energies for NR[superscript 1]R[superscript 2]R[superscript 3] and PR[superscript 1]R[superscript 2]R[superscript 3] allow…

  5. Inflationary dynamics reconstruction via inverse-scattering theory

    NASA Astrophysics Data System (ADS)

    Mastache, Jorge; Zago, Fernando; Kosowsky, Arthur

    2017-03-01

    The evolution of inflationary fluctuations can be recast as an inverse scattering problem. In this context, we employ the Gel'fand-Levitan method from inverse-scattering theory to reconstruct the evolution of both the inflaton field freeze-out horizon and the Hubble parameter during inflation. We demonstrate this reconstruction procedure numerically for a scenario of slow-roll inflation, as well as for a scenario which temporarily departs from slow-roll. The field freeze-out horizon is reconstructed from the accessible primordial scalar power spectrum alone, while the reconstruction of the Hubble parameter requires additional information from the tensor power spectrum. We briefly discuss the application of this technique to more realistic cases incorporating estimates of the primordial power spectra over limited ranges of scales and with specified uncertainties.

  6. Investigation of approaches for hydrogeophysical joint inversion using a parallel computing platform

    NASA Astrophysics Data System (ADS)

    Commer, M.; Kowalsky, M. B.; Doetsch, J.; Newman, G. A.; Finsterle, S.

    2012-12-01

    Owing to the computational demands of joint inverse problems, we have developed a parallel inversion framework based on the inverse modeling tool iTOUGH2. The software provides inverse modeling capabilities for TOUGH2, a general-purpose simulator for multiphase, multicomponent, non-isothermal flows in multidimensional fractured-porous media. Our parallel version of iTOUGH2 realizes a hierarchically parallel architecture using the Message Passing Interface. This architecture allows for large numbers of parallel processes to be employed for addressing many-parameter inverse problems on large meshes. To provide geophysical modeling capabilities, we have further combined iTOUGH2 with the geophysical simulator Electromagnetic Geological Mapper (EMGeo), which features a suite of methods for modeling electrical and electromagnetic data types, including controlled-source electromagnetics, magnetotellurics, electrical resistivity tomography, and (spectral) induced polarization. Here, we consider the estimation of hydrological parameters through inverse modeling of hydrological and geophysical data associated with experiments from the shallow unconfined uranium-contaminated aquifer at the DOE Integrated Field Research Challenge (IFRC) site at Rifle, Colorado. Our study draws on examples from ongoing research at the IFRC site, and investigates different approaches for jointly inverting electrical resistivity tomography (ERT) and tracer concentration data. Exploiting complementary hydrological-geophysical modeling and parallel computing capabilities of the inversion framework, we investigate a few sequential and coupled inversion approaches, initially using synthetic examples. In the first approach, done as a pre-processing step before hydrological inversion, geophysical inversion of crosswell ERT data yields spatial maps of the subsurface electrical resistivity. During subsequent hydrological inversion, these maps are matched with their counterparts calculated from a

  7. Abel Inversion of Deflectometric Measurements in Dynamic Flows

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Albers, Burt W.; Griffin, DeVon W.

    1999-01-01

    We present an Abel-inversion algorithm to reconstruct mean and rms refractive-index profiles from spatially resolved statistical measurements of the beam-deflection angle in time-dependent, axisymmetric flows. An oscillating gas-jet diffusion flame was investigated as a test case for applying the algorithm. Experimental data were obtained across the whole field by a rainbow schlieren apparatus. Results show that simultaneous multipoint measurements are necessary to reconstruct the rms refractive index accurately.

  8. Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion

    NASA Astrophysics Data System (ADS)

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.

    2017-01-01

    We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.

  9. A method for improving the computational efficiency of a Laplace-Fourier domain waveform inversion based on depth estimation

    NASA Astrophysics Data System (ADS)

    Zhang, Dong; Zhang, Xiaolei; Yuan, Jianzheng; Ke, Rui; Yang, Yan; Hu, Ying

    2016-01-01

    The Laplace-Fourier domain full waveform inversion can simultaneously restore both the long and intermediate short-wavelength information of velocity models because of its unique characteristics of complex frequencies. This approach solves the problem of conventional frequency-domain waveform inversion in which the inversion result is excessively dependent on the initial model due to the lack of low frequency information in seismic data. Nevertheless, the Laplace-Fourier domain waveform inversion requires substantial computational resources and long computation time because the inversion must be implemented on different combinations of multiple damping constants and multiple frequencies, namely, the complex frequencies, which are much more numerous than the Fourier frequencies. However, if the entire target model is computed on every complex frequency for the Laplace-Fourier domain inversion (as in the conventional frequency domain inversion), excessively redundant computation will occur. In the Laplace-Fourier domain waveform inversion, the maximum depth penetrated by the seismic wave decreases greatly due to the application of exponential damping to the seismic record, especially with use of a larger damping constant. Thus, the depth of the area effectively inverted on a complex frequency tends to be much less than the model depth. In this paper, we propose a method for quantitative estimation of the effective inversion depth in the Laplace-Fourier domain inversion based on the principle of seismic wave propagation and mathematical analysis. According to the estimated effective inversion depth, we can invert and update only the model area above the effective depth for every complex frequency without loss of accuracy in the final inversion result. Thus, redundant computation is eliminated, and the efficiency of the Laplace-Fourier domain waveform inversion can be improved. The proposed method was tested in numerical experiments. The experimental results show that

  10. Determination of eigenvalues of dynamical systems by symbolic computation

    NASA Technical Reports Server (NTRS)

    Howard, J. C.

    1982-01-01

    A symbolic computation technique for determining the eigenvalues of dynamical systems is described wherein algebraic operations, symbolic differentiation, matrix formulation and inversion, etc., can be performed on a digital computer equipped with a formula-manipulation compiler. An example is included that demonstrates the facility with which the system dynamics matrix and the control distribution matrix from the state space formulation of the equations of motion can be processed to obtain eigenvalue loci as a function of a system parameter. The example chosen to demonstrate the technique is a fourth-order system representing the longitudinal response of a DC 8 aircraft to elevator inputs. This simplified system has two dominant modes, one of which is lightly damped and the other well damped. The loci may be used to determine the value of the controlling parameter that satisfied design requirements. The results were obtained using the MACSYMA symbolic manipulation system.

  11. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    SciTech Connect

    Rabitz, H.

    1993-12-01

    The overall scope of this research concerns the development and application of forward and inverse analysis tools for problems in chemical dynamics and chemical kinetics. The chemical dynamics work is specifically associated with relating features in potential surfaces and resultant dynamical behavior. The analogous inverse research aims to provide stable algorithms for extracting potential surfaces from laboratory data. In the case of chemical kinetics, the focus is on the development of systematic means to reduce the complexity of chemical kinetic models. Recent progress in these directions is summarized below.

  12. On trajectory generation for flexible space crane: Inverse dynamics analysis by LATDYN

    NASA Technical Reports Server (NTRS)

    Chen, G.-S.; Housner, J. M.; Wu, S.-C.; Chang, C.-W.

    1989-01-01

    For future in-space construction facility, one or more space cranes capable of manipulating and positioning large and massive spacecraft components will be needed. Inverse dynamics was extensively studied as a basis for trajectory generation and control of robot manipulators. The focus here is on trajectory generation in the gross-motion phase of space crane operation. Inverse dynamics of the flexible crane body is much more complex and intricate as compared with rigid robot link. To model and solve the space crane's inverse dynamics problem, LATDYN program which employs a three-dimensional finite element formulation for the multibody truss-type structures will be used. The formulation is oriented toward a joint dominated structure which is suitable for the proposed space crane concept. To track a planned trajectory, procedures will be developed to obtain the actuation profile and dynamics envelope which are pertinent to the design and performance requirements of the space crane concept.

  13. Computational Issues in the Control of Quantum Dynamics

    NASA Astrophysics Data System (ADS)

    Rabitz, Herschel

    2003-03-01

    Computational Issues in the Control of Quantum Dynamics Phenomena Herschel Rabitz Department of Chemistry Princeton University The control of quantum phenomena embraces a variety of applications, with the most common implementation involving tailored laser pulses to steer the dynamics of a quantum system towards some specified observable outcome. The theoretical and computational aspects of this subject are intimately tied to the growing experimental capabilities, especially the ability to perform massive numbers of high throughput experiments. Computational studies in this context have special roles. Especially important is the use of computational techniques to develop new control algorithms, which ultimately would be implemented in the laboratory to guide the control of complex quantum systems. Beyond control alone, many of the same concepts can be exploited for the performance of experiments optimally tuned for inversion, to extract Hamiltonian information. The latter scenario poses very high demands on the efficiency of solving the quantum dynamics equations to extract the information content from the experimental data. The concept of exploiting a computational quantum control tool kit will be introduced as a means for addressing many of these challenges.

  14. Dynamics of the inverse MAPLE nanoparticle deposition process

    NASA Astrophysics Data System (ADS)

    Steiner, Matthew A.; Fitz-Gerald, James M.

    2015-05-01

    Matrix-assisted pulsed laser evaporation (MAPLE) is a processing technique by which laser-sensitive materials are dissolved or placed into colloidal solution with a strongly absorbing sacrificial solvent, which when frozen into a solid target and irradiated under vacuum disperses the undamaged solute material onto a desired substrate. We present an inversion of the original MAPLE process, where the irradiation of metal-based acetate precursors in solution with UV transparent water results in the deposition of inorganic nanoparticles. A theory is forwarded to explain the underlying multiscale sequence of events that control the inverse MAPLE process from acetate decomposition to nanoparticle formation and subsequent ejection. Support for this theory is provided through the analysis of deposited nanoparticles and by novel characterization of MAPLE targets post-irradiation via cryostage scanning electron microscopy. Ejection is shown to proceed through the same phase-explosion mechanism that drives conventional MAPLE, relating the two techniques and advancing the broader understanding of MAPLE deposition processes.

  15. Fluid dynamics computer programs for NERVA turbopump

    NASA Technical Reports Server (NTRS)

    Brunner, J. J.

    1972-01-01

    During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.

  16. A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon

    1989-01-01

    The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.

  17. Inversion Of Dynamical Equations For Control Of Attitude

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1995-01-01

    Method of inverting nonlinear equations of rotational dynamics of rigid body used to design feedback control of orientation of body. Applicable to both direction-cosine and quaternion formulations suitable for large-angle maneuvers. Exploiting some apparently little-known properties of direction cosine and quaternion formulations, method leads to equations for model-follower control system that exhibits exactly linear attitude-error dynamics. Quarternion system more robust in responding to large roll-angle commands.

  18. Inversion Of Dynamical Equations For Control Of Attitude

    NASA Technical Reports Server (NTRS)

    Bach, Ralph; Paielli, Russell

    1995-01-01

    Method of inverting nonlinear equations of rotational dynamics of rigid body used to design feedback control of orientation of body. Applicable to both direction-cosine and quaternion formulations suitable for large-angle maneuvers. Exploiting some apparently little-known properties of direction cosine and quaternion formulations, method leads to equations for model-follower control system that exhibits exactly linear attitude-error dynamics. Quarternion system more robust in responding to large roll-angle commands.

  19. Classical and quantum dynamics in an inverse square potential

    SciTech Connect

    Guillaumín-España, Elisa; Núñez-Yépez, H. N.; Salas-Brito, A. L.

    2014-10-15

    The classical motion of a particle in a 3D inverse square potential with negative energy, E, is shown to be geodesic, i.e., equivalent to the particle's free motion on a non-compact phase space manifold irrespective of the sign of the coupling constant. We thus establish that all its classical orbits with E < 0 are unbounded. To analyse the corresponding quantum problem, the Schrödinger equation is solved in momentum space. No discrete energy levels exist in the unrenormalized case and the system shows a complete “fall-to-the-center” with an energy spectrum unbounded by below. Such behavior corresponds to the non-existence of bound classical orbits. The symmetry of the problem is SO(3) × SO(2, 1) corroborating previously obtained results.

  20. Three-dimensional electromagnetic modeling and inversion on massively parallel computers

    SciTech Connect

    Newman, G.A.; Alumbaugh, D.L.

    1996-03-01

    This report has demonstrated techniques that can be used to construct solutions to the 3-D electromagnetic inverse problem using full wave equation modeling. To this point great progress has been made in developing an inverse solution using the method of conjugate gradients which employs a 3-D finite difference solver to construct model sensitivities and predicted data. The forward modeling code has been developed to incorporate absorbing boundary conditions for high frequency solutions (radar), as well as complex electrical properties, including electrical conductivity, dielectric permittivity and magnetic permeability. In addition both forward and inverse codes have been ported to a massively parallel computer architecture which allows for more realistic solutions that can be achieved with serial machines. While the inversion code has been demonstrated on field data collected at the Richmond field site, techniques for appraising the quality of the reconstructions still need to be developed. Here it is suggested that rather than employing direct matrix inversion to construct the model covariance matrix which would be impossible because of the size of the problem, one can linearize about the 3-D model achieved in the inverse and use Monte-Carlo simulations to construct it. Using these appraisal and construction tools, it is now necessary to demonstrate 3-D inversion for a variety of EM data sets that span the frequency range from induction sounding to radar: below 100 kHz to 100 MHz. Appraised 3-D images of the earth`s electrical properties can provide researchers opportunities to infer the flow paths, flow rates and perhaps the chemistry of fluids in geologic mediums. It also offers a means to study the frequency dependence behavior of the properties in situ. This is of significant relevance to the Department of Energy, paramount to characterizing and monitoring of environmental waste sites and oil and gas exploration.

  1. Research in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Murman, Earll M.

    1987-01-01

    The numerical integration of quasi-one-dimensional unsteady flow problems which involve finite rate chemistry are discussed, and are expressed in terms of conservative form Euler and species conservation equations. Hypersonic viscous calculations for delta wing geometries is also examined. The conical Navier-Stokes equations model was selected in order to investigate the effects of viscous-inviscid interations. The more complete three-dimensional model is beyond the available computing resources. The flux vector splitting method with van Leer's MUSCL differencing is being used. Preliminary results were computed for several conditions.

  2. Efficacy of an ankle brace with a subtalar locking system in inversion control in dynamic movements.

    PubMed

    Zhang, Songning; Wortley, Michael; Chen, Qingjian; Freedman, Julia

    2009-12-01

    Controlled laboratory study. To examine effectiveness of an ankle brace with a subtalar locking system in restricting ankle inversion during passive and dynamic movements. Semirigid ankle braces are considered more effective in restricting ankle inversion than other types of brace, but a semirigid brace with a subtalar locking system may be even more effective. Nineteen healthy subjects with no history of major lower extremity injuries were included in the study. Participants performed 5 trials of an ankle inversion drop test and a lateral-cutting movement without wearing a brace and while wearing either the Element (with the subtalar locking system), a Functional ankle brace, or an ASO ankle brace. A 2-way repeated-measures analysis of variance (ANOVA) was used to assess brace differences (P?.05). All 3 braces significantly reduced total passive ankle frontal plane range of motion (ROM), with the Element ankle brace being the most effective. For the inversion drop the results showed significant reductions in peak ankle inversion angle and inversion ROM for all 3 braces compared to the no brace condition; and the peak inversion velocity was also reduced for the Element brace and the Functional brace. In the lateral-cutting movement, a small but significant reduction of the peak inversion angle in early foot contact and the peak eversion velocity at push-off were seen when wearing the Element and the Functional ankle braces compared to the no brace condition. Peak vertical ground reaction force was reduced for the Element brace compared to the ASO brace and the no brace conditions. These results suggest that the tested ankle braces, especially the Element brace, provided effective restriction of ankle inversion during both passive and dynamic movements.

  3. Inverse simulation as a tool for flight dynamics research—Principles and applications

    NASA Astrophysics Data System (ADS)

    Thomson, Douglas; Bradley, Roy

    2006-05-01

    The technique of inverse simulation is finding application in many and varied fields. As the name implies this technique is used to calculate the control action required to achieve a specified system response. The field of aircraft flight dynamics is particularly suited to this form of simulation as the question of what control actions must the pilot (or automatic flight control system) take for the aircraft to fly along a particular trajectory (a landing approach, for example) is often asked. This paper looks specifically at the application of inverse simulation in flight dynamics. The aim is not only to give an overview of the various techniques and applications but also to provide guidance to potential users of the technique on several of the physical and numerical features often observed in the results. An extensive review of the methodologies used within the family of inverse simulations is presented followed by a formal treatment of the theoretical development of inverse simulation as an established technique. A case study involving the inverse simulation of a helicopter flying a slalom manoeuvre is presented to demonstrate the application of inverse simulation in a flight dynamics analysis. An important feature of the use of inverse simulation is that it is necessary to define the output response required-in the case of flight dynamics the required flight path has to be modelled. Some of the methods used are documented, and their validity discussed. The paper also gives an insight into the types of problem which can be addressed by inverse simulation by detailing some of the many applications to which it has been put in the past. These include studies of rotorcraft handling qualities, performance and design, and pilot modelling as well as model validation. An important element of this paper is the formal, theoretical analysis of some of the numerical and physical features exhibited by inverse simulation which should aid potential users to interpret their

  4. Identification of dynamic characteristics of flexible rotors as dynamic inverse problem

    NASA Technical Reports Server (NTRS)

    Roisman, W. P.; Vajingortin, L. D.

    1991-01-01

    The problem of dynamic and balancing of flexible rotors were considered, which were set and solved as the problem of the identification of flexible rotor systems, which is the same as the inverse problem of the oscillation theory dealing with the task of the identifying the outside influences and system parameters on the basis of the known laws of motion. This approach to the problem allows the disclosure the picture of disbalances throughout the rotor-under-test (which traditional methods of flexible rotor balancing, based on natural oscillations, could not provide), and identify dynamic characteristics of the system, which correspond to a selected mathematical model. Eventually, various methods of balancing were developed depending on the special features of the machines as to their design, technology, and operation specifications. Also, theoretical and practical methods are given for the flexible rotor balancing at far from critical rotation frequencies, which does not necessarily require the knowledge forms of oscillation, dissipation, and elasticity and inertia characteristics, and to use testing masses.

  5. A reduced computational and geometrical framework for inverse problems in hemodynamics.

    PubMed

    Lassila, Toni; Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi

    2013-07-01

    The solution of inverse problems in cardiovascular mathematics is computationally expensive. In this paper, we apply a domain parametrization technique to reduce both the geometrical and computational complexities of the forward problem and replace the finite element solution of the incompressible Navier-Stokes equations by a computationally less-expensive reduced-basis approximation. This greatly reduces the cost of simulating the forward problem. We then consider the solution of inverse problems both in the deterministic sense, by solving a least-squares problem, and in the statistical sense, by using a Bayesian framework for quantifying uncertainty. Two inverse problems arising in hemodynamics modeling are considered: (i) a simplified fluid-structure interaction model problem in a portion of a stenosed artery for quantifying the risk of atherosclerosis by identifying the material parameters of the arterial wall on the basis of pressure measurements; (ii) a simplified femoral bypass graft model for robust shape design under uncertain residual flow in the main arterial branch identified from pressure measurements.

  6. Dynamics and computation in functional shifts

    NASA Astrophysics Data System (ADS)

    Namikawa, Jun; Hashimoto, Takashi

    2004-07-01

    We introduce a new type of shift dynamics as an extended model of symbolic dynamics, and investigate the characteristics of shift spaces from the viewpoints of both dynamics and computation. This shift dynamics is called a functional shift, which is defined by a set of bi-infinite sequences of some functions on a set of symbols. To analyse the complexity of functional shifts, we measure them in terms of topological entropy, and locate their languages in the Chomsky hierarchy. Through this study, we argue that considering functional shifts from the viewpoints of both dynamics and computation gives us opposite results about the complexity of systems. We also describe a new class of shift spaces whose languages are not recursively enumerable.

  7. Computational plasticity algorithm for particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2017-03-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  8. Computational fluid dynamics - The coming revolution

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1982-01-01

    The development of aerodynamic theory is traced from the days of Aristotle to the present, with the next stage in computational fluid dynamics dependent on superspeed computers for flow calculations. Additional attention is given to the history of numerical methods inherent in writing computer codes applicable to viscous and inviscid analyses for complex configurations. The advent of the superconducting Josephson junction is noted to place configurational demands on computer design to avoid limitations imposed by the speed of light, and a Japanese projection of a computer capable of several hundred billion operations/sec is mentioned. The NASA Numerical Aerodynamic Simulator is described, showing capabilities of a billion operations/sec with a memory of 240 million words using existing technology. Near-term advances in fluid dynamics are discussed.

  9. Inverse dynamics of adaptive structures used as space cranes

    NASA Technical Reports Server (NTRS)

    Das, S. K.; Utku, S.; Wada, B. K.

    1990-01-01

    As a precursor to the real-time control of fast moving adaptive structures used as space cranes, a formulation is given for the flexibility induced motion relative to the nominal motion (i.e., the motion that assumes no flexibility) and for obtaining the open loop time varying driving forces. An algorithm is proposed for the computation of the relative motion and driving forces. The governing equations are given in matrix form with explicit functional dependencies. A simulator is developed to implement the algorithm on a digital computer. In the formulations, the distributed mass of the crane is lumped by two schemes, vz., 'trapezoidal' lumping and 'Simpson's rule' lumping. The effects of the mass lumping schemes are shown by simulator runs.

  10. Experimental and computational studies of dynamic stall

    NASA Technical Reports Server (NTRS)

    Carr, L. W.; Platzer, M. F.; Chandrasekhara, M. S.; Ekaterinaris, J.

    1989-01-01

    A review of dynamic stall research in progress under the Navy-NASA Joint Institute of Aeronautics is presented. This effort, which includes both experimental and computational studies of the dynamic stall process, is directed toward better understanding and modeling of the fluid flow that occurs on helicopters and aircraft flying in conditions that induce dynamic stall. The results of research now in progress are presented, with discussion of the experimental program on compressibility effects on dynamic stall, related CFD studies of the stall process based on Navier-Stokes modeling, and viscous-inviscid flow modeling of the incipient stall process.

  11. Three-Dimensional Computational Fluid Dynamics

    SciTech Connect

    Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.

    1998-09-01

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  12. Non-negative constraint research of Tikhonov regularization inversion for dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Wang, Y. J.; Shen, J.; Liu, W.; Sun, X. M.; Dou, Z. H.

    2013-08-01

    In dynamic light scattering (DLS) technology, a non-negative constraint on the solution can improve the inversion accuracy of the particle size distribution (PSD). Different non-negative constraint methods have different effects on the inversion results. Combined with the Tikhonov regularization inversion method, the following non-negativity constraint methods: negative to zero (N-to-Z), multi-negative to zero (Multi-N-to-Z), Lin-projected gradient (LPG), oblique projected Landweber (OPL), projected sequential subspace optimization (PSESOP), interior point Newton (IPN), gradient projection conjugate gradient (GPCG) and trust-region method based on the interior reflective Newton (TR-IRN) method are studied in DLS inversion. In different inversion ranges and noise levels, autocorrelation functions of unimodal and bimodal particle distributions were inverted using different non-negativity constraint methods. From the inversion results, the characteristics of the various methods were obtained, which can be treated as a reference for the implementation of non-negative constraints in Tikhonov regularization inversion of DLS.

  13. Persistent inversion dynamics and wintertime PM10 air pollution in Alpine valleys

    NASA Astrophysics Data System (ADS)

    Largeron, Yann; Staquet, Chantal

    2016-06-01

    The present study investigates persistent inversions dynamics during a whole winter in Alpine valleys of the area of Grenoble (French Alps), and their relationship to PM10 air pollution episodes and synoptic scale meteorology. For this purpose, hourly time series from November to March of PM10 concentration measurements at the bottom of the valleys and of ground-based temperature data at different altitudes are used. A methodology is developed to quantify a simple estimate of the inversion strength from temperature profiles deduced from the ground-based observations. This estimate is shown to be equivalent to the boundary layer heat deficit. A criterion based on this estimate is proposed to identify persistent (more than 3 days) inversions. Persistent inversions are found to occur from November to February and span 35% of the time. It is shown that they are closely related to PM10 pollution episodes, the PM10 concentration increasing with the boundary layer stability as the inversion develops. Polluted episodes are primarily driven by persistent inversions and consequently, pollution is of fully local origin from November to February. In March local dynamics become less important and long-range transport can dominate. Persistent inversions occur systematically during a high-pressure regime, which first triggers a synoptic scale elevated inversion due to the advection of warm air masses in the mid-troposphere. In valleys, the sheltered boundary layer becomes decoupled from the free troposphere, which allows a ground-based inversion to intensify in the following days. An inversion layer of quasi-constant temperature gradient, greater than 5 K km-1, then forms up to an altitude of about 1600 m, close to the average elevation of the summits. If the episode is sufficiently long, a stagnation stage is reached during which daytime insolation produces a shallow convective surface layer which does not destroy the persistent inversion. The inversion break-up occurs rapidly

  14. Adaptive dynamic inversion robust control for BTT missile based on wavelet neural network

    NASA Astrophysics Data System (ADS)

    Li, Chuanfeng; Wang, Yongji; Deng, Zhixiang; Wu, Hao

    2009-10-01

    A new nonlinear control strategy incorporated the dynamic inversion method with wavelet neural networks is presented for the nonlinear coupling system of Bank-to-Turn(BTT) missile in reentry phase. The basic control law is designed by using the dynamic inversion feedback linearization method, and the online learning wavelet neural network is used to compensate the inversion error due to aerodynamic parameter errors, modeling imprecise and external disturbance in view of the time-frequency localization properties of wavelet transform. Weights adjusting laws are derived according to Lyapunov stability theory, which can guarantee the boundedness of all signals in the whole system. Furthermore, robust stability of the closed-loop system under this tracking law is proved. Finally, the six degree-of-freedom(6DOF) simulation results have shown that the attitude angles can track the anticipant command precisely under the circumstances of existing external disturbance and in the presence of parameter uncertainty. It means that the dependence on model by dynamic inversion method is reduced and the robustness of control system is enhanced by using wavelet neural network(WNN) to reconstruct inversion error on-line.

  15. Using recursion to compute the inverse of the genomic relationship matrix.

    PubMed

    Misztal, I; Legarra, A; Aguilar, I

    2014-01-01

    Computing the inverse of the genomic relationship matrix using recursion was investigated. A traditional algorithm to invert the numerator relationship matrix is based on the observation that the conditional expectation for an additive effect of 1 animal given the effects of all other animals depends on the effects of its sire and dam only, each with a coefficient of 0.5. With genomic relationships, such an expectation depends on all other genotyped animals, and the coefficients do not have any set value. For each animal, the coefficients plus the conditional variance can be called a genomic recursion. If such recursions are known, the mixed model equations can be solved without explicitly creating the inverse of the genomic relationship matrix. Several algorithms were developed to create genomic recursions. In an algorithm with sequential updates, genomic recursions are created animal by animal. That algorithm can also be used to update a known inverse of a genomic relationship matrix for additional genotypes. In an algorithm with forward updates, a newly computed recursion is immediately applied to update recursions for remaining animals. The computing costs for both algorithms depend on the sparsity pattern of the genomic recursions, but are lower or equal than for regular inversion. An algorithm for proven and young animals assumes that the genomic recursions for young animals contain coefficients only for proven animals. Such an algorithm generates exact genomic EBV in genomic BLUP and is an approximation in single-step genomic BLUP. That algorithm has a cubic cost for the number of proven animals and a linear cost for the number of young animals. The genomic recursions can provide new insight into genomic evaluation and possibly reduce costs of genetic predictions with extremely large numbers of genotypes.

  16. Four ways to compute the inverse of the complete elliptic integral of the first kind

    NASA Astrophysics Data System (ADS)

    Boyd, John P.

    2015-11-01

    The complete elliptic integral of the first kind arises in many applications. This article furnishes four different ways to compute the inverse of the elliptic integral. One motive for this study is simply that the author needed to compute the inverse integral for an application. Another is to develop a case study comparing different options for solving transcendental equations like those in the author's book (Boyd, 2014). A third motive is to develop analytical approximations, more useful to theorists than mere numbers. A fourth motive is to provide robust "black box" software for computing this function. The first solution strategy is "polynomialization" which replaces the elliptic integral by an exponentially convergent series of Chebyshev polynomials. The transcendental equation becomes a polynomial equation which is easily solved by finding the eigenvalues of the Chebyshev companion matrix. (The numerically ill-conditioned step of converting from the Chebyshev to monomial basis is never necessary). The second approximation is a regular perturbation series, accurate where the modulus is small. The third is a power-and-exponential series that converges over the entire range parameter range, albeit only sub-exponentially in the limit of zero modulus. Lastly, Newton's iteration is promoted from a local iteration to a global method by a Never-Failing Newton's Iteration (NFNI) in the form of the exponential of the ratio of a linear function divided by another linear polynomial. A short Matlab implementation is provided, easily translatable into other languages. The Matlab/Newton code is recommended for numerical purposes. The other methods are presented because (i) all are broadly applicable strategies useful for other rootfinding and inversion problems (ii) series and substitutions are often much more useful to theorists than numerical software and (iii) the Never-Failing Newton's Iteration was discovered only after a great deal of messing about with power series

  17. Ultrasonic computed tomography based on full-waveform inversion for bone quantitative imaging

    NASA Astrophysics Data System (ADS)

    Bernard, Simon; Monteiller, Vadim; Komatitsch, Dimitri; Lasaygues, Philippe

    2017-09-01

    We introduce an ultrasonic quantitative imaging method for long bones based on full-waveform inversion. The cost function is defined as the difference in the L 2-norm sense between observed data and synthetic results at a given iteration of the iterative inversion process. For simplicity, and in order to reduce the computational cost, we use a two-dimensional acoustic approximation. The inverse problem is solved iteratively based on a quasi-Newton technique called the Limited-memory Broyden-Fletcher-Goldfarb-Shanno method. We show how the technique can be made to work fine for benchmark models consisting of a single cylinder, and then five cylinders, the latter case including significant multiple diffraction effects. We then show pictures obtained for a tibia-fibula bone pair model. Convergence is fast, typically in 15 to 30 iterations in practice in each frequency band used. We discuss the so-called ‘cycle skipping’ effect that can occur in such full waveform inversion techniques and make them remain trapped in a local minimum of the cost function. We illustrate strategies that can be used in practice to avoid this. Future work should include viscoelastic materials rather than acoustic, and real data instead of synthetic data.

  18. Micro-seismic waveform matching inversion based on gravitational search algorithm and parallel computation

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Xing, H. L.

    2016-12-01

    Micro-seismic events induced by water injection, mining activity or oil/gas extraction are quite informative, the interpretation of which can be applied for the reconstruction of underground stress and monitoring of hydraulic fracturing progress in oil/gas reservoirs. The source characterises and locations are crucial parameters that required for these purposes, which can be obtained through the waveform matching inversion (WMI) method. Therefore it is imperative to develop a WMI algorithm with high accuracy and convergence speed. Heuristic algorithm, as a category of nonlinear method, possesses a very high convergence speed and good capacity to overcome local minimal values, and has been well applied for many areas (e.g. image processing, artificial intelligence). However, its effectiveness for micro-seismic WMI is still poorly investigated; very few literatures exits that addressing this subject. In this research an advanced heuristic algorithm, gravitational search algorithm (GSA) , is proposed to estimate the focal mechanism (angle of strike, dip and rake) and source locations in three dimension. Unlike traditional inversion methods, the heuristic algorithm inversion does not require the approximation of green function. The method directly interacts with a CPU parallelized finite difference forward modelling engine, and updating the model parameters under GSA criterions. The effectiveness of this method is tested with synthetic data form a multi-layered elastic model; the results indicate GSA can be well applied on WMI and has its unique advantages. Keywords: Micro-seismicity, Waveform matching inversion, gravitational search algorithm, parallel computation

  19. Dynamic computer-generated nonlinear-optical holograms

    NASA Astrophysics Data System (ADS)

    Liu, Haigang; Li, Jun; Fang, Xiangling; Zhao, Xiaohui; Zheng, Yuanlin; Chen, Xianfeng

    2017-08-01

    We propose and experimentally demonstrate dynamic nonlinear optical holograms by introducing the concept of computer-generated holograms for second-harmonic generation of a structured fundamental wave with a specially designed wave front. The generation of Laguerre-Gaussian second-harmonic beams is investigated in our experiment. Such a method, which only dynamically controls the wave front of the fundamental wave by a spatial light modulator, does not need domain inversion in nonlinear crystals and hence is a more flexible way to achieve the off-axis nonlinear second-harmonic beams. It can also be adopted in other schemes and has potential applications in nonlinear frequency conversion, optical signal processing, and real-time hologram, etc.

  20. Multilevel model reduction for uncertainty quantification in computational structural dynamics

    NASA Astrophysics Data System (ADS)

    Ezvan, O.; Batou, A.; Soize, C.; Gagliardini, L.

    2017-02-01

    This work deals with an extension of the reducedorder models (ROMs) that are classically constructed by modal analysis in linear structural dynamics for which the computational models are assumed to be uncertain. It is based on a multilevel projection strategy consisting in introducing three reduced-order bases that are obtained by using a spatial filtering methodology of local displacements. This filtering involves global shape functions for the kinetic energy. The proposed multilevel stochastic ROM is constructed by using the nonparametric probabilistic approach of uncertainties. It allows for affecting a specific level of uncertainties to each type of displacements associated with the corresponding vibration regime. The proposed methodology is applied to the computational model of an automobile structure, for which the multilevel stochastic ROM is identified with respect to experimental measurements. This identification is performed by solving a statistical inverse problem.

  1. Parallelization of implicit finite difference schemes in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel

    1990-01-01

    Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.

  2. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    SciTech Connect

    Rabitz, H.

    1991-01-01

    This research is concerned with the development and application of advanced analysis tools for studying dynamics, kinetics, and spectroscopic phenomena from a forward and inverse perspective. In particular, the forward problem is concerned with understanding how detailed interatomic potential information maps onto a hierarchy of chemical dynamic and kinetic observables. The inverse aspects of the research are concerned with exactly the reverse of this process, whereby we desire to understand how particular measurements project back to yield information regarding the potential surface. Thus, in the latter domain, our research is concerned with the development of theoretically based tools ultimately aimed at applications to the inversion of quality laboratory data for the extraction of microscopic potential information.

  3. Control of a high beta maneuvering reentry vehicle using dynamic inversion.

    SciTech Connect

    Watts, Alfred Chapman

    2005-05-01

    The design of flight control systems for high performance maneuvering reentry vehicles presents a significant challenge to the control systems designer. These vehicles typically have a much higher ballistic coefficient than crewed vehicles like as the Space Shuttle or proposed crew return vehicles such as the X-38. Moreover, the missions of high performance vehicles usually require a steeper reentry flight path angle, followed by a pull-out into level flight. These vehicles then must transit the entire atmosphere and robustly perform the maneuvers required for the mission. The vehicles must also be flown with small static margins in order to perform the required maneuvers, which can result in highly nonlinear aerodynamic characteristics that frequently transition from being aerodynamically stable to unstable as angle of attack increases. The control system design technique of dynamic inversion has been applied successfully to both high performance aircraft and low beta reentry vehicles. The objective of this study was to explore the application of this technique to high performance maneuvering reentry vehicles, including the basic derivation of the dynamic inversion technique, followed by the extension of that technique to the use of tabular trim aerodynamic models in the controller. The dynamic inversion equations are developed for high performance vehicles and augmented to allow the selection of a desired response for the control system. A six degree of freedom simulation is used to evaluate the performance of the dynamic inversion approach, and results for both nominal and off nominal aerodynamic characteristics are presented.

  4. Identification of dynamic stiffness matrices of elastomeric joints using direct and inverse methods

    NASA Astrophysics Data System (ADS)

    Noll, Scott; Dreyer, Jason T.; Singh, Rajendra

    2013-08-01

    New experiments are designed to permit direct comparison between direct and inverse identification methods of the dynamic stiffness matrices of elastomeric joints, including non-diagonal terms. The joints are constructed with combinations of inclined elastomeric cylinders to control non-diagonal terms in the stiffness matrix. The inverse experiment consists of an elastic metal beam end-supported by elastomeric joints coupling the in-plane transverse and longitudinal beam motion. A prior method is extended to identify the joint dynamic stiffness matrices of dimension 3 from limited modal measurements of the beam. The dynamic stiffness and loss factors of the elastomeric cylinders are directly measured in a commercial elastomer test machine in shear, compression, and inclined configurations and a coordinate transformation is used to estimate the kinematic non-diagonal stiffness terms. Agreement is found for both dynamic stiffness and loss factors between the direct and inverse methods at small displacements. Further, the identified joint properties are employed in a model that successfully predicts the modal parameters and accelerance spectra of the inverse experiment. This article provides valuable insight on the difficulties encountered when comparing system and elastomeric component test results.

  5. Dynamic Associations in Nonlinear Computing Arrays

    NASA Astrophysics Data System (ADS)

    Huberman, B. A.; Hogg, T.

    1985-10-01

    We experimentally show that nonlinear parallel arrays can be made to compute with attractors. This leads to fast adaptive behavior in which dynamical associations can be made between different inputs which initially produce sharply distinct outputs. We first define a set of simple local procedures which allow a general computing structure to change its state in time so as to produce classical Pavlovian conditioning. We then examine the dynamics of coalescence and dissociation of attractors with a number of quantitative experiments. We also show how such arrays exhibit generalization and differentiation of inputs in their behavior.

  6. Fast Parallel Computation Of Multibody Dynamics

    NASA Technical Reports Server (NTRS)

    Fijany, Amir; Kwan, Gregory L.; Bagherzadeh, Nader

    1996-01-01

    Constraint-force algorithm fast, efficient, parallel-computation algorithm for solving forward dynamics problem of multibody system like robot arm or vehicle. Solves problem in minimum time proportional to log(N) by use of optimal number of processors proportional to N, where N is number of dynamical degrees of freedom: in this sense, constraint-force algorithm both time-optimal and processor-optimal parallel-processing algorithm.

  7. User manual for INVICE 0.1-beta : a computer code for inverse analysis of isentropic compression experiments.

    SciTech Connect

    Davis, Jean-Paul

    2005-03-01

    INVICE (INVerse analysis of Isentropic Compression Experiments) is a FORTRAN computer code that implements the inverse finite-difference method to analyze velocity data from isentropic compression experiments. This report gives a brief description of the methods used and the options available in the first beta version of the code, as well as instructions for using the code.

  8. Dynamic data-driven inversion for terascale simulations real-time identification of airborne contaminants.

    SciTech Connect

    Ghattas, Omar; Waanders, Bart Van Bloemen; Hill, Judith C.; Akcelik, Volkan; Draganescu, Andrei I.; Biros, George

    2005-05-01

    In contrast to traditional terascale simulations that have known, fixed data inputs, dynamic data-driven (DDD) applications are characterized by unknown data and informed by dynamic observations. DDD simulations give rise to inverse problems of determining unknown data from sparse observations. The main difficulty is that the optimality system is a boundary value problem in 4D space-time, even though the forward simulation is an initial value problem. We construct special-purpose parallel multigrid algorithms that exploit the spectral structure of the inverse operator. Experiments on problems of localizing airborne contaminant release from sparse observations in a regional atmospheric transport model demonstrate that 17-million-parameter inversion can be effected at a cost of just 18 forward simulations with high parallel efficiency. On 1024 Alphaserver EV68 processors, the turnaround time is just 29 minutes. Moreover, inverse problems with 135 million parameters - corresponding to 139 billion total space-time unknowns - are solved in less than 5 hours on the same number of processors. These results suggest that ultra-high resolution data-driven inversion can be carried out sufficiently rapidly for simulation-based 'real-time' hazard assessment.

  9. Light-Directed Dynamic Chirality Inversion in Functional Self-Organized Helical Superstructures.

    PubMed

    Bisoyi, Hari Krishna; Li, Quan

    2016-02-24

    Helical superstructures are widely observed in nature, in synthetic polymers, and in supramolecular assemblies. Controlling the chirality (the handedness) of dynamic helical superstructures of molecular and macromolecular systems by external stimuli is a challenging task, but is of great fundamental significance with appealing morphology-dependent applications. Light-driven chirality inversion in self-organized helical superstructures (i.e. cholesteric, chiral nematic liquid crystals) is currently in the limelight because inversion of the handedness alters the chirality of the circularly polarized light that they selectively reflect, which has wide potential for application. Here we discuss the recent developments toward inversion of the handedness of cholesteric liquid crystals enabled by photoisomerizable chiral molecular switches or motors. Different classes of chiral photoresponsive dopants (guests) capable of conferring light-driven reversible chirality inversion of helical superstructures fabricated from different nematic hosts are discussed. Rational molecular designs of chiral molecular switches toward endowing handedness inversion to the induced helical superstructures of cholesteric liquid crystals are highlighted. This Review is concluded by throwing light on the challenges and opportunities in this emerging frontier, and it is expected to provide useful guidelines toward the development of self-organized soft materials with stimuli-directed chirality inversion capability and multifunctional host-guest systems.

  10. Inverse optimal sliding mode control of spacecraft with coupled translation and attitude dynamics

    NASA Astrophysics Data System (ADS)

    Pukdeboon, Chutiphon

    2015-10-01

    This paper proposes two robust inverse optimal control schemes for spacecraft with coupled translation and attitude dynamics in the presence of external disturbances. For the first controller, an inverse optimal control law is designed based on Sontag-type formula and the control Lyapunov function. Then a robust inverse optimal position and attitude controller is designed by using a new second-order integral sliding mode control method to combine a sliding mode control with the derived inverse optimal control. The global asymptotic stability of the proposed control law is proved by using the second method of Lyapunov. For the other control law, a nonlinear H∞ inverse optimal controller for spacecraft position and attitude tracking motion is developed to achieve the design conditions of controller gains that the control law becomes suboptimal H∞ state feedback control. The ultimate boundedness of system state is proved by using the Lyapunov stability theory. Both developed robust inverse optimal controllers can minimise a performance index and ensure the stability of the closed-loop system and external disturbance attenuation. An example of position and attitude tracking manoeuvres is presented and simulation results are included to show the performance of the proposed controllers.

  11. Real-time neural network inversion on the SRC-6e reconfigurable computer.

    PubMed

    Duren, Russell W; Marks, Robert J; Reynolds, Paul D; Trumbo, Matthew L

    2007-05-01

    Implementation of real-time neural network inversion on the SRC-6e, a computer that uses multiple field-programmable gate arrays (FPGAs) as reconfigurable computing elements, is examined using a sonar application as a specific case study. A feedforward multilayer perceptron neural network is used to estimate the performance of the sonar system (Jung et al., 2001). A particle swarm algorithm uses the trained network to perform a search for the control parameters required to optimize the output performance of the sonar system in the presence of imposed environmental constraints (Fox et al., 2002). The particle swarm optimization (PSO) requires repetitive queries of the neural network. Alternatives for implementing neural networks and particle swarm algorithms in reconfigurable hardware are contrasted. The final implementation provides nearly two orders of magnitude of speed increase over a state-of-the-art personal computer (PC), providing a real-time solution.

  12. Approximate Bayesian computation for machine learning, inverse problems and big data

    NASA Astrophysics Data System (ADS)

    Mohammad-Djafari, Ali

    2017-06-01

    This paper summarizes my tutorial talk in MaxEnt 2016 workshop. Starting from the basics of the Bayesian approach and simple example of low dimensional parameter estimation where almost all the computations can be done easily, we go very fast to high dimensional case. In those real world cases, even for the sample case of linear model with Gaussian prior, where the posterior law is also Gaussian, the cost of the computation of the posterior covariance becomes important and needs approximate and fast algorithms. Different approximation methods for model comparison and model selection in machine learning problems are presented in summary. Among the existing methods, we mention Laplace approximation, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Variational Bayesian Approximation (VBA) Methods. Finally, through two examples of inverse problems in imaging systems: X ray and Diffraction wave Computed Tomography (CT), we show how to handle the real great dimensional problems.

  13. HL-20 computational fluid dynamics analysis

    NASA Astrophysics Data System (ADS)

    Weilmuenster, K. James; Greene, Francis A.

    1993-09-01

    The essential elements of a computational fluid dynamics analysis of the HL-20/personnel launch system aerothermal environment at hypersonic speeds including surface definition, grid generation, solution techniques, and visual representation of results are presented. Examples of solution technique validation through comparison with data from ground-based facilities are presented, along with results from computations at flight conditions. Computations at flight points indicate that real-gas effects have little or no effect on vehicle aerodynamics and, at these conditions, results from approximate techniques for determining surface heating are comparable with those obtained from Navier-Stokes solutions.

  14. HL-20 computational fluid dynamics analysis

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Greene, Francis A.

    1993-01-01

    The essential elements of a computational fluid dynamics analysis of the HL-20/personnel launch system aerothermal environment at hypersonic speeds including surface definition, grid generation, solution techniques, and visual representation of results are presented. Examples of solution technique validation through comparison with data from ground-based facilities are presented, along with results from computations at flight conditions. Computations at flight points indicate that real-gas effects have little or no effect on vehicle aerodynamics and, at these conditions, results from approximate techniques for determining surface heating are comparable with those obtained from Navier-Stokes solutions.

  15. Visualization of unsteady computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1994-01-01

    A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.

  16. Graphics supercomputer for computational fluid dynamics research

    NASA Astrophysics Data System (ADS)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  17. Computational fluid dynamics and supercomputers, chapter 6

    NASA Astrophysics Data System (ADS)

    Gentzsch, W.

    1988-03-01

    It is important to optimally adapt codes and algorithms to the vector or parallel computer in use. In addition to faster and larger supercomputers, users must be much better trained than for (scalar) general purpose computers. Details on restructuring typical numerical algorithms to achieve superior performance on vector computers. The focus, of course, is on Computational Fluid Dynamics. During the last two decades CFD gained an important position together with experiments in wind tunnels and analytical methods. The main objective of CFD is to simulate dynamic flow fields through the numerical solution of the governing equations, e.g., the Navier-Stokes equations, using high-speed computers. The simulation of 2-D inviscid and viscous flows on vector computers does not represent any difficulties with respect to memory requirements or computation time. In 3-D, however, one has to compute some 20 to 30 variables per mesh point in a 3-D field per time-step or iteration such as the velocity components, density, pressure, enthalpy, temperature, concentrations, dissipative fluxes, local time steps, geometry coefficients, dummy arrays, etc. Computations in the case of 3-D are therefore restricted to fairly coarse meshes as well as to solutions which are often not fully converged solutions. The large amount of CPU time involved and the fact that the data cannot be contained in central memory are the main reasons for the long elapsed times for CFD applications. In these cases, the mapping of the problem onto the architecture of the machine and in particular onto special organizations of the memory must be fully considered to take full advantage of the vector computer.

  18. Computational fluid dynamics in oil burner design

    SciTech Connect

    Butcher, T.A.

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  19. Final Report Computational Analysis of Dynamical Systems

    SciTech Connect

    Guckenheimer, John

    2012-05-08

    This is the final report for DOE Grant DE-FG02-93ER25164, initiated in 1993. This grant supported research of John Guckenheimer on computational analysis of dynamical systems. During that period, seventeen individuals received PhD degrees under the supervision of Guckenheimer and over fifty publications related to the grant were produced. This document contains copies of these publications.

  20. Fortnightly tidal asymmetry inversions and perspectives on sediment dynamics in a macrotidal estuary (Charente, France)

    NASA Astrophysics Data System (ADS)

    Toublanc, F.; Brenon, I.; Coulombier, T.; Le Moine, O.

    2015-02-01

    Tidal asymmetry is a phenomenon that characterises estuarine hydrodynamics and has a strong impact on sediment dynamics. Extensive research has been dedicated to studying tidal dynamics in semidiurnal macrotidal estuaries, highlighting several general principles. The ratio of flood to ebb peak velocities and differences in ebb and flood durations are often used to characterise the asymmetry encountered in estuaries. In the Charente estuary (French Atlantic coast), water surface elevation data obtained using an ADCP (Acoustic Doppler Current Profiler) and a tide gauge show that the duration asymmetry undergoes inversions during the spring-neap tidal cycle. A two-dimensional hydrodynamics model is used to investigate the connection between spring-neap inversions of the tidal asymmetry and the harmonic composition of the tide. Different constituents (M2, S2, M4 and MS4) are considered at the open boundary. The results show that M4 and MS4 play a key role in the occurrence of these inversions. The influence of the morphology is also discussed and modifications of the bathymetry are performed to evaluate its impact. In the Charente estuary, the existence of both externally and internally generated overtides thus results in a spatially and fortnightly variable tidal asymmetry. The modelled barotropic tidal currents are used to estimate the possible impact on sediment dynamics. The results suggest that asymmetry inversions tend to create sediment accumulation in an intermediate zone between the river mouth and Rochefort, located approximately 20 km upstream.

  1. Stability Result For Dynamic Inversion Devised to Control Large Flexible Aircraft

    NASA Technical Reports Server (NTRS)

    Gregory, Irene M.

    2001-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper is an initial attempt to establish global stability results for dynamic inversion methodology as applied to a large, flexible aircraft. This work builds on a previous result for rigid fighter aircraft and adds a new level of complexity that is the flexible aircraft dynamics, which cannot be ignored even in the most basic flight control. The results arise from observations of the control laws designed for a new generation of the High-Speed Civil Transport aircraft.

  2. Grain Boundary Structures and Collective Dynamics of Inversion Domains in Binary Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Taha, Doaa; Mkhonta, S. K.; Elder, K. R.; Huang, Zhi-Feng

    2017-06-01

    Understanding and controlling the properties and dynamics of topological defects is a lasting challenge in the study of two-dimensional materials, and is crucial to achieve high-quality films required for technological applications. Here grain boundary structures, energies, and dynamics of binary two-dimensional materials are investigated through the development of a phase field crystal model that is parametrized to match the ordering, symmetry, energy, and length scales of hexagonal boron nitride. Our studies reveal some new dislocation core structures for various symmetrically and asymmetrically tilted grain boundaries, in addition to those obtained in previous experiments and first-principles calculations. We also identify a defect-mediated growth dynamics for inversion domains governed by the collective atomic migration and defect core transformation at grain boundaries and junctions, a process that is related to inversion symmetry breaking in binary lattice.

  3. Optimal dynamic remapping of parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Reynolds, Paul F., Jr.

    1987-01-01

    A large class of computations are characterized by a sequence of phases, with phase changes occurring unpredictably. The decision problem was considered regarding the remapping of workload to processors in a parallel computation when the utility of remapping and the future behavior of the workload is uncertain, and phases exhibit stable execution requirements during a given phase, but requirements may change radically between phases. For these problems a workload assignment generated for one phase may hinder performance during the next phase. This problem is treated formally for a probabilistic model of computation with at most two phases. The fundamental problem of balancing the expected remapping performance gain against the delay cost was addressed. Stochastic dynamic programming is used to show that the remapping decision policy minimizing the expected running time of the computation has an extremely simple structure. Because the gain may not be predictable, the performance of a heuristic policy that does not require estimnation of the gain is examined. The heuristic method's feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiprocessor. The results suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change. The results also suggest that this heuristic is applicable to computations with more than two phases.

  4. Photonic Design: From Fundamental Solar Cell Physics to Computational Inverse Design

    NASA Astrophysics Data System (ADS)

    Miller, Owen Dennis

    Photonic innovation is becoming ever more important in the modern world. Optical systems are dominating shorter and shorter communications distances, LED's are rapidly emerging for a variety of applications, and solar cells show potential to be a mainstream technology in the energy space. The need for novel, energy-efficient photonic and optoelectronic devices will only increase. This work unites fundamental physics and a novel computational inverse design approach towards such innovation. The first half of the dissertation is devoted to the physics of high-efficiency solar cells. As solar cells approach fundamental efficiency limits, their internal physics transforms. Photonic considerations, instead of electronic ones, are the key to reaching the highest voltages and efficiencies. Proper photon management led to Alta Device's recent dramatic increase of the solar cell efficiency record to 28.3%. Moreover, approaching the Shockley-Queisser limit for any solar cell technology will require light extraction to become a part of all future designs. The second half of the dissertation introduces inverse design as a new computational paradigm in photonics. An assortment of techniques (FDTD, FEM, etc.) have enabled quick and accurate simulation of the "forward problem" of finding fields for a given geometry. However, scientists and engineers are typically more interested in the inverse problem: for a desired functionality, what geometry is needed? Answering this question breaks from the emphasis on the forward problem and forges a new path in computational photonics. The framework of shape calculus enables one to quickly find superior, non-intuitive designs. Novel designs for optical cloaking and sub-wavelength solar cell applications are presented.

  5. Inverse gas chromatography. V - Computer simulation of diffusion processes on the column

    NASA Technical Reports Server (NTRS)

    Hattam, Paul; Munk, Petr

    1988-01-01

    The elution behavior of low molecular weight probes on inverse gas chromatography (IGC) columns is simulated using a computer. The IGC model is based on a polymer stationary phase of uniform thickness with a nonnegligible resitance to probe penetration. Three characteristic numbers are found to determine the whole process: Z(p) characterizing the distribution of the probe between phases, Z(f) describing the diffusion in the polymer phase, and Z(g) related to diffusion in the gaseous phase. For situations when Z(p)/Z(f) is less than 2, the standard evaluation procedures are virtually useless. The actual behavior of such systems is described.

  6. On computational experiments in some inverse problems of heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Bilchenko, G. G.; Bilchenko, N. G.

    2016-11-01

    The results of mathematical modeling of effective heat and mass transfer on hypersonic aircraft permeable surfaces are considered. The physic-chemical processes (the dissociation and the ionization) in laminar boundary layer of compressible gas are appreciated. Some algorithms of control restoration are suggested for the interpolation and approximation statements of heat and mass transfer inverse problems. The differences between the methods applied for the problem solutions search for these statements are discussed. Both the algorithms are realized as programs. Many computational experiments were accomplished with the use of these programs. The parameters of boundary layer obtained by means of the A.A.Dorodnicyn's generalized integral relations method from solving the direct problems have been used to obtain the inverse problems solutions. Two types of blowing laws restoration for the inverse problem in interpolation statement are presented as the examples. The influence of the temperature factor on the blowing restoration is investigated. The different character of sensitivity of controllable parameters (the local heat flow and local tangent friction) respectively to step (discrete) changing of control (the blowing) and the switching point position is studied.

  7. Fast and Scalable Computation of the Forward and Inverse Discrete Periodic Radon Transform.

    PubMed

    Carranza, Cesar; Llamocca, Daniel; Pattichis, Marios

    2016-01-01

    The discrete periodic radon transform (DPRT) has extensively been used in applications that involve image reconstructions from projections. Beyond classic applications, the DPRT can also be used to compute fast convolutions that avoids the use of floating-point arithmetic associated with the use of the fast Fourier transform. Unfortunately, the use of the DPRT has been limited by the need to compute a large number of additions and the need for a large number of memory accesses. This paper introduces a fast and scalable approach for computing the forward and inverse DPRT that is based on the use of: a parallel array of fixed-point adder trees; circular shift registers to remove the need for accessing external memory components when selecting the input data for the adder trees; an image block-based approach to DPRT computation that can fit the proposed architecture to available resources; and fast transpositions that are computed in one or a few clock cycles that do not depend on the size of the input image. As a result, for an N × N image (N prime), the proposed approach can compute up to N(2) additions per clock cycle. Compared with the previous approaches, the scalable approach provides the fastest known implementations for different amounts of computational resources. For example, for a 251×251 image, for approximately 25% fewer flip-flops than required for a systolic implementation, we have that the scalable DPRT is computed 36 times faster. For the fastest case, we introduce optimized just 2N + ⌈log(2) N⌉ + 1 and 2N + 3 ⌈log(2) N⌉ + B + 2 cycles, architectures that can compute the DPRT and its inverse in respectively, where B is the number of bits used to represent each input pixel. On the other hand, the scalable DPRT approach requires more 1-b additions than for the systolic implementation and provides a tradeoff between speed and additional 1-b additions. All of the proposed DPRT architectures were implemented in VHSIC Hardware Description Language

  8. Tactical missile autopilots: Gain-scheduled H(infinity) control and dynamic inversion

    NASA Astrophysics Data System (ADS)

    Schumacher, Corey Joseph

    Autopilot design for a bank-to-turn (BTT) tactical missile is inherently nonlinear, with highly coupled dynamics. These difficulties create a need for the use of multivariable and nonlinear control techniques. This dissertation studies the application of two distinct modern control methods, {cal H}sb{infty} control with {cal D}-implementation gain-scheduling and nonlinear dynamic inversion using the assumption of a two-time-scale separation, for the autopilot design of a BTT air-to-air missile. The first portion of the work presents an analysis of the stability of the closed-loop missile system with a dynamic inversion controller to verify the validity of the time-scale separation assumption. It is proven under certain reasonable assumptions that the closed-loop system can be made exponentially stable about commanded constant state values by choosing a sufficiently large inner-loop frequency. The method used in the proof allows the calculation of a sufficiently large inner loop frequency to guarantee stability with a substantial domain of attraction which is used to show command following. This result is applied to the complete longitudinal/lateral missile dynamics. The proof is derived using two Lyapunov functions that take advantage of the two-time-scale structure the dynamic inversion controller imposes on the system dynamics. The dissertation also contains a generalization of the stability theorem to a general nonlinear system of a certain form, stating that the dynamic inversion controller using the two-time-scale separation can exponentially stabilize the closed-loop system about the commanded values. The second portion of the work examines the design of {cal H}sb{infty} and dynamic inversion controllers for the complete missile system. The performance of the two controllers is compared for nominal performance, robustness to aerodynamic uncertainty, and sensitivity to measurement noise. The performance comparison is carried out on a six degree

  9. Computationally Efficient Multiconfigurational Reactive Molecular Dynamics.

    PubMed

    Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A

    2012-12-11

    It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as "multistate". These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations.

  10. Computationally Efficient Multiconfigurational Reactive Molecular Dynamics

    PubMed Central

    Yamashita, Takefumi; Peng, Yuxing; Knight, Chris; Voth, Gregory A.

    2012-01-01

    It is a computationally demanding task to explicitly simulate the electronic degrees of freedom in a system to observe the chemical transformations of interest, while at the same time sampling the time and length scales required to converge statistical properties and thus reduce artifacts due to initial conditions, finite-size effects, and limited sampling. One solution that significantly reduces the computational expense consists of molecular models in which effective interactions between particles govern the dynamics of the system. If the interaction potentials in these models are developed to reproduce calculated properties from electronic structure calculations and/or ab initio molecular dynamics simulations, then one can calculate accurate properties at a fraction of the computational cost. Multiconfigurational algorithms model the system as a linear combination of several chemical bonding topologies to simulate chemical reactions, also sometimes referred to as “multistate”. These algorithms typically utilize energy and force calculations already found in popular molecular dynamics software packages, thus facilitating their implementation without significant changes to the structure of the code. However, the evaluation of energies and forces for several bonding topologies per simulation step can lead to poor computational efficiency if redundancy is not efficiently removed, particularly with respect to the calculation of long-ranged Coulombic interactions. This paper presents accurate approximations (effective long-range interaction and resulting hybrid methods) and multiple-program parallelization strategies for the efficient calculation of electrostatic interactions in reactive molecular simulations. PMID:25100924

  11. Multiscale Bayesian inversion of binary permeability fields from static and dynamic observations

    NASA Astrophysics Data System (ADS)

    Ray, J.; McKenna, S. A.; Marzouk, Y. M.; van Bloemenwaanders, B.

    2009-12-01

    Binary fields are a useful fine-scale representation of heterogeneous porous media. Averaged properties of these fields can characterize flow through porous media at the macroscale. These averaged properties are not easily measured, however, and direct upscaling poses a challenge. Upscaled properties can instead be inferred from indirect measurements at the coarse scale, using appropriate link functions or subgrid models to connect the disparate scales and to generate realizations of fine scale fields conditioned on all available data. Truncated Gaussian random fields provide a flexible geometrical model for binary media of inclusions embedded in a matrix. We utilize a recently developed subgrid model based on excursion sets of Gaussian random fields for upscaling binary permeability fields to a coarse (block) scale effective permeability. This subgrid model requires an estimate of the proportion of high permeability inclusions and associated parameters at the block scale. Computations of the upscaled properties are inexpensive and provide a robust link between fine and block scales. We employ the subgrid model in a multiscale Bayesian inversion process, thus conditioning the proportion and geometry of the latent binary field on coarse-scale observations of permeability and on tracer recovery data. In this inversion process, the variogram of the proportion field is assumed known. The proportion field is efficiently represented via its Karhunen-Loève expansion. From limited and noisy observations of static and dynamic data, we infer the posterior distribution of the coefficients of the Karhunen-Loève modes and associated geometrical parameters of the binary field. We then generate posterior realizations of the fine scale binary media and simulate tracer recovery with these fields; the resulting predictive distributions are compared to a predetermined “ground truth” response. Additionally, we evaluate the sensitivity of the posterior distribution to different

  12. A comparison of direct and iterative finite element inversion techniques in dynamic elastography.

    PubMed

    Honarvar, M; Rohling, R; Salcudean, S E

    2016-04-21

    As part of tissue elasticity imaging or elastography, an inverse problem needs to be solved to find the elasticity distribution from the measured displacements. The finite element method (FEM) is a common method for solving the inverse problem in dynamic elastography. This problem has been solved with both direct and iterative FEM schemes. Each of these methods has its own advantages and disadvantages which are examined in this paper. Choosing the data resolution and the excitation frequency are critical for achieving the best estimation of the tissue elasticity in FEM methods. In this paper we investigate the performance of both direct and iterative FEMs for different ranges of excitation frequency. A new form of iterative method is suggested here which requires a lower mesh density compared to the original form. Also two forms of the direct method are compared in this paper: one using the exact fit for derivatives calculation and the other using the least squares fit. We also perform a study on the spatial resolution of these methods using simulations. The comparison is also validated using a phantom experiment. The results suggest that the direct method with least squares fit is more robust to noise compared to other methods but has slightly lower resolution results. For example, for the homogenous region with 20 dB noise added to the data, the RMS error for the direct method with least squares fit is approximately half of the iterative method. It was observed that the ratio of voxel size to the wavelength should be within a specific range for the results to be reliable. For example for the direct method with least squares fit, for the case of 20 dB noise level, this ratio should be between 0.1 to 0.2. On balance, considering the much higher computational cost of the iterative method, the dependency of the iterative method on the initial guess, and the greater robustness of the direct method to noise, we suggest using the direct method with least squares fit for

  13. A comparison of direct and iterative finite element inversion techniques in dynamic elastography

    NASA Astrophysics Data System (ADS)

    Honarvar, M.; Rohling, R.; Salcudean, S. E.

    2016-04-01

    As part of tissue elasticity imaging or elastography, an inverse problem needs to be solved to find the elasticity distribution from the measured displacements. The finite element method (FEM) is a common method for solving the inverse problem in dynamic elastography. This problem has been solved with both direct and iterative FEM schemes. Each of these methods has its own advantages and disadvantages which are examined in this paper. Choosing the data resolution and the excitation frequency are critical for achieving the best estimation of the tissue elasticity in FEM methods. In this paper we investigate the performance of both direct and iterative FEMs for different ranges of excitation frequency. A new form of iterative method is suggested here which requires a lower mesh density compared to the original form. Also two forms of the direct method are compared in this paper: one using the exact fit for derivatives calculation and the other using the least squares fit. We also perform a study on the spatial resolution of these methods using simulations. The comparison is also validated using a phantom experiment. The results suggest that the direct method with least squares fit is more robust to noise compared to other methods but has slightly lower resolution results. For example, for the homogenous region with 20 dB noise added to the data, the RMS error for the direct method with least squares fit is approximately half of the iterative method. It was observed that the ratio of voxel size to the wavelength should be within a specific range for the results to be reliable. For example for the direct method with least squares fit, for the case of 20 dB noise level, this ratio should be between 0.1 to 0.2. On balance, considering the much higher computational cost of the iterative method, the dependency of the iterative method on the initial guess, and the greater robustness of the direct method to noise, we suggest using the direct method with least squares fit for

  14. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    DOE PAGES

    Tran, Anh Phuong; Dafflon, Baptiste; Hubbard, Susan S.; ...

    2016-08-31

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme – which is based on a nonisothermal, multiphase hydrological model – provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of themore » dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash–Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.« less

  15. Quantifying shallow subsurface water and heat dynamics using coupled hydrological-thermal-geophysical inversion

    NASA Astrophysics Data System (ADS)

    Phuong Tran, Anh; Dafflon, Baptiste; Hubbard, Susan S.; Kowalsky, Michael B.; Long, Philip; Tokunaga, Tetsu K.; Williams, Kenneth H.

    2016-08-01

    Improving our ability to estimate the parameters that control water and heat fluxes in the shallow subsurface is particularly important due to their strong control on recharge, evaporation and biogeochemical processes. The objectives of this study are to develop and test a new inversion scheme to simultaneously estimate subsurface hydrological, thermal and petrophysical parameters using hydrological, thermal and electrical resistivity tomography (ERT) data. The inversion scheme - which is based on a nonisothermal, multiphase hydrological model - provides the desired subsurface property estimates in high spatiotemporal resolution. A particularly novel aspect of the inversion scheme is the explicit incorporation of the dependence of the subsurface electrical resistivity on both moisture and temperature. The scheme was applied to synthetic case studies, as well as to real datasets that were autonomously collected at a biogeochemical field study site in Rifle, Colorado. At the Rifle site, the coupled hydrological-thermal-geophysical inversion approach well predicted the matric potential, temperature and apparent resistivity with the Nash-Sutcliffe efficiency criterion greater than 0.92. Synthetic studies found that neglecting the subsurface temperature variability, and its effect on the electrical resistivity in the hydrogeophysical inversion, may lead to an incorrect estimation of the hydrological parameters. The approach is expected to be especially useful for the increasing number of studies that are taking advantage of autonomously collected ERT and soil measurements to explore complex terrestrial system dynamics.

  16. Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus

    PubMed Central

    Sinha Roy, Abhijit; Rocha, Karol M.; Randleman, J. Bradley; Stulting, R. Doyle; Dupps, William J.

    2014-01-01

    Corneal collagen crosslinking with riboflavin photosensitization and ultraviolet irradiation is a novel approach to limiting the progression of keratoconus in patients by increasing the elastic modulus of the degenerate cornea. Beneficial reductions in corneal steepness and aberrations after crosslinking also frequently occur. In a previous study, we described a computational modeling approach to simulating topographic progression in keratoconus and regression of disease with corneal collagen crosslinking. In the current study, this model has been expanded and applied to the inverse problem of estimating longitudinal time-dependent changes in the corneal elastic modulus after crosslinking using in vivo measurements from 16 human eyes. Topography measured before crosslinking was used to construct a patient-specific finite element model with assumed hyperelastic properties. Then the properties of the cornea were altered using an inverse optimization method to minimize the difference between the model-predicted and in vivo corneal shape after crosslinking. Effects of assumptions regarding sclera-to-cornea elastic modulus ratio and spatial attenuation of treatment effect due to ultraviolet beam characteristics on the predicted change in elastic modulus were also investigated. Corneal property changes computed by inverse finite element analysis provided excellent geometric agreement with clinical topography measurements in patient eyes post-crosslinking. Over all post-treatment time points, the estimated increase in corneal elastic modulus was 110.8±48.1%, and slightly less stiffening was required to produce the same amount of corneal topographic regression of disease when the sclera-to-cornea modulus ratio was increased. Including the effect of beam attenuation resulted in greater estimates of stiffening in the anterior cornea. Corneal shape responses to crosslinking varied considerably and emphasize the importance of a patient-specific approach. PMID:23664859

  17. Inverse computational analysis of in vivo corneal elastic modulus change after collagen crosslinking for keratoconus.

    PubMed

    Sinha Roy, Abhijit; Rocha, Karol M; Randleman, J Bradley; Stulting, R Doyle; Dupps, William J

    2013-08-01

    Corneal collagen crosslinking with riboflavin photosensitization and ultraviolet irradiation is a novel approach to limiting the progression of keratoconus in patients by increasing the elastic modulus of the degenerate cornea. Beneficial reductions in corneal steepness and aberrations after crosslinking also frequently occur. In a previous study, we described a computational modeling approach to simulating topographic progression in keratoconus and regression of disease with corneal collagen crosslinking. In the current study, this model has been expanded and applied to the inverse problem of estimating longitudinal time-dependent changes in the corneal elastic modulus after crosslinking using in vivo measurements from 16 human eyes. Topography measured before crosslinking was used to construct a patient-specific finite element model with assumed hyperelastic properties. Then the properties of the cornea were altered using an inverse optimization method to minimize the difference between the model-predicted and in vivo corneal shape after crosslinking. Effects of assumptions regarding sclera-to-cornea elastic modulus ratio and spatial attenuation of treatment effect due to ultraviolet beam characteristics on the predicted change in elastic modulus were also investigated. Corneal property changes computed by inverse finite element analysis provided excellent geometric agreement with clinical topography measurements in patient eyes post-crosslinking. Over all post-treatment time points, the estimated increase in corneal elastic modulus was 110.8 ± 48.1%, and slightly less stiffening was required to produce the same amount of corneal topographic regression of disease when the sclera-to-cornea modulus ratio was increased. Including the effect of beam attenuation resulted in greater estimates of stiffening in the anterior cornea. Corneal shape responses to crosslinking varied considerably and emphasize the importance of a patient-specific approach.

  18. A real-time inverse quantised transform for multi-standard with dynamic resolution support

    NASA Astrophysics Data System (ADS)

    Sun, Chi-Chia; Lin, Chun-Ying; Zhang, Ce

    2016-06-01

    In this paper, a real-time configurable intelligent property (IP) core is presented for image/video decoding process in compatibility with the standard MPEG-4 Visual and the standard H.264/AVC. The inverse quantised discrete cosine and integer transform can be used to perform inverse quantised discrete cosine transform and inverse quantised inverse integer transforms which only required shift and add operations. Meanwhile, COordinate Rotation DIgital Computer iterations and compensation steps are adjustable in order to compensate for the video compression quality regarding various data throughput. The implementations are embedded in publicly available software XVID Codes 1.2.2 for the standard MPEG-4 Visual and the H.264/AVC reference software JM 16.1, where the experimental results show that the balance between the computational complexity and video compression quality is retained. At the end, FPGA synthesised results show that the proposed IP core can bring advantages to low hardware costs and also provide real-time performance for Full HD and 4K-2K video decoding.

  19. The brain dynamics of linguistic computation

    PubMed Central

    Murphy, Elliot

    2015-01-01

    Neural oscillations at distinct frequencies are increasingly being related to a number of basic and higher cognitive faculties. Oscillations enable the construction of coherently organized neuronal assemblies through establishing transitory temporal correlations. By exploring the elementary operations of the language faculty—labeling, concatenation, cyclic transfer—alongside neural dynamics, a new model of linguistic computation is proposed. It is argued that the universality of language, and the true biological source of Universal Grammar, is not to be found purely in the genome as has long been suggested, but more specifically within the extraordinarily preserved nature of mammalian brain rhythms employed in the computation of linguistic structures. Computational-representational theories are used as a guide in investigating the neurobiological foundations of the human “cognome”—the set of computations performed by the nervous system—and new directions are suggested for how the dynamics of the brain (the “dynome”) operate and execute linguistic operations. The extent to which brain rhythms are the suitable neuronal processes which can capture the computational properties of the human language faculty is considered against a backdrop of existing cartographic research into the localization of linguistic interpretation. Particular focus is placed on labeling, the operation elsewhere argued to be species-specific. A Basic Label model of the human cognome-dynome is proposed, leading to clear, causally-addressable empirical predictions, to be investigated by a suggested research program, Dynamic Cognomics. In addition, a distinction between minimal and maximal degrees of explanation is introduced to differentiate between the depth of analysis provided by cartographic, rhythmic, neurochemical, and other approaches to computation. PMID:26528201

  20. Computational and dynamic models in neuroimaging

    PubMed Central

    Friston, Karl J.; Dolan, Raymond J.

    2010-01-01

    This article reviews the substantial impact computational neuroscience has had on neuroimaging over the past years. It builds on the distinction between models of the brain as a computational machine and computational models of neuronal dynamics per se; i.e., models of brain function and biophysics. Both sorts of model borrow heavily from computational neuroscience, and both have enriched the analysis of neuroimaging data and the type of questions we address. To illustrate the role of functional models in imaging neuroscience, we focus on optimal control and decision (game) theory; the models used here provide a mechanistic account of neuronal computations and the latent (mental) states represent by the brain. In terms of biophysical modelling, we focus on dynamic causal modelling, with a special emphasis on recent advances in neural-mass models for hemodynamic and electrophysiological time series. Each example emphasises the role of generative models, which embed our hypotheses or questions, and the importance of model comparison (i.e., hypothesis testing). We will refer to this theme, when trying to contextualise recent trends in relation to each other. PMID:20036335

  1. Visualization of unsteady computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1995-01-01

    The current computing environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array) provide the required computation bandwidth for CFD calculations of transient problems. Work is in progress on a set of software tools designed specifically to address visualizing 3D unsteady CFD results in these super-computer-like environments. The visualization is concurrently executed with the CFD solver. The parallel version of Visual3, pV3 required splitting up the unsteady visualization task to allow execution across a network of workstation(s) and compute servers. In this computing model, the network is almost always the bottleneck so much of the effort involved techniques to reduce the size of the data transferred between machines.

  2. Computational fluid dynamics using CATIA created geometry

    SciTech Connect

    Gengler, J.E.

    1989-01-01

    A method has been developed to link the geometry definition residing on a CAD/CAM system with a computational fluid dynamics (CFD) tool needed to evaluate aerodynamic designs and requiring the memory capacity of a supercomputer. Requirements for surfaces suitable for CFD analysis are discussed. Techniques for developing surfaces and verifying their smoothness are compared, showing the capability of the CAD/CAM system. The utilization of a CAD/CAM system to create a computational mesh is explained, and the mesh interaction with the geometry and input file preparation for the CFD analysis is discussed.

  3. Computational fluid dynamics using CATIA created geometry

    NASA Astrophysics Data System (ADS)

    Gengler, Jeanne E.

    1989-07-01

    A method has been developed to link the geometry definition residing on a CAD/CAM system with a computational fluid dynamics (CFD) tool needed to evaluate aerodynamic designs and requiring the memory capacity of a supercomputer. Requirements for surfaces suitable for CFD analysis are discussed. Techniques for developing surfaces and verifying their smoothness are compared, showing the capability of the CAD/CAM system. The utilization of a CAD/CAM system to create a computational mesh is explained, and the mesh interaction with the geometry and input file preparation for the CFD analysis is discussed.

  4. Type II Quantum Computing Algorithm For Computational Fluid Dynamics

    DTIC Science & Technology

    2006-03-01

    is the Moore - Penrose pseudoinverse [30]. 38 Yepez’s generalized inverse for Ĵ is ( )1 2 2 2 2 22 2 2 2 2 1 1 1ˆ ˆ genJ E E E E Jλλ λ λ...second method is to multiply both sides of (4.27) by a “ generalized inverse ” 1ˆgenJ − , which Yepez has invented. This matrix is similar to the Moore ...his generalized inverse . The generalized inverse is analogous to the inverse of a nonsingular square matrix 1 1 1− − −=M SΛ S . Yepez uses an

  5. Analysis of forward and inverse problems in chemical dynamics and spectroscopy

    SciTech Connect

    Rabitz, H.

    1992-01-01

    The forward aspects of the research were concerned with mapping the relation between input potential surface structure, and laboratory dynamical and kinetic observables. The research on inverse analysis complemented the forward analysis studies; objective was to develop algorithms for inversion of quality laboratory data, back to underlying potential surfaces. 24 items of research in molecular dynamics and chemical kinetics are reported. The following collisions/reactions were studied: H + H[sub 2], He - H[sub 2], He - Xe/C(0001), thermal explosions, CO/H[sub 2]/O[sub 2], H[sub 2] + HD, H[sup +] + F([sup 2]P[sub 1/2]), He[sup +] + Ne(2p[sup 6]), Na + I, F + H[sub 2], CO - H[sub 2] - O[sub 2].

  6. FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2012-09-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 2nd International Workshop on New Computational Methods for Inverse Problems, (NCMIP 2012). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 15 May 2012, at the initiative of Institut Farman. The first edition of NCMIP also took place in Cachan, France, within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finance. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition

  7. FOREWORD: 3rd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2013)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2013-10-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 3rd International Workshop on New Computational Methods for Inverse Problems, NCMIP 2013 (http://www.farman.ens-cachan.fr/NCMIP_2013.html). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 22 May 2013, at the initiative of Institut Farman. The prior editions of NCMIP also took place in Cachan, France, firstly within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/), and secondly at the initiative of Institut Farman, in May 2012 (http://www.farman.ens-cachan.fr/NCMIP_2012.html). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finances. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational

  8. Spectral Methods for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Streett, C. L.; Hussaini, M. Y.

    1994-01-01

    As a tool for large-scale computations in fluid dynamics, spectral methods were prophesized in 1944, born in 1954, virtually buried in the mid-1960's, resurrected in 1969, evangalized in the 1970's, and catholicized in the 1980's. The use of spectral methods for meteorological problems was proposed by Blinova in 1944 and the first numerical computations were conducted by Silberman (1954). By the early 1960's computers had achieved sufficient power to permit calculations with hundreds of degrees of freedom. For problems of this size the traditional way of computing the nonlinear terms in spectral methods was expensive compared with finite-difference methods. Consequently, spectral methods fell out of favor. The expense of computing nonlinear terms remained a severe drawback until Orszag (1969) and Eliasen, Machenauer, and Rasmussen (1970) developed the transform methods that still form the backbone of many large-scale spectral computations. The original proselytes of spectral methods were meteorologists involved in global weather modeling and fluid dynamicists investigating isotropic turbulence. The converts who were inspired by the successes of these pioneers remained, for the most part, confined to these and closely related fields throughout the 1970's. During that decade spectral methods appeared to be well-suited only for problems governed by ordinary diSerential eqllations or by partial differential equations with periodic boundary conditions. And, of course, the solution itself needed to be smooth. Some of the obstacles to wider application of spectral methods were: (1) poor resolution of discontinuous solutions; (2) inefficient implementation of implicit methods; and (3) drastic geometric constraints. All of these barriers have undergone some erosion during the 1980's, particularly the latter two. As a result, the applicability and appeal of spectral methods for computational fluid dynamics has broadened considerably. The motivation for the use of spectral

  9. Spectral Methods for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Streett, C. L.; Hussaini, M. Y.

    1994-01-01

    As a tool for large-scale computations in fluid dynamics, spectral methods were prophesized in 1944, born in 1954, virtually buried in the mid-1960's, resurrected in 1969, evangalized in the 1970's, and catholicized in the 1980's. The use of spectral methods for meteorological problems was proposed by Blinova in 1944 and the first numerical computations were conducted by Silberman (1954). By the early 1960's computers had achieved sufficient power to permit calculations with hundreds of degrees of freedom. For problems of this size the traditional way of computing the nonlinear terms in spectral methods was expensive compared with finite-difference methods. Consequently, spectral methods fell out of favor. The expense of computing nonlinear terms remained a severe drawback until Orszag (1969) and Eliasen, Machenauer, and Rasmussen (1970) developed the transform methods that still form the backbone of many large-scale spectral computations. The original proselytes of spectral methods were meteorologists involved in global weather modeling and fluid dynamicists investigating isotropic turbulence. The converts who were inspired by the successes of these pioneers remained, for the most part, confined to these and closely related fields throughout the 1970's. During that decade spectral methods appeared to be well-suited only for problems governed by ordinary diSerential eqllations or by partial differential equations with periodic boundary conditions. And, of course, the solution itself needed to be smooth. Some of the obstacles to wider application of spectral methods were: (1) poor resolution of discontinuous solutions; (2) inefficient implementation of implicit methods; and (3) drastic geometric constraints. All of these barriers have undergone some erosion during the 1980's, particularly the latter two. As a result, the applicability and appeal of spectral methods for computational fluid dynamics has broadened considerably. The motivation for the use of spectral

  10. Flight Simulation of Taketombo Based on Computational Fluid Dynamics and Computational Flight Dynamics

    NASA Astrophysics Data System (ADS)

    Kawamura, Kohei; Ueno, Yosuke; Nakamura, Yoshiaki

    In the present study we have developed a numerical method to simulate the flight dynamics of a small flying body with unsteady motion, where both aerodynamics and flight dynamics are fully considered. A key point of this numerical code is to use computational fluid dynamics and computational flight dynamics at the same time, which is referred to as CFD2, or double CFDs, where several new ideas are adopted in the governing equations, the method to make each quantity nondimensional, and the coupling method between aerodynamics and flight dynamics. This numerical code can be applied to simulate the unsteady motion of small vehicles such as micro air vehicles (MAV). As a sample calculation, we take up Taketombo, or a bamboo dragonfly, and its free flight in the air is demonstrated. The eventual aim of this research is to virtually fly an aircraft with arbitrary motion to obtain aerodynamic and flight dynamic data, which cannot be taken in the conventional wind tunnel.

  11. Investigation of complexity dynamics of inverse and normal homoclinic bifurcation in a glow discharge plasma

    SciTech Connect

    Saha, Debajyoti Kumar Shaw, Pankaj; Janaki, M. S.; Sekar Iyengar, A. N.; Ghosh, Sabuj; Mitra, Vramori Michael Wharton, Alpha

    2014-03-15

    Order-chaos-order was observed in the relaxation oscillations of a glow discharge plasma with variation in the discharge voltage. The first transition exhibits an inverse homoclinic bifurcation followed by a homoclinic bifurcation in the second transition. For the two regimes of observations, a detailed analysis of correlation dimension, Lyapunov exponent, and Renyi entropy was carried out to explore the complex dynamics of the system.

  12. Inverse kinematic and forward dynamic models of the 2002 Denali fault earthquake, Alaska

    USGS Publications Warehouse

    Oglesby, D.D.; Dreger, Douglas S.; Harris, R.A.; Ratchkovski, N.; Hansen, R.

    2004-01-01

    We perform inverse kinematic and forward dynamic models of the M 7.9 2002 Denali fault, Alaska, earthquake to shed light on the rupture process and dynamics of this event, which took place on a geometrically complex fault system in central Alaska. We use a combination of local seismic and Global Positioning System (GPS) data for our kinematic inversion and find that the slip distribution of this event is characterized by three major asperities on the Denali fault. The rupture nucleated on the Susitna Glacier thrust fault, and after a pause, propagated onto the strike-slip Denali fault. Approximately 216 km to the east, the rupture abandoned the Denali fault in favor of the more southwesterly directed Totschunda fault. Three-dimensional dynamic models of this event indicate that the abandonment of the Denali fault for the Totschunda fault can be explained by the Totschunda fault's more favorable orientation with respect to the local stress field. However, a uniform tectonic stress field cannot explain the complex slip pattern in this event. We also find that our dynamic models predict discontinuous rupture from the Denali to Totschunda fault segments. Such discontinuous rupture helps to qualitatively improve our kinematic inverse models. Two principal implications of our study are (1) a combination of inverse and forward modeling can bring insight into earthquake processes that are not possible with either technique alone, and (2) the stress field on geometrically complex fault systems is most likely not due to a uniform tectonic stress field that is resolved onto fault segments of different orientations; rather, other forms of stress heterogeneity must be invoked to explain the observed slip patterns.

  13. Delaunay triangulation and computational fluid dynamics meshes

    NASA Technical Reports Server (NTRS)

    Posenau, Mary-Anne K.; Mount, David M.

    1992-01-01

    In aerospace computational fluid dynamics (CFD) calculations, the Delaunay triangulation of suitable quadrilateral meshes can lead to unsuitable triangulated meshes. Here, we present case studies which illustrate the limitations of using structured grid generation methods which produce points in a curvilinear coordinate system for subsequent triangulations for CFD applications. We discuss conditions under which meshes of quadrilateral elements may not produce a Delaunay triangulation suitable for CFD calculations, particularly with regard to high aspect ratio, skewed quadrilateral elements.

  14. Computation in Dynamically Bounded Asymmetric Systems

    PubMed Central

    Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney

    2015-01-01

    Previous explanations of computations performed by recurrent networks have focused on symmetrically connected saturating neurons and their convergence toward attractors. Here we analyze the behavior of asymmetrical connected networks of linear threshold neurons, whose positive response is unbounded. We show that, for a wide range of parameters, this asymmetry brings interesting and computationally useful dynamical properties. When driven by input, the network explores potential solutions through highly unstable ‘expansion’ dynamics. This expansion is steered and constrained by negative divergence of the dynamics, which ensures that the dimensionality of the solution space continues to reduce until an acceptable solution manifold is reached. Then the system contracts stably on this manifold towards its final solution trajectory. The unstable positive feedback and cross inhibition that underlie expansion and divergence are common motifs in molecular and neuronal networks. Therefore we propose that very simple organizational constraints that combine these motifs can lead to spontaneous computation and so to the spontaneous modification of entropy that is characteristic of living systems. PMID:25617645

  15. Inverse Dynamics Model for the Ankle Joint with Applications in Tibia Malleolus Fracture

    NASA Astrophysics Data System (ADS)

    Budescu, E.; Merticaru, E.; Chirazi, M.

    The paper presents a biomechanical model of the ankle joint, in order to determine the force and the torque of reaction into the articulation, through inverse dynamic analysis, in various stages of the gait. Thus, knowing the acceleration of the foot and the reaction force between foot and ground during the gait, determined by experimental measurement, there was calculated, for five different positions of the foot, the joint reaction forces, on the basis of dynamic balance equations. The values numerically determined were compared with the admissible forces appearing in the technical systems of osteosynthesis of tibia malleolus fracture, in order to emphasize the motion restrictions during bone healing.

  16. Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo

    1987-01-01

    The recursive difference equations of Kalman filtering and Bryson-Frazier fixed time-interval smoothing, arising in the state estimation theory for linear state space systems, are used here to solve problems of serial manipulator inverse and forward dynamics. The configuration analyzed is that of a joint connected N-link serial manipulator attached to an immobile base. The equivalence between the filtering and smoothing techniques from state estimation theory and recursive robot dynamics methods is demonstrated. Several areas for future research are suggested.

  17. Meshless methods for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Katz, Aaron Jon

    While the generation of meshes has always posed challenges for computational scientists, the problem has become more acute in recent years. Increased computational power has enabled scientists to tackle problems of increasing size and complexity. While algorithms have seen great advances, mesh generation has lagged behind, creating a computational bottleneck. For industry and government looking to impact current and future products with simulation technology, mesh generation imposes great challenges. Many generation procedures often lack automation, requiring many man-hours, which are becoming far more expensive than computer hardware. More automated methods are less reliable for complex geometry with sharp corners, concavity, or otherwise complex features. Most mesh generation methods to date require a great deal of user expertise to obtain accurate simulation results. Since the application of computational methods to real world problems appears to be paced by mesh generation, alleviating this bottleneck potentially impacts an enormous field of problems. Meshless methods applied to computational fluid dynamics is a relatively new area of research designed to help alleviate the burden of mesh generation. Despite their recent inception, there exists no shortage of formulations and algorithms for meshless schemes in the literature. A brief survey of the field reveals varied approaches arising from diverse mathematical backgrounds applied to a wide variety of applications. All meshless schemes attempt to bypass the use of a conventional mesh entirely or in part by discretizing governing partial differential equations on scattered clouds of points. A goal of the present thesis is to develop a meshless scheme for computational fluid dynamics and evaluate its performance compared with conventional methods. The meshless schemes developed in this work compare favorably with conventional finite volume methods in terms of accuracy and efficiency for the Euler and Navier

  18. Arterioportal shunts on dynamic computed tomography

    SciTech Connect

    Nakayama, T.; Hiyama, Y.; Ohnishi, K.; Tsuchiya, S.; Kohno, K.; Nakajima, Y.; Okuda, K.

    1983-05-01

    Thirty-two patients, 20 with hepatocelluar carcinoma and 12 with liver cirrhosis, were examined by dynamic computed tomography (CT) using intravenous bolus injection of contrast medium and by celiac angiography. Dynamic CT disclosed arterioportal shunting in four cases of hepatocellular carcinoma and in one of cirrhosis. In three of the former, the arterioportal shunt was adjacent to a mass lesion on CT, suggesting tumor invasion into the portal branch. In one with hepatocellular carcinoma, the shunt was remote from the mass. In the case with cirrhosis, there was no mass. In these last two cases, the shunt might have been caused by prior percutaneous needle puncture. In another case of hepatocellular carcinoma, celiac angiography but not CT demonstrated an arterioportal shunt. Thus, dynamic CT was diagnostic in five of six cases of arteriographically demonstrated arterioportal shunts.

  19. A computational model for dynamic vision

    NASA Technical Reports Server (NTRS)

    Moezzi, Saied; Weymouth, Terry E.

    1990-01-01

    This paper describes a novel computational model for dynamic vision which promises to be both powerful and robust. Furthermore the paradigm is ideal for an active vision system where camera vergence changes dynamically. Its basis is the retinotopically indexed object-centered encoding of the early visual information. Specifically, the relative distances of objects to a set of referents is encoded in image registered maps. To illustrate the efficacy of the method, it is applied to the problem of dynamic stereo vision. Integration of depth information over multiple frames obtained by a moving robot generally requires precise information about the relative camera position from frame to frame. Usually, this information can only be approximated. The method facilitates the integration of depth information without direct use or knowledge of camera motion.

  20. Parallel computational fluid dynamics - Implementations and results

    NASA Technical Reports Server (NTRS)

    Simon, Horst D. (Editor)

    1992-01-01

    The present volume on parallel CFD discusses implementations on parallel machines, numerical algorithms for parallel CFD, and performance evaluation and computer science issues. Attention is given to a parallel algorithm for compressible flows through rotor-stator combinations, a massively parallel Euler solver for unstructured grids, a fast scheme to analyze 3D disk airflow on a parallel computer, and a block implicit multigrid solution of the Euler equations. Topics addressed include a 3D ADI algorithm on distributed memory multiprocessors, clustered element-by-element computations for fluid flow, hypercube FFT and the Fourier pseudospectral method, and an investigation of parallel iterative algorithms for CFD. Also discussed are fluid dynamics using interface methods on parallel processors, sorting for particle flow simulation on the connection machine, a large grain mapping method, and efforts toward a Teraflops capability for CFD.

  1. Human systems dynamics: Toward a computational model

    NASA Astrophysics Data System (ADS)

    Eoyang, Glenda H.

    2012-09-01

    A robust and reliable computational model of complex human systems dynamics could support advancements in theory and practice for social systems at all levels, from intrapersonal experience to global politics and economics. Models of human interactions have evolved from traditional, Newtonian systems assumptions, which served a variety of practical and theoretical needs of the past. Another class of models has been inspired and informed by models and methods from nonlinear dynamics, chaos, and complexity science. None of the existing models, however, is able to represent the open, high dimension, and nonlinear self-organizing dynamics of social systems. An effective model will represent interactions at multiple levels to generate emergent patterns of social and political life of individuals and groups. Existing models and modeling methods are considered and assessed against characteristic pattern-forming processes in observed and experienced phenomena of human systems. A conceptual model, CDE Model, based on the conditions for self-organizing in human systems, is explored as an alternative to existing models and methods. While the new model overcomes the limitations of previous models, it also provides an explanatory base and foundation for prospective analysis to inform real-time meaning making and action taking in response to complex conditions in the real world. An invitation is extended to readers to engage in developing a computational model that incorporates the assumptions, meta-variables, and relationships of this open, high dimension, and nonlinear conceptual model of the complex dynamics of human systems.

  2. Time-lapse joint inversion of geophysical data with automatic joint constraints and dynamic attributes

    NASA Astrophysics Data System (ADS)

    Rittgers, J. B.; Revil, A.; Mooney, M. A.; Karaoulis, M.; Wodajo, L.; Hickey, C. J.

    2016-12-01

    Joint inversion and time-lapse inversion techniques of geophysical data are often implemented in an attempt to improve imaging of complex subsurface structures and dynamic processes by minimizing negative effects of random and uncorrelated spatial and temporal noise in the data. We focus on the structural cross-gradient (SCG) approach (enforcing recovered models to exhibit similar spatial structures) in combination with time-lapse inversion constraints applied to surface-based electrical resistivity and seismic traveltime refraction data. The combination of both techniques is justified by the underlying petrophysical models. We investigate the benefits and trade-offs of SCG and time-lapse constraints. Using a synthetic case study, we show that a combined joint time-lapse inversion approach provides an overall improvement in final recovered models. Additionally, we introduce a new approach to reweighting SCG constraints based on an iteratively updated normalized ratio of model sensitivity distributions at each time-step. We refer to the new technique as the Automatic Joint Constraints (AJC) approach. The relevance of the new joint time-lapse inversion process is demonstrated on the synthetic example. Then, these approaches are applied to real time-lapse monitoring field data collected during a quarter-scale earthen embankment induced-piping failure test. The use of time-lapse joint inversion is justified by the fact that a change of porosity drives concomitant changes in seismic velocities (through its effect on the bulk and shear moduli) and resistivities (through its influence upon the formation factor). Combined with the definition of attributes (i.e. specific characteristics) of the evolving target associated with piping, our approach allows localizing the position of the preferential flow path associated with internal erosion. This is not the case using other approaches.

  3. Computational fluid dynamics uses in fluid dynamics/aerodynamics education

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1994-01-01

    The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.

  4. Comparison of computationally frugal (linear) to expensive (nonlinear) methods for analyzing inverse modeling results

    NASA Astrophysics Data System (ADS)

    Mehl, S.; Foglia, L.; Hill, M. C.

    2009-12-01

    Methods for analyzing inverse modeling results can be separated into two categories: (1) linear methods, such as Cook’s D, which are computationally frugal and do not require additional model runs, and (2) nonlinear methods, such as cross validation, which are computationally more expensive because they generally require additional model runs. Depending on the type of nonlinear analysis performed, the additional runs can be the difference between 10’s of runs and 1000’s of runs. For example, cross-validation studies require the model to be recalibrated (the regression repeated) for each observation or set of observations analyzed. This can be computationally prohibitive if many observations or sets of observations are investigated and/or the model has many estimated parameters. A tradeoff exists between linear and nonlinear methods, with linear methods being computationally efficient, but the results being questioned when models are nonlinear. The trade offs between computational efficiency and accuracy are investigated by comparing results from several linear measures of observation importance (for example, Cook’s D, DFBETA’s) to their nonlinear counterparts based on cross validation. Examples from ground water models of the Maggia Valley in southern Switzerland are used to make comparisons. The models include representation of the stream-aquifer interaction and range from simple to complex, with associated modified Beale’s measure ranging from mildly nonlinear to highly nonlinear, respectively. These results demonstrate applicability and limitations of applying linear methods over a range of model complexity and linearity and can be used to better understand when the additional computation burden of nonlinear methods may be necessary.

  5. 3-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on symmetric multiprocessor computers - Part II: direct data-space inverse solution

    NASA Astrophysics Data System (ADS)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.

  6. Computational Fluid Dynamics of rising droplets

    SciTech Connect

    Wagner, Matthew; Francois, Marianne M.

    2012-09-05

    The main goal of this study is to perform simulations of droplet dynamics using Truchas, a LANL-developed computational fluid dynamics (CFD) software, and compare them to a computational study of Hysing et al.[IJNMF, 2009, 60:1259]. Understanding droplet dynamics is of fundamental importance in liquid-liquid extraction, a process used in the nuclear fuel cycle to separate various components. Simulations of a single droplet rising by buoyancy are conducted in two-dimensions. Multiple parametric studies are carried out to ensure the problem set-up is optimized. An Interface Smoothing Length (ISL) study and mesh resolution study are performed to verify convergence of the calculations. ISL is a parameter for the interface curvature calculation. Further, wall effects are investigated and checked against existing correlations. The ISL study found that the optimal ISL value is 2.5{Delta}x, with {Delta}x being the mesh cell spacing. The mesh resolution study found that the optimal mesh resolution is d/h=40, for d=drop diameter and h={Delta}x. In order for wall effects on terminal velocity to be insignificant, a conservative wall width of 9d or a nonconservative wall width of 7d can be used. The percentage difference between Hysing et al.[IJNMF, 2009, 60:1259] and Truchas for the velocity profiles vary from 7.9% to 9.9%. The computed droplet velocity and interface profiles are found in agreement with the study. The CFD calculations are performed on multiple cores, using LANL's Institutional High Performance Computing.

  7. Computing specific intensity distributions for laser material processing by solving an inverse heat conduction problem

    NASA Astrophysics Data System (ADS)

    Völl, Annika; Stollenwerk, Jochen; Loosen, Peter

    2016-03-01

    Laser beam intensity distribution profiles for material processing techniques are most of the time restricted to be either of Gaussian or tophat shape. This often leads to different kind of problems especially at the edges of the laser-heated tracks, examples are energy losses or unnecessary overlaps. Thus, machining quality and process efficiency could be much improved by using application specific intensity profiles to generate optimal temperature distributions in the processed material. In this work, we present a numerical method to derive a specific intensity profile for a given temperature distribution. As this problem belongs to the set of inverse heat conduction problems, which are ill-posed, special regularization algorithms are needed. The only method to solve this inverse problem in reasonable time is the conjugate gradient method which we extend to the given problem of laser material processing applications. This method is an iterative approach where in each step the actual temperature distribution is calculated by using the finite element method. In general, the proposed method is applicable for materials with constant or temperature dependent coefficients, for static and dynamic distributions as well as for plane or complex geometries. However, restricting ourselves to plane geometries, intensity distributions that create tophat- or stepped temperature distributions on the plane surface of the processed material are derived and will be presented. In future work, we intend to verify these results using freeform optics as well as singly addressable V(E)CSEL arrays.

  8. Isotropic-resolution linear-array-based photoacoustic computed tomography through inverse Radon transform

    NASA Astrophysics Data System (ADS)

    Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.

    2015-03-01

    Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.

  9. A computational method for full waveform inversion of crosswell seismic data using automatic differentiation

    NASA Astrophysics Data System (ADS)

    Cao, Danping; Liao, Wenyuan

    2015-03-01

    Full waveform inversion (FWI) is a model-based data-fitting technique that has been widely used to estimate model parameters in Geophysics. In this work, we propose an efficient computational approach to solve the FWI of crosswell seismic data. The FWI problem is mathematically formulated as a partial differential equation (PDE)-constrained optimization problem, which is numerically solved using a gradient-based optimization method. The efficiency and accuracy of FWI are mainly determined by the three main components: forward modeling, gradient calculation and model update which usually involves the gradient-based optimization algorithm. Given the large number of iterations needed by FWI, an accurate gradient is critical for the success of FWI, as it will not only speed up the convergence but also increase the accuracy of the solution. However computing the gradient still remains a challenging task even after the adjoint PDE has been derived. Automatic differentiation (AD) tools have been proved very effective in a variety of application areas including Geoscience. In this work we investigated the feasibility of integrating TAPENADE, a powerful AD tool into FWI, so that the FWI workflow is simplified to allow us to focus on the forward modeling and the model updating. In this paper we choose the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method due to its robustness and fast convergence. Numerical experiments have been conducted to demonstrate the effectiveness, efficiency and robustness of the new computational approach for FWI.

  10. Iterative image reconstruction for limited-angle inverse helical cone-beam computed tomography.

    PubMed

    Yu, Wei; Zeng, Li

    2016-01-01

    Helical trajectory satisfying the condition of exact reconstruction, has been widely utilized in the commercial computed tomography (CT). While limited by the scanning environment in some practical applications, the conventional helical cone-beam CT imaging is hard to complete, thus, developing an imaging system suited for long-object may be valuable. Three-dimensional C-arm CT is an innovative imaging technique which has been greatly concerned. Since there is a high degree of freedom of C-arm, more flexible image acquisition trajectories for 3D imaging can be achieved. In this work, a fast iterative reconstruction algorithm based on total variation minimization is developed for a trajectory of limited-angle inverse helical cone-beam CT, which can be applied to detect long-object without slip-ring technology. The experimental results show that the developed algorithm can yield reconstructed images of low noise level and high image quality.

  11. Dynamic inversion of the 2015 Jujuy earthquake and similarity with other intraslab events

    NASA Astrophysics Data System (ADS)

    Herrera, Carlos; Ruiz, Sergio; Madariaga, Raúl; Poli, Piero

    2017-05-01

    We study the seismic source of the 2015 (Mw 6.7) Jujuy, Argentina intermediate depth earthquake. We first constrain the fault plane by using a teleseismic inversion and by determining the aftershock distribution. Then, we perform kinematic and dynamic inversions to retrieve the parameters that control the rupture process, using data at regional distances, and modelling the source as an elliptical patch. Best models suggest a subshear rupture propagation with a duration of ˜5 s. Results from the dynamic modelling suggest a stress drop of 11.87 MPa and a fracture energy rate of 2.95 MJ m-2, which are slightly less but of the same order as those of other events of similar size. Finally, we perform a Monte-Carlo inversion to explore the behaviour of the frictional parameters in the solution space, and then we compare our results with other intraslab events. We find that the κ parameter (ratio between strain energy and fracture energy) and the relation between seismic moment and stress drop are similar for all the considered events.

  12. Inverse dynamics of a 3 degree of freedom spatial flexible manipulator

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Serna, M.

    1989-01-01

    A technique is presented for solving the inverse dynamics and kinematics of 3 degree of freedom spatial flexible manipulator. The proposed method finds the joint torques necessary to produce a specified end effector motion. Since the inverse dynamic problem in elastic manipulators is closely coupled to the inverse kinematic problem, the solution of the first also renders the displacements and rotations at any point of the manipulator, including the joints. Furthermore the formulation is complete in the sense that it includes all the nonlinear terms due to the large rotation of the links. The Timoshenko beam theory is used to model the elastic characteristics, and the resulting equations of motion are discretized using the finite element method. An iterative solution scheme is proposed that relies on local linearization of the problem. The solution of each linearization is carried out in the frequency domain. The performance and capabilities of this technique are tested through simulation analysis. Results show the potential use of this method for the smooth motion control of space telerobots.

  13. Dynamic inversion of the 2015 Jujuy earthquake and similarity with other intraslab events

    NASA Astrophysics Data System (ADS)

    Herrera, Carlos; Ruiz, Sergio; Madariaga, Raul; Poli, Piero

    2017-02-01

    We study the seismic source of the 2015 (Mw 6.7) Jujuy, Argentina intermediate depth earthquake. We first constrain the fault plane by using a teleseismic inversion and by determining the aftershock distribution. Then, we perform kinematic and dynamic inversions to retrieve the parameters that control the rupture process, using data at regional distances, and modeling the source as an elliptical patch. Best models suggest a sub-shear rupture propagation with a duration of ∼5 s. Results from the dynamic modeling suggest a stress drop of 11.87 MPa and a fracture energy rate of 2.95 MJ/m2, which are slightly less but of the same order as those of other events of similar size. Finally, we perform a Monte-Carlo inversion to explore the behavior of the frictional parameters in the solution space, and then we compare our results with other intraslab events. We find that the κ parameter (ratio between strain energy and fracture energy) and the relation between seismic moment and stress drop are similar for all the considered events.

  14. NEW DEVELOPMENTS ON INVERSE POLYGON MAPPING TO CALCULATE GRAVITATIONAL LENSING MAGNIFICATION MAPS: OPTIMIZED COMPUTATIONS

    SciTech Connect

    Mediavilla, E.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.

    2011-11-01

    We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N {sup -3/4} dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.

  15. New Developments on Inverse Polygon Mapping to Calculate Gravitational Lensing Magnification Maps: Optimized Computations

    NASA Astrophysics Data System (ADS)

    Mediavilla, E.; Mediavilla, T.; Muñoz, J. A.; Ariza, O.; Lopez, P.; Gonzalez-Morcillo, C.; Jimenez-Vicente, J.

    2011-11-01

    We derive an exact solution (in the form of a series expansion) to compute gravitational lensing magnification maps. It is based on the backward gravitational lens mapping of a partition of the image plane in polygonal cells (inverse polygon mapping, IPM), not including critical points (except perhaps at the cell boundaries). The zeroth-order term of the series expansion leads to the method described by Mediavilla et al. The first-order term is used to study the error induced by the truncation of the series at zeroth order, explaining the high accuracy of the IPM even at this low order of approximation. Interpreting the Inverse Ray Shooting (IRS) method in terms of IPM, we explain the previously reported N -3/4 dependence of the IRS error with the number of collected rays per pixel. Cells intersected by critical curves (critical cells) transform to non-simply connected regions with topological pathologies like auto-overlapping or non-preservation of the boundary under the transformation. To define a non-critical partition, we use a linear approximation of the critical curve to divide each critical cell into two non-critical subcells. The optimal choice of the cell size depends basically on the curvature of the critical curves. For typical applications in which the pixel of the magnification map is a small fraction of the Einstein radius, a one-to-one relationship between the cell and pixel sizes in the absence of lensing guarantees both the consistence of the method and a very high accuracy. This prescription is simple but very conservative. We show that substantially larger cells can be used to obtain magnification maps with huge savings in computation time.

  16. Computational stability analysis of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikishkov, Yuri Gennadievich

    2000-10-01

    Due to increased available computer power, the analysis of nonlinear flexible multi-body systems, fixed-wing aircraft and rotary-wing vehicles is relying on increasingly complex, large scale models. An important aspect of the dynamic response of flexible multi-body systems is the potential presence of instabilities. Stability analysis is typically performed on simplified models with the smallest number of degrees of freedom required to capture the physical phenomena that cause the instability. The system stability boundaries are then evaluated using the characteristic exponent method or Floquet theory for systems with constant or periodic coefficients, respectively. As the number of degrees of freedom used to represent the system increases, these methods become increasingly cumbersome, and quickly unmanageable. In this work, a novel approach is proposed, the Implicit Floquet Analysis, which evaluates the largest eigenvalues of the transition matrix using the Arnoldi algorithm, without the explicit computation of this matrix. This method is far more computationally efficient than the classical approach and is ideally suited for systems involving a large number of degrees of freedom. The proposed approach is conveniently implemented as a postprocessing step to any existing simulation tool. The application of the method to a geometrically nonlinear multi-body dynamics code is presented. This work also focuses on the implementation of trimming algorithms and the development of tools for the graphical representation of numerical simulations and stability information for multi-body systems.

  17. Dynamic inversion time for improved 3D late gadolinium enhancement imaging in patients with atrial fibrillation.

    PubMed

    Keegan, Jennifer; Gatehouse, Peter D; Haldar, Shouvik; Wage, Ricardo; Babu-Narayan, Sonya V; Firmin, David N

    2015-02-01

    High resolution three-dimensional (3D) late gadolinium enhancement (LGE) imaging is performed with single R-wave gating to minimize lengthy acquisition durations. In patients with atrial fibrillation (AF), heart rate variability results in variable magnetization recovery between sequence repeats, and image quality is often poor. In this study, we implemented and tested a dynamic inversion time (dynamic-TI) scheme designed to reduce sequence sensitivity to heart rate variations. An inversion-prepared 3D segmented gradient echo sequence was modified so that the TI varied automatically from beat-to-beat (dynamic-TI) based on the time since the last sequence repeat. 3D LGE acquisitions were performed in 17 patients prior to radio frequency ablation of persistent AF both with and without dynamic-TI. Qualitative image quality scores, blood signal-to-ghosting ratios (SGRs). and blood-myocardium contrast-to-ghosting ratios (CGRs) were compared. Image quality scores were higher with dynamic-TI than without dynamic-TI (2.2 ± 0.9 vs. 1.8 ± 1.1, P = 0.008), as were blood-myocardium CGRs (13.8 ± 7.6 vs. 8.3 ± 6.1, P = 0.003) and blood SGRs (19.6 ± 8.5 vs. 13.1 ± 8.0, P = 0.003). The dynamic-TI algorithm improves image quality of 3D LGE imaging in this difficult patient population by reducing the sequence sensitivity to RR interval variations © 2014 Wiley Periodicals, Inc.

  18. Fast Dynamic Meshing Method Based on Delaunay Graph and Inverse Distance Weighting Interpolation

    NASA Astrophysics Data System (ADS)

    Wang, Yibin; Qin, Ning; Zhao, Ning

    2016-06-01

    A novel mesh deformation technique is developed based on the Delaunay graph mapping method and the inverse distance weighting (IDW) interpolation. The algorithm maintains the advantages of the efficiency of Delaunay-graph-mapping mesh deformation while possess the ability for better controlling the near surface mesh quality. The Delaunay graph is used to divide the mesh domain into a number of sub-domains. On each of the sub-domains, the inverse distance weighting interpolation is applied to build a much smaller sized translation matrix between the original mesh and the deformed mesh, resulting a similar efficiency for the mesh deformation as compared to the fast Delaunay graph mapping method. The paper will show how the near-wall mesh quality is controlled and improved by the new method while the computational time is compared with the original Delaunay graph mapping method.

  19. Inertia-independent generalized dynamic inversion feedback control of spacecraft attitude maneuvers

    NASA Astrophysics Data System (ADS)

    Bajodah, Abdulrahman H.

    2011-06-01

    The generalized dynamic inversion control methodology is applied to the spacecraft attitude trajectory tracking problem. It is shown that the structure of the skew symmetric cross product matrix alleviates the need to include the inertia matrix in the control law. Accordingly, the proposed control law depends solely on attitude and angular velocity measurements, and it neither requires knowledge of the spacecraft's inertia parameters nor it works towards estimating these parameters. A linear time-varying attitude deviation dynamics in the multiplicative error quaternion is inverted for the control variables using the generalized inversion-based Greville formula. The resulting control law is composed of auxiliary and particular parts acting on two orthogonally complement subspaces of the three dimensional Euclidean space. The particular part drives the attitude variables to their desired trajectories. The auxiliary part is affine in a free null-control vector, and is designed by utilizing a semidefinite control Lyapunov function that exploits the geometric structure of the control law to provide closed loop stability. The generalized inversion singularity avoidance is made by augmenting the generalized inverse with an asymptotically stable fast mode that is driven by angular velocity error's norm from reference angular velocity. Asymptotic tracking is achieved for detumbling maneuvers as the stable augmented mode subdues singularity. If the steady state desired quaternion trajectories are time varying, then asymptotic tracking is lost in favor of close ultimately bounded tracking because the stable augmented mode continues to be excited during steady state phase of response. A rest-to-rest slew and a trajectory tracking maneuver examples are provided to illustrate the methodology.

  20. Computational fluid dynamics: Transition to design applications

    NASA Technical Reports Server (NTRS)

    Bradley, R. G.; Bhateley, I. C.; Howell, G. A.

    1987-01-01

    The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented.

  1. Computational fluid dynamics in cardiovascular disease.

    PubMed

    Lee, Byoung-Kwon

    2011-08-01

    Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more accessible, because high performance hardware and software are easily available with advances in computer science. All CFD processes contain three main components to provide useful information, such as pre-processing, solving mathematical equations, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate results. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hardware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to deliver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to understand the pathophysiology of the development and

  2. Computational Fluid Dynamics in Cardiovascular Disease

    PubMed Central

    2011-01-01

    Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more accessible, because high performance hardware and software are easily available with advances in computer science. All CFD processes contain three main components to provide useful information, such as pre-processing, solving mathematical equations, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate results. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hardware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to deliver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to understand the pathophysiology of the development and

  3. Shuttle rocket booster computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Park, O. Y.

    1988-01-01

    Additional results and a revised and improved computer program listing from the shuttle rocket booster computational fluid dynamics formulations are presented. Numerical calculations for the flame zone of solid propellants are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges.

  4. Computational fluid dynamics in brain aneurysms

    PubMed Central

    Sforza, Daniel M.; Putman, Christopher M.; Cebral, Juan R.

    2013-01-01

    SUMMARY Because of its ability to deal with any geometry, image-based computational fluid dynamics (CFD) has been progressively used to investigate the role of hemodynamics in the underlying mechanisms governing the natural history of cerebral aneurysms. Despite great progress in methodological developments and many studies using patient-specific data, there are still significant controversies about the precise governing processes and divergent conclusions from apparently contradictory results. Sorting out these issues requires a global vision of the state of the art and a unified approach to solving this important scientific problem. Towards this end, this paper reviews the contributions made using patient-specific CFD models to further the understanding of these mechanisms, and highlights the great potential of patient-specific computational models for clinical use in the assessment of aneurysm rupture risk and patient management. PMID:25364852

  5. Computational Fluid Dynamics Symposium on Aeropropulsion

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Recognizing the considerable advances that have been made in computational fluid dynamics, the Internal Fluid Mechanics Division of NASA Lewis Research Center sponsored this symposium with the objective of providing a forum for exchanging information regarding recent developments in numerical methods, physical and chemical modeling, and applications. This conference publication is a compilation of 4 invited and 34 contributed papers presented in six sessions: algorithms one and two, turbomachinery, turbulence, components application, and combustors. Topics include numerical methods, grid generation, chemically reacting flows, turbulence modeling, inlets, nozzles, and unsteady flows.

  6. Computational Fluid Dynamics Technology for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2003-01-01

    Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.

  7. Parallel Processing for Computational Continuum Dynamics.

    DTIC Science & Technology

    1985-05-10

    F49620-84-C-0111In I PARALLEL PROCESSING FOR COMPUTATIONAL CONTINUUM DYNAMICS: A FINAL REPORT Accession For Joseph F. McGrath DTIc TAB KMS Fusion, Inc...Uiarmouncod 0P . . B O X 1 5 6 7 J u s t tic a t io - --- - - Ann Arbor, MI 48106 A v ar_ _ la b il it¥ C o d e a 10 May 1985 nF , Final Report ... REPORT (Yr., Mo. a) 15 PAGE COUNT * Final IFROM 5S4i..4r.5 .. Mar. 10 May 1985 42 * 16. SUPPLEMENTARY NOTATION 17. COSATI CODES IB. SUBJECT TERMS

  8. Domain decomposition algorithms and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.

    1988-01-01

    Some of the new domain decomposition algorithms are applied to two model problems in computational fluid dynamics: the two-dimensional convection-diffusion problem and the incompressible driven cavity flow problem. First, a brief introduction to the various approaches of domain decomposition is given, and a survey of domain decomposition preconditioners for the operator on the interface separating the subdomains is then presented. For the convection-diffusion problem, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is examined.

  9. Colour in visualisation for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kinnear, David; Atherton, Mark; Collins, Michael; Dokhan, Jason; Karayiannis, Tassos

    2006-06-01

    Colour is used in computational fluid dynamic (CFD) simulations in two key ways. First it is used to visualise the geometry and allow the engineer to be confident that the model constructed is a good representation of the engineering situation. Once an analysis has been completed, colour is used in post-processing the data from the simulations to illustrate the complex fluid mechanic phenomena under investigation. This paper describes these two uses of colour and provides some examples to illustrate the key visualisation approaches used in CFD.

  10. Domain decomposition algorithms and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.

    1988-01-01

    Some of the new domain decomposition algorithms are applied to two model problems in computational fluid dynamics: the two-dimensional convection-diffusion problem and the incompressible driven cavity flow problem. First, a brief introduction to the various approaches of domain decomposition is given, and a survey of domain decomposition preconditioners for the operator on the interface separating the subdomains is then presented. For the convection-diffusion problem, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is examined.

  11. Efficient quantum computing of complex dynamics.

    PubMed

    Benenti, G; Casati, G; Montangero, S; Shepelyansky, D L

    2001-11-26

    We propose a quantum algorithm which uses the number of qubits in an optimal way and efficiently simulates a physical model with rich and complex dynamics described by the quantum sawtooth map. The numerical study of the effect of static imperfections in the quantum computer hardware shows that the main elements of the phase space structures are accurately reproduced up to a time scale which is polynomial in the number of qubits. The errors generated by these imperfections are more significant than the errors of random noise in gate operations.

  12. Verification of computer users using keystroke dynamics.

    PubMed

    Obaidat, M S; Sadoun, B

    1997-01-01

    This paper presents techniques to verify the identity of computer users using the keystroke dynamics of computer user's login string as characteristic patterns using pattern recognition and neural network techniques. This work is a continuation of our previous work where only interkey times were used as features for identifying computer users. In this work we used the key hold times for classification and then compared the performance with the former interkey time-based technique. Then we use the combined interkey and hold times for the identification process. We applied several neural network and pattern recognition algorithms for verifying computer users as they type their password phrases. It was found that hold times are more effective than interkey times and the best identification performance was achieved by using both time measurements. An identification accuracy of 100% was achieved when the combined hold and intekey time-based approach were considered as features using the fuzzy ARTMAP, radial basis function networks (RBFN), and learning vector quantization (LVQ) neural network paradigms. Other neural network and classical pattern algorithms such as backpropagation with a sigmoid transfer function (BP, Sigm), hybrid sum-of-products (HSOP), sum-of-products (SOP), potential function and Bayes' rule algorithms gave moderate performance.

  13. Velocity Control System Design for Leader-Following UAV Using Dynamic Inversion

    NASA Astrophysics Data System (ADS)

    榎本, 圭祐; 山崎, 武志; 高野, 博行; 馬場, 順昭

    The purpose of this paper is to introduce a velocity control system for a leader-following UAV. For the purpose of our work, we designed a whole guidance and control system; the guidance system using the pure pursuit navigation guidance law, the attitude control system using the dynamic inversion with the two-time scale approach, and the velocity control system considering aircraft and engine dynamics. This paper concentrates on the velocity controller including the stability analysis for the uncertainty of the aerodynamic parameters. Velocity controller gain determination technique adapted for the aircraft and/or engine dynamics are discussed in this paper. Simulation results show that the proposed guidance and control system provides a good performance.

  14. Dynamics of a many-particle Landau-Zener model: Inverse sweep

    SciTech Connect

    Itin, A. P.

    2009-05-15

    We consider dynamics of a slowly time-dependent Dicke model, which represents a many-body generalization of the Landau-Zener model. In particular, the model describes narrow Feshbach resonance passage in an ultracold gas of Fermi atoms. Adiabaticity is destroyed when a parameter crosses a critical value, even at very slow sweeping rates of a parameter. The dynamics crucially depends on direction of the sweep. We apply our recent analysis (A. P. Itin and P. Toermae, e-print arXiv:0901.4778) to the 'inverse' sweep through the resonance, corresponding (in a context of Feshbach resonance passage) to dissociation of molecules. On a level of the mean-field approximation, the dynamics is equivalent to a molecular condensate formation from Bose atoms within a two-mode model. Mapping the system to a Painleve equation allows us to calculate deviation from adiabaticity at very slow sweeps analytically.

  15. Direct modeling for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  16. Utilizing parallel optimization in computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Kokkolaras, Michael

    1998-12-01

    General problems of interest in computational fluid dynamics are investigated by means of optimization. Specifically, in the first part of the dissertation, a method of optimal incremental function approximation is developed for the adaptive solution of differential equations. Various concepts and ideas utilized by numerical techniques employed in computational mechanics and artificial neural networks (e.g. function approximation and error minimization, variational principles and weighted residuals, and adaptive grid optimization) are combined to formulate the proposed method. The basis functions and associated coefficients of a series expansion, representing the solution, are optimally selected by a parallel direct search technique at each step of the algorithm according to appropriate criteria; the solution is built sequentially. In this manner, the proposed method is adaptive in nature, although a grid is neither built nor adapted in the traditional sense using a-posteriori error estimates. Variational principles are utilized for the definition of the objective function to be extremized in the associated optimization problems, ensuring that the problem is well-posed. Complicated data structures and expensive remeshing algorithms and systems solvers are avoided. Computational efficiency is increased by using low-order basis functions and concurrent computing. Numerical results and convergence rates are reported for a range of steady-state problems, including linear and nonlinear differential equations associated with general boundary conditions, and illustrate the potential of the proposed method. Fluid dynamics applications are emphasized. Conclusions are drawn by discussing the method's limitations, advantages, and possible extensions. The second part of the dissertation is concerned with the optimization of the viscous-inviscid-interaction (VII) mechanism in an airfoil flow analysis code. The VII mechanism is based on the concept of a transpiration velocity

  17. Model calibration for ice sheets and glaciers dynamics: a general theory of inverse problems in glaciology

    NASA Astrophysics Data System (ADS)

    Giudici, Mauro; Baratelli, Fulvia; Vassena, Chiara; Cattaneo, Laura

    2014-05-01

    Numerical modelling of the dynamic evolution of ice sheets and glaciers requires the solution of discrete equations which are based on physical principles (e.g. conservation of mass, linear momentum and energy) and phenomenological constitutive laws (e.g. Glen's and Fourier's laws). These equations must be accompanied by information on the forcing term and by initial and boundary conditions (IBC) on ice velocity, stress and temperature; on the other hand the constitutive laws involves many physical parameters, which possibly depend on the ice thermodynamical state. The proper forecast of the dynamics of ice sheets and glaciers (forward problem, FP) requires a precise knowledge of several quantities which appear in the IBCs, in the forcing terms and in the phenomenological laws and which cannot be easily measured at the study scale in the field. Therefore these quantities can be obtained through model calibration, i.e. by the solution of an inverse problem (IP). Roughly speaking, the IP aims at finding the optimal values of the model parameters that yield the best agreement of the model output with the field observations and data. The practical application of IPs is usually formulated as a generalised least squares approach, which can be cast in the framework of Bayesian inference. IPs are well developed in several areas of science and geophysics and several applications were proposed also in glaciology. The objective of this paper is to provide a further step towards a thorough and rigorous theoretical framework in cryospheric studies. Although the IP is often claimed to be ill-posed, this is rigorously true for continuous domain models, whereas for numerical models, which require the solution of algebraic equations, the properties of the IP must be analysed with more care. First of all, it is necessary to clarify the role of experimental and monitoring data to determine the calibration targets and the values of the parameters that can be considered to be fixed

  18. A Computationally-Efficient Inverse Approach to Probabilistic Strain-Based Damage Diagnosis

    NASA Technical Reports Server (NTRS)

    Warner, James E.; Hochhalter, Jacob D.; Leser, William P.; Leser, Patrick E.; Newman, John A

    2016-01-01

    This work presents a computationally-efficient inverse approach to probabilistic damage diagnosis. Given strain data at a limited number of measurement locations, Bayesian inference and Markov Chain Monte Carlo (MCMC) sampling are used to estimate probability distributions of the unknown location, size, and orientation of damage. Substantial computational speedup is obtained by replacing a three-dimensional finite element (FE) model with an efficient surrogate model. The approach is experimentally validated on cracked test specimens where full field strains are determined using digital image correlation (DIC). Access to full field DIC data allows for testing of different hypothetical sensor arrangements, facilitating the study of strain-based diagnosis effectiveness as the distance between damage and measurement locations increases. The ability of the framework to effectively perform both probabilistic damage localization and characterization in cracked plates is demonstrated and the impact of measurement location on uncertainty in the predictions is shown. Furthermore, the analysis time to produce these predictions is orders of magnitude less than a baseline Bayesian approach with the FE method by utilizing surrogate modeling and effective numerical sampling approaches.

  19. A sparsity regularization and total variation based computational framework for the inverse medium problem in scattering

    NASA Astrophysics Data System (ADS)

    Bürgel, Florian; Kazimierski, Kamil S.; Lechleiter, Armin

    2017-06-01

    We present a fast computational framework for the inverse medium problem in scattering, i.e. we look at discretization, reconstruction and numerical performance. The Helmholtz equation in two and three dimensions is used as a physical model of scattering including point sources and plane waves as incident fields as well as near and far field measurements. For the reconstruction of the medium, we set up a rapid variational regularization scheme and indicate favorable choices of the various parameters. The underlying paradigm is, roughly speaking, to minimize the discrepancy between the reconstruction and measured data while, at the same time, taking into account various structural a-priori information via suitable penalty terms. In particular, the involved penalty terms are designed to promote information expected in real-world environments. To this end, a combination of sparsity promoting terms, total variation, and physical bounds of the inhomogeneous medium, e.g. positivity constraints, is employed in the regularization penalty. A primal-dual algorithm is used to solve the minimization problem related to the variational regularization. The computational feasibility, performance and efficiency of the proposed approach is demonstrated for synthetic as well as experimentally measured data.

  20. Mixed-radix Algorithm for the Computation of Forward and Inverse MDCT

    PubMed Central

    Wu, Jiasong; Shu, Huazhong; Senhadji, Lotfi; Luo, Limin

    2008-01-01

    The modified discrete cosine transform (MDCT) and inverse MDCT (IMDCT) are two of the most computational intensive operations in MPEG audio coding standards. A new mixed-radix algorithm for efficient computing the MDCT/IMDCT is presented. The proposed mixed-radix MDCT algorithm is composed of two recursive algorithms. The first algorithm, called the radix-2 decimation in frequency (DIF) algorithm, is obtained by decomposing an N-point MDCT into two MDCTs with the length N/2. The second algorithm, called the radix-3 decimation in time (DIT) algorithm, is obtained by decomposing an N-point MDCT into three MDCTs with the length N/3. Since the proposed MDCT algorithm is also expressed in the form of a simple sparse matrix factorization, the corresponding IMDCT algorithm can be easily derived by simply transposing the matrix factorization. Comparison of the proposed algorithm with some existing ones shows that our proposed algorithm is more suitable for parallel implementation and especially suitable for the layer III of MPEG-1 and MPEG-2 audio encoding and decoding. Moreover, the proposed algorithm can be easily extended to the multidimensional case by using the vector-radix method. PMID:21258639

  1. Robust nonlinear dynamic inversion flight control design using structured singular value synthesis based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Ying, Sibin; Ai, Jianliang; Luo, Changhang; Wang, Peng

    2006-11-01

    Non-linear Dynamic Inversion (NDI) is a technique for control law design, which is based on the feedback linearization and achieving desired dynamic response characteristics. NDI requires an ideal and precise model, however, there must be some errors due to the modeling error or actuator faults, therefore the control law designed by NDI has less robustness. Combining with structured singular value μ synthesis method, the system's robustness can be improved notably. The designed controller, which uses the structured singular value μ synthesis method, has high dimensions, and the dimensions must be reduced when we calculate it. This paper presents a new method for the design of robust flight control, which uses structured singular value μ synthesis based on genetic algorithm. The designed controller, which uses this method, can reduce the dimensions obviously compared with the normal method of structured singular value synthesis, so it is easier for application. The presented method is applied to robustness controller design of some super maneuverable fighter. The simulation results show that the dynamic inversion control law achieves a high level of performance in post-stall maneuver condition, and the whole control system has perfect robustness and anti-disturbance ability.

  2. Reconfigurable Flight Control Using Nonlinear Dynamic Inversion with a Special Accelerometer Implementation

    NASA Technical Reports Server (NTRS)

    Bacon, Barton J.; Ostroff, Aaron J.

    2000-01-01

    This paper presents an approach to on-line control design for aircraft that have suffered either actuator failure, missing effector surfaces, surface damage, or any combination. The approach is based on a modified version of nonlinear dynamic inversion. The approach does not require a model of the baseline vehicle (effectors at zero deflection), but does require feedback of accelerations and effector positions. Implementation issues are addressed and the method is demonstrated on an advanced tailless aircraft. An experimental simulation analysis tool is used to directly evaluate the nonlinear system's stability robustness.

  3. A Nonlinear Dynamic Inversion Predictor-Based Model Reference Adaptive Controller for a Generic Transport Model

    NASA Technical Reports Server (NTRS)

    Campbell, Stefan F.; Kaneshige, John T.

    2010-01-01

    Presented here is a Predictor-Based Model Reference Adaptive Control (PMRAC) architecture for a generic transport aircraft. At its core, this architecture features a three-axis, non-linear, dynamic-inversion controller. Command inputs for this baseline controller are provided by pilot roll-rate, pitch-rate, and sideslip commands. This paper will first thoroughly present the baseline controller followed by a description of the PMRAC adaptive augmentation to this control system. Results are presented via a full-scale, nonlinear simulation of NASA s Generic Transport Model (GTM).

  4. Dynamics of Structural Transformations between Lamellar and Inverse Bicontinuous Cubic Lyotropic Phases

    SciTech Connect

    Conn, Charlotte E.; Ces, Oscar; Mulet, Xavier; Seddon, John M.; Templer, Richard H.; Finet, Stephanie; Winter, Roland

    2006-03-17

    The liquid crystalline lamellar (L{sub {alpha}}) to double-diamond inverse bicontinuous cubic (Q{sub II}{sup D}) phase transition for the amphiphile monoelaidin in excess water exhibits a remarkable sequence of structural transformations for pressure or temperature jumps. Our data imply that the transition dynamics depends on a coupling between changes in molecular shape and the geometrical and topological constraints of domain size. We propose a qualitative model for this coupling based on theories of membrane fusion via stalks and existing knowledge of the structure and energetics of bicontinuous cubic phases.

  5. Force adaptation transfers to untrained workspace regions in children: evidence for developing inverse dynamic motor models.

    PubMed

    Jansen-Osmann, Petra; Richter, Stefanie; Konczak, Jürgen; Kalveram, Karl-Theodor

    2002-03-01

    When humans perform goal-directed arm movements under the influence of an external damping force, they learn to adapt to these external dynamics. After removal of the external force field, they reveal kinematic aftereffects that are indicative of a neural controller that still compensates the no longer existing force. Such behavior suggests that the adult human nervous system uses a neural representation of inverse arm dynamics to control upper-extremity motion. Central to the notion of an inverse dynamic model (IDM) is that learning generalizes. Consequently, aftereffects should be observable even in untrained workspace regions. Adults have shown such behavior, but the ontogenetic development of this process remains unclear. This study examines the adaptive behavior of children and investigates whether learning a force field in one hemifield of the right arm workspace has an effect on force adaptation in the other hemifield. Thirty children (aged 6-10 years) and ten adults performed 30 degrees elbow flexion movements under two conditions of external damping (negative and null). We found that learning to compensate an external damping force transferred to the opposite hemifield, which indicates that a model of the limb dynamics rather than an association of visited space and experienced force was acquired. Aftereffects were more pronounced in the younger children and readaptation to a null-force condition was prolonged. This finding is consistent with the view that IDMs in children are imprecise neural representations of the actual arm dynamics. It indicates that the acquisition of IDMs is a developmental achievement and that the human motor system is inherently flexible enough to adapt to any novel force within the limits of the organism's biomechanics.

  6. Visualization of Unsteady Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1997-01-01

    The current compute environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array and the J90 cluster) provide the required computation bandwidth for CFD calculations of transient problems. If we follow the traditional computational analysis steps for CFD (and we wish to construct an interactive visualizer) we need to be aware of the following: (1) Disk space requirements. A single snap-shot must contain at least the values (primitive variables) stored at the appropriate locations within the mesh. For most simple 3D Euler solvers that means 5 floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-variables. (2) Disk speed vs. Computational speeds. The time required to read the complete solution of a saved time frame from disk is now longer than the compute time for a set number of iterations from an explicit solver. Depending, on the hardware and solver an iteration of an implicit code may also take less time than reading the solution from disk. If one examines the performance improvements in the last decade or two, it is easy to see that depending on disk performance (vs. CPU improvement) may not be the best method for enhancing interactivity. (3) Cluster and Parallel Machine I/O problems. Disk access time is much worse within current parallel machines and cluster of workstations that are acting in concert to solve a single problem. In this case we are not trying to read the volume of data, but are running the solver and the solver outputs the solution. These traditional network interfaces must be used for the file system. (4) Numerics of particle traces. Most visualization tools can work upon a single snap shot of the data but some visualization tools for transient

  7. Identification of contaminant source architectures—A statistical inversion that emulates multiphase physics in a computationally practicable manner

    NASA Astrophysics Data System (ADS)

    Koch, J.; Nowak, W.

    2016-02-01

    The goal of this work is to improve the inference of nonaqueous-phase contaminated source zone architectures (CSA) from field data. We follow the idea that a physically motivated model for CSA formation helps in this inference by providing relevant relationships between observables and the unknown CSA. Typical multiphase models are computationally too expensive to be applied for inverse modeling; thus, state-of-the-art CSA identification techniques do not yet use physically based CSA formation models. To overcome this shortcoming, we apply a stochastic multiphase model with reduced computational effort that can be used to generate a large ensemble of possible CSA realizations. Further, we apply a reverse transport formulation in order to accelerate the inversion of transport-related data such as downgradient aqueous-phase concentrations. We combine these approaches within an inverse Bayesian methodology for joint inversion of CSA and aquifer parameters. Because we use multiphase physics to constrain and inform the inversion, (1) only physically meaningful CSAs are inferred; (2) each conditional realization is statistically meaningful; (3) we obtain physically meaningful spatial dependencies for interpolation and extrapolation of point-like observations between the different involved unknowns and observables, and (4) dependencies far beyond simple correlation; (5) the inversion yields meaningful uncertainty bounds. We illustrate our concept by inferring three-dimensional probability distributions of DNAPL residence, contaminant mass discharge, and of other CSA characteristics. In the inference example, we use synthetic numerical data on permeability, DNAPL saturation and downgradient aqueous-phase concentration, and we substantiate our claims about the advantages of emulating a multiphase flow model with reduced computational requirement in the inversion.

  8. Computing dynamic classification images from correlation maps.

    PubMed

    Lu, Hongjing; Liu, Zili

    2006-05-22

    We used Pearson's correlation to compute dynamic classification images of biological motion in a point-light display. Observers discriminated whether a human figure that was embedded in dynamic white Gaussian noise was walking forward or backward. Their responses were correlated with the Gaussian noise fields frame by frame, across trials. The resultant correlation map gave rise to a sequence of dynamic classification images that were clearer than either the standard method of A. J. Ahumada and J. Lovell (1971) or the optimal weighting method of R. F. Murray, P. J. Bennett, and A. B. Sekuler (2002). Further, the correlation coefficients of all the point lights were similar to each other when overlapping pixels between forward and backward walkers were excluded. This pattern is consistent with the hypothesis that the point-light walker is represented in a global manner, as opposed to a fixed subset of point lights being more important than others. We conjecture that the superior performance of the correlation map may reflect inherent nonlinearities in processing biological motion, which are incompatible with the assumptions underlying the previous methods.

  9. Computational fluid dynamics in coronary artery disease.

    PubMed

    Sun, Zhonghua; Xu, Lei

    2014-12-01

    Computational fluid dynamics (CFD) is a widely used method in mechanical engineering to solve complex problems by analysing fluid flow, heat transfer, and associated phenomena by using computer simulations. In recent years, CFD has been increasingly used in biomedical research of coronary artery disease because of its high performance hardware and software. CFD techniques have been applied to study cardiovascular haemodynamics through simulation tools to predict the behaviour of circulatory blood flow in the human body. CFD simulation based on 3D luminal reconstructions can be used to analyse the local flow fields and flow profiling due to changes of coronary artery geometry, thus, identifying risk factors for development and progression of coronary artery disease. This review aims to provide an overview of the CFD applications in coronary artery disease, including biomechanics of atherosclerotic plaques, plaque progression and rupture; regional haemodynamics relative to plaque location and composition. A critical appraisal is given to a more recently developed application, fractional flow reserve based on CFD computation with regard to its diagnostic accuracy in the detection of haemodynamically significant coronary artery disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Dynamics of thermal inversions on Metropolitan Area of Guadalajara, Jalisco Mexico

    NASA Astrophysics Data System (ADS)

    Valencia, R.; Tereshchenko, I.; Perez, D. A.; Lizarraga, S. J.; Thermal Inversions, Metropolitan Area of Guadalajara

    2013-05-01

    This work attempts an analysis of the dynamics of the meteorological variables in the lower troposphere in the Metropolitan Area of Guadalajara (ZMG), Jalisco, Mexico. It was used the radiosonde database 2000-2012, and a classification of synoptic situations typical for different inversions occurring. Preliminary results indicate that surface temperature inversions dominate the climate of the study area, mainly recorded two times during the year. An investment without matching the rainy season and covers the months of June to September where investments are recorded at a frequency below 41%. And a station with investments in the type of radiation surface which covers the months of January to May and November to December, with a frequency above 86% in October as month leaving transition with a frequency of 64%. As surface temperature inversions which most affect human activity in the ZMG by not allowing the dispersion of pollutants, the results show that these investments have a thickness ranging from 50 to 250 meters high, covering this range for 85% of the investments registered with respect to the temperature difference between the base and the apex of the observed reversal of between 1°C to 12°C, where the average is 5°C and 7 °C. While this shows that during most of the year there are temperature inversions in the ZMG, this does not mean that every day you will have concentration of pollutants above the norm, this is due to the influence of synoptic scale phenomena mainly to a combination of large anticyclonic systems of the Pacific Ocean and Atlantic, affecting mostly Mexico during the months of December to February, alternating with waves of Western middle latitudes.

  11. Inverse optimal control for speed-varying path following of marine vessels with actuator dynamics

    NASA Astrophysics Data System (ADS)

    Qu, Yang; Xu, Haixiang; Yu, Wenzhao; Feng, Hui; Han, Xin

    2017-06-01

    A controller which is locally optimal near the origin and globally inverse optimal for the nonlinear system is proposed for path following of over actuated marine crafts with actuator dynamics. The motivation is the existence of undesired signals sent to the actuators, which can result in bad behavior in path following. To attenuate the oscillation of the control signal and obtain smooth thrust outputs, the actuator dynamics are added into the ship maneuvering model. Instead of modifying the Line-of-Sight (LOS) guidance law, this proposed controller can easily adjust the vessel speed to minimize the large cross-track error caused by the high vessel speed when it is turning. Numerical simulations demonstrate the validity of this proposed controller.

  12. Design of sensor networks for instantaneous inversion of modally reduced order models in structural dynamics

    NASA Astrophysics Data System (ADS)

    Maes, K.; Lourens, E.; Van Nimmen, K.; Reynders, E.; De Roeck, G.; Lombaert, G.

    2015-02-01

    In structural dynamics, the forces acting on a structure are often not well known. System inversion techniques may be used to estimate these forces from the measured response of the structure. This paper first derives conditions for the invertibility of linear system models that apply to any instantaneous input estimation or joint input-state estimation algorithm. The conditions ensure the identifiability of the dynamic forces and system states, their stability and uniqueness. The present paper considers the specific case of modally reduced order models, which are generally obtained from a physical, finite element model, or from experimental data. It is shown how in this case the conditions can be directly expressed in terms of the modal properties of the structure. A distinction is made between input estimation and joint input-state estimation. Each of the conditions is illustrated by a conceptual example. The practical implementation is discussed for a case study where a sensor network for a footbridge is designed.

  13. Inverse dynamics modelling of upper-limb tremor, with cross-correlation analysis

    PubMed Central

    Ketteringham, Laurence P.; Neild, Simon A.; Hyde, Richard A.; Jones, Rosie J.S.; Davies-Smith, Angela M.

    2014-01-01

    A method to characterise upper-limb tremor using inverse dynamics modelling in combination with cross-correlation analyses is presented. A 15 degree-of-freedom inverse dynamics model is used to estimate the joint torques required to produce the measured limb motion, given a set of estimated inertial properties for the body segments. The magnitudes of the estimated torques are useful when assessing patients or evaluating possible intervention methods. The cross-correlation of the estimated joint torques is proposed to gain insight into how tremor in one limb segment interacts with tremor in another. The method is demonstrated using data from a single patient presenting intention tremor because of multiple sclerosis. It is shown that the inertial properties of the body segments can be estimated with sufficient accuracy using only the patient's height and weight as a priori knowledge, which ensures the method's practicality and transferability to clinical use. By providing a more detailed, objective characterisation of patient-specific tremor properties, the method is expected to improve the selection, design and assessment of treatment options on an individual basis. PMID:26609379

  14. An optimal dynamic inversion-based neuro-adaptive approach for treatment of chronic myelogenous leukemia.

    PubMed

    Padhi, Radhakant; Kothari, Mangal

    2007-09-01

    Combining the advanced techniques of optimal dynamic inversion and model-following neuro-adaptive control design, an innovative technique is presented to design an automatic drug administration strategy for effective treatment of chronic myelogenous leukemia (CML). A recently developed nonlinear mathematical model for cell dynamics is used to design the controller (medication dosage). First, a nominal controller is designed based on the principle of optimal dynamic inversion. This controller can treat the nominal model patients (patients who can be described by the mathematical model used here with the nominal parameter values) effectively. However, since the system parameters for a realistic model patient can be different from that of the nominal model patients, simulation studies for such patients indicate that the nominal controller is either inefficient or, worse, ineffective; i.e. the trajectory of the number of cancer cells either shows non-satisfactory transient behavior or it grows in an unstable manner. Hence, to make the drug dosage history more realistic and patient-specific, a model-following neuro-adaptive controller is augmented to the nominal controller. In this adaptive approach, a neural network trained online facilitates a new adaptive controller. The training process of the neural network is based on Lyapunov stability theory, which guarantees both stability of the cancer cell dynamics as well as boundedness of the network weights. From simulation studies, this adaptive control design approach is found to be very effective to treat the CML disease for realistic patients. Sufficient generality is retained in the mathematical developments so that the technique can be applied to other similar nonlinear control design problems as well.

  15. Domain decomposition methods in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gropp, William D.; Keyes, David E.

    1991-01-01

    The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.

  16. Artificial Intelligence In Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  17. High performance computations using dynamical nucleation theory

    SciTech Connect

    Windus, Theresa L.; Kathmann, Shawn M.; Crosby, Lonnie D.

    2008-07-14

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities are described. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A "master-slave" solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are also described. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  18. Domain decomposition algorithms and computation fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.

    1988-01-01

    In the past several years, domain decomposition was a very popular topic, partly motivated by the potential of parallelization. While a large body of theory and algorithms were developed for model elliptic problems, they are only recently starting to be tested on realistic applications. The application of some of these methods to two model problems in computational fluid dynamics are investigated. Some examples are two dimensional convection-diffusion problems and the incompressible driven cavity flow problem. The construction and analysis of efficient preconditioners for the interface operator to be used in the iterative solution of the interface solution is described. For the convection-diffusion problems, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is discussed.

  19. Lectures series in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1987-01-01

    The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the test is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated.

  20. Protein Dynamics from NMR and Computer Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Kravchenko, Olga; Kemple, Marvin; Likic, Vladimir; Klimtchuk, Elena; Prendergast, Franklyn

    2002-03-01

    Proteins exhibit internal motions from the millisecond to sub-nanosecond time scale. The challenge is to relate these internal motions to biological function. A strategy to address this aim is to apply a combination of several techniques including high-resolution NMR, computer simulation of molecular dynamics (MD), molecular graphics, and finally molecular biology, the latter to generate appropriate samples. Two difficulties that arise are: (1) the time scale which is most directly biologically relevant (ms to μs) is not readily accessible by these techniques and (2) the techniques focus on local and not collective motions. We will outline methods using ^13C-NMR to help alleviate the second problem, as applied to intestinal fatty acid binding protein, a relatively small intracellular protein believed to be involved in fatty acid transport and metabolism. This work is supported in part by PHS Grant GM34847 (FGP) and by a fellowship from the American Heart Association (QW).

  1. Domain decomposition methods in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gropp, William D.; Keyes, David E.

    1992-01-01

    The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.

  2. Automated domain decomposition for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1990-01-01

    Automation of flow-field zoning in two-dimensions is an important step towards easing the three-dimensional grid generation bottleneck in computational fluid dynamics. A knowledge-based approach works well, but several aspects of flow-field zoning make the use of such an approach challenging. A proposed model and language to describe the process of zoning a flow field are presented, followed by a discussion of the implementation of EZGrid, a knowledge-based two-dimensional (2-D) flow-field zoner. Results are shown for representative two-dimensional aerodynamic configurations. Finally, an approach to the evaluation of flow-field zonings is described and used to compare the performance of EZGrid with that of a human expert.

  3. A perspective of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Kutler, P.

    1986-01-01

    Computational fluid dynamics (CFD) is maturing, and is at a stage in its technological life cycle in which it is now routinely applied to some rather complicated problems; it is starting to create an impact on the design cycle of aerospace flight vehicles and their components. CFD is also being used to better understand the fluid physics of flows heretofore not understood, such as three-dimensional separation. CFD is also being used to complement and is being complemented by experiments. In this paper, the primary and secondary pacing items that govern CFD in the past are reviewed and updated. The future prospects of CFD are explored which will offer people working in the discipline challenges that should extend the technological life cycle to further increase the capabilities of a proven demonstrated technology.

  4. Sawfishes stealth revealed using computational fluid dynamics.

    PubMed

    Bradney, D R; Davidson, A; Evans, S P; Wueringer, B E; Morgan, D L; Clausen, P D

    2017-02-27

    Detailed computational fluid dynamics simulations for the rostrum of three species of sawfish (Pristidae) revealed that negligible turbulent flow is generated from all rostra during lateral swipe prey manipulation and swimming. These results suggest that sawfishes are effective stealth hunters that may not be detected by their teleost prey's lateral line sensory system during pursuits. Moreover, during lateral swipes, the rostra were found to induce little velocity into the surrounding fluid. Consistent with previous data of sawfish feeding behaviour, these data indicate that the rostrum is therefore unlikely to be used to stir up the bottom to uncover benthic prey. Whilst swimming with the rostrum inclined at a small angle to the horizontal, the coefficient of drag of the rostrum is relatively low and the coefficient of lift is zero.

  5. Artificial Intelligence In Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  6. Inexpensive Computation of the Inverse of the Genomic Relationship Matrix in Populations with Small Effective Population Size

    PubMed Central

    Misztal, Ignacy

    2016-01-01

    Many computations with SNP data including genomic evaluation, parameter estimation, and genome-wide association studies use an inverse of the genomic relationship matrix. The cost of a regular inversion is cubic and is prohibitively expensive for large matrices. Recent studies in cattle demonstrated that the inverse can be computed in almost linear time by recursion on any subset of ∼10,000 individuals. The purpose of this study is to present a theory of why such a recursion works and its implication for other populations. Assume that, because of a small effective population size, the additive information in a genotyped population has a small dimensionality, even with a very large number of SNP markers. That dimensionality is visible as a limited number of effective SNP effects, independent chromosome segments, or the rank of the genomic relationship matrix. Decompose a population arbitrarily into core and noncore individuals, with the number of core individuals equal to that dimensionality. Then, breeding values of noncore individuals can be derived by recursions on breeding values of core individuals, with coefficients of the recursion computed from the genomic relationship matrix. A resulting algorithm for the inversion called “algorithm for proven and young” (APY) has a linear computing and memory cost for noncore animals. Noninfinitesimal genetic architecture can be accommodated through a trait-specific genomic relationship matrix, possibly derived from Bayesian regressions. For populations with small effective population size, the inverse of the genomic relationship matrix can be computed inexpensively for a very large number of genotyped individuals. PMID:26584903

  7. SU-C-207-01: Four-Dimensional Inverse Geometry Computed Tomography: Concept and Its Validation

    SciTech Connect

    Kim, K; Kim, D; Kim, T; Kang, S; Cho, M; Shin, D; Suh, T

    2015-06-15

    Purpose: In past few years, the inverse geometry computed tomography (IGCT) system has been developed to overcome shortcomings of a conventional computed tomography (CT) system such as scatter problem induced from large detector size and cone-beam artifact. In this study, we intend to present a concept of a four-dimensional (4D) IGCT system that has positive aspects above all with temporal resolution for dynamic studies and reduction of motion artifact. Methods: Contrary to conventional CT system, projection data at a certain angle in IGCT was a group of fractionated narrow cone-beam projection data, projection group (PG), acquired from multi-source array which have extremely short time gap of sequential operation between each of sources. At this, for 4D IGCT imaging, time-related data acquisition parameters were determined by combining multi-source scanning time for collecting one PG with conventional 4D CBCT data acquisition sequence. Over a gantry rotation, acquired PGs from multi-source array were tagged time and angle for 4D image reconstruction. Acquired PGs were sorted into 10 phase and image reconstructions were independently performed at each phase. Image reconstruction algorithm based upon filtered-backprojection was used in this study. Results: The 4D IGCT had uniform image without cone-beam artifact on the contrary to 4D CBCT image. In addition, the 4D IGCT images of each phase had no significant artifact induced from motion compared with 3D CT. Conclusion: The 4D IGCT image seems to give relatively accurate dynamic information of patient anatomy based on the results were more endurable than 3D CT about motion artifact. From this, it will be useful for dynamic study and respiratory-correlated radiation therapy. This work was supported by the Industrial R&D program of MOTIE/KEIT [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A

  8. A behavior-based inverse kinematics algorithm to predict arm prehension postures for computer-aided ergonomic evaluation.

    PubMed

    Wang, X

    1999-05-01

    In this paper, the computational problem of inverse kinematics of arm prehension movements was investigated. How motions of each joint involved in arm movements can be used to control the end-effector (hand) position and orientation was first examined. It is shown that the inverse kinematics problem due to the kinematic redundancy in joint space is ill-posed only at the control of hand orientation but not at the control of hand position. Based upon this analysis, a previously proposed inverse kinematics algorithm (Wang et Verriest, 1998a) to predict arm reach postures was extended to a seven-DOF arm model to predict arm prehension postures using a separate control of hand position and orientation. The algorithm can be either in rule-based form or by optimization through appropriate choice of weight coefficients. Compared to the algebraic inverse kinematics algorithm, the proposed algorithm can handle the non-linearity of joint limits in a straightforward way. In addition, no matrix inverse calculation is needed, thus avoiding the stability and convergence problems often occurring near a singularity of the Jacobian. Since an end-effector motion-oriented method is used to describe joint movements, observed behaviors of arm movements can be easily implemented in the algorithm. The proposed algorithm provides a general frame for arm postural control and can be used as an efficient postural manipulation tool for computer-aided ergonomic evaluation.

  9. Computational modeling of intraocular gas dynamics

    NASA Astrophysics Data System (ADS)

    Noohi, P.; Abdekhodaie, M. J.; Cheng, Y. L.

    2015-12-01

    The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF6 is 1.4 times more than that of using diluted SF6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency.

  10. Computational modeling of intraocular gas dynamics.

    PubMed

    Noohi, P; Abdekhodaie, M J; Cheng, Y L

    2015-12-18

    The purpose of this study was to develop a computational model to simulate the dynamics of intraocular gas behavior in pneumatic retinopexy (PR) procedure. The presented model predicted intraocular gas volume at any time and determined the tolerance angle within which a patient can maneuver and still gas completely covers the tear(s). Computational fluid dynamics calculations were conducted to describe PR procedure. The geometrical model was constructed based on the rabbit and human eye dimensions. SF6 in the form of pure and diluted with air was considered as the injected gas. The presented results indicated that the composition of the injected gas affected the gas absorption rate and gas volume. After injection of pure SF6, the bubble expanded to 2.3 times of its initial volume during the first 23 h, but when diluted SF6 was used, no significant expansion was observed. Also, head positioning for the treatment of retinal tear influenced the rate of gas absorption. Moreover, the determined tolerance angle depended on the bubble and tear size. More bubble expansion and smaller retinal tear caused greater tolerance angle. For example, after 23 h, for the tear size of 2 mm the tolerance angle of using pure SF6 is 1.4 times more than that of using diluted SF6 with 80% air. Composition of the injected gas and conditions of the tear in PR may dramatically affect the gas absorption rate and gas volume. Quantifying these effects helps to predict the tolerance angle and improve treatment efficiency.

  11. Inversion of potential field data using the finite element method on parallel computers

    NASA Astrophysics Data System (ADS)

    Gross, L.; Altinay, C.; Shaw, S.

    2015-11-01

    In this paper we present a formulation of the joint inversion of potential field anomaly data as an optimization problem with partial differential equation (PDE) constraints. The problem is solved using the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the Hessian operator of the regularization and cross-gradient component of the cost function as preconditioner. We will show that each iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects and for the application of the preconditioner. In extension to the traditional discrete formulation the BFGS method is applied to continuous descriptions of the unknown physical properties in combination with an appropriate integral form of the dot product. The PDEs can easily be solved using standard conforming finite element methods (FEMs) with potentially different resolutions. For two examples we demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE discretization and that as a consequence the method is weakly scalable with the number of cells on parallel computers. We also show a comparison with the UBC-GIF GRAV3D code.

  12. Dynamic optimization: inverse analysis for the Yurchenko layout vault in women's artistic gymnastics.

    PubMed

    Koh, Michael T H; Jennings, Leslie S

    2003-08-01

    The use of dynamic optimization to compute the trajectory of joint torques is not popular due to the large amount of computation required, the choice of initial "guesstimates" of torque values and the mathematical sophistication required to understand the technique. Modern optimal control algorithms circumvent most of these objections to the method. It is our aim to demonstrate that the dynamic optimization technique is feasible for complex movements, using the Yurchenko layout vault as an example. A dynamic optimization method to compute joint torques so that the histories of the angular orientations of the model segments closely approximate the corresponding observed angular coordinate histories is demonstrated with the Yurchenko layout vault using an optimal control package. The objective function used is a measure of distance of fitted segment angles to the data, plus the distance of the fitted whole body centre of mass (CM), from the whole body CM computed from the data. Including the CM into the objective function, facilitates the optimization process so as to obtain a set of torques which reproduced the data. The paper shows that the approach works well for the task examined, that is, where the dynamics of the system change during a movement (impact to postflight).

  13. Accurate and Scalable O(N) Algorithm for First-Principles Molecular-Dynamics Computations on Large Parallel Computers

    SciTech Connect

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-01

    We present the first truly scalable first-principles molecular dynamics algorithm with O(N) complexity and controllable accuracy, capable of simulating systems with finite band gaps of sizes that were previously impossible with this degree of accuracy. By avoiding global communications, we provide a practical computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic wave functions are confined, and a cutoff beyond which the components of the overlap matrix can be omitted when computing selected elements of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to 101 952 atoms on 23 328 processors, with a wall-clock time of the order of 1 min per molecular dynamics time step and numerical error on the forces of less than 7x10-4 Ha/Bohr.

  14. Accurate and scalable O(N) algorithm for first-principles molecular-dynamics computations on large parallel computers.

    PubMed

    Osei-Kuffuor, Daniel; Fattebert, Jean-Luc

    2014-01-31

    We present the first truly scalable first-principles molecular dynamics algorithm with O(N) complexity and controllable accuracy, capable of simulating systems with finite band gaps of sizes that were previously impossible with this degree of accuracy. By avoiding global communications, we provide a practical computational scheme capable of extreme scalability. Accuracy is controlled by the mesh spacing of the finite difference discretization, the size of the localization regions in which the electronic wave functions are confined, and a cutoff beyond which the components of the overlap matrix can be omitted when computing selected elements of its inverse. We demonstrate the algorithm's excellent parallel scaling for up to 101,952 atoms on 23,328 processors, with a wall-clock time of the order of 1 min per molecular dynamics time step and numerical error on the forces of less than 7×10(-4)  Ha/Bohr.

  15. Nonlinear ship waves and computational fluid dynamics.

    PubMed

    Miyata, Hideaki; Orihara, Hideo; Sato, Yohei

    2014-01-01

    Research works undertaken in the first author's laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship's motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process.

  16. Nonlinear ship waves and computational fluid dynamics

    PubMed Central

    MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei

    2014-01-01

    Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139

  17. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    EPA Pesticide Factsheets

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  18. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    EPA Pesticide Factsheets

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  19. Bioreactor studies and computational fluid dynamics.

    PubMed

    Singh, H; Hutmacher, D W

    2009-01-01

    The hydrodynamic environment "created" by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.

  20. Bioreactor Studies and Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Singh, H.; Hutmacher, D. W.

    The hydrodynamic environment “created” by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.

  1. Computational Fluid Dynamics - Applications in Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance

    2012-11-01

    A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.

  2. Influences of experimental parameters and inverse algorithms on nanometer particle size measured by self-designed system based on dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Deng, Shaoyong; Zhang, Qi; Xia, Junying

    2014-12-01

    A totally self-designed experimental system based on dynamic light scattering is developed. The method of photon correlation spectroscopy is used to simulate the autocorrelation of measured scattering photons and scattering field. The dynamic autocorrelation software is self-compiled to replace the popular hardware digital correlator for much more correlation channels and much lower costs. Several inverse algorithms such as 1st-order Cumulants, 2nd-order Cumulants, NNLS, CONTIN and Double Exponents are used to compute the particle sizes and decay linewidths of both monodisperse systems and polydisperse systems. The programs based on these inverse algorithms are all self-compiled except the CONTIN. Influences of systematical parameters such as sample time, the last delay time, elapsed time, suspension's concentration and the baseline of scattering photons autocorrelation on the scattering photon counts, the autocorrelations of scattering photons and scattering field and the distribution of particle sizes are all investigated detailedly and are explained theoretically. The appropriate choices of systematical parameters are pointed out to make the experimental system more perfect. The limitations of the inverse algorithms are described and explained for the self-designed system. The methods of corrected 1st-order Cumulants and corrected Double Exponents are developed to compute particle sizes correctly at wide time scale. The particle sizes measured by the optimized experimental system are very accurate.

  3. Special data base of Informational - Computational System 'INM RAS - Black Sea' for solving inverse and data assimilation problems

    NASA Astrophysics Data System (ADS)

    Zakharova, Natalia; Piskovatsky, Nicolay; Gusev, Anatoly

    2014-05-01

    Development of Informational-Computational Systems (ICS) for data assimilation procedures is one of multidisciplinary problems. To study and solve these problems one needs to apply modern results from different disciplines and recent developments in: mathematical modeling; theory of adjoint equations and optimal control; inverse problems; numerical methods theory; numerical algebra and scientific computing. The above problems are studied in the Institute of Numerical Mathematics of the Russian Academy of Science (INM RAS) in ICS for personal computers. In this work the results on the Special data base development for ICS "INM RAS - Black Sea" are presented. In the presentation the input information for ICS is discussed, some special data processing procedures are described. In this work the results of forecast using ICS "INM RAS - Black Sea" with operational observation data assimilation are presented. This study was supported by the Russian Foundation for Basic Research (project No 13-01-00753) and by Presidium Program of Russian Academy of Sciences (project P-23 "Black sea as an imitational ocean model"). References 1. V.I. Agoshkov, M.V. Assovskii, S.A. Lebedev, Numerical simulation of Black Sea hydrothermodynamics taking into account tide-forming forces. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 5-31. 2. E.I. Parmuzin, V.I. Agoshkov, Numerical solution of the variational assimilation problem for sea surface temperature in the model of the Black Sea dynamics. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 69-94. 3. V.B. Zalesny, N.A. Diansky, V.V. Fomin, S.N. Moshonkin, S.G. Demyshev, Numerical model of the circulation of Black Sea and Sea of Azov. Russ. J. Numer. Anal. Math. Modelling (2012) 27, No.1, pp. 95-111. 4. Agoshkov V.I.,Assovsky M.B., Giniatulin S. V., Zakharova N.B., Kuimov G.V., Parmuzin E.I., Fomin V.V. Informational Computational system of variational assimilation of observation data "INM RAS - Black sea"// Ecological

  4. Inverse modeling of dynamic nonequilibrium in water flow with an effective approach

    NASA Astrophysics Data System (ADS)

    Diamantopoulos, E.; Iden, S. C.; Durner, W.

    2012-03-01

    Observations of water flow in unsaturated soils often show "dynamic effects," indicated by nonequilibrium between water contents and water potential, a phenomenon that cannot be modeled with the Richards equation. The objective of this article is to formulate an effective process description of dynamic nonequilibrium flow in variably saturated soil which is both flexible enough to match experimental observations and as parsimonious as possible to allow unique parameter estimation by inverse modeling. In the conceptual model, water content is partitioned into two fractions. Water in one fraction is in equilibrium with the pressure head, whereas water in the second fraction is in nonequilibrium, described by the kinetic equilibration approach of Ross and Smettem (2000). Between the two fractions an instantaneous equilibration of the pressure head is assumed. The new model, termed the dual-fraction nonequilibrium model, requires only one additional parameter compared to the nonequilibrium approach of Ross and Smettem. We tested the model with experimental data from multistep outflow experiments conducted on two soils and compared it to the Richards equation, the nonequilibrium model of Ross and Smettem, and the dual-porosity model of Philip (1968). The experimental data were evaluated by inverse modeling using a robust Markov chain Monte Carlo sampler. The results show that the proposed model is superior to the Richards equation and the Ross and Smettem model in describing dynamic nonequilibrium effects occurring in multistep outflow experiments. The three popular model selection criteria (Akaike information criterion, Bayesian information criterion, and deviance information criterion) all favored the new model because of its smaller number of parameters.

  5. Methodology for Uncertainty Analysis of Dynamic Computational Toxicology Models

    EPA Science Inventory

    The task of quantifying the uncertainty in both parameter estimates and model predictions has become more important with the increased use of dynamic computational toxicology models by the EPA. Dynamic toxicological models include physiologically-based pharmacokinetic (PBPK) mode...

  6. Methodology for Uncertainty Analysis of Dynamic Computational Toxicology Models

    EPA Science Inventory

    The task of quantifying the uncertainty in both parameter estimates and model predictions has become more important with the increased use of dynamic computational toxicology models by the EPA. Dynamic toxicological models include physiologically-based pharmacokinetic (PBPK) mode...

  7. Computational issues of importance to the inverse recovery of epicardial potentials in a realistic heart-torso geometry.

    PubMed

    Messinger-Rapport, B J; Rudy, Y

    1989-11-01

    In vitro data from a realistic-geometry electrolytic tank were used to demonstrate the consequences of computational issues critical to the ill-posed inverse problem in electrocardiography. The boundary element method was used to discretize the relationship between the body surface potentials and epicardial cage potentials. Variants of Tikhonov regularization were used to stabilize the inversion of the body surface potentials in order to reconstruct the epicardial surface potentials. The computational issues investigated were (1) computation of the regularization parameter; (2) effects of inaccuracy in locating the position of the heart; and (3) incorporation of a priori information on the properties of epicardial potentials into the regularization methodology. Two methods were suggested by which a priori information could be incorporated into the regularization formulation: (1) use of an estimate of the epicardial potential distribution everywhere on the surface and (2) use of regional bounds on the excursion of the potential. Results indicate that the a posteriori technique called CRESO, developed by Colli Franzone and coworkers, most consistently derives the regularization parameter closest to the optimal parameter for this experimental situation. The sensitivity of the inverse computation in a realistic-geometry torso to inaccuracies in estimating heart position are consistent with results from the eccentric spheres model; errors of 1 cm are well tolerated, but errors of 2 cm or greater result in a loss of position and amplitude information. Finally, estimates and bounds based on accurate, known information successfully lower the relative error associated with the inverse and have the potential to significantly enhance the amplitude and feature position information obtainable from the inverse-reconstructed epicardial potential map.

  8. On the Estimation Accuracy of the 3D Body Center of Mass Trajectory during Human Locomotion: Inverse vs. Forward Dynamics.

    PubMed

    Pavei, Gaspare; Seminati, Elena; Cazzola, Dario; Minetti, Alberto E

    2017-01-01

    The dynamics of body center of mass (BCoM) 3D trajectory during locomotion is crucial to the mechanical understanding of the different gaits. Forward Dynamics (FD) obtains BCoM motion from ground reaction forces while Inverse Dynamics (ID) estimates BCoM position and speed from motion capture of body segments. These two techniques are widely used by the literature on the estimation of BCoM. Despite the specific pros and cons of both methods, FD is less biased and considered as the golden standard, while ID estimates strongly depend on the segmental model adopted to schematically represent the moving body. In these experiments a single subject walked, ran, (uni- and bi-laterally) skipped, and race-walked at a wide range of speeds on a treadmill with force sensors underneath. In all conditions a simultaneous motion capture (8 cameras, 36 markers) took place. 3D BCoM trajectories computed according to five marker set models of ID have been compared to the one obtained by FD on the same (about 2,700) strides. Such a comparison aims to check the validity of the investigated models to capture the "true" dynamics of gaits in terms of distance between paths, mechanical external work and energy recovery. Results allow to conclude that: (1) among gaits, race walking is the most critical in being described by ID, (2) among the investigated segmental models, those capturing the motion of four limbs and trunk more closely reproduce the subtle temporal and spatial changes of BCoM trajectory within the strides of most gaits, (3) FD-ID discrepancy in external work is speed dependent within a gait in the most unsuccessful models, and (4) the internal work is not affected by the difference in BCoM estimates.

  9. On the Estimation Accuracy of the 3D Body Center of Mass Trajectory during Human Locomotion: Inverse vs. Forward Dynamics

    PubMed Central

    Pavei, Gaspare; Seminati, Elena; Cazzola, Dario; Minetti, Alberto E.

    2017-01-01

    The dynamics of body center of mass (BCoM) 3D trajectory during locomotion is crucial to the mechanical understanding of the different gaits. Forward Dynamics (FD) obtains BCoM motion from ground reaction forces while Inverse Dynamics (ID) estimates BCoM position and speed from motion capture of body segments. These two techniques are widely used by the literature on the estimation of BCoM. Despite the specific pros and cons of both methods, FD is less biased and considered as the golden standard, while ID estimates strongly depend on the segmental model adopted to schematically represent the moving body. In these experiments a single subject walked, ran, (uni- and bi-laterally) skipped, and race-walked at a wide range of speeds on a treadmill with force sensors underneath. In all conditions a simultaneous motion capture (8 cameras, 36 markers) took place. 3D BCoM trajectories computed according to five marker set models of ID have been compared to the one obtained by FD on the same (about 2,700) strides. Such a comparison aims to check the validity of the investigated models to capture the “true” dynamics of gaits in terms of distance between paths, mechanical external work and energy recovery. Results allow to conclude that: (1) among gaits, race walking is the most critical in being described by ID, (2) among the investigated segmental models, those capturing the motion of four limbs and trunk more closely reproduce the subtle temporal and spatial changes of BCoM trajectory within the strides of most gaits, (3) FD-ID discrepancy in external work is speed dependent within a gait in the most unsuccessful models, and (4) the internal work is not affected by the difference in BCoM estimates. PMID:28337148

  10. A flexible, extendable, modular and computationally efficient approach to scattering-integral-based seismic full waveform inversion

    NASA Astrophysics Data System (ADS)

    Schumacher, F.; Friederich, W.; Lamara, S.

    2016-02-01

    We present a new conceptual approach to scattering-integral-based seismic full waveform inversion (FWI) that allows a flexible, extendable, modular and both computationally and storage-efficient numerical implementation. To achieve maximum modularity and extendability, interactions between the three fundamental steps carried out sequentially in each iteration of the inversion procedure, namely, solving the forward problem, computing waveform sensitivity kernels and deriving a model update, are kept at an absolute minimum and are implemented by dedicated interfaces. To realize storage efficiency and maximum flexibility, the spatial discretization of the inverted earth model is allowed to be completely independent of the spatial discretization employed by the forward solver. For computational efficiency reasons, the inversion is done in the frequency domain. The benefits of our approach are as follows: (1) Each of the three stages of an iteration is realized by a stand-alone software program. In this way, we avoid the monolithic, unflexible and hard-to-modify codes that have often been written for solving inverse problems. (2) The solution of the forward problem, required for kernel computation, can be obtained by any wave propagation modelling code giving users maximum flexibility in choosing the forward modelling method. Both time-domain and frequency-domain approaches can be used. (3) Forward solvers typically demand spatial discretizations that are significantly denser than actually desired for the inverted model. Exploiting this fact by pre-integrating the kernels allows a dramatic reduction of disk space and makes kernel storage feasible. No assumptions are made on the spatial discretization scheme employed by the forward solver. (4) In addition, working in the frequency domain effectively reduces the amount of data, the number of kernels to be computed and the number of equations to be solved. (5) Updating the model by solving a large equation system can be

  11. Comparative analysis of methods for estimating arm segment parameters and joint torques from inverse dynamics.

    PubMed

    Piovesan, Davide; Pierobon, Alberto; Dizio, Paul; Lackner, James R

    2011-03-01

    A common problem in the analyses of upper limb unfettered reaching movements is the estimation of joint torques using inverse dynamics. The inaccuracy in the estimation of joint torques can be caused by the inaccuracy in the acquisition of kinematic variables, body segment parameters (BSPs), and approximation in the biomechanical models. The effect of uncertainty in the estimation of body segment parameters can be especially important in the analysis of movements with high acceleration. A sensitivity analysis was performed to assess the relevance of different sources of inaccuracy in inverse dynamics analysis of a planar arm movement. Eight regression models and one water immersion method for the estimation of BSPs were used to quantify the influence of inertial models on the calculation of joint torques during numerical analysis of unfettered forward arm reaching movements. Thirteen subjects performed 72 forward planar reaches between two targets located on the horizontal plane and aligned with the median plane. Using a planar, double link model for the arm with a floating shoulder, we calculated the normalized joint torque peak and a normalized root mean square (rms) of torque at the shoulder and elbow joints. Statistical analyses quantified the influence of different BSP models on the kinetic variable variance for given uncertainty on the estimation of joint kinematics and biomechanical modeling errors. Our analysis revealed that the choice of BSP estimation method had a particular influence on the normalized rms of joint torques. Moreover, the normalization of kinetic variables to BSPs for a comparison among subjects showed that the interaction between the BSP estimation method and the subject specific somatotype and movement kinematics was a significant source of variance in the kinetic variables. The normalized joint torque peak and the normalized root mean square of joint torque represented valuable parameters to compare the effect of BSP estimation methods

  12. Nature computes: information processing in quantum dynamical systems.

    PubMed

    Wiesner, Karoline

    2010-09-01

    Nature intrinsically computes. It has been suggested that the entire universe is a computer, in particular, a quantum computer. To corroborate this idea we require tools to quantify the information processing. Here we review a theoretical framework for quantifying information processing in a quantum dynamical system. So-called intrinsic quantum computation combines tools from dynamical systems theory, information theory, quantum mechanics, and computation theory. We will review how far the framework has been developed and what some of the main open questions are. On the basis of this framework we discuss upper and lower bounds for intrinsic information storage in a quantum dynamical system.

  13. Nonlinear Inversion for Dynamic Rupture Parameters from the 2004 Mw6.0 Parkfield Earthquake

    NASA Astrophysics Data System (ADS)

    Jimenez, R. M.; Olsen, K. B.

    2007-12-01

    The Parkfield section of the San Andreas Fault has produced repeated moderate-size earthquakes at fairly regular intervals and is therefore an important target for investigations of rupture initiation, propagation and arrest, which could eventually lead to clues on earthquake prediction. The most recent member of the Parkfield series of earthquakes, the 2004 Mw6.0 event, produced a considerable amount of high-resolution strong motion data, and provides an ideal test bed for analysis of the dynamic rupture propagation. Here, we use a systematic nonlinear direct-search method to invert strong-ground motion data (less than 1 Hz) at 37 stations to obtain models of the slip weakening distance and spatially-varying stress drop (8 by 4 subfaults) on the (vertical) causative segment of the San Andreas fault (40 km long by 15 km wide), along with spatial-temporal coseismic slip distributions. The rupture and wave propagation modeling is performed by a three-dimensional finite-difference method with a slip- weakening friction law and the stress-glut dynamic-rupture formulation (Andrews, 1999), and the inversion is carried out by a neighborhood algorithm (Sambridge, 1999), minimizing the least-squares misfit between the calculated and observed seismograms. The dynamic rupture is nucleated artificially by lowering the yield stress in a 3 km by 3 km patch centered at the location of the hypocenter estimated from strong motion data. Outside the nucleation patch the yield stress is kept constant (5-10 MPa), and we constrain the slip-weakening distance to values less than 1 m. We compare the inversion results for two different velocity models: (1) a 3-D model based on the P-wave velocity structure by Thurber (2006), with S-wave and density relations based on Brocher (2005), and (2) a combination of two different 1-D layered velocity structures on either side of the fault, as proposed by Liu et al. (2006). Due to the non-uniqueness of the problem, the inversion provides an ensemble

  14. Inclusion of inversion symmetry in centroid molecular dynamics: A possible avenue to recover quantum coherence

    SciTech Connect

    Huh, Yoonjung; Roy, Pierre-Nicholas

    2006-10-28

    Inversion symmetry is included in the operator formulation of the centroid molecular dynamics (CMD). This work involves the development of a symmetry-adapted CMD (SA-CMD), here particularly for symmetrization and antisymmetrization projections. A symmetry-adapted quasidensity operator, as defined by Blinov and Roy [J. Chem. Phys. 115, 7822 (2001)], is employed to obtain the centroid representation of quantum mechanical operators. Numerical examples are given for a single particle confined to one-dimensional symmetric quartic and symmetric double-well potentials. Two SA-CMD simulations are performed separately for both projections, and centroid position autocorrelation functions are obtained. For each projection, the quality of the approximation as well as the accuracy are similar to those of regular CMD. It is shown that individual trajectories from two separate SA-CMD simulations can be properly combined to recover trajectories for Boltzmann statistics. Position autocorrelation functions are compared to the exact quantum mechanical ones. This explicit account of inversion symmetry provides a qualitative improvement on the conventional CMD approach and allows the recovery of some quantum coherence.

  15. Dynamic Figure Eight Chirality: Multifarious Inversions of a Helical Preference Induced by Complexation.

    PubMed

    Katoono, Ryo; Tanaka, Yuki; Kusaka, Keiichi; Fujiwara, Kenshu; Suzuki, Takanori

    2015-08-07

    We demonstrate two types of inversion of a helical preference upon the 1:1 complexation of a dynamic figure eight molecule with a guest molecule through the controlled transmission of point chirality. We designed a series of macrocycles that prefer a nonplanar conformation with figure eight chirality. These macrocycles are composed of a chirality-transferring unit (terephthalamide) and a structure-modifying unit (two o-phenylene rings spaced with a varying number of triple bonds). The former unit provides a binding site for capturing a guest molecule through the formation of hydrogen bonds. The attachment of chiral auxiliaries to the former unit induces a helical preference for a particular sense through the intramolecular transmission of point chirality. For relatively small-sized macrocycles, the preferred sense was reversed upon complexation with an achiral guest. Contrary preferences before and after complexation were both seen for chiral auxiliaries associated with a figure eight host through two-way intramolecular transmission of the single chiral source. Alternatively, the helical preference induced in relatively large-sized macrocycles was reversed only when a figure eight host formed a 1:1 complex with a particular enantiomeric guest through the supramolecular transmission of point chirality in the guest. This stereospecific inversion of a helical preference is rare.

  16. Computational fluid dynamics modelling in cardiovascular medicine

    PubMed Central

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019

  17. Computational fluid dynamics modelling in cardiovascular medicine.

    PubMed

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.

  18. Inverse patchy colloids with small patches: fluid structure and dynamical slowing down

    NASA Astrophysics Data System (ADS)

    Ferrari, Silvano; Bianchi, Emanuela; Kalyuzhnyi, Yura V.; Kahl, Gerhard

    2015-06-01

    Inverse patchy colloids (IPCs) differ from conventional patchy particles because their patches repel (rather than attract) each other and attract (rather than repel) the part of the colloidal surface that is free of patches. These particular features occur, e.g. in heterogeneously charged colloidal systems. Here we consider overall neutral IPCs carrying two, relatively small, polar patches. Previous studies of the same model under planar confinement have evidenced the formation of branched, disordered aggregates composed of ring-like structures. We investigate here the bulk behavior of the system via molecular dynamics simulations, focusing on both the structure and the dynamics of the fluid phase in a wide region of the phase diagram. Additionally, the simulation results for the static observables are compared to the Associative Percus Yevick solution of an integral equation approach based on the multi-density Ornstein-Zernike theory. A good agreement between theoretical and numerical quantities is observed even in the region of the phase diagram where the slowing down of the dynamics occurs.

  19. Inverse dynamic investigation of voluntary trunk movements in weightlessness: a new microgravity-specific strategy.

    PubMed

    Pedrocchi, Alessandra; Pedotti, Antonio; Baroni, Guido; Massion, Jean; Ferrigno, Giancarlo

    2003-11-01

    Present investigation faces the question of quantitative assessment of exchanged forces and torques at the restraints during whole body posture exercises in long-term microgravity. Inverse dynamic modelling and total angular momentum at the ankle joint were used in order to reconstruct movement dynamics at the restraining point, represented by the ankle joint. The hypothesis is that the minimisation of the torques at the interface point assumes a key role in movement planning in 0 g. This hypothesis would respond to an optimisation of muscles activity, a minimisation of energy expenditure and therefore an accurate control of body movement. Results show that the 0 g movement strategy adopted ensures that the integral of the net ankle moment between the beginning and the end of the movement is zero. This expected mechanical constraint is not satisfied when 0 g movement dynamics is simulated using terrestrial kinematics. This accounts for a significant imposed change of movement strategy. Particularly, the efficient compensation of the inertial effects of the segments in terms of total angular momentum at the ankle joint was evidenced. These results explain the exaggerated axial synergies, observed on kinematics and which moved centre of mass (CM) backward from its already backward initial positioning, as a tool for enhancing the compensation and achieving the desired minimisation of the torques exchanges at the restraints.

  20. Neural Network Assisted Inverse Dynamic Guidance for Terminally Constrained Entry Flight

    PubMed Central

    Chen, Wanchun

    2014-01-01

    This paper presents a neural network assisted entry guidance law that is designed by applying Bézier approximation. It is shown that a fully constrained approximation of a reference trajectory can be made by using the Bézier curve. Applying this approximation, an inverse dynamic system for an entry flight is solved to generate guidance command. The guidance solution thus gotten ensures terminal constraints for position, flight path, and azimuth angle. In order to ensure terminal velocity constraint, a prediction of the terminal velocity is required, based on which, the approximated Bézier curve is adjusted. An artificial neural network is used for this prediction of the terminal velocity. The method enables faster implementation in achieving fully constrained entry flight. Results from simulations indicate improved performance of the neural network assisted method. The scheme is expected to have prospect for further research on automated onboard control of terminal velocity for both reentry and terminal guidance laws. PMID:24723821

  1. Dynamics of Mount Somma-Vesuvius edifice: from stress field inversion to analogue and numerical modelling

    NASA Astrophysics Data System (ADS)

    De Matteo, Ada; Massa, Bruno; D'Auria, Luca; Castaldo, Raffaele

    2017-04-01

    Geological processes are generally very complex and too slow to be directly observed in their completeness; modelling procedures overcome this limit. The state of stress in the upper lithosphere is the main responsible for driving geodynamical processes; in order to retrieve the active stress field in a rock volume, stress inversion techniques can be applied on both seismological and structural datasets. This approach has been successfully applied to active tectonics as well as volcanic areas. In this context the best approach in managing heterogeneous datasets in volcanic environments consists in the analysis of spatial variations of the stress field by applying robust techniques of inversion. The study of volcanic seismicity is an efficient tool to retrieve spatial and temporal pattern of the pre-, syn- and inter-eruptive stress field: magma migration as well as dynamics of magma chamber and hydrothermal system are directly connected to the volcanic seismicity. Additionally, analysis of the temporal variations of stress field pattern in volcanoes could be a useful monitoring tool. Recently the stress field acting on several active volcanoes has been investigated by using stress inversion techniques on seismological datasets (Massa et al., 2016). The Bayesian Right Trihedra Method (BRTM; D'Auria and Massa, 2015) is able to successfully manage heterogeneous datasets allowing the identification of regional fields locally overcame by the stress field due to volcano specific dynamics. In particular, the analysis of seismicity and stress field inversion at the Somma-Vesuvius highlighted the presence of two superposed volumes characterized by different behaviour and stress field pattern: a top volume dominated by an extensional stress field, in accordance with a gravitational spreading-style of deformation, and a bottom volume related to a regional extensional stress field. In addition, in order to evaluate the dynamics of deformation, both analogue and numerical

  2. Full Dynamic Compound Inverse Method: Extension to General and Rayleigh damping

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Rizzi, Egidio

    2017-01-01

    The present paper takes from the original output-only identification approach named Full Dynamic Compound Inverse Method (FDCIM), recently published on this journal by the authors, and proposes an innovative, much enhanced version, in the description of more general forms of structural damping, including for classically adopted Rayleigh damping. This has led to an extended FDCIM formulation, which offers superior performance, on all the targeted identification parameters, namely: modal properties, Rayleigh damping coefficients, structural features at the element-level and input seismic excitation time history. Synthetic earthquake-induced structural response signals are adopted as input channels for the FDCIM approach, towards comparison and validation. The identification algorithm is run first on a benchmark 3-storey shear-type frame, and then on a realistic 10-storey frame, also by considering noise added to the response signals. Consistency of the identification results is demonstrated, with definite superiority of this latter FDCIM proposal.

  3. Full Dynamic Compound Inverse Method: Extension to General and Rayleigh damping

    NASA Astrophysics Data System (ADS)

    Pioldi, Fabio; Rizzi, Egidio

    2017-04-01

    The present paper takes from the original output-only identification approach named Full Dynamic Compound Inverse Method (FDCIM), recently published on this journal by the authors, and proposes an innovative, much enhanced version, in the description of more general forms of structural damping, including for classically adopted Rayleigh damping. This has led to an extended FDCIM formulation, which offers superior performance, on all the targeted identification parameters, namely: modal properties, Rayleigh damping coefficients, structural features at the element-level and input seismic excitation time history. Synthetic earthquake-induced structural response signals are adopted as input channels for the FDCIM approach, towards comparison and validation. The identification algorithm is run first on a benchmark 3-storey shear-type frame, and then on a realistic 10-storey frame, also by considering noise added to the response signals. Consistency of the identification results is demonstrated, with definite superiority of this latter FDCIM proposal.

  4. Computational social dynamic modeling of group recruitment.

    SciTech Connect

    Berry, Nina M.; Lee, Marinna; Pickett, Marc; Turnley, Jessica Glicken; Smrcka, Julianne D.; Ko, Teresa H.; Moy, Timothy David; Wu, Benjamin C.

    2004-01-01

    The Seldon software toolkit combines concepts from agent-based modeling and social science to create a computationally social dynamic model for group recruitment. The underlying recruitment model is based on a unique three-level hybrid agent-based architecture that contains simple agents (level one), abstract agents (level two), and cognitive agents (level three). This uniqueness of this architecture begins with abstract agents that permit the model to include social concepts (gang) or institutional concepts (school) into a typical software simulation environment. The future addition of cognitive agents to the recruitment model will provide a unique entity that does not exist in any agent-based modeling toolkits to date. We use social networks to provide an integrated mesh within and between the different levels. This Java based toolkit is used to analyze different social concepts based on initialization input from the user. The input alters a set of parameters used to influence the values associated with the simple agents, abstract agents, and the interactions (simple agent-simple agent or simple agent-abstract agent) between these entities. The results of phase-1 Seldon toolkit provide insight into how certain social concepts apply to different scenario development for inner city gang recruitment.

  5. Computational fluid dynamics in ventilation: Practical approach

    NASA Astrophysics Data System (ADS)

    Fontaine, J. R.

    The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.

  6. Dynamical Properties of Polymers: Computational Modeling

    SciTech Connect

    CURRO, JOHN G.; ROTTACH, DANA; MCCOY, JOHN D.

    2001-01-01

    The free volume distribution has been a qualitatively useful concept by which dynamical properties of polymers, such as the penetrant diffusion constant, viscosity, and glass transition temperature, could be correlated with static properties. In an effort to put this on a more quantitative footing, we define the free volume distribution as the probability of finding a spherical cavity of radius R in a polymer liquid. This is identical to the insertion probability in scaled particle theory, and is related to the chemical potential of hard spheres of radius R in a polymer in the Henry's law limit. We used the Polymer Reference Interaction Site Model (PRISM) theory to compute the free volume distribution of semiflexible polymer melts as a function of chain stiffness. Good agreement was found with the corresponding free volume distributions obtained from MD simulations. Surprisingly, the free volume distribution was insensitive to the chain stiffness, even though the single chain structure and the intermolecular pair correlation functions showed a strong dependence on chain stiffness. We also calculated the free volume distributions of polyisobutylene (PIB) and polyethylene (PE) at 298K and at elevated temperatures from PRISM theory. We found that PIB has more of its free volume distributed in smaller size cavities than for PE at the same temperature.

  7. Autonomous Path-Following by Approximate Inverse Dynamics and Vector Field Prediction

    NASA Astrophysics Data System (ADS)

    Gerlach, Adam R.

    In this dissertation, we develop two general frameworks for the navigation and control of autonomous vehicles that must follow predefined paths. These frameworks are designed such that they inherently provide accurate navigation and control of a wide class of systems directly from a model of the vehicle's dynamics. The first framework introduced is the inverse dynamics by radial basis function (IDRBF) algorithm, which exploits the best approximation property of radial basis functions to accurately approximate the inverse dynamics of non-linear systems. This approximation is then used with the known, desired state of the system at a future time point to generate the system input that must be applied to reach the desired state in the specified time interval. The IDRBF algorithm is then tested on two non-linear dynamic systems, and accurate path-following is demonstrated. The second framework introduced is the predictive vector field (PVF) algorithm. The PVF algorithm uses the equations of motion and constraints of the system to predict a set of reachable states by sampling the system's configuration space. By finding and minimizing a continuous mapping between the system's configuration space and a cost space relating the reachable states of the system with a vector field (VF), one can determine the system inputs required to follow the VF. The PVF algorithm is then tested on the Dubin's vehicle and aircraft models, and accurate path-following is demonstrated. As the PVF algorithm's performance is dependent on the quality of the underlying system model and VF, algorithms are introduced for automatically generating VFs for constant altitude paths defined by a series of waypoints and for handling modeling uncertainties. Additionally, we provide a mathematical proof showing that this method can automatically produce VFs of the desired form. To handle modeling uncertainties, we enhance the PVF algorithm with the Gaussian process machine learning framework, enabling the

  8. Application of concurrent processing to structural dynamic response computations

    NASA Technical Reports Server (NTRS)

    Ransom, J.; Sotraasli, O.; Fulton, R.

    1984-01-01

    Described are the experiences gained from solving for the dynamic response of two simple structures on an experimental Multiple Instruction Multiple Data (MIMD) computer called the finite element machine. Introduced are MIMD computing concepts, describing how the concurrent algorithmic techniques implemented and giving results for the two example problems. The results show computational speedups of up to 7.83 using eight of the finite element machine processors and indicate that significant computational speedups are possible for large order structural computations.

  9. Computationally-efficient algorithms for sparse, dynamic solutions to the EEG source localization problem.

    PubMed

    Pirondini, Elvira; Babadi, Behtash; Obregon-Henao, Gabriel; Lamus, Camilo; Malik, Wasim Q; Hamalainen, Matti S; Purdon, Patrick L

    2017-09-14

    Electroencephalography (EEG) and magnetoencephalography (MEG) non-invasively record scalp electromagnetic fields generated by cerebral currents, revealing millisecond-level brain dynamics useful for neuroscience and clinical applications. Estimating the currents that generate these fields, i.e., source localization, is an ill-conditioned inverse problem. Solutions to this problem have focused on spatial continuity constraints, dynamic modeling, or sparsity constraints. The combination of these key ideas could offer significant performance improvements, but substantial computational costs pose a challenge for practical application of such approaches. Here we propose a new method for EEG source localization that combines 1) covariance estimation for both source and measurement noises, 2) linear state-space dynamics, and 3) sparsity constraints, using 4) novel computationally-efficient estimation algorithms. For source covariance estimation, we use a locally-smooth basis alongside sparsity enforcing priors. For EEG measurement noise covariance estimation, we use an inverse Wishart prior density. We estimate these model parameters using an expectation-maximization algorithm that employs steady-state filtering and smoothing to expedite computations. We characterized the performance of our method by analyzing simulated data and experimental recordings of eyes-closed alpha oscillations. Our sparsity enforcing priors significantly improved estimation of both the spatial distribution and time course of simulated data, while improving computational time by more than 12-fold over previous dynamic methods. We developed and demonstrated a novel method for improved EEG source localization employing spatial covariance estimation, dynamics, and sparsity. Our approach provides substantial performance improvements over existing methods using computationally-efficient algorithms that will facilitate practical applications in both neuroscience and medicine.

  10. Improvement of reliability of molecular DNA computing: solution of inverse problem of Raman spectroscopy using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Dolenko, T. A.; Burikov, S. A.; Vervald, E. N.; Efitorov, A. O.; Laptinskiy, K. A.; Sarmanova, O. E.; Dolenko, S. A.

    2017-02-01

    Elaboration of methods for the control of biochemical reactions with deoxyribonucleic acid (DNA) strands is necessary for the solution of one of the basic problems in the creation of biocomputers—improvement in the reliability of molecular DNA computing. In this paper, the results of the solution of the four-parameter inverse problem of laser Raman spectroscopy—the determination of the type and concentration of each of the DNA nitrogenous bases in multi-component solutions—are presented.

  11. A computationally efficient scheme for the inversion of large scale potential field data: Application to synthetic and real data

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Meng, Xiaohong; Li, Fang

    2015-12-01

    Three dimensional (3D) inversion of potential field data from large scale surveys attempts to recover density or magnetic susceptibility distribution in the subspace for geological interpretation. It is computationally challenging and is not feasible on desktop computers. We propose an integrated scheme to address this problem. We adopt adaptive sampling to compress the dataset, and the cross curve of the data compression ratio and correlation coefficient between the initial and sampled data is used to choose the damping factor for adaptive sampling. Then, the conventional inversion algorithm in model space is transformed to data space, using the identity relationship between different matrices, which greatly reduces the memory requirement. Finally, parallel computation is employed to accelerate calculation of the kernel function. We use the conjugate gradient method to minimize the objective function and a damping factor is introduced to stabilize the iterative process. A wide variety of constraint options are also considered, such as depth weighing, sparseness, and boundary limits. We design a synthetic magnetic model with three prismatic susceptibility causative bodies to demonstrate the effectiveness of the proposed scheme. Tests on synthetic data show that the proposed scheme provides significant reduction in memory and time consumption, and the inversion result is reliable. These advantages hold true for practical field magnetic data from the Hawsons mining area in Australia, verifying the effectiveness of the proposed scheme.

  12. Analysis of RAE-1 inversion

    NASA Technical Reports Server (NTRS)

    Hedland, D. A.; Degonia, P. K.

    1974-01-01

    The RAE-1 spacecraft inversion performed October 31, 1972 is described based upon the in-orbit dynamical data in conjunction with results obtained from previously developed computer simulation models. The computer simulations used are predictive of the satellite dynamics, including boom flexing, and are applicable during boom deployment and retraction, inter-phase coast periods, and post-deployment operations. Attitude data, as well as boom tip data, were analyzed in order to obtain a detailed description of the dynamical behavior of the spacecraft during and after the inversion. Runs were made using the computer model and the results were analyzed and compared with the real time data. Close agreement between the actual recorded spacecraft attitude and the computer simulation results was obtained.

  13. Extracting functional components of neural dynamics with Independent Component Analysis and inverse Current Source Density.

    PubMed

    Lęski, Szymon; Kublik, Ewa; Swiejkowski, Daniel A; Wróbel, Andrzej; Wójcik, Daniel K

    2010-12-01

    Local field potentials have good temporal resolution but are blurred due to the slow spatial decay of the electric field. For simultaneous recordings on regular grids one can reconstruct efficiently the current sources (CSD) using the inverse Current Source Density method (iCSD). It is possible to decompose the resultant spatiotemporal information about the current dynamics into functional components using Independent Component Analysis (ICA). We show on test data modeling recordings of evoked potentials on a grid of 4 × 5 × 7 points that meaningful results are obtained with spatial ICA decomposition of reconstructed CSD. The components obtained through decomposition of CSD are better defined and allow easier physiological interpretation than the results of similar analysis of corresponding evoked potentials in the thalamus. We show that spatiotemporal ICA decompositions can perform better for certain types of sources but it does not seem to be the case for the experimental data studied. Having found the appropriate approach to decomposing neural dynamics into functional components we use the technique to study the somatosensory evoked potentials recorded on a grid spanning a large part of the forebrain. We discuss two example components associated with the first waves of activation of the somatosensory thalamus. We show that the proposed method brings up new, more detailed information on the time and spatial location of specific activity conveyed through various parts of the somatosensory thalamus in the rat.

  14. Dynamic topography, gravity and the role of lateral viscosity variations from inversion of global mantle flow

    NASA Astrophysics Data System (ADS)

    Yang, Ting; Gurnis, Michael

    2016-11-01

    Lateral viscosity variations (LVVs) in the mantle influence geodynamic processes and their surface expressions. With the observed long-wavelength geoid, free-air anomaly, gravity gradient in three directions and discrete, high-accuracy residual topography, we invert for depth- and temperature-dependent and tectonically regionalized mantle viscosity with a mantle flow model. The inversions suggest that long-wavelength gravitational and topographic signals are mainly controlled by the radial viscosity profile; the pre-Cambrian lithosphere viscosity is slightly (˜ one order of magnitude) higher than that of oceanic and Phanerozoic lithosphere; plate margins are substantially weaker than plate interiors; and viscosity has only a weak apparent, dependence on temperature, suggesting either a balancing between factors or a smoothing of actual higher amplitude, but short wavelength, LVVs. The predicted large-scale lithospheric stress regime (compression or extension) is consistent with the world stress map (thrust or normal faulting). Both recent compiled high-accuracy residual topography and the predicted dynamic topography yield ˜1 km amplitude long-wavelength dynamic topography, inconsistent with recent studies suggesting amplitudes of ˜100 to ˜500 m. Such studies use a constant, positive admittance (transfer function between topography and gravity), in contrast to the evidence which shows that the earth has a spatially and wavelength-dependent admittance, with large, negative admittances between ˜4000 and ˜104 km wavelengths.

  15. Visualization of vortical flows in computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Emel'yanov, V. N.; Teterina, I. V.; Yakovchuk, M. S.

    2017-08-01

    The concepts and methods of the visual representation of fluid dynamics computations of vortical flows are studied. Approaches to the visualization of vortical flows based on the use of various definitions of a vortex and various tests for its identification are discussed. Examples of the visual representation of solutions to some fluid dynamics problems related to the computation of vortical flows in jets, channels, and cavities and of the computation of separated flows occurring in flows around bodies of various shapes are discussed.

  16. Dynamic leaching test of personal computer components.

    PubMed

    Li, Yadong; Richardson, Jay B; Niu, Xiaojun; Jackson, Ollie J; Laster, Jeremy D; Walker, Aaron K

    2009-11-15

    A dynamic leaching test (DLT) was developed and used to evaluate the leaching of toxic substances for electronic waste in the environment. The major components in personal computers (PCs) including motherboards, hard disc drives, floppy disc drives, and compact disc drives were tested. The tests lasted for 2 years for motherboards and 1.5 year for the disc drives. The extraction fluids for the standard toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) were used as the DLT leaching solutions. A total of 18 elements including Ag, Al, As, Au, Ba, Be, Cd, Cr, Cu, Fe, Ga, Ni, Pd, Pb, Sb, Se, Sn, and Zn were analyzed in the DLT leachates. Only Al, Cu, Fe, Ni, Pb, and Zn were commonly found in the DLT leachates of the PC components. Their leaching levels were much higher in TCLP extraction fluid than in SPLP extraction fluid. The toxic heavy metal Pb was found to continuously leach out of the components over the entire test periods. The cumulative amounts of Pb leached out of the motherboards in TCLP extraction fluid reached 2.0 g per motherboard over the 2-year test period, and that in SPLP extraction fluid were 75-90% less. The leaching rates or levels of Pb were largely affected by the content of galvanized steel in the PC components. The higher was the steel content, the lower the Pb leaching rate would be. The findings suggest that the obsolete PCs disposed of in landfills or discarded in the environment continuously release Pb for years when subjected to landfill leachate or rains.

  17. COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS

    SciTech Connect

    Mathur, M.P.; Freeman, Mark; Gera, Dinesh

    2001-11-06

    In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.

  18. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  19. Integrated computer simulation on FIR FEL dynamics

    SciTech Connect

    Furukawa, H.; Kuruma, S.; Imasaki, K.

    1995-12-31

    An integrated computer simulation code has been developed to analyze the RF-Linac FEL dynamics. First, the simulation code on the electron beam acceleration and transport processes in RF-Linac: (LUNA) has been developed to analyze the characteristics of the electron beam in RF-Linac and to optimize the parameters of RF-Linac. Second, a space-time dependent 3D FEL simulation code (Shipout) has been developed. The RF-Linac FEL total simulations have been performed by using the electron beam data from LUNA in Shipout. The number of particles using in a RF-Linac FEL total simulation is approximately 1000. The CPU time for the simulation of 1 round trip is about 1.5 minutes. At ILT/ILE, Osaka, a 8.5MeV RF-Linac with a photo-cathode RF-gun is used for FEL oscillation experiments. By using 2 cm wiggler, the FEL oscillation in the wavelength approximately 46 {mu}m are investigated. By the simulations using LUNA with the parameters of an ILT/ILE experiment, the pulse shape and the energy spectra of the electron beam at the end of the linac are estimated. The pulse shape of the electron beam at the end of the linac has sharp rise-up and it slowly decays as a function of time. By the RF-linac FEL total simulations with the parameters of an ILT/ILE experiment, the dependencies of the start up of the FEL oscillations on the pulse shape of the electron beam at the end of the linac are estimated. The coherent spontaneous emission effects and the quick start up of FEL oscillations have been observed by the RF-Linac FEL total simulations.

  20. Sequentially Optimized Meshfree Approximation as a New Computational Fluid Dynamics Solver

    NASA Astrophysics Data System (ADS)

    Wilkinson, Matthew

    This thesis presents the Sequentially Optimized Meshfree Approximation (SOMA) method, a new and powerful Computational Fluid Dynamics (CFD) solver. While standard computational methods can be faster and cheaper that physical experimentation, both in cost and work time, these methods do have some time and user interaction overhead which SOMA eliminates. As a meshfree method which could use adaptive domain refinement methods, SOMA avoids the need for user generated and/or analyzed grids, volumes, and meshes. Incremental building of a feed-forward artificial neural network through machine learning to solve the flow problem significantly reduces user interaction and reduces computational cost. This is done by avoiding the creation and inversion of possibly dense block diagonal matrices and by focusing computational work on regions where the flow changes and ignoring regions where no changes occur.

  1. Static and dynamic pressure prediction for prosthetic socket fitting assessment utilising an inverse problem approach.

    PubMed

    Sewell, Philip; Noroozi, Siamak; Vinney, John; Amali, Ramin; Andrews, Stephen

    2012-01-01

    It has been recognised in a review of the developments of lower-limb prosthetic socket fitting processes that the future demands new tools to aid in socket fitting. This paper presents the results of research to design and clinically test an artificial intelligence approach, specifically inverse problem analysis, for the determination of the pressures at the limb/prosthetic socket interface during stance and ambulation. Inverse problem analysis is based on accurately calculating the external loads or boundary conditions that can generate a known amount of strain, stresses or displacements at pre-determined locations on a structure. In this study a backpropagation artificial neural network (ANN) is designed and validated to predict the interfacial pressures at the residual limb/socket interface from strain data collected from the socket surface. The subject of this investigation was a 45-year-old male unilateral trans-tibial (below-knee) traumatic amputee who had been using a prosthesis for 22 years. When comparing the ANN predicted interfacial pressure on 16 patches within the socket with actual pressures applied to the socket there is shown to be 8.7% difference, validating the methodology. Investigation of varying axial load through the subject's prosthesis, alignment of the subject's prosthesis, and pressure at the limb/socket interface during walking demonstrates that the validated ANN is able to give an accurate full-field study of the static and dynamic interfacial pressure distribution. To conclude, a methodology has been developed that enables a prosthetist to quantitatively analyse the distribution of pressures within the prosthetic socket in a clinical environment. This will aid in facilitating the "right first time" approach to socket fitting which will benefit both the patient in terms of comfort and the prosthetist, by reducing the time and associated costs of providing a high level of socket fit. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Time-lapse AVO fluid inversion for dynamic reservoir characterization in Delhi Field, Louisiana

    NASA Astrophysics Data System (ADS)

    Putri, Indah Hermansyah

    In the development stage, CO2 injection is becoming more widely used in enhanced oil recovery (EOR). Delhi Oil Field is part of Phases XIII and XIV of the Reservoir Characterization Project (RCP) Colorado School of Mines. The focus of these phases is to monitor the effectiveness of the CO 2 injection in Delhi Field by using multicomponent time-lapse seismic data. In this study, I analyze the amplitude versus offset (AVO) response of the time-lapse P-wave seismic data in order to quantify the fluid probability in the field. RCP acquired four square miles of multicomponent time-lapse seismic in Delhi Field to characterize the field dynamically. RCP's two surveys, monitor 1 and monitor 2, were shot in 2010 and 2011 after the start of CO2 injection in November 2009. Time-lapse AVO modeling was performed. The modeling results show that both the top Tuscaloosa and Paluxy Formations are class III AVO, and change toward class IV AVO by increasing the CO2 saturation in the reservoir. In addition, the Paluxy Formation shows a consistent result between the synthetic and real data, however, the Tuscaloosa Formation is not consistent as it is affected by tuning. AVO fluid inversion (AFI) was performed on both the Tuscaloosa and Paluxy Formations in order to quantify the fluid probability in these formations. The inversion results are confirmed by the pseudo gamma ray model, the porosity model, the permeability model, the pressure model, and the production data. In the Tuscaloosa and Paluxy Formations, oil and CO2 are located in the good quality, high porosity, and high permeability sandstones. The presence of CO2 is also confirmed by the pressure interpretation. Furthermore, production data from both Tuscaloosa and Paluxy Formations confirm the fluid presence in the reservoir.

  3. Bayesian inversions of a dynamic vegetation model in four European grassland sites

    NASA Astrophysics Data System (ADS)

    Minet, J.; Laloy, E.; Tychon, B.; François, L.

    2015-01-01

    Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB dynamic vegetation model (DVM) with ten unknown parameters, using the DREAM(ZS) Markov chain Monte Carlo (MCMC) sampler. We compare model inversions considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a~priori or jointly inferred with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root-mean-square error (RMSE) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19 g C m-2 day-1, 1.04 to 1.56 g C m-2 day-1, and 0.50 to 1.28 mm day-1, respectively. In validation, mismatches between measured and simulated data are larger, but still with Nash-Sutcliffe efficiency scores above 0.5 for three out of the four sites. Although measurement errors associated with eddy covariance data are known to be heteroscedastic, we showed that assuming a classical linear heteroscedastic model of the residual errors in the inversion do not fully remove heteroscedasticity. Since the employed heteroscedastic error model allows for larger deviations between simulated and measured data as the magnitude of the measured data increases, this error model expectedly lead to poorer data fitting compared to inversions considering a constant variance of the residual errors. Furthermore, sampling the residual error variances along with model parameters results in overall similar model parameter posterior distributions as those obtained by fixing these variances beforehand, while slightly improving model performance. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling

  4. SU-E-T-628: A Cloud Computing Based Multi-Objective Optimization Method for Inverse Treatment Planning.

    PubMed

    Na, Y; Suh, T; Xing, L

    2012-06-01

    Multi-objective (MO) plan optimization entails generation of an enormous number of IMRT or VMAT plans constituting the Pareto surface, which presents a computationally challenging task. The purpose of this work is to overcome the hurdle by developing an efficient MO method using emerging cloud computing platform. As a backbone of cloud computing for optimizing inverse treatment planning, Amazon Elastic Compute Cloud with a master node (17.1 GB memory, 2 virtual cores, 420 GB instance storage, 64-bit platform) is used. The master node is able to scale seamlessly a number of working group instances, called workers, based on the user-defined setting account for MO functions in clinical setting. Each worker solved the objective function with an efficient sparse decomposition method. The workers are automatically terminated if there are finished tasks. The optimized plans are archived to the master node to generate the Pareto solution set. Three clinical cases have been planned using the developed MO IMRT and VMAT planning tools to demonstrate the advantages of the proposed method. The target dose coverage and critical structure sparing of plans are comparable obtained using the cloud computing platform are identical to that obtained using desktop PC (Intel Xeon® CPU 2.33GHz, 8GB memory). It is found that the MO planning speeds up the processing of obtaining the Pareto set substantially for both types of plans. The speedup scales approximately linearly with the number of nodes used for computing. With the use of N nodes, the computational time is reduced by the fitting model, 0.2+2.3/N, with r̂2>0.99, on average of the cases making real-time MO planning possible. A cloud computing infrastructure is developed for MO optimization. The algorithm substantially improves the speed of inverse plan optimization. The platform is valuable for both MO planning and future off- or on-line adaptive re-planning. © 2012 American Association of Physicists in Medicine.

  5. A robust bi-orthogonal/dynamically-orthogonal method using the covariance pseudo-inverse with application to stochastic flow problems

    NASA Astrophysics Data System (ADS)

    Babaee, Hessam; Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em

    2017-09-01

    We develop a new robust methodology for the stochastic Navier-Stokes equations based on the dynamically-orthogonal (DO) and bi-orthogonal (BO) methods [1-3]. Both approaches are variants of a generalized Karhunen-Loève (KL) expansion in which both the stochastic coefficients and the spatial basis evolve according to system dynamics, hence, capturing the low-dimensional structure of the solution. The DO and BO formulations are mathematically equivalent [3], but they exhibit computationally complimentary properties. Specifically, the BO formulation may fail due to crossing of the eigenvalues of the covariance matrix, while both BO and DO become unstable when there is a high condition number of the covariance matrix or zero eigenvalues. To this end, we combine the two methods into a robust hybrid framework and in addition we employ a pseudo-inverse technique to invert the covariance matrix. The robustness of the proposed method stems from addressing the following issues in the DO/BO formulation: (i) eigenvalue crossing: we resolve the issue of eigenvalue crossing in the BO formulation by switching to the DO near eigenvalue crossing using the equivalence theorem and switching back to BO when the distance between eigenvalues is larger than a threshold value; (ii) ill-conditioned covariance matrix: we utilize a pseudo-inverse strategy to invert the covariance matrix; (iii) adaptivity: we utilize an adaptive strategy to add/remove modes to resolve the covariance matrix up to a threshold value. In particular, we introduce a soft-threshold criterion to allow the system to adapt to the newly added/removed mode and therefore avoid repetitive and unnecessary mode addition/removal. When the total variance approaches zero, we show that the DO/BO formulation becomes equivalent to the evolution equation of the Optimally Time-Dependent modes [4]. We demonstrate the capability of the proposed methodology with several numerical examples, namely (i) stochastic Burgers equation: we

  6. Computational modeling of monoenergetic neutral particle inverse transport problems in slab geometry

    NASA Astrophysics Data System (ADS)

    Gomes, Rodrigo R.; Barros, Ricardo C.

    2012-09-01

    Presented here is an analytical numerical method applied to three different types of monoenergetic neutral particle inverse transport problems in the discrete ordinates (SN) formulation: (a) boundary condition estimation; (b) interior source estimation; and (c) effective slab length estimation. These three types of inverse problems governed by the linear integrodifferential transport equation in SN formulation are related respectively to medical physics (a); nuclear waste storage (b); and non-destructive testing in industry (c). Numerical results and a brief discussion are given to conclude this paper.

  7. Parallel Processing for Computational Continuum Dynamics,

    DTIC Science & Technology

    1985-01-01

    Instruction stream, Multiple Data stream ( MIMD ). An example of a machine of this type is the HEP HIOO computer manu- factured by the Denelcor...parallel architecture in general and for the HEP H1O00 computer in partic- ular. The approach is a step-by-step procedure based on a progression from the...Element Processor) by Denelcor has MIMD architecture. The HEP computer is designed to combine from one up to 16 Process Execu- tion Modules (PEM’s

  8. Analytical and numerical analysis of inverse optimization problems: conditions of uniqueness and computational methods

    PubMed Central

    Zatsiorsky, Vladimir M.

    2011-01-01

    One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423–453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem. PMID:21311907

  9. Analytical and numerical analysis of inverse optimization problems: conditions of uniqueness and computational methods.

    PubMed

    Terekhov, Alexander V; Zatsiorsky, Vladimir M

    2011-02-01

    One of the key problems of motor control is the redundancy problem, in particular how the central nervous system (CNS) chooses an action out of infinitely many possible. A promising way to address this question is to assume that the choice is made based on optimization of a certain cost function. A number of cost functions have been proposed in the literature to explain performance in different motor tasks: from force sharing in grasping to path planning in walking. However, the problem of uniqueness of the cost function(s) was not addressed until recently. In this article, we analyze two methods of finding additive cost functions in inverse optimization problems with linear constraints, so-called linear-additive inverse optimization problems. These methods are based on the Uniqueness Theorem for inverse optimization problems that we proved recently (Terekhov et al., J Math Biol 61(3):423-453, 2010). Using synthetic data, we show that both methods allow for determining the cost function. We analyze the influence of noise on the both methods. Finally, we show how a violation of the conditions of the Uniqueness Theorem may lead to incorrect solutions of the inverse optimization problem.

  10. Computational Prediction and Biochemical Analyses of New Inverse Agonists for the CB1 Receptor

    PubMed Central

    2015-01-01

    Human cannabinoid type 1 (CB1) G-protein coupled receptor is a potential therapeutic target for obesity. The previously predicted and experimentally validated ensemble of ligand-free conformations of CB1 [Scott, C. E. et al. Protein Sci.2013, 22, 101−11323184890; Ahn, K. H. et al. Proteins2013, 81, 1304–131723408552] are used here to predict the binding sites for known CB1-selective inverse agonists including rimonabant and its seven known derivatives. This binding pocket, which differs significantly from previously published models, is used to identify 16 novel compounds expected to be CB1 inverse agonists by exploiting potential new interactions. We show experimentally that two of these compounds exhibit inverse agonist properties including inhibition of basal and agonist-induced G-protein coupling activity, as well as an enhanced level of CB1 cell surface localization. This demonstrates the utility of using the predicted binding sites for an ensemble of CB1 receptor structures for designing new CB1 inverse agonists. PMID:26633590

  11. Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, R. W. (Compiler)

    1993-01-01

    Conference publication includes 79 abstracts and presentations and 3 invited presentations given at the Eleventh Workshop for Computational Fluid Dynamic Applications in Rocket Propulsion held at George C. Marshall Space Flight Center, April 20-22, 1993. The purpose of the workshop is to discuss experimental and computational fluid dynamic activities in rocket propulsion. The workshop is an open meeting for government, industry, and academia. A broad number of topics are discussed including computational fluid dynamic methodology, liquid and solid rocket propulsion, turbomachinery, combustion, heat transfer, and grid generation.

  12. Learning of Spatial Relationships between Observed and Imitated Actions allows Invariant Inverse Computation in the Frontal Mirror Neuron System

    PubMed Central

    Oh, Hyuk; Gentili, Rodolphe J.; Reggia, James A.; Contreras-Vidal, José L.

    2014-01-01

    It has been suggested that the human mirror neuron system can facilitate learning by imitation through coupling of observation and action execution. During imitation of observed actions, the functional relationship between and within the inferior frontal cortex, the posterior parietal cortex, and the superior temporal sulcus can be modeled within the internal model framework. The proposed biologically plausible mirror neuron system model extends currently available models by explicitly modeling the intraparietal sulcus and the superior parietal lobule in implementing the function of a frame of reference transformation during imitation. Moreover, the model posits the ventral premotor cortex as performing an inverse computation. The simulations reveal that: i) the transformation system can learn and represent the changes in extrinsic to intrinsic coordinates when an imitator observes a demonstrator; ii) the inverse model of the imitator’s frontal mirror neuron system can be trained to provide the motor plans for the imitated actions. PMID:22255261

  13. Computing Bisectors in a Dynamic Geometry Environment

    ERIC Educational Resources Information Center

    Botana, Francisco

    2013-01-01

    In this note, an approach combining dynamic geometry and automated deduction techniques is used to study the bisectors between points and curves. Usual teacher constructions for bisectors are discussed, showing that inherent limitations in dynamic geometry software impede their thorough study. We show that the interactive sketching of bisectors…

  14. Computing Bisectors in a Dynamic Geometry Environment

    ERIC Educational Resources Information Center

    Botana, Francisco

    2013-01-01

    In this note, an approach combining dynamic geometry and automated deduction techniques is used to study the bisectors between points and curves. Usual teacher constructions for bisectors are discussed, showing that inherent limitations in dynamic geometry software impede their thorough study. We show that the interactive sketching of bisectors…

  15. Dynamic Equilibrium Explained Using the Computer

    ERIC Educational Resources Information Center

    Sariçayir, Hakan; Sahin, Musa; Üce, Musa

    2006-01-01

    Since their introduction into schools, educators have tried to utilize computers in classes in order to make difficult topics more comprehensible. Chemistry educators, when faced with the task of teaching a topic that cannot be taught through experiments in a laboratory, resort to computers to help students visualize difficult concepts and…

  16. Inverse problem analysis of pluripotent stem cell aggregation dynamics in stirred-suspension cultures

    PubMed Central

    Rostami, Mahboubeh Rahmati; Wu, Jincheng; Tzanakakis, Emmanuel S.

    2015-01-01

    The cultivation of stem cells as aggregates in scalable bioreactor cultures is an appealing modality for the large-scale manufacturing of stem cell products. Aggregation phenomena are central to such bioprocesses affecting the viability, proliferation and differentiation trajectory of stem cells but a quantitative framework is currently lacking. A population balance equation (PBE) model was used to describe the temporal evolution of the embryonic stem cell (ESC) cluster size distribution by considering collision-induced aggregation and cell proliferation in a stirred-suspension vessel. For ESC cultures at different agitation rates, the aggregation kernel representing the aggregation dynamics was successfully recovered as a solution of the inverse problem. The rate of change of the average aggregate size was greater at the intermediate rate tested suggesting a trade-off between increased collisions and agitation-induced shear. Results from forward simulation with obtained aggregation kernels were in agreement with transient aggregate size data from experiments. We conclude that the framework presented here can complement mechanistic studies offering insights into relevant stem cell clustering processes. More importantly from a process development standpoint, this strategy can be employed in the design and control of bioreactors for the generation of stem cell derivatives for drug screening, tissue engineering and regenerative medicine. PMID:26036699

  17. Spin dynamics of polarization inversion spin exchange at the magic angle in multiple spin systems.

    PubMed

    Gan, Z

    2000-03-01

    Polarization inversion spin exchange at the magic angle (PISEMA) [J. Magn. Reson. A 109, 270 (1994)] is an important experiment in NMR structural characterization of membrane proteins in oriented lipid bilayers. This paper presents a theoretical and experimental study of the spin dynamics in PISEMA to investigate the line-narrowing mechanism. The study focuses on the effect of neighboring protons on the spin exchange of a strongly coupled spin pair. The spin exchange is solved analytically for simple spin systems and is numerically simulated for many-spin systems. The results show that the dipolar couplings from the neighboring protons of a strongly coupled spin pair perturb the spin exchange only in the second order, therefore it has little contribution to the linewidth of PISEMA spectra in comparison to the separated-local-field spectra. The effects from proton resonance offset and the mismatch of the Hartmann-Hahn condition are also discussed along with experimental results using model single-crystal samples.

  18. Pump and amplification dynamics of gamma rays in a nuclear medium with the hidden population inversion

    SciTech Connect

    Rivlin, Lev A

    2009-12-31

    The features of the pump dynamics of isomeric nuclei excited by X-rays of a repetitively pulsed relativistic electron beam followed by the production of a medium with the negative absorption of gamma quanta are analysed. In the extended nuclear medium, the pump excites a travelling hidden-population-inversion wave with the anisotropic gamma amplification, which becomes positive in the case of the excess over the critical pump parameter equal to the product of the peak spectral power density of the X-ray source and the relative duration of an ultrashort relativistic electron bunch. In the alternative scheme with orthogonal directions of pumping X-rays and a flux of amplified gamma quanta, the absence of the amplification anisotropy opens up the possibility for constructing a standard two-mirror resonator with Bragg single-crystal reflectors. The critical peak value of the spectral pump power density is compared with the known characteristics of relativistic-electron X-ray sources by examples of some nuclides. (active media)

  19. Comparative behaviour of the Dynamically Penalized Likelihood algorithm in inverse radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Llacer, Jorge; Solberg, Timothy D.; Promberger, Claus

    2001-10-01

    This paper presents a description of tests carried out to compare the behaviour of five algorithms in inverse radiation therapy planning: (1) The Dynamically Penalized Likelihood (DPL), an algorithm based on statistical estimation theory; (2) an accelerated version of the same algorithm; (3) a new fast adaptive simulated annealing (ASA) algorithm; (4) a conjugate gradient method; and (5) a Newton gradient method. A three-dimensional mathematical phantom and two clinical cases have been studied in detail. The phantom consisted of a U-shaped tumour with a partially enclosed 'spinal cord'. The clinical examples were a cavernous sinus meningioma and a prostate case. The algorithms have been tested in carefully selected and controlled conditions so as to ensure fairness in the assessment of results. It has been found that all five methods can yield relatively similar optimizations, except when a very demanding optimization is carried out. For the easier cases, the differences are principally in robustness, ease of use and optimization speed. In the more demanding case, there are significant differences in the resulting dose distributions. The accelerated DPL emerges as possibly the algorithm of choice for clinical practice. An appendix describes the differences in behaviour between the new ASA method and the one based on a patent by the Nomos Corporation.

  20. Inverse dynamic investigation of voluntary leg lateral movements in weightlessness: a new microgravity-specific strategy.

    PubMed

    Pedrocchi, Alessandra; Baroni, Guido; Pedotti, Antonio; Massion, Jean; Ferrigno, Giancarlo

    2005-04-01

    This study deals with the quantitative assessment of exchanged forces and torques at the restraint point during whole body posture perturbation movements in long-term microgravity. The work was based on the results of a previous study focused on trunk bending protocol, which suggested that the minimization of the torques exchanged at the restraint point could be a strategy for movement planning in microgravity (J. Biomech. 36(11) (2003) 1691). Torques minimization would lead to the optimization of muscles activity, to the minimization of energy expenditure and, ultimately, to higher movement control capabilities. Here, we focus on leg lateral abduction from anchored stance. The analysis was based on inverse dynamic modelling, leading to the estimation of the total angular momentum at the supporting ankle joint. Results agree with those obtained for trunk bending movements and point out a consistent minimization of the torques exchanged at the restraint point in weightlessness. Given the kinematic features of the examined motor task, this strategy was interpreted as a way to master the rotational dynamic effects on the frontal plane produced by leg lateral abduction. This postural stabilizing effects was the result of a multi-segmental compensation strategy, consisting of the counter rotation of the supporting limb and trunk accompanying the leg raising. The observed consistency of movement-posture co-ordination patterns among lateral leg raising and trunk bending is put forward as a novel interpretative issue of the adaptation mechanisms of the motor system to sustained microgravity, especially if one considers the completely different kinematics of the centre of mass, which was observed in weightlessness for these two motor tasks.

  1. A low-computational-cost inverse heat transfer technique for convective heat transfer measurements in hypersonic flows

    NASA Astrophysics Data System (ADS)

    Avallone, F.; Greco, C. S.; Schrijer, F. F. J.; Cardone, G.

    2015-04-01

    The measurement of the convective wall heat flux in hypersonic flows may be particularly challenging in the presence of high-temperature gradients and when using high-thermal-conductivity materials. In this case, the solution of multidimensional problems is necessary, but it considerably increases the computational cost. In this paper, a low-computational-cost inverse data reduction technique is presented. It uses a recursive least-squares approach in combination with the trust-region-reflective algorithm as optimization procedure. The computational cost is reduced by performing the discrete Fourier transform on the discrete convective heat flux function and by identifying the most relevant coefficients as objects of the optimization algorithm. In the paper, the technique is validated by means of both synthetic data, built in order to reproduce physical conditions, and experimental data, carried out in the Hypersonic Test Facility Delft at Mach 7.5 on two wind tunnel models having different thermal properties.

  2. The engine design engine. A clustered computer platform for the aerodynamic inverse design and analysis of a full engine

    NASA Technical Reports Server (NTRS)

    Sanz, J.; Pischel, K.; Hubler, D.

    1992-01-01

    An application for parallel computation on a combined cluster of powerful workstations and supercomputers was developed. A Parallel Virtual Machine (PVM) is used as message passage language on a macro-tasking parallelization of the Aerodynamic Inverse Design and Analysis for a Full Engine computer code. The heterogeneous nature of the cluster is perfectly handled by the controlling host machine. Communication is established via Ethernet with the TCP/IP protocol over an open network. A reasonable overhead is imposed for internode communication, rendering an efficient utilization of the engaged processors. Perhaps one of the most interesting features of the system is its versatile nature, that permits the usage of the computational resources available that are experiencing less use at a given point in time.

  3. Computer architecture evaluation for structural dynamics computations: Project summary

    NASA Technical Reports Server (NTRS)

    Standley, Hilda M.

    1989-01-01

    The intent of the proposed effort is the examination of the impact of the elements of parallel architectures on the performance realized in a parallel computation. To this end, three major projects are developed: a language for the expression of high level parallelism, a statistical technique for the synthesis of multicomputer interconnection networks based upon performance prediction, and a queueing model for the analysis of shared memory hierarchies.

  4. ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...

  5. ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...

  6. Sonovestibular symptoms evaluated by computed dynamic posturography.

    PubMed

    Teszler, C B; Ben-David, J; Podoshin, L; Sabo, E

    2000-01-01

    The investigation of stability under bilateral acoustic stimulation was undertaken in an attempt to mimic the real-life conditions of noisy environment (e.g., industry, aviation). The Tullio phenomenon evaluated by computed dynamic posturography (CDP) under acoustic stimulation is reflected in postural unsteadiness, rather than in the classic nystagmus. With such a method, the dangerous effects of noise-induced instability can be assessed and prevented. Three groups of subjects were submitted. The first (group A) included 20 patients who complained of sonovestibular symptoms (i.e., Tullio phenomenon) on the background of an inner-ear disease. The second group (B) included 20 neurootological patients without a history of Tullio phenomenon. Group C consisted of 20 patients with normal hearing, as controls. A pure-tone stimulus of 1,000 Hz at 110 dB was delivered binaurally for 20 seconds during condition 5 and condition 6 of the CDP sensory organization test. The sequence of six sensory organization conditions was performed three times with two intermissions of 15-20 minutes between the trials. The first was performed in the regular mode (quiet stance). This was followed 20 minutes by a trial carried out in quiet stance in sensory organizations tests (SOTs) 1 through 4, and with acoustic stimulation in SOT 5 and SOT 6. The last test was performed in quiet stance throughout (identical to the first trial). A significant drop in the composite equilibrium score was witnessed in group A patients upon acoustic stimulation (p < .0001). This imbalance did not disappear completely until 20 minutes later when the third sensory organization trial was performed. In fact, the composite score obtained on the last SOT was still significantly worse than the baseline. Group B and the normal subjects (group C) showed no significant change in composite score. As regards the vestibular ratio score, again, group A marked a drop on stimulation with sound (p < .004). This decrease

  7. A computational method for the inversion of wide-band GPR measurements

    NASA Astrophysics Data System (ADS)

    Salucci, M.; Tenuti, L.; Poli, L.; Oliveri, G.; Massa, A.

    2016-10-01

    An innovative method for the inversion of ground penetrating radar (GPR) measurements is presented. The proposed inverse scattering (IS) approach is based on the exploitation of wide-band data according to a multi-frequency (MF) strategy, and integrates a customized particle swarm optimizer (PSO) within the iterative multi-scaling approach (IMSA) to counteract the high non-linearity of the optimized cost function. If from the one hand the IMSA provides a reduction of the ratio between problem unknowns and informative data, on the other hand the stochastic nature of the PSO solver allows to "escape" from the high density of false solutions of the MF-IS subsurface problem. A set of representative numerical results verifies the effectiveness of the developed approach, as well as its superiority with respect to a deterministic implementation.

  8. Computational Fluid Dynamics of Whole-Body Aircraft

    NASA Astrophysics Data System (ADS)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  9. Computer Vision for the Solar Dynamics Observatory (SDO)

    NASA Astrophysics Data System (ADS)

    Martens, P. C. H.; Attrill, G. D. R.; Davey, A. R.; Engell, A.; Farid, S.; Grigis, P. C.; Kasper, J.; Korreck, K.; Saar, S. H.; Savcheva, A.; Su, Y.; Testa, P.; Wills-Davey, M.; Bernasconi, P. N.; Raouafi, N.-E.; Delouille, V. A.; Hochedez, J. F.; Cirtain, J. W.; Deforest, C. E.; Angryk, R. A.; de Moortel, I.; Wiegelmann, T.; Georgoulis, M. K.; McAteer, R. T. J.; Timmons, R. P.

    2012-01-01

    In Fall 2008 NASA selected a large international consortium to produce a comprehensive automated feature-recognition system for the Solar Dynamics Observatory (SDO). The SDO data that we consider are all of the Atmospheric Imaging Assembly (AIA) images plus surface magnetic-field images from the Helioseismic and Magnetic Imager (HMI). We produce robust, very efficient, professionally coded software modules that can keep up with the SDO data stream and detect, trace, and analyze numerous phenomena, including flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, coronal mass ejections (CMEs), coronal oscillations, and jets. We also track the emergence and evolution of magnetic elements down to the smallest detectable features and will provide at least four full-disk, nonlinear, force-free magnetic field extrapolations per day. The detection of CMEs and filaments is accomplished with Solar and Heliospheric Observatory (SOHO)/ Large Angle and Spectrometric Coronagraph (LASCO) and ground-based Hα data, respectively. A completely new software element is a trainable feature-detection module based on a generalized image-classification algorithm. Such a trainable module can be used to find features that have not yet been discovered (as, for example, sigmoids were in the pre- Yohkoh era). Our codes will produce entries in the Heliophysics Events Knowledgebase (HEK) as well as produce complete catalogs for results that are too numerous for inclusion in the HEK, such as the X-ray bright-point metadata. This will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events, using the interface provided by the Virtual Solar Observatory. The operations concept for our computer vision system is that the data will be analyzed in near real time as soon as they arrive at the SDO Joint Science Operations Center and have undergone basic

  10. Computational Methods for Analyzing Fluid Flow Dynamics from Digital Imagery

    SciTech Connect

    Luttman, A.

    2012-03-30

    The main goal (long term) of this work is to perform computational dynamics analysis and quantify uncertainty from vector fields computed directly from measured data. Global analysis based on observed spatiotemporal evolution is performed by objective function based on expected physics and informed scientific priors, variational optimization to compute vector fields from measured data, and transport analysis proceeding with observations and priors. A mathematical formulation for computing flow fields is set up for computing the minimizer for the problem. An application to oceanic flow based on sea surface temperature is presented.

  11. Inference of chromosomal inversion dynamics from Pool-Seq data in natural and laboratory populations of Drosophila melanogaster

    PubMed Central

    Kapun, Martin; van Schalkwyk, Hester; McAllister, Bryant; Flatt, Thomas; Schlötterer, Christian

    2014-01-01

    Sequencing of pools of individuals (Pool-Seq) represents a reliable and cost-effective approach for estimating genome-wide SNP and transposable element insertion frequencies. However, Pool-Seq does not provide direct information on haplotypes so that, for example, obtaining inversion frequencies has not been possible until now. Here, we have developed a new set of diagnostic marker SNPs for seven cosmopolitan inversions in Drosophila melanogaster that can be used to infer inversion frequencies from Pool-Seq data. We applied our novel marker set to Pool-Seq data from an experimental evolution study and from North American and Australian latitudinal clines. In the experimental evolution data, we find evidence that positive selection has driven the frequencies of In(3R)C and In(3R)Mo to increase over time. In the clinal data, we confirm the existence of frequency clines for In(2L)t, In(3L)P and In(3R)Payne in both North America and Australia and detect a previously unknown latitudinal cline for In(3R)Mo in North America. The inversion markers developed here provide a versatile and robust tool for characterizing inversion frequencies and their dynamics in Pool-Seq data from diverse D. melanogaster populations. PMID:24372777

  12. Inference of chromosomal inversion dynamics from Pool-Seq data in natural and laboratory populations of Drosophila melanogaster.

    PubMed

    Kapun, Martin; van Schalkwyk, Hester; McAllister, Bryant; Flatt, Thomas; Schlötterer, Christian

    2014-04-01

    Sequencing of pools of individuals (Pool-Seq) represents a reliable and cost-effective approach for estimating genome-wide SNP and transposable element insertion frequencies. However, Pool-Seq does not provide direct information on haplotypes so that, for example, obtaining inversion frequencies has not been possible until now. Here, we have developed a new set of diagnostic marker SNPs for seven cosmopolitan inversions in Drosophila melanogaster that can be used to infer inversion frequencies from Pool-Seq data. We applied our novel marker set to Pool-Seq data from an experimental evolution study and from North American and Australian latitudinal clines. In the experimental evolution data, we find evidence that positive selection has driven the frequencies of In(3R)C and In(3R)Mo to increase over time. In the clinal data, we confirm the existence of frequency clines for In(2L)t, In(3L)P and In(3R)Payne in both North America and Australia and detect a previously unknown latitudinal cline for In(3R)Mo in North America. The inversion markers developed here provide a versatile and robust tool for characterizing inversion frequencies and their dynamics in Pool-Seq data from diverse D. melanogaster populations.

  13. Computer Visualization of Many-Particle Quantum Dynamics

    SciTech Connect

    Ozhigov, A. Y.

    2009-03-10

    In this paper I show the importance of computer visualization in researching of many-particle quantum dynamics. Such a visualization becomes an indispensable illustrative tool for understanding the behavior of dynamic swarm-based quantum systems. It is also an important component of the corresponding simulation framework, and can simplify the studies of underlying algorithms for multi-particle quantum systems.

  14. The Computer Simulation of Liquids by Molecular Dynamics.

    ERIC Educational Resources Information Center

    Smith, W.

    1987-01-01

    Proposes a mathematical computer model for the behavior of liquids using the classical dynamic principles of Sir Isaac Newton and the molecular dynamics method invented by other scientists. Concludes that other applications will be successful using supercomputers to go beyond simple Newtonian physics. (CW)

  15. The Computer Simulation of Liquids by Molecular Dynamics.

    ERIC Educational Resources Information Center

    Smith, W.

    1987-01-01

    Proposes a mathematical computer model for the behavior of liquids using the classical dynamic principles of Sir Isaac Newton and the molecular dynamics method invented by other scientists. Concludes that other applications will be successful using supercomputers to go beyond simple Newtonian physics. (CW)

  16. Potential applications of computational fluid dynamics to biofluid analysis

    NASA Technical Reports Server (NTRS)

    Kwak, D.; Chang, J. L. C.; Rogers, S. E.; Rosenfeld, M.; Kwak, D.

    1988-01-01

    Computational fluid dynamics was developed to the stage where it has become an indispensable part of aerospace research and design. In view of advances made in aerospace applications, the computational approach can be used for biofluid mechanics research. Several flow simulation methods developed for aerospace problems are briefly discussed for potential applications to biofluids, especially to blood flow analysis.

  17. (U) Computation acceleration using dynamic memory

    SciTech Connect

    Hakel, Peter

    2014-10-24

    Many computational applications require the repeated use of quantities, whose calculations can be expensive. In order to speed up the overall execution of the program, it is often advantageous to replace computation with extra memory usage. In this approach, computed values are stored and then, when they are needed again, they are quickly retrieved from memory rather than being calculated again at great cost. Sometimes, however, the precise amount of memory needed to store such a collection is not known in advance, and only emerges in the course of running the calculation. One problem accompanying such a situation is wasted memory space in overdimensioned (and possibly sparse) arrays. Another issue is the overhead of copying existing values to a new, larger memory space, if the original allocation turns out to be insufficient. In order to handle these runtime problems, the programmer therefore has the extra task of addressing them in the code.

  18. Quantum and classical dynamics in adiabatic computation

    NASA Astrophysics Data System (ADS)

    Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.

    2014-10-01

    Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.

  19. Anisotropic Shear Velocity Models of the North American Upper Mantle Based on Waveform Inversion and Numerical Wavefield Computations.

    NASA Astrophysics Data System (ADS)

    Pierre, C.

    2015-12-01

    The Earthscope TA deployment across the continental United-State (US) has reached its eastern part, providing the opportunity for high-resolution 3D seismic velocity imaging of both lithosphere and asthenosphere across the entire north-American continent (NA). Previously (Yuan et al., 2014), we presented a 3D radially anisotropic shear wave (Vs) model of North America (NA) lithospheric mantle based on full waveform tomography, combining teleseismic and regional distance data sampling the NA. Regional wavefield computations were performed numerically, using a regional Spectral Element code (RegSEM, Cupillard et al., 2012), while teleseismic computations were performed approximately, using non-linear asymptotic coupling theory (NACT, Li and Romanowicz, 1995). For both datasets, the inversion was performed iteratively, using a Gauss-Newton scheme, with kernels computed using either NACT or the surface wave, path average approximation (PAVA), depending on the source-station distance. We here present a new radially anisotropic lithospheric/asthenospheric model of Vs for NA based entirely on SEM-based numerical waveforms from an augmented dataset of 155 regional events and 70 teleseismic events. The forward wavefield computations are performed using RegSEM down to 40s, starting from our most recent whole mantle 3D radially anisotropic Vs model (SEMUCB-wm1, French and Romanowicz, 2014). To model teleseismic wavefields within our regional computational domain, we developed a new modeling technique which allows us to replace a distant source by virtual sources at the boundary of the computational domain (Masson et al., 2014). Computing virtual sources requires one global simulation per teleseismic events.We then compare two models obtained: one using NACT/PAVA kernels as in our previous work, and another using hybrid kernels, where the Hessian is computed using NACT/PAVA, but the gradient is computed numerically from the adjoint wavefield, providing more accurate kernels

  20. Utilizing High-Performance Computing to Investigate Parameter Sensitivity of an Inversion Model for Vadose Zone Flow and Transport

    NASA Astrophysics Data System (ADS)

    Fang, Z.; Ward, A. L.; Fang, Y.; Yabusaki, S.

    2011-12-01

    High-resolution geologic models have proven effective in improving the accuracy of subsurface flow and transport predictions. However, many of the parameters in subsurface flow and transport models cannot be determined directly at the scale of interest and must be estimated through inverse modeling. A major challenge, particularly in vadose zone flow and transport, is the inversion of the highly-nonlinear, high-dimensional problem as current methods are not readily scalable for large-scale, multi-process models. In this paper we describe the implementation of a fully automated approach for addressing complex parameter optimization and sensitivity issues on massively parallel multi- and many-core systems. The approach is based on the integration of PNNL's extreme scale Subsurface Transport Over Multiple Phases (eSTOMP) simulator, which uses the Global Array toolkit, with the Beowulf-Cluster inspired parallel nonlinear parameter estimation software, BeoPEST in the MPI mode. In the eSTOMP/BeoPEST implementation, a pre-processor generates all of the PEST input files based on the eSTOMP input file. Simulation results for comparison with observations are extracted automatically at each time step eliminating the need for post-process data extractions. The inversion framework was tested with three different experimental data sets: one-dimensional water flow at Hanford Grass Site; irrigation and infiltration experiment at the Andelfingen Site; and a three-dimensional injection experiment at Hanford's Sisson and Lu Site. Good agreements are achieved in all three applications between observations and simulations in both parameter estimates and water dynamics reproduction. Results show that eSTOMP/BeoPEST approach is highly scalable and can be run efficiently with hundreds or thousands of processors. BeoPEST is fault tolerant and new nodes can be dynamically added and removed. A major advantage of this approach is the ability to use high-resolution geologic models to preserve

  1. Dynamic oscillations predicted by computer studies

    SciTech Connect

    Butts, M.M.; Smith, H.S. )

    1991-01-01

    During the latter part of 1988, a study was begun to review the dynamic stability performance of a power company's plant. The scope of the study was to identify any operating conditions that might contribute to system oscillations and to examine alternative solutions that would control these oscillations. The study was performed in several phases. This paper discusses the study process, utilizing two different software packages for the analysis: Dynamic stability studies using time-domain software and Eigenvalue analysis using frequency-domain software.

  2. Symplectic molecular dynamics simulations on specially designed parallel computers.

    PubMed

    Borstnik, Urban; Janezic, Dusanka

    2005-01-01

    We have developed a computer program for molecular dynamics (MD) simulation that implements the Split Integration Symplectic Method (SISM) and is designed to run on specialized parallel computers. The MD integration is performed by the SISM, which analytically treats high-frequency vibrational motion and thus enables the use of longer simulation time steps. The low-frequency motion is treated numerically on specially designed parallel computers, which decreases the computational time of each simulation time step. The combination of these approaches means that less time is required and fewer steps are needed and so enables fast MD simulations. We study the computational performance of MD simulation of molecular systems on specialized computers and provide a comparison to standard personal computers. The combination of the SISM with two specialized parallel computers is an effective way to increase the speed of MD simulations up to 16-fold over a single PC processor.

  3. Parallel Domain Decomposition Preconditioning for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Barth, Timothy J.; Chan, Tony F.; Tang, Wei-Pai; Kutler, Paul (Technical Monitor)

    1998-01-01

    This viewgraph presentation gives an overview of the parallel domain decomposition preconditioning for computational fluid dynamics. Details are given on some difficult fluid flow problems, stabilized spatial discretizations, and Newton's method for solving the discretized flow equations. Schur complement domain decomposition is described through basic formulation, simplifying strategies (including iterative subdomain and Schur complement solves, matrix element dropping, localized Schur complement computation, and supersparse computations), and performance evaluation.

  4. Computational spectroscopy, dynamics, and photochemistry of photosensory flavoproteins.

    PubMed

    Domratcheva, Tatiana; Udvarhelyi, Anikó; Shahi, Abdul Rehaman Moughal

    2014-01-01

    Extensive interest in photosensory proteins stimulated computational studies of flavins and flavoproteins in the past decade. This review is dedicated to the three central topics of these studies: calculations of flavin UV-visible and IR spectra, simulated dynamics of photoreceptor proteins, and flavin photochemistry. Accordingly, this chapter is divided into three parts; each part describes corresponding computational protocols, summarizes computational results, and discusses the emerging mechanistic picture.

  5. Spatiotemporal Dynamics and Reliable Computations in Recurrent Spiking Neural Networks

    NASA Astrophysics Data System (ADS)

    Pyle, Ryan; Rosenbaum, Robert

    2017-01-01

    Randomly connected networks of excitatory and inhibitory spiking neurons provide a parsimonious model of neural variability, but are notoriously unreliable for performing computations. We show that this difficulty is overcome by incorporating the well-documented dependence of connection probability on distance. Spatially extended spiking networks exhibit symmetry-breaking bifurcations and generate spatiotemporal patterns that can be trained to perform dynamical computations under a reservoir computing framework.

  6. Using synthetic kinematic source inversions with dynamic rupture models to evaluate the effect of seismic network density and geometry in near-field source inversions

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Dalguer, L. A.; Song, S.; Clinton, J. F.

    2013-12-01

    Detailed source imaging of the spatial and temporal slip distribution of earthquakes is a main research goal for seismology. In this study we investigate how the number and geometrical distribution of seismic stations affect finite kinematic source inversion results by inverting ground motions derived from a known synthetic dynamic earthquake rupture model, which is governed by the slip weakening friction law with heterogeneous stress distribution. Our target dynamic rupture model is a buried strike-slip event (Mw 6.5) in a layered half space (Dalguer & Mai, 2011) with broadband synthetic ground motions created at 168 near-field stations. In the inversion, we modeled low frequency (under 1Hz) waveforms using a genetic algorithm in a Bayesian framework (Moneli et al. 2008) to retrieve peak slip velocity, rupture time, and rise time of the source. The dynamic consistent regularized Yoffe function (Tinti et al. 2005) was applied as a single window slip velocity function. Tikhonov regularization was used to smooth final slip. We tested three station network geometry cases: (a) single station, in which we inverted 3 component waveforms from a single station varying azimuth and epicentral distance; (b) multi-station configurations with similar numbers of stations all at similar distances from, but regularly spaced around the fault; (c) irregular multi-station configurations using different numbers of stations. For analysis, waveform misfits are calculated using all 168 stations. Our results show: 1) single station tests suggest that it may be possible to obtain a relatively good source model even using one station, with a waveform misfit comparable to that obtained with the best source model. The best single station performance occurs with stations in which amplitude ratios between the three components are not large, indicating that P & S waves are all present. We infer that both body wave radiation pattern and distance play an important role in selection of optimal

  7. Dynamic traffic assignment on parallel computers

    SciTech Connect

    Nagel, K.; Frye, R.; Jakob, R.; Rickert, M.; Stretz, P.

    1998-12-01

    The authors describe part of the current framework of the TRANSIMS traffic research project at the Los Alamos National Laboratory. It includes parallel implementations of a route planner and a microscopic traffic simulation model. They present performance figures and results of an offline load-balancing scheme used in one of the iterative re-planning runs required for dynamic route assignment.

  8. Basin mass dynamic changes in China from GRACE based on a multibasin inversion method

    NASA Astrophysics Data System (ADS)

    Yi, Shuang; Wang, Qiuyu; Sun, Wenke

    2016-05-01

    Complex landforms, miscellaneous climates, and enormous populations have influenced various geophysical phenomena in China, which range from water depletion in the underground to retreating glaciers on high mountains and have attracted abundant scientific interest. This paper, which utilizes gravity observations during 2003-2014 from the Gravity Recovery and Climate Experiment (GRACE), intends to comprehensively estimate the mass status in 16 drainage basins in the region. We propose a multibasin inversion method that features resistance to stripe noise and an ability to alleviate signal attenuation from the truncation and smoothing of GRACE data. The results show both positive and negative trends. Tremendous mass accumulation has occurred from the Tibetan Plateau (12.1 ± 0.6 Gt/yr) to the Yangtze River (7.7 ± 1.3 Gt/yr) and southeastern coastal areas, which is suggested to involve an increase in the groundwater storage, lake and reservoir water volume, and the flow of materials from tectonic processes. Additionally, mass loss has occurred in the Huang-Huai-Hai-Liao River Basin (-10.2 ± 0.9 Gt/yr), the Brahmaputra-Nujiang-Lancang River Basin (-15.0 ± 1.1 Gt/yr), and Tienshan Mountain (-4.1 ± 0.3 Gt/yr), a result of groundwater pumping and glacier melting. Areas with groundwater depletion are consistent with the distribution of cities with land subsidence in North China. We find that intensified precipitation can alter the local water supply and that GRACE can adequately capture these dynamics, which could be instructive for China's South-to-North Water Diversion hydrologic project.

  9. Approximate pole-placement controller using inverse plant dynamics for floor vibration control

    NASA Astrophysics Data System (ADS)

    Nyawako, Donald S.; Reynolds, Paul; Hudson, Malcolm J.

    2013-04-01

    Past research and field trials have demonstrated the viability of active vibration control (AVC) technologies for the mitigation of human induced vibrations in problematic floors. They make use of smaller units than their passive counterparts, provide quicker and more efficient control, can tackle multiple modes of vibration simultaneously and adaptability can be introduced to enhance their robustness. Predominantly single-input-single-output (SISO) and multi- SISO collocated sensor and actuator pairs have been utilized in direct output feedback schemes, for example, with direct velocity feedback (DVF). On-going studies have extended such past works to include model-based control approaches, for example, pole-placement (PP), which demonstrate increased flexibility of achieving desired vibration mitigation performances but for which stability issues must be adequately addressed. The work presented here is an extension to the pole-placement controller design using an algebraic approach that has been investigated in past studies. An approximate pole-placement controller formulated via the inversion of the floor dynamics, considered as minimum phase, is designed to achieve target closed-loop performances. Analytical studies and experimental tests are based on a laboratory structure and comparisons in vibration mitigation performances are made with a typical DVF control scheme with inner loop actuator compensation. It is shown that with minimal compensation, primarily in the form of notch filters and gain adjustment, the approximate pole-placement controller scheme is easily formulated and implemented and offers good vibration mitigation performance as well as the potential for isolation and control of specific target modes of vibration. Predicted attenuations of 22dB and 12dB in both the first and second vibration modes of the laboratory structure were also realized in the experimental studies for DVF and the approximate PP controller.

  10. Bayesian inversions of a dynamic vegetation model at four European grassland sites

    NASA Astrophysics Data System (ADS)

    Minet, J.; Laloy, E.; Tychon, B.; Francois, L.

    2015-05-01

    Eddy covariance data from four European grassland sites are used to probabilistically invert the CARAIB (CARbon Assimilation In the Biosphere) dynamic vegetation model (DVM) with 10 unknown parameters, using the DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis) Markov chain Monte Carlo (MCMC) sampler. We focus on comparing model inversions, considering both homoscedastic and heteroscedastic eddy covariance residual errors, with variances either fixed a priori or jointly inferred together with the model parameters. Agreements between measured and simulated data during calibration are comparable with previous studies, with root mean square errors (RMSEs) of simulated daily gross primary productivity (GPP), ecosystem respiration (RECO) and evapotranspiration (ET) ranging from 1.73 to 2.19, 1.04 to 1.56 g C m-2 day-1 and 0.50 to 1.28 mm day-1, respectively. For the calibration period, using a homoscedastic eddy covariance residual error model resulted in a better agreement between measured and modelled data than using a heteroscedastic residual error model. However, a model validation experiment showed that CARAIB models calibrated considering heteroscedastic residual errors perform better. Posterior parameter distributions derived from using a heteroscedastic model of the residuals thus appear to be more robust. This is the case even though the classical linear heteroscedastic error model assumed herein did not fully remove heteroscedasticity of the GPP residuals. Despite the fact that the calibrated model is generally capable of fitting the data within measurement errors, systematic bias in the model simulations are observed. These are likely due to model inadequacies such as shortcomings in the photosynthesis modelling. Besides the residual error treatment, differences between model parameter posterior distributions among the four grassland sites are also investigated. It is shown that the marginal distributions of the specific leaf area and characteristic

  11. Further results on output-feedback regulation of stochastic nonlinear systems with SiISS inverse dynamics

    NASA Astrophysics Data System (ADS)

    Yu, Xin; Xie, Xue-Jun; Wu, Yu-Qiang

    2010-10-01

    This article further discusses the problem of output-feedback regulation for more general stochastic nonlinear systems with stochastic integral input-to-state stable inverse dynamics, and focuses on solving the important and unsolved problem proposed in Yu and Xie (Yu, X., and Xie, X.J. (2010), 'Output Feedback Regulation of Stochastic Nonlinear Systems with Stochastic iISS Inverse Dynamics', IEEE Transactions on Automatic Control, 55, 304-320): How to weaken the conditions on nonlinearities in drift and diffusion vector fields? Under the weaker conditions, how to make full use of the known information of stochastic nonlinear systems to design an adaptive output-feedback controller such that all the closed-loop signals are almost surely bounded and the output is driven to zero almost surely?

  12. Computational Methods for Dynamic Stability and Control Derivatives

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.

    2004-01-01

    Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.

  13. Computational Methods for Dynamic Stability and Control Derivatives

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.; Spence, Angela M.; Murphy, Patrick C.

    2003-01-01

    Force and moment measurements from an F-16XL during forced pitch oscillation tests result in dynamic stability derivatives, which are measured in combinations. Initial computational simulations of the motions and combined derivatives are attempted via a low-order, time-dependent panel method computational fluid dynamics code. The code dynamics are shown to be highly questionable for this application and the chosen configuration. However, three methods to computationally separate such combined dynamic stability derivatives are proposed. One of the separation techniques is demonstrated on the measured forced pitch oscillation data. Extensions of the separation techniques to yawing and rolling motions are discussed. In addition, the possibility of considering the angles of attack and sideslip state vector elements as distributed quantities, rather than point quantities, is introduced.

  14. Calculation of external knee adduction moments: a comparison of an inverse dynamics approach and a simplified lever-arm approach.

    PubMed

    Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J

    2015-09-01

    The external knee adduction moment (EKAM) is often studied in knee osteoarthritis research. This study compared EKAMs between two methods of calculation: a method that only requires ground reaction force and knee position data (i.e. lever-arm), and an inverse dynamics link-segment method. Sixteen participants walked while wearing a control shoe with and without a six millimeter lateral wedge insole. Peak EKAMs between the lever-arm and inverse dynamics methods were compared for the control condition, and the %change in moment induced by the lateral wedge was compared between methods. When comparing EKAMs between methods, no correlation was found (r=0.24, p=0.36); peak EKAMs with the lever-arm method (26.0Nm) were significantly lower than EKAMs with the inverse dynamics method (40.2Nm, pb0.001); and Bland-Altman plots showed poor agreement between methods. When assessing the %change in moment with a lateral wedge, a moderate correlation was found (r=0.55, p=0.03) between methods; Bland-Altman plots showed moderate agreement between methods; and the lever-arm method (-6.4%) was not significantly different from the inverse dynamics method (-11.4%, p=0.09); however, the two methods produced opposite results 31% of the time. The lever-arm method cannot estimate peak EKAMs, and can only approximate the %change in moment induced by a lateral wedge; however, the error rate was 31%. Therefore, the lever-arm method is not recommended for use in its current form. This study may help guide the development of a fast and simple method for determining EKAMs for individuals with knee osteoarthritis. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Generalized dynamic engine simulation techniques for the digital computer

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1974-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.

  16. Generalized dynamic engine simulation techniques for the digital computer

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1974-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design-point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar all-digital programs on future engine simulation philosophy is also discussed.

  17. Generalized dynamic engine simulation techniques for the digital computers

    NASA Technical Reports Server (NTRS)

    Sellers, J.; Teren, F.

    1975-01-01

    Recently advanced simulation techniques have been developed for the digital computer and used as the basis for development of a generalized dynamic engine simulation computer program, called DYNGEN. This computer program can analyze the steady state and dynamic performance of many kinds of aircraft gas turbine engines. Without changes to the basic program, DYNGEN can analyze one- or two-spool turbofan engines. The user must supply appropriate component performance maps and design point information. Examples are presented to illustrate the capabilities of DYNGEN in the steady state and dynamic modes of operation. The analytical techniques used in DYNGEN are briefly discussed, and its accuracy is compared with a comparable simulation using the hybrid computer. The impact of DYNGEN and similar digital programs on future engine simulation philosophy is also discussed.

  18. In-vivo dosimetry for conformal arc therapy using several MOSFET in stereotactic radiosurgery computed by an inverse model

    NASA Astrophysics Data System (ADS)

    Sors, Aurélie; Cassol, Emmanuelle; Masquère, Mathieu; Latorzeff, Igor; Duthil, Pierre; Chauveau, Nicolas; Lotterie, Jean-Albert; Sabatier, Jean; Redon, Alain; Berry, Isabelle; Franceries, Xavier

    2016-09-01

    In-vivo dosimetry is still a challenge in stereotactic radiosurgery since most of treatments are delivered using rotational technique with small fields. A realistic and practical solution for these treatments delivered in conformal radiotherapy is proposed to control the absorbed dose at isocentre, using multiple surface MOSFET measurements over an arc. On the one hand, a forward method was developed to optimize the location of the detectors at the patient surface, taking into account arc length, prescribed isocentre dose, collimator and field size. On the other hand, an inverse method was used to compute the dose at isocentre for conformal arc therapy in stereotactic radiosurgery, using MOSFET measurements. Finally, the reconstructed dose at isocentre was compared to real measurement, obtained for several detectors positioned at a phantom surface. Results show that the inverse method gives good results with five MOSFET equi-spaced positioned within the arc beam course: deviation between prescribed and computed average total dose at isocentre was below 2% both for 30×30 mm2 and 18×18 mm2 field size

  19. Cortex inspired model for inverse kinematics computation for a humanoid robotic finger.

    PubMed

    Gentili, Rodolphe J; Oh, Hyuk; Molina, Javier; Reggia, James A; Contreras-Vidal, José L

    2012-01-01

    In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands.

  20. Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger

    PubMed Central

    Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.

    2013-01-01

    In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569

  1. Neural Computations in a Dynamical System with Multiple Time Scales

    PubMed Central

    Mi, Yuanyuan; Lin, Xiaohan; Wu, Si

    2016-01-01

    Neural systems display rich short-term dynamics at various levels, e.g., spike-frequency adaptation (SFA) at the single-neuron level, and short-term facilitation (STF) and depression (STD) at the synapse level. These dynamical features typically cover a broad range of time scales and exhibit large diversity in different brain regions. It remains unclear what is the computational benefit for the brain to have such variability in short-term dynamics. In this study, we propose that the brain can exploit such dynamical features to implement multiple seemingly contradictory computations in a single neural circuit. To demonstrate this idea, we use continuous attractor neural network (CANN) as a working model and include STF, SFA and STD with increasing time constants in its dynamics. Three computational tasks are considered, which are persistent activity, adaptation, and anticipative tracking. These tasks require conflicting neural mechanisms, and hence cannot be implemented by a single dynamical feature or any combination with similar time constants. However, with properly coordinated STF, SFA and STD, we show that the network is able to implement the three computational tasks concurrently. We hope this study will shed light on the understanding of how the brain orchestrates its rich dynamics at various levels to realize diverse cognitive functions. PMID:27679569

  2. A new computational structure for real-time dynamics

    SciTech Connect

    Izaguirre, A. ); Hashimoto, Minoru )

    1992-08-01

    The authors present an efficient structure for the computation of robot dynamics in real time. The fundamental characteristic of this structure is the division of the computation into a high-priority synchronous task and low-priority background tasks, possibly sharing the resources of a conventional computing unit based on commercial microprocessors. The background tasks compute the inertial and gravitational coefficients as well as the forces due to the velocities of the joints. In each control sample period, the high-priority synchronous task computes the product of the inertial coefficients by the accelerations of the joints and performs the summation of the torques due to the velocities and gravitational forces. Kircanski et al. (1986) have shown that the bandwidth of the variation of joint angles and of their velocities is an order of magnitude less than the variation of joint accelerations. This result agrees with the experiments the authors have carried out using a PUMA 260 robot. Two main strategies contribute to reduce the computational burden associated with the evaluation of the dynamic equations. The first involves the use of efficient algorithms for the evaluation of the equations. The second is aimed at reducing the number of dynamic parameters by identifying beforehand the linear dependencies among these parameters, as well as carrying out a significance analysis of the parameters' contribution to the final joint torques. The actual code used to evaluate this dynamic model is entirely computer generated from experimental data, requiring no other manual intervention than performing a campaign of measurements.

  3. Osmosis : a molecular dynamics computer simulation study

    NASA Astrophysics Data System (ADS)

    Lion, Thomas

    Osmosis is a phenomenon of critical importance in a variety of processes ranging from the transport of ions across cell membranes and the regulation of blood salt levels by the kidneys to the desalination of water and the production of clean energy using potential osmotic power plants. However, despite its importance and over one hundred years of study, there is an ongoing confusion concerning the nature of the microscopic dynamics of the solvent particles in their transfer across the membrane. In this thesis the microscopic dynamical processes underlying osmotic pressure and concentration gradients are investigated using molecular dynamics (MD) simulations. I first present a new derivation for the local pressure that can be used for determining osmotic pressure gradients. Using this result, the steady-state osmotic pressure is studied in a minimal model for an osmotic system and the steady-state density gradients are explained using a simple mechanistic hopping model for the solvent particles. The simulation setup is then modified, allowing us to explore the timescales involved in the relaxation dynamics of the system in the period preceding the steady state. Further consideration is also given to the relative roles of diffusive and non-diffusive solvent transport in this period. Finally, in a novel modification to the classic osmosis experiment, the solute particles are driven out-of-equilibrium by the input of energy. The effect of this modification on the osmotic pressure and the osmotic ow is studied and we find that active solute particles can cause reverse osmosis to occur. The possibility of defining a new "osmotic effective temperature" is also considered and compared to the results of diffusive and kinetic temperatures..

  4. Robot-Arm Dynamic Control by Computer

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K.; Tarn, Tzyh J.; Chen, Yilong J.

    1987-01-01

    Feedforward and feedback schemes linearize responses to control inputs. Method for control of robot arm based on computed nonlinear feedback and state tranformations to linearize system and decouple robot end-effector motions along each of cartesian axes augmented with optimal scheme for correction of errors in workspace. Major new feature of control method is: optimal error-correction loop directly operates on task level and not on joint-servocontrol level.

  5. Dynamics of Bottlebrush Networks: A Computational Study

    NASA Astrophysics Data System (ADS)

    Dobrynin, Andrey; Cao, Zhen; Sheiko, Sergei

    We study dynamics of deformation of bottlebrush networks using molecular dynamics simulations and theoretical calculations. Analysis of our simulation results show that the dynamics of bottlebrush network deformation can be described by a Rouse model for polydisperse networks with effective Rouse time of the bottlebrush network strand, τR =τ0Ns2 (Nsc + 1) where, Ns is the number-average degree of polymerization of the bottlebrush backbone strands between crosslinks, Nsc is the degree of polymerization of the side chains and τ0is a characteristic monomeric relaxation time. At time scales t smaller than the Rouse time, t <τR , the time dependent network shear modulus decays with time as G (t) ~ ρkB T(τ0 / t) 1 / 2 , where ρis the monomer number density. However, at the time scale t larger than the Rouse time of the bottlebrush strands between crosslinks, the network response is pure elastic with shear modulus G (t) =G0 , where G0 is the equilibrium shear modulus at small deformation. The stress evolution in the bottlebrush networks can be described by a universal function of t /τR . NSF DMR-1409710.

  6. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm

    PubMed Central

    2015-01-01

    Background The computation of arterial wall deformation and stresses under physiologic conditions requires a coupled compliant arterial wall-blood flow interaction model. The in-vivo arterial wall motion is constrained by tethering from the surrounding tissues. This tethering, together with the average in-vivo pressure, results in wall pre-stress. For an accurate simulation of the physiologic conditions, it is important to incorporate the wall pre-stress in the computational model. The computation of wall pre-stress is complex, as the un-loaded and un-tethered arterial shape with residual stress is unknown. In this study, the arterial wall deformation and stresses in a canine femoral artery under pulsatile pressure was computed after incorporating the wall pre-stresses. A nonlinear least square optimization based inverse algorithm was developed to compute the in-vivo wall pre-stress. Methods First, the proposed inverse algorithm was used to obtain the un-loaded and un-tethered arterial geometry from the unstressed in-vivo geometry. Then, the un-loaded, and un-tethered arterial geometry was pre-stressed by applying a mean in-vivo pressure of 104.5 mmHg and an axial stretch of 48% from the un-tethered length. Finally, the physiologic pressure pulse was applied at the inlet and the outlet of the pre-stressed configuration to calculate the in-vivo deformation and stresses. The wall material properties were modeled with an incompressible, Mooney-Rivlin model derived from previously published experimental stress-strain data (Attinger et al., 1968). Results The un-loaded and un-tethered artery geometry computed by the inverse algorithm had a length, inner diameter and thickness of 35.14 mm, 3.10 mm and 0.435 mm, respectively. The pre-stressed arterial wall geometry was obtained by applying the in-vivo axial-stretch and average in-vivo pressure to the un-loaded and un-tethered geometry. The length of the pre-stressed artery, 51.99 mm, was within 0.01 mm (0.019%) of the in

  7. Pulsatile arterial wall-blood flow interaction with wall pre-stress computed using an inverse algorithm.

    PubMed

    Das, Ashish; Paul, Anup; Taylor, Michael D; Banerjee, Rupak K

    2015-01-01

    The computation of arterial wall deformation and stresses under physiologic conditions requires a coupled compliant arterial wall-blood flow interaction model. The in-vivo arterial wall motion is constrained by tethering from the surrounding tissues. This tethering, together with the average in-vivo pressure, results in wall pre-stress. For an accurate simulation of the physiologic conditions, it is important to incorporate the wall pre-stress in the computational model. The computation of wall pre-stress is complex, as the un-loaded and un-tethered arterial shape with residual stress is unknown. In this study, the arterial wall deformation and stresses in a canine femoral artery under pulsatile pressure was computed after incorporating the wall pre-stresses. A nonlinear least square optimization based inverse algorithm was developed to compute the in-vivo wall pre-stress. First, the proposed inverse algorithm was used to obtain the un-loaded and un-tethered arterial geometry from the unstressed in-vivo geometry. Then, the un-loaded, and un-tethered arterial geometry was pre-stressed by applying a mean in-vivo pressure of 104.5 mmHg and an axial stretch of 48% from the un-tethered length. Finally, the physiologic pressure pulse was applied at the inlet and the outlet of the pre-stressed configuration to calculate the in-vivo deformation and stresses. The wall material properties were modeled with an incompressible, Mooney-Rivlin model derived from previously published experimental stress-strain data (Attinger et al., 1968). The un-loaded and un-tethered artery geometry computed by the inverse algorithm had a length, inner diameter and thickness of 35.14 mm, 3.10 mm and 0.435 mm, respectively. The pre-stressed arterial wall geometry was obtained by applying the in-vivo axial-stretch and average in-vivo pressure to the un-loaded and un-tethered geometry. The length of the pre-stressed artery, 51.99 mm, was within 0.01 mm (0.019%) of the in-vivo length of 52.0 mm; the

  8. Computer Vision for the Solar Dynamics Observatory

    NASA Astrophysics Data System (ADS)

    Martens, P. C.

    2009-12-01

    NASA has selected our large international consortium last year to produce a comprehensive system for automated feature recognition in SDO images. The data we consider are all AIA and EVE data plus surface magnetic field images from HMI. Helioseismology is addressed by another group. We are producing robust and very efficient software modules that can keep up with the relentless SDO data stream and detect, trace, and analyze a large number of phenomena, including: flares, sigmoids, filaments, coronal dimmings, polarity inversion lines, sunspots, X-ray bright points, active regions, coronal holes, EIT waves, CME's, coronal oscillations, and jets. In addition we will track the emergence and evolution of magnetic elements down to the resolution limit, and we will also provide at least four full disk nonlinear force-free magnetic field extrapolations per day. A completely new software element that rounds out this suite is a trainable feature detection module, which employs a generalized image classification algorithm to produce the texture features of the images analyzed. A user can introduce a number of examples of the phenomenon looked for and the software will return images with similar features. We have tested a proto-type on TRACE data, and were able to "train" the algorithm to detect sunspots, active regions, and loops. Such a module can be applied to find features that have not even been discovered yet, as, for example, sigmoids were in the pre-Yohkoh era. In addition it will be used to detect features for which we will not develop dedicated modules, such as loops, arcades, "null"-type geometries, anemones, delta-spots, etc. Our codes will produce entries in the Heliophysics Events Knowledge base, and that will permit users to locate data on individual events as well as carry out statistical studies on large numbers of events.

  9. Exponential rise of dynamical complexity in quantum computing through projections

    PubMed Central

    Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2014-01-01

    The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once ‘observed’ as outlined above. Conversely, we show that any complex quantum dynamics can be ‘purified’ into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics. PMID:25300692

  10. Exponential rise of dynamical complexity in quantum computing through projections.

    PubMed

    Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya

    2014-10-10

    The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.

  11. Photonic Nonlinear Transient Computing with Multiple-Delay Wavelength Dynamics

    NASA Astrophysics Data System (ADS)

    Martinenghi, Romain; Rybalko, Sergei; Jacquot, Maxime; Chembo, Yanne K.; Larger, Laurent

    2012-06-01

    We report on the experimental demonstration of a hybrid optoelectronic neuromorphic computer based on a complex nonlinear wavelength dynamics including multiple delayed feedbacks with randomly defined weights. This neuromorphic approach is based on a new paradigm of a brain-inspired computational unit, intrinsically differing from Turing machines. This recent paradigm consists in expanding the input information to be processed into a higher dimensional phase space, through the nonlinear transient response of a complex dynamics excited by the input information. The computed output is then extracted via a linear separation of the transient trajectory in the complex phase space. The hyperplane separation is derived from a learning phase consisting of the resolution of a regression problem. The processing capability originates from the nonlinear transient, resulting in nonlinear transient computing. The computational performance is successfully evaluated on a standard benchmark test, namely, a spoken digit recognition task.

  12. Dynamical localization simulated on a few-qubit quantum computer

    SciTech Connect

    Benenti, Giuliano; Montangero, Simone; Casati, Giulio; Shepelyansky, Dima L.

    2003-05-01

    We show that a quantum computer operating with a small number of qubits can simulate the dynamical localization of classical chaos in a system described by the quantum sawtooth map model. The dynamics of the system is computed efficiently up to a time t{>=}l, and then the localization length l can be obtained with accuracy {nu} by means of order 1/{nu}{sup 2} computer runs, followed by coarse-grained projective measurements on the computational basis. We also show that in the presence of static imperfections, a reliable computation of the localization length is possible without error correction up to an imperfection threshold which drops polynomially with the number of qubits.

  13. Mapping soil water dynamics and a moving wetting front by spatiotemporal inversion of electromagnetic induction data

    NASA Astrophysics Data System (ADS)

    Huang, J.; Monteiro Santos, F. A.; Triantafilis, J.

    2016-11-01

    Characterization of the spatiotemporal distribution of soil volumetric water content (θ) is fundamental to agriculture, ecology, and earth science. Given the labor intensive and inefficient nature of determining θ, apparent electrical conductivity (ECa) measured by electromagnetic induction has been used as a proxy. A number of previous studies have employed inversion algorithms to convert ECa data to depth-specific electrical conductivity (σ) which could then be correlated to soil θ and other soil properties. The purpose of this study was to develop a spatiotemporal inversion algorithm which accounts for the temporal continuity of ECa. The algorithm was applied to a case study where time-lapse ECa was collected on a 350 m transect on seven different days on an alfalfa farm in the USA. Results showed that the approach was able to map the location of moving wetting front along the transect. Results also showed that the spatiotemporal inversion algorithm was more precise (RMSE = 0.0457 cm3/cm3) and less biased (ME = -0.0023 cm3/cm3) as compared with the nonspatiotemporal inversion approach (0.0483 cm3/cm3 and ME = -0.0030 cm3/cm3, respectively). In addition, the spatiotemporal inversion algorithm allows for a reduced set of ECa surveys to be used when non abrupt changes of soil water content occur with time. To apply this spatiotemporal inversion algorithm beyond low induction number condition, full solution of the EM induction phenomena can be studied in the future.

  14. Spatial operator factorization and inversion of the manipulator mass matrix

    NASA Technical Reports Server (NTRS)

    Rodriguez, Guillermo; Kreutz-Delgado, Kenneth

    1992-01-01

    This paper advances two linear operator factorizations of the manipulator mass matrix. Embedded in the factorizations are many of the techniques that are regarded as very efficient computational solutions to inverse and forward dynamics problems. The operator factorizations provide a high-level architectural understanding of the mass matrix and its inverse, which is not visible in the detailed algorithms. They also lead to a new approach to the development of computer programs or organize complexity in robot dynamics.

  15. Computing interface motion in compressible gas dynamics

    NASA Technical Reports Server (NTRS)

    Mulder, W.; Osher, S.; Sethan, James A.

    1992-01-01

    An analysis is conducted of the coupling of Osher and Sethian's (1988) 'Hamilton-Jacobi' level set formulation of the equations of motion for propagating interfaces to a system of conservation laws for compressible gas dynamics, giving attention to both the conservative and nonconservative differencing of the level set function. The capabilities of the method are illustrated in view of the results of numerical convergence studies of the compressible Rayleigh-Taylor and Kelvin-Helmholtz instabilities for air-air and air-helium boundaries.

  16. Cortical network modeling for inverse kinematic computation of an anthropomorphic finger.

    PubMed

    Gentili, Rodolphe J; Oh, Hyuk; Molina, Javier; Contreras-Vidal, José L

    2011-01-01

    The performance of reaching movements to visual targets requires complex kinematic mechanisms such as redundant, multijointed, anthropomorphic actuators and thus is a difficult problem since the relationship between sensory and motor coordinates is highly nonlinear. In this article, we present a neural model able to learn the inverse kinematics of a simulated anthropomorphic robot finger (ShadowHand™ finger) having four degrees of freedom while performing 3D reaching movements. The results revealed that this neural model was able to control accurately and robustly the finger when performing single 3D reaching movements as well as more complex patterns of motion while generating kinematics comparable to those observed in human. The long term goal of this research is to design a bio-mimetic controller providing adaptive, robust and flexible control of dexterous robotic/prosthetics hands.

  17. Combinatorial Algorithms for Computing Column Space Bases ThatHave Sparse Inverses

    SciTech Connect

    Pinar, Ali; Chow, Edmond; Pothen, Alex

    2005-03-18

    This paper presents a combinatorial study on the problem ofconstructing a sparse basis forthe null-space of a sparse, underdetermined, full rank matrix, A. Such a null-space is suitable forsolving solving many saddle point problems. Our approach is to form acolumn space basis of A that has a sparse inverse, by selecting suitablecolumns of A. This basis is then used to form a sparse null-space basisin fundamental form. We investigate three different algorithms forcomputing the column space basis: Two greedy approaches that rely onmatching, and a third employing a divide and conquer strategy implementedwith hypergraph partitioning followed by the greedy approach. We alsodiscuss the complexity of selecting a column basis when it is known thata block diagonal basis exists with a small given block size.

  18. Cortical Network Modeling for Inverse Kinematic Computation of an Anthropomorphic Finger

    PubMed Central

    Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Contreras-Vidal, José L.

    2014-01-01

    The performance of reaching movements to visual targets requires complex kinematic mechanisms such as redundant, multijointed, anthropomorphic actuators and thus is a difficult problem since the relationship between sensory and motor coordinates is highly nonlinear. In this article, we present a neural model able to learn the inverse kinematics of a simulated anthropomorphic robot finger (ShadowHand™ finger) having four degrees of freedom while performing 3D reaching movements. The results revealed that this neural model was able to control accurately and robustly the finger when performing single 3D reaching movements as well as more complex patterns of motion while generating kinematics comparable to those observed in human. The long term goal of this research is to design a bio-mimetic controller providing adaptive, robust and flexible control of dexterous robotic/prosthetics hands. PMID:22256258

  19. Computational fluid dynamics combustion analysis evaluation

    NASA Technical Reports Server (NTRS)

    Kim, Y. M.; Shang, H. M.; Chen, C. P.; Ziebarth, J. P.

    1992-01-01

    This study involves the development of numerical modelling in spray combustion. These modelling efforts are mainly motivated to improve the computational efficiency in the stochastic particle tracking method as well as to incorporate the physical submodels of turbulence, combustion, vaporization, and dense spray effects. The present mathematical formulation and numerical methodologies can be casted in any time-marching pressure correction methodologies (PCM) such as FDNS code and MAST code. A sequence of validation cases involving steady burning sprays and transient evaporating sprays will be included.

  20. Perspective: Computer simulations of long time dynamics

    PubMed Central

    Elber, Ron

    2016-01-01

    Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances. PMID:26874473

  1. Perspective: Computer simulations of long time dynamics

    SciTech Connect

    Elber, Ron

    2016-02-14

    Atomically detailed computer simulations of complex molecular events attracted the imagination of many researchers in the field as providing comprehensive information on chemical, biological, and physical processes. However, one of the greatest limitations of these simulations is of time scales. The physical time scales accessible to straightforward simulations are too short to address many interesting and important molecular events. In the last decade significant advances were made in different directions (theory, software, and hardware) that significantly expand the capabilities and accuracies of these techniques. This perspective describes and critically examines some of these advances.

  2. Some rotorcraft applications of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1988-01-01

    The growing application of computational aerodynamics to nonlinear rotorcraft problems is outlined, with particular emphasis on the development of new methods based on the Euler and thin-layer Navier-Stokes equations. Rotor airfoil characteristics can now be calculated accurately over a wide range of transonic flow conditions. However, unsteady 3-D viscous codes remain in the research stage, and a numerical simulation of the complete flow field about a helicopter in forward flight is not now feasible. Nevertheless, impressive progress is being made in preparation for future supercomputers that will enable meaningful calculations to be made for arbitrary rotorcraft configurations.

  3. A geometric calibration method for inverse geometry computed tomography using P-matrices.

    PubMed

    Slagowski, Jordan M; Dunkerley, David A P; Hatt, Charles R; Speidel, Michael A

    2016-02-27

    Accurate and artifact free reconstruction of tomographic images requires precise knowledge of the imaging system geometry. This work proposes a novel projection matrix (P-matrix) based calibration method to enable C-arm inverse geometry CT (IGCT). The method is evaluated for scanning-beam digital x-ray (SBDX), a C-arm mounted inverse geometry fluoroscopic technology. A helical configuration of fiducials is imaged at each gantry angle in a rotational acquisition. For each gantry angle, digital tomosynthesis is performed at multiple planes and a composite image analogous to a cone-beam projection is generated from the plane stack. The geometry of the C-arm, source array, and detector array is determined at each angle by constructing a parameterized 3D-to-2D projection matrix that minimizes the sum-of-squared deviations between measured and projected fiducial coordinates. Simulations were used to evaluate calibration performance with translations and rotations of the source and detector. In a geometry with 1 mm translation of the central ray relative to the axis-of-rotation and 1 degree yaw of the detector and source arrays, the maximum error in the recovered translational parameters was 0.4 mm and maximum error in the rotation parameter was 0.02 degrees. The relative root-mean-square error in a reconstruction of a numerical thorax phantom was 0.4% using the calibration method, versus 7.7% without calibration. Changes in source-detector-distance were the most challenging to estimate. Reconstruction of experimental SBDX data using the proposed method eliminated double contour artifacts present in a non-calibrated reconstruction. The proposed IGCT geometric calibration method reduces image artifacts when uncertainties exist in system geometry.

  4. A geometric calibration method for inverse geometry computed tomography using P-matrices

    NASA Astrophysics Data System (ADS)

    Slagowski, Jordan M.; Dunkerley, David A. P.; Hatt, Charles R.; Speidel, Michael A.

    2016-03-01

    Accurate and artifact free reconstruction of tomographic images requires precise knowledge of the imaging system geometry. This work proposes a novel projection matrix (P-matrix) based calibration method to enable C-arm inverse geometry CT (IGCT). The method is evaluated for scanning-beam digital x-ray (SBDX), a C-arm mounted inverse geometry fluoroscopic technology. A helical configuration of fiducials is imaged at each gantry angle in a rotational acquisition. For each gantry angle, digital tomosynthesis is performed at multiple planes and a composite image analogous to a cone-beam projection is generated from the plane stack. The geometry of the C-arm, source array, and detector array is determined at each angle by constructing a parameterized 3D-to-2D projection matrix that minimizes the sum-of-squared deviations between measured and projected fiducial coordinates. Simulations were used to evaluate calibration performance with translations and rotations of the source and detector. In a geometry with 1 mm translation of the central ray relative to the axis-of-rotation and 1 degree yaw of the detector and source arrays, the maximum error in the recovered translational parameters was 0.4 mm and maximum error in the rotation parameter was 0.02 degrees. The relative rootmean- square error in a reconstruction of a numerical thorax phantom was 0.4% using the calibration method, versus 7.7% without calibration. Changes in source-detector-distance were the most challenging to estimate. Reconstruction of experimental SBDX data using the proposed method eliminated double contour artifacts present in a non-calibrated reconstruction. The proposed IGCT geometric calibration method reduces image artifacts when uncertainties exist in system geometry.

  5. A geometric calibration method for inverse geometry computed tomography using P-matrices

    PubMed Central

    Slagowski, Jordan M.; Dunkerley, David A. P.; Hatt, Charles R.; Speidel, Michael A.

    2016-01-01

    Accurate and artifact free reconstruction of tomographic images requires precise knowledge of the imaging system geometry. This work proposes a novel projection matrix (P-matrix) based calibration method to enable C-arm inverse geometry CT (IGCT). The method is evaluated for scanning-beam digital x-ray (SBDX), a C-arm mounted inverse geometry fluoroscopic technology. A helical configuration of fiducials is imaged at each gantry angle in a rotational acquisition. For each gantry angle, digital tomosynthesis is performed at multiple planes and a composite image analogous to a cone-beam projection is generated from the plane stack. The geometry of the C-arm, source array, and detector array is determined at each angle by constructing a parameterized 3D-to-2D projection matrix that minimizes the sum-of-squared deviations between measured and projected fiducial coordinates. Simulations were used to evaluate calibration performance with translations and rotations of the source and detector. In a geometry with 1 mm translation of the central ray relative to the axis-of-rotation and 1 degree yaw of the detector and source arrays, the maximum error in the recovered translational parameters was 0.4 mm and maximum error in the rotation parameter was 0.02 degrees. The relative root-mean-square error in a reconstruction of a numerical thorax phantom was 0.4% using the calibration method, versus 7.7% without calibration. Changes in source-detector-distance were the most challenging to estimate. Reconstruction of experimental SBDX data using the proposed method eliminated double contour artifacts present in a non-calibrated reconstruction. The proposed IGCT geometric calibration method reduces image artifacts when uncertainties exist in system geometry. PMID:27375313

  6. Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised

    NASA Technical Reports Server (NTRS)

    Yee, Helen C.; Sweby, Peter K.

    1997-01-01

    The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.

  7. Oxygen and seizure dynamics: II. Computational modeling

    PubMed Central

    Wei, Yina; Ullah, Ghanim; Ingram, Justin

    2014-01-01

    Electrophysiological recordings show intense neuronal firing during epileptic seizures leading to enhanced energy consumption. However, the relationship between oxygen metabolism and seizure patterns has not been well studied. Recent studies have developed fast and quantitative techniques to measure oxygen microdomain concentration during seizure events. In this article, we develop a biophysical model that accounts for these experimental observations. The model is an extension of the Hodgkin-Huxley formalism and includes the neuronal microenvironment dynamics of sodium, potassium, and oxygen concentrations. Our model accounts for metabolic energy consumption during and following seizure events. We can further account for the experimental observation that hypoxia can induce seizures, with seizures occurring only within a narrow range of tissue oxygen pressure. We also reproduce the interplay between excitatory and inhibitory neurons seen in experiments, accounting for the different oxygen levels observed during seizures in excitatory vs. inhibitory cell layers. Our findings offer a more comprehensive understanding of the complex interrelationship among seizures, ion dynamics, and energy metabolism. PMID:24671540

  8. SIPT: a seismic refraction inverse modeling program for timeshare terminal computer systems

    USGS Publications Warehouse

    Scott, James Henry

    1977-01-01

    SIPB is an interactive Fortran computer program that was developed for use with a timeshare computer system with program control information submitted from a remote terminal, and output data displayed on the terminal or printed on a line printer. The program is an upgraded version of FSIPI (Scott, Tibbetts, and Burdick, 1972) with several major improvements in addition to .its adaptation to timeshare operation. The most significant improvement was made in the procedure for handling data from in-line offset shotpoints beyond the end shotpoints of the geophone spread. The changes and improvements are described, user's instructions are outlined, examples of input and output data for a test problem are presented, and the Fortran program is listed in this report. An upgraded batch-mode program, SIPB, is available for users who do not have a timeshare computer system available (Scott, 1977).

  9. SIPB: a seismic refraction inverse modeling program for batch computer systems

    USGS Publications Warehouse

    Scott, James Henry

    1977-01-01

    SIPB is an interactive Fortran computer program that was developed for use with a timeshare computer system with program control information submitted from a remote terminal, and output data displayed on the terminal or printed on a line printer. The program is an upgraded version of FSIPI (Scott, Tibbetts, and Burdick, 1972) with several major improvements in addition to .its adaptation to timeshare operation. The most significant improvement was made in the procedure for handling data from in-line offset shotpoints beyond the end shotpoints of the geophone spread. The changes and improvements are described, user's instructions are outlined, examples of input and output data for a test problem are presented, and the Fortran program is listed in this report. An upgraded batch-mode program, SIPB, is available for users who do not have a timeshare computer system available (Scott, 1977).

  10. Postseismic Deformation Following the 2010 El Mayor-Cucapah Earthquake: Observations, Kinematic Inversions, and Dynamic Models

    NASA Astrophysics Data System (ADS)

    Rollins, Christopher; Barbot, Sylvain; Avouac, Jean-Philippe

    2015-05-01

    Due to its location on a transtensional section of the Pacific-North American plate boundary, the Salton Trough is a region featuring large strike-slip earthquakes within a regime of shallow asthenosphere, high heat flow, and complex faulting, and so postseismic deformation there may feature enhanced viscoelastic relaxation and afterslip that is particularly detectable at the surface. The 2010 El Mayor-Cucapah earthquake was the largest shock in the Salton Trough since 1892 and occurred close to the US-Mexico border, and so the postseismic deformation recorded by the continuous GPS network of southern California provides an opportunity to study the rheology of this region. Three-year postseismic transients extracted from GPS displacement time-series show four key features: (1) 1-2 cm of cumulative uplift in the Imperial Valley and 1 cm of subsidence in the Peninsular Ranges, (2) relatively large cumulative horizontal displacements 150 km from the rupture in the Peninsular Ranges, (3) rapidly decaying horizontal displacement rates in the first few months after the earthquake in the Imperial Valley, and (4) sustained horizontal velocities, following the rapid early motions, that were still visibly ongoing 3 years after the earthquake. Kinematic inversions show that the cumulative 3-year postseismic displacement field can be well fit by afterslip on and below the coseismic rupture, though these solutions require afterslip with a total moment equivalent to at least a earthquake and higher slip magnitudes than those predicted by coseismic stress changes. Forward modeling shows that stress-driven afterslip and viscoelastic relaxation in various configurations within the lithosphere can reproduce the early and later horizontal velocities in the Imperial Valley, while Newtonian viscoelastic relaxation in the asthenosphere can reproduce the uplift in the Imperial Valley and the subsidence and large westward displacements in the Peninsular Ranges. We present two forward

  11. Computational fluid dynamics - An introduction for engineers

    NASA Astrophysics Data System (ADS)

    Abbott, Michael Barry; Basco, David R.

    An introduction to the fundamentals of CFD for engineers and physical scientists is presented. The principal definitions, basic ideas, and most common methods used in CFD are presented, and the application of these methods to the description of free surface, unsteady, and turbulent flow is shown. Emphasis is on the numerical treatment of incompressible unsteady fluid flow with primary applications to water problems using the finite difference method. While traditional areas of application like hydrology, hydraulic and coastal engineering and oceanography get the main emphasis, newer areas of application such as medical fluid dynamics, bioengineering, and soil physics and chemistry are also addressed. The possibilities and limitations of CFD are pointed out along with the relations of CFD to other branches of science.

  12. A modular system for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    McCarthy, D. R.; Foutch, D. W.; Shurtleff, G. E.

    This paper describes the Modular System for Compuational Fluid Dynamics (MOSYS), a software facility for the construction and execution of arbitrary solution procedures on multizone, structured body-fitted grids. It focuses on the structure and capabilities of MOSYS and the philosophy underlying its design. The system offers different levels of capability depending on the objectives of the user. It enables the applications engineer to quickly apply a variety of methods to geometrically complex problems. The methods developer can implement new algorithms in a simple form, and immediately apply them to problems of both theoretical and practical interest. And for the code builder it consitutes a toolkit for fast construction of CFD codes tailored to various purposes. These capabilities are illustrated through applications to a particularly complex problem encountered in aircraft propulsion systems, namely, the analysis of a landing aircraft in reverse thrust.

  13. Challenges to computing plasma thruster dynamics

    SciTech Connect

    Smith, G.A. )

    1992-01-01

    This paper describes computational challenges in describing high thrust and I[sub sp] expected from the proposed ion-compressed antimatter nuclear (ICAN) propulsion system. This concept uses antiprotons to induce fission reactions that jump start a microfission/fusion process in a target compressed by low-energy ion beams. The ICAN system could readily provide the high energy density required for interplanetary space missions of short duration. In conventional rocket design, thrust is obtained by expelling a propellant under high pressure through a nozzle. A larger I[sub sp] can be achieved by operating the system at a higher temperature. Full ionization of propellant at high temperature introduces new and challenging questions in the design of plasma thrusters.

  14. Time-domain seismic modeling in viscoelastic media for full waveform inversion on heterogeneous computing platforms with OpenCL

    NASA Astrophysics Data System (ADS)

    Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard

    2017-03-01

    Full Waveform Inversion (FWI) aims at recovering the elastic parameters of the Earth by matching recordings of the ground motion with the direct solution of the wave equation. Modeling the wave propagation for realistic scenarios is computationally intensive, which limits the applicability of FWI. The current hardware evolution brings increasing parallel computing power that can speed up the computations in FWI. However, to take advantage of the diversity of parallel architectures presently available, new programming approaches are required. In this work, we explore the use of OpenCL to develop a portable code that can take advantage of the many parallel processor architectures now available. We present a program called SeisCL for 2D and 3D viscoelastic FWI in the time domain. The code computes the forward and adjoint wavefields using finite-difference and outputs the gradient of the misfit function given by the adjoint state method. To demonstrate the code portability on different architectures, the performance of SeisCL is tested on three different devices: Intel CPUs, NVidia GPUs and Intel Xeon PHI. Results show that the use of GPUs with OpenCL can speed up the computations by nearly two orders of magnitudes over a single threaded application on the CPU. Although OpenCL allows code portability, we show that some device-specific optimization is still required to get the best performance out of a specific architecture. Using OpenCL in conjunction with MPI allows the domain decomposition of large models on several devices located on different nodes of a cluster. For large enough models, the speedup of the domain decomposition varies quasi-linearly with the number of devices. Finally, we investigate two different approaches to compute the gradient by the adjoint state method and show the significant advantages of using OpenCL for FWI.

  15. Finite element solution techniques for large-scale problems in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Liou, J.; Tezduyar, T. E.

    1987-01-01

    Element-by-element approximate factorization, implicit-explicit and adaptive implicit-explicit approximation procedures are presented for the finite-element formulations of large-scale fluid dynamics problems. The element-by-element approximation scheme totally eliminates the need for formation, storage and inversion of large global matrices. Implicit-explicit schemes, which are approximations to implicit schemes, substantially reduce the computational burden associated with large global matrices. In the adaptive implicit-explicit scheme, the implicit elements are selected dynamically based on element level stability and accuracy considerations. This scheme provides implicit refinement where it is needed. The methods are applied to various problems governed by the convection-diffusion and incompressible Navier-Stokes equations. In all cases studied, the results obtained are indistinguishable from those obtained by the implicit formulations.

  16. Local Derivative-Free Parallel Computing Method for Solving the Inverse Problem in Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Elshall, A. S.; Tsai, F. T.; Yan, L.

    2012-12-01

    The inverse problem in groundwater modeling deals with a rugged (i.e. ill-conditioned and multimodal), nonseparable and noisy function since it involves solving second order nonlinear partial deferential equations with forcing terms. Derivative-based optimization algorithms may fail to reach a near global solution due to their stagnation at a local minimum solution. To avoid entrapment in a local optimum and enhance search efficiency, this study introduces the covariance matrix adaptation-evolution strategy (CMA-ES) as a local derivative-free optimization method. In the first part of the study, we compare CMA-ES with five commonly used heuristic methods and the traditional derivative-based Gauss-Newton method on a hypothetical problem. This problem involves four different cases to allow a rigorous assessment against ten criterions: ruggedness in terms of nonsmooth and multimodal, ruggedness in terms of ill-conditioning and high nonlinearity, nonseparablity, high dimensionality, noise, algorithm adaptation, algorithm tuning, performance, consistency, parallelization (scaling with number of cores) and invariance (solution vector and function values). The CMA-ES adapts a covariance matrix representing the pair-wise dependency between decision variables, which approximates the inverse of the Hessian matrix up to a certain factor. The solution is updated with the covariance matrix and an adaptable step size, which are adapted through two conjugates that implement heuristic control terms. The covariance matrix adaptation uses information from the current population of solutions and from the previous search path. Since such an elaborate search mechanism is not common in the other heuristic methods, CMA-ES proves to be more robust than other population-based heuristic methods in terms of reaching a near-optimal solution for a rugged, nonseparable and noisy inverse problem. Other favorable properties that the CMA-ES exhibits are the consistency of the solution for repeated

  17. Multithreaded Model for Dynamic Load Balancing Parallel Adaptive PDE Computations

    NASA Technical Reports Server (NTRS)

    Chrisochoides, Nikos

    1995-01-01

    We present a multithreaded model for the dynamic load-balancing of numerical, adaptive computations required for the solution of Partial Differential Equations (PDE's) on multiprocessors. Multithreading is used as a means of exploring concurrency in the processor level in order to tolerate synchronization costs inherent to traditional (non-threaded) parallel adaptive PDE solvers. Our preliminary analysis for parallel, adaptive PDE solvers indicates that multithreading can be used an a mechanism to mask overheads required for the dynamic balancing of processor workloads with computations required for the actual numerical solution of the PDE's. Also, multithreading can simplify the implementation of dynamic load-balancing algorithms, a task that is very difficult for traditional data parallel adaptive PDE computations. Unfortunately, multithreading does not always simplify program complexity, often makes code re-usability not an easy task, and increases software complexity.

  18. Fluid dynamics parallel computer development at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Townsend, James C.; Zang, Thomas A.; Dwoyer, Douglas L.

    1987-01-01

    To accomplish more detailed simulations of highly complex flows, such as the transition to turbulence, fluid dynamics research requires computers much more powerful than any available today. Only parallel processing on multiple-processor computers offers hope for achieving the required effective speeds. Looking ahead to the use of these machines, the fluid dynamicist faces three issues: algorithm development for near-term parallel computers, architecture development for future computer power increases, and assessment of possible advantages of special purpose designs. Two projects at NASA Langley address these issues. Software development and algorithm exploration is being done on the FLEX/32 Parallel Processing Research Computer. New architecture features are being explored in the special purpose hardware design of the Navier-Stokes Computer. These projects are complementary and are producing promising results.

  19. Fluid dynamics parallel computer development at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Townsend, James C.; Zang, Thomas A.; Dwoyer, Douglas L.

    1987-01-01

    To accomplish more detailed simulations of highly complex flows, such as the transition to turbulence, fluid dynamics research requires computers much more powerful than any available today. Only parallel processing on multiple-processor computers offers hope for achieving the required effective speeds. Looking ahead to the use of these machines, the fluid dynamicist faces three issues: algorithm development for near-term parallel computers, architecture development for future computer power increases, and assessment of possible advantages of special purpose designs. Two projects at NASA Langley address these issues. Software development and algorithm exploration is being done on the FLEX/32 Parallel Processing Research Computer. New architecture features are being explored in the special purpose hardware design of the Navier-Stokes Computer. These projects are complementary and are producing promising results.

  20. A Computational Strategy for Inversion of Correlation Matrices Having Linear Dependencies

    ERIC Educational Resources Information Center

    Roscoe, John T.; Kittleson, Howard M.

    1972-01-01

    Copies of a complete multiple regression computer program (incorporating the modified Gauss-Jordan procedure) and instructions for its use may be found in the senior author's recent book, The Funstat Package in Fortran IV,'' Holt, Rinehart and Winston. (Authors/CB)

  1. A Computational Strategy for Inversion of Correlation Matrices Having Linear Dependencies

    ERIC Educational Resources Information Center

    Roscoe, John T.; Kittleson, Howard M.

    1972-01-01

    Copies of a complete multiple regression computer program (incorporating the modified Gauss-Jordan procedure) and instructions for its use may be found in the senior author's recent book, The Funstat Package in Fortran IV,'' Holt, Rinehart and Winston. (Authors/CB)

  2. An optimization approach to inverse dynamics provides insight as to the function of the biarticular muscles during vertical jumping.

    PubMed

    Cleather, Daniel J; Goodwin, Jon E; Bull, Anthony M J

    2011-01-01

    Traditional inverse dynamics approaches to calculating the inter-segmental moments are limited in their ability to accurately reflect the function of the biarticular muscles. In particular they are based on the assumption that the net inter-segmental moment is zero and that total joint moments are independent of muscular activity. Traditional approaches to calculating muscular forces from the inter-segmental moments are based on a consideration of joint moments which do not encapsulate the potential moment asymmetry between segments. In addition, traditional approaches may artificially constrain the activity of the biarticular muscles. In this study, an optimization approach to the simultaneous inverse determination of inter-segmental moments and muscle forces (the 1-step method) based on a consideration of segmental rotations was employed to study vertical jumping and contrasted with the more traditional 2-step approach of determining inter-segmental moments from an inverse dynamics analysis then muscle forces using optimization techniques. The 1-step method resulted in significantly greater activation of both the monoarticular and biarticular musculature which was then translated into significantly greater joint contact forces, muscle powers, and inter-segmental moments. The results of this study suggest that traditional conceptions of inter-segmental moments do not completely encapsulate the function of the biarticular muscles and that joint function can be better understood by recognizing the asymmetry in inter-segmental moments.

  3. A theoretical Deduction from the Hubble law based on a Modified Newtonian Dynamics with field of Yukawa inverse

    NASA Astrophysics Data System (ADS)

    Falcon, N.

    2017-07-01

    At cosmic scales the dynamics of the Universe are almost exclusively prescribed by the force of gravity; however the assumption of the law of gravitation, depending on the inverse of the distance, leads to the known problems of the rotation curves of galaxies and missing mass (dark matter). The problem of the coupling of gravity to changes in scale and deviations from the law of the inverse square is an old problem (Laplace, 1805; Seeliger 1898), which has motivated alternatives to Newtonian dynamics compatible with observations. The present paper postulates a modified Newtonian dynamics by adding an inverse Yukawa potential: U(r)≡U0(M)(r-r0)e-α/r is the the potential per unit mass (in N/kg) as a function of the barionic mass that causes the field, r0 is of the order of 50h-1 Mpc and alpha is a coupling constant of the order of 2.5 h-1 Mpc. This potential is zero within the solar system, slightly attractive at interstellar distances, very attractive in galactic range and repulsive at cosmic scales. Its origin is the barionic matter, it allows to include the Milgrow MoND theory to explain the rotation curves, it is compatible with the experiments Eovos type, and allows to deduce the law of Hubble to cosmic scales, in the form H0=100h km/s Mpc≍U0(M)/c, where U0(M)≍ 4pi×6.67 10-11m/s2, is obtained from the Laplace's equation, assuming that the gravitational force is the law of the inverse of the square plus a non-linear term type Yukawa inverse. It is concluded that the modification of the law of gravity with nonlinear terms, allows to model the dynamics of the Universe on a large scale and include non-locality without dark matter. (See Falcon et al. 2014, International Journal of Astronomy and Astrophysics, 4, 551-559).

  4. Development of computational fluid dynamics at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Inouye, M.

    1984-01-01

    Ames Research Center has the lead role among NASA centers to conduct research in computational fluid dynamics. The past, the present, and the future prospects in this field are reviewed. Past accomplishments include pioneering computer simulations of fluid dynamics problems that have made computers valuable in complementing wind tunnels for aerodynamic research. The present facilities include the most powerful computers built in the United States. Three examples of viscous flow simulations are presented: an afterbody with an exhaust plume, a blunt fin mounted on a flat plate, and the Space Shuttle. The future prospects include implementation of the Numerical Aerodynamic Simulation Processing System that will provide the capability for solving the viscous flow field around an aircraft in a matter of minutes.

  5. A computer code for forward calculation and inversion of the H/V spectral ratio under the diffuse field assumption

    NASA Astrophysics Data System (ADS)

    García-Jerez, Antonio; Piña-Flores, José; Sánchez-Sesma, Francisco J.; Luzón, Francisco; Perton, Mathieu

    2016-12-01

    During a quarter of a century, the main characteristics of the horizontal-to-vertical spectral ratio of ambient noise HVSRN have been extensively used for site effect assessment. In spite of the uncertainties about the optimum theoretical model to describe these observations, over the last decade several schemes for inversion of the full HVSRN curve for near surface surveying have been developed. In this work, a computer code for forward calculation of H/V spectra based on the diffuse field assumption (DFA) is presented and tested. It takes advantage of the recently stated connection between the HVSRN and the elastodynamic Green's function which arises from the ambient noise interferometry theory. The algorithm allows for (1) a natural calculation of the Green's functions imaginary parts by using suitable contour integrals in the complex wavenumber plane, and (2) separate calculation of the contributions of Rayleigh, Love, P-SV and SH waves as well. The stability of the algorithm at high frequencies is preserved by means of an adaptation of the Wang's orthonormalization method to the calculation of dispersion curves, surface-waves medium responses and contributions of body waves. This code has been combined with a variety of inversion methods to make up a powerful tool for passive seismic surveying.

  6. Computational fluid dynamic modelling of cavitation

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  7. Amoeba-inspired nanoarchitectonic computing: solving intractable computational problems using nanoscale photoexcitation transfer dynamics.

    PubMed

    Aono, Masashi; Naruse, Makoto; Kim, Song-Ju; Wakabayashi, Masamitsu; Hori, Hirokazu; Ohtsu, Motoichi; Hara, Masahiko

    2013-06-18

    Biologically inspired computing devices and architectures are expected to overcome the limitations of conventional technologies in terms of solving computationally demanding problems, adapting to complex environments, reducing energy consumption, and so on. We previously demonstrated that a primitive single-celled amoeba (a plasmodial slime mold), which exhibits complex spatiotemporal oscillatory dynamics and sophisticated computing capabilities, can be used to search for a solution to a very hard combinatorial optimization problem. We successfully extracted the essential spatiotemporal dynamics by which the amoeba solves the problem. This amoeba-inspired computing paradigm can be implemented by various physical systems that exhibit suitable spatiotemporal dynamics resembling the amoeba's problem-solving process. In this Article, we demonstrate that photoexcitation transfer phenomena in certain quantum nanostructures mediated by optical near-field interactions generate the amoebalike spatiotemporal dynamics and can be used to solve the satisfiability problem (SAT), which is the problem of judging whether a given logical proposition (a Boolean formula) is self-consistent. SAT is related to diverse application problems in artificial intelligence, information security, and bioinformatics and is a crucially important nondeterministic polynomial time (NP)-complete problem, which is believed to become intractable for conventional digital computers when the problem size increases. We show that our amoeba-inspired computing paradigm dramatically outperforms a conventional stochastic search method. These results indicate the potential for developing highly versatile nanoarchitectonic computers that realize powerful solution searching with low energy consumption.

  8. Qualification of a computer program for drill string dynamics

    SciTech Connect

    Stone, C.M.; Carne, T.G.; Caskey, B.C.

    1985-01-01

    A four point plan for the qualification of the GEODYN drill string dynamics computer program is described. The qualification plan investigates both modal response and transient response of a short drill string subjected to simulated cutting loads applied through a polycrystalline diamond compact (PDC) bit. The experimentally based qualification shows that the analytical techniques included in Phase 1 GEODYN correctly simulate the dynamic response of the bit-drill string system. 6 refs., 8 figs.

  9. Improved Pyrolysis Micro reactor Design via Computational Fluid Dynamics Simulations

    DTIC Science & Technology

    2017-05-23

    NUMBER (Include area code) 23 May 2017 Briefing Charts 25 April 2017 - 23 May 2017 Improved Pyrolysis Micro-reactor Design via Computational Fluid... PYROLYSIS MICRO-REACTOR DESIGN VIA COMPUTATIONAL FLUID DYNAMICS SIMULATIONS Ghanshyam L. Vaghjiani* DISTRIBUTION A: Approved for public release...Approved for public release, distribution unlimited. PA Clearance 17247 Chen-Source (>240 references from SciFinder as of 5/1/17): Flash pyrolysis

  10. Computational Fluid Dynamics. [numerical methods and algorithm development

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This collection of papers was presented at the Computational Fluid Dynamics (CFD) Conference held at Ames Research Center in California on March 12 through 14, 1991. It is an overview of CFD activities at NASA Lewis Research Center. The main thrust of computational work at Lewis is aimed at propulsion systems. Specific issues related to propulsion CFD and associated modeling will also be presented. Examples of results obtained with the most recent algorithm development will also be presented.

  11. Synthesis of Hydroxysumanene and Substituent Effect of Hydroxy Group on Bowl Inversion Dynamics and Electronic Structure.

    PubMed

    Ngamsomprasert, Niti; Panda, Gautam; Higashibayashi, Shuhei; Sakurai, Hidehiro

    2016-12-02

    Hydroxysumanene was synthesized from acylsumanenes by Baeyer-Villiger oxidation. DFT calculation predicted the higher bowl inversion energy and deeper bowl structure of hydroxysumanene than those of pristine sumanene. The bowl inversion energy of hydroxysumanene was experimentally determined by 2D-EXSY NMR measurement as 21.2 kcal/mol. The energy was larger than that of pristine sumanene (20.3 kcal/mol), which agreed with the calculation result. Electrochemical measurement indicated the higher HOMO level of hydroxysumanene than that of sumanene, which confirmed the electron-rich character of the phenolic function in the bowl skeleton.

  12. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing.

    PubMed

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-05-20

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications.

  13. Whole-Body Human Inverse Dynamics with Distributed Micro-Accelerometers, Gyros and Force Sensing †

    PubMed Central

    Latella, Claudia; Kuppuswamy, Naveen; Romano, Francesco; Traversaro, Silvio; Nori, Francesco

    2016-01-01

    Human motion tracking is a powerful tool used in a large range of applications that require human movement analysis. Although it is a well-established technique, its main limitation is the lack of estimation of real-time kinetics information such as forces and torques during the motion capture. In this paper, we present a novel approach for a human soft wearable force tracking for the simultaneous estimation of whole-body forces along with the motion. The early stage of our framework encompasses traditional passive marker based methods, inertial and contact force sensor modalities and harnesses a probabilistic computational technique for estimating dynamic quantities, originally proposed in the domain of humanoid robot control. We present experimental analysis on subjects performing a two degrees-of-freedom bowing task, and we estimate the motion and kinetics quantities. The results demonstrate the validity of the proposed method. We discuss the possible use of this technique in the design of a novel soft wearable force tracking device and its potential applications. PMID:27213394

  14. A flexible automatically adaptive surface nuclear magnetic resonance modelling and inversion framework incorporating complex data and static dephasing dynamics

    NASA Astrophysics Data System (ADS)

    Irons, Trevor P.

    Surface nuclear magnetic resonance (sNMR) is the only geophysical technique that can directly and non-invasively detect the presence of subsurface liquid water. The method has established itself as valuable tool for hydrologists and groundwater managers owing to the fact that both porosity and hydraulic conductivity estimates can be made using this technique. Although sNMR has enormous potential, there are many challenges with the technique which hinder it's more widespread adoption. For these reasons sNMR has primarily been used as a 1D groundwater sounding tool, although there exist myriad other applications for a method directly sensitive to liquid water. Simultaneously inverting the entire complex dataset as well as the employment of arrays of separated transmitter and receiver coils and integration with other geophysical methods can help to overcome these limitations. This requires modelling algorithms that can accommodate a widely varying set of survey configurations and scenarios. I present the innovative use of sNMR applied to two geotechnical problems: volcanic landslide hazard characterization on Mt. Baker, Washington and the monitoring of internal erosion in earthen embankments. These applications necessitated the development of a general modelling framework capable of handling arbitrary positioned transmitter and receiver coils as well as 3D water distribution. The advantages of comprehensive (whole dataset) inversion of the entire sNMR record have been established for time-domain inversions. However, these inversions are memory intensive and struggle to fit the phase portion of the dataset-necessitating the regretful dismissal of this valuable information. I instead consider the sNMR inversion problem in the frequency-domain for the first time. There are several benefits: effectively lossless compression, and the ability to easily incorporate and solve for static dephasing dynamics caused by magnetic field inhomogeneities. This has allowed for the

  15. An Iterative Inversion Technique to Compute Structural Martian Models for Refining Event Locations

    NASA Astrophysics Data System (ADS)

    Ceylan, S.; Khan, A.; van Driel, M.; Clinton, J. F.; Boese, M.; Euchner, F.; Giardini, D.; Garcia, R.; Lognonne, P. H.; Panning, M. P.; Banerdt, W. B.

    2016-12-01

    The InSight mission will deploy a single seismic station on Mars in 2018. The main task of the MarsQuake Service within the project includes detecting and locating quakes on Mars, and managing the event catalog. In preparation for the mission, we continually calibrate single station event location algorithms, employing seismic phase travel times computed for a suite of structural models. However, our knowledge about the interior structure of Mars is limited, which in turn will affect our ability to locate events accurately. Here, we present an iterative method to invert for the interior structure of Mars and revise event locations, consecutively. We first locate seismic events using differential arrival times (with respect to the first phase arrival) of all possible seismic phases, computed for a priori initial structural models. These models are built considering a one-dimensional average crust and current estimates of bulk mantle chemistry and areotherm. Phase picks and uncertainty assignments are done manually. Then, we invert for the interior structure employing the arrival times for the picked phases, and generate an updated suite of models, which are further used to revise the initial phase picks, and relocate events. We repeat this sequence for each additional and new entry in the travel time database to improve event locations and models for average Martian structure. In order to test our approach, we simulate the operational conditions we will encounter in practice: We compute synthetic waveforms for a realistic event catalog of 120 events, with magnitudes between 2.5 and 5.0 and double-couple source mechanisms only. 1-Hz seismograms are computed using AxiSEM and Instaseis, employing two Martian models with a thin (30 km) and thick (80 km) crust, both with and without seismic surface noise. The waveforms are hosted at the ETH servers, and are publicly accessible via FDSN web services.

  16. A Combined Geometric Approach for Computational Fluid Dynamics on Dynamic Grids

    NASA Technical Reports Server (NTRS)

    Slater, John W.

    1995-01-01

    A combined geometric approach for computational fluid dynamics is presented for the analysis of unsteady flow about mechanisms in which its components are in moderate relative motion. For a CFD analysis, the total dynamics problem involves the dynamics of the aspects of geometry modeling, grid generation, and flow modeling. The interrelationships between these three aspects allow for a more natural formulation of the problem and the sharing of information which can be advantageous to the computation of the dynamics. The approach is applied to planar geometries with the use of an efficient multi-block, structured grid generation method to compute unsteady, two-dimensional and axisymmetric flow. The applications presented include the computation of the unsteady, inviscid flow about a hinged-flap with flap deflections and a high-speed inlet with centerbody motion as part of the unstart / restart operation.

  17. All-electrical detection of spin dynamics in magnetic antidot lattices by the inverse spin Hall effect

    SciTech Connect

    Jungfleisch, Matthias B.; Zhang, Wei; Ding, Junjia; Jiang, Wanjun; Sklenar, Joseph; Pearson, John E.; Ketterson, John B.; Hoffmann, Axel

    2016-02-03

    The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Lastly, our findings have direct implications on the development of engineered magnonics applications and devices.

  18. Numerical inversion of the Laplace transform in some problems of granular media dynamics

    NASA Astrophysics Data System (ADS)

    Yavich, Nikolay B.

    2004-04-01

    Approximated value for the vertical displacement of a surface bounding a half space and a layer laying on rigid foundation filled with granular medium caused by a vertical symmetric load is received here. The results obtained for Kandaurov standard linear medium model are used. This model takes in account an internal friction. The Papoulis method of numerical inversion of the Laplace transform is applied.

  19. A model of cerebellar computations for dynamical state estimation

    NASA Technical Reports Server (NTRS)

    Paulin, M. G.; Hoffman, L. F.; Assad, C.

    2001-01-01

    The cerebellum is a neural structure that is essential for agility in vertebrate movements. Its contribution to motor control appears to be due to a fundamental role in dynamical state estimation, which also underlies its role in various non-motor tasks. Single spikes in vestibular sensory neurons carry information about head state. We show how computations for optimal dynamical state estimation may be accomplished when signals are encoded in spikes. This provides a novel way to design dynamical state estimators, and a novel way to interpret the structure and function of the cerebellum.

  20. A model of cerebellar computations for dynamical state estimation.

    PubMed

    Paulin, M G; Hoffman, L F; Assad, C

    2001-11-01

    The cerebellum is a neural structure that is essential for agility in vertebrate movements. Its contribution to motor control appears to be due to a fundamental role in dynamical state estimation, which also underlies its role in various non-motor tasks. Single spikes in vestibular sensory neurons carry information about head state. We show how computations for optimal dynamical state estimation may be accomplished when signals are encoded in spikes. This provides a novel way to design dynamical state estimators, and a novel way to interpret the structure and function of the cerebellum.