Science.gov

Sample records for dynamic material flow

  1. Dynamic modelling of packaging material flow systems.

    PubMed

    Tsiliyannis, Christos A

    2005-04-01

    A dynamic model has been developed for reused and recycled packaging material flows. It allows a rigorous description of the flows and stocks during the transition to new targets imposed by legislation, product demand variations or even by variations in consumer discard behaviour. Given the annual reuse and recycle frequency and packaging lifetime, the model determines all packaging flows (e.g., consumption and reuse) and variables through which environmental policy is formulated, such as recycling, waste and reuse rates and it identifies the minimum number of variables to be surveyed for complete packaging flow monitoring. Simulation of the transition to the new flow conditions is given for flows of packaging materials in Greece, based on 1995--1998 field inventory and statistical data. PMID:15864957

  2. Dynamic material flow modeling: an effort to calibrate and validate aluminum stocks and flows in Austria.

    PubMed

    Buchner, Hanno; Laner, David; Rechberger, Helmut; Fellner, Johann

    2015-05-01

    A calibrated and validated dynamic material flow model of Austrian aluminum (Al) stocks and flows between 1964 and 2012 was developed. Calibration and extensive plausibility testing was performed to illustrate how the quality of dynamic material flow analysis can be improved on the basis of the consideration of independent bottom-up estimates. According to the model, total Austrian in-use Al stocks reached a level of 360 kg/capita in 2012, with buildings (45%) and transport applications (32%) being the major in-use stocks. Old scrap generation (including export of end-of-life vehicles) amounted to 12.5 kg/capita in 2012, still being on the increase, while Al final demand has remained rather constant at around 25 kg/capita in the past few years. The application of global sensitivity analysis showed that only small parts of the total variance of old scrap generation could be explained by the variation of single parameters, emphasizing the need for comprehensive sensitivity analysis tools accounting for interaction between parameters and time-delay effects in dynamic material flow models. Overall, it was possible to generate a detailed understanding of the evolution of Al stocks and flows in Austria, including plausibility evaluations of the results. Such models constitute a reliable basis for evaluating future recycling potentials, in particular with respect to application-specific qualities of current and future national Al scrap generation and utilization. PMID:25851493

  3. Dynamic material flow modeling: an effort to calibrate and validate aluminum stocks and flows in Austria.

    PubMed

    Buchner, Hanno; Laner, David; Rechberger, Helmut; Fellner, Johann

    2015-05-01

    A calibrated and validated dynamic material flow model of Austrian aluminum (Al) stocks and flows between 1964 and 2012 was developed. Calibration and extensive plausibility testing was performed to illustrate how the quality of dynamic material flow analysis can be improved on the basis of the consideration of independent bottom-up estimates. According to the model, total Austrian in-use Al stocks reached a level of 360 kg/capita in 2012, with buildings (45%) and transport applications (32%) being the major in-use stocks. Old scrap generation (including export of end-of-life vehicles) amounted to 12.5 kg/capita in 2012, still being on the increase, while Al final demand has remained rather constant at around 25 kg/capita in the past few years. The application of global sensitivity analysis showed that only small parts of the total variance of old scrap generation could be explained by the variation of single parameters, emphasizing the need for comprehensive sensitivity analysis tools accounting for interaction between parameters and time-delay effects in dynamic material flow models. Overall, it was possible to generate a detailed understanding of the evolution of Al stocks and flows in Austria, including plausibility evaluations of the results. Such models constitute a reliable basis for evaluating future recycling potentials, in particular with respect to application-specific qualities of current and future national Al scrap generation and utilization.

  4. Dynamics of Granular Materials and Particle-Laden Flows

    SciTech Connect

    Swinney, Harry L.

    2007-07-11

    Rapid granular flows and particle-laden flows were studied in laboratory experiments, molecular dynamics simulations, and simulations of continuum equations. The research demonstrated that the inclusion of friction is crucial in realistic modeling of granular flows; hence extensive previous analyses and simulations by many researchers for frictionless particles must be reconsidered in the light of our work. We also made the first detailed comparison between experiment and the predictions of continuum theory for granular media (hydrodynamic equations). We found that shock waves easily form in granular flows since the speed of sound waves (pressure fluctuations) in a granular gas is small, typically 10 cm, while flow velocities are easily an order of magnitude larger. Our measurements on vertically oscillating granular layers led to the development of a novel technique for continuously separating particles of different sizes. Our study of craters formed by the impact of a projectile in a granular medium showed, surprisingly, that the time taken for a projectile to come to a rest in the granular layer is independent of the projectile’s impact energy. Another study supported by this grant examined a vertically oscillating layer of a mixture of cornstarch and water. The discovery of stable holes in the mixture was reported widely in the popular press, e.g., Science News [15 May 2004], “Imaging poking a liquid to create holes that persist like the holes in Swiss cheese. Incredible as that might sound, a group of scientists has done it.” Further experiments on glass spheres in an aqueous solution yielded the same holey fluid phenomenon, supporting our conjecture that such holes may occur in dense concentrations of particles in solution in industrial applications.

  5. Numerical investigations on flow dynamics of prismatic granular materials using the discrete element method

    NASA Astrophysics Data System (ADS)

    Hancock, W.; Weatherley, D.; Wruck, B.; Chitombo, G. P.

    2012-04-01

    The flow dynamics of granular materials is of broad interest in both the geosciences (e.g. landslides, fault zone evolution, and brecchia pipe formation) and many engineering disciplines (e.g chemical engineering, food sciences, pharmaceuticals and materials science). At the interface between natural and human-induced granular media flow, current underground mass-mining methods are trending towards the induced failure and subsequent gravitational flow of large volumes of broken rock, a method known as cave mining. Cave mining relies upon the undercutting of a large ore body, inducement of fragmentation of the rock and subsequent extraction of ore from below, via hopper-like outlets. Design of such mines currently relies upon a simplified kinematic theory of granular flow in hoppers, known as the ellipsoid theory of mass movement. This theory assumes that the zone of moving material grows as an ellipsoid above the outlet of the silo. The boundary of the movement zone is a shear band and internal to the movement zone, the granular material is assumed to have a uniformly high bulk porosity compared with surrounding stagnant regions. There is however, increasing anecdotal evidence and field measurements suggesting this theory fails to capture the full complexity of granular material flow within cave mines. Given the practical challenges obstructing direct measurement of movement both in laboratory experiments and in-situ, the Discrete Element Method (DEM [1]) is a popular alternative to investigate granular media flow. Small-scale DEM studies (c.f. [3] and references therein) have confirmed that movement within DEM silo flow models matches that predicted by ellipsoid theory, at least for mono-disperse granular material freely outflowing at a constant rate. A major draw-back of these small-scale DEM studies is that the initial bulk porosity of the simulated granular material is significantly higher than that of broken, prismatic rock. In this investigation, more

  6. Stability and dynamical properties of material flow systems on random networks

    NASA Astrophysics Data System (ADS)

    Anand, K.; Galla, T.

    2009-04-01

    The theory of complex networks and of disordered systems is used to study the stability and dynamical properties of a simple model of material flow networks defined on random graphs. In particular we address instabilities that are characteristic of flow networks in economic, ecological and biological systems. Based on results from random matrix theory, we work out the phase diagram of such systems defined on extensively connected random graphs, and study in detail how the choice of control policies and the network structure affects stability. We also present results for more complex topologies of the underlying graph, focussing on finitely connected Erdös-Réyni graphs, Small-World Networks and Barabási-Albert scale-free networks. Results indicate that variability of input-output matrix elements, and random structures of the underlying graph tend to make the system less stable, while fast price dynamics or strong responsiveness to stock accumulation promote stability.

  7. Quasi-dynamic Material Flow Analysis applied to the Austrian Phosphorus cycle

    NASA Astrophysics Data System (ADS)

    Zoboli, Ottavia; Rechberger, Helmut

    2013-04-01

    Phosphorus (P) is one of the key elements that sustain life on earth and that allow achieving the current high levels of food production worldwide. It is a non-renewable resource, without any existing substitute. Because of its current dissipative use by mankind and to its very slow geochemical cycle, this resource is rapidly depleting and it is strongly connected to the problem of ensuring food security. Moreover P is also associated to important environmental problems. Its extraction often generates hazardous wastes, while its accumulation in water bodies can lead to eutrophication, with consequent severe ecological damages. It is therefore necessary to analyze and understand in detail the system of P, in regard to its use and management, to identify the processes that should be targeted in order to reduce the overall consumption of this resource. This work aims at establishing a generic quasi-dynamic model, which describes the Austrian P-budget and which allows investigating the trends of P use in the past, but also selected future scenarios. Given the importance of P throughout the whole anthropogenic metabolism, the model is based on a comprehensive system that encompasses several economic sectors, from agriculture and animal husbandry to industry, consumption and waste and wastewater treatment. Furthermore it includes the hydrosphere, to assess the losses of P into water bodies, due to the importance of eutrophication problems. The methodology applied is Material Flow Analysis (MFA), which is a systemic approach to assess and balance the stocks and flows of a material within a system defined in space and time. Moreover the model is integrated in the software STAN, a freeware tailor-made for MFA. Particular attention is paid to the characteristics and the quality of the data, in order to include data uncertainty and error propagation in the dynamic balance.

  8. Tool design in friction stir processing: dynamic forces and material flow

    SciTech Connect

    D. E. Clark; K. S. Miller; C. R. Tolle

    2006-08-01

    Friction stir processing involves severe plastic flow within the material; the nature of this flow determines the final morphology of the weld, the resulting microstructures, and the presence or absence of defects such as internal cavities or "wormholes." The forces causing this plastic flow are a function of process parameters, including spindle speed, travel speed, and tool design and angle. Some of these forces are directly applied or a result of the mechanical constraints and compliance of the apparatus, while others are resolved forces resulting from an interaction of these applied forces and tool forces governed by processing parameters, and can be diminished or even reversed in sign with appropriate choices of process parameters. The present investigation is concerned mostly with the friction stir processing of 6061-T6 aluminum plates in a low-cost apparatus built from a commercial milling machine. A rotating dynamometer allows in-process measurement of actual spindle speed, torque, and forces in the x-, y-, and z-directions, as well as force control on these axes. Two main types of tool, both unthreaded, were used. The first had a pin about 4 mm in diameter and 4 mm in length, with a shoulder about 10 mm in diameter, and produced wormhole defects; the second, with a tapered pin about 5 mm long, a base diameter of about 6 mm, a tip diameter of about 4 mm, and a shoulder diameter (flat or dished) of about 19 mm, produced sound welds over a wide range of parameters.

  9. Dynamic Heat Flow Measurements to Study the Distribution of Phase-Change Material in an Insulation Matrix

    SciTech Connect

    Kosny, Jan; Stovall, Therese K; Yarbrough, David W

    2010-01-01

    Phase change materials (PCMs) are used in building envelopes in many forms. The PCMs may be encased in discrete pouches or containers, or they may be distributed within another medium, such as in a board or within a loose fill product. In addition, most PCM products are blends containing fire retardants and chemical stabilizers. However, the current test method to measure the dynamic characteristics of PCMs, the differential scanning calorimeter (DSC), requires specimens that are relatively uniform and very small. Considering the limitations of DSC test results when applied to more complex PCM building envelope applications, we developed a combined experimental analytical protocol to determine the amount of phase-change energy actually available to provide thermal storage. This paper presents this new methodology for performing dynamic heat flow analysis of complex PCM-enhanced building materials. The experimental analytical protocol uses a conventional heat-flow apparatus and three-dimensional (3-D), finite-difference modeling. Based upon results from this methodology, ORNL researchers developed a simplified one-dimensional (1-D) model that can be easily used in whole-building simulations. This paper describes this methodology as applied to an insulation assembly containing a complex array of PCM pouches.

  10. Lava Flow Dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, G. Jeffrey

    1996-01-01

    This grant originally had four major tasks, all of which were addressed to varying extents during the course of the research: (1) Measure the fractal dimensions of lava flows as a function of topography, substrate, and rheology; (2) The nature of lava tube systems and their relation to flow fields; (3) A quantitative assessment of lava flow dynamics in light of the fractal nature of lava flow margins; and (4) Development and application of a new remote sensing tool based on fractal properties. During the course of the research, the project expanded to include the following projects: (1) A comparison of what we can-learn from remote sensing studies of lava flow morphology and from studies of samples of lava flows; (2) Study of a terrestrial analog of the nakhlites, one of the groups of meteorites from Mars; and (3) Study of the textures of Hawaiian basalts as an aid in understanding the dynamics (flow rates, inflation rates, thermal history) of flow interiors. In addition, during the first year an educational task (development and writing of a teacher's guide and activity set to accompany the lunar sample disk when it is sent to schools) was included.

  11. Segregation dynamics in debris flows

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Fei, M.

    2014-12-01

    Debris flows are massive flows consisting of mixtures of particles of different sizes and interstitial fluids such as water and mud. In sheared mixtures of different-sized (same density) particles, it is well known that larger particles tend to go up (toward the free surface), and the smaller particles, down, commonly referred to as the "Brazil-nut problem" or "kinetic sieving". When kinetic sieving fluxes are combined with advection in flows, they can give rise to a spectacular range of segregation patterns. These segregation / advection dynamics are recognized as playing a role in the coarsening of a debris flow front (its "snout") and the coarsening of the self-formed channel sides or levees. Since particle size distribution influences the flow dynamics including entrainment of bed materials, modeling segregation dynamics in debris flows is important for modeling the debris flows themselves. In sparser systems, the Brazil-nut segregation is well-modeled using kinetic theory applied to dissipative systems, where an underlying assumption involves random, uncorrelated collisions. In denser systems, where kinetic theory breaks down we have recently developed a new mixture model that demonstrates the segregation fluxes are driven by two effects associated with the kinetic stress or granular temperature (the kinetic energy associated with velocity fluctuations): (1) the difference between the partitioning of kinetic and contact stresses among the species in the mixture and (2) a kinetic stress gradient. Both model frameworks involve the temperature gradient as a driving force for segregation, but kinetic theory sends larger particles toward lower temperatures, and our mixture model sends larger particles away from lower temperatures. Which framework works under what conditions appears to depend on correlations in the flow such as those manifested in clusters and force chains. We discuss the application of each theoretical framework to representing segregation dynamics

  12. Dynamics of Granular Materials

    NASA Technical Reports Server (NTRS)

    Behringer, Robert P.

    1996-01-01

    Granular materials exhibit a rich variety of dynamical behavior, much of which is poorly understood. Fractal-like stress chains, convection, a variety of wave dynamics, including waves which resemble capillary waves, l/f noise, and fractional Brownian motion provide examples. Work beginning at Duke will focus on gravity driven convection, mixing and gravitational collapse. Although granular materials consist of collections of interacting particles, there are important differences between the dynamics of a collections of grains and the dynamics of a collections of molecules. In particular, the ergodic hypothesis is generally invalid for granular materials, so that ordinary statistical physics does not apply. In the absence of a steady energy input, granular materials undergo a rapid collapse which is strongly influenced by the presence of gravity. Fluctuations on laboratory scales in such quantities as the stress can be very large-as much as an order of magnitude greater than the mean.

  13. Flow Dynamics in Arc Welding

    SciTech Connect

    Lowke, John J.; Tanaka, Manabu

    2008-02-21

    The state of the art for numerical computations has now advanced so that the capability is within sight of calculating weld shapes for any arc current, welding gas, welding material or configuration. Inherent in these calculations is 'flow dynamics' applied to plasma flow in the arc and liquid metal flow in the weld pool. Examples of predictions which are consistent with experiment, are discussed for (1) conventional tungsten inert gas welding, (2) the effect of a fraction of a percent of sulfur in steel, which can increase weld depth by more than a factor of two through changes in the surface tension, (3) the effect of a flux, which can produce increased weld depth due to arc constriction, (4) use of aluminium instead of steel, when the much larger thermal conductivity of aluminium greatly reduces the weld depth and (5) addition of a few percent of hydrogen to argon, which markedly increases weld depth.

  14. Flow Dynamics in Arc Welding

    NASA Astrophysics Data System (ADS)

    Lowke, John J.; Tanaka, Manabu

    2008-02-01

    The state of the art for numerical computations has now advanced so that the capability is within sight of calculating weld shapes for any arc current, welding gas, welding material or configuration. Inherent in these calculations is "flow dynamics" applied to plasma flow in the arc and liquid metal flow in the weld pool. Examples of predictions which are consistent with experiment, are discussed for (1) conventional tungsten inert gas welding (2) the effect of a fraction of a percent of sulfur in steel, which can increase weld depth by more than a factor of two through changes in the surface tension (3) the effect of a flux, which can produce increased weld depth due to arc constriction (4) use of aluminium instead of steel, when the much larger thermal conductivity of aluminium greatly reduces the weld depth and (5) addition of a few percent of hydrogen to argon, which markedly increases weld depth.

  15. Shear flow by molecular dynamics

    NASA Astrophysics Data System (ADS)

    Heyes, D. M.

    1985-08-01

    A detailed comparison is made between a number of methods for generating shear flow in Molecular Dynamics computer simulation. Algorithms which closely mimic most experimental methods for producing shear flow are those by Trozzi and Ciccotti, and Ashurst and Hoover. They employ hard wall boundaries and fluid walls respectively (with sheared cell periodicity being only in two dimensions). The sheared fluid properties are therefore inextricably linked with interfacial effects. These problems are largely eliminated by the Lees and Edwards scheme which creates a pseudo-infinite sheared material. There are a number of derivatives of this model including one favoured by the author for investigating non-linear viscoelastic phenomena. A number of results from this scheme pertaining to the Lennard-Jones liquid are presented.

  16. Biologically inspired dynamic material systems.

    PubMed

    Studart, André R

    2015-03-01

    Numerous examples of material systems that dynamically interact with and adapt to the surrounding environment are found in nature, from hair-based mechanoreceptors in animals to self-shaping seed dispersal units in plants to remodeling bone in vertebrates. Inspired by such fascinating biological structures, a wide range of synthetic material systems have been created to replicate the design concepts of dynamic natural architectures. Examples of biological structures and their man-made counterparts are herein revisited to illustrate how dynamic and adaptive responses emerge from the intimate microscale combination of building blocks with intrinsic nanoscale properties. By using top-down photolithographic methods and bottom-up assembly approaches, biologically inspired dynamic material systems have been created 1) to sense liquid flow with hair-inspired microelectromechanical systems, 2) to autonomously change shape by utilizing plantlike heterogeneous architectures, 3) to homeostatically influence the surrounding environment through self-regulating adaptive surfaces, and 4) to spatially concentrate chemical species by using synthetic microcompartments. The ever-increasing complexity and remarkable functionalities of such synthetic systems offer an encouraging perspective to the rich set of dynamic and adaptive properties that can potentially be implemented in future man-made material systems.

  17. Visual observation of the dynamic flow of elastomer rubber impression material between the impression tray and oral mucosa while seating the impression tray.

    PubMed

    Nishigawa, G; Natsuaki, N; Maruo, Y; Okamoto, M; Minagi, S

    2003-06-01

    The purpose of this study was to inspect visually, the dynamics of the impression flow at seating of the impression tray. The effects of the relief and the escape hole of the impression tray on the impression flow were also examined. Three types of the transparent impression tray (flat tray, relief tray and escape hole tray) were prepared. Transparent silicone polymer was put on the impression tray surface. Four drops of the dark blue silicone impression material was injected into the transparent silicone polymer on the impression tray. The impression tray was seated on the model of the denture-supporting mucosa. The movement of the four drops caused by the impression flow was visually recorded with the video camera and examined. The result for the flat tray showed that the impression material moved from inside to the outside. It was also shown that the speed of the moved impression material increased as the seating of the impression tray advanced. The results for the relief tray and the escape hole tray showed the effect of the relief and the escape hole prepared to the impression tray on the speed and the direction of the flow of the impression material.

  18. Assessment of the effects of the Japanese shift to lead-free solders and its impact on material substitution and environmental emissions by a dynamic material flow analysis.

    PubMed

    Fuse, Masaaki; Tsunemi, Kiyotaka

    2012-11-01

    Lead-free electronics has been extensively studied, whereas their adoption by society and their impact on material substitution and environmental emissions are not well understood. Through a material flow analysis (MFA), this paper explores the life cycle flows for solder-containing metals in Japan, which leads the world in the shift to lead-free solders in electronics. The results indicate that the shift has been progressing rapidly for a decade, and that substitutes for lead in solders, which include silver and copper, are still in the early life cycle stages. The results also show, however, that such substitution slows down during the late life cycle stages owing to long electronic product lifespans. This deceleration of material substitution in the solder life cycle may not only preclude a reduction in lead emissions to air but also accelerate an increase in silver emissions to air and water. As an effective measure against ongoing lead emissions, our scenario analysis suggests an aggressive recycling program for printed circuit boards that utilizes an existing recycling scheme.

  19. The Dynamics of Flowing Waters.

    ERIC Educational Resources Information Center

    Mattingly, Rosanna L.

    1987-01-01

    Describes a series of activities designed to help students understand the dynamics of flowing water. Includes investigations into determining water discharge, calculating variable velocities, utilizing flood formulas, graphing stream profiles, and learning about the water cycle. (TW)

  20. Earth materials and earth dynamics

    SciTech Connect

    Bennett, K; Shankland, T.

    2000-11-01

    In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  1. Lava crusts and flow dynamics

    NASA Technical Reports Server (NTRS)

    Kilburn, C. R. J.

    1993-01-01

    Lava flows can be considered as hot viscous cores within thinner, solidified crusts. Interaction between crust and core determines a flow's morphological and dynamical evolution. When the lava core dominates, flow advance approaches a steady state. When crusts are the limiting factor, advance is more irregular. These two conditions can be distinguished by a timescale ratio comparing rates of core deformation and crustal formation. Aa and budding pahoehoe lavas are used as examples of core- and crustal-dominated flows, respectively. A simple model describes the transition between pahoehoe and aa flow in terms of lava discharge rate, underlying slope, and either the thickness or velocity of the flow front. The model shows that aa morphologies are characterized by higher discharge rates and frontal velocities and yields good quantitative agreement with empirical relations distinguishing pahoehoe and aa emplacement on Hawaii.

  2. Plastic flow of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Langer, James

    Leo Kadanoff had a long interest in fluid flows, especially fingering instabilities. This interest was one example of his insatiable curiosity about simple, fundamentally important, and often multidisciplinary phenomena. Here is an example of another class of such phenomena that I had hoped to show him this year. The experts in polycrystalline solid mechanics have insisted for decades that their central problem - dislocation-mediated strain hardening - is intrinsically unsolvable. I think they're wrong. My colleagues and I have made progress recently in theories of both amorphous and polycrystalline plasticity by introducing an effective disorder temperature as a dynamical variable in our equations of motion. In this way, we have been able to describe how the densities of flow defects or dislocations evolve in response to external forcing, and thus to develop theories that promise to become as predictive, and full of surprises, as the laws of fluid flow. For Kadanoff session.

  3. Dynamic compaction of granular materials

    PubMed Central

    Favrie, N.; Gavrilyuk, S.

    2013-01-01

    An Eulerian hyperbolic multiphase flow model for dynamic and irreversible compaction of granular materials is constructed. The reversible model is first constructed on the basis of the classical Hertz theory. The irreversible model is then derived in accordance with the following two basic principles. First, the entropy inequality is satisfied by the model. Second, the corresponding ‘intergranular stress’ coming from elastic energy owing to contact between grains decreases in time (the granular media behave as Maxwell-type materials). The irreversible model admits an equilibrium state corresponding to von Mises-type yield limit. The yield limit depends on the volume fraction of the solid. The sound velocity at the yield surface is smaller than that in the reversible model. The last one is smaller than the sound velocity in the irreversible model. Such an embedded model structure assures a thermodynamically correct formulation of the model of granular materials. The model is validated on quasi-static experiments on loading–unloading cycles. The experimentally observed hysteresis phenomena were numerically confirmed with a good accuracy by the proposed model. PMID:24353466

  4. Observing polymersome dynamics in controlled microscale flows

    NASA Astrophysics Data System (ADS)

    Kumar, Subhalakshmi; Shenoy, Anish; Schroeder, Charles

    2015-03-01

    Achieving an understanding of single particle rheology for large yet deformable particles with controlled membrane viscoelasticity is major challenge in soft materials. In this work, we directly visualize the dynamics of single polymersomes (~ 10 μm in size) in an extensional flow using optical microscopy. We generate polymer vesicular structures composed of polybutadiene-block-polyethylene oxide (PB-b-PEO) copolymers. Single polymersomes are confined near the stagnation point of a planar extensional flow using an automated microfluidic trap, thereby enabling the direct observation of polymersome dynamics under fluid flows with controlled strains and strain rates. In a series of experiments, we investigate the effect of varying elasticity in vesicular membranes on polymersome deformation, along with the impact of decreasing membrane fluidity upon increasing diblock copolymer molecular weight. Overall, we believe that this approach will enable precise characterization of the role of membrane properties on single particle rheology for deformable polymersomes.

  5. Stochastic flow rule for granular materials

    NASA Astrophysics Data System (ADS)

    Kamrin, Ken; Bazant, Martin Z.

    2007-04-01

    There have been many attempts to derive continuum models for dense granular flow, but a general theory is still lacking. Here, we start with Mohr-Coulomb plasticity for quasi-two-dimensional granular materials to calculate (average) stresses and slip planes, but we propose a “stochastic flow rule” (SFR) to replace the principle of coaxiality in classical plasticity. The SFR takes into account two crucial features of granular materials—discreteness and randomness—via diffusing “spots” of local fluidization, which act as carriers of plasticity. We postulate that spots perform random walks biased along slip lines with a drift direction determined by the stress imbalance upon a local switch from static to dynamic friction. In the continuum limit (based on a Fokker-Planck equation for the spot concentration), this simple model is able to predict a variety of granular flow profiles in flat-bottom silos, annular Couette cells, flowing heaps, and plate-dragging experiments—with essentially no fitting parameters—although it is only expected to function where material is at incipient failure and slip lines are inadmissible. For special cases of admissible slip lines, such as plate dragging under a heavy load or flow down an inclined plane, we postulate a transition to rate-dependent Bagnold rheology, where flow occurs by sliding shear planes. With different yield criteria, the SFR provides a general framework for multiscale modeling of plasticity in amorphous materials, cycling between continuum limit-state stress calculations, mesoscale spot random walks, and microscopic particle relaxation.

  6. Materials in the economy; material flows, scarcity, and the environment

    USGS Publications Warehouse

    Wagner, Lorie A.

    2002-01-01

    The importance of materials to the economy of the United States is described, including the levels of consumption and uses of materials. The paths (or flows) that materials take from extraction, through processing, to consumer products, and then final disposition are illustrated. Scarcity and environmental issues as they relate to the flow of materials are discussed. Examples for the three main themes of the report (material flows, scarcity, and the environment) are presented.

  7. Dynamic Strength of Materials

    NASA Astrophysics Data System (ADS)

    Chhabildas, Lalit

    2011-06-01

    Historically when shock loading techniques became accessible in the early fifties it was assumed that materials behave like fluids implying that materials cannot support any shear stresses. Early and careful investigation in the sixties by G. R. Fowles in aluminum indicated otherwise. When he compared his Hugoniot compression measurements to hydrostatic pressure compression measurements in the pressure volume plane he noticed that the shock data lay above the hydrostatic compression curve - which laid the ground work for what is the basis for elastic-plastic theories that exist today. In this talk, a brief historical perspective on strength measurements in materials will be discussed including how time-resolved techniques have played a role in allowing estimates of the strength of materials at over Mbar stress. This is crucial especially at high stresses since we are determining values that are small compared to the loading stress. Even though we have made considerable progress in our understanding of materials, there are still many anomalies and unanswered questions. Some of these anomalies are fertile grounds for further and future research and will be mentioned.

  8. Droplet Dynamics of a Flowing Emulsion System

    NASA Astrophysics Data System (ADS)

    Cypull, Olivia; Feitosa, Klebert

    The inner workings of glassy systems have long been a topic of interest for soft material scientists. Similarities between the jamming behavior of emulsions and the glass transition of glassy systems have prompted the conjecture that they might share the same underlying mechanism. Here we study a dense oil-in-water emulsion system forced to flow through a narrow microchannel. By matching the index of refraction of the two phases, we image the internal dynamics of the droplets in a confocal microscope. At low velocity speeds, we find that the velocity along the edge of the microchannel was not significantly different than then the average droplet velocity in the bulk suggesting a near plug flow. By contrast the droplets near the edge experienced more movement perpendicular to the flow indicating the fluidization effect of the confining walls.

  9. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.; Wise, J.L.

    1993-09-01

    Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.

  10. Dynamics of assembly production flow

    NASA Astrophysics Data System (ADS)

    Ezaki, Takahiro; Yanagisawa, Daichi; Nishinari, Katsuhiro

    2015-06-01

    Despite recent developments in management theory, maintaining a manufacturing schedule remains difficult because of production delays and fluctuations in demand and supply of materials. The response of manufacturing systems to such disruptions to dynamic behavior has been rarely studied. To capture these responses, we investigate a process that models the assembly of parts into end products. The complete assembly process is represented by a directed tree, where the smallest parts are injected at leaves and the end products are removed at the root. A discrete assembly process, represented by a node on the network, integrates parts, which are then sent to the next downstream node as a single part. The model exhibits some intriguing phenomena, including overstock cascade, phase transition in terms of demand and supply fluctuations, nonmonotonic distribution of stockout in the network, and the formation of a stockout path and stockout chains. Surprisingly, these rich phenomena result from only the nature of distributed assembly processes. From a physical perspective, these phenomena provide insight into delay dynamics and inventory distributions in large-scale manufacturing systems.

  11. Single Polymer Dynamics under Large Amplitude Oscillatory Extensional (LAOE) Flow

    NASA Astrophysics Data System (ADS)

    Zhou, Yuecheng; Schroeder, Charles M.

    Over the past two decades, advances in fluorescence imaging and particle manipulation have enabled the direct observation of single polymer dynamics in model flows such as shear flow and planar extensional flow. The vast majority of single polymer studies, however, has focused on chain dynamics using simple transient step forcing functions. In order to study single polymer dynamics in non-idealized model flows, there is a clear need to implement more complicated transient flow forcing functions. In bulk rheology, large amplitude oscillatory shear (LAOS) was widely used to study the linear and nonlinear viscoelasticity of materials, but not yet been applied to molecular rheology. In this work, we directly probe single polymer dynamics using oscillatory extensional flow in precisely controlled microfluidic devices. We are able to generate large and small amplitude sinusoidal oscillatory extensional flow in a cross-slot microfluidic device while imaging the conformational dynamics of a single polymer trapped at the stagnation point. In this flow, polymer chains are stretched, squeezed, and rotated between extensional/compressional axes in a highly dynamic and transient manner. Using this technique, we studied the dynamics and coil-stretch transition of a single λ-DNA as a function of the Weissenberg number (Wi) and Deborah number (De). Moreover, we use Brownian dynamics simulation to map a wide range of Pipkin space for polymers from linear steady-state conditions to non-linear unsteady-states. Our results reveal a critical Wi at the coil-stretch transition that is function of the De in LAOE flow. Department of Materials Science and Engineering.

  12. Physical Properties of Various Materials Relevant to Granular Flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the ubiquitous nature of granular materials, ranging from natural avalanches to industrial storage and processing operations, interest in quantifying and predicting the dynamics of granular flow continues to increase. The objective of this study was to investigate various physical proper...

  13. Material flows generated by pyromet copper smelting

    USGS Publications Warehouse

    Goonan, T.G.

    2005-01-01

    Copper production through smelting generates large volumes of material flows. As copper contained in ore becomes copper contained in concentrate to be fed into the smelting process, it leaves behind an altered landscape, sometimes mine waste, and always mill tailings. Copper concentrate, fluxing materials, fuels, oxygen, recyclables, scrap and water are inputs to the process. Dust (recycled), gases - containing carbon dioxide (CO2) (dissipated) and sulfur dioxide (SO2) (mostly collected, transformed and sold) and slag (discarded or sold) - are among the significant process outputs. This article reports estimates of the flows of these input/output materials for a particular set of smelters studied in some countries.

  14. Dynamics of flexible fibers in shear flow

    SciTech Connect

    Słowicka, Agnieszka M.; Wajnryb, Eligiusz; Ekiel-Jeżewska, Maria L.

    2015-09-28

    Dynamics of flexible non-Brownian fibers in shear flow at low-Reynolds-number are analyzed numerically for a wide range of the ratios A of the fiber bending force to the viscous drag force. Initially, the fibers are aligned with the flow, and later they move in the plane perpendicular to the flow vorticity. A surprisingly rich spectrum of different modes is observed when the value of A is systematically changed, with sharp transitions between coiled and straightening out modes, period-doubling bifurcations from periodic to migrating solutions, irregular dynamics, and chaos.

  15. Information flow dynamics in the brain

    NASA Astrophysics Data System (ADS)

    Rabinovich, Mikhail I.; Afraimovich, Valentin S.; Bick, Christian; Varona, Pablo

    2012-03-01

    Timing and dynamics of information in the brain is a hot field in modern neuroscience. The analysis of the temporal evolution of brain information is crucially important for the understanding of higher cognitive mechanisms in normal and pathological states. From the perspective of information dynamics, in this review we discuss working memory capacity, language dynamics, goal-dependent behavior programming and other functions of brain activity. In contrast with the classical description of information theory, which is mostly algebraic, brain flow information dynamics deals with problems such as the stability/instability of information flows, their quality, the timing of sequential processing, the top-down cognitive control of perceptual information, and information creation. In this framework, different types of information flow instabilities correspond to different cognitive disorders. On the other hand, the robustness of cognitive activity is related to the control of the information flow stability. We discuss these problems using both experimental and theoretical approaches, and we argue that brain activity is better understood considering information flows in the phase space of the corresponding dynamical model. In particular, we show how theory helps to understand intriguing experimental results in this matter, and how recent knowledge inspires new theoretical formalisms that can be tested with modern experimental techniques.

  16. Mass flow rate of granular material flowing from tilted bins

    NASA Astrophysics Data System (ADS)

    Klapp, Jaime; Medina, Abraham; Torres Victoria, Ayax Hernando; Peralta Lopez, Salomon

    2015-11-01

    We report experiments performed to describe the behavior of the experimental mass flow rate of cohesionless granular material, Mβexpt', through circular orifices of diameter D made on sidewalls of tilted bins. In such experiments, the influence of the wall thickness of the bin, w, and the tilt angle respect to the vertical, β, were also regarded. The experimental measurements, using beach sand and granulated sugar, yield a linear correlation among Mβexpt' and a theoretical piecewise correlation of the mass flow rate, Mβ',which is valid for the overall range of values of β. Numerical simulation will be also a discussed.

  17. Dynamics of Sheared Granular Materials

    NASA Technical Reports Server (NTRS)

    Kondic, Lou; Utter, Brian; Behringer, Robert P.

    2002-01-01

    This work focuses on the properties of sheared granular materials near the jamming transition. The project currently involves two aspects. The first of these is an experiment that is a prototype for a planned ISS (International Space Station) flight. The second is discrete element simulations (DES) that can give insight into the behavior one might expect in a reduced-g environment. The experimental arrangement consists of an annular channel that contains the granular material. One surface, say the upper surface, rotates so as to shear the material contained in the annulus. The lower surface controls the mean density/mean stress on the sample through an actuator or other control system. A novel feature under development is the ability to 'thermalize' the layer, i.e. create a larger amount of random motion in the material, by using the actuating system to provide vibrations as well control the mean volume of the annulus. The stress states of the system are determined by transducers on the non-rotating wall. These measure both shear and normal components of the stress on different size scales. Here, the idea is to characterize the system as the density varies through values spanning dense almost solid to relatively mobile granular states. This transition regime encompasses the regime usually thought of as the glass transition, and/or the jamming transition. Motivation for this experiment springs from ideas of a granular glass transition, a related jamming transition, and from recent experiments. In particular, we note recent experiments carried out by our group to characterize this type of transition and also to demonstrate/ characterize fluctuations in slowly sheared systems. These experiments give key insights into what one might expect in near-zero g. In particular, they show that the compressibility of granular systems diverges at a transition or critical point. It is this divergence, coupled to gravity, that makes it extremely difficult if not impossible to

  18. Granular Material Flows with Interstitial Fluid Effects

    NASA Technical Reports Server (NTRS)

    Hunt, Melany L.; Brennen, Christopher E.

    2004-01-01

    The research focused on experimental measurements of the rheological properties of liquid-solid and granular flows. In these flows, the viscous effects of the interstitial fluid, the inertia of the fluid and particles, and the collisional interactions of the particles may all contribute to the flow mechanics. These multiphase flows include industrial problems such as coal slurry pipelines, hydraulic fracturing processes, fluidized beds, mining and milling operation, abrasive water jet machining, and polishing and surface erosion technologies. In addition, there are a wide range of geophysical flows such as debris flows, landslides and sediment transport. In extraterrestrial applications, the study of transport of particulate materials is fundamental to the mining and processing of lunar and Martian soils and the transport of atmospheric dust (National Research Council 2000). The recent images from Mars Global Surveyor spacecraft dramatically depict the complex sand and dust flows on Mars, including dune formation and dust avalanches on the slip-face of dune surfaces. These Aeolian features involve a complex interaction of the prevailing winds and deposition or erosion of the sediment layer; these features make a good test bed for the verification of global circulation models of the Martian atmosphere.

  19. TORAC. Tornado-Induced Flow Material Transport

    SciTech Connect

    Andrae, R.W.; Tang, P.K.; Martin, R.A.; Gregory, W.S.

    1992-01-13

    TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.

  20. Shear flow behavior of a dynamically symmetric polymeric bicontinuous microemulsion

    NASA Astrophysics Data System (ADS)

    Zhou, Ning

    2005-03-01

    Soft materials with complex internal structure often exhibit fascinating rheological behavior. For example, under flow the poly (ethylethylene) (PEE)/poly(dimethyl siloxane) (PDMS)/PEE-PDMS polymeric bicontinuous microemulsion (BμE) showed shear-induced macrophase separation.^ 1 This was tentatively attributed to the extreme dynamical asymmetry of the two homopolymers, i.e., their viscosities differed by three orders of magnitude. To understand the role of the dynamic symmetry of a BμE when subjected to shear flow, we have developed a new ternary polymer blend system poly(butylene oxide) (PBO)/ poly(ethylenepropylene) (PEP)/PEP-PBO, which is dynamically almost symmetric. We will report on the shear flow behavior of this new BμE. Reference: [1] Krishnan et al. Phys. Rev. Lett. 2001, 87, 098301

  1. Emerging insights into the dynamics of submarine debris flows

    NASA Astrophysics Data System (ADS)

    Elverhøi, A.; Issler, D.; de Blasio, F. V.; Ilstad, T.; Harbitz, C. B.; Gauer, P.

    2005-08-01

    Recent experimental and theoretical work on the dynamics of submarine debris flows is summarized. Hydroplaning was first discovered in laboratory flows and later shown to likely occur in natural debris flows as well. It is a prime mechanism for explaining the extremely long runout distances observed in some natural debris flows even of over-consolidated clay materials. Moreover, the accelerations and high velocities reached by the flow head in a short time appear to fit well with the required initial conditions of observed tsunamis as obtained from back-calculations. Investigations of high-speed video recordings of laboratory debris flows were combined with measurements of total and pore pressure. The results are pointing towards yet another important role of ambient water: Water that intrudes from the water cushion underneath the hydroplaning head and through cracks in the upper surface of the debris flow may drastically soften initially stiff clayey material in the "neck" of the flow, where significant stretching occurs due to the reduced friction at the bottom of the hydroplaning head. This self-reinforcing process may lead to the head separating from the main body and becoming an "outrunner" block as clearly observed in several natural debris flows. Comparison of laboratory flows with different material composition indicates a gradual transition from hydroplaning plug flows of stiff clay-rich material, with a very low suspension rate, to the strongly agitated flow of sandy materials that develop a pronounced turbidity current. Statistical analysis of the great number of distinguishable lobes in the Storegga slide complex reveals power-law scaling behavior of the runout distance with the release mass over many orders of magnitude. Mathematical flow models based on viscoplastic material behavior (e.g. BING) successfully reproduce the observed scaling behavior only for relatively small clay-rich debris flows while granular (frictional) models fail at all scales

  2. Vesicle dynamics in shear and capillary flows

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi; Gompper, Gerhard

    2005-11-01

    The deformation of vesicles in flow is studied by a mesoscopic simulation technique, which combines multi-particle collision dynamics for the solvent with a dynamically triangulated surface model for the membrane. Shape transitions are investigated both in simple shear flows and in cylindrical capillary flows. We focus on reduced volumes, where the discocyte shape of fluid vesicles is stable, and the prolate shape is metastable. In simple shear flow at low membrane viscosity, the shear induces a transformation from discocyte to prolate with increasing shear rate, while at high membrane viscosity, the shear induces a transformation from prolate to discocyte, or tumbling motion accompanied by oscillations between these two morphologies. In capillary flow, at small flow velocities the symmetry axis of the discocyte is found not to be oriented perpendicular to the cylinder axis. With increasing flow velocity, a transition to a prolate shape occurs for fluid vesicles, while vesicles with shear-elastic membranes (like red blood cells) transform into a coaxial parachute-like shape.

  3. Dynamics of fluid mixing in separated flows

    NASA Astrophysics Data System (ADS)

    Leder, A.

    1991-05-01

    Separated flows at high Re (>103) are highly turbulent. In some situations the turbulence generation and mixing processes associated with flow separation are desirable, e.g., in heat exchangers or in many chemical engineering applications. In others, e.g., stalled airfoils, separation must be avoided as it causes loss in pressure and kinetic energy. To control the phenomenon effectively, physical mechanisms of flow separation and related aspects, such as the growth of flow instabilities in shear layers, the process of vortex formation, and the dynamics of fluid mixing in recirculating flow regions, must be understood. In many cases numerical procedures, e.g., Navier-Stokes calculations including k-ɛ turbulence modeling, fail to predict real physical mechanisms in separated flows.1,2 Separated flows in the lee of bluff bodies have been studied for many years.3,4 However, accurate measurements of the magnitude and direction of velocities and the magnitude of the terms of the Reynolds stress tensor have been restricted by the unsuitability of the hot-wire anemometer in recirculating flows. The development of the pulsed-wire anemometer, flying hot-wire anemometer, and laser-Doppler anemometry (LDA) allows more reliable measurements also in turbulent separated flows.5-8 The aim of this paper is to investigate the dynamics of undisturbed fluid mixing in separated regions of 2-D, incompressible flows with visualization techniques and LDA. Measurements were performed with a vertical flat plate model, mounted in a closed-circuit wind tunnel at low blockage ratio. Because of the noninvasive character, optical techniques like LDA are more suitable to analyze complex fluid motions than pulsed-wire and flying-wire anemometry. The LDA system used to investigate turbulent flow structures consists of a two-channel version operating in backscatter mode and a specifically developed phase detector to extract phase-averaged information from recorded measurement ensembles.9 Endplates

  4. Gold recycling; a materials flow study

    USGS Publications Warehouse

    Amey, Earle B.

    2000-01-01

    This materials flow study includes a description of trends in consumption, loss, and recycling of gold-containing materials in the United States in 1998 in order to illustrate the extent to which gold is presently being recycled and to identify recycling trends. The quantity of gold recycled, as a percent of the apparent supply of gold, was estimated to be about 30 percent. Of the approximately 446 metric tons of gold refined in the United States in 1998, the fabricating and industrial use losses were 3 percent.

  5. Energy and material flows of megacities

    PubMed Central

    Kennedy, Christopher A.; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J.; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran

    2015-01-01

    Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world’s 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001–2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth. PMID:25918371

  6. Energy and material flows of megacities.

    PubMed

    Kennedy, Christopher A; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-Gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran

    2015-05-12

    Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world's 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001-2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth. PMID:25918371

  7. Energy and material flows of megacities.

    PubMed

    Kennedy, Christopher A; Stewart, Iain; Facchini, Angelo; Cersosimo, Igor; Mele, Renata; Chen, Bin; Uda, Mariko; Kansal, Arun; Chiu, Anthony; Kim, Kwi-Gon; Dubeux, Carolina; Lebre La Rovere, Emilio; Cunha, Bruno; Pincetl, Stephanie; Keirstead, James; Barles, Sabine; Pusaka, Semerdanta; Gunawan, Juniati; Adegbile, Michael; Nazariha, Mehrdad; Hoque, Shamsul; Marcotullio, Peter J; González Otharán, Florencia; Genena, Tarek; Ibrahim, Nadine; Farooqui, Rizwan; Cervantes, Gemma; Sahin, Ahmet Duran

    2015-05-12

    Understanding the drivers of energy and material flows of cities is important for addressing global environmental challenges. Accessing, sharing, and managing energy and material resources is particularly critical for megacities, which face enormous social stresses because of their sheer size and complexity. Here we quantify the energy and material flows through the world's 27 megacities with populations greater than 10 million people as of 2010. Collectively the resource flows through megacities are largely consistent with scaling laws established in the emerging science of cities. Correlations are established for electricity consumption, heating and industrial fuel use, ground transportation energy use, water consumption, waste generation, and steel production in terms of heating-degree-days, urban form, economic activity, and population growth. The results help identify megacities exhibiting high and low levels of consumption and those making efficient use of resources. The correlation between per capita electricity use and urbanized area per capita is shown to be a consequence of gross building floor area per capita, which is found to increase for lower-density cities. Many of the megacities are growing rapidly in population but are growing even faster in terms of gross domestic product (GDP) and energy use. In the decade from 2001-2011, electricity use and ground transportation fuel use in megacities grew at approximately half the rate of GDP growth.

  8. Patterns and flow in frictional fluid dynamics

    PubMed Central

    Sandnes, B.; Flekkøy, E.G.; Knudsen, H.A.; Måløy, K.J.; See, H.

    2011-01-01

    Pattern-forming processes in simple fluids and suspensions have been studied extensively, and the basic displacement structures, similar to viscous fingers and fractals in capillary dominated flows, have been identified. However, the fundamental displacement morphologies in frictional fluids and granular mixtures have not been mapped out. Here we consider Coulomb friction and compressibility in the fluid dynamics, and discover surprising responses including highly intermittent flow and a transition to quasi-continuodynamics. Moreover, by varying the injection rate over several orders of magnitude, we characterize new dynamic modes ranging from stick-slip bubbles at low rate to destabilized viscous fingers at high rate. We classify the fluid dynamics into frictional and viscous regimes, and present a unified description of emerging morphologies in granular mixtures in the form of extended phase diagrams. PMID:21505444

  9. Material Flows in an Active Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Decamp, Stephen; Redner, Gabriel; Baskaran, Aparna; Hagan, Michael; Dogic, Zvonimir

    Active matter systems are composed of energy consuming constituent components which drive far-from-equilibrium dynamics. As such, active materials exhibit energetic states which would be unfavorable in passive, equilibrium materials. We study one such material; an active nematic liquid crystal which exists in a dynamical steady state where +/-1/2 defects are continuously generated and annihilated at a constant rate. The active nematic is composed of micron-sized microtubule filaments which are highly concentrated into a quasi-2D film that resides on an oil-water interface. Kinesin motor proteins drive inter-filament sliding which results in net extensile motion of the microtubule film. Notably, we find a mesophase in which motile +1/2 defects, acquire system-spanning orientational order. Currently, we are tracking material flows generated by the active stresses in the system to measure length scales at which energy is dissipated, and to measure the relation between internally generated flows and bend in the nematic field.

  10. Dynamics of Polymers in Colloidal Flows

    NASA Astrophysics Data System (ADS)

    Chen, Hsieh; Alexander-Katz, Alfredo

    2011-03-01

    This research is motivated by recent studies on the von Willebrand factor (vWF), a large multimeric protein that plays an essential role in the initial stages of blood clotting in blood vessels. Recent experiments substantiated the hypothesis that the vWF is activated by shear stress in blood flow that causes its shape to transform from a compact globule to an extended state, and biological function is obtained only in the extended state. Simple simulations (which only consider a single polymer in bulk shear flow) have successfully reproduced the observed dynamics of the vWF. However, a more refined model is still demanding for the better understanding of the behaviors of this biomolecule in the physiological environments. Here we refine the existing model by adding the drifting colloids into the flows to mimic the presence of the blood cells in the bloodstream. Preliminary result shows that colloids greatly influence the dynamics of the polymers. It is observed that the average extensions of polymers along and perpendicular to the shear flow direction are both increased with the presence of the colloids.

  11. Coherent Flow Structures in Basaltic Lava Flows - Flow Dynamics and Rheology

    NASA Astrophysics Data System (ADS)

    Cashman, K. V.; Grant, G. E.

    2011-12-01

    Basaltic lavas form multiphase flows with variable proportions of liquid (silicate melt), solid (silicate crystals) and gas bubbles. The hydraulics of these flows is poorly understood, in large part because of the difficulties involved in making direct measurements on large hot lava streams. For example, although surface flow velocity and width can be measured given sufficient logistical support in the field, even as simple a parameter as flow depth must be estimated, and thus generates large uncertainties in instantaneous effusion rate, the lava flow analog for stream discharge. Additionally, there is a dramatic down-flow change in rheology caused by gas loss and solidification that is difficult to characterize without extensive along-flow sampling and analysis. For these reasons, the dynamics of basaltic lava flows are poorly understood. However, distinctive flow features such as standing waves and lateral shocks have been observed in some basaltic lava flows; we suggest that these structures offer a novel approach for calculating key flow parameters and effusion rates. Specifically, we argue that such structures suggest that lava flows can attain transcritical flow regimes (Froude Number [Fr] ≈ 1), similar to high gradient streamflows. This hypothesis is supported by measurements of Hawaiian lava flows from Mauna Loa during the 1984 eruption, where surface flow velocities (measured by timing the advance of surface fragments) and flow depths (estimated by assuming neutral buoyancy for solidified lava "boats") show diminishing velocities and Fr with distance from the vent. Near-vent Fr are supercritical but approach 1.0 at a distance of 3-4 km. Corresponding photographic observations of standing waves, hydraulic jumps and shocks in these flows confirm the correspondence between flow structures and measured hydraulics. In contrast to stream flows, however, these coherent flow structures occur under laminar flow conditions that reflect the moderate Reynolds

  12. Dynamic Multiscale Averaging (DMA) of Turbulent Flow

    SciTech Connect

    Richard W. Johnson

    2012-09-01

    A new approach called dynamic multiscale averaging (DMA) for computing the effects of turbulent flow is described. The new method encompasses multiple applications of temporal and spatial averaging, that is, multiscale operations. Initially, a direct numerical simulation (DNS) is performed for a relatively short time; it is envisioned that this short time should be long enough to capture several fluctuating time periods of the smallest scales. The flow field variables are subject to running time averaging during the DNS. After the relatively short time, the time-averaged variables are volume averaged onto a coarser grid. Both time and volume averaging of the describing equations generate correlations in the averaged equations. These correlations are computed from the flow field and added as source terms to the computation on the next coarser mesh. They represent coupling between the two adjacent scales. Since they are computed directly from first principles, there is no modeling involved. However, there is approximation involved in the coupling correlations as the flow field has been computed for only a relatively short time. After the time and spatial averaging operations are applied at a given stage, new computations are performed on the next coarser mesh using a larger time step. The process continues until the coarsest scale needed is reached. New correlations are created for each averaging procedure. The number of averaging operations needed is expected to be problem dependent. The new DMA approach is applied to a relatively low Reynolds number flow in a square duct segment. Time-averaged stream-wise velocity and vorticity contours from the DMA approach appear to be very similar to a full DNS for a similar flow reported in the literature. Expected symmetry for the final results is produced for the DMA method. The results obtained indicate that DMA holds significant potential in being able to accurately compute turbulent flow without modeling for practical

  13. Dynamical Model of Flow in Martian Valleys

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek; Witek, Piotr; Misiura, Katarzyna

    On the surface of Mars, under current conditions, liquid water could exist only occasionally in lowest regions of the planet. This water contains probably some components that decrease its freezing point and raised its boiling point. However billions years ago more dense atmosphere on the Mars allows for the presence of large volume of liquid water. There are a number of structures apparently resulting from flowing liquid water in the past. They are of two types: outflow channels and valley networks. We investigate here the possible flow in some chosen valley networks. The numerical model is used. We try to determine the basic properties of the flow, its erosion as well as the transport efficiencies of the material. The comparison with the terrestrial rivers indicates some important differences. Acknowledgments This work was partially supported by the National Science Centre (grant 2011/01/B/ST10/06653).

  14. Intracardiac flow dynamics regulate atrioventricular valve morphogenesis

    PubMed Central

    Kalogirou, Stamatia; Malissovas, Nikos; Moro, Enrico; Argenton, Francesco; Stainier, Didier Y.R.; Beis, Dimitris

    2014-01-01

    Aims Valvular heart disease is responsible for considerable morbidity and mortality. Cardiac valves develop as the heart contracts, and they function throughout the lifetime of the organism to prevent retrograde blood flow. Their precise morphogenesis is crucial for cardiac function. Zebrafish is an ideal model to investigate cardiac valve development as it allows these studies to be carried out in vivo through non-invasive imaging. Accumulating evidence suggests a role for contractility and intracardiac flow dynamics in cardiac valve development. However, these two factors have proved difficult to uncouple, especially since altering myocardial function affects the intracardiac flow pattern. Methods and results Here, we describe novel zebrafish models of developmental valve defects. We identified two mutant alleles of myosin heavy chain 6 that can be raised to adulthood despite having only one functional chamber—the ventricle. The adult mutant ventricle undergoes remodelling, and the atrioventricular (AV) valves fail to form four cuspids. In parallel, we characterized a novel mutant allele of southpaw, a nodal-related gene involved in the establishment of left–right asymmetry, which exhibits randomized heart and endoderm positioning. We first observed that in southpaw mutants the relative position of the two cardiac chambers is altered, affecting the geometry of the heart, while myocardial function appears unaffected. Mutant hearts that loop properly or exhibit situs inversus develop normally, whereas midline, unlooped hearts exhibit defects in their transvalvular flow pattern during AV valve development as well as defects in valve morphogenesis. Conclusion Our data indicate that intracardiac flow dynamics regulate valve morphogenesis independently of myocardial contractility. PMID:25100766

  15. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  16. Dynamic time warping improves sewer flow monitoring.

    PubMed

    Dürrenmatt, D J; Del Giudice, D; Rieckermann, J

    2013-07-01

    Successful management and control of wastewater and storm water systems requires accurate sewer flow measurements. Unfortunately, the harsh sewer environment and insufficient flow meter calibration often lead to inaccurate and biased data. In this paper, we improve sewer flow monitoring by creating redundant information on sewer velocity from natural wastewater tracers. Continuous water quality measurements upstream and downstream of a sewer section are used to estimate the travel time based on i) cross-correlation (XCORR) and ii) dynamic time warping (DTW). DTW is a modern data mining technique that warps two measured time series non-linearly in the time domain so that the dissimilarity between the two is minimized. It has not been applied in this context before. From numerical experiments we can show that DTW outperforms XCORR, because it provides more accurate velocity estimates, with an error of about 7% under typical conditions, at a higher temporal resolution. In addition, we can show that pre-processing of the data is important and that tracer reaction in the sewer reach is critical. As dispersion is generally small, the distance between the sensors is less influential if it is known precisely. Considering these findings, we tested the methods on a real-world sewer to check the performance of two different sewer flow meters based on temperature measurements. Here, we were able to detect that one of two flow meters was not performing satisfactorily under a variety of flow conditions. Although theoretical analyses show that XCORR and DTW velocity estimates contain systematic errors due to dispersion and reaction processes, these are usually small and do not limit the applicability of the approach.

  17. Flow around spheres by dissipative particle dynamics

    NASA Astrophysics Data System (ADS)

    Chen, Shuo; Phan-Thien, Nhan; Khoo, Boo Cheong; Fan, Xi Jun

    2006-10-01

    The dissipative particle dynamics (DPD) method is used to study the flow behavior past a sphere. The sphere is represented by frozen DPD particles while the surrounding fluids are modeled by simple DPD particles (representing a Newtonian fluid). For the surface of the sphere, the conventional model without special treatment and the model with specular reflection boundary condition proposed by Revenga et al. [Comput. Phys. Commun. 121-122, 309 (1999)] are compared. Various computational domains, in which the sphere is held stationary at the center, are investigated to gage the effects of periodic conditions and walls for Reynolds number (Re)=0.5 and 50. Two types of flow conditions, uniform flow and shear flow are considered, respectively, to study the drag force and torque acting on the stationary sphere. It is found that the calculated drag force imposed on the sphere based on the model with specular reflection is slightly lower than the conventional model without special treatment. With the conventional model the drag force acting on the sphere is in better agreement with experimental correlation obtained by Brown and Lawler [J. Environ. Eng. 129, 222 (2003)] for the case of larger radius up to Re of about 5. The computed torque also approaches the analytical Stokes value when Re <1. For a force-free and torque-free sphere, its motion in the flow is captured by solving the translational and rotational equations of motion. The effects of different DPD parameters (a, γ, and σ) on the drag force and torque are studied. It shows that the dissipative coefficient (γ) mainly affects the drag force and torque, while random and conservative coefficient have little influence on them. Furthermore the settling of a single sphere in square tube is investigated, in which the wall effect is considered. Good agreement is found with the experiments of Miyamura et al. [Int. J. Multiphase Flow 7, 31 (1981)] and lattice-Boltzmann simulation results of Aidun et al. [J. Fluid Mech

  18. Modeling Tools Predict Flow in Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    2010-01-01

    "Because rocket engines operate under extreme temperature and pressure, they present a unique challenge to designers who must test and simulate the technology. To this end, CRAFT Tech Inc., of Pipersville, Pennsylvania, won Small Business Innovation Research (SBIR) contracts from Marshall Space Flight Center to develop software to simulate cryogenic fluid flows and related phenomena. CRAFT Tech enhanced its CRUNCH CFD (computational fluid dynamics) software to simulate phenomena in various liquid propulsion components and systems. Today, both government and industry clients in the aerospace, utilities, and petrochemical industries use the software for analyzing existing systems as well as designing new ones."

  19. A study of temporal estaurine flow dynamics

    NASA Technical Reports Server (NTRS)

    Mairs, R. L.; Clark, D. K.

    1972-01-01

    Multispectral photography,infrared imagery, image enhancement, and oceanographic, radiometric, and meteorological data were used in the study of temporal estuarine flow dynamics, nearshore circulation, and the resulting dispersal of suspended and dissolved substances introduced from the continent. Repetitive multispectral photography, IR imagery, total radiance and irradiance, water surface temperatures, salinity, total suspended solids, visibility, current velocity, winds, dye implants, and high contrast image enhancement were used to observe and describe water mass boundaries in the nearshore zone and to attempt to establish on what repetitive scale these coastal features should be observed to better understand their behavior. Water mass variability patterns, seen naturally and with the use of dyes, along the North Carolina coast and in the Chesapeake Bay are being studied as synoptic data on the basic dynamics of circulation, flushing, and mixing in coastal waters.

  20. Gas-Dynamic Transients Flow Networks

    1987-09-01

    TVENT1P predicts flows and pressures in a ventilation system or other air pathway caused by pressure transients, such as a tornado. For an analytical model to simulate an actual system, it must have (1) the same arrangement of components in a network of flow paths; (2) the same friction characteristics; (3) the same boundary pressures; (4) the same capacitance; and (5) the same forces that drive the air. A specific set of components used formore » constructing the analytical model includes filters, dampers, ducts, blowers, rooms, or volume connected at nodal points to form networks. The effects of a number of similar components can be lumped into a single one. TVENT1P contains a material transport algorithm and features for turning blowers off and on, changing blower speeds, changing the resistance of dampers and filters, and providing a filter model to handle very high flows. These features make it possible to depict a sequence of events during a single run. Component properties are varied using time functions. The filter model is not used by the code unless it is specified by the user. The basic results of a TVENT1P solution are flows in branches and pressures at nodes. A postprocessor program, PLTTEX, is included to produce the plots specified in the TVENT1P input. PLTTEX uses the proprietary CA-DISSPLA graphics software.« less

  1. Dynamic mismatch between bonded dissimilar materials

    NASA Astrophysics Data System (ADS)

    Li, Chou H.

    1993-06-01

    In the bonding of dissimilar materials, the coefficient of thermal expansion (CTE) relates to only the static or thermal equilibrium case, and does not represent most actual conditions (i.e., the service and processing temperatures are usually changing rather than fixed). This article outlines an approach that computes the effective, or dynamic, CTE mismatch. This dynamic mismatch varies with the bonded material shapes and sizes, surface characteristics, and heating or cooling conditions and times and may be several times greater than the corresponding static CTE mismatch. Unrelieved, the computed transient or dynamic thermal-strain mismatch may exceed the yield point of the metal, while the transient or dynamic mismatch stress often exceeds the flexural or compressive strength of the ceramic. Understanding transient mismatch phenomena has led to new, unmatched metal-ceramic joints that withstand repeated, rapid thermal shocks and subsequent severe mechanical shocks. The final forced fractures occur outside the bonded regions, indicating defect-free joints.

  2. Dynamic mismatch between bonded dissimilar materials

    NASA Astrophysics Data System (ADS)

    Li, Chou H.

    1993-06-01

    In the bonding of dissimilar materials, the coefficient of thermal expansion (CTE) relates to only the static or thermal equilibrium case, and does not represent most actual conditions (i.e., the service and processing temperatures are usually changing rather than fixed). This article outlines an approach that computes the effective, or dynamic, CTE mismatch. This dynamic mismatch varies with the bonded material shapes and sizes, surface characteristics, and heating or cooling conditions and times and may be several times greater than the corresponding static CTE mismatch. Unrelieved, the computed transient or dynamic thermal-strain mismatch may exceed the yield point of the metal, while the transient or dynamic mismatch stress often exceeds the flexural or compressive strength of the ceramic. Understanding transient mismatch phenomena has led to new, unmatched metal-ceramic joints that withstand repeated, rapid thermal shocks and subsequent severe mechanical shocks. The final forced fractures occur outside the bonded regions, indicating defect free joints.

  3. Measurements of granular flow dynamics with high speed digital images

    SciTech Connect

    Lee, J.

    1994-12-31

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  4. Parametric Flow Visualization of Dynamic Roughness Effects

    NASA Astrophysics Data System (ADS)

    Jakkali, Vinay

    The ever growing need in the aircraft industry to enhance the performance of a flight vehicle has led to active areas of research which focus on the control of the local boundary layer by both passive and active methods. An effective flow control mechanism can improve the performance of a flight vehicle in various ways, one of which is eliminating boundary layer separation. To be effective the mechanism not only needs to control the boundary layer as desired, but also use less energy than the resulting energy savings. In this study, the effectiveness of an active flow control technique known as dynamic roughness (DR) has been explored to eliminate the laminar separation bubble near the leading edge and also to eliminate the stall on a NACA 0012 airfoil wing. As opposed to static roughness, dynamic roughness utilizes small time-dependent deforming elements or humps with displacement amplitudes that are on the order of the local boundary layer height to energize the local boundary layer. DR is primarily characterized by the maximum amplitude and operating frequency. A flow visualization study was conducted on a 2D NACA 0012 airfoil model at different angles of attack, and also varying the Reynolds number and DR actuation frequency with fixed maximum DR amplitude. The experimental results from this study suggests that DR is an effective method of reattaching a totally separated boundary layer. In addition, this study discusses some of the fundamental physics behind the working of DR and proposes some non-dimensional terms that may help to explain the driving force behind the mechanism.

  5. Blood flow dynamics in the snake spectacle.

    PubMed

    van Doorn, Kevin; Sivak, Jacob G

    2013-11-15

    The eyes of snakes are shielded beneath a layer of transparent integument referred to as the 'reptilian spectacle'. Well adapted to vision by virtue of its optical transparency, it nevertheless retains one characteristic of the integument that would otherwise prove detrimental to vision: its vascularity. Given the potential consequence of spectacle blood vessels on visual clarity, one might expect adaptations to have evolved that mitigate their negative impact. Earlier research demonstrated an adaptation to their spatial layout in only one species to reduce the vessels' density in the region serving the foveal and binocular visual fields. Here, we present a study of spectacle blood flow dynamics and provide evidence of a mechanism to mitigate the spectacle blood vessels' deleterious effect on vision by regulation of blood flow through them. It was found that when snakes are at rest and undisturbed, spectacle vessels undergo cycles of dilation and constriction, such that the majority of the time the vessels are fully constricted, effectively removing them from the visual field. When snakes are presented with a visual threat, spectacle vessels constrict and remain constricted for longer periods than occur during the resting cycles, thus guaranteeing the best possible visual capabilities in times of need. Finally, during the snakes' renewal phase when they are generating a new stratum corneum, the resting cycle is abolished, spectacle vessels remain dilated and blood flow remains strong and continuous. The significance of these findings in terms of the visual capabilities and physiology of snakes is discussed.

  6. Blood flow dynamics in heart failure

    NASA Technical Reports Server (NTRS)

    Shoemaker, J. K.; Naylor, H. L.; Hogeman, C. S.; Sinoway, L. I.

    1999-01-01

    BACKGROUND: Exercise intolerance in heart failure (HF) may be due to inadequate vasodilation, augmented vasoconstriction, and/or altered muscle metabolic responses that lead to fatigue. METHODS AND RESULTS: Vascular and metabolic responses to rhythmic forearm exercise were tested in 9 HF patients and 9 control subjects (CTL) during 2 protocols designed to examine the effect of HF on the time course of oxygen delivery versus uptake (protocol 1) and on vasoconstriction during exercise with 50 mm Hg pressure about the forearm to evoke a metaboreflex (protocol 2). In protocol 1, venous lactate and H+ were greater at 4 minutes of exercise in HF versus CTL (P<0.05) despite similar blood flow and oxygen uptake responses. In protocol 2, mean arterial pressure increased similarly in each group during ischemic exercise. In CTL, forearm blood flow and vascular conductance were similar at the end of ischemic and ambient exercise. In HF, forearm blood flow and vascular conductance were reduced during ischemic exercise compared with the ambient trial. CONCLUSIONS: Intrinsic differences in skeletal muscle metabolism, not vasodilatory dynamics, must account for the augmented glycolytic metabolic responses to moderate-intensity exercise in class II and III HF. The inability to increase forearm vascular conductance during ischemic handgrip exercise, despite a normal pressor response, suggests that enhanced vasoconstriction of strenuously exercising skeletal muscle contributes to exertional fatigue in HF.

  7. Fluid flow dynamics under location uncertainty

    NASA Astrophysics Data System (ADS)

    Mémin, Etienne

    2014-03-01

    We present a derivation of a stochastic model of Navier Stokes equations that relies on a decomposition of the velocity fields into a differentiable drift component and a time uncorrelated uncertainty random term. This type of decomposition is reminiscent in spirit to the classical Reynolds decomposition. However, the random velocity fluctuations considered here are not differentiable with respect to time, and they must be handled through stochastic calculus. The dynamics associated with the differentiable drift component is derived from a stochastic version of the Reynolds transport theorem. It includes in its general form an uncertainty dependent "subgrid" bulk formula that cannot be immediately related to the usual Boussinesq eddy viscosity assumption constructed from thermal molecular agitation analogy. This formulation, emerging from uncertainties on the fluid parcels location, explains with another viewpoint some subgrid eddy diffusion models currently used in computational fluid dynamics or in geophysical sciences and paves the way for new large-scales flow modelling. We finally describe an applications of our formalism to the derivation of stochastic versions of the Shallow water equations or to the definition of reduced order dynamical systems.

  8. Characterization of Concrete Material Flow During Projectile Penetration

    NASA Astrophysics Data System (ADS)

    Sobeski, Robert

    The Department of Defense (DoD) has an operational requirement to predict, quickly and accurately, the depth of penetration that a projectile can achieve for a given target and impact scenario. Fast-running analytical models can provide reliable predictions, but they often require the use of one or more dimensionless parameters that are derived from experimental data. These analytical models are continually evolving, and the dimensionless parameters are often adjusted to obtain new analytical models without a true understanding of the change in characteristics of material flow across targets of varying strength and projectile impact velocities. In this dissertation, the penetration of ogive-nose projectiles into concrete targets is investigated using finite element analyses. The Elastic-Plastic Impact Computation (EPIC) code is used to examine the velocity vector fields and their associated direction cosines for high and low-strength concrete target materials during projectile penetration. Two methodologies, referred as Normal Expansion Comparison Methodology (NECM) and Spherical Expansion Comparison Methodology (SECM), are developed in MATLAB to quantify the change in concrete material flow during this short-duration dynamic event. Improved velocity profiles are proposed for better characterization of cavity expansion stresses based on the application of NECM and SECM to EPIC outputs. Structural engineers and model developers working on improving the accuracy of current analytical concrete penetration models and potentially reducing their reliance on fitting parameters will benefit from the findings of this research.

  9. Dynamic Flow Management Problems in Air Transportation

    NASA Technical Reports Server (NTRS)

    Patterson, Sarah Stock

    1997-01-01

    In 1995, over six hundred thousand licensed pilots flew nearly thirty-five million flights into over eighteen thousand U.S. airports, logging more than 519 billion passenger miles. Since demand for air travel has increased by more than 50% in the last decade while capacity has stagnated, congestion is a problem of undeniable practical significance. In this thesis, we will develop optimization techniques that reduce the impact of congestion on the national airspace. We start by determining the optimal release times for flights into the airspace and the optimal speed adjustment while airborne taking into account the capacitated airspace. This is called the Air Traffic Flow Management Problem (TFMP). We address the complexity, showing that it is NP-hard. We build an integer programming formulation that is quite strong as some of the proposed inequalities are facet defining for the convex hull of solutions. For practical problems, the solutions of the LP relaxation of the TFMP are very often integral. In essence, we reduce the problem to efficiently solving large scale linear programming problems. Thus, the computation times are reasonably small for large scale, practical problems involving thousands of flights. Next, we address the problem of determining how to reroute aircraft in the airspace system when faced with dynamically changing weather conditions. This is called the Air Traffic Flow Management Rerouting Problem (TFMRP) We present an integrated mathematical programming approach for the TFMRP, which utilizes several methodologies, in order to minimize delay costs. In order to address the high dimensionality, we present an aggregate model, in which we formulate the TFMRP as a multicommodity, integer, dynamic network flow problem with certain side constraints. Using Lagrangian relaxation, we generate aggregate flows that are decomposed into a collection of flight paths using a randomized rounding heuristic. This collection of paths is used in a packing integer

  10. Fluid dynamics of unsteady separated flow. I - Bodies of revolution

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1986-01-01

    An analytic method is described that uses static experimental data to predict the separated flow effect on rigid and elastic aerospace-vehicle dynamics. Spike-induced flow separation, nose-induced flow separation, shock-induced flow separation, and base flow effects are studied. It is observed that the time lag occurring before a change of flow conditions causes a statically stabilizing load to produce negative aerodynanamic damping and an unstabilizing load causes a positive aerodynamic damping. The time-lagged quasi-steady theory predictions are compared with dynamic experimental results and good correlation exists for a large variety of vehicle geometries and types of flow separation.

  11. Dynamics of a fluid flow on Mars: Lava or mud?

    NASA Astrophysics Data System (ADS)

    Wilson, Lionel; Mouginis-Mark, Peter J.

    2014-05-01

    A distinctive flow deposit southwest of Cerberus Fossae on Mars is analyzed. The flow source is a ∼20 m deep, ∼12 × 1.5 km wide depression within a yardang associated with the Medusae Fossae Formation. The flow traveled for ∼40 km following topographic lows to leave a deposit on average 3-4 km wide. The surface morphology of the deposit suggests that it was produced by the emplacement of a fluid flowing in a laminar fashion and possessing a finite yield strength. We use topographic data from a digital elevation model (DEM) to model the dynamics of the motion and infer that the fluid had a Bingham rheology with a plastic viscosity of ∼1 Pa s and a yield strength of ∼185 Pa. Although the low viscosity is consistent with the properties of komatiite-like lava, the combination of values of viscosity and yield strength, as well as the surface morphology of the flow, suggests that this was a mud flow. Comparison with published experimental data implies a solids content close to 60% by volume and a grain size dominated by silt-size particles. Comparison of the ∼1.5 km3 deposit volume with the ∼0.03 km3 volume of the source depression implies that ∼98% of the flow material was derived from depth in the crust. There are similarities between the deposit studied here, which we infer to be mud, and other flow deposits on Mars currently widely held to be lavas. This suggests that a re-appraisal of many of these deposits is now in order.

  12. Dynamics of spheroid particles in channel flow

    NASA Astrophysics Data System (ADS)

    Mao, Wenbin; Alexeev, Alexander

    2012-11-01

    The effect of inertia on the dynamics of rigid spheroid microparticles in a pressure-driven channel flow is studied using a hybrid lattice Boltzmann and lattice spring method. We find distinctive behaviors of particles depending on the particle shape, initial orientation, and ratio of particle size to the channel size. Two possible stable modes of motion are found for prolate spheroids. Particles either tumble in a shear plane or spin with the axis parallel to the vortex direction. We present a phase diagram showing the transition between these two modes. Cross-stream migration and equilibrium trajectories of particles are also investigated and found to depend on the particle shape and mode of motion. The simulations results are compared with experimental data showing favorable agreement. Our results will be useful for separating biological and synthetic particles by size and shape.

  13. Experiments showing dynamics of materials interfaces

    SciTech Connect

    Benjamin, R.F.

    1997-02-01

    The discipline of materials science and engineering often involves understanding and controlling properties of interfaces. The authors address the challenge of educating students about properties of interfaces, particularly dynamic properties and effects of unstable interfaces. A series of simple, inexpensive, hands-on activities about fluid interfaces provides students with a testbed to develop intuition about interface dynamics. The experiments highlight the essential role of initial interfacial perturbations in determining the dynamic response of the interface. The experiments produce dramatic, unexpected effects when initial perturbations are controlled and inhibited. These activities help students to develop insight about unstable interfaces that can be applied to analogous problems in materials science and engineering. The lessons examine ``Rayleigh-Taylor instability,`` an interfacial instability that occurs when a higher-density fluid is above a lower-density fluid.

  14. Fluid flow dynamics in MAS systems.

    PubMed

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599

  15. Flow enhancement in nanotubes of different materials and lengths

    SciTech Connect

    Ritos, Konstantinos; Mattia, Davide; Calabrò, Francesco; Reese, Jason M.

    2014-01-07

    The high water flow rates observed in carbon nanotubes (CNTs) have previously been attributed to the unfavorable energetic interaction between the liquid and the graphitic walls of the CNTs. This paper reports molecular dynamics simulations of water flow in carbon, boron nitride, and silicon carbide nanotubes that show the effect of the solid-liquid interactions on the fluid flow. Alongside an analytical model, these results show that the flow enhancement depends on the tube's geometric characteristics and the solid-liquid interactions.

  16. High Speed Dynamics in Brittle Materials

    NASA Astrophysics Data System (ADS)

    Hiermaier, Stefan

    2015-06-01

    Brittle Materials under High Speed and Shock loading provide a continuous challenge in experimental physics, analysis and numerical modelling, and consequently for engineering design. The dependence of damage and fracture processes on material-inherent length and time scales, the influence of defects, rate-dependent material properties and inertia effects on different scales make their understanding a true multi-scale problem. In addition, it is not uncommon that materials show a transition from ductile to brittle behavior when the loading rate is increased. A particular case is spallation, a brittle tensile failure induced by the interaction of stress waves leading to a sudden change from compressive to tensile loading states that can be invoked in various materials. This contribution highlights typical phenomena occurring when brittle materials are exposed to high loading rates in applications such as blast and impact on protective structures, or meteorite impact on geological materials. A short review on experimental methods that are used for dynamic characterization of brittle materials will be given. A close interaction of experimental analysis and numerical simulation has turned out to be very helpful in analyzing experimental results. For this purpose, adequate numerical methods are required. Cohesive zone models are one possible method for the analysis of brittle failure as long as some degree of tension is present. Their recent successful application for meso-mechanical simulations of concrete in Hopkinson-type spallation tests provides new insight into the dynamic failure process. Failure under compressive loading is a particular challenge for numerical simulations as it involves crushing of material which in turn influences stress states in other parts of a structure. On a continuum scale, it can be modeled using more or less complex plasticity models combined with failure surfaces, as will be demonstrated for ceramics. Models which take microstructural

  17. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Foltz, Benjamin; Mahler, Joseph

    2015-03-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum, we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion.

  18. Erosion and flow of hydrophobic granular materials

    NASA Astrophysics Data System (ADS)

    Utter, Brian; Benns, Thomas; Mahler, Joseph

    2013-11-01

    We experimentally investigate submerged granular flows of hydrophobic and hydrophilic grains both in a rotating drum geometry and under erosion by a surface water flow. While slurry and suspension flows are common in nature and industry, effects of surface chemistry on flow behavior have received relatively little attention. In the rotating drum , we use varying concentrations of hydrophobic and hydrophilic grains of sand submerged in water rotated at a constant angular velocity. Sequential images of the resulting avalanches are taken and analyzed. High concentrations of hydrophobic grains result in an effectively cohesive interaction between the grains forming aggregates, with aggregate size and repose angle increasing with hydrophobic concentration. However, the formation and nature of the aggregates depends significantly on the presence of air in the system. We present results from a related experiment on erosion by a surface water flow designed to characterize the effects of heterogeneous granular surfaces on channelization and erosion. Supported by NSF CBET Award 1067598.

  19. Entrainment of granular substrate by pyroclastic flows: an experimental study and its implications for flow dynamics

    NASA Astrophysics Data System (ADS)

    Roche, O.; Niño, Y.; Mangeney, A.; Brand, B. D.; Valentine, G. A.

    2012-12-01

    Pyroclastic flows deposits may contain lithics entrained from an unconsolidated granular substrate on which the flows emplaced. In order to address this issue, analog experiments on dense gas-particle flows propagating on a horizontal granular layer were carried out to elucidate the entrainment mechanisms and to infer the dynamics of pyroclastic flows. The experimental flows were generated from the release of gas-fluidized columns of fine (80 μm) particles in a horizontal channel whose base was made of an unconsolidated granular layer. The flows consisted of a fluidized air-particles mixture, and the small hydraulic permeability of the material allowed for long-lived high interstitial pore fluid pressure during emplacement. Basal pore pressure measurements in preliminary experiments involving a rigid substrate revealed that the sliding head of the flows generated a dynamic underpressure (relative to atmosphere) proportional to the square of the front velocity. As such underpressure at the flow base was likely to promote an upward pressure gradient that could cause uplift of particles of a granular substrate, we did a theoretical analysis in order to determine the critical underpressure and the corresponding flow velocity (Uc) at which uplift could occur. This analysis showed that Uc~(dρpg/Cρ)1/2 for spherical particles, where d and ρp are the particle diameter and density, respectively, C is an empirical constant, and is ρ is the bulk flow density. It was validated with experiments on flows propagating on 3 cm-thick substrates of steel beads of diameter d=1.6 mm. The beads were first dragged horizontally individually due to basal shear, and onset of uplift did occur at Uc~0.9 m/s. The beads uplifted were incorporated within the flow base, to a height that increased up to 6-8 mm at flow velocities up to 2.5-3 m/s, and were entrained over distances of several tens of cm representing a significant part of the flow runout. The flow deposits hence had a well

  20. Dynamic shear of granular material under variable gravity conditions

    NASA Technical Reports Server (NTRS)

    White, B. R.; Klein, S. P.

    1988-01-01

    This paper describes some experiments with granular materials which recently have been conducted aboard the NASA KC-135 aircraft during variable gravity maneuvers. The main experimental apparatus consisted of a small drum containing granular material which was rotated slowly while the angle assumed by the slip surface with respect to the horizontal was observed and recorded photographically. Conventional wisdom has held that this 'dynamic angle of response' was a material constant, independent of (among other things) gravitational level. The results presented here are quite contrary, suggesting instead an angle that varies with the reciprocal of the square root of gravity. This finding may have important consequences on the understanding of many active processes in Planetary Geology involving granular materials and may provide qualitative confirmation of some of the theoretical predictions of modern models of granular shear flows.

  1. Toward sustainable material usage: evaluating the importance of market motivated agency in modeling material flows.

    PubMed

    Gaustad, Gabrielle; Olivetti, Elsa; Kirchain, Randolph

    2011-05-01

    Increasing recycling will be a key strategy for moving toward sustainable materials usage. There are many barriers to increasing recycling, including quality issues in the scrap stream. Repeated recycling can compound this problem through the accumulation of tramp elements over time. This paper explores the importance of capturing recycler decision-making in accurately modeling accumulation and the value of technologies intended to mitigate it. A method was developed combining dynamic material flow analysis with allocation of those materials into production portfolios using blending models. Using this methodology, three scrap allocation methods were explored in the context of a case study of aluminum use: scrap pooling, pseudoclosed loop, and market-based. Results from this case analysis suggest that market-driven decisions and upgrading technologies can partially mitigate the negative impact of accumulation on scrap utilization, thereby increasing scrap use and reducing greenhouse gas emissions. A market-based allocation method for modeling material flows suggests a higher value for upgrading strategies compared to a pseudoclosed loop or pooling allocation method for the scenarios explored. PMID:21438601

  2. Dynamic failure in two-phase materials

    SciTech Connect

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.

  3. Optical dynamic deformation measurements at translucent materials.

    PubMed

    Philipp, Katrin; Koukourakis, Nektarios; Kuschmierz, Robert; Leithold, Christoph; Fischer, Andreas; Czarske, Jürgen

    2015-02-15

    Due to their high stiffness-to-weight ratio, glass fiber-reinforced polymers are an attractive material for rotors, e.g., in the aerospace industry. A fundamental understanding of the material behavior requires non-contact, in-situ dynamic deformation measurements. The high surface speeds and particularly the translucence of the material limit the usability of conventional optical measurement techniques. We demonstrate that the laser Doppler distance sensor provides a powerful and reliable tool for monitoring radial expansion at fast rotating translucent materials. We find that backscattering in material volume does not lead to secondary signals as surface scattering results in degradation of the measurement volume inside the translucent medium. This ensures that the acquired signal contains information of the rotor surface only, as long as the sample surface is rough enough. Dynamic deformation measurements of fast-rotating fiber-reinforced polymer composite rotors with surface speeds of more than 300 m/s underline the potential of the laser Doppler sensor.

  4. Nonlinear Dynamics of Structures with Material Degradation

    NASA Astrophysics Data System (ADS)

    Soltani, P.; Wagg, D. J.; Pinna, C.; Whear, R.; Briody, C.

    2016-09-01

    Structures usually experience deterioration during their working life. Oxidation, corrosion, UV exposure, and thermo-mechanical fatigue are some of the most well-known mechanisms that cause degradation. The phenomenon gradually changes structural properties and dynamic behaviour over their lifetime, and can be more problematic and challenging in the presence of nonlinearity. In this paper, we study how the dynamic behaviour of a nonlinear system changes as the thermal environment causes certain parameters to vary. To this end, a nonlinear lumped mass modal model is considered and defined under harmonic external force. Temperature dependent material functions, formulated from empirical test data, are added into the model. Using these functions, bifurcation parameters are defined and the corresponding nonlinear responses are observed by numerical continuation. A comparison between the results gives a preliminary insight into how temperature induced properties affects the dynamic response and highlights changes in stability conditions of the structure.

  5. Modeling of dynamic fragmentation in brittle materials

    NASA Astrophysics Data System (ADS)

    Miller, Olga

    Fragmentation of brittle materials under high rates of loading is commonly encountered in materials processing and under impact loading conditions. Theoretical models intended to correlate the features of dynamic fragmentation have been suggested during the past few years with the goal of providing a rational basis for prediction of fragment sizes. In this thesis, a new model based on the dynamics of the process is developed. In this model, the spatial distribution and strength variation representative of flaws in real brittle materials are taken into account. The model captures the competition between rising mean stress in a brittle material due to an imposed high strain rate and falling mean stress due to loss of compliance. The model is studied computationally through an adaptation of a concept introduced by Xu and Needleman (1994). The deformable body is first divided into many small regions. Then, the mechanical behavior of the material is characterized by two constitutive relations, a volumetric constitutive relationship between stress and strain within the small continuous regions and a cohesive surface constitutive relationship between traction and displacement discontinuity across the cohesive surfaces between the small regions. These surfaces provide prospective fracture paths. Numerical experiments were conducted for a system with initial and boundary conditions similar to those invoked in the simple energy balance models, in order to provide a basis for comparison. It is found that, these models lead to estimates of fragment size which are an order of magnitude larger than those obtained by a more detailed calculation. The differences indicate that the simple analytical models, which deal with the onset of fragmentation but not its evolution, are inadequate as a basis for a complete description of a dynamic fragmentation process. The computational model is then adapted to interpret experimental observations on the increasing energy dissipation for

  6. Dynamic failure in two-phase materials

    NASA Astrophysics Data System (ADS)

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-01

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as void nucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parent materials. In this work, we present results on three different polycrystalline materials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces on void nucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial results suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the "weaker" material that dictates the dynamic spall strength of the overall two-phase material.

  7. On Inverting the Heat Flow with Engineering Materials

    NASA Astrophysics Data System (ADS)

    Zhou, Li

    2016-02-01

    Transformation thermodynamics enriches our understanding of heat flow and makes it possible to manipulate the heat flow at will, like shielding, concentrating and inverting. The inverting of heat flow is the extreme one, which has not been studied specifically yet. In this study we firstly inverted the heat flow by transformation thermodynamics and provided the formula for the transformed thermal conductivity. Finite element simulations were conducted to realize the steady and non-steady inverting of heat flow, based on the eccentric-semi-ring structures with natural materials. To do the inverting of heat flow, a simple "L"-shape conductive structure was proposed and verified with an infrared camera. It is concluded that inverting heat flow can be done by both complex engineering materials and some simple structures.

  8. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning

    USGS Publications Warehouse

    McCoy, S.W.; Kean, J.W.; Coe, J.A.; Staley, D.M.; Wasklewicz, T.A.; Tucker, G.E.

    2010-01-01

    Many theoretical and laboratory studies have been undertaken to understand debris-flow processes and their associated hazards. However, complete and quantitative data sets from natural debris flows needed for confirmation of these results are limited. We used a novel combination of in situ measurements of debris-flow dynamics, video imagery, and pre- and postflow 2-cm-resolution digital terrain models to study a natural debris-flow event. Our field data constrain the initial and final reach morphology and key flow dynamics. The observed event consisted of multiple surges, each with clear variation of flow properties along the length of the surge. Steep, highly resistant, surge fronts of coarse-grained material without measurable pore-fluid pressure were pushed along by relatively fine-grained and water-rich tails that had a wide range of pore-fluid pressures (some two times greater than hydrostatic). Surges with larger nonequilibrium pore-fluid pressures had longer travel distances. A wide range of travel distances from different surges of similar size indicates that dynamic flow properties are of equal or greater importance than channel properties in determining where a particular surge will stop. Progressive vertical accretion of multiple surges generated the total thickness of mapped debris-flow deposits; nevertheless, deposits had massive, vertically unstratified sedimentological textures. ?? 2010 Geological Society of America.

  9. Granular Materials Flows with Interstitial Fluid Effects

    NASA Astrophysics Data System (ADS)

    Hunt, M. L.; Brennen, C. E.; Campbell, C. S.

    2002-11-01

    In 1954, R.A. Bagnold published his seminal findings on the rheological properties of liquid-solid flows. We recently completed an extensive reevaluation of Bagnold's work, and our analysis and simulations indicate that the rheological measurements of Bagnold were affected significantly by secondary flows within the experimental apparatus. The concentric cylinder rheometer was designed by Bagnold to measure simultaneously the shear and normal forces for a wide range for solid concentrations, fluid viscosities and shear rates. As presented by Bagnold, the shear and normal forces depended linearly on the shear rate in the 'macroviscous' regime. As the grain-to-grain interactions increased in the 'grain inertia' regime, the stresses depended on the square of the shear rate and were independent of the fluid viscosity. These results, however, appear to be dictated by the design of the experimental facility. In Bagnold's experiments, the height (h) of the rheometer was relatively short compared to the spacing (t) between the rotating outer and stationary inner cylinder (h/t=4.6). Since the top and bottom end plates rotated with the outer cylinder, the flow contained two axisymmetric counter-rotating cells in which flow moved outward along the end plates and inward at the midheight of the annulus. These cells contribute significantly to the measured torque, and obscured any accurate measurements of the shear or normal stresses. Before doing the reevaluation of Bagnold's work, our research objective was to examine the effects of the interstitial fluid for flows in which the densities of the two phases were different. After reevaluating Bagnold's work, we redesigned our experimental facility to minimize secondary flow effects. Like Bagnold's facility, we use a concentric cylinder rheometer with a rotating outer wall. The inner cylinder also is able to rotate slightly but will also be restrained by flexible supports; the torque is measured from the deformation of the

  10. IR DIAGNOSTICS FOR DYNAMIC FAILURE OF MATERIALS

    SciTech Connect

    McElfresh, M; DeTeresa, S

    2006-02-13

    This project explores the thermodynamics of dynamic deformation and failure of materials using high-speed spatially-resolved infrared (IR) measurements of temperature. During deformation mechanical work is converted to different forms of energy depending on the deformation processes. For example, it can be dissipated as heat in purely plastic deformation, stored as strain energy in dislocations in metals and in oriented polymeric molecular structures, and expended during the generation of new surfaces during damage and fracture. The problem of how this work is converted into these various forms is not well understood. In fact, there exists a controversy for the relatively simple case regarding the amount of work dissipated as heat during uniform plastic deformation. The goals of this work are to develop dynamic IR temperature measurement techniques and then apply them to gain a better understanding of the dynamic failure processes in both metals and polymeric composite materials. The experimental results will be compared against predictions of existing constitutive models and guide the development of higher fidelity models if needed.

  11. Optical techniques for determining dynamic material properties

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1996-12-31

    Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.

  12. A dynamic plug flow reactor model for a vanadium redox flow battery cell

    NASA Astrophysics Data System (ADS)

    Li, Yifeng; Skyllas-Kazacos, Maria; Bao, Jie

    2016-04-01

    A dynamic plug flow reactor model for a single cell VRB system is developed based on material balance, and the Nernst equation is employed to calculate cell voltage with consideration of activation and concentration overpotentials. Simulation studies were conducted under various conditions to investigate the effects of several key operation variables including electrolyte flow rate, upper SOC limit and input current magnitude on the cell charging performance. The results show that all three variables have a great impact on performance, particularly on the possibility of gassing during charging at high SOCs or inadequate flow rates. Simulations were also carried out to study the effects of electrolyte imbalance during long term charging and discharging cycling. The results show the minimum electrolyte flow rate needed for operation within a particular SOC range in order to avoid gassing side reactions during charging. The model also allows scheduling of partial electrolyte remixing operations to restore capacity and also avoid possible gassing side reactions during charging. Simulation results also suggest the proper placement for cell voltage monitoring and highlight potential problems associated with setting the upper charging cut-off limit based on the inlet SOC calculated from the open-circuit cell voltage measurement.

  13. DYNAMIC MODELING STRATEGY FOR FLOW REGIME TRANSITION IN GAS-LIQUID TWO-PHASE FLOWS

    SciTech Connect

    X. Wang; X. Sun; H. Zhao

    2011-09-01

    In modeling gas-liquid two-phase flows, the concept of flow regime has been used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are often flow regime dependent. Currently, the determination of the flow regimes is primarily based on flow regime maps or transition criteria, which are developed for steady-state, fully-developed flows and widely applied in nuclear reactor system safety analysis codes, such as RELAP5. As two-phase flows are observed to be dynamic in nature (fully-developed two-phase flows generally do not exist in real applications), it is of importance to model the flow regime transition dynamically for more accurate predictions of two-phase flows. The present work aims to develop a dynamic modeling strategy for determining flow regimes in gas-liquid two-phase flows through the introduction of interfacial area transport equations (IATEs) within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation and destruction of the interfacial area, such as the fluid particle (bubble or liquid droplet) disintegration, boiling and evaporation; and fluid particle coalescence and condensation, respectively. For the flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shape (which are correlated), namely small bubbles and large bubbles. A preliminary approach to dynamically identifying the flow regimes is provided, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration of small bubble and large bubble groups. This method is expected to be applied to computer codes to improve their predictive capabilities of gas-liquid two-phase flows, in particular for the applications in

  14. Benchmarking computational fluid dynamics models for lava flow simulation

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi

    2016-04-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.

  15. Coarse-grained simulations of flow-induced morphology dynamics in dispersed graphene

    NASA Astrophysics Data System (ADS)

    Xu, Yueyi; Green, Micah

    2013-11-01

    We investigated how flow fields affect graphene morphology dynamics in liquid phase using a coarse-grained model. Past simulations of the dynamics of dispersed graphene sheets are limited to static fluids on small timescales, with little attention devoted to flow dynamics, which is critical given the importance of graphene solution-processing of multifunctional devices and materials. We developed a Brownian Dynamics (BD) algorithm to study the morphology of sheetlike macromolecules in dilute solutions with an applied external flow field. We used a bead-rod lattice to represent the mesoscopic conformation of individual two dimensional sheets. We then analyzed the morphology dynamic modes (stretching, tumbling, crumpling) of these molecules as a function of sheet size, Weissenberg number, and bending stiffness. The physical properties (e. g. viscosity) affected by the morphology are also studied. Our results demonstrate how bending stiffness relates to relaxation modes during startup of shear.

  16. Flow of granular materials down an inclined plane

    SciTech Connect

    Gudhe, R.; Rajagopal, K.R.; Massoudi, M.; Chi, R.

    1993-05-01

    The mechanics of flowing granular materials such as coal, sand, fossil-fuel energy recovery, metal ores, etc., and their flow characteristics have received considerable attention in recent years because it has relevance to several technological problems. In a number of instances these materials are also heated prior to processing, or cooled after processing. The governing equations for the flow of granular materials taking into account the heat transfer mechanism are derived using the continuum model proposed by Rajagopal and Massoudi (1990). For a fully developed flow of granular materials down an inclined plane, these equations reduce to a system of coupled ordinary differential equations. The resulting boundary value problem is solved numerically and the results are presented. For a special case, it is possible to obtain an analytic solution; this is given in the Appendix A of this report.

  17. Isotope specific arbitrary material flow meter

    DOEpatents

    Barty, Christopher P. J.; Post, John C.; Jones, Edwin

    2016-10-25

    A laser-based mono-energetic gamma-ray source is used to provide non-destructive and non-intrusive, quantitative determination of the absolute amount of a specific isotope contained within pipe as part of a moving fluid or quasi-fluid material stream.

  18. Dynamic Behavior of Engineered Lattice Materials

    PubMed Central

    Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.

    2016-01-01

    Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697

  19. Dynamic failure in two-phase materials

    DOE PAGES

    Fensin, S. J.; Walker, E. K.; Cerreta, E. K.; Trujillo, C. P.; Martinez, D. T.; Gray, G. T.

    2015-12-21

    Previous experimental research has shown that microstructural features such as interfaces, inclusions, vacancies, and heterogeneities can all act as voidnucleation sites. However, it is not well understood how important these interfaces are to damage evolution and failure as a function of the surrounding parentmaterials. In this work, we present results on three different polycrystallinematerials: (1) Cu, (2) Cu-24 wt. %Ag, and (3) Cu-15 wt. %Nb which were studied to probe the influence of bi-metal interfaces onvoidnucleation and growth. These materials were chosen due to the range of difference in structure and bulk properties between the two phases. The initial resultsmore » suggest that when there are significant differences between the bulk properties (for example: stacking fault energy, melting temperature, etc.) the type of interface between the two parent materials does not principally control the damage nucleation and growth process. Rather, it is the “weaker” material that dictates the dynamic spall strength of the overall two-phase material.« less

  20. Dynamic Behavior of Engineered Lattice Materials

    NASA Astrophysics Data System (ADS)

    Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.

    2016-06-01

    Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations.

  1. Dynamic Behavior of Engineered Lattice Materials.

    PubMed

    Hawreliak, J A; Lind, J; Maddox, B; Barham, M; Messner, M; Barton, N; Jensen, B J; Kumar, M

    2016-01-01

    Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697

  2. Mastering nonlinear flow dynamics for laminar flow control

    NASA Astrophysics Data System (ADS)

    Sattarzadeh, Sohrab S.; Fransson, Jens H. M.

    2016-08-01

    A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mean velocity variations. Against common belief we are able to fully master the first stage of this nonlinear interaction to generate steady and stable streamwise streaks, which in turn trigger the SVG method. Our experimental results show that the region of laminar flow can be extended by up to 230%.

  3. Mastering nonlinear flow dynamics for laminar flow control.

    PubMed

    Sattarzadeh, Sohrab S; Fransson, Jens H M

    2016-08-01

    A laminar flow control technique based on spanwise mean velocity gradients (SVGs) has recently proven successful in delaying transition in boundary layers. Here we take advantage of a well-known nonlinear effect, namely, the interaction of two oblique waves at high amplitude, to produce spanwise mean velocity variations. Against common belief we are able to fully master the first stage of this nonlinear interaction to generate steady and stable streamwise streaks, which in turn trigger the SVG method. Our experimental results show that the region of laminar flow can be extended by up to 230%. PMID:27627235

  4. Information systems for material flow management in construction processes

    NASA Astrophysics Data System (ADS)

    Mesároš, P.; Mandičák, T.

    2015-01-01

    The article describes the options for the management of material flows in the construction process. Management and resource planning is one of the key factors influencing the effectiveness of construction project. It is very difficult to set these flows correctly. The current period offers several options and tools to do this. Information systems and their modules can be used just for the management of materials in the construction process.

  5. Spin dynamics in the multiferroic materials (invited)

    SciTech Connect

    Ye, Feng; Fishman, Randy Scott; Haraldsen, Jason T; Lorenz, Bernd; Chu, C. W.; Kimura, K.

    2012-01-01

    We report high resolution inelastic neutron scattering measurements and spin dynamics calculations in two multiferroic materials: the geometrically frustrated triangular lattice CuFeO2 and mineral Hu bnerite MnWO4. In un-doped CuFeO2 a low-T collinear spin structure is stabilized by long range magnetic interactions. When doped with a few percent of gallium, the spin order evolves into a complex noncollinear configuration and the system becomes multiferroic. Similarly, the ground state collinear spin order in pure MnWO4 results from delicate balance between competing magnetic interactions up to 11th nearest neighbors and can be tuned by substitution of Mn ions with magnetic or nonmagnetic impurities. The comprehensive investigation of spin dynamics in both systems help to understand the fundamental physical process and the interactions leading to the close interplay of magnetism and ferroelectricity in this type of materials. VC2012 American Institute of Physics. [doi:10.1063/1.3677863

  6. Dynamic Characterization of Thin Film Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Gu, Wei

    A broadband dynamic method for characterizing thin film magnetic material is presented. The method is designed to extract the permeability and linewidth of thin magnetic films from measuring the reflection coefficient (S11) of a house-made and short-circuited strip line testing fixture with or without samples loaded. An adaptive de-embedding method is applied to remove the parasitic noise of the housing. The measurements were carried out with frequency up to 10GHz and biasing magnetic fields up to 600 Gauss. Particular measurement setup and 3-step experimental procedures are described in detail. The complex permeability of a 330nm thick continuous FeGaB, 435nm thick laminated FeGaB film and a 100nm thick NiFe film will be induced dynamically in frequency-biasing magnetic field spectra and compared with a theoretical model based on Landau-Lifshitz-Gilbert (LLG) equations and eddy current theories. The ferromagnetic resonance (FMR) phenomenon can be observed among these three magnetic materials investigated in this thesis.

  7. Transient Heat and Material Flow Modeling of Friction Stir Processing of Magnesium Alloy using Threaded Tool

    SciTech Connect

    Yu, Zhenzhen; Zhang, Wei; Choo, Hahn; Feng, Zhili

    2012-01-01

    A three-dimensional transient computational fluid dynamics (CFD) model was developed to investigate the material flow and heat transfer during friction stir processing (FSP) in an AZ31B magnesium alloy. The material was assumed to be a non-Newtonian viscoplastic fluid, and the Zener-Hollomon parameter was used to describe the dependence of material viscosity on temperature and strain rate. The material constants used in the constitutive equation were determined experimentally from compression tests of the AZ31B Mg alloy under a wide range of strain rates and temperatures. A dynamic mesh method, combining both Lagrangian and Eulerian formulations, was used to capture the material flow induced by the movement of the threaded tool pin. Massless inert particles were embedded in the simulation domain to track the detailed history of material flow. The actual FSP was also carried out on a wrought Mg plate where temperature profiles were recorded by embedding thermocouples. The predicted transient temperature history was found to be consistent with that measured during FSP. Finally, the influence of the thread on the simulated results of thermal history and material flow was studied by comparing two models: one with threaded pin and the other with smooth pin surface.

  8. Characterizing He II flow through porous materials using counterflow data

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R.; Van Sciver, S. W.

    1991-01-01

    An empirical extension of the two-fluid model is used to characterize He II flow through porous materials. It is shown that four empirical parameters are necessary to describe the pressure and temperature differences induced by He II flow through a porous sample. The three parameters required to determine pressure differences are measured in counterflow and found to compare favorably with those for isothermal flow. The fourth parameter, the Gorter-Mellink constant, differs substantially from smooth tube values. It is concluded that parameter values determined from counterflow can be used to predict pressure and temperature differences in a variety of flows to an accuracy of about +/- 20 percent.

  9. Gravity flow instability of viscoplastic materials: The ketchup drip

    NASA Astrophysics Data System (ADS)

    Coussot, P.; Gaulard, F.

    2005-09-01

    In contrast with simple liquids such as water, milk, honey, which easily flow as a continuous jet when poured from a vessel, pasty materials such as mayonnaise, mustard, ketchup, puree, etc., fall by fits and starts in a wide range of flow rates. This may, for example, be observed when ketchup or mayonnaise is pushed from a tube at a sufficient height over a plate: although surface tension effects are generally negligible because of its high viscosity the material drops as successive droplets of more or less similar size (except at large flow rates). Here we demonstrate that this effect is a kind of flow instability which develops when the weight of material becomes larger than a force due to its yield stress, namely a critical stress below which it cannot flow steadily. Furthermore, we show that depending on the exact material behavior surprising phenomena may be observed: the size of the droplet may remain constant or even decrease (for thixotropic materials) as the flow rate increases. This approach, for example, provides tools for controlling the shape of droplets in cooking and the size of extrudates in food and mineral industries.

  10. Gravity flow instability of viscoplastic materials: the ketchup drip.

    PubMed

    Coussot, P; Gaulard, F

    2005-09-01

    In contrast with simple liquids such as water, milk, honey, which easily flow as a continuous jet when poured from a vessel, pasty materials such as mayonnaise, mustard, ketchup, puree, etc., fall by fits and starts in a wide range of flow rates. This may, for example, be observed when ketchup or mayonnaise is pushed from a tube at a sufficient height over a plate: although surface tension effects are generally negligible because of its high viscosity the material drops as successive droplets of more or less similar size (except at large flow rates). Here we demonstrate that this effect is a kind of flow instability which develops when the weight of material becomes larger than a force due to its yield stress, namely a critical stress below which it cannot flow steadily. Furthermore, we show that depending on the exact material behavior surprising phenomena may be observed: the size of the droplet may remain constant or even decrease (for thixotropic materials) as the flow rate increases. This approach, for example, provides tools for controlling the shape of droplets in cooking and the size of extrudates in food and mineral industries. PMID:16241437

  11. The dynamical regime of fluid flow at the core surface

    NASA Astrophysics Data System (ADS)

    Bloxham, Jeremy

    1988-06-01

    An alternative method for determining the fluid motion immediately beneath the core-mantle boundary is presented which is based on solving the full nonlinear core motions problem. This method is used to examine three dynamical hypotheses about the flow: (1) the steady motions hypothesis; (2) the geostrophic hypothesis; and (3) the toroidal flow hypothesis. Better fits to the field are obtained with the toroidal flows than with geostrophic flows, casting considerable doubt on the validity of the geostrophic hypothesis. Additionally, some indication is found that failure of the frozen-flux approximation, a concomitant assumption, may be a serious obstacle to obtaining reliable maps of the core fluid flow.

  12. Fluid mechanics of dynamic stall. I - Unsteady flow concepts

    NASA Technical Reports Server (NTRS)

    Ericsson, L. E.; Reding, J. P.

    1988-01-01

    Advanced military aircraft 'supermaneuverability' requirements entail the sustained operation of airfoils at stalled flow conditions. The present work addresses the effects of separated flow on vehicle dynamics; an analytic method is presented which employs static experimental data to predict the separated flow effect on incompressible unsteady aerodynamics. The key parameters in the analytic relationship between steady and nonsteady aerodynamics are the time-lag before a change of flow conditions can affect the separation-induced aerodynamic loads, the accelerated flow effect, and the moving wall effect.

  13. Application of porous materials for laminar flow control

    NASA Technical Reports Server (NTRS)

    Pearce, W. E.

    1978-01-01

    Fairly smooth porous materials were elected for study Doweave; Fibermetal; Dynapore; and perforated titanium sheet. Factors examined include: surface smoothness; suction characteristics; porosity; surface impact resistance; and strain compatibility. A laminar flow control suction glove arrangement was identified with material combinations compatible with thermal expansion and structural strain.

  14. Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions.

    PubMed

    Ma, Rui; Zheng, Chunmiao; Tonkin, Matt; Zachara, John M

    2011-04-01

    Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions. PMID:21216023

  15. Importance of considering intraborehole flow in solute transport modeling under highly dynamic flow conditions

    SciTech Connect

    Ma, Rui; Zheng, Chunmiao; Tonkin, Matthew J.; Zachara, John M.

    2011-04-01

    Correct interpretation of tracer test data is critical for understanding transport processes in the subsurface. This task can be greatly complicated by the presence of intraborehole flows in a highly dynamic flow environment. At a new tracer test site (Hanford IFRC) a dynamic flow field created by changes in the stage of the adjacent Columbia River, coupled with a heterogeneous hydraulic conductivity distribution, leads to considerable variations in vertical hydraulic gradients. These variations, in turn, create intraborehole flows in fully-screened (6.5 m) observation wells with frequently alternating upward and downward movement. This phenomenon, in conjunction with a highly permeable aquifer formation and small horizontal hydraulic gradients, makes modeling analysis and model calibration a formidable challenge. Groundwater head data alone were insufficient to define the flow model boundary conditions, and the movement of the tracer was highly sensitive to the dynamics of the flow field. This study shows that model calibration can be significantly improved by explicitly considering (a) dynamic flow model boundary conditions and (b) intraborehole flow. The findings from this study underscore the difficulties in interpreting tracer tests and understanding solute transport under highly dynamic flow conditions.

  16. Comminution of Ceramic Materials Under High-Shear Dynamic Compaction

    NASA Astrophysics Data System (ADS)

    Homel, Michael; Loiseau, Jason; Higgins, Andrew; Herbold, Eric; Hogan, Jamie

    The post-failure ``granular flow'' response of high-strength lightweight ceramics has important implications on the materials' effectiveness for ballistic protection. We study the dynamic compaction and shear flow of ceramic fragments and powders using computational and experimental analysis of a collapsing thick-walled cylinder geometry. Using newly developed tools for mesoscale simulation of brittle materials, we study the effect of fracture, comminution, shear-enhanced dilatation, and frictional contact on the continuum compaction response. Simulations are directly validated through particle Doppler velocimetry measurements at the inner surface of the cylindrical powder bed. We characterize the size distribution and morphologies of the initial and compacted material fragments to both validate the computational model and to elucidate the dominant failure processes. A portion of this work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL-ABS-678862.

  17. Transport and Retention of Engineered Nanoporous Particles in Porous Media: Effects of Concentration and Flow Dynamics

    SciTech Connect

    Shang, Jianying; Liu, Chongxuan; Wang, Zheming

    2013-01-20

    Engineered nanoporous particles are an important class of nano-structured materials that can be functionalized in their internal surfaces for various applications including groundwater contaminant sequestration. This paper reported a study of transport and retention of engineered nanoporous silicate particles (ENSPs) that are designed for treatment and remediation of contaminants such as uranium in groundwater and sediments. The transport and retention of ENSPs were investigated under variable particle concentrations and dynamic flow conditions in a synthetic groundwater that mimics field groundwater chemical composition. The dynamic flow condition was achieved using a flow-interruption (stop-flow) approach with variable stop-flow durations to explore particle retention and release kinetics. The results showed that the ENSPs transport was strongly affected by the particle concentrations and dynamic flow conditions. A lower injected ENSPs concentration and longer stop-flow duration led to a more particle retention. The experimental data were used to evaluate the applicability of various kinetic models that were developed for colloidal particle retention and release in describing ENSPs transport. Model fits suggested that the transport and retention of ENSPs were subjected to a complex coupling of reversible attachment/detachment and straining/liberation processes. Both experimental and modeling results indicated that dynamic groundwater flow condition is an important parameter to be considered in exploring and modeling engineered particle transport in subsurface porous media.

  18. Efficient material flow in mixed model assembly lines.

    PubMed

    Alnahhal, Mohammed; Noche, Bernd

    2013-01-01

    In this study, material flow from decentralized supermarkets to stations in mixed model assembly lines using tow (tugger) trains is investigated. Train routing, scheduling, and loading problems are investigated in parallel to minimize the number of trains, variability in loading and in routes lengths, and line-side inventory holding costs. The general framework for solving these problems in parallel contains analytical equations, Dynamic Programming (DP), and Mixed Integer Programming (MIP). Matlab in conjunction with LP-solve software was used to formulate the problem. An example was presented to explain the idea. Results which were obtained in very short CPU time showed the effect of using time buffer among routes on the feasible space and on the optimal solution. Results also showed the effect of the objective, concerning reducing the variability in loading, on the results of routing, scheduling, and loading. Moreover, results showed the importance of considering the maximum line-side inventory beside the capacity of the train in the same time in finding the optimal solution. PMID:24024101

  19. Fundamental Study of Material Flow in Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Reynolds, Anthony P.

    1999-01-01

    The presented research project consists of two major parts. First, the material flow in solid-state, friction stir, butt-welds as been investigated using a marker insert technique. Changes in material flow due to welding parameter as well as tool geometry variations have been examined for different materials. The method provides a semi-quantitative, three-dimensional view of the material transport in the welded zone. Second, a FSW process model has been developed. The fully coupled model is based on fluid mechanics; the solid-state material transport during welding is treated as a laminar, viscous flow of a non-Newtonian fluid past a rotating circular cylinder. The heat necessary for the material softening is generated by deformation of the material. As a first step, a two-dimensional model, which contains only the pin of the FSW tool, has been created to test the suitability of the modeling approach and to perform parametric studies of the boundary conditions. The material flow visualization experiments agree very well with the predicted flow field. Accordingly, material within the pin diameter is transported only in the rotation direction around the pin. Due to the simplifying assumptions inherent in the 2-D model, other experimental data such as forces on the pin, torque, and weld energy cannot be directly used for validation. However, the 2-D model predicts the same trends as shown in the experiments. The model also predicts a deviation from the "normal" material flow at certain combinations of welding parameters, suggesting a possible mechanism for the occurrence of some typical FSW defects. The next step has been the development of a three-dimensional process model. The simplified FSW tool has been designed as a flat shoulder rotating on the top of the workpiece and a rotating, cylindrical pin, which extends throughout the total height of the flow domain. The thermal boundary conditions at the tool and at the contact area to the backing plate have been varied

  20. Upper mantle flow and lithospheric dynamics beneath the Eurasian region

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Jiang, G.; Jia, Z.; Gao, R.; Fu, R.

    2010-12-01

    Evidence from seismic tomography, geothermal and short wavelength geoid anomalies reveals the existence of small-scale convective systems in the upper mantle, with scales ranging from 500 km to 700 km. It is reasonable to suggest that these small-scale convective systems probably control the regional tectonic structure and the dynamical processes of the lithosphere. Here we have calculated the patterns of small-scale convection in the upper mantle for the Eurasian region (20°E~170°E,15°N~75°N), using the anomaly of isostatic gravity. The results show that the regional lithospheric tectonics is strongly correlated with the upper mantle flow in the Eurasian region. Two intensive convective belts against the weak background convection can be recognized from convection patterns in this region: Alpine-Himalayan collision belt and West Pacific island arc-underthrust belt. Alpine-Himalayan belt is caused by the collision between the northern plate (Eurasian plate) and the southern plates (African plate and Indian plate). West Pacific island arc-underthrust belt is caused by the subduction of the Pacific plate beneath the Eurasian plate. Both of them are also seismotectonic belts. The collision and the subduction are two important geological events occurred since Mesozoic era and Cenozoic era in the Eurasian region. Therefore, the mantle flows may be one of the main driving forces of two events. In addition, most plate boundaries in this region can be recognized and the characteristics of upper mantle convection are different completely between the Eurasian plate and the plates around it (African plate, Arabian plate, Indian plate, Philippine Sea plate and Pacific plate). Main structures and geodynamic characteristics of the Eurasian can also be explained by our model results. The Tibet plateau is located in the intensive convective belt. Around the belt, the upwelling materials push the lithosphere to lift unitarily and form the plateau. Towards the north of the Tibet

  1. An ultrasonic flowmeter for measuring dynamic liquid flow

    NASA Technical Reports Server (NTRS)

    Carpini, T. D.; Monteith, J. H.

    1978-01-01

    A novel oscillating pipe system was developed to provide dynamic calibration wherein small sinusoidal signals with amplitudes of 0.5 to 10% of the steady-state flow were added to the steady-state flow by oscillating the flowmeter relative to the fixed pipes in the flow system. Excellent agreement was obtained between the dynamic velocities derived from an accelerometer mounted on the oscillating pipe system and those sensed by the flowmeter at frequencies of 7, 19, and 30 Hz. Also described were the signal processing techniques used to retrieve the small sinusoidal signals which were obscured by the fluid turbulence.

  2. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, T.

    1998-06-16

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell. 5 figs.

  3. Electromagnetic valve for controlling the flow of molten, magnetic material

    DOEpatents

    Richter, Tomas

    1998-01-01

    An electromagnetic valve for controlling the flow of molten, magnetic material is provided, which comprises an induction coil for generating a magnetic field in response to an applied alternating electrical current, a housing, and a refractory composite nozzle. The nozzle is comprised of an inner sleeve composed of an erosion resistant refractory material (e.g., a zirconia ceramic) through which molten, magnetic metal flows, a refractory outer shell, and an intermediate compressible refractory material, e.g., unset, high alumina, thermosetting mortar. The compressible refractory material is sandwiched between the inner sleeve and outer shell, and absorbs differential expansion stresses that develop within the nozzle due to extreme thermal gradients. The sandwiched layer of compressible refractory material prevents destructive cracks from developing in the refractory outer shell.

  4. Disturbance Dynamics in Transitional and Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Grosch, Chester E.

    1999-01-01

    In order to expand the predictive capability of single-point turbulence closure models to account for the early-stage transition regime, a methodology for the formulation and calibration of model equations for the ensemble-averaged disturbance kinetic energy and energy dissipation rate is presented. First the decay of laminar disturbances and turbulence in mean shear-free flows is studied. In laminar flows, such disturbances are linear superpositions of modes governed by the Orr-Sommerfeld equation. In turbulent flows, disturbances are described through transport equations for representative mean quantities. The link between a description based on a deterministic evolution equation and a probability based mean transport equation is established. Because an uncertainty in initial conditions exists in the laminar as well as the turbulent regime, a probability distribution must be defined even in the laminar case. Using this probability distribution, it is shown that the exponential decay of the linear modes in the laminar regime can be related to a power law decay of both the (ensemble) mean disturbance kinetic energy and the dissipation rate. The evolution of these mean disturbance quantities is then described by transport equations similar to those for the corresponding turbulent decaying flow. Second, homogeneous shear flow, where disturbances can be described by rapid distortion theory (RDT), is studied. The relationship between RDT and linear stability theory is exploited in order to obtain a closed set of modeled equations. The linear disturbance equations are solved directly so that the numerical simulation yields a database from which the closure coefficients in the ensemble-averaged disturbance equations can be determined.

  5. Influence of cooling on lava-flow dynamics

    NASA Astrophysics Data System (ADS)

    Stasiuk, Mark V.; Jaupart, Claude; Stephen, R.; Sparks, J.

    1993-04-01

    Experiments have been carried out to determine the effects of cooling on the flow of fluids with strongly temperature dependent viscosity. Radial viscous-gravity currents of warm glucose syrup were erupted at constant rate into a flat tank filled with a cold aqueous solution. Cold, viscous fluid accumulates at the leading edge, altering the flow shape and thickness and slowing the spreading. The flows attain constant internal temperature distributions and bulk viscosities. The value of the bulk viscosity depends on the Péclet number, which reflects the advective and diffusive heat transport properties of the flow, the flow skin viscosity, which reflects cooling, and the eruption viscosity. Our results explain why most lava flows have bulk viscosities much higher than the lava eruption viscosity. The results can be applied to understanding dynamic lava features such as flow-front thickening, front avalanches, and welded basal breccias.

  6. The initial flow dynamics of light atoms through carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cannon, James; Kim, Daejoong; Hess, Ortwin

    2011-04-01

    Carbon nanotubes are becoming increasingly viable as membranes for application in a wide variety of nano-fluidic applications, such as nano-scale nozzles. For potential applications that utilize switching on and off of flow through nanotube nozzles, it is important to understand the initial flow dynamics. Furthermore, when the nanotube interacts strongly with the fluid, the flow may be very different from conventional simulations, which consider atoms (such as argon, for example) that interact only weakly with the nanotube. Therefore, to better understand such flows and explore the potential manipulation of flow that can be achieved, we consider the initial flow dynamics of a light fluid through carbon nanotube nozzles, using non-equilibrium molecular dynamics simulations. Our studies show that if the conditions are controlled carefully, unusual phenomena can be generated, such as pulsed flow and very nonlinear increases in flow rate with nanotube diameter. We detail the physical reasons for such phenomena and describe how the pulsation can be controlled using temperature.

  7. Discharge effects on gas flow dynamics in a plasma jet

    NASA Astrophysics Data System (ADS)

    Xian, Yu Bin; Hasnain Qaisrani, M.; Yue, Yuan Fu; Lu, Xin Pei

    2016-10-01

    Plasma is used as a flow visualization method to display the gas flow of a plasma jet. Using this method, it is found that a discharge in a plasma jet promotes the transition of the gas flow to turbulence. A discharge at intermediate frequency (˜6 kHz in this paper) has a stronger influence on the gas flow than that at lower or higher frequencies. Also, a higher discharge voltage enhances the transition of the gas flow to turbulence. Analysis reveals that pressure modulation induced both by the periodically directed movement of ionized helium and Ohmic heating on the gas flow plays an important role in inducing the transition of the helium flow regime. In addition, since the modulations induced by the high- and low-frequency discharges are determined by the frequency-selective effect, only intermediate-frequency (˜6 kHz) discharges effectively cause the helium flow transition from the laminar to the turbulent flow. Moreover, a discharge with a higher applied voltage makes a stronger impact on the helium flow because it generates stronger modulations. These conclusions are useful in designing cold plasma jets and plasma torches. Moreover, the relationship between the discharge parameters and the gas flow dynamics is a useful reference on active flow control with plasma actuators.

  8. The very local Hubble flow: Computer simulations of dynamical history

    NASA Astrophysics Data System (ADS)

    Chernin, A. D.; Karachentsev, I. D.; Valtonen, M. J.; Dolgachev, V. P.; Domozhilova, L. M.; Makarov, D. I.

    2004-02-01

    The phenomenon of the very local (≤3 Mpc) Hubble flow is studied on the basis of the data of recent precision observations. A set of computer simulations is performed to trace the trajectories of the flow galaxies back in time to the epoch of the formation of the Local Group. It is found that the ``initial conditions'' of the flow are drastically different from the linear velocity-distance relation. The simulations enable one also to recognize the major trends of the flow evolution and identify the dynamical role of universal antigravity produced by the cosmic vacuum.

  9. Flying in a sandstorm: granular flow dynamics around an intruder

    NASA Astrophysics Data System (ADS)

    Karim, Yasin; Corwin, Eric

    Using high-speed imaging and direct force measurements, we study the flow dynamics around an intruder in a quasi-two dimensional granular gas. We also vary the geometry of the intruder and explore how changing the curvature, for instance, affects the lift force. For a given angle of attack, an intruder with a straighter side facing the flow experiences higher lift than one with a more convex side. We use particle image velocimetry to measure flow fields and correlate them with our direct force measurements to elaborate on how granular gas flows respond to changes in intruder geometry.

  10. Zonal flow dynamics in the double tearing mode with antisymmetric shear flows

    SciTech Connect

    Mao, Aohua; Li, Jiquan; Liu, Jinyuan; Kishimoto, Yasuaki

    2014-05-15

    The generation dynamics and the structural characteristics of zonal flows are investigated in the double tearing mode (DTM) with antisymmetric shear flows. Two kinds of zonal flow oscillations are revealed based on reduced resistive magnetohydrodynamics simulations, which depend on the shear flow amplitudes corresponding to different DTM eigen mode states, elaborated by Mao et al. [Phys. Plasmas 20, 022114 (2013)]. For the weak shear flows below an amplitude threshold, v{sub c}, at which two DTM eigen states with antisymmetric or symmetric magnetic island structure are degenerated, the zonal flows grow oscillatorily in the Rutherford regime during the nonlinear evolution of the DTMs. It is identified that the oscillation mechanism results from the nonlinear interaction between the distorted islands and the zonal flows through the modification of shear flows. However, for the medium shear flows above v{sub c} but below the critical threshold of the Kelvin-Helmholtz instability, an oscillatory growing zonal flow occurs in the linear phase of the DTM evolution. It is demonstrated that the zonal flow oscillation originates from the three-wave mode coupling or a modulation instability pumped by two DTM eigen modes with the same frequency but opposite propagating direction. With the shear flows increasing, the amplitude of zonal flow oscillation increases first and then decreases, whilst the oscillation frequency as twice of the Doppler frequency shift increases. Furthermore, impacts of the oscillatory zonal flows on the nonlinear evolution of DTM islands and the global reconnection are also discussed briefly.

  11. Distinguishing features of flow in heterogeneous porous media: 4, Is a more general dynamic description required

    SciTech Connect

    Nelson, R.W.

    1990-11-01

    Groundwater theory that applies to only homogeneous systems is often too restricted to adequately solve actual groundwater pollution problems. For adequate solutions, the more general theory for heterogeneous porous systems is needed. However, the present dynamic and kinematic descriptions in heterogeneous materials have evolved largely from the restricted and less general homogeneous theory. These descriptions are inadequate because they fail to account for all the energy dissipation in the system. The basic distinguishing dynamic feature of heterogeneous flow theory from the less general homogeneous-based theory is the macroscopic rotational flow component. Specifically, existence of rotational flow components and their independence from the translational flow components are the necessary and sufficient conditions that completely differentiate between the complex lamellar heterogeneous flow theory and the simpler lamellar flow of homogeneous theory. This paper proposes a more general dynamic form of the flow equation to include the added rotational dissipation that is missing from the present Darcian description of flow in heterogeneous media. 31 refs.

  12. Internet traffic load balancing using dynamic hashing with flow volume

    NASA Astrophysics Data System (ADS)

    Jo, Ju-Yeon; Kim, Yoohwan; Chao, H. Jonathan; Merat, Francis L.

    2002-07-01

    Sending IP packets over multiple parallel links is in extensive use in today's Internet and its use is growing due to its scalability, reliability and cost-effectiveness. To maximize the efficiency of parallel links, load balancing is necessary among the links, but it may cause the problem of packet reordering. Since packet reordering impairs TCP performance, it is important to reduce the amount of reordering. Hashing offers a simple solution to keep the packet order by sending a flow over a unique link, but static hashing does not guarantee an even distribution of the traffic amount among the links, which could lead to packet loss under heavy load. Dynamic hashing offers some degree of load balancing but suffers from load fluctuations and excessive packet reordering. To overcome these shortcomings, we have enhanced the dynamic hashing algorithm to utilize the flow volume information in order to reassign only the appropriate flows. This new method, called dynamic hashing with flow volume (DHFV), eliminates unnecessary flow reassignments of small flows and achieves load balancing very quickly without load fluctuation by accurately predicting the amount of transferred load between the links. In this paper we provide the general framework of DHFV and address the challenges in implementing DHFV. We then introduce two algorithms of DHFV with different flow selection strategies and show their performances through simulation.

  13. Dynamic magnetic compaction of porous materials

    SciTech Connect

    1998-10-29

    IAP Research began development of the Dynamic Magnetic Compaction (DMC) process three years before the CRADA was established. IAP Research had experimentally demonstrated the feasibility of the process, and conducted a basic market survey. IAP identified and opened discussions with industrial partners and established the basic commercial cost structure. The purpose of this CRADA project was to predict and verify optimum pressure vs. time history for the compaction of porous copper and tungsten. LLNL modeled the rapid compaction of powdered material from an initial density of about 30% theoretical maximum to more than 90% theoretical maximum. The compaction simulations were benchmarked against existing data and new data was acquired by IAP Research. The modeling was used to perform parameter studies on the pressure loading time history, initial porosity and temperature. LLNL ran simulations using codes CALE or NITO and compared the simulations with published compaction data and equation of state (EOS) data. This project did not involve the development or modification of software code. CALE and NITO were existing software programs at LLNL. No modification of these programs occurred within the scope of the CRADA effort.

  14. Sample Preheating Capability for Dynamic Material Studies*

    NASA Astrophysics Data System (ADS)

    Wise, J.; Dalton, D.; Hickman, R.; Kaufman, M.; Leffler, S.; Jones, M.; Lynch, J.; Bowers, A.

    2013-06-01

    Coordinated analysis, design, software development, hardware fabrication, and testing activities have yielded a new control system and experimental load design for dynamic material studies on specimens heated to temperatures exceeding 650°C prior to high-rate compression on a pulsed-power (e.g., Z machine) or gun platform. A proportional integral derivative controller supplies power for up to 16 resistive cartridge heaters mounted in a load assembly containing one or more test samples. The electrical output from this LabVIEW-based controller to each heater is continuously adjusted using feedback from thermocouples embedded in the load and in each heater. Experiments confirm steady temperature regulation to within +/-2°C of the selected set point, as well as adequate surge protection from built-in electromagnetic pulse isolation circuitry. ANSYS thermomechanical simulations have guided the refinement of load design to minimize sample temperature gradients and thermal distortion. Improved thin-film coatings for the sample/window interface are being developed to ensure the viability of velocity interferometry measurements on preheated samples. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000;

  15. Computational Analysis of Material Flow During Friction Stir Welding of AA5059 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Ochterbeck, J. M.; Yen, C.-F.; Cheeseman, B. A.; Reynolds, A. P.; Sutton, M. A.

    2012-09-01

    Workpiece material flow and stirring/mixing during the friction stir welding (FSW) process are investigated computationally. Within the numerical model of the FSW process, the FSW tool is treated as a Lagrangian component while the workpiece material is treated as an Eulerian component. The employed coupled Eulerian/Lagrangian computational analysis of the welding process was of a two-way thermo-mechanical character (i.e., frictional-sliding/plastic-work dissipation is taken to act as a heat source in the thermal-energy balance equation) while temperature is allowed to affect mechanical aspects of the model through temperature-dependent material properties. The workpiece material (AA5059, solid-solution strengthened and strain-hardened aluminum alloy) is represented using a modified version of the classical Johnson-Cook model (within which the strain-hardening term is augmented to take into account for the effect of dynamic recrystallization) while the FSW tool material (AISI H13 tool steel) is modeled as an isotropic linear-elastic material. Within the analysis, the effects of some of the FSW key process parameters are investigated (e.g., weld pitch, tool tilt-angle, and the tool pin-size). The results pertaining to the material flow during FSW are compared with their experimental counterparts. It is found that, for the most part, experimentally observed material-flow characteristics are reproduced within the current FSW-process model.

  16. Landslide on Valles Marineris: morphology and flow dynamics

    NASA Astrophysics Data System (ADS)

    Sato, H.; Kurita, K.; Baratoux, D.; Pinet, P.

    2008-09-01

    Introduction: Valles Marineris is known as a place of numerous and well preserved landslides on Mars. In comparison with terrestrial landslides, martian landslides are distinctive in their size and morphology. As a consequence of the topography of the canyon, the averaged drop height of these landslides is about 6.5 km and the averaged volume is about 102~4 km3[1], which is 2~3 orders of magnitude larger than terrestrial ones, at the exception of marine landslides[2]. As for the morphology, clear levees with longitudinal lineations are typical features of martian landslides, whereas surfaces of the terrestrial mass movements are dominated by a rather chaotic topography with, in some cases, the occurrence of transverse ridges. The characteristics of the deposits should reflect the dynamics of the emplacement and the subsurface material properties. In particular, there is a longstanding debate about the relation between the long run-out length and the existence of subsurface volatiles (water ice, clathrates, ground water) [1,3,4,5,6,7]. The motivation of our research is the fact that material properties are expected to be deduced from the morphology of the deposits and the knowledge of the flow dynamics. Then, the characteristics of subsurface materials partially collapsed as mass movements could be documented as a function of time, considering the age of each landslide. In this study, we focus on the longitudinal grooves which are found on the surface of landslide deposits at Valles Marineris (Fig.1). This pattern is a typical feature in the martian landslides[3], and extremely rarely observed in the terrestrial mass movements. The origin is not well clarified, but it seems strong relation with the flow style or physical property of transported materials. With the objective to determine the condition of formation of the lineations, the geometric characteristics (volume, surface, thickness, run-out length) of lineated and non-lineated landslides are compared. Then

  17. Full dynamics of a red blood cell in shear flow.

    PubMed

    Dupire, Jules; Socol, Marius; Viallat, Annie

    2012-12-18

    At the cellular scale, blood fluidity and mass transport depend on the dynamics of red blood cells in blood flow, specifically on their deformation and orientation. These dynamics are governed by cellular rheological properties, such as internal viscosity and cytoskeleton elasticity. In diseases in which cell rheology is altered genetically or by parasitic invasion or by changes in the microenvironment, blood flow may be severely impaired. The nonlinear interplay between cell rheology and flow may generate complex dynamics, which remain largely unexplored experimentally. Under simple shear flow, only two motions, "tumbling" and "tank-treading," have been described experimentally and relate to cell mechanics. Here, we elucidate the full dynamics of red blood cells in shear flow by coupling two videomicroscopy approaches providing multidirectional pictures of cells, and we analyze the mechanical origin of the observed dynamics. We show that contrary to common belief, when red blood cells flip into the flow, their orientation is determined by the shear rate. We discuss the "rolling" motion, similar to a rolling wheel. This motion, which permits the cells to avoid energetically costly deformations, is a true signature of the cytoskeleton elasticity. We highlight a hysteresis cycle and two transient dynamics driven by the shear rate: an intermittent regime during the "tank-treading-to-flipping" transition and a Frisbee-like "spinning" regime during the "rolling-to-tank-treading" transition. Finally, we reveal that the biconcave red cell shape is highly stable under moderate shear stresses, and we interpret this result in terms of stress-free shape and elastic buckling. PMID:23213229

  18. Combustion dynamics in steady compressible flows

    NASA Astrophysics Data System (ADS)

    Berti, S.; Vergni, D.; Vulpiani, A.

    2008-09-01

    We study the evolution of a reactive field advected by a one-dimensional compressible velocity field and subject to an ignition-type nonlinearity. In the limit of small molecular diffusivity the problem can be described by a spatially discretized system, and this allows for an efficient numerical simulation. If the initial field profile is supported in a region of size ellflow settings.

  19. Effects of the Basal Boundary on Debris-flow Dynamics

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.; Logan, M.; Lahusen, R. G.; Berti, M.

    2006-12-01

    Data aggregated from 37 large-scale experiments reveal some counterintuitive effects of bed roughness on debris-flow dynamics. In each experiment 10 m3 of water-saturated sand and gravel, mixed with 1 to 12% silt and clay by dry weight, was abruptly released from a gate at the head of a 2-m wide, 1.2-m deep, 82.5-m long rectangular flume inclined 31° throughout most of its length and adjoined to a gently sloping, planar runout surface at its toe. The flume's basal boundary consisted of either a smooth, planar concrete surface or a concrete surface roughened with a grid of conical bumps. Tilt-table tests with dry debris-flow sediment showed that this roughness imparted a basal friction angle of 38°, comparable to the sediment's internal friction angle of 38-42°, whereas the smooth-bed friction angle was 28°. About 20 electronic sensors installed in the flume yielded data on flow speeds and depths as well as basal stresses and pore pressures. Behavior observed in all experiments included development of steep, unsaturated, coarse-grained debris-flow snouts and tapering, liquefied, fine-grained tails. Flows on the rough bed were typically about 50% thicker and 20% slower than flows on the smooth bed, although the rough bed caused snout steepening that enabled flow fronts to move faster than expected, given the increased bed friction. Moreover, flows on rough beds ran out further than flows on smooth beds owing to enhanced grain-size segregation and lateral levee formation. With the rough bed, measured basal stresses and pore pressures differed little from values expected from static gravitational loading of partially liquefied debris. With the smooth bed, however, measured basal stresses and pore pressures were nearly twice as large as expected values. This anomaly resulted from flow disturbance at the upstream lips of steel plates in which sensors were mounted. The lips produced barely visible ripples in otherwise smooth flow surfaces, yet sufficed to generate

  20. Flow in the well: computational fluid dynamics is essential in flow chamber construction

    PubMed Central

    Franke, Jörg; Frank, Wolfram; Schroten, Horst

    2007-01-01

    A perfusion system was developed to generate well defined flow conditions within a well of a standard multidish. Human vein endothelial cells were cultured under flow conditions and cell response was analyzed by microscopy. Endothelial cells became elongated and spindle shaped. As demonstrated by computational fluid dynamics (CFD), cells were cultured under well defined but time varying shear stress conditions. A damper system was introduced which reduced pulsatile flow when using volumetric pumps. The flow and the wall shear stress distribution were analyzed by CFD for the steady and unsteady flow field. Usage of the volumetric pump caused variations of the wall shear stresses despite the controlled fluid environment and introduction of a damper system. Therefore the use of CFD analysis and experimental validation is critical in developing flow chambers and studying cell response to shear stress. The system presented gives an effortless flow chamber setup within a 6-well standard multidish. PMID:19002993

  1. Identification of internal flow dynamics in two experimental catchments

    USGS Publications Warehouse

    Hansen, D.P.; Jakeman, A.J.; Kendall, C.; Weizu, G.

    1997-01-01

    Identification of the internal flow dynamics in catchments is difficult because of the lack of information in precipitation -stream discharge time series alone. Two experimental catchments, Hydrohill and Nandadish, near Nanjing in China, have been set up to monitor internal flows reaching the catchment stream at various depths, from the surface runoff to the bedrock. With analysis of the precipitation against these internal discharges, it is possible to quantify the time constants and volumes associated with various flowpaths in both catchments.

  2. The Steady Flow Resistance of Perforated Sheet Materials in High Speed Grazing Flows

    NASA Technical Reports Server (NTRS)

    Syed, Asif A.; Yu, Jia; Kwan, H. W.; Chien, E.; Jones, Michael G. (Technical Monitor)

    2002-01-01

    A study was conducted to determine the effects of high speed grazing air flow on the acoustic resistance of perforated sheet materials used in the construction of acoustically absorptive liners placed in commercial aircraft engine nacelles. Since DC flow resistance of porous sheet materials is known to be a major component of the acoustic resistance of sound suppression liners, the DC flow resistance of a set of perforated face-sheets and linear 'wiremesh' face-sheets was measured in a flow duct apparatus (up to Mach 0.8). Samples were fabricated to cover typical variations in perforated face-sheet parameters, such as hole diameter, porosity and sheet thickness, as well as those due to different manufacturing processes. The DC flow resistance data from perforated sheets were found to correlate strongly with the grazing flow Mach number and the face-sheet porosity. The data also show correlation against the boundary layer displacement thickness to hole-diameter ratio. The increase in resistance with grazing flow for punched aluminum sheets is in good agreement with published results up to Mach 0.4, but is significantly larger than expected above Mach 0.4. Finally, the tests demonstrated that there is a significant increase in the resistance of linear 'wiremesh' type face-sheet materials.

  3. Spontaneous layer formation dynamics in stratified Taylor-Couette flow

    NASA Astrophysics Data System (ADS)

    Leclercq, Colin; Partridge, Jamie L.; Augier, Pierre; Caulfield, C. P.; Linden, Paul F.; Dalziel, Stuart B.; MUST Collaboration

    2015-11-01

    The spontaneous formation of horizontal layers is a common feature of strongly and stably stratified flows and plays a major role in the dynamics of geophysical flows. However, little is known about the physical mechanism setting the depth of the layers spontaneously emerging in ``stratified Taylor-Couette flow'' in the annulus between a rotating inner cylinder and a fixed outer cylinder, initially filled with stably, axially and linearly stratified fluid. Using linear stability analysis, direct numerical simulations and experiments, we investigate the relative importance of primary linear instability and secondary nonlinear processes in the transient dynamics leading to the experimentally and numerically observed step-like density profile in this flow. We explore the effects of the particular form of the spin-up of the inner cylinder and initial conditions on the transient dynamics and nonlinear attractor of the flow. By better understanding the dynamics of layer formation, we are able to identify the approriate scaling laws relating layer depth to rotation rate, initial stratification, gap width and radius ratio. EPSRC programme grant EP/K034529/1.

  4. Complex Dynamics of Compound Vesicles in Linear Flow

    NASA Astrophysics Data System (ADS)

    Levant, Michael; Steinberg, Victor

    2014-04-01

    We report first experimental observations of dynamics of compound vesicles in linear flow realized in a microfluidic four-roll mill. We show that while a compound vesicle undergoes the same main tank-treading, trembling (TR), and tumbling regimes, its dynamics are far richer and more complex than that of unilamellar vesicles. A new swinging motion of the inner vesicle is found in TR in accord with simulations. The inner and outer vesicles can exist simultaneously in different dynamical regimes and can undergo either synchronized or unsynchronized motions depending on the filling factor. A compound vesicle can be used as a physical model to study white blood cell dynamics in flow similar to a unilamellar vesicle used successfully to model anucleate cells.

  5. Dynamic urban traffic flow behavior on scale-free networks

    NASA Astrophysics Data System (ADS)

    Wu, J. J.; Sun, H. J.; Gao, Z. Y.

    2008-01-01

    In this paper, we propose a new dynamic traffic model (DTM) for routing choice behaviors (RCB) in which both topology structures and dynamical properties are considered to address the RCB problem by using numerical experiments. The phase transition from free flow to congestion is found by simulations. Further, different topologies are studied in which large degree distribution exponents may alleviate or avoid the occurrence of traffic congestion efficiently. Compared with random networks, it is also found that scale-free networks can bear larger volume of traffic by our model. Finally, based on the concept of routing guide system (RGS), we give a dynamic traffic control model (DTCM) by extending DTM. And we find that choosing an appropriate η-value can enhance the system’s capacity maximally. We also address several open theoretical problems related to the urban traffic network dynamics and traffic flow.

  6. Complex dynamics of compound vesicles in linear flow.

    PubMed

    Levant, Michael; Steinberg, Victor

    2014-04-01

    We report first experimental observations of dynamics of compound vesicles in linear flow realized in a microfluidic four-roll mill. We show that while a compound vesicle undergoes the same main tank-treading, trembling (TR), and tumbling regimes, its dynamics are far richer and more complex than that of unilamellar vesicles. A new swinging motion of the inner vesicle is found in TR in accord with simulations. The inner and outer vesicles can exist simultaneously in different dynamical regimes and can undergo either synchronized or unsynchronized motions depending on the filling factor. A compound vesicle can be used as a physical model to study white blood cell dynamics in flow similar to a unilamellar vesicle used successfully to model anucleate cells.

  7. Field Flumes to Floodplains: Revealing the Influence of Flow Dynamics in Structuring Aquatic Ecosystems

    NASA Astrophysics Data System (ADS)

    Harvey, J. W.

    2011-12-01

    Decades of research has demonstrated the role of flood pulses in energy flow and nutrient cycling in large rivers. However, the study of hydroecology in small to medium size channels has often focused on static processes occurring during steady channel baseflow. Yet storm dynamics and their ecological effects are key issues for land managers responding to accelerating land use change in urban and agricultural areas, grazing lands, and in forested watersheds. As a means to understand the role of variable flows, researchers are increasingly moving towards study designs that explicitly address natural or experimentally altered flows in streams, or manipulation of flow in controlled "stair step" of experimental discharges in smaller field flumes. Studies often focus on both dissolved and fine particulate materials, their redistribution by stormflow, and physical effects of bedform migration and expansion and contraction of surface-water storage and hyporheic zones. In this framework investigators are seeking not only to identify the factors causing "hot spots" of biogeochemical transformation in streams, but also the "hot moments" related to flow variation and its interactions with geomorphic, sediment, and solute dynamics. Examples illustrating these advancements come from studies of flash floods from urban areas and their effects of solute and sediment dynamics in a 2nd order stream, nitrogen cycling and floodplain dynamics in a 5th order river, and longer term co-evolution of pulsed flow hydraulics, geomorphic form, and sediment and nutrient retention in two contrasting river and wetland corridors in the southwestern U.S. and southern Florida.

  8. Dynamic deformability of sickle red blood cells in microphysiological flow

    PubMed Central

    Alapan, Y.; Matsuyama, Y.; Little, J. A.; Gurkan, U. A.

    2016-01-01

    In sickle cell disease (SCD), hemoglobin molecules polymerize intracellularly and lead to a cascade of events resulting in decreased deformability and increased adhesion of red blood cells (RBCs). Decreased deformability and increased adhesion of sickle RBCs lead to blood vessel occlusion (vaso-occlusion) in SCD patients. Here, we present a microfluidic approach integrated with a cell dimensioning algorithm to analyze dynamic deformability of adhered RBC at the single-cell level in controlled microphysiological flow. We measured and compared dynamic deformability and adhesion of healthy hemoglobin A (HbA) and homozygous sickle hemoglobin (HbS) containing RBCs in blood samples obtained from 24 subjects. We introduce a new parameter to assess deformability of RBCs: the dynamic deformability index (DDI), which is defined as the time-dependent change of the cell’s aspect ratio in response to fluid flow shear stress. Our results show that DDI of HbS-containing RBCs were significantly lower compared to that of HbA-containing RBCs. Moreover, we observed subpopulations of HbS containing RBCs in terms of their dynamic deformability characteristics: deformable and non-deformable RBCs. Then, we tested blood samples from SCD patients and analyzed RBC adhesion and deformability at physiological and above physiological flow shear stresses. We observed significantly greater number of adhered non-deformable sickle RBCs than deformable sickle RBCs at flow shear stresses well above the physiological range, suggesting an interplay between dynamic deformability and increased adhesion of RBCs in vaso-occlusive events. PMID:27437432

  9. Structure and dynamics of low Reynolds number turbulent pipe flow.

    PubMed

    Duggleby, Andrew; Ball, Kenneth S; Schwaenen, Markus

    2009-02-13

    Using large-scale numerical calculations, we explore the proper orthogonal decomposition of low Reynolds number turbulent pipe flow, using both the translational invariant (Fourier) method and the method of snapshots. Each method has benefits and drawbacks, making the 'best' choice dependent on the purpose of the analysis. Owing to its construction, the Fourier method includes all the flow fields that are translational invariants of the simulated flow fields. Thus, the Fourier method converges to an estimate of the dimension of the chaotic attractor in less total simulation time than the method of snapshots. The converse is that for a given simulation, the method of snapshots yields a basis set that is more optimal because it does not include all of the translational invariants that were not a part of the simulation. Using the Fourier method yields smooth structures with definable subclasses based upon Fourier wavenumber pairs, and results in a new dynamical systems insight into turbulent pipe flow. These subclasses include a set of modes that propagate with a nearly constant phase speed, act together as a wave packet and transfer energy from streamwise rolls. It is these interactions that are responsible for bursting events and Reynolds stress generation. These structures and dynamics are similar to those found in turbulent channel flow. A comparison of structures and dynamics in turbulent pipe and channel flows is reported to emphasize the similarities and differences.

  10. Chaotic dynamics of red blood cells in oscillating shear flow

    NASA Astrophysics Data System (ADS)

    Bagchi, Prosenjit; Cordasco, Daniel

    2015-11-01

    A 3D computational study of deformable red blood cells in dilute suspension and subject to sinusoidally oscillating shear flow is considered. It is observed that the cell exhibits either a periodic motion or a chaotic motion. In the periodic motion, the cell reverses its orientation either about the flow direction or about the flow gradient, depending on the initial conditions. In certain parameter range, the initial conditions are forgotten and the cells become entrained in the same sequence of horizontal reversals. The chaotic dynamics is characterized by a nonperiodic sequence of horizontal and vertical reversals, and swings. The study provides the first conclusive evidence of the chaotic dynamics of fully deformable cells in oscillating flow using a deterministic numerical model without the introduction of any stochastic noise. An analysis of the chaotic dynamics shows that chaos is only possible in certain frequency bands when the cell membrane can rotate by a certain amount allowing the cells to swing near the maximum shear rate. We make a novel observation that the occurrence of the vertical or horizontal reversal depends only on whether a critical angle, that is independent of the flow frequency, is exceeded at the instant of flow reversal.

  11. Dynamics of blood flow in a microfluidic ladder network

    NASA Astrophysics Data System (ADS)

    Maddala, Jeevan; Zilberman-Rudenko, Jevgenia; McCarty, Owen

    The dynamics of a complex mixture of cells and proteins, such as blood, in perturbed shear flow remains ill-defined. Microfluidics is a promising technology for improving the understanding of blood flow under complex conditions of shear; as found in stent implants and in tortuous blood vessels. We model the fluid dynamics of blood flow in a microfluidic ladder network with dimensions mimicking venules. Interaction of blood cells was modeled using multiagent framework, where cells of different diameters were treated as spheres. This model served as the basis for predicting transition regions, collision pathways, re-circulation zones and residence times of cells dependent on their diameters and device architecture. Based on these insights from the model, we were able to predict the clot formation configurations at various locations in the device. These predictions were supported by the experiments using whole blood. To facilitate platelet aggregation, the devices were coated with fibrillar collagen and tissue factor. Blood was perfused through the microfluidic device for 9 min at a physiologically relevant venous shear rate of 600 s-1. Using fluorescent microscopy, we observed flow transitions near the channel intersections and at the areas of blood flow obstruction, which promoted larger thrombus formation. This study of integrating model predictions with experimental design, aids in defining the dynamics of blood flow in microvasculature and in development of novel biomedical devices.

  12. Gas bubble dynamics in soft materials.

    PubMed

    Solano-Altamirano, J M; Malcolm, John D; Goldman, Saul

    2015-01-01

    Epstein and Plesset's seminal work on the rate of gas bubble dissolution and growth in a simple liquid is generalized to render it applicable to a gas bubble embedded in a soft elastic solid. Both the underlying diffusion equation and the expression for the gas bubble pressure were modified to allow for the non-zero shear modulus of the medium. The extension of the diffusion equation results in a trivial shift (by an additive constant) in the value of the diffusion coefficient, and does not change the form of the rate equations. But the use of a generalized Young-Laplace equation for the bubble pressure resulted in significant differences on the dynamics of bubble dissolution and growth, relative to an inviscid liquid medium. Depending on whether the salient parameters (solute concentration, initial bubble radius, surface tension, and shear modulus) lead to bubble growth or dissolution, the effect of allowing for a non-zero shear modulus in the generalized Young-Laplace equation is to speed up the rate of bubble growth, or to reduce the rate of bubble dissolution, respectively. The relation to previous work on visco-elastic materials is discussed, as is the connection of this work to the problem of Decompression Sickness (specifically, "the bends"). Examples of tissues to which our expressions can be applied are provided. Also, a new phenomenon is predicted whereby, for some parameter values, a bubble can be metastable and persist for long times, or it may grow, when embedded in a homogeneous under-saturated soft elastic medium.

  13. Flow and Jamming of Granular Materials in a Two-dimensional Hopper

    NASA Astrophysics Data System (ADS)

    Tang, Junyao

    Flow in a hopper is both a fertile testing ground for understanding fundamental granular flow rheology and industrially highly relevant. Despite increasing research efforts in this area, a comprehensive physical theory is still lacking for both jamming and flow of granular materials in a hopper. In this work, I have designed a two dimensional (2D) hopper experiment using photoelastic particles (particles' shape: disk or ellipse), with the goal to build a bridge between macroscopic phenomenon of hopper flow and microscopic particle-scale dynamics. Through synchronized data of particle tracking and stress distributions in particles, I have shown differences between my data of the time-averaged velocity/stress profile of 2D hopper flow with previous theoretical predictions. I have also demonstrated the importance of a mechanical stable arch near the opening on controlling hopper flow rheology and suggested a heuristic phase diagram for the hopper flow/jamming transition. Another part of this thesis work is focused on studying the impact of particle shape of particles on hopper flow. By comparing particle-tracking and photoelastic data for ellipses and disks at the appropriate length scale, I have demonstrated an important role for the rotational freedom of elliptical particles in controlling flow rheology through particle tracking and stress analysis. This work has been supported by International Fine Particle Research Institute (IFPRI) .

  14. ASD and VSD Flow Dynamics and Anesthetic Management.

    PubMed

    Yen, Philip

    2015-01-01

    Atrial septal defects and ventricular septal defects are often encountered in patients presenting for treatment under anesthesia. The flow mechanisms for both defects are predominantly left to right shunting prior to long-term maladaptive changes that may occur. Close examination of the shunt dynamics demonstrates a minor right to left shunt that occurs as well. The article discusses these dynamics and the impact on an anesthetic plan. PMID:26398131

  15. ASD and VSD Flow Dynamics and Anesthetic Management

    PubMed Central

    Yen, Philip

    2015-01-01

    Atrial septal defects and ventricular septal defects are often encountered in patients presenting for treatment under anesthesia. The flow mechanisms for both defects are predominantly left to right shunting prior to long-term maladaptive changes that may occur. Close examination of the shunt dynamics demonstrates a minor right to left shunt that occurs as well. The article discusses these dynamics and the impact on an anesthetic plan. PMID:26398131

  16. Dynamics of generalized Gaussian polymeric structures in random layered flows

    NASA Astrophysics Data System (ADS)

    Katyal, Divya; Kant, Rama

    2015-04-01

    We develop a formalism for the dynamics of a flexible branched polymer with arbitrary topology in the presence of random flows. This is achieved by employing the generalized Gaussian structure (GGS) approach and the Matheron-de Marsily model for the random layered flow. The expression for the average square displacement (ASD) of the center of mass of the GGS is obtained in such flow. The averaging is done over both the thermal noise and the external random flow. Although the formalism is valid for branched polymers with various complex topologies, we mainly focus here on the dynamics of the flexible star and dendrimer. We analyze the effect of the topology (the number and length of branches for stars and the number of generations for dendrimers) on the dynamics under the influence of external flow, which is characterized by their root-mean-square velocity, persistence flow length, and flow exponent α . Our analysis shows two anomalous power-law regimes, viz., subdiffusive (intermediate-time polymer stretching and flow-induced diffusion) and superdiffusive (long-time flow-induced diffusion). The influence of the topology of the GGS is unraveled in the intermediate-time regime, while the long-time regime is only weakly dependent on the topology of the polymer. With the decrease in the value of α , the magnitude of the ASD decreases, while the temporal exponent of the ASD increases in both the time regimes. Also there is an increase in both the magnitude of the ASD and the crossover time (from the subdiffusive to the superdiffusive regime) with an increase in the total mass of the polymeric structure.

  17. Code System to Calculate Tornado-Induced Flow Material Transport.

    SciTech Connect

    ANDRAE, R. W.

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation system components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.

  18. Code System to Calculate Tornado-Induced Flow Material Transport.

    1999-11-18

    Version: 00 TORAC models tornado-induced flows, pressures, and material transport within structures. Its use is directed toward nuclear fuel cycle facilities and their primary release pathway, the ventilation system. However, it is applicable to other structures and can model other airflow pathways within a facility. In a nuclear facility, this network system could include process cells, canyons, laboratory offices, corridors, and offgas systems. TORAC predicts flow through a network system that also includes ventilation systemmore » components such as filters, dampers, ducts, and blowers. These ventilation system components are connected to the rooms and corridors of the facility to form a complete network for moving air through the structure and, perhaps, maintaining pressure levels in certain areas. The material transport capability in TORAC is very basic and includes convection, depletion, entrainment, and filtration of material.« less

  19. Dynamics of a fluid flow on Mars: lava or mud?

    NASA Astrophysics Data System (ADS)

    Wilson, L.; Mouginis-Mark, P. J.

    2013-12-01

    We have identified an enigmatic flow in S.W. Cerberus Fossae, Mars. The flow originates from an almost circular pit within a remnant of a yardang at 0.58 degrees N, 155.28 degrees E, within the lower unit of the Medusae Fossae Formation. The flow is ~42 km long and 0.5 to 2.0 km wide. The surface textures of the resulting deposit show that the material flowed in such a way that the various deformation patterns on its surface were generally preserved as it moved, only being distorted or disrupted when the flow encountered major topographic obstacles or was forced to make rapid changes of direction. This observation of a stiff, generally undeformed surface layer overlying a relatively mobile base suggests that, while it was moving, the fluid material flowed in a laminar, and possibly non-Newtonian, fashion. The least-complicated non-Newtonian fluids are Bingham plastics. On this basis we use measurements of flow width, length, thickness and substrate slope obtained from images, a DEM constructed from stereo pairs of Context Camera (CTX) images, and Mars Orbiter Laser Altimeter (MOLA) altimetry points to deduce the rheological properties of the fluid, treating it as both a Newtonian and a Bingham material for comparison. The Newtonian option requires the fluid to have a viscosity close to 100 Pa s and to have flowed everywhere in a turbulent fashion. The Bingham option requires laminar flow, a plastic viscosity close to 1 Pa s, and a yield strength of ~185 Pa. We compare these parameters values with those of various environmental fluids on Earth in an attempt to narrow the range of possible materials forming the martian flow. A mafic to ultramafic lava would fit the Newtonian option but the required turbulence does not seem consistent with the surface textures. The Bingham option satisfies the morphological constraint of laminar motion if the material is a mud flow consisting of ~40% water and ~60% silt-sized silicate solids. Elsewhere on Mars, deposits with similar

  20. Dynamics of intrinsic axial flows in unsheared, uniform magnetic fields

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Diamond, P. H.; Xu, X. Q.; Tynan, G. R.

    2016-05-01

    A simple model for the generation and amplification of intrinsic axial flow in a linear device, controlled shear decorrelation experiment, is proposed. This model proposes and builds upon a novel dynamical symmetry breaking mechanism, using a simple theory of drift wave turbulence in the presence of axial flow shear. This mechanism does not require complex magnetic field structure, such as shear, and thus is also applicable to intrinsic rotation generation in tokamaks at weak or zero magnetic shear, as well as to linear devices. This mechanism is essentially the self-amplification of the mean axial flow profile, i.e., a modulational instability. Hence, the flow development is a form of negative viscosity phenomenon. Unlike conventional mechanisms where the residual stress produces an intrinsic torque, in this dynamical symmetry breaking scheme, the residual stress induces a negative increment to the ambient turbulent viscosity. The axial flow shear is then amplified by this negative viscosity increment. The resulting mean axial flow profile is calculated and discussed by analogy with the problem of turbulent pipe flow. For tokamaks, the negative viscosity is not needed to generate intrinsic rotation. However, toroidal rotation profile gradient is enhanced by the negative increment in turbulent viscosity.

  1. Sediment dynamics in an overland flow-prone forest catchment

    NASA Astrophysics Data System (ADS)

    Zimmermann, Alexander; Elsenbeer, Helmut

    2010-05-01

    Vegetation controls erosion in many respects, and it is assumed that forest cover is an effective control. Currently, most literature on erosion processes in forest ecosystems support this impression and estimates of sediment export from forested catchments serve as benchmarks to evaluate erosion processes under different land uses. Where soil properties favor near-surface flow paths, however, vegetation may not mitigate surface erosion. In the forested portion of the Panama Canal watershed overland flow is widespread and occurs frequently, and indications of active sediment transport are hard to overlook. In this area we selected a 9.7 ha catchment for a high-resolution study of suspended sediment dynamics. We equipped five nested catchments to elucidate sources, drivers, magnitude and timing of suspended sediment export by continuous monitoring of overland flow and stream flow and by simultaneous, event-based sediment sampling. The support program included monitoring throughfall, splash erosion, overland-flow connectivity and a survey of infiltrability, permeability, and aggregate stability. This dataset allowed a comprehensive view on erosion processes. We found that overland flow controls the suspended-sediment dynamics in channels. Particularly, rainfalls of high intensity at the end of the rainy season have a superior impact on the overall sediment export. During these events, overland flow occurs catchment-wide up to the divide and so does erosion. With our contribution we seek to provide evidence that forest cover and large sediment yields are no contradiction in terms even in the absence of mass movements.

  2. Flow dynamics in a lethal anterior communicating artery aneurysm.

    PubMed

    Kerber, C W; Imbesi, S G; Knox, K

    1999-01-01

    We describe and analyze the flow dynamics in replicas of a human anterior communicating artery aneurysm. The replicas were placed in a circuit of pulsating non-Newtonian fluid, and flows were adjusted to replicate human physiologic parameters. Individual slipstreams were opacified with isobaric dyes, and images were recorded on film and by CT/MR angiography. When flow in the afferent (internal carotid) and efferent (anterior and middle cerebral) arteries was bilaterally equal, slipstreams rarely entered the aneurysm. When flow in either the afferent or efferent vessels was not symmetrical, however, slipstreams entered the aneurysm neck, impinged upon the aneurysm dome, and swirled within the aneurysm. Unequal flow in carotid or cerebral systems may be necessary to direct pathologic, fluid slipstreams into an aneurysm. PMID:10588134

  3. Molecular Dynamics Simulation of a Microvillus in a Cross Flow

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.; Liu, Y.; So, R. M. C.; Yang, J. M.

    One of the functions of microvilli in the microvessel endothelial glycocalyx is molecular filtering. The microvillus behaves as a mechanosensory system which may sense the fluid shear and drag forces. The permeability of small particles in microvessel is crucial for drug design and drug delivery. Therefore a better understanding of flow field around microvillus is important to simulate accurately the particle penetration in microvessel. Since the dimension of the microvilli is about ~10 nm, the conventional Navier-Stokes equation may not be good enough to simulate the fluid flow in such microscale and nanoscale structures. Molecular dynamics (MD) simulation is a powerful method to simulate the fluid flow at the molecular level. As a first attempt, the microvillus is reduced as a two-dimensional cylinder which is in a cross flow. The detailed drag and lift together with flow field are obtained and compared with available data.

  4. Dynamics of a trapped Brownian particle in shear flows

    NASA Astrophysics Data System (ADS)

    Holzer, Lukas; Bammert, Jochen; Rzehak, Roland; Zimmermann, Walter

    2010-04-01

    The Brownian motion of a particle in a harmonic potential, which is simultaneously exposed either to a linear shear flow or to a plane Poiseuille flow is investigated. In the shear plane of both flows the probability distribution of the particle becomes anisotropic and the dynamics is changed in a characteristic manner compared to a trapped particle in a quiescent fluid. The particle distribution takes either an elliptical or a parachute shape or a superposition of both depending on the mean particle position in the shear plane. Simultaneously, shear-induced cross-correlations between particle fluctuations along orthogonal directions in the shear plane are found. They are asymmetric in time. In Poiseuille flow thermal particle fluctuations perpendicular to the flow direction in the shear plane induce a shift of the particle’s mean position away from the potential minimum. Two complementary methods are suggested to measure shear-induced cross-correlations between particle fluctuations along orthogonal directions.

  5. Observations on dune dynamics in covered flow

    NASA Astrophysics Data System (ADS)

    radice, alessio; Ballio, Francesco

    2016-04-01

    An experiment is presented for bed-form migration in a pressurized duct. The hydrodynamic discharge corresponded to 1.4 times the threshold value for incipient motion of light-weight particles with a size of 3 mm. Under these conditions, dunes (i.e., bed-forms with steep front and mild tail) with a height of around 2 cm developed and migrated along the duct. Dune length, period and celerity were also considered. Long-duration movies were taken from above the duct, to depict the different features of the sediment transport over the crests and in the troughs of the dunes. Eulerian measurements of concentration and velocity of bed-load particles were conducted by image analysis, the quantitative analysis showing the temporal and spatial coherence of the sediment motion. Despite the relatively simple (one-dimensional) nature of the process, transverse motion and impulsive gusts of grains were present because the dunes generated sediment motion patterns similar to those measured in local sediment transport processes. The present observations, though limited to a single experimental configuration, yield insight into the details of bed-form dynamics.

  6. OPTIMIZATION ON MATERIAL FLOW OF NON-METALIC MINERAL MATERIALS TOWARDS SUSTAINABLE SOCIETY

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kouji; Nakayama, Hirofumi; Shimaoka, Takayuki; Hasegawa, Ryoji; Osako, Masahiro

    Since non-metarilc mineral waste such as concrete mass, asphalt concrete mass, sand, slag and coal ash occupies 36% of total amount of waste generation and 26% of total amount of final disposal, it has significant influence on material flow of our country. Although the amount of non-metaril mineral wastes produced is expected to increase in the near future, demand of their application for recycled construction materials will decrease due to the reduction of public construction works and less use of materials in construction. The aim is to reduce environmental load caused by recycling and disposal of non metallic mineral materials, this study was conducted to evaluate the measurement for the reduction of environmental load like landfill amount and CO2 emission amount by controlling material flow of non metallic mineral materials in the year 2030 by linear programming.

  7. Reutilisation-extended material flows and circular economy in China.

    PubMed

    Li, Nan; Zhang, Tianzhu; Liang, Sai

    2013-06-01

    Circular economy (CE), with its basic principle of Reduce, Reuse, and Recycle, has been determined as the key strategy for the national development plan by the Chinese government. Given the economy-wide material flow analysis (EW-MFA) that leaves the inner flow of resource reutilisation unidentified, the reutilisation-extended EW-MFA is first introduced to evaluate and analyse the material input, solid waste generation, and reutilisation simultaneously. The total amount of comprehensive reutilisation (CR) is divided into three sub-flows, namely, reutilisation, recycle, and reuse. Thus, this model is used to investigate the resource CR in China from 2000 to 2010. China's total amount of CR and its sub-flows, as well as the CR rate, remain to have a general upward trend. By the year 2010, about 60% of the overall solid waste generation had already been reutilised, and more than 20% of the total resource requirement was reutilised resource. Moreover, the growth patterns of the CR sub flows show different characteristics. Interpretations of resource reutilisation-related laws and regulations of CE and the corresponding policy suggestions are proposed based on the results.

  8. Three-dimensional jamming and flows of soft glassy materials.

    PubMed

    Ovarlez, G; Barral, Q; Coussot, P

    2010-02-01

    Various disordered dense systems, such as foams, gels, emulsions and colloidal suspensions, undergo a jamming transition from a liquid state (they flow) to a solid state below a yield stress. Their structure, which has been thoroughly studied with powerful means of three-dimensional characterization, shows some analogy with that of glasses, which led to them being named soft glassy materials. However, despite its importance for geophysical and industrial applications, their rheological behaviour, and its microscopic origin, is still poorly known, in particular because of its nonlinear nature. Here we show from two original experiments that a simple three-dimensional continuum description of the behaviour of soft glassy materials can be built. We first show that when a flow is imposed in some direction there is no yield resistance to a secondary flow: these systems are always unjammed simultaneously in all directions of space. The three-dimensional jamming criterion seems to be the plasticity criterion encountered in most solids. We also find that they behave as simple liquids in the direction orthogonal to that of the main flow; their viscosity is inversely proportional to the main flow shear rate, as a signature of shear-induced structural relaxation, in close similarity to the structural relaxations driven by temperature and density in other glassy systems. PMID:20062046

  9. Numerical simulation of subaqueous chute flows of granular materials.

    PubMed

    Varsakelis, C; Papalexandris, M V

    2015-05-01

    In this paper we report on numerical studies of unsteady, gravity-driven flow of a subaqueous erodible granular bed on an inclined plane. According to our simulations, the evolution of the flow can be partitioned in three phases. In the first phase, due to the onset of an interfacial instability, the material interface deforms into a series of long waves. In the second phase, these waves are transformed to skewed vortex ripples that grow in time and eventually coalesce. The computed wavelengths of these ripples are in good agreement with previously reported experimental measurements. In the third phase of the flow evolution, the high fluid velocities wash out the vortex ripples and a layer of rapidly moving particles is formed at the material interface. The predicted granular velocities comprise two segments: a concave one at the vicinity of the material interface, where the maximum is attained, followed by a slightly convex one, where they decrease monotonically to zero. The same trend has been reported in experimental results for the corresponding steady flows. Finally, we investigate via a parametric study the effect of the configuration stresses, which represent contact forces between grains. As it turns out, such stresses have a stabilizing effect, in the sense that increasing their magnitude inhibits the formation of vortex ripples. PMID:25985944

  10. Embrittlement and Flow Localization in Reactor Structural Materials

    SciTech Connect

    Xianglin Wu; Xiao Pan; James Stubbins

    2006-10-06

    Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of necking is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.

  11. Multiphase imaging of gas flow in a nanoporous material usingremote detection NMR

    SciTech Connect

    Harel, Elad; Granwehr, Josef; Seeley, Juliette A.; Pines, Alex

    2005-10-03

    Pore structure and connectivity determine how microstructured materials perform in applications such as catalysis, fluid storage and transport, filtering, or as reactors. We report a model study on silica aerogel using a recently introduced time-of-flight (TOF) magnetic resonance imaging technique to characterize the flow field and elucidate the effects of heterogeneities in the pore structure on gas flow and dispersion with Xe-129 as the gas-phase sensor. The observed chemical shift allows the separate visualization of unrestricted xenon and xenon confined in the pores of the aerogel. The asymmetrical nature of the dispersion pattern alludes to the existence of a stationary and a flow regime in the aerogel. An exchange time constant is determined to characterize the gas transfer between them. As a general methodology, this technique provides new insights into the dynamics of flow in porous media where multiple phases or chemical species may be present.

  12. Computation of Free Molecular Flow in Nuclear Materials

    SciTech Connect

    Casella, Andrew M.; Loyalka, Sudarsham K.; Hanson, Brady D.

    2009-11-11

    Generally the transport of gases and vapors in nuclear materials is adequately described by the diffusion equation with an effective diffusion coefficient. There are instances however, such as transport through porous or cracked media (nuclear fuels, cladding and coating materials, fuel-cladding gap, graphite, rocks, soil) where the diffusion description has limitations. In general, molecular transport is governed by intermolecular forces and collisions (interactions between multiple gas/vapor molecules) and by molecule-surface interactions. However, if nano-scale pathways exist within these materials, as has been suggested, then molecular transport can be characterized as being in the free-molecular flow regime where intermolecular interactions can be ignored and flow is determined entirely by molecule-surface collisions. Our purpose in this investigation is to focus on free molecular transport in fine capillaries of a range of shapes and to explore the effect of geometry on this transport. We have employed Monte Carlo techniques in our calculations, and for simple geometries we have benchmarked our results against some analytical and previously available results. We have used Mathematica® which has exceptional built-in symbolic and graphical capabilities, permitting easy handling of the complicated geometries and good visualization of the results. Our computations provide insights into the role of geometry in molecular transport in nuclear materials with narrow pathways for flows, and also will be useful in guiding computations that include intermolecular collisions and more realistic gas-surface collision operators.

  13. Particle hopping vs. fluid-dynamical models for traffic flow

    SciTech Connect

    Nagel, K.

    1995-12-31

    Although particle hopping models have been introduced into traffic science in the 19509, their systematic use has only started recently. Two reasons for this are, that they are advantageous on modem computers, and that recent theoretical developments allow analytical understanding of their properties and therefore more confidence for their use. In principle, particle hopping models fit between microscopic models for driving and fluiddynamical models for traffic flow. In this sense, they also help closing the conceptual gap between these two. This paper shows connections between particle hopping models and traffic flow theory. It shows that the hydrodynamical limits of certain particle hopping models correspond to the Lighthill-Whitham theory for traffic flow, and that only slightly more complex particle hopping models produce already the correct traffic jam dynamics, consistent with recent fluid-dynamical models for traffic flow. By doing so, this paper establishes that, on the macroscopic level, particle hopping models are at least as good as fluid-dynamical models. Yet, particle hopping models have at least two advantages over fluid-dynamical models: they straightforwardly allow microscopic simulations, and they include stochasticity.

  14. Lobe dynamics and homoclinic tangles in atmospheric flows

    NASA Astrophysics Data System (ADS)

    Naik, S.; Ross, S. D.

    2012-12-01

    In recent years, dynamical system theorists have been developing methods to study structures that govern the dynamics of atmospheric and oceanic flows. The primary concern for these flows are the finite time nature and the arbitrary time dependence in contrast to classical dynamical systems. Recent work on 2D quasi-horizontal approximations of atmospheric motion have demonstrated that there are aperiodic, finite-time analogs of homoclinic tangles and lobe dynamics, e.g., around hurricane boundaries. The tools used have been coherent structure boundaries based on ridges of the finite-time Lyapunov exponent (FTLE) field calculated from integrated particle trajectories. There are some ambiguities in the FTLE-based approach which suggests other methods should be attempted. In this work, we apply methods based on Lagrangian descriptors (due to Mancho and co-workers) to locate distinguished hyperbolic trajectories (DHTs) and generate corresponding finite-time stable and unstable manifolds to study lobe dynamics, as applied to atmospheric flow as well as fluid experiments. We compare the Lagrangian descriptor approach with the FTLE-based approach.

  15. Dynamical simulations of strongly correlated electron materials

    NASA Astrophysics Data System (ADS)

    Kress, Joel; Barros, Kipton; Batista, Cristian; Chern, Gia-Wei; Kotliar, Gabriel

    We present a formulation of quantum molecular dynamics that includes electron correlation effects via the Gutzwiller method. Our new scheme enables the study of the dynamical behavior of atoms and molecules with strong electron interactions. The Gutzwiller approach goes beyond the conventional mean-field treatment of the intra-atomic electron repulsion and captures crucial correlation effects such as band narrowing and electron localization. We use Gutzwiller quantum molecular dynamics to investigate the Mott transition in the liquid phase of a single-band metal and uncover intriguing structural and transport properties of the atoms.

  16. Flow dynamics of bank-attached instream structures

    NASA Astrophysics Data System (ADS)

    Kang, Seokkoo

    2016-04-01

    Numerical simulations and experiments for flow past a bank-attached vane, a widely-used instream structure for stream restoration, are carried out to study the turbulent flow dynamics occurring around the structure. In the numerical simulation, the details of the natural rocks that constitute the vane are directly resolved by employing the recently developed computational fluid dynamics model of Kang et al. (2011). The time-averaged flowfield is shown to be in good agreement with the results of laboratory measurements. Analysis of the simulated flow shows that there exist two counter-rotating secondary flows cells downstream of the vane, one of which is located near the center of the channel and the other is located near the corner between the channel bed and the sidewall to which the vane is attached. The formation of the two counter-rotating secondary flow cells is shown to be linked to the plunging of the mean three-dimensional streamlines originating upstream of the vane onto a point downstream of the vane positioned on the lower part of the sidewall. The laboratory experiment also reveals the existence of such flow structures.

  17. Research on regulating technique of material flow for 2-person and 30-day integrated CELSS test

    NASA Astrophysics Data System (ADS)

    Guo, Shuangsheng; Dong, Wenping; Ai, Weidang; Feng, Hongqi; Tang, Yongkang; Huang, Zhide; Shen, Yunze; Ren, Jin; Qin, Lifeng; Zeng, Gu; Zhang, Lihong; Zhu, Jingtao; Fei, Jinxue; Xu, Guoxin

    2014-07-01

    A man-plant integration test was processed using the CELSS integration experiment platform in which 4 kinds of plants were grown (Lactuca sativa L var. Dasusheng, L. sativa L var. Youmaicai, Gynura bicolor and Cichorium endivia L) to exchange material with 2 persons in order to research the dynamic changing laws and balanced regulation of air and water between man and plant in an inclosed system. In the test the material flow was measured so that the dynamically changing laws and balanced regulation of air and water between man and plant in the closed system were mostly mastered. The material closure degree of air, water and food reached 100%, 90% and 13.9% respectively with the whole system closure degree up to 95.1%. Meanwhile, it was proved that a 13.5 m2 planting area could meet the demand of one person for O2 in the system, and the energy efficiency ratio of which reached 59.56 g/(kW m2 day). The material flow dynamic balance-regulating technology was initially mastered between man and plant through the test. The interaction was realized among man, plant and environment in the closed system, which is of great significance to the advancement of long-term manned environment control and life support technology for China.

  18. Field-Flow Fractionation of Carbon Nanotubes and Related Materials

    SciTech Connect

    John P. Selegue

    2011-11-17

    During the grant period, we carried out FFF studies of carbonaceous soot, single-walled and multi-walled carbon nanotubes, carbon nano-onions and polyoxometallates. FFF alone does not provide enough information to fully characterize samples, so our suite of characterization techniques grew to include light scattering (especially Photon Correlation Spectroscopy), scanning and transmission electron microscopy, thermogravimetric analysis and spectroscopic methods. We developed convenient techniques to deposit and examine minute FFF fractions by electron microscopy. In collaboration with Arthur Cammers (University of Kentucky), we used Flow Field-Flow Fractionation (Fl-FFF) to monitor the solution-phase growth of keplerates, a class of polyoxometallate (POM) nanoparticles. We monitored the evolution of Mo-POM nanostructures over the course of weeks by by using flow field-flow fractionation and corroborated the nanoparticle structures by using transmission electron microscopy (TEM). Total molybdenum in the solution and precipitate phases was monitored by using inductively coupled plasma analyses, and total Mo-POM concentration by following the UV-visible spectra of the solution phase. We observe crystallization-driven formation of (Mo132) keplerate and solution phase-driven evolution of structurally related nanoscopic species (3-60 nm). FFF analyses of other classes of materials were less successful. Attempts to analyze platelets of layered materials, including exfoliated graphite (graphene) and TaS2 and MoS2, were disappointing. We were not able to optimize flow conditions for the layered materials. The metal sulfides react with the aqueous carrier liquid and settle out of suspension quickly because of their high density.

  19. Upper-Mantle Flow Driven Dynamic Topography in Eastern Anatolia

    NASA Astrophysics Data System (ADS)

    Sengul Uluocak, Ebru; Pysklywec, Russell; Eken, Tuna; Hakan Gogus, Oguz

    2016-04-01

    Eastern Anatolia is characterized by 2 km plateau uplift -in the last 10 Myrs-, high surface heat flow distribution, shallow Curie-point depth, anomalous gravity field. Seismological observations indicate relatively high Pn and Sn attenuation and significant low seismic velocity anomalies in the region. Moreover, the surface geology is associated predominantly with volcanic rocks in which melt production through mantle upwelling (following lithospheric delamination) has been suggested. It has been long known that the topographic loading in the region cannot be supported by crustal thickness (~45 km) based on the principle of Airy isostasy. Recent global geodynamic studies carried out for evaluating the post-collisional processes imply that there is an explicit dynamic uplift in Eastern Anatolia and its adjacent regions. In this study we investigate the instantaneous dynamic topography driven by 3-D upper-mantle flow in Eastern Anatolia. For this purpose we conducted numerous thermo-mechanical models using a 2-D Arbitrary Lagrangian Eulerian (ALE) finite element method. The available P-wave tomography data extracted along 10 profiles were used to obtain depth-dependent density anomalies in the region. We present resulting dynamic topography maps and estimated 3D mantle flow velocity vectors along these 2-D cross sections for each profile. The residual topography based on crustal thickness and observed topography was calculated and compared with other independent datasets concerning geological deformation and dynamic topography predictions. The results indicate an upper mantle driven dynamic uplift correlated with the under-compensated characteristic in Eastern Anatolia. We discuss our results combined with 3D mantle flow by considering seismic anisotropy studies in the region. Initial results indicate that high dynamic uplift and the localized low Pn velocities in concurrence with Pn anisotropy structures show nearly spatial coherence in Eastern Anatolia.

  20. Experimental characterization of energetic material dynamics for multiphase blast simulation.

    SciTech Connect

    Beresh, Steven Jay; Wagner, Justin L.; Kearney, Sean Patrick; Wright, Elton K.; Baer, Melvin R.; Pruett, Brian Owen Matthew

    2011-09-01

    Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube

  1. Material flow analysis of used personal computers in Japan.

    PubMed

    Yoshida, Aya; Tasaki, Tomohiro; Terazono, Atsushi

    2009-05-01

    Most personal computers (PCs) are discarded by consumers after the data files have been moved to a new PC. Therefore, a used PC collection scheme should be created that does not depend on the distribution route of new PCs. In Japan, manufacturers' voluntary take-back recycling schemes were established in 2001 (for business PCs) and 2003 (for household PCs). At the same time, the export of used PCs from Japan increased, affecting the domestic PC reuse market. These regulatory and economic conditions would have changed the flow of used PCs. In this paper, we developed a method of minimizing the errors in estimating the material flow of used PCs. The method's features include utilization of both input and output flow data and elimination of subjective estimation as much as possible. Flow rate data from existing surveys were used for estimating the flow of used PCs in Japan for fiscal years (FY) 2000, 2001, and 2004. The results show that 3.92 million and 4.88 million used PCs were discarded in FY 2000 and 2001, respectively. Approximately two-thirds of the discarded PCs were disposed of or recycled within the country, one-fourth was reused within the country, and 8% were exported. In FY 2004, 7.47 million used PCs were discarded. The ratio of domestic disposal and recycling decreased to 37% in FY 2004, whereas the domestic reuse and export ratios increased to 37% and 26%, respectively. Flows from businesses to retailers in FY 2004 increased dramatically, which led to increased domestic reuse. An increase in the flow of used PCs from lease and rental companies to secondhand shops has led to increased exports. Results of interviews with members of PC reuse companies were and trade statistics were used to verify the results of our estimation of domestic reuse and export of used PCs.

  2. Dynamics of prolate spheroidal elastic particles in confined shear flow

    NASA Astrophysics Data System (ADS)

    Villone, M. M.; D'Avino, G.; Hulsen, M. A.; Maffettone, P. L.

    2015-12-01

    We investigate through numerical simulations the dynamics of a neo-Hookean elastic prolate spheroid suspended in a Newtonian fluid under shear flow. Both initial orientations of the particle within and outside the shear plane and both unbounded and confined flow geometries are considered. In unbounded flow, when the particle starts on the shear plane, two stable regimes of motion are found, i.e., trembling, where the particle shape periodically elongates and compresses in the shear plane and the angle between its major semiaxis and the flow direction oscillates around a positive mean value, and tumbling, where the particle shape periodically changes and its major axis performs complete revolutions around the vorticity axis. When the particle is initially oriented out of the shear plane, more complex dynamics arise. Geometric confinement of the particle between the moving walls also influences its deformation and regime of motion. In addition, when the particle is initially located in an asymmetric position with respect to the moving walls, particle lateral migration is detected. The effects on the particle dynamics of the geometric and physical parameters that rule the system are investigated.

  3. Dynamics of a deformable active particle under shear flow.

    PubMed

    Tarama, Mitsusuke; Menzel, Andreas M; ten Hagen, Borge; Wittkowski, Raphael; Ohta, Takao; Löwen, Hartmut

    2013-09-14

    The motion of a deformable active particle in linear shear flow is explored theoretically. Based on symmetry considerations, we propose coupled nonlinear dynamical equations for the particle position, velocity, deformation, and rotation. In our model, both, passive rotations induced by the shear flow as well as active spinning motions, are taken into account. Our equations reduce to known models in the two limits of vanishing shear flow and vanishing particle deformability. For varied shear rate and particle propulsion speed, we solve the equations numerically in two spatial dimensions and obtain a manifold of different dynamical modes including active straight motion, periodic motions, motions on undulated cycloids, winding motions, as well as quasi-periodic and chaotic motions induced at high shear rates. The types of motion are distinguished by different characteristics in the real-space trajectories and in the dynamical behavior of the particle orientation and its deformation. Our predictions can be verified in experiments on self-propelled droplets exposed to a linear shear flow.

  4. Grow with the Flow: A Dynamic Tale of Blood Clot Formation

    NASA Astrophysics Data System (ADS)

    Leiderman, Karin; Fogelson, Aaron

    2008-11-01

    The body heals injured blood vessels and prevents bleeding by clotting the blood. Clots are primarily made of blood-borne cells and a fibrous material that is assembled at the site of injury in flowing blood. Clot composition and structure change with local chemistry and fluid dynamics, which in turn alter the flow. To better understand this fluid-structure coupling, we have created a mathematical model to simulate the formation of a blood clot in a dynamic fluid environment. The growing clot is represented as a mixed porous medium whose permeability is dependent on the coagulation chemistry within it. The flow field resulting from a clot with specific calculated permeability and size can then be recovered by solving the Navier-Stokes equations with an added friction term. We report on how this complex fluid-structure interaction affects the limiting factor(s) of blood clot growth.

  5. Flow dynamics in anatomical models of abdominal aortic aneurysms: computational analysis of pulsatile flow.

    PubMed

    Finol, Ender A; Amon, Cristina H

    2003-01-01

    Blood flow in human arteries is dominated by time-dependent transport phenomena. In particular, in the abdominal segment of the aorta under a patient's average resting conditions, blood exhibits laminar flow patterns that are influenced by secondary flows induced by adjacent branches and in irregular vessel geometries. The flow dynamics becomes more complex when there is a pathological condition that causes changes in the normal structural composition of the vessel wall, for example, in the presence of an aneurysm. An aneurysm is an irreversible dilation of a blood vessel accompanied by weakening of the vessel wall. This work examines the importance of hemodynamics in the characterization of pulsatile blood flow patterns in individual Abdominal Aortic Aneurysm (AAA) models. These patient-specific computational models have been developed for the numerical simulation of the momentum transport equations utilizing the Finite Element Method (FEM) for the spatial and temporal discretization. We characterize pulsatile flow dynamics in AAAs for average resting conditions by means of identifying regions of disturbed flow and quantifying the disturbance by evaluating wall pressure and wall shear stresses at the aneurysm wall. PMID:14515766

  6. Granular Dilatancy and its Effect on Debris-flow Dynamics

    NASA Astrophysics Data System (ADS)

    Iverson, R. M.; George, D. L.

    2012-12-01

    Landslides and debris flows commonly exhibit the effects of variable granular dilatancy, but incorporation of these effects in predictive models of debris-flow dynamics has been lacking. We have developed a depth-averaged model of debris-flow initiation and motion that includes the effects of variable dilatancy without stipulating its influence on rheology. Instead, the apparent rheology of Coulomb-frictional debris evolves during coupled evolution of the grain concentration m, basal pore-fluid pressure, flow thickness, and flow velocity. The dilatancy angle ψ plays an intermediary role in this evolution and obeys the simple relationship tan ψ = m-meq, where meq is the grain concentration in equilibrium with the ambient stress state and flow rate. Results of recent stress-controlled rheometric experiments by Boyer et al. (DOI: 10.1103/PhysRevLett.107.188301) provide our basis for estimating meq. Relaxation of m toward meq, coupled with evolution of pore pressure, allows our model to simulate a smooth transition from static limiting equilibrium of slopes to disequilibrium flow dynamics. Use of variable friction coefficients or dam-break initial conditions is unnecessary. We have evaluated predictions of our model in three ways: (1) by examining physical implications of exact solutions of simplified model equations, (2) by comparing numerical solutions with results of controlled experiments at the USGS debris-flow flume, and (3) by comparing numerical predictions with the behavior of a large (~50 million m3) debris flow that occurred at Mt. Meager, British Columbia, in 2010. Model predictions depend mostly on initial conditions, flow-path topography, and the value of a single dimensionless parameter that represents the ratio of two key timescales. One timescale governs downslope, gravity-driven motion of debris, and the other governs pore-pressure diffusion. Values of these timescales are readily calculated from source-area geometry and standard geotechnical

  7. Dynamic Young's moduli of space materials at low temperatures

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Zhao, L. Z.; Tu, Z. H.; Zhang, P. Q.

    Using vibration analysis methods, the dynamic mechanical properties of space materials at low temperatures (from 4.2 to 300 K) are studied in this paper. System identification techniques in the time domain are used to identify the dynamic parameters of the space materials Ti-5Al-2.5Sn extra-low-interstitial (ELI) alloy and Al-2.5Li-1.3Cu-0.9Mg-0.13Zr (Al-Li) alloy. The dynamic Young's moduli of these materials are calculated using the basic natural frequencies at different temperatures.

  8. Mantle Flow Pattern and Dynamic Topography beneath the Eastern US

    NASA Astrophysics Data System (ADS)

    Liu, S.; King, S. D.; Adam, C. M.; Long, M. D.; Benoit, M. H.; Kirby, E.

    2015-12-01

    The complex tectonic history of the eastern US over the past billion years includes episodes of subduction and rifting associated with two complete cycles of supercontinent assembly and breakup. Both the previous global tomography models (S40RTS, SAVANI, TX2011, GyPSuM, SMEAN) and the analysis of the shear-wave splitting from the broadband seismic stations find a distinct coast-to-inland differentiation pattern in the lithosphere and upper mantle. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) includes a dense linear seismic array from the Atlantic coast of Virginia to the western boarder of Ohio, crossing several different tectonic zones. To derive the regional mantle flow pattern along with its surface expression such as dynamic topography and aid the interpretation of the seismic observations, we are building a new geodynamic model based on ASPECT (Advanced Solver for Problems in Earth CovecTion) that uses buoyancy derived from seismic tomography along with realistic lithosphere and sub-lithosphere structure. At present, we use S40RTS and SAVANI tomography models together with the temperature-dependent viscosity to compute the mantle flow and dynamic topography. Beneath the eastern US, the upper mantle flow in our model is primarily parallel to the trend of the Appalachian belt, which is broadly consistent with the direction of the local shear-wave splitting. The dynamic topography results exhibit a coast-to-inland magnitude differentiation along the MAGIC seismic deployment. The numerical tests also show that both the magnitude and pattern of the dynamic topography are quite sensitive to the density perturbation and rigidity of the lithosphere/sub-lithosphere. Our future work involves using other tomography and viscosity models to obtain the mantle flow pattern as well as the resulting dynamic topography and geoid.

  9. Dynamics of traffic flow with real-time traffic information

    NASA Astrophysics Data System (ADS)

    Yokoya, Yasushi

    2004-01-01

    We studied dynamics of traffic flow with real-time information provided. Provision of the real-time traffic information based on advancements in telecommunication technology is expected to facilitate the efficient utilization of available road capacity. This system has a potentiality of not only engineering for road usage but also the science of complexity series. In the system, the information plays a role of feedback connecting microscopic and macroscopic phenomena beyond the hierarchical structure of statistical physics. In this paper, we tried to clarify how the information works in a network of traffic flow from the perspective of statistical physics. The dynamical feature of the traffic flow is abstracted by a contrastive study between the nonequilibrium statistical physics and a computer simulation based on cellular automaton. We found that the information disrupts the local equilibrium of traffic flow by a characteristic dissipation process due to interaction between the information and individual vehicles. The dissipative structure was observed in the time evolution of traffic flow driven far from equilibrium as a consequence of the breakdown of the local-equilibrium hypothesis.

  10. Fluid dynamics in airway bifurcations: I. Primary flows.

    PubMed

    Martonen, T B; Guan, X; Schreck, R M

    2001-04-01

    The subject of fluid dynamics within human airways is of great importance for the risk assessment of air pollutants (inhalation toxicology) and the targeted delivery of inhaled pharmacologic drugs (aerosol therapy). As cited herein, experimental investigations of flow patterns have been performed on airway models and casts by a number of investigators. We have simulated flow patterns in human lung bifurcations and compared the results with the experimental data of Schreck (1972). The theoretical analyses were performed using a third-party software package, FIDAP, on the Cray T90 supercomputer. This effort is part of a systematic investigation where the effects of inlet conditions, Reynolds numbers, and dimensions and orientations of airways were addressed. This article focuses on primary flows using convective motion and isovelocity contour formats to describe fluid dynamics; subsequent articles in this issue consider secondary currents (Part II) and localized conditions (Part III). The agreement between calculated and measured results, for laminar flows with either parabolic or blunt inlet conditions to the bifurcations, was very good. To our knowledge, this work is the first to present such detailed comparisons of theoretical and experimental flow patterns in airway bifurcations. The agreement suggests that the methodologies can be employed to study factors affecting airflow patterns and particle behavior in human lungs.

  11. The Flow Dynamics of the Garden-Hose Instability

    NASA Astrophysics Data System (ADS)

    Xie, Fangfang; Zheng, Xiaoning; Triantafyllou, Michael; Constantinides, Yiannis; Karniadakis, George

    2015-11-01

    We present for first time full simulations of flow-structure interactions in a flexible pipe conveying incompressible fluid. We show that the Reynolds number plays a significant role in the onset of flutter in a fluid-conveying pipe under similar boundary conditions as for the classic garden-hose problem. We investigate the complex interaction between structural and fluid dynamics and obtain a phase diagram of dynamic transition between states as a function of two non-dimensional parameters, the fluid-tension parameter, and the Reynolds number. We observe that the precise flow patterns inside the pipe determine the type of induced motion. For unsteady flow, symmetry along one direction leads to in-plane motion whereas breaking of the flow symmetry results in out-of-plane motion. Above a critical Reynolds number, as the pipe vibrates, complex flow patterns result as there is continuous generation of new vorticity due to pipe wall acceleration, which is subsequently shed in the confined space of the pipe interior.

  12. Effects of polymer retention on dynamics of single phase flow

    NASA Astrophysics Data System (ADS)

    Parsa, Shima; Weitz, David

    2014-11-01

    We study the effect of adsorption of polymer solution on dynamics of a single phase flow in a model porous medium. We use confocal microscopy to fully visualize the flow of fluid in 3D micromodel of porous media. Polymer flooding is known to be an effective method for enhanced oil recovery. However, the physical mechanism is not clearly understood. We study the effect of polymer retention on the dynamics of single phase flow using particle image velocimetery. The distribution of velocities in the medium changes greatly after flow of high concentrations of polymer through the medium. Comparing the magnitude of velocities before and after the polymer flow, we observe reduction of accessible pores to the fluid at similar injection rates. Independent measurement of the permeability of the medium confirms the decrease in the porosity. Measurements of the retention of polymer in porous media shows a weak dependence on the hydrodynamic radius of the polymer. In these experiments, the viscoelastic behavior of the polymer is isolated from velocity measurements.

  13. Creep and flow of glasses: strain response linked to the spatial distribution of dynamical heterogeneities

    PubMed Central

    Sentjabrskaja, T.; Chaudhuri, P.; Hermes, M.; Poon, W. C. K.; Horbach, J.; Egelhaaf, S. U.; Laurati, M.

    2015-01-01

    Mechanical properties are of central importance to materials sciences, in particular if they depend on external stimuli. Here we investigate the rheological response of amorphous solids, namely colloidal glasses, to external forces. Using confocal microscopy and computer simulations, we establish a quantitative link between the macroscopic creep response and the microscopic single-particle dynamics. We observe dynamical heterogeneities, namely regions of enhanced mobility, which remain localized in the creep regime, but grow for applied stresses leading to steady flow. These different behaviors are also reflected in the average particle dynamics, quantified by the mean squared displacement of the individual particles, and the fraction of active regions. Both microscopic quantities are found to be proportional to the macroscopic strain, despite the non-equilibrium and non-linear conditions during creep and the transient regime prior to steady flow. PMID:26153523

  14. Granular crystals: Nonlinear dynamics meets materials engineering

    DOE PAGES

    Porter, Mason A.; Kevrekidis, Panayotis G.; Daraio, Chiara

    2015-11-01

    In this article, the freedom to choose the size, stiffness, and spatial distribution of macroscopic particles in a lattice makes granular crystals easily tailored building blocks for shock-absorbing materials, sound-focusing devices, acoustic switches, and other exotica.

  15. Computational Methods for Analyzing Fluid Flow Dynamics from Digital Imagery

    SciTech Connect

    Luttman, A.

    2012-03-30

    The main goal (long term) of this work is to perform computational dynamics analysis and quantify uncertainty from vector fields computed directly from measured data. Global analysis based on observed spatiotemporal evolution is performed by objective function based on expected physics and informed scientific priors, variational optimization to compute vector fields from measured data, and transport analysis proceeding with observations and priors. A mathematical formulation for computing flow fields is set up for computing the minimizer for the problem. An application to oceanic flow based on sea surface temperature is presented.

  16. Dynamics of poloidal flows in enhanced reverse shear bifurcation

    SciTech Connect

    Srinivasan, R.; Avinash, K.

    2005-07-15

    A simple reduced enhanced reverse shear (RERS) model is constructed to study the dynamics of poloidal flows during the ERS transition. This model predicts that a reversal of poloidal flow shear occurs just prior to the transition, as seen in experiment [R. E. Bell et al., Phys. Rev. Lett. 81, 1429 (1998)]. This transition front propagates until the radial location where the safety factor (q) is minimum and becomes locked there due to insufficient input power to overcome the threshold requirement for the bifurcation. This study also reveals that there can be many routes to ERS transition depending upon various tunable parameters.

  17. Material flow simulation in a nuclear chemical process

    SciTech Connect

    Mahgerefteh, M.

    1984-01-01

    At a nuclear fuel reprocessing plant the special nuclear materials (SNM) are received as constituents of spent fuel assemblies, are converted to liquid form, and undergo a series of chemical processes. Uncertainties in measurements of SNM at each stage of reprocessing limit the accuracy of simple material balance accounting as a safeguards method. To be effective, a formal safeguards program must take into account all sources of measurement error yet detect any diversion of SNM. An analytical method for assessing the accountability of selected constituent SNM is demonstrated. A combined discrete-continuous, time-dependent model using the GASP IV simulation language is developed to simulate mass flow, material accountability and measurement error at each stage of the reprocessing plant.

  18. Dual exposure interferometry. [gas dynamics and flow visualization

    NASA Technical Reports Server (NTRS)

    Smeets, G.; George, A.

    1982-01-01

    The application of dual exposure differential interferometry to gas dynamics and flow visualization is discussed. A differential interferometer with Wallaston prisms can produce two complementary interference fringe systems, depending on the polarization of the incident light. If these two systems are superimposed on a film, with one exposure during a phenomenon, the other before or after, the phenomenon will appear on a uniform background. By regulating the interferometer to infinite fringe distance, a resolution limit of approximately lambda/500 can be obtained in the quantitative analysis of weak phase objects. This method was successfully applied to gas dynamic investigations.

  19. A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly

    PubMed Central

    Krishnaraj, K. P.; Nott, Prabhu R.

    2016-01-01

    Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models. PMID:26864086

  20. Ultrafast dynamic ellipsometry and spectroscopies of laser shocked materials

    SciTech Connect

    Mcgrane, Shawn David; Bolme, Cindy B; Whitley, Von H; Moore, David S

    2010-01-01

    Ultrafast ellipsometry and transient absorption spectroscopies are used to measure material dynamics under extreme conditions of temperature, pressure, and volumetric compression induced by shock wave loading with a chirped, spectrally clipped shock drive pulse.

  1. Dynamic brittle material response based on a continuum damage model

    SciTech Connect

    Chen, E.P.

    1994-12-31

    The response of brittle materials to dynamic loads was studied in this investigation based on a continuum damage model. Damage mechanism was selected to be interaction and growth of subscale cracks. Briefly, the cracks are activated by bulk tension and the density of activated cracks are described by a Weibull statistical distribution. The moduli of a cracked solid derived by Budiansky and O`Connell are then used to represent the global material degradation due to subscale cracking. This continuum damage model was originally developed to study rock fragmentation and was modified in the present study to improve on the post-limit structural response. The model was implemented into a transient dynamic explicit finite element code PRONTO 2D and then used for a numerical study involving the sudden stretching of a plate with a centrally located hole. Numerical results characterizing the dynamic responses of the material were presented. The effect of damage on dynamic material behavior was discussed.

  2. The dynamic inelastic behavior in fiber reinforced composite materials

    SciTech Connect

    Haberman, K.S.; Bennett, J.G.; Liu, Cheng

    1997-03-01

    Accurately simulating the complete dynamic behavior, elastic and inelastic, of engineering structures composed of fiber reinforced composite materials can be accomplished by integrating three components: (1) a physically based micromechanical material model that accounts for the experimentally observed mechanisms producing the inelastic behavior; (2) a dynamic three-dimensional continuum simulation capability in which the physically based micromechanical material model is incorporated; and (3) a complete set of robust dynamic experiments. These experiments are used (1) to establish the microstructural mechanisms that produce inelastic behavior and (2) to validate the dynamic simulation capability. This paper focuses on the implementation of a physically based micromechanical material model into an explicit 3D finite element code and shows the experimental comparison.

  3. The dynamic shear properties of structural honeycomb materials

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Maheri, M. R.

    A technique is described for measuring the dynamic modulus and damping of honeycomb materials. Results of tests on both aluminium and Nomex honeycombs are presented and compared with those reported in the literature.

  4. Dynamics of AHL mediated quorum sensing under flow and non-flow conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Andrea; Megerle, Judith A.; Kuttler, Christina; Müller, Johannes; Aguilar, Claudio; Eberl, Leo; Hense, Burkhard A.; Rädler, Joachim O.

    2012-04-01

    Quorum sensing (QS) describes the capability of microbes to communicate with each other by the aid of small molecules. Here we investigate the dynamics of QS-regulated gene expression induced by acylhomoserine lactones (AHLs) in Pseudomonas putida IsoF containing a green fluorescent protein-based AHL reporter. The fluorescence time course of individual colonies is monitored following the external addition of a defined AHL concentration to cells which had previously reached the QS-inactive state in AHL-free medium. Using a microfluidic setup the experiment is performed both under flow and non-flow conditions. We find that without supplying external AHL gene expression is induced without flow while flow suppresses the induction. Both without and with flow, at a low AHL concentration the fluorescence onset is significantly delayed while fluorescence starts to increase directly upon the addition of AHL at a high concentration. The differences between no flow and flow can be accounted for using a two-compartment model. This indicates AHL accumulation in a volume which is not affected by the flow. The experiments furthermore show significant cell-to-cell and colony-to-colony variability which is discussed in the context of a compartmentalized QS mechanism.

  5. Characterizing He 2 flow through porous materials using counterflow data

    NASA Technical Reports Server (NTRS)

    Vansciver, Steven W.; Maddocks, J. R.

    1991-01-01

    Proposed space applications, such as the cooling of infrared and x ray telescopes, have generated substantial interest in the behavior of He(2) flowing in porous materials. For design purposes, classical porous media correlations and room temperature data are often used to obtain order of magnitude estimates of expected pressure drops, while the attendant temperature differences are either ignored or estimated using smooth tube correlations. A more accurate alternative to this procedure is suggested by an empirical extension of the two fluid models. It is shown that four empirical parameters are necessary to describe the pressure and temperature differences induced by He(2) flow through a porous sample. The three parameters required to determine pressure differences are measured in counterflow and found to compare favorably with those for isothermal flow. The fourth parameter, the Gorter-Mellink constant, differs substantially from smooth tube values. It is concluded that parameter values determined from counterflow can be used to predict pressure and temperature differences in a variety of flows to an accuracy of about + or - 20 percent.

  6. Characterizing He II flow through porous materials using counterflow data

    NASA Technical Reports Server (NTRS)

    Maddocks, J. R., Jr.; Vansciver, Steven W.

    1990-01-01

    Proposed space applications, such as the cooling of infrared and x ray telescopes, have generated substantial interest in the behavior of He II flowing in porous materials. For design purposes, classical porous media correlations and room temperature data are often used to obtain order of magnitude estimates of expected pressure drops, while the attendant temperature differences are either ignored or estimated using smooth tube correlations. A more accurate alternative to this procedure is suggested by an empirical extension of the two fluid model. It is shown that four empirical parameters are necessary to describe the pressure and temperature differences induced by He II flow through a porous sample. The three parameters required to determine pressure differences are measured in counterflow and found to compare favorably with those for isothermal flow. The fourth parameter, the Gorter-Mellink constant, differs substantially from smooth tube values. It is concluded that parameter values determined from counterflow can be used to predict pressure and temperature differences in a variety of flows to an accuracy of about + or - 20 pct.

  7. Dynamics of Laboratory Astrophysical Jets with Magnetized Helical Flows

    NASA Astrophysics Data System (ADS)

    von der Linden, Jens; You, Setthivoine

    2014-10-01

    A triple electrode planar plasma gun (MOCHI LabJet) designed to study the dynamics of magnetized helical flows in plasma jets provides boundary conditions and dimensionless numbers relevant to astrophysical jets. The goal is to observe the effect of current and flow profiles on the collimation and stability of jets to address the questions: why are jets collimated and long? How are jet irregularities related to plasma instabilities? The current and azimuthal flow profiles of the jets are tailored by biasing the electrodes at different potentials. High-speed camera images, high-resolution Ḃ probe measurements, and 3D vector tomography of plasma flows will map a stability space for varying current and flow profiles. An analytical stability space is derived with Newcomb's variational analysis applied to collimated magnetic flux tubes with skin and core currents. Two numerical stability spaces are also computed by integrating the Euler-Lagrange equation and applying a shooting method to the ideal MHD eigenvalue problem. The eigenvalue problem is generalized to include azimuthal flows and computed with a monotonicity condition for minimizing the required scanning of the complex eigenvalue space. This work was sponsored in part by the US DOE Grant DE-SC0010340.

  8. Performance and Flow Dynamics Studies of Polymeric Optofluidic SERS Sensors

    NASA Astrophysics Data System (ADS)

    Uusitalo, S.; Hiltunen, J.; Karioja, P.; Siitonen, S.; Kontturi, V.; Myllylä, R.; Kinnunen, M.; Meglinski, I.

    2015-09-01

    We present a polymer-based optofluidic surface enhanced Raman scattering chip for biomolecule detection, serving as a disposable sensor choice with cost-effective production. The SERS substrate is fabricated by using industrial roll-to-roll UV-nanoimprinting equipment and integrated with adhesive-based polymeric microfluidics. The functioning of the SERS detection on-chip is confirmed and the effect of the polymer lid on the obtainable Raman spectra is analysed. Rhodamine 6G is used as a model analyte to demonstrate continuous flow measurements on a planar SERS substrate in a microchannel. The relation between the temporal response of the sensors and sample flow dynamics is studied with varied flow velocities, using SERS and fluorescence detection. The response time of the surface-dependent SERS signal is longer than the response time of the fluorescence signal of the bulk flow. This observation revealed the effect of convection on the temporal SERS responses at 25 μl/min to 1000 µl/min flow velocities. The diffusion of analyte molecules from the bulk concentration into the sensing surface induces about a 40-second lag time in the SERS detection. This lag time, and its rising trend with slower flow velocities, has to be taken into account in future trials of the optofluidic SERS sensor, with active analyte binding on the sensing surface.

  9. Dynamical structure of magnetized dissipative accretion flow around black holes

    NASA Astrophysics Data System (ADS)

    Sarkar, Biplob; Das, Santabrata

    2016-09-01

    We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.

  10. Computational fluid dynamics analysis of salivary flow and its effect on sialolithogenesis

    PubMed Central

    Zhu, P; Lin, Y; Lin, H; Xu, Y; Zheng, QY; Han, Y

    2014-01-01

    OBJECTIVE Sialolithiasis is a common disease caused by intraductal stones, formed by reduction in salivary flow, salivary stagnation, and metabolic events. We used computational fluid dynamics to investigate changes in salivary flow field around parotid stones of different shapes. MATERIALS AND METHODS Three-dimensional configurations of the Stensen’s duct were reconstructed from computed tomography sialographic images. Fluid dynamics modeling was used to analyze the salivary flow field around stones under unstimulated and stimulated conditions. RESULTS The majority of sialoliths were oval-shaped (59/98), followed by irregular (24/98) and round (15/98). Salivary velocity was significantly higher around streamlined stones, compared with round (P = 0.013) and oval (P = 0.025) types. Changes in salivary flow field around sialoliths were found to affect the pattern of mineral deposition in saliva. The area of low velocity around the round stone was double the size observed around the streamlined stone during the unstimulated state, whereas in the stimulated state, local vortexes were formed on the downstream side of round and oval stones. CONCLUSIONS Salivary flow field around sialoliths plays an important role in the progression of multicentric stones, and analysis of the salivary dynamics during sialolithiasis may provide deeper understandings of the condition and aid in developing successful treatment strategies. PMID:24164693

  11. Some aspects of aircraft dynamic loads due to flow separation

    NASA Astrophysics Data System (ADS)

    Mabey, D. G.

    Topics discussed in this paper include the need for consistent definitions of buffet and buffeting, the advantages of a consistent notation, buffeting due to wings and other components, the alleviation of buffeting, the special difficulties of flight tests and the special advantages of buffeting measurements in cryogenic wind-tunnels. Single degree of freedom flutter due to flow separation is not discussed, but may contribute significant dynamic loads.

  12. Dynamic NMR microscopy measurement of the dynamics and flow partitioning of colloidal particles in a bifurcation

    NASA Astrophysics Data System (ADS)

    Fridjonsson, Einar O.; Seymour, Joseph D.; Cokelet, Giles R.; Codd, Sarah L.

    2011-05-01

    The flow and distribution of Newtonian, polymeric and colloid suspension fluids at low Reynolds numbers in bifurcations has importance in a wide range of disciplines, including microvascular physiology and microfluidic devices. A bifurcation consisting of circular capillaries laser etched into a hard polymer with inlet diameter 2.50 ± 0.01 mm, bifurcating to a small diameter outlet of 0.76 ± 0.01 mm and a large diameter outlet of 1.25 ± 0.01 mm is examined. Four distinct fluids (water, 0.25%wt xanthan gum, 8 and 22%vol hard-sphere colloidal suspensions) are flowed at flow rates from 10 to 30 ml/h corresponding to Reynolds numbers based on the entry flow from 0.001 to 8. PGSE NMR techniques are applied to obtain dynamic images of the fluids inside the bifurcation with spatial resolution of 59 × 59 μm/pixel in plane over a 200-μm-thick slice. Velocity in all three spatial directions is examined to determine the impact of secondary flows and characterize the transport in the bifurcation. The velocity data provide direct measurement of the volumetric distribution of the flow between the two channels as a function of flow rate. Water and the 8% colloidal suspension show a constant distribution with increasing flow rate, the xanthan gum shows an increase in fluid going into the larger outlet with higher flow rate, and the 22% colloidal suspension shows a decrease in fluid entering the larger channel with higher flow rate. For the colloidal particle flow, the distribution of colloid particles down the capillary is determined by examining the spectrally resolved propagator for the oil inside the core-shell particles in a direction perpendicular to the axial flow. Using dynamic magnetic resonance microscopy, the potential for using magnetic resonance for "particle counting" in a microscale bifurcation is thus demonstrated.

  13. Simulations of ductile flow in brittle material processing

    SciTech Connect

    Luh, M.H.; Strenkowski, J.S.

    1988-12-01

    Research is continuing on the effects of thermal properties of the cutting tool and workpiece on the overall temperature distribution. Using an Eulerian finite element model, diamond and steel tools cutting aluminum have been simulated at various, speeds, and depths of cut. The relative magnitude of the thermal conductivity of the tool and the workpiece is believed to be a primary factor in the resulting temperature distribution in the workpiece. This effect is demonstrated in the change of maximum surface temperatures for diamond on aluminum vs. steel on aluminum. As a preliminary step toward the study of ductile flow in brittle materials, the relative thermal conductivities of diamond on polycarbonate is simulated. In this case, the maximum temperature shifts from the rake face of the tool to the surface of the machined workpiece, thus promoting ductile flow in the workpiece surface.

  14. Flow path and travel time dynamics in a lowland catchment.

    NASA Astrophysics Data System (ADS)

    van der Velde, Ype; de Rooij, Gerrit

    2016-04-01

    The distribution of time it takes water from the moment of precipitation to reach the catchment outlet is widely used as a characteristic for catchment flow path contributions, catchment vulnerability to pollution spreading and pollutant loads from catchments to downstream waters. However, this distribution tends to vary in time driven by variability in precipitation and evapotranspiration. Catchment scale mixing of water controls how dynamics in rainfall and evapotranspiration are translated into dynamics of travel time distributions. In this presentation we use the concept of StorAge selection (SAS) functions, that quantify catchment scale mixing of water, to describe chloride and nitrate flow. We will show how SAS functions relate to the topography and subsurface and how they are effective in describing nitrate and chloride transport. The presented analyses will combine unique datasets of high-frequency discharge and water quality concentrations with conceptual models of water flow and solute transport. Remarkable findings are the large contrasts in travel times between lowland and sloping catchments and the strong relationship between evapotranspiration and stream water nutrient concentration dynamics.

  15. Hydro-dynamic damping theory in flowing water

    NASA Astrophysics Data System (ADS)

    Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.

    2014-03-01

    Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.

  16. A note on the theory of fast money flow dynamics

    NASA Astrophysics Data System (ADS)

    Sokolov, A.; Kieu, T.; Melatos, A.

    2010-08-01

    The gauge theory of arbitrage was introduced by Ilinski in [K. Ilinski, preprint arXiv:hep-th/9710148 (1997)] and applied to fast money flows in [A. Ilinskaia, K. Ilinski, preprint arXiv:cond-mat/9902044 (1999); K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. The theory of fast money flow dynamics attempts to model the evolution of currency exchange rates and stock prices on short, e.g. intra-day, time scales. It has been used to explain some of the heuristic trading rules, known as technical analysis, that are used by professional traders in the equity and foreign exchange markets. A critique of some of the underlying assumptions of the gauge theory of arbitrage was presented by Sornette in [D. Sornette, Int. J. Mod. Phys. C 9, 505 (1998)]. In this paper, we present a critique of the theory of fast money flow dynamics, which was not examined by Sornette. We demonstrate that the choice of the input parameters used in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)] results in sinusoidal oscillations of the exchange rate, in conflict with the results presented in [K. Ilinski, Physics of finance: gauge modelling in non-equilibrium pricing (Wiley, 2001)]. We also find that the dynamics predicted by the theory are generally unstable in most realistic situations, with the exchange rate tending to zero or infinity exponentially.

  17. Dynamic modes of red blood cells in oscillatory shear flow

    NASA Astrophysics Data System (ADS)

    Noguchi, Hiroshi

    2010-06-01

    The dynamics of red blood cells (RBCs) in oscillatory shear flow was studied using differential equations of three variables: a shape parameter, the inclination angle θ , and phase angle ϕ of the membrane rotation. In steady shear flow, three types of dynamics occur depending on the shear rate and viscosity ratio. (i) tank-treading (TT): ϕ rotates while the shape and θ oscillate. (ii) tumbling (TB): θ rotates while the shape and ϕ oscillate. (iii) intermediate motion: both ϕ and θ rotate synchronously or intermittently. In oscillatory shear flow, RBCs show various dynamics based on these three motions. For a low shear frequency with zero mean shear rate, a limit-cycle oscillation occurs, based on the TT or TB rotation at a high or low shear amplitude, respectively. This TT-based oscillation well explains recent experiments. In the middle shear amplitude, RBCs show an intermittent or synchronized oscillation. As shear frequency increases, the vesicle oscillation becomes delayed with respect to the shear oscillation. At a high frequency, multiple limit-cycle oscillations coexist. The thermal fluctuations can induce transitions between two orbits at very low shear amplitudes. For a high mean shear rate with small shear oscillation, the shape and θ oscillate in the TT motion but only one attractor exists even at high shear frequencies. The measurement of these oscillatory modes is a promising tool for quantifying the viscoelasticity of RBCs, synthetic capsules, and lipid vesicles.

  18. Brownian dynamics simulations of DNA in fluid flow

    NASA Astrophysics Data System (ADS)

    Larson, Ronald

    2002-03-01

    Recent advances in single-molecule imaging methods applied to DNA molecules in flow (Smith and Chu 1998) and advances in computer speed have allowed detailed comparisons to be made between observed and predicted behavior of polymeric DNA molecules in simple flows. These have shown that the conformations and rheology of DNA molecules in bulk solution can be predicted with high accuracy by Brownian dynamics simulations using bead-spring or bead-rod course-grained models (Larson et al. 1999; Hur et al. 2000). A logical next step is to extend these methods to the interactions of flowing DNA polymers with surfaces, which are of importance in the development of microfluidic devices for processing of DNA and other large molecules for genomics, bio-assays, combinatorial polymer science, etc. Using single-molecule experiments and Brownian dynamics simulations we consider isolated DNA molecules near adsorbing and non-adsorbing walls in the presence of a simple shearing flow and in an evaporating droplet. The former flow is predicted to produce highly stretched adsorbed molecules due to the prevalence of end-sticking, following by regular unraveling from one end to the other and laying down of the molecule onto the surface. In the drying-droplet flow, this process is inhibited by the downward convection, which drives the molecule towards the surface, resulting in complete adhesion before unraveling is complete. Experimental studies using surfaces treated with APTES (3-aminopropyltriethoxysilane) to produce strong sticking of DNA confirm the Brownian dynamics predictions for the drying flow containing DNA. In simple shearing flow, an unusual, and unexplained, interaction of DNA with the surface inhibits stretching, at distances as great as 20 microns from the surface. 1) Hur, J.S., Shaqfeh, E.S.G., and Larson, R.G., J. Rheol., 44:713 (2000). 2) Larson, R.G., Hu, H., Smith, D.E., and Chu, S. J. Rheol., 43:267 (1999). 3) Smith, D.E., and Chu, S., Science, 281:1335 (1998).

  19. Complex flow dynamics around 3D microbot prototypes.

    PubMed

    Martínez-Aranda, Sergio; Galindo-Rosales, Francisco J; Campo-Deaño, Laura

    2016-02-28

    A new experimental setup for the study of the complex flow dynamics around 3D microbot prototypes in a straight microchannel has been developed and assessed. The ultimate aim of this work is focused on the analysis of the morphology of different microbot prototypes to get a better insight into their efficiency when they swim through the main conduits of the human circulatory system. The setup consists of a fused silica straight microchannel with a 3D microbot prototype fastened in the center of the channel cross-section by an extremely thin support. Four different prototypes were considered: a cube, a sphere and two ellipsoids with aspect ratios of 1 : 2 and 1 : 4, respectively. Flow visualization and micro-particle image velocimetry (μPIV) measurements were performed using Newtonian and viscoelastic blood analogue fluids. An efficiency parameter, ℑ, to discriminate the prototypes in terms of flow disturbance has been proposed.

  20. Multifractal dynamics of turbulent flows in swimming bacterial suspensions

    NASA Astrophysics Data System (ADS)

    Liu, Kuo-An; I, Lin

    2012-07-01

    We experimentally investigate the self-propelled two-dimensional turbulent flows of Escherichia coli suspensions in thin liquid films at two different cell concentrations. It is found that the flow has fluctuating vortices with a broad range of scales and intensities through the nonlinear interaction of the swimming bacteria. Increasing cell concentration increases the total propelling power and the nonlinear interaction. It causes the generation of vortices with larger scale, lower frequency, and higher intensity. It also widens the histograms of the flow velocity and the velocity increment between two spatially separated points with more stretched non-Gaussian tails. From the scaling analysis of the structure function Sq(r) of the qth moment of the velocity increment between two points with spatial separation r, nonlinear relations between the scaling exponent ζq of Sq(r) and q are found for both cell concentrations, which manifests the multifractal dynamics. The multifractality can be enhanced by increasing cell concentration.

  1. Dynamics of temporal variations in phonatory flow1

    PubMed Central

    Krane, Michael H.; Barry, Michael; Wei, Timothy

    2010-01-01

    This paper addresses the dynamic relevance of time variations of phonatory airflow, commonly neglected under the quasisteady phonatory flow assumption. In contrast to previous efforts, which relied on direct measurement of glottal impedance, this work uses spatially and temporally resolved measurements of the velocity field to estimate the unsteady and convective acceleration terms in the unsteady Bernoulli equation. Theoretical considerations suggest that phonatory flow is inherently unsteady when two related conditions apply: (1) that the unsteady and convective accelerations are commensurate, and (2) that the inertia of the glottal jet is non-negligible. Acceleration waveforms, computed from experimental data, show that unsteady and convective accelerations to be the same order of magnitude, throughout the cycle, and that the jet flow contributes significantly to the unsteady acceleration. In the middle of the cycle, however, jet inertia is negligible because the convective and unsteady accelerations nearly offset one another in the jet region. These results, consistent with previous findings treating quasisteady phonatory flow, emphasize that unsteady acceleration cannot be neglected during the final stages of the phonation cycle, during which voice sound power and spectral content are largely determined. Furthermore, glottal jet dynamics must be included in any model of phonatory airflow. PMID:20649231

  2. Mesoscopic simulation of single DNA dynamics in rotational flows.

    PubMed

    Ranjith, S Kumar

    2015-08-01

    In this numerical study, the transport and dynamics of an isolated DNA in rotational flow generated in a microchannel have been investigated using dissipative particle dynamics. Often, inertial flow through microchannels with a sudden change in surface structure facilitates a re-circulation or vortex region. The conformation and mobility of the bio-polymer under the influence of such rotating fluid inside a square cavity of the microchannel is analyzed. The flexible polymer chain is found to migrate towards the rotating region and follows the vortex streamline. The orientation, size and tumbling period of polymer strands are affected by the strength of the microvortex. At elevated flow rates, the macromolecule prefers to remain inside the vortex and a hydrodynamic trap is formed. Moreover, residence time of the single molecule in the microcavity is significantly influenced by the chain length and flow strength. Further, it has been demonstrated that, such entrapment duration can be strategically altered by modifying the hydrophobicity of the microchannel. PMID:26314257

  3. Slow dynamics at Re =108 in turbulent Helium flows

    NASA Astrophysics Data System (ADS)

    Burguete, Javier; Roche, Philippe; Rousset, Bernard

    2014-11-01

    The presence of slow dynamics is a recurrent feature of many turbulent flows. This behaviour can be created by instabilities of the mean flow or by other mechanisms. In this work we analyze the behavior of a highly turbulent flow (maximum Reynolds number Re =108 , with a Reynolds based on the Taylor microscale Reλ = 2000). The experimental cell consists on a closed cavity filled with liquid Helium (330 liters) close to the lambda point (between 1.8 and 2.5 K) where two inhomogeneous and strongly turbulent flows collide in a thin region. The cylindrical cavity has a diameter of 78cm and two impellers rotate in opposite directions with rotation frequencies up to 2 Hz. The distance between the propellers is 70 cm. Different experimental runs have been performed, both in the normal and superfluid phases. We have performed velocity measurements using home-made Pitot tubes. Here we would like to present preliminary results on this configuration. The analysis of the data series reveals that below the injection frequencies there are different dynamical regimes with time scales two orders of magnitude below the injection scale. We acknowledge support from the EuHIT network and the SHREK Collaboration.

  4. Steady-state flow properties of amorphous materials

    NASA Astrophysics Data System (ADS)

    Jadhao, Vikram; O'Connor, Thomas; Robbins, Mark

    2015-03-01

    Molecular dynamics (MD) simulations are used to investigate the steady-state shear flow curves of a standard glass model: the bidisperse Lennard-Jones system. For a wide range of temperatures in the neighborhood of the glass transition temperature Tg predicted by the mode coupling theory, we compute the steady-state shear stress and viscosity as a function of the shear rate γ ˙. At temperatures near and above Tg, the stress crosses over from linear Newtonian behavior at low rates to power law shear-thinning at high rates. As T decreases below Tg, the stress shows a plateau, becoming nearly rate-independent at low γ ˙. There is a weak increase in stress that is consistent with Eyring theory for activated flow of a solid. We find that when the strain rate is reduced to extremely low values, Newtonian behavior appears once more. Insights gained from these simulations are applied to the computation of flow curves of a well-established boundary lubricant: squalane. In the elastohydrodynamic regime, squalane responds like a glassy solid with an Eyring-like response, but at low rates it has a relatively small Newtonian viscosity. Supported by the Army Research Laboratory under Grant W911NF-12-2-0022.

  5. Effect of flow material ski boots on foot circulation.

    PubMed

    Höflin, F; Kempi, V; van der Linden, W; Ringquist, I

    1976-01-01

    The effect of modern "flow material" ski boots on foot circulation was studied. Pressure inside a flow material ski boot was found to be markedly higher than in a conventional ski boot. In some places the pressure exceeded the diastolic pressure in the foot. 113mIndium chloride, which when injected intravenously is bound to transferrin was used for blood pool scanning. In healthy young volunteers the uptake of radioactivity in the two feet--one with and one without a ski boot--was compared. The activity level of the foot with the ski boot was significantly lower than in the other foot. After corrections were made for absorption by the boot, a significant difference remained. Plethysmographic studies were performed with a mercury strain gauge using a ski boot in which a hole was cut over the big toe. No difference was demonstrated between the blood pressure at the leg just above the boot top and at the big toe. The arterial pulse wave at the big toe was altered; i.e., there was an absence of a dichrotic wave. Intramuscular perfusion was studied with 133xenon. The disappearance curve in a foot with a boot was more shallow than that in a bare foot. Unbuckling resulted in an immediate fall in radioactivity, the disappearance curve then becoming identical to that of the bare foot. The results indicate that when flow material ski boots are to be used by skiers who are not in the habit of unbuckling for short intervals, buckle tension should not be too high.

  6. Diode laser absorption sensors for gas-dynamic and combustion flows

    NASA Technical Reports Server (NTRS)

    Allen, M. G.

    1998-01-01

    Recent advances in room-temperature, near-IR and visible diode laser sources for tele-communication, high-speed computer networks, and optical data storage applications are enabling a new generation of gas-dynamic and combustion-flow sensors based on laser absorption spectroscopy. In addition to conventional species concentration and density measurements, spectroscopic techniques for temperature, velocity, pressure and mass flux have been demonstrated in laboratory, industrial and technical flows. Combined with fibreoptic distribution networks and ultrasensitive detection strategies, compact and portable sensors are now appearing for a variety of applications. In many cases, the superior spectroscopic quality of the new laser sources compared with earlier cryogenic, mid-IR devices is allowing increased sensitivity of trace species measurements, high-precision spectroscopy of major gas constituents, and stable, autonomous measurement systems. The purpose of this article is to review recent progress in this field and suggest likely directions for future research and development. The various laser-source technologies are briefly reviewed as they relate to sensor applications. Basic theory for laser absorption measurements of gas-dynamic properties is reviewed and special detection strategies for the weak near-IR and visible absorption spectra are described. Typical sensor configurations are described and compared for various application scenarios, ranging from laboratory research to automated field and airborne packages. Recent applications of gas-dynamic sensors for air flows and fluxes of trace atmospheric species are presented. Applications of gas-dynamic and combustion sensors to research and development of high-speed flows aeropropulsion engines, and combustion emissions monitoring are presented in detail, along with emerging flow control systems based on these new sensors. Finally, technology in nonlinear frequency conversion, UV laser materials, room

  7. Dynamics of crater formations in immersed granular materials.

    PubMed

    Varas, Germán; Vidal, Valérie; Géminard, Jean-Christophe

    2009-02-01

    We report the formation of a crater at the free surface of an immersed granular bed, locally crossed by an ascending gas flow. In two dimensions, the crater consists of two piles which develop around the location of the gas emission. We observe that the typical size of the crater increases logarithmically with time, independently of the gas emission dynamics. We describe the related granular flows and give an account of the influence of the experimental parameters, especially of the grain size and of the gas flow.

  8. Flow Transformation in Pyroclastic Density Currents: Entrainment and Granular Dynamics during the 2006 eruption of Tungurahua

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Benage, M. C.; Geist, D.; Harpp, K. S.

    2013-12-01

    Pyroclastic density currents are ground hugging flows composed of hot gases, fragments of juvenile magmatic material, and entrained clasts from the conduit or the edifice over which the flows have traveled. The interior of these flows are opaque to observation due to their large ash content, but recent investigations have highlighted that there are likely strong gradients in particle concentration and segregation of particle sizes in these particle-laden gravity currents. Pyroclastic density currents refer to a broad range of phenomena from dense flows in which the dynamics are dominated by frictional interaction between particles (dense granular flows), to gas fluidized flows, to dilute flows dominated by particle-gas turbulent interaction. However, abrupt flow transformation (e.g. from dense to dilute pyroclastic density currents) can arise due to energy exchange across multiple length scales and phases, and understanding these flow transformations is important in delineating the entrainment and erosion history of these flows, interpretations of their deposits, and in better understanding the hazards they present. During the 2006 eruption of Tungurahua, Ecuador numerous, dense pyroclastic density currents descended the volcano as result of boiling-over or low column collapse eruptions. The deposits of these flows typically have pronounced snouts and levees, and are often dominated by large, clasts (meter scale in some locations). There is an exceptional observational record of these flows and their deposits, permitting detailed field constraints of their dynamics. A particularly interesting set of flows occurred on Aug. 17, 2006 during the paroxysmal phase of the eruption that descended the slope of the volcano, filled in the river channel of the Chambo river, removing much of the larger clasts from the flow, and resulting in a dilute ';surge' that transported finer material across the channel and uphill forming dune features on the opposite bank of the river. We

  9. Simultaneous dynamic electrical and structural measurements of functional materials

    NASA Astrophysics Data System (ADS)

    Vecchini, C.; Thompson, P.; Stewart, M.; Muñiz-Piniella, A.; McMitchell, S. R. C.; Wooldridge, J.; Lepadatu, S.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Bikondoa, O.; Lucas, C. A.; Hase, T. P. A.; Lesourd, M.; Dontsov, D.; Cain, M. G.

    2015-10-01

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  10. Simultaneous dynamic electrical and structural measurements of functional materials

    SciTech Connect

    Vecchini, C.; Stewart, M.; Muñiz-Piniella, A.; Wooldridge, J.; Thompson, P.; McMitchell, S. R. C.; Bouchenoire, L.; Brown, S.; Wermeille, D.; Lucas, C. A.; Lepadatu, S.; Bikondoa, O.; Hase, T. P. A.; Lesourd, M.; Dontsov, D.; Cain, M. G.

    2015-10-15

    A new materials characterization system developed at the XMaS beamline, located at the European Synchrotron Radiation Facility in France, is presented. We show that this new capability allows to measure the atomic structural evolution (crystallography) of piezoelectric materials whilst simultaneously measuring the overall strain characteristics and electrical response to dynamically (ac) applied external stimuli.

  11. Functional monitoring of blood flow dynamics in brain with photon correlation techniques

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Ashwin B.; Gannon, Kimberly; Baker, Wesley B.; Kavuri, Venki; Mullen, Michael T.; Detre, John A.; Yodh, Arjun G.

    2016-03-01

    We introduce a new software correlator approach for continuous high-speed (up to 100 Hz) monitoring of blood flow dynamics with Diffuse Correlation Spectroscopy. The functionality of the high-speed software correlator is demonstrated with measurements of baseline blood flow dynamics. The utility of high-data-rate blood flow monitoring is demonstrated with measurements of cerebral autoregulation dynamics.

  12. Fluid dynamics following flow shut-off in bottle filling

    NASA Astrophysics Data System (ADS)

    Thete, Sumeet; Appathurai, Santosh; Gao, Haijing; Basaran, Osman

    2012-11-01

    Bottle filling is ubiquitous in industry. Examples include filling of bottles with shampoos and cleaners, engine oil and pharmaceuticals. In these examples, fluid flows out of a nozzle to fill bottles in an assembly line. Once the required volume of fluid has flowed out of the nozzle, the flow is shut off. However, an evolving fluid thread or string may remain suspended from the nozzle following flow shut-off and persist. This stringing phenomenon can be detrimental to a bottle filling operation because it can adversely affect line speed and filling accuracy by causing uncertainty in fill volume, product loss and undesirable marring of the bottles' exterior surfaces. The dynamics of stringing are studied numerically primarily by using the 1D, slender-jet approximation of the flow equations. A novel feature entails development and use of a new boundary condition downstream of the nozzle exit to expedite the computations. While the emphasis is on stringing of Newtonian fluids and use of 1D approximations, results will also be presented for situations where (a) the fluids are non-Newtonian and (b) the full set of equations are solved without invoking the 1D approximation. Phase diagrams will be presented that identify conditions for which stringing can be problematic.

  13. Connecting exact coherent states to turbulent dynamics in channel flow

    NASA Astrophysics Data System (ADS)

    Park, Jae Sung; Graham, Michael D.

    2015-11-01

    The discovery of nonlinear traveling wave solutions to the Navier-Stokes equations or exact coherent states has greatly advanced the understanding of the nature of turbulent shear flows. These solutions are unstable saddle points in state space, while the time evolution of a turbulent flow is a dynamical trajectory wandering around them. In this regard, it is of interest to investigate how closely the turbulent trajectories approach these invariant states. Here, we present connections between turbulent trajectories and one intriguing solution family in channel flow. A state space visualization of turbulent trajectories is presented in a three-dimensional space. The lifetime of the trajectories is well represented by closeness to two distinct solutions resembling in many ways the active and hibernating phases of minimal channel turbulence (Xi & Graham PRL 2010). The connections are then examined by comparing mean profiles and flow structures. More importantly, the connections are confirmed by calculating the L2 distance between the trajectories and the traveling waves. Lastly, paths of an intermittent bursting phenomenon are identified in state space and the relationship between bursting paths and the traveling waves or hibernating turbulence is further discussed. This work was supported by the Air Force Office of Scientific Research through grant FA9550-15-1-0062 (Flow Interactions and Control Program).

  14. Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions

    NASA Astrophysics Data System (ADS)

    Roy, Sukesh; Hua, Jia-Chen; Barnhill, Will; Gunaratne, Gemunu H.; Gord, James R.

    2015-01-01

    Analytical and computational studies of reacting flows are extremely challenging due in part to nonlinearities of the underlying system of equations and long-range coupling mediated by heat and pressure fluctuations. However, many dynamical features of the flow can be inferred through low-order models if the flow constituents (e.g., eddies or vortices) and their symmetries, as well as the interactions among constituents, are established. Modal decompositions of high-frequency, high-resolution imaging, such as measurements of species-concentration fields through planar laser-induced florescence and of velocity fields through particle-image velocimetry, are the first step in the process. A methodology is introduced for deducing the flow constituents and their dynamics following modal decomposition. Proper orthogonal (POD) and dynamic mode (DMD) decompositions of two classes of problems are performed and their strengths compared. The first problem involves a cellular state generated in a flat circular flame front through symmetry breaking. The state contains two rings of cells that rotate clockwise at different rates. Both POD and DMD can be used to deconvolve the state into the two rings. In POD the contribution of each mode to the flow is quantified using the energy. Each DMD mode can be associated with an energy as well as a unique complex growth rate. Dynamic modes with the same spatial symmetry but different growth rates are found to be combined into a single POD mode. Thus, a flow can be approximated by a smaller number of POD modes. On the other hand, DMD provides a more detailed resolution of the dynamics. Two classes of reacting flows behind symmetric bluff bodies are also analyzed. In the first, symmetric pairs of vortices are released periodically from the two ends of the bluff body. The second flow contains von Karman vortices also, with a vortex being shed from one end of the bluff body followed by a second shedding from the opposite end. The way in which

  15. On the dynamics of shallow gravel bed flow

    NASA Astrophysics Data System (ADS)

    Mohajeri, Seyed Hossein; Righetti, Maurizio; Wharton, Geraldene; Gurnell, Angela

    2013-04-01

    Flow dynamics on a gravel bed is a popular research subject because of environmental implications and especially in the presence of sediment transport. However, some features of flow dynamics on gravel beds are not completely understood and many questions remain open, especially in the context of the turbulence structure of the flow field and sediment transport. Due to the low submergence characteristics of the flow, the dynamics of the turbulent flow field, especially at the bed region, cannot be regarded as a classical boundary roughness problem, sensu Nikuradse (Nezu and Nakagawa, 1993) due to the strong spatial and temporal variation of the flow field. Over the past decade, in order to properly take into account the spatial heterogeneity, spatial averaging of time averaged values have become common. Besides,recently a trend to understand the role of gravel bed statistical properties, such as structure function of the bed elevation, on the statistics of the near-bed flow has been proposed. Although much research considers gravel beds by spatial averaging and research has been conducted on the effects of bed characteristics on near bed flow and sediment transport, only a few studies consider both together. In the present study, the results of 2D PIV measurement coupled with high accurate measurement of the gravel bed characteristics and the turbulence properties of the low submergence gravel bed flow as related to the bed properties are presented. The double averaging method was used in the analysis. Furthermore, in order to have a better insight into the dynamics of transport processes at the bed, a simple quadrant analysis, based on the Lu and Willmarth method, was implemented (Lu and Willmarth, 1973). Finally, the turbulent integral length scale was calculated both near and far from the gravel bed. The time and double averaged results show an agreement with the previous studies. Moreover, the result of quadrant analysis shows the sweep is dominant between

  16. Regional material flow accounting and environmental pressures: the Spanish case.

    PubMed

    Sastre, Sergio; Carpintero, Óscar; Lomas, Pedro L

    2015-02-17

    This paper explores potential contributions of regional material flow accounting to the characterization of environmental pressures. With this aim, patterns of material extraction, trade, consumption, and productivity for the Spanish regions were studied within the 1996-2010 period. The main methodological variation as compared to whole-country based approaches is the inclusion of interregional trade, which can be separately assessed from the international exchanges. Each region was additionally profiled regarding its commercial exchanges with the rest of the regions and the rest of the world and the related environmental pressures. Given its magnitude, interregional trade is a significant source of environmental pressure. Most of the exchanges occur across regions and different extractive and trading patterns also arise at this scale. These differences are particularly great for construction minerals, which in Spain represent the largest share of extracted and consumed materials but do not cover long distances, so their impact is visible mainly at the regional level. During the housing bubble, economic growth did not improve material productivity.

  17. Meeting on flows of granular materials in complex geometries

    SciTech Connect

    Passman, S.L.; Fukushima, E.; Evans, R.E.

    1994-11-01

    The International Energy Agency Fossil Fuel Multiphase Flow Sciences Agreement has been in effect since 1986. The traditional mechanism for the effort has been information exchange, effected by the inclusion of scientists in annual Executive committee meetings, by exchange of reports and papers, and by visits of scientists to one another`s institutions. In a sequence of informal meetings and at the 1993 Executive committee meeting, held in Pittsburgh, US in March 1994, it was decided that more intensive interactions could be productive. A candidate for such interactions would be specific projects. Each of these would be initiated through a meeting of scientists in which feasibility of the particular project was decided, followed by relatively intense international co-operation in which the work would be done. This is a report of the first of these meetings. Official or unofficial representatives from Canada, italy, japan, mexico, the United Kingdom, and the US met in Albuquerque, New Mexico, US, to consider the subject Flows of Granular Materials in Complex Geometries. Representatives of several other countries expressed interest but were unable to attend this meeting. Sixteen lectures were given on aspects of this topic. It was decided that a co-operative effort was desirable and possible. The most likely candidate for the area of study would be flows in bins and hoppers. Each of the countries wishing to co-operate will pursue funding for its effort. This report contains extended abstracts of the sixteen presentations and a transcription of the final discussion.

  18. Dynamical model of flow in the chosen Martian valleys

    NASA Astrophysics Data System (ADS)

    Czechowski, Leszek; Witek, Piotr; Misiura, Katarzyna

    2012-07-01

    On the surface of Mars, under current conditions, liquid water could exist only occasionally in lowest regions of the planet. This water contains probably some components that decrease its freezing point and raised its boiling point. However billions years ago more dense atmosphere on the Mars allows for the presence of large volume of liquid water. There are a number of structures apparently resulting from flowing liquid water in the past. They are of two types: outflow channels and valley networks. We investigate here the possible flow in some chosen valley networks. The numerical model is used. We try to determine the basic properties of the flow, its erosion as well as the transport efficiencies of the material. The comparison with the terrestrial rivers indicates some important differences.

  19. Dynamics of Diffusion Flames in von Karman Swirling Flows Studied

    NASA Technical Reports Server (NTRS)

    Nayagam, Vedha; Williams, Forman A.

    2002-01-01

    Von Karman swirling flow is generated by the viscous pumping action of a solid disk spinning in a quiescent fluid media. When this spinning disk is ignited in an oxidizing environment, a flat diffusion flame is established adjacent to the disk, embedded in the boundary layer (see the preceding illustration). For this geometry, the conservation equations reduce to a system of ordinary differential equations, enabling researchers to carry out detailed theoretical models to study the effects of varying strain on the dynamics of diffusion flames. Experimentally, the spinning disk burner provides an ideal configuration to precisely control the strain rates over a wide range. Our original motivation at the NASA Glenn Research Center to study these flames arose from a need to understand the flammability characteristics of solid fuels in microgravity where slow, subbuoyant flows can exist, producing very small strain rates. In a recent work (ref. 1), we showed that the flammability boundaries are wider and the minimum oxygen index (below which flames cannot be sustained) is lower for the von Karman flow configuration in comparison to a stagnation-point flow. Adding a small forced convection to the swirling flow pushes the flame into regions of higher strain and, thereby, decreases the range of flammable strain rates. Experiments using downward facing, polymethylmethacrylate (PMMA) disks spinning in air revealed that, close to the extinction boundaries, the flat diffusion flame breaks up into rotating spiral flames (refs. 2 and 3). Remarkably, the dynamics of these spiral flame edges exhibit a number of similarities to spirals observed in biological systems, such as the electric pulses in cardiac muscles and the aggregation of slime-mold amoeba. The tail of the spiral rotates rigidly while the tip executes a compound, meandering motion sometimes observed in Belousov-Zhabotinskii reactions.

  20. Modeling granular material flows: The angle of repose, fluidization and the cliff collapse problem

    NASA Astrophysics Data System (ADS)

    Holsapple, Keith A.

    2013-07-01

    I discuss theories of granular material flows, with application to granular flows on the earth and planets. There are two goals. First, there is a lingering belief of some that the standard continuum plasticity Mohr-Coulomb and/or Drucker-Prager models are not adequate for many large-scale granular flow problems. The stated reason for those beliefs is the fact that the final slopes of the run-outs in collapse, landslide problems, and large-scale cratering are well below the angle of repose of the material. That observation, combined with the supposition that in those models flow cannot occur with slopes less than the angle of repose, has led to a number of researchers suggesting a need for lubrication or fluidization mechanisms and modeling. That issue is investigated in detail and shown to be false. A complete analysis of slope failures according to the Mohr-Coulomb model is presented, with special attention to the relations between the angle of repose and slope failures. It is shown that slope failure can occur for slope angles both larger than and smaller than the angle of repose. Second, to study the details of landslide run-outs, finite-difference continuum code simulations of the prototypical cliff collapse problem, using the classical plasticity models, are presented, analyzed and compared to experiments. Although devoid of any additional fluidization models, those simulations match experiments in the literature extremely well. The dynamics of this problem introduces additional important features relating to the run-out and final slope angles. The vertical free surface begins to fall at the initial 90° and flow continues to a final slope less than 10°. The detail in the calculation is examined to show why flow persists at slope angles that appear to be less than the angle of repose. The motions include regions of solid-like, fluid-like, and gas-like flows without invoking any additional models.

  1. Channeling at the base of the lithosphere during the lateral flow of plume material beneath flow line hot spots

    NASA Astrophysics Data System (ADS)

    Sleep, Norman H.

    2008-08-01

    Chains of volcanic edifices lie along flow lines between plume-fed hot spots and the thin lithosphere at ridge axes. Discovery and Euterpe/Musicians Seamounts are two examples. An attractive hypothesis is that buoyant plume material flows along the base of the lithosphere perpendicular to isochrons. The plume material may conceivably flow in a broad front or flow within channels convectively eroded into the base to the lithosphere. A necessary but not sufficient condition for convective channeling is that the expected stagnant-lid heat flow for the maximum temperature of the plume material is comparable to the half-space surface heat flow of the oceanic lithosphere. Two-dimensional and three-dimensional numerical calculations confirm this inference. A second criterion for significant convective erosion is that it needs to occur before the plume material thins by lateral spreading. Scaling relationships indicate spreading and convection are closely related. Mathematically, the Nusselt number (ratio of convective to conductive heat flow in the plume material) scales with the flux (volume per time per length of flow front) of the plume material. A blob of unconfined plume material thus spreads before the lithosphere thins much and evolves to a slowly spreading and slowly convecting warm region in equilibrium with conduction into the base of the overlying lithosphere. Three-dimensional calculations illustrate this long-lasting (and hence observable) state of plume material away from its plume source. A different flow domain occurs around a stationary hot plume that continuously supplies hot material. The plume convectively erodes the overlying lithosphere, trapping the plume material near its orifice. The region of lithosphere underlain by plume material grows toward the ridge axis and laterally by convective thinning of the lithosphere at its edges. The hottest plume material channels along flow lines. Geologically, the regions of lithosphere underlain by either warm

  2. Cavitation erosion prediction based on analysis of flow dynamics and impact load spectra

    SciTech Connect

    Mihatsch, Michael S. Schmidt, Steffen J.; Adams, Nikolaus A.

    2015-10-15

    Cavitation erosion is the consequence of repeated collapse-induced high pressure-loads on a material surface. The present paper assesses the prediction of impact load spectra of cavitating flows, i.e., the rate and intensity distribution of collapse events based on a detailed analysis of flow dynamics. Data are obtained from a numerical simulation which employs a density-based finite volume method, taking into account the compressibility of both phases, and resolves collapse-induced pressure waves. To determine the spectrum of collapse events in the fluid domain, we detect and quantify the collapse of isolated vapor structures. As reference configuration we consider the expansion of a liquid into a radially divergent gap which exhibits unsteady sheet and cloud cavitation. Analysis of simulation data shows that global cavitation dynamics and dominant flow events are well resolved, even though the spatial resolution is too coarse to resolve individual vapor bubbles. The inviscid flow model recovers increasingly fine-scale vapor structures and collapses with increasing resolution. We demonstrate that frequency and intensity of these collapse events scale with grid resolution. Scaling laws based on two reference lengths are introduced for this purpose. We show that upon applying these laws impact load spectra recorded on experimental and numerical pressure sensors agree with each other. Furthermore, correlation between experimental pitting rates and collapse-event rates is found. Locations of high maximum wall pressures and high densities of collapse events near walls obtained numerically agree well with areas of erosion damage in the experiment. The investigation shows that impact load spectra of cavitating flows can be inferred from flow data that captures the main vapor structures and wave dynamics without the need for resolving all flow scales.

  3. Dynamic coupling of bulk chemistry, trace elements and mantle flow

    NASA Astrophysics Data System (ADS)

    Davies, J. H.; Heck, H. V.; Nowacki, A.; Wookey, J. M.; Elliott, T.; Porcelli, D.

    2015-12-01

    Fully dynamical models that not only track the evolution of chemical heterogeneities through the mantle, but also incorporate the effect of chemical heterogeneities on the dynamics of mantle convection are now emerging. Since in general analytical solutions to these complex problems are lacking, careful testing and investigations of the effect and usefulness of these models is needed. We extend our existing numerical mantle convection code that can track fluid flow in 3D spherical geometry and tracks both bulk chemical components (basal fraction) and different trace elements. The chemical components fractionate upon melting when and where the solidus is crossed. Now, the chemical information will effect the flow of the fluid in the following ways: The bulk composition will link to density and the (radioactive) trace element abundance to heat production. Results will be reported of the effect of different density structures; either starting with a primordial dense layer at the base of the mantle, having all density variation originate from melting (basalt production), or a combination between these two end-member scenarios. In particular we will focus on the connection between large scale bulk chemical structures in the (deep) mantle and the evolution of the distribution of noble gasses (He and Ar). The distribution of noble gasses depend upon 1) assumptions on the initial distributions in the mantle, 2) the mantle flow, 3) radioactive production and, 4) outgassing to the atmosphere upon melting close to the surface.

  4. Extensional Flow-Induced Dynamic Phase Transitions in Isotactic Polypropylene.

    PubMed

    Ju, Jianzhu; Wang, Zhen; Su, Fengmei; Ji, Youxin; Yang, Haoran; Chang, Jiarui; Ali, Sarmad; Li, Xiangyang; Li, Liangbin

    2016-09-01

    With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&β coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of β and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable β over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out. PMID:27376630

  5. Extensional Flow-Induced Dynamic Phase Transitions in Isotactic Polypropylene.

    PubMed

    Ju, Jianzhu; Wang, Zhen; Su, Fengmei; Ji, Youxin; Yang, Haoran; Chang, Jiarui; Ali, Sarmad; Li, Xiangyang; Li, Liangbin

    2016-09-01

    With a combination of fast extension rheometer and in situ synchrotron radiation ultra-fast small- and wide-angle X-ray scattering, flow-induced crystallization (FIC) of isotactic polypropylene (iPP) is studied at temperatures below and above the melting point of α crystals (Tmα). A flow phase diagram of iPP is constructed in strain rate-temperature space, composing of melt, non-crystalline shish, α and α&β coexistence regions, based on which the kinetic and dynamic competitions among these four phases are discussed. Above Tmα , imposing strong flow reverses thermodynamic stabilities of the disordered melt and the ordered phases, leading to the occurrence of FIC of β and α crystals as a dynamic phase transition. Either increasing temperature or stain rate favors the competiveness of the metastable β over the stable α crystals, which is attributed to kinetic rate rather than thermodynamic stability. The violent competitions among four phases near the boundary of crystal-melt may frustrate crystallization and result in the non-crystalline shish winning out.

  6. River flow regimes and vegetation dynamics along a river transect

    NASA Astrophysics Data System (ADS)

    Doulatyari, Behnam; Basso, Stefano; Schirmer, Mario; Botter, Gianluca

    2014-11-01

    Ecohydrological processes occurring within fluvial landscapes are strongly affected by natural streamflow variability. In this work the patterns of vegetation biomass in two rivers characterized by contrasting flow regimes were investigated by means of a comprehensive stochastic model which explicitly couples catchment-scale hydroclimatic processes, morphologic attributes of the river transect and in-stream bio-ecological features. The hydrologic forcing is characterized by the probability distribution (pdf) of streamflows and stages resulting from stochastic precipitation dynamics, rainfall-runoff transformation and reach scale morphologic attributes. The model proved able to reproduce the observed pdf of river flows and stages, as well as the pattern of exposure/inundation along the river transect in both regimes. Our results suggest that in persistent regimes characterized by reduced streamflow variability, mean vegetation biomass is chiefly controlled by the pattern of groundwater availability along the transect, leading to a marked transition between aquatic and terrestrial environments. Conversely, erratic regimes ensure wider aquatic-terrestrial zones in which optimal elevation ranges for species with different sensitivity to flooding and access to groundwater are separated. Patterns of mean biomass in erratic regimes were found to be more sensitive to changes in the underlying hydroclimatic conditions, notwithstanding the reduced responsiveness of the corresponding flow regimes. The framework developed highlights the important role played by streamflow regimes in shaping riverine environments, and may eventually contribute to identifying the influence of landscape, climate and morphologic features on in-stream ecological dynamics.

  7. Dynamically Scaled Glottal Flow Through Symmetrically Oscillating Vocal Fold Models

    NASA Astrophysics Data System (ADS)

    Halvorson, Lori; Baitinger, Andrew; Sherman, Erica; Krane, Michael; Zhang, Lucy; Wei, Timothy

    2011-11-01

    Experimental results derived from DPIV measurements in a scaled up dynamic human vocal fold model are presented. The 10x scale vocal fold model is a new design that incorporates key features of vocal fold oscillatory motion. This includes coupling of down/upstream rocking as well as the oscillatory open/close motions. Experiments were dynamically scaled to examine a range of frequencies, 100 - 200 Hz, corresponding to the male and female voice. By using water as the working fluid, very high resolution, both spatial and temporal resolution, was achieved. Time resolved movies of flow through symmetrically oscillating vocal folds will be presented. Both individual realizations as well as phase-averaged data will be shown. Key features, such as randomness and development time of the Coanda effect, vortex shedding, and volume flow rate data will be shown. In this talk, effects associated with paralysis of one vocal fold will be discussed. This talk provides the baseline fluid dynamics for the vocal fold paralysis study presented in Sherman, et al. Supported by the NIH.

  8. Unbounded dynamics in dissipative flows: Rössler model

    SciTech Connect

    Barrio, Roberto Serrano, Sergio; Blesa, Fernando

    2014-06-15

    Transient chaos and unbounded dynamics are two outstanding phenomena that dominate in chaotic systems with large regions of positive and negative divergences. Here, we investigate the mechanism that leads the unbounded dynamics to be the dominant behavior in a dissipative flow. We describe in detail the particular case of boundary crisis related to the generation of unbounded dynamics. The mechanism of the creation of this crisis in flows is related to the existence of an unstable focus-node (or a saddle-focus) equilibrium point and the crossing of a chaotic invariant set of the system with the weak-(un)stable manifold of the equilibrium point. This behavior is illustrated in the well-known Rössler model. The numerical analysis of the system combines different techniques as chaos indicators, the numerical computation of the bounded regions, and bifurcation analysis. For large values of the parameters, the system is studied by means of Fenichel's theory, providing formulas for computing the slow manifold which influences the evolution of the first stages of the orbit.

  9. HAWT dynamic stall response asymmetries under yawed flow conditions

    NASA Astrophysics Data System (ADS)

    Schreck, S.; Robinson, M.; Hand, M.; Simms, D.

    2000-10-01

    Horizontal axis wind turbines can experience significant time-varying aerodynamic loads, potentially causing adverse effects on structures, mechanical components and power production. As designers attempt lighter and more flexible wind energy machines, greater accuracy and robustness will become even more critical in future aerodynamics models. Aerodynamics modelling advances, in turn, will rely on more thorough comprehension of the three-dimensional, unsteady, vortical flows that dominate wind turbine blade aerodynamics under high-load conditions. To experimentally characterize these flows, turbine blade surface pressures were acquired at multiple span locations via the NREL Phase IV Unsteady Aerodynamics Experiment. Surface pressures and associated normal force histories were used to characterize dynamic stall vortex kinematics and normal force amplification. Dynamic stall vortices and normal force amplification were confirmed to occur in response to angle-of-attack excursions above the static stall threshold. Stall vortices occupied approximately one-half of the blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied along the blade, resulting in dramatic deformation of the vortex. Presence and deformation of the dynamic stall vortex produced corresponding amplification of normal forces. Analyses revealed consistent alterations to vortex kinematics in response to changes in reduced frequency, span location and yaw error. Finally, vortex structures and kinematics not previously documented for wind turbine blades were isolated. Published in 2000 by John Wiley & Sons, Ltd.

  10. On dynamic recrystallization during solid state flow: Effects of stress and temperature

    NASA Astrophysics Data System (ADS)

    De Bresser, J. H. P.; Peach, C. J.; Reijs, J. P. J.; Spiers, C. J.

    A hypothesis is advanced that dynamic recrystallization of Earth materials undergoing solid state flow may represent a balance between grain size reduction and grain growth processes occurring directly in the boundary between the dislocation and diffusion creep fields. Accordingly, the recrystallized grain size (D) and flow stress (σ) at steady state will be related by the equation delineating the field boundary, which in general is temperature dependent. Creep experiments on a metallic rock analogue, Magnox, yielded D=101.12exp[29.3/RT]σ-1.23 and demonstrated that D (µm) decreases with increasing σ (MPa) and increasing temperature (T) in a manner which is in agreement with the field boundary hypothesis. If the model applies to rocks, the widely accepted idea that dynamic recrystallization can lead to major rheological weakening in the Earth may not hold. Moreover, empirical D-σ relations, used in paleo-piezometry, will need to be modified to account for temperature effects.

  11. Vertical Wellbore Flow Monitoring for Assessing Spatial and Temporal Flow Relationships with a Dynamic River Boundary

    SciTech Connect

    Newcomer, Darrell R.; Bjornstad, Bruce N.; Vermeul, Vincent R.

    2010-10-01

    A useful tool for identifying the temporal and spatial ambient wellbore flow relationships near a dynamic river boundary is to continuously monitor ambient vertical wellbore flow with an electromagnetic borehole flowmeter (EBF). This is important because the presence of the wellbore can result in significant mixing or exchange of groundwater vertically across the aquifer. Mixing or exchanging groundwater within the well-screen section can have significant impacts on the distribution of contaminants within the aquifer and adverse effects on the representativeness of groundwater samples collected from the monitoring well. EBF monitoring data collected from long, fully screened wells at Hanford’s 300-Area Integrated Field Research Challenge (IFRC) site, located ~260 to 290 m from the Columbia River, demonstrate that ambient vertical wellbore flow exhibits both a positive (direct) and inverse temporal relationship with periodic river-stage fluctuations over short distances. The ambient flow monitoring wells fully penetrate a highly transmissive unconfined aquifer that consists of unconsolidated coarse sediments of the Hanford formation. The spatial distribution of ambient vertical wellbore flows across the IFRC’s ~2,200 m2 well-field size indicates two general regions of inverse ambient wellbore flow behavior. The western region of the IFRC site is characterized by ambient vertical wellbore flows that are positively related to river-stage fluctuations. In contrast, the eastern region of the site exhibits ambient wellbore flows that are inversely related to river-stage fluctuations. The cause of this opposite relationship between ambient wellbore flows and river-stage changes is not completely understood; however, the positive relationships appear to be associated with high-energy Hanford formation flood deposits. These flood deposits have a well-defined northwest-southeast trend and are believed to coincide with a local paleochannel. This local paleochannel bisects

  12. Dynamic Power Flow Controller: Compact Dynamic Phase Angle Regulators for Transmission Power Routing

    SciTech Connect

    2012-01-03

    GENI Project: Varentec is developing compact, low-cost transmission power controllers with fractional power rating for controlling power flow on transmission networks. The technology will enhance grid operations through improved use of current assets and by dramatically reducing the number of transmission lines that have to be built to meet increasing contributions of renewable energy sources like wind and solar. The proposed transmission controllers would allow for the dynamic control of voltage and power flow, improving the grid’s ability to dispatch power in real time to the places where it is most needed. The controllers would work as fail-safe devices whereby the grid would be restored to its present operating state in the event of a controller malfunction instead of failing outright. The ability to affordably and dynamically control power flow with adequate fail-safe switchgear could open up new competitive energy markets which are not possible under the current regulatory structure and technology base.

  13. Investigating the Flow Dynamics at Ice Shelf Calving Fronts

    NASA Astrophysics Data System (ADS)

    Wearing, Martin; Hindmarsh, Richard; Worster, Grae

    2015-04-01

    Ice-shelf calving-rates and the buttressing ice shelves provide to grounded ice are both difficult to model and quantify. An increased understanding of the mechanics of this process is imperative in determining the dynamics of marine ice sheets and consequently predicting their future extent, thickness and discharge. Alley et al. (2008) proposed an empirically derived calving law, relating the calving rate to the strain rate at the calving front. However, Hindmarsh (2012) showed that a similar relationship could be deduced by considering the viscous flow of the ice shelf. We investigate the relationship between the ice shelf flow field and the strain rate field in the area close to the calving front. Analysis is undertaken of ice surface velocity data for a range of Antarctic ice shelves (data from Rignot et al., 2011) and an inferred strain rate field produced from that data. These geophysical results are compared with a simple mathematical model for laterally confined ice shelf flow. Correlations are calculated between the same variables as Alley et al. but using a new and larger data compilation, which gives a greater degree of scatter. Good agreement is observed between the expected theoretical scaling and geophysical data for the flow of ice near the calving front in the case of laterally confined ice shelves. This lateral confinement ensures flow is aligned in the along-shelf direction and resistance to flow is provided by near stationary ice in the grounded margins. In other cases, the velocity is greater than predicted, which we attribute on a case-by-case basis to marginal weakening or the presence of ice tongues. We develop statistical methodologies for identifying these outliers.

  14. A numerical model for dynamic crustal-scale fluid flow

    NASA Astrophysics Data System (ADS)

    Sachau, Till; Bons, Paul; Gomez-Rivas, Enrique; Koehn, Daniel

    2015-04-01

    Fluid flow in the crust is often envisaged and modeled as continuous, yet minimal flow, which occurs over large geological times. This is a suitable approximation for flow as long as it is solely controlled by the matrix permeability of rocks, which in turn is controlled by viscous compaction of the pore space. However, strong evidence (hydrothermal veins and ore deposits) exists that a significant part of fluid flow in the crust occurs strongly localized in both space and time, controlled by the opening and sealing of hydrofractures. We developed, tested and applied a novel computer code, which considers this dynamic behavior and couples it with steady, Darcian flow controlled by the matrix permeability. In this dual-porosity model, fractures open depending on the fluid pressure relative to the solid pressure. Fractures form when matrix permeability is insufficient to accommodate fluid flow resulting from compaction, decompression (Staude et al. 2009) or metamorphic dehydration reactions (Weisheit et al. 2013). Open fractures can close when the contained fluid either seeps into the matrix or escapes by fracture propagation: mobile hydrofractures (Bons, 2001). In the model, closing and sealing of fractures is controlled by a time-dependent viscous law, which is based on the effective stress and on either Newtonian or non-Newtonian viscosity. Our simulations indicate that the bulk of crustal fluid flow in the middle to lower upper crust is intermittent, highly self-organized, and occurs as mobile hydrofractures. This is due to the low matrix porosity and permeability, combined with a low matrix viscosity and, hence, fast sealing of fractures. Stable fracture networks, generated by fluid overpressure, are restricted to the uppermost crust. Semi-stable fracture networks can develop in an intermediate zone, if a critical overpressure is reached. Flow rates in mobile hydrofractures exceed those in the matrix porosity and fracture networks by orders of magnitude

  15. PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis

    2002-06-01

    PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less

  16. Dynamic similarity of oscillatory flows induced by nanomechanical resonators.

    PubMed

    Bullard, Elizabeth C; Li, Jianchang; Lilley, Charles R; Mulvaney, Paul; Roukes, Michael L; Sader, John E

    2014-01-10

    Rarefied gas flows generated by resonating nanomechanical structures pose a significant challenge to theoretical analysis and physical interpretation. The inherent noncontinuum nature of such flows obviates the use of classical theories, such as the Navier-Stokes equations, requiring more sophisticated physical treatments for their characterization. In this Letter, we present a universal dynamic similarity theorem: The quality factor of a nanoscale mechanical resonator at gas pressure P0 is α times that of a scaled-up microscale resonator at a reduced pressure α P0, where α is the ratio of nanoscale and microscale resonator sizes. This holds rigorously for any nanomechanical structure at all degrees of rarefaction, from continuum through to transition and free molecular flows. The theorem is demonstrated for a series of nanomechanical cantilever devices of different size, for which precise universal behavior is observed. This result is of significance for research aimed at probing the fundamental nature of rarefied gas flows and gas-structure interactions at nanometer length scales.

  17. Vortical Flows Research Program of the Fluid Dynamics Research Branch

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The research interests of the staff of the Fluid Dynamics Research Branch in the general area of vortex flows are summarized. A major factor in the development of enchanced maneuverability and reduced drag by aerodynamic means is the use of effective vortex control devices. The key to control is the use of emerging computational tools for predicting viscous fluid flow in close coordination with fundamental experiments. In fact, the extremely complex flow fields resulting from numerical solutions to boundary value problems based on the Navier-Stokes equations requires an intimate relationship between computation and experiment. The field of vortex flows is important in so many practical areas that a concerted effort in this area is justified. A brief background of the research activity undertaken is presented, including a proposed classification of the research areas. The classification makes a distinction between issues related to vortex formation and structure, and work on vortex interactions and evolution. Examples of current research results are provided, along with references where available. Based upon the current status of research and planning, speculation on future research directions of the group is also given.

  18. Dynamics of vortex nucleation in sup 3 He- A flow

    SciTech Connect

    Kopnin, N.B.; Soininen, P.I.; Salomaa, M.M. )

    1992-03-01

    Quantum phase slippage in superfluid {sup 3}He flow is simulated numerically in rectangular slab geometries. Assuming that the flow is confined to a channel having horizontal surfaces close to each other, the spatial problem reduces to the two transverse dimensions; we report time-dependent computer simulations of superfluid {sup 3}He flow in 2+1 dimensions using the time-dependent Ginzburg-Landau equations. The quantum-dynamic processes of phase slippage in {sup 3}He are demonstrated to be associated with superfluid vortex nucleation; we thus confirm Anderson's assumption for phase slippage through vortex motion in superfluids. We also find several other phase-slip scenarios involving vortices, phase-slip lines, and combinations thereof for the coupled multicomponent order-parameter amplitudes. We consider both diffuse and specular boundary conditions at the side walls and demonstrate that our results are essentially independent of the boundaries. We compute the critical current for vortex nucleation as a function of the channel width, and compare it with existing theories of vortex nucleation; we also discuss our calculations in connection with experiments on phase slippage in {sup 3}He flow. One of our most important results is that the superfluid order parameter for the vortices generated in the computer simulations does not vanish anywhere; i.e., the vortices possess superfluid core structures; hence the processes of phase slip for superfluid {sup 3}He are nonlocal in space-time.

  19. Nanochannel flow past permeable walls via molecular dynamics

    NASA Astrophysics Data System (ADS)

    Xie, Jian-Fei; Cao, Bing-Yang

    2016-07-01

    The nanochannel flow past permeable walls with nanopores is investigated by molecular dynamics (MD) simulations, including the density distribution, velocity field, molecular penetration mechanism and surface friction coefficient. A low density distribution has been found at the gas-wall interface demonstrating the low pressure region. In addition, there exists a jump of the gas density on the permeable surface, which indicates the discontinuity of the density distribution across the permeable surface. On the other hand, the nanoscale vortices are observed in nanopores of the permeable wall, and the reduced mass flux of the flow in nanopores results in a shifted hydrodynamic boundary above the permeable surface. Particularly the slip length of the gas flow on the permeable surface is pronounced a non-linear function of the molecular mean free path, which produces a large value of the tangential momentum accommodation coefficient (TMAC) and a big portion of the diffusive refection. Moreover, the gas-gas interaction and multi-collision among gas molecules may take place in nanopores, which contribute to large values of TMAC. Consequently the boundary friction coefficient on the permeable surface is increased because of the energy dissipation consumed by the nanoscale vortices in nanopores. The molecular boundary condition provides us with a new picture of the nanochannel flow past the permeable wall with nanopores.

  20. Nephron blood flow dynamics measured by laser speckle contrast imaging.

    PubMed

    Holstein-Rathlou, Niels-Henrik; Sosnovtseva, Olga V; Pavlov, Alexey N; Cupples, William A; Sorensen, Charlotte Mehlin; Marsh, Donald J

    2011-02-01

    Tubuloglomerular feedback (TGF) has an important role in autoregulation of renal blood flow and glomerular filtration rate (GFR). Because of the characteristics of signal transmission in the feedback loop, the TGF undergoes self-sustained oscillations in single-nephron blood flow, GFR, and tubular pressure and flow. Nephrons interact by exchanging electrical signals conducted electrotonically through cells of the vascular wall, leading to synchronization of the TGF-mediated oscillations. Experimental studies of these interactions have been limited to observations on two or at most three nephrons simultaneously. The interacting nephron fields are likely to be more extensive. We have turned to laser speckle contrast imaging to measure the blood flow dynamics of 50-100 nephrons simultaneously on the renal surface of anesthetized rats. We report the application of this method and describe analytic techniques for extracting the desired data and for examining them for evidence of nephron synchronization. Synchronized TGF oscillations were detected in pairs or triplets of nephrons. The amplitude and the frequency of the oscillations changed with time, as did the patterns of synchronization. Synchronization may take place among nephrons not immediately adjacent on the surface of the kidney.

  1. Enhanced transport of materials into enamel nanopores via electrokinetic flow.

    PubMed

    Gan, H Y; Sousa, F B; Carlo, H L; Maciel, P P; Macena, M S; Han, J

    2015-04-01

    The ability to infiltrate various molecules and resins into dental enamel is highly desirable in dentistry, yet transporting materials into dental enamel is limited by the nanometric scale of their pores. Materials that cannot be infiltrated into enamel by diffusion/capillarity are often considered molecules with sizes above a critical threshold, which are often considered to be larger than the pores of enamel. We challenge this notion by reporting the use of electrokinetic flow to transport solutions with molecules with sizes above a critical threshold-namely, an aqueous solution with a high refractive index (Thoulet's solution) and a curable fluid resin infiltrant (without acid etching)-deep into the normal enamel layer. Volume infiltration by Thoulet's solution is increased by 5- to 6-fold, and resin infiltration depths as large as 600 to 2,000 µm were achieved, in contrast to ~10 µm resulting from diffusion/capillarity. Incubation with demineralization solution for 192 h resulted in significant demineralization at noninfiltrated histologic points but not at resin infiltrated. These results open new avenues for the transport of materials in dental enamel.

  2. Enhanced transport of materials into enamel nanopores via electrokinetic flow.

    PubMed

    Gan, H Y; Sousa, F B; Carlo, H L; Maciel, P P; Macena, M S; Han, J

    2015-04-01

    The ability to infiltrate various molecules and resins into dental enamel is highly desirable in dentistry, yet transporting materials into dental enamel is limited by the nanometric scale of their pores. Materials that cannot be infiltrated into enamel by diffusion/capillarity are often considered molecules with sizes above a critical threshold, which are often considered to be larger than the pores of enamel. We challenge this notion by reporting the use of electrokinetic flow to transport solutions with molecules with sizes above a critical threshold-namely, an aqueous solution with a high refractive index (Thoulet's solution) and a curable fluid resin infiltrant (without acid etching)-deep into the normal enamel layer. Volume infiltration by Thoulet's solution is increased by 5- to 6-fold, and resin infiltration depths as large as 600 to 2,000 µm were achieved, in contrast to ~10 µm resulting from diffusion/capillarity. Incubation with demineralization solution for 192 h resulted in significant demineralization at noninfiltrated histologic points but not at resin infiltrated. These results open new avenues for the transport of materials in dental enamel. PMID:25691072

  3. Studies of shock induced flows in strengthless materials on Pegasus

    SciTech Connect

    Oro, D.M.; Fulton, R.D.; Stokes, J.; Guzik, J.A.; Adams, P.J.; Morgan, D.; Platts, D.; Obst, A.W.; Fell, M.

    1998-12-31

    Experiments on the Pegasus II pulsed power facility at Los Alamos are being conducted to study the evolution and flow of strengthless materials as a result of being shocked. Of particular interest is vorticity and mixing that is induced in the materials by a shock-wave passing through a non-uniform boundary. The experiments provide an important benchmark for hydrodynamic codes, and are a precursor to experiments planned on Atlas in which the materials will be pre-ionized before being shocked. For these experiments, flash radiography is used to image the position of the target boundaries at specific times. In these experiments 3 radiographs along target radii and 2 radiographs along the target axis are taken at independent times. The central cavity of the target is imaged with visible framing cameras. The Xe in this cavity radiates when shocked, and therefore the shape and timing of the shock front in the Xe can be determined from the images. Other diagnostics employed for this work include electric and magnetic field probes that are used to determine the current through the liner and when the liner impacts the target. Both the 1-d magnetohydrodynamics code RAVEN, and the 2-d/3-d adaptive grid eulerian code RAGE are used for pre-shot calculations. In this talk the authors will discuss the motivation for these experiments, compare calculations with radiographs and visible images and discuss future experiments on Pegasus and Atlas.

  4. Fluid dynamics in airway bifurcations: III. Localized flow conditions.

    PubMed

    Martonen, T B; Guan, X; Schreck, R M

    2001-04-01

    Localized flow conditions (e.g., backflows) in transition regions between parent and daughter airways of bifurcations were investigated using a computational fluid dynamics software code (FIDAP) with a Cray T90 supercomputer. The configurations of the bifurcations were based on Schreck s (1972) laboratory models. The flow intensities and spatial regions of reversed motion were simulated for different conditions. The effects of inlet velocity profiles, Reynolds numbers, and dimensions and orientations of airways were addressed. The computational results showed that backflow was increased for parabolic inlet conditions, larger Reynolds numbers, and larger daughter-to-parent diameter ratios. This article is the third in a systematic series addressed in this issue; the first addressed primary velocity patterns and the second discussed secondary currents.

  5. Extension of dynamics of granular flow methodology to cell biology

    NASA Astrophysics Data System (ADS)

    Kummer, A.; Ocone, R.

    2003-04-01

    In a previous paper (J. Non-Newtonian Fluid Mech. 76 (1998) 5), the analogy between the methodology typical of the dynamics of polymeric liquids and those used in granular flow theory was investigated. It was shown that such a methodology could be successfully extended to granular flow, and then it was speculated on the possibility of extending it to diverse areas. In this paper two important conclusions are reached. Firstly we show that the methodology behind the statistical theories (which starting from the microstructural element eventually leads to the formulation of constitutive equations (AICHE Symposium Series, Vol. 93, 1997, p. 103)) can be extended to an apparently completely different field, namely cell biology. We then show that classical thermodynamics, as applied to epigenetic systems, presents limitations which can be overcome following an axiomatic thermodynamic route (J. Rheol. 37 (1993) 727).

  6. Mapping flow distortion on oceanographic platforms using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    O'Sullivan, N.; Landwehr, S.; Ward, B.

    2013-10-01

    Wind speed measurements over the ocean on ships or buoys are affected by flow distortion from the platform and by the anemometer itself. This can lead to errors in direct measurements and the derived parametrisations. Here we computational fluid dynamics (CFD) to simulate the errors in wind speed measurements caused by flow distortion on the RV Celtic Explorer. Numerical measurements were obtained from the finite-volume CFD code OpenFOAM, which was used to simulate the velocity fields. This was done over a range of orientations in the test domain from -60 to +60° in increments of 10°. The simulation was also set up for a range of velocities, ranging from 5 to 25 m s-1 in increments of 0.5 m s-1. The numerical analysis showed close agreement to experimental measurements.

  7. Molecular dynamics simulation investigation on the plastic flow behaviour of silicon during nanometric cutting

    NASA Astrophysics Data System (ADS)

    Zare Chavoshi, Saeed; Goel, Saurav; Luo, Xichun

    2016-01-01

    Molecular dynamics (MD) simulation was carried out to acquire an in-depth understanding of the flow behaviour of single crystal silicon during nanometric cutting on three principal crystallographic planes and at different cutting temperatures. The key findings were that (i) the substrate material underneath the cutting tool was observed for the first time to experience a rotational flow akin to fluids at all the tested temperatures up to 1200 K. (ii) The degree of flow in terms of vorticity was found higher on the (1 1 1) crystal plane signifying better machinability on this orientation in accord with the current pool of knowledge (iii) an increase in the machining temperature reduces the spring-back effect and thereby the elastic recovery and (iv) the cutting orientation and the cutting temperature showed significant dependence on the location of the stagnation region in the cutting zone of the substrate.

  8. Transverse flow reactor studies of the dynamics of radical reactions

    SciTech Connect

    Macdonald, R.G.

    1993-12-01

    Radical reactions are in important in combustion chemistry; however, little state-specific information is available for these reactions. A new apparatus has been constructed to measure the dynamics of radical reactions. The unique feature of this apparatus is a transverse flow reactor in which an atom or radical of known concentration will be produced by pulsed laser photolysis of an appropriate precursor molecule. The time dependence of individual quantum states or products and/or reactants will be followed by rapid infrared laser absorption spectroscopy. The reaction H + O{sub 2} {yields} OH + O will be studied.

  9. Dielectric barrier plasma dynamics for active control of separated flows

    SciTech Connect

    Roy, Subrata; Singh, K.P.; Gaitonde, Datta V.

    2006-03-20

    The dynamics of separation mitigation with asymmetric dielectric barrier discharges is explored by considering the gas flow past a flat plate at an angle of attack. A self-consistent model utilizing motion of electrons, ions, and neutrals is employed to couple the electric force field to the momentum of the fluid. The charge separation and concomitant electric field yield a time-averaged body force which is oriented predominantly downstream, with a smaller transverse component towards the wall. This induces a wall-jet-like feature that effectively eliminates the separation bubble. The impact of several geometric and electrical operating parameters is elucidated.

  10. Channel Geometry and Flood Flows: Quantifying over-bank flow dynamics during high-flow events in North Carolina's floodplains

    NASA Astrophysics Data System (ADS)

    Lovette, J. P.; Duncan, J. M.; Vimal, S.; Band, L. E.

    2015-12-01

    Natural riparian areas play numerous roles in the maintenance and improvement of stream water quality. Both restoration of riparian areas and improvement of hydrologic connectivity to the stream are often key goals of river restoration projects. These management actions are designed to improve nutrient removal by slowing and treating overland flow delivered from uplands and by storing, treating, and slowly releasing streamwater from overbank inundation during flood events. A major question is how effective this storage of overbank flow is at treating streamwater based on the cumulative time stream discharge at a downstream location has spent in shallower, slower overbank flow. The North Carolina Floodplain Mapping Program maintains a detailed statewide Flood Risk Information System (FRIS) using HEC-RAS modeling, lidar, and detailed surveyed river cross-sections. FRIS provides extensive information regarding channel geometry on approximately 39,000 stream reaches (a slightly coarser spatial resolution than the NHD+v2 dataset) with tens of cross-sections for each reach. We use this FRIS data to calculate volume and discharge from floodplain riparian areas separately from in-channel flow during overbank events. Preliminary results suggest that a small percentage of total annual discharge interacts with the full floodplain extent along a stream reach due to the infrequency of overbank flow events. However, with the significantly different physical characteristics of the riparian area when compared to the channel itself, this overbank flow can provide unique services to water quality. Our project aims to use this information in conjunction with data from the USGS SPARROW program to target non-point source hotspots of Nitrogen and Phosphorus addition and removal. By better understanding the flow dynamics within riparian areas during high flow events, riparian restoration projects can be carried out with improved efficacy.

  11. Dislocation dynamics: simulation of plastic flow of bcc metals

    SciTech Connect

    Lassila, D H

    2001-02-20

    This is the final report for the LDRD strategic initiative entitled ''Dislocation Dynamic: Simulation of Plastic Flow of bcc Metals'' (tracking code: 00-SI-011). This report is comprised of 6 individual sections. The first is an executive summary of the project and describes the overall project goal, which is to establish an experimentally validated 3D dislocation dynamics simulation. This first section also gives some information of LLNL's multi-scale modeling efforts associated with the plasticity of bcc metals, and the role of this LDRD project in the multiscale modeling program. The last five sections of this report are journal articles that were produced during the course of the FY-2000 efforts.

  12. Dynamic Modelling of Erosion and Deposition Processes in Debris Flows With Application to Real Debris Flow Events in Switzerland

    NASA Astrophysics Data System (ADS)

    Deubelbeiss, Y.; McArdell, B. W.; Graf, C.

    2011-12-01

    The dynamics of a debris flow can be significantly influenced by erosion and deposition processes during an event because volume changes have a strong influence on flow properties such as flow velocity, flow heights and runout distances. It is therefore worth exploring how to include these processes in numerical models, which are used for hazard assessment and mitigation measure planning. However, it is still under debate, what mechanism drives the erosion of material at the base of a debris flow. There are different processes attributed to erosion: it has been proposed that erosion correlates with the stresses due to granular interactions at the front, which in turn strongly depend on particle size or it may be related to basal shear forces. Because it is expected that larger flow heights result in larger stresses one can additionally hypothesize that there is a correlation between erosion rate and flow height. To test different erosion laws in a numerical model and its influence on the flow behavior we implement different relationships and compare simulation results with field data. Herefore, we use the numerical model, RAMMS (Christen et al., 2010), employing the Voellmy-fluid friction law. While it has already been shown that a correlation of erosion with velocity does not lead to a satisfying result (too high entrainment in the tail) a correlation with flow height combined with velocity (momentum) has been successfully applied to ice-avalanches. Currently, we are testing the momentum-driven and for comparison we reconsider the simple velocity-driven erosion rate. However, these laws do not consider processes on a smaller scale such as particle fluctuations resulting in energy production, which might play an important role. Therefore, we additionally consider an erosion model that has potential to draw new insights on the erosion process in debris flows. The model is based on an extended Voellmy model, which additionally employs an equation, which is a measure

  13. Managing Critical Materials with a Technology-Specific Stocks and Flows Model

    PubMed Central

    2013-01-01

    The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model’s potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%. PMID:24328245

  14. Managing critical materials with a technology-specific stocks and flows model.

    PubMed

    Busch, Jonathan; Steinberger, Julia K; Dawson, David A; Purnell, Phil; Roelich, Katy

    2014-01-21

    The transition to low carbon infrastructure systems required to meet climate change mitigation targets will involve an unprecedented roll-out of technologies reliant upon materials not previously widespread in infrastructure. Many of these materials (including lithium and rare earth metals) are at risk of supply disruption. To ensure the future sustainability and resilience of infrastructure, circular economy policies must be crafted to manage these critical materials effectively. These policies can only be effective if supported by an understanding of the material demands of infrastructure transition and what reuse and recycling options are possible given the future availability of end-of-life stocks. This Article presents a novel, enhanced stocks and flows model for the dynamic assessment of material demands resulting from infrastructure transitions. By including a hierarchical, nested description of infrastructure technologies, their components, and the materials they contain, this model can be used to quantify the effectiveness of recovery at both a technology remanufacturing and reuse level and a material recycling level. The model's potential is demonstrated on a case study on the roll-out of electric vehicles in the UK forecast by UK Department of Energy and Climate Change scenarios. The results suggest policy action should be taken to ensure Li-ion battery recycling infrastructure is in place by 2025 and NdFeB motor magnets should be designed for reuse. This could result in a reduction in primary demand for lithium of 40% and neodymium of 70%.

  15. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    SciTech Connect

    Bolme, Cynthia A; Mc Grane, Shawn D; Dang, Nhan C; Whitley, Von H; Moore, David S.

    2011-01-20

    Ultrafast dynamic ellipsometry is used to measure the material motion and changes in the optical refractive index of laser shock compressed materials. This diagnostic has shown us that the ultrafast laser driven shocks are the same as shocks on longer timescales and larger length scales. We have added spectroscopic diagnostics of infrared absorption, ultra-violet - visible transient absorption, and femtosecond stimulated Raman scattering to begin probing the initiation chemistry that occurs in shock reactive materials. We have also used the femtosecond stimulated Raman scattering to measure the vibrational temperature of materials using the Stokes gain to anti-Stokes loss ratio.

  16. Modeling the comminution and flow of granular brittle material

    NASA Astrophysics Data System (ADS)

    Curran, D. R.; Cooper, T.

    2003-09-01

    Penetration weapons or explosive charges in brittle materials (such as ceramics or hard rock) cause fracture and fragmentation near the cavity boundary to produce a bed of fragmented or granulated material. Subsequent large shear deformation and flow of the granulated material occur under confining pressures that range from many GPa to zero. Under these conditions the granulated material exhibits both dilatancy and compaction. In addition, the granules undergo further comminution with a resultant reduction in average granule size, and often with localization into a layer of very fine fragments next to the cavity wall. This paper presents an update of a previously-reported mesomechanical model of these processes that is based on an analogy with atomic dislocation theory[1,2]. That is, the model focuses on a description of the flux of lines of spaces (dislocations) between granules across the boundaries of a relevant volume element (RVE) rather than on the granules themselves, and on the nucleation of new dislocations inside the control volume by comminution of granules. Outward dislocation flux from the RVE causes compaction whereas inward flux causes dilatancy. The model is cast in the form of a multiplane plasticity model in which granule sliding on interfaces is restricted to a finite number of planar surfaces with specified initial orientations. The planes are allowed to rotate during deformation. The model is designed for use in finite element computer codes, and correlations are shown with long rod penetration experiments. A parameter sensitivity study reveals that the penetration behavior is strongly dependent on initial porosity, coefficient of friction between sliding granules, and on details of the granule comminution process.

  17. Open problems in active chaotic flows: Competition between chaos and order in granular materials.

    PubMed

    Ottino, J. M.; Khakhar, D. V.

    2002-06-01

    There are many systems where interaction among the elementary building blocks-no matter how well understood-does not even give a glimpse of the behavior of the global system itself. Characteristic for these systems is the ability to display structure without any external organizing principle being applied. They self-organize as a consequence of synthesis and collective phenomena and the behavior cannot be understood in terms of the systems' constitutive elements alone. A simple example is flowing granular materials, i.e., systems composed of particles or grains. How the grains interact with each other is reasonably well understood; as to how particles move, the governing law is Newton's second law. There are no surprises at this level. However, when the particles are many and the material is vibrated or tumbled, surprising behavior emerges. Systems self-organize in complex patterns that cannot be deduced from the behavior of the particles alone. Self-organization is often the result of competing effects; flowing granular matter displays both mixing and segregation. Small differences in either size or density lead to flow-induced segregation and order; similar to fluids, noncohesive granular materials can display chaotic mixing and disorder. Competition gives rise to a wealth of experimental outcomes. Equilibrium structures, obtained experimentally in quasi-two-dimensional systems, display organization in the presence of disorder, and are captured by a continuum flow model incorporating collisional diffusion and density-driven segregation. Several open issues remain to be addressed. These include analysis of segregating chaotic systems from a dynamical systems viewpoint, and understanding three-dimensional systems and wet granular systems (slurries). General aspects of the competition between chaos-enhanced mixing and properties-induced de-mixing go beyond granular materials and may offer a paradigm for other kinds of physical systems. (c) 2002 American Institute of

  18. Getting Out Of A Tight Spot: Physics Of Flow Through Porous Materials

    NASA Astrophysics Data System (ADS)

    Datta, Sujit Sankar

    We study the physics of flow through porous materials in two different ways: by directly visualizing flow through a model three-dimensional (3D) porous medium, and by investigating the deformability of fluid-filled microcapsules having porous shells. In the first part of this thesis, we develop an experimental approach to directly visualize fluid flow through a 3D porous medium. We use this to investigate drainage, the displacement of a wetting fluid from a porous medium by a non-wetting fluid, as well as secondary imbibition, the subsequent displacement of the non-wetting fluid by the wetting fluid. We characterize the intricate morphologies of the non-wetting fluid ganglia left trapped within the pore space, and show how the ganglia configurations vary with the wetting fluid flow rate. We then visualize the spatial fluctuations in the fluid flow, both for single- and multi-phase flow. We use our measurements to quantify the strong variability in the flow velocities, as well as the pore-scale correlations in the flow. Finally, we use our experimental approach to study the simultaneous flow of both a wetting and a non-wetting fluid through a porous medium, and elucidate the flow instabilities that arise for sufficiently large flow rates. In the second part of this thesis, we study the mechanical properties of porous spherical microcapsules. We first introduce emulsions, and describe how their rheology depends on the microscopic interactions between the drops comprising them. We then study the formation and buckling of one class of microcapsule -- nanoparticle-coated emulsion drops. We also use double emulsions, drops within drops, as templates to form another class of microcapsule -- drops coated with thin, porous, polymer shells. We investigate how, under sufficient osmotic pressure, these microcapsules buckle, and show how the inhomogeneity in the shell structure can guide the folding pathway taken by a microcapsule as it buckles. Finally, we study the expansion

  19. Assessing computer waste generation in Chile using material flow analysis.

    PubMed

    Steubing, Bernhard; Böni, Heinz; Schluep, Mathias; Silva, Uca; Ludwig, Christian

    2010-03-01

    The quantities of e-waste are expected to increase sharply in Chile. The purpose of this paper is to provide a quantitative data basis on generated e-waste quantities. A material flow analysis was carried out assessing the generation of e-waste from computer equipment (desktop and laptop PCs as well as CRT and LCD-monitors). Import and sales data were collected from the Chilean Customs database as well as from publications by the International Data Corporation. A survey was conducted to determine consumers' choices with respect to storage, re-use and disposal of computer equipment. The generation of e-waste was assessed in a baseline as well as upper and lower scenarios until 2020. The results for the baseline scenario show that about 10,000 and 20,000 tons of computer waste may be generated in the years 2010 and 2020, respectively. The cumulative e-waste generation will be four to five times higher in the upcoming decade (2010-2019) than during the current decade (2000-2009). By 2020, the shares of LCD-monitors and laptops will increase more rapidly replacing other e-waste including the CRT-monitors. The model also shows the principal flows of computer equipment from production and sale to recycling and disposal. The re-use of computer equipment plays an important role in Chile. An appropriate recycling scheme will have to be introduced to provide adequate solutions for the growing rate of e-waste generation.

  20. Dynamic Characterization and Modeling of Potting Materials for Electronics Assemblies

    NASA Astrophysics Data System (ADS)

    Joshi, Vasant; Lee, Gilbert; Santiago, Jaime

    2015-06-01

    Prediction of survivability of encapsulated electronic components subject to impact relies on accurate modeling. Both static and dynamic characterization of encapsulation material is needed to generate a robust material model. Current focus is on potting materials to mitigate high rate loading on impact. In this effort, encapsulation scheme consists of layers of polymeric material Sylgard 184 and Triggerbond Epoxy-20-3001. Experiments conducted for characterization of materials include conventional tension and compression tests, Hopkinson bar, dynamic material analyzer (DMA) and a non-conventional accelerometer based resonance tests for obtaining high frequency data. For an ideal material, data can be fitted to Williams-Landel-Ferry (WLF) model. A new temperature-time shift (TTS) macro was written to compare idealized temperature shift factor (WLF model) with experimental incremental shift factors. Deviations can be observed by comparison of experimental data with the model fit to determine the actual material behavior. Similarly, another macro written for obtaining Ogden model parameter from Hopkinson Bar tests indicates deviations from experimental high strain rate data. In this paper, experimental results for different materials used for mitigating impact, and ways to combine data from resonance, DMA and Hopkinson bar together with modeling refinements will be presented.

  1. TVENT1P. Gas-Dynamic Transients Flow Networks

    SciTech Connect

    Eyberger, L.

    1987-09-01

    TVENT1P predicts flows and pressures in a ventilation system or other air pathway caused by pressure transients, such as a tornado. For an analytical model to simulate an actual system, it must have (1) the same arrangement of components in a network of flow paths; (2) the same friction characteristics; (3) the same boundary pressures; (4) the same capacitance; and (5) the same forces that drive the air. A specific set of components used for constructing the analytical model includes filters, dampers, ducts, blowers, rooms, or volume connected at nodal points to form networks. The effects of a number of similar components can be lumped into a single one. TVENT1P contains a material transport algorithm and features for turning blowers off and on, changing blower speeds, changing the resistance of dampers and filters, and providing a filter model to handle very high flows. These features make it possible to depict a sequence of events during a single run. Component properties are varied using time functions. The filter model is not used by the code unless it is specified by the user. The basic results of a TVENT1P solution are flows in branches and pressures at nodes. A postprocessor program, PLTTEX, is included to produce the plots specified in the TVENT1P input. PLTTEX uses the proprietary CA-DISSPLA graphics software.

  2. Stress Recovery and Dynamic Analysis of Functionally Graded Materials

    NASA Astrophysics Data System (ADS)

    Paulino, Rivânia H.; Romero, Juan S.; Menandro, Fernando C. M.

    2008-02-01

    A macroelement recovery technique for the strain field of a functionally graded material (FGM), based on the residual dynamic equilibrium equation for elasticity, is proposed. The derivatives are recovered by solving a local variational problem, using the superconvergence points. The basic idea is to utilize post-processing to achieve a more accurate approximation of the stresses while considering the dynamic nature of the problem. The development includes dynamic modeling of FGM and can be applied to direct and inverse problems. A numerical simulation is presented to better demonstrate the proposed methodology.

  3. Applying uncertainty quantification to multiphase flow computational fluid dynamics

    SciTech Connect

    Gel, A; Garg, R; Tong, C; Shahnam, M; Guenther, C

    2013-07-01

    Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.

  4. Particle and Blood Cell Dynamics in Oscillatory Flows Final Report

    SciTech Connect

    Juan M. Restrepo

    2008-09-01

    Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers en- compassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation is boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundry conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.

  5. Material and Energy Flows in the Production of Cathode and Anode Materials for Lithium Ion Batteries

    SciTech Connect

    Dunn, Jennifer B.; James, Christine; Gaines, Linda; Gallagher, Kevin; Dai, Qiang; Kelly, Jarod C.

    2015-09-01

    The Greenhouse gases, Regulated Emissions and Energy use in Transportation (GREET) model has been expanded to include four new cathode materials that can be used in the analysis of battery-powered vehicles: lithium nickel cobalt manganese oxide (LiNi0.4Co0.2Mn0.4O2 [NMC]), lithium iron phosphate (LiFePO4 [LFP]), lithium cobalt oxide (LiCoO2 [LCO]), and an advanced lithium cathode (0.5Li2MnO3∙0.5LiNi0.44Co0.25Mn0.31O2 [LMR-NMC]). In GREET, these cathode materials are incorporated into batteries with graphite anodes. In the case of the LMR-NMC cathode, the anode is either graphite or a graphite-silicon blend. Lithium metal is also an emerging anode material. This report documents the material and energy flows of producing each of these cathode and anode materials from raw material extraction through the preparation stage. For some cathode materials, we considered solid state and hydrothermal preparation methods. Further, we used Argonne National Laboratory’s Battery Performance and Cost (BatPaC) model to determine battery composition (e.g., masses of cathode, anode, electrolyte, housing materials) when different cathode materials were used in the battery. Our analysis concluded that cobalt- and nickel-containing compounds are the most energy intensive to produce.

  6. Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow.

    PubMed

    Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Måløy, Knut Jørgen; Flekkøy, Eirik Grude

    2016-07-01

    We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition-and complete evacuation of the granular suspension-when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime. PMID:27447527

  7. Frictional Fluid Dynamics and Plug Formation in Multiphase Millifluidic Flow

    NASA Astrophysics Data System (ADS)

    Dumazer, Guillaume; Sandnes, Bjørnar; Ayaz, Monem; Mâløy, Knut Jørgen; Flekkøy, Eirik Grude

    2016-07-01

    We study experimentally the flow and patterning of a granular suspension displaced by air inside a narrow tube. The invading air-liquid interface accumulates a plug of granular material that clogs the tube due to friction with the confining walls. The gas percolates through the static plug once the gas pressure exceeds the pore capillary entry pressure of the packed grains, and a moving accumulation front is reestablished at the far side of the plug. The process repeats, such that the advancing interface leaves a trail of plugs in its wake. Further, we show that the system undergoes a fluidization transition—and complete evacuation of the granular suspension—when the liquid withdrawal rate increases beyond a critical value. An analytical model of the stability condition for the granular accumulation predicts the flow regime.

  8. Stress transmission and incipient yield flow in dense granular materials

    NASA Astrophysics Data System (ADS)

    Blumenfeld, Raphael

    2010-05-01

    Jammed granular matter transmits stresses non-uniformly like no conventional solid, especially when it is on the verge of failure. Jamming is caused by self-organization of granular matter under external loads, often giving rise to networks of force chains that support the loads non-uniformly. An ongoing debate in the literature concerns the correct way to model the static stress field in such media: good old elasticity theory or newcomer isostaticity theory. The two differ significantly and, in particular in 2D, isostaticity theory leads naturally to force chain solutions. More recently, it has been proposed that real granular materials are made of mixtures of regions, some behaving elastically and some isostatically. The theory to describe these systems has been named stato-elasticity. In this paper, I first present the rationale for stato-elasticity theory. An important step towards the construction of this theory is a good understanding of stress transmission in the regions of pure isostatic states. A brief description is given of recently derived general solutions for 2D isostatic regions with nonuniform structures, which go well beyond the over-simplistic picture of force chains. I then show how the static stress equations are related directly to incipient yield flow and derive the equations that govern yield and creep rheology of dense granular matter at the initial stages of failure. These equations are general and describe strains in granular materials of both rigid and compliant particles.

  9. Simulation of dynamic material response with the PAGOSA code

    SciTech Connect

    Holian, K.S.; Adams, T.F.

    1993-08-01

    The 3D Eulerian PAGOSA hydrocode is being run on the massively parallel Connection Machine (CM) to simulate the response of materials to dynamic loading, such as by high explosives or high velocity impact. The code has a variety of equation of state forms, plastic yield models, and fracture and fragmentation models. The numerical algorithms in PAGOSA and the implementation of material models are discussed briefly.

  10. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities

    USGS Publications Warehouse

    Arkle, R.S.; Pilliod, D.S.; Strickler, K.

    2010-01-01

    The complex effects of disturbances on ecological communities can be further complicated by subsequent perturbations within an ecosystem. We investigated how wildfire interacts with annual variations in peak streamflow to affect the stability of stream macroinvertebrate communities in a central Idaho wilderness, USA. We conducted a 4-year retrospective analysis of unburned (n = 7) and burned (n = 6) catchments, using changes in reflectance values (??NBR) from satellite imagery to quantify the percentage of each catchment's riparian and upland vegetation that burned at high and low severity. For this wildland fire complex, increasing riparian burn severity and extent were associated with greater year-to-year variation, rather than a perennial increase, in sediment loads, organic debris, large woody debris (LWD) and undercut bank structure. Temporal changes in these variables were correlated with yearly peak flow in burned catchments but not in unburned reference catchments, indicating that an interaction between fire and flow can result in decreased habitat stability in burned catchments. Streams in more severely burned catchments exhibited increasingly dynamic macroinvertebrate communities and did not show increased similarity to reference streams over time. Annual variability in macroinvertebrates was attributed, predominantly, to the changing influence of sediment, LWD, riparian cover and organic debris, as quantities of these habitat components fluctuated annually depending on burn severity and annual peak streamflows. These analyses suggest that interactions among fire, flow and stream habitat may increase inter-annual habitat variability and macroinvertebrate community dynamics for a duration approaching the length of the historic fire return interval of the study area. ?? 2009 Blackwell Publishing Ltd.

  11. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  12. Two-dimensional CFD modeling of wave rotor flow dynamics

    NASA Technical Reports Server (NTRS)

    Welch, Gerard E.; Chima, Rodrick V.

    1994-01-01

    A two-dimensional Navier-Stokes solver developed for detailed study of wave rotor flow dynamics is described. The CFD model is helping characterize important loss mechanisms within the wave rotor. The wave rotor stationary ports and the moving rotor passages are resolved on multiple computational grid blocks. The finite-volume form of the thin-layer Navier-Stokes equations with laminar viscosity are integrated in time using a four-stage Runge-Kutta scheme. Roe's approximate Riemann solution scheme or the computationally less expensive advection upstream splitting method (AUSM) flux-splitting scheme is used to effect upwind-differencing of the inviscid flux terms, using cell interface primitive variables set by MUSCL-type interpolation. The diffusion terms are central-differenced. The solver is validated using a steady shock/laminar boundary layer interaction problem and an unsteady, inviscid wave rotor passage gradual opening problem. A model inlet port/passage charging problem is simulated and key features of the unsteady wave rotor flow field are identified. Lastly, the medium pressure inlet port and high pressure outlet port portion of the NASA Lewis Research Center experimental divider cycle is simulated and computed results are compared with experimental measurements. The model accurately predicts the wave timing within the rotor passages and the distribution of flow variables in the stationary inlet port region.

  13. Development of a dynamic flow imaging phantom for dynamic contrast-enhanced CT

    SciTech Connect

    Driscoll, B.; Keller, H.; Coolens, C.

    2011-08-15

    Purpose: Dynamic contrast enhanced CT (DCE-CT) studies with modeling of blood flow and tissue perfusion are becoming more prevalent in the clinic, with advances in wide volume CT scanners allowing the imaging of an entire organ with sub-second image frequency and sub-millimeter accuracy. Wide-spread implementation of perfusion DCE-CT, however, is pending fundamental validation of the quantitative parameters that result from dynamic contrast imaging and perfusion modeling. Therefore, the goal of this work was to design and construct a novel dynamic flow imaging phantom capable of producing typical clinical time-attenuation curves (TACs) with the purpose of developing a framework for the quantification and validation of DCE-CT measurements and kinetic modeling under realistic flow conditions. Methods: The phantom is based on a simple two-compartment model and was printed using a 3D printer. Initial analysis of the phantom involved simple flow measurements and progressed to DCE-CT experiments in order to test the phantoms range and reproducibility. The phantom was then utilized to generate realistic input TACs. A phantom prediction model was developed to compute the input and output TACs based on a given set of five experimental (control) parameters: pump flow rate, injection pump flow rate, injection contrast concentration, and both control valve positions. The prediction model is then inversely applied to determine the control parameters necessary to generate a set of desired input and output TACs. A protocol was developed and performed using the phantom to investigate image noise, partial volume effects and CT number accuracy under realistic flow conditionsResults: This phantom and its surrounding flow system are capable of creating a wide range of physiologically relevant TACs, which are reproducible with minimal error between experiments ({sigma}/{mu} < 5% for all metrics investigated). The dynamic flow phantom was capable of producing input and output TACs using

  14. Potential Vorticity Dynamics and Models of Zonal Flow Formation

    NASA Astrophysics Data System (ADS)

    Hsu, Pei-Chun

    We describe the general theory of anisotropic flow formation in quasi two- dimensional turbulence from the perspective on the potential vorticity (PV) trans- port in real space. The aim is to calculate the vorticity or PV flux. In Chapter 2, the general structure of PV flux is deduced non-perturbatively using two relaxation models: the first is a mean field theory for the dynamics of minimum enstrophy relaxation based on the requirement that the mean flux of PV dissipates total po- tential enstrophy but conserves total fluid kinetic energy. The analyses show that the structure of PV flux has the form of a sum of a positive definite hyper-viscous and a negative or positive viscous flux of PV. Turbulence spreading is shown to be related to PV mixing via the link of turbulence energy flux to PV flux. In the relaxed state, the ratio of the PV gradient to zonal flow velocity is homogenized. This structure of the relaxed state is consistent with PV staircases. The homog- enized quantity sets a constraint on the amplitudes of PV and zonal flow in the relaxed state. The second relaxation model is derived from a joint reflection symmetry principle, which constrains the PV flux driven by the deviation from the self- organized state. The form of PV flux contains a nonlinear convective term in addition to viscous and hyper-viscous terms. The nonlinear convective term, how- ever, can be viewed as a generalized diffusion, on account of the gradient-dependent ballistic transport in avalanche-like systems. For both cases, the detailed transport coefficients can be calculated using perturbation theory in Chapter 3. For a broad turbulence spectrum, a modula- tional calculation of the PV flux gives both a negative viscosity and a positive hyper-viscosity. For a narrow turbulence spectrum, the result of a parametric in- stability analysis shows that PV transport is also convective. In both relaxation and perturbative analyses, it is shown that turbulent PV transport is sensitive to

  15. [Effect of dynamic cardiomyoplasty on coronary arterial blood flow].

    PubMed

    Tsukube, T; Okada, M; Mukai, T

    1993-12-01

    We investigated whether or not dynamic cardiomyoplasty adversely affected coronary arterial blood flow (CABF) through compression of the coronary arteries by muscular contraction during systole and incomplete relaxation of the skeletal muscle flap during diastole. Dynamic cardiomyoplasty was performed in 20 mongrel dogs using a left latissimus dorsi muscle flap, paced synchronously with the R wave of the electrocardiogram. A Doppler catheter (3 F in diameter) was placed in the left main trunk of the coronary artery to analyze the instantaneous changes of coronary arterial blood flow velocity by fast Fourier transformation analysis. We compared both systolic and diastolic properties during assisted versus unassisted cardiac cycles by calculating the peak velocity and the time velocity integrate (TVI). A significant enhancement of systolic CABF was recognized by increases in the systolic peak velocity (26.5 +/- 29.2%) and TVI (20.2 +/- 38.6%). The improved systolic CABF was consistent with an increase in systolic aortic pressure (15.5 +/- 4.3%) and stroke volume (42.8 +/- 11.2%). CABF was also enhanced in diastole because a significant increase of diastolic peak velocity (4.4 +/- 9.4%) and TVI (11.0 +/- 16.7%) was observed. Enhancement of diastolic CABF was associated with the augmentation of cardiac function and the reduction of left ventricular end-diastolic pressure. It could be concluded that CABF was increased by the enhancement of cardiac function as a result of dynamic cardiomyoplasty leading to an increase of cardiac output and aortic pressure and a decrease of left ventricular end-diastolic pressure.

  16. Dynamic behavior of particulate/porous energetic materials

    NASA Astrophysics Data System (ADS)

    Nesterenko, Vitali

    2011-06-01

    Dynamic behavior of particulate/porous energetic materials in a broad range of impact conditions and types of deformation (shock, shear) will be discussed. Samples of these materials were fabricated using Cold Isostatic Pressing, sintering and Hot Isostatic Pressing with and without vacuum encapsulation. The current interest in these materials is due to the combination of their high strength with energy efficiency under critical conditions of mechanical deformation. They may exhibit high compressive and tensile strength with the ability to bulk distributed fracture resulting in a small size reactive fragments and possible reaction on later stages. The results of dynamic deformation and fragmentation of these materials in conditions of low velocity (10 m/s), high energy impact, under localized deformation in single and multiple shear bands generated using explosively driven Thick Walled Cylinder method will be discussed. The mechanical properties of these materials are highly sensitive to mesostructure. For example, a dynamic strength of Al-W composites with fine W particles is significantly larger than the strength of composite with the coarse W particles at the same porosity. Morphology of W inclusions had a strong effect on dynamic strength. Samples with W wires arranged in axial direction with the same volume content of components had a highest dynamic strength. Porosity in these materials can provide a strain hardening mechanism effect due to in situ densification which was observed experimentally for cold isostatically pressed Al and Al-coarse W powders. Experimental results will be compared with available numerical data. The support for this project provided by ONR MURI N00014-07-1-0740 (Program Officer Dr. Clifford Bedford).

  17. Literature search of publications concerning the prediction of dynamic inlet flow distortion and related topics

    NASA Technical Reports Server (NTRS)

    Schweikhhard, W. G.; Chen, Y. S.

    1983-01-01

    Publications prior to March 1981 were surveyed to determine inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamic distortion prediction methods and to catalog experimental and analytical information concerning inlet flow dynamics at the engine-inlet interface of conventional aircraft (excluding V/STOL). The sixty-five publications found are briefly summarized and tabulated according to topic and are cross-referenced according to content and nature of the investigation (e.g., predictive, experimental, analytical and types of tests). Three appendices include lists of references, authors, organizations and agencies conducting the studies. Also, selected materials summaries, introductions and conclusions - from the reports are included. Few reports were found covering methods for predicting the probable maximum distortion. The three predictive methods found are those of Melick, Jacox and Motycka. The latter two require extensive high response pressure measurements at the compressor face, while the Melick Technique can function with as few as one or two measurements.

  18. Extinction characterization of soot produced by laser ablating carbon fiber composite materials in air flow

    NASA Astrophysics Data System (ADS)

    Liu, Weiping; Ma, Zhiliang; Zhang, Zhenrong; Zhou, Menglian; Wei, Chenghua

    2015-05-01

    In order to research the dynamic process of energy coupling between an incident laser and a carbon fiber/epoxy resin composite material, an extinction characterization analysis of soot, which is produced by laser ablating and located in an air flow that is tangential to the surface of the composite material, is carried out. By the theory analyses, a relationship of mass extinction coefficient and extinction cross section of the soot is derived. It is obtained that the mass extinction coefficients of soot aggregates are the same as those of the primary particles when they contain only a few primary particles. This conclusion is significant when the soot is located in an air flow field, where the generations of the big soot aggregates are suppressed. A verification experiment is designed. The experiment employs Laser Induced Incandescence technology and laser extinction method for the soot synchronization diagnosis. It can derive a temporal curve of the mass extinction coefficient from the soot concentration and laser transmittance. The experiment results show that the mass extinction coefficient becomes smaller when the air flow velocity is higher. The reason is due to the decrease of the scatter effects of the soot particles. The experiment results agree with the theory analysis conclusion.

  19. Research in Structures, Structural Dynamics and Materials, 1990

    NASA Technical Reports Server (NTRS)

    Barthelemy, Jean-Francois M. (Compiler); Noor, Ahmed K. (Compiler)

    1990-01-01

    The Structural Dynamics and Materials (SDM) Conference was held on April 2 to 4, 1990 in Long Beach, California. This publication is a compilation of presentations of the work-in-progress sessions and does not contain papers from the regular sessions since those papers are published by AIAA in the conference proceedings.

  20. Bed and flow dynamics leading to sediment-wave initiation

    NASA Astrophysics Data System (ADS)

    Coleman, S. E.; Nikora, V. I.

    2009-04-01

    New PIV-based experiments show that the nascent seed waves from which both ripples and dunes develop are generated on planar mobile sediment beds in a two-stage process. The first stage comprises the motion of random sediment patches that reflect the passage of sediment-transport events caused by attached eddies. These eddy-transport events propagate at speeds that are proportional to their size and less than overhead eddy convection velocities, but potentially larger than local average fluid and sediment velocities. In the second stage, interactions of the moving patches result in a bed disturbance that exceeds a critical height and interrupts the bed-load layer. Quasi-regular seed waves are then generated successively downstream of this stabilised growing disturbance via a scour-deposition wave that arises from the requirement of sediment mass conservation and the sediment-transport and bed-stress distributions downstream of a bed perturbation. Seed waves are thereby of preferred lengths that scale with the grain size, i.e. length = O(130) grain diameters, agreeing with compiled measurements. This two-stage generation mechanism is valid for fully-turbulent hydraulically-smooth and rough-bed flows of small to large sediment transport rates. It is furthermore valid for laminar flows, although the critical disturbances leading to seed-wave generation arise through bed discontinuities, and not eddy-based sediment-transport events. The identified generation mechanism, which accounts for turbulence effects, explains the observed similar scaling of alluvial, closed-conduit and lightweight-sediment seed waves. The present measurements highlight further aspects of the flow dynamics preceding seed-wave generation, including: decreases in von Kármán's constant due to bed mobility, near-bed eddy convection speeds in excess of local double-averaged (in time and space) streamwise velocities, and the validity of the four-range spectral scaling model for open-channel flows

  1. Gas flow characteristics of a time modulated APPJ: the effect of gas heating on flow dynamics

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Sobota, A.; van Veldhuizen, E. M.; Bruggeman, P. J.

    2015-01-01

    This work investigates the flow dynamics of a radio-frequency (RF) non-equilibrium argon atmospheric pressure plasma jet. The RF power is at a frequency of 50 Hz or 20 kHz. Combined flow pattern visualizations (obtained by shadowgraphy) and gas temperature distributions (obtained by Rayleigh scattering) are used to study the formation of transient vortex structures in initial flow field shortly after the plasma is switched on and off in the case of 50 Hz modulation. The transient vortex structures correlate well with observed temperature differences. Experimental results of the fast modulated (20 kHz) plasma jet that does not induce changes of the gas temperature are also presented. The latter result suggests that momentum transfer by ions does not have dominant effect on the flow pattern close to the tube. It is argued that the increased gas temperature and corresponding gas velocity increase at the tube exit due to the plasma heating increases the admixing of surrounding air and reduces the effective potential core length. With increasing plasma power a reduction of the effective potential core length is observed with a minimum length for 5.6 W after which the length extends again. Possible mechanisms related to viscosity effects and ionic momentum transfer are discussed.

  2. Accurate direct Eulerian simulation of dynamic elastic-plastic flow

    SciTech Connect

    Kamm, James R; Walter, John W

    2009-01-01

    The simulation of dynamic, large strain deformation is an important, difficult, and unsolved computational challenge. Existing Eulerian schemes for dynamic material response are plagued by unresolved issues. We present a new scheme for the first-order system of elasto-plasticity equations in the Eulerian frame. This system has an intrinsic constraint on the inverse deformation gradient. Standard Godunov schemes do not satisfy this constraint. The method of Flux Distributions (FD) was devised to discretely enforce such constraints for numerical schemes with cell-centered variables. We describe a Flux Distribution approach that enforces the inverse deformation gradient constraint. As this approach is new and novel, we do not yet have numerical results to validate our claims. This paper is the first installment of our program to develop this new method.

  3. Hydrogels in Healthcare: From Static to Dynamic Material Microenvironments

    PubMed Central

    Kirschner, Chelsea M.; Anseth, Kristi S.

    2013-01-01

    Advances in hydrogel design have revolutionized the way biomaterials are applied to address biomedical needs. Hydrogels were introduced in medicine over 50 years ago and have evolved from static, bioinert materials to dynamic, bioactive microenvironments, which can be used to direct specific biological responses such as cellular ingrowth in wound healing or on-demand delivery of therapeutics. Two general classes of mechanisms, those defined by the user and those dictated by the endogenous cells and tissues, can control dynamic hydrogel microenvironments. These highly tunable materials have provided bioengineers and biological scientists with new ways to not only treat patients in the clinic but to study the fundamental cellular responses to engineered microenvironments as well. Here, we provide a brief history of hydrogels in medicine and follow with a discussion of the synthesis and implementation of dynamic hydrogel microenvironments for healthcare-related applications. PMID:23929381

  4. Greenland Flow Dynamics: (De)coding Process Understanding

    NASA Astrophysics Data System (ADS)

    Alley, R. B.; Parizek, B. R.; Anandakrishnan, S.; Applegate, P. J.; Christianson, K. A.; Dixon, T. H.; Holland, D. M.; Holschuh, N.; Keller, K.; Koellner, S. J.; Lampkin, D. J.; Muto, A.; Nicholas, R.; Stevens, N. T.; Voytenko, D.; Walker, R. T.

    2015-12-01

    Extensive modeling informed by the growing body of observational data yields important insights to the controlling processes operating across a range of spatiotemporal scales that have influenced the dynamic variability of the Greenland ice sheet. Pressurized basal lubrication enhances ice flow. This lubricating water is largely produced by basal and/or surface melt. For the North East Greenland Ice Stream, elevated geothermal heat flux (GHF) near its onset helps initiate the streaming flow. We suggest that the elevated GHF is likely caused by melt production and migration due to cyclical loading of the lithosphere over glacial timescales. On sub-seasonal timescales, surface meltwater production and transmission to the subglacial environment can enhance flow for pressurized, distributed hydraulic systems and diminish regional sliding for lower-pressure, channelized systems. However, in a warming climate, this lubricating source occurs across an expanding ablation zone, possibly softening shear margins and triggering basal sliding over previously frozen areas. Yet, the existence of active englacial conduits can lead to a plumbing network that helps preserve ice tongues and limit the loss of important buttressing of outlet glacier flow. Ocean forcing has been implicated in the variability of outlet glacier speeds around the periphery of Greenland. The extent and timescale over which those marginal changes influence inland flow depends on the basal rheology that, on a local scale, also influences the concentration of englacial stresses. Detailed observations of a calving event on Helheim Glacier have helped constrain diagnostic simulations of the pre- and post-calving stress states conducted in hopes of informing improved calving relationships. Furthermore, warm-water-mass variability within Irminger/Atlantic Waters off Greenland may play an important role in the monthly modulation of outlet glacier flow speeds, as has been observed for an ice stream draining into

  5. The influence of cooling on the advance of lava flows: insights from analogue experiments on the feedbacks between flow dynamics and thermal structure

    NASA Astrophysics Data System (ADS)

    Garel, F.; Kaminski, E.; Tait, S.; Limare, A.

    2012-12-01

    During an effusive volcanic eruption, the crisis management is mainly based on the prediction of lava flows advance and its velocity. The spreading of a lava flow, seen as a gravity current, depends on its "effective rheology" and the eruptive mass flux. These two parameters are not known a priori during an eruption and a key question is how to evaluate them in near real-time (rather than afterwards.) There is no generic macroscopic model for the rheology of an advancing lava flow, and analogue modelling is a precious tool to empirically estimate the rheology of a complex flow. We investigate through laboratory experiments the simultaneous spreading and cooling of horizontal currents fed at constant rate from a point source. The materials used are silicone oil (isoviscous), and poly-ethylene glycol (PEG) wax injected in liquid state and solidiying during its advance. In the isoviscous case, the temperature field is a passive tracer of the flow dynamics, whereas in the PEG experiments there is a feedback between the cooling of the flow and its effective rheology. We focus on the evolution of the current area and of the surface thermal structure, imaged with an infrared camera, to assess how the thermal structure can be related to the flow rate. The flow advance is continuous in the viscous case, and follows the predictions of Huppert (1982); in that case the surface temperature become steady after a transient time and the radiated heat flux is shown to be proportional to the input rate. For the PEG experiments, the spreading occurs through an alternation of stagnation and overflow phases, with a mean spreading rate decreasing as the experiment goes on. As in the case of lava flows, these experiments can exhibit a compound flow field, solid levees, thermal erosion, liquid overflows and channelization. A key observation is that the effective rheology of the solifying PEG material depends on the input flow rate, with high input rates yielding a rheology closer to the

  6. Dissipative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media

    SciTech Connect

    Paul Meakin; Zhijie Xu

    2008-06-01

    Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales – the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included

  7. Brownian Dynamics Simulation of two-dimensional nanosheets under extensional flow

    NASA Astrophysics Data System (ADS)

    Xu, Yueyi; Green, Micah

    2014-11-01

    We investigated the morphology change of two-dimensional nanosheets under extensional flow using a coarse-grained model. Nanosheets such as graphene are promising materials for a variety of materials and electronics applications; extensional flow fields are used to cast or process liquid nanosheet dispersions in several processing techniques, including spin coating and compression molding. Process parameters, including bending stiffness and Weissenberg numbers can have a significant impact on the nanosheet morphology and the physical properties of the finished products. We use Brownian Dynamics simulations to study the impact of external flow field on a two-dimensional bead-rod lattice model. Our model was previously demonstrated for steady shear flow. Here we studied the change of morphology of graphene over time and varied the sheet size, bending stiffness and Weissenberg number. Our results showed a flattening behavior that increases with Weissenberg number. Our results also showed significant differences between nanosheets as a function of bending stiffness, with contrasting ``plate'' and ``washrag'' results under extension. The intrinsic viscosity first experiences a drop with Weissenberg number followed by a plateau associated with maximum extension.

  8. The effect of shear flow on nanoparticle agglomeration and deposition in in vitro dynamic flow models.

    PubMed

    Grabinski, Christin; Sharma, Monita; Maurer, Elizabeth; Sulentic, Courtney; Mohan Sankaran, R; Hussain, Saber

    2016-01-01

    Traditional in vitro toxicity experiments typically involve exposure of a mono- or co-culture of cells to nanoparticles (NPs) in static conditions with the assumption of 100% deposition (i.e. dose) of well-dispersed particles. However, cellular dose can be affected by agglomeration and the unique transport kinetics of NPs in biological media. We hypothesize that shear flow can address these issues and achieve more predictable dosage. Here, we compare the behavior of gold NPs with diameters of 5, 10 and 30 nm in static and dynamic in vitro models. We also utilize transport modeling to approximate the shear rate experienced by the cells in dynamic conditions to evaluate physiological relevance. The transport kinetics show that NP behavior is governed by both gravity and diffusion forces in static conditions and only diffusion in dynamic conditions. Our results reveal that dynamic systems are capable of producing a more predictable dose compared to static systems, which has strong implications for improving repeatability in nanotoxicity assessments. PMID:25961858

  9. Cellular Manufacturing System with Dynamic Lot Size Material Handling

    NASA Astrophysics Data System (ADS)

    Khannan, M. S. A.; Maruf, A.; Wangsaputra, R.; Sutrisno, S.; Wibawa, T.

    2016-02-01

    Material Handling take as important role in Cellular Manufacturing System (CMS) design. In several study at CMS design material handling was assumed per pieces or with constant lot size. In real industrial practice, lot size may change during rolling period to cope with demand changes. This study develops CMS Model with Dynamic Lot Size Material Handling. Integer Linear Programming is used to solve the problem. Objective function of this model is minimizing total expected cost consisting machinery depreciation cost, operating costs, inter-cell material handling cost, intra-cell material handling cost, machine relocation costs, setup costs, and production planning cost. This model determines optimum cell formation and optimum lot size. Numerical examples are elaborated in the paper to ilustrate the characterictic of the model.

  10. Statistical prediction of dynamic distortion of inlet flow using minimum dynamic measurement. An application to the Melick statistical method and inlet flow dynamic distortion prediction without RMS measurements

    NASA Technical Reports Server (NTRS)

    Schweikhard, W. G.; Chen, Y. S.

    1986-01-01

    The Melick method of inlet flow dynamic distortion prediction by statistical means is outlined. A hypothetic vortex model is used as the basis for the mathematical formulations. The main variables are identified by matching the theoretical total pressure rms ratio with the measured total pressure rms ratio. Data comparisons, using the HiMAT inlet test data set, indicate satisfactory prediction of the dynamic peak distortion for cases with boundary layer control device vortex generators. A method for the dynamic probe selection was developed. Validity of the probe selection criteria is demonstrated by comparing the reduced-probe predictions with the 40-probe predictions. It is indicated that the the number of dynamic probes can be reduced to as few as two and still retain good accuracy.

  11. Experimental and analytical dynamic flow characteristics of an axial-flow fan from an air cushion landing system model

    NASA Technical Reports Server (NTRS)

    Thompson, W. C.; Boghani, A. B.; Leland, T. J. W.

    1977-01-01

    An investigation was conducted to compare the steady-state and dynamic flow characteristics of an axial-flow fan which had been used previously as the air supply fan for some model air cushion landing system studies. Steady-state flow characteristics were determined in the standard manner by using differential orifice pressures for the flow regime from free flow to zero flow. In this same regime, a correlative technique was established so that fan inlet and outlet pressures could be used to measure dynamic flow as created by a rotating damper. Dynamic tests at damper frequencies up to 5 Hz showed very different flow characteristics when compared with steady-state flow, particularly with respect to peak pressures and the pressure-flow relationship at fan stall and unstall. A generalized, rational mathematical fan model was developed based on physical fan parameters and a steady-state flow characteristic. The model showed good correlation with experimental tests at damper frequencies up to 5 Hz.

  12. Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Schwarz, J.-O.; Enzmann, F.

    2012-04-01

    chemical species to the growth site or by incorporation of material into the crystal structure. Hence a flexible growth rate is applied that adapts for both cases. After reaching a threshold value of generated vein material, the simulation is stopped and the generated geometry exported. Subsequently the fluid flow field for the new geometry is simulated by GeoDict, followed by simulation of vein growth. By iterative calculations of fluid flow and vein growth we couple the two processes and simulate dynamic vein growth. Although the model is very simplistic in the current state, we anticipate that it reproduces crucial characteristics of vein growth and hence yield further insights into vein generation in 3D. Ogilvie SR, Isakov E, Glover PWJ (2006) Fluid flow through rough fractures in rocks. II: A new matching model for rough rock fractures. Earth and Planetary Science Letters 241:454-465 Wiegmann A (2007) Computation of the permeability of porous materials from their microstructure by FFF-Stokes. In: Prätzel-Wolters D (ed) Berichte des Fraunhofer ITWM, vol. 129, Kaiserslautern, p 24

  13. Mixing dynamics and pattern formation around flow stagnation points

    NASA Astrophysics Data System (ADS)

    Hidalgo, Juan J.; Dentz, Marco

    2016-04-01

    We study the mixing of two reactive fluids in the presence of convective instabilities. Such system is characterized by the formation of unique porosity patterns and mixing dynamics linked to the evolution of vortices and stagnation points. Around them, the fluid-fluid interface is stretched and compressed, which enhances mixing and triggers chemical reactions, and the system can be analyzed using fluid deformation model. We consider velocity fields generated by a double gyre synthetic velocity field and Rayleigh-Bénard and Rayleigh-Taylor instabilities. The different flow structures can be visualized by the strain rate and the finite time Lyapunov exponents. We show that the mixing enhancement given by the scalar dissipation rate is controlled by the equilibrium between interface compression and diffusion, which depends on the velocity field configuration. Furthermore, we establish a quantitative relation between the mixing rate and the evolution of the potential energy of the fluid when convection is driven by density instabilities.

  14. Aggregation and fragmentation dynamics of inertial particles in chaotic flows.

    PubMed

    Zahnow, Jens C; Vilela, Rafael D; Feudel, Ulrike; Tél, Tamás

    2008-05-01

    Inertial particles advected in chaotic flows often accumulate in strange attractors. While moving in these fractal sets they usually approach each other and collide. Here we consider inertial particles aggregating upon collision. The new particles formed in this process are larger and follow the equation of motion with a new parameter. These particles can in turn fragment when they reach a certain size or shear forces become sufficiently large. The resulting system consists of a large set of coexisting dynamical systems with a varying number of particles. We find that the combination of aggregation and fragmentation leads to an asymptotic steady state. The asymptotic particle size distribution depends on the mechanism of fragmentation. The size distributions resulting from this model are consistent with those found in raindrop statistics and in stirring tank experiments.

  15. Application of carbon materials in redox flow batteries

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Barun Kumar; Brandon, N. P.; Hajimolana, S. A.; Tariq, F.; Yufit, V.; Hashim, M. A.; Hussain, M. A.; Low, C. T. J.; Aravind, P. V.

    2014-05-01

    The redox flow battery (RFB) has been the subject of state-of-the-art research by several groups around the world. Most work commonly involves the application of various low-cost carbon-polymer composites, carbon felts, cloth, paper and their different variations for the electrode materials of the RFB. Usually, the carbon-polymer composite electrode has relatively high bulk resistivity and can be easily corroded when the polarised potential on the anode is more positive than that of oxygen evolution and this kind of heterogeneous corrosion may lead to battery failure due to electrolyte leakage. Therefore, carbon electrodes with high electrical conductivity, acid-resistance and electrochemical stability are highly desirable. This review discusses such issues in depth and presents an overview on future research directions that may help commercialise RFB technology. A comprehensive discussion is provided on the advances made using nanotechnology and it is envisaged that if this is combined with ionic liquid technology, major advantages could be realised. In addition the identification of RFB failure mechanisms by means of X-ray computed nano tomography is expected to bring added benefits to the technology.

  16. Material Flow for the Intentional Use of Mercury in China.

    PubMed

    Lin, Yan; Wang, Shuxiao; Wu, Qingru; Larssen, Thorjørn

    2016-03-01

    Intentional use of mercury (Hg) is an important contributor to the release of Hg into the environment. This study presents the first inventory of material flow for intentional use of Hg in China. The total amount of Hg used in China increased from 803 ± 95 tons in 2005 to its peak level of 1272 ± 110 tons in 2011. Vinyl chloride monomer (VCM) production is the largest user of Hg, accounting for over 60% of the total demand. As regulations on Hg content in products are tightening globally against the background of the Minamata Convention, the total demand will decrease. Medical devices will likely still use a significant amount of Hg and become the second largest user of Hg if no proactive measures are taken. Significant knowledge gaps exist in China for catalyst recycling sector. Although more than half of the Hg used is recycled, this sector has not drawn enough attention. There are also more than 200 tons of Hg that had unknown fates in 2011; very little information exists related to this issue. Among the final environmental fates, landfill is the largest receiver of Hg, followed by air, water, and soil.

  17. Computational Fluid Dynamic simulations of pipe elbow flow.

    SciTech Connect

    Homicz, Gregory Francis

    2004-08-01

    One problem facing today's nuclear power industry is flow-accelerated corrosion and erosion in pipe elbows. The Korean Atomic Energy Research Institute (KAERI) is performing experiments in their Flow-Accelerated Corrosion (FAC) test loop to better characterize these phenomena, and develop advanced sensor technologies for the condition monitoring of critical elbows on a continuous basis. In parallel with these experiments, Sandia National Laboratories is performing Computational Fluid Dynamic (CFD) simulations of the flow in one elbow of the FAC test loop. The simulations are being performed using the FLUENT commercial software developed and marketed by Fluent, Inc. The model geometry and mesh were created using the GAMBIT software, also from Fluent, Inc. This report documents the results of the simulations that have been made to date; baseline results employing the RNG k-e turbulence model are presented. The predicted value for the diametrical pressure coefficient is in reasonably good agreement with published correlations. Plots of the velocities, pressure field, wall shear stress, and turbulent kinetic energy adjacent to the wall are shown within the elbow section. Somewhat to our surprise, these indicate that the maximum values of both wall shear stress and turbulent kinetic energy occur near the elbow entrance, on the inner radius of the bend. Additional simulations were performed for the same conditions, but with the RNG k-e model replaced by either the standard k-{var_epsilon}, or the realizable k-{var_epsilon} turbulence model. The predictions using the standard k-{var_epsilon} model are quite similar to those obtained in the baseline simulation. However, with the realizable k-{var_epsilon} model, more significant differences are evident. The maximums in both wall shear stress and turbulent kinetic energy now appear on the outer radius, near the elbow exit, and are {approx}11% and 14% greater, respectively, than those predicted in the baseline calculation

  18. Multi-material incompressible flow simulation using the moment-of-fluid method

    SciTech Connect

    Garimella, R V; Schofield, S P; Lowrie, R B; Swartz, B K; Christon, M A; Dyadechko, V

    2009-01-01

    The Moment-of-Fluid interface reconstruction technique is implemented in a second order accurate, unstructured finite element variable density incompressible Navier-Stokes solver. For flows with multiple materials, MOF significantly outperforms existing first and second order interface reconstruction techniques. For two material flows, the performance of MOF is similar to other interface reconstruction techniques. For strongly driven bouyant flows, the errors in the flow solution dominate and all the interface reconstruction techniques perform similarly.

  19. Dynamic viscoelastic properties of vinyl polysiloxane denture soft lining materials.

    PubMed

    Abe, Y; Taji, T; Hiasa, K; Tsuga, K; Akagawa, Y

    2009-12-01

    The aim of this study was to investigate the dynamic viscoelastic properties of seven commercially available vinyl polysiloxane denture soft lining materials. Five rectangular specimens (2 x 10 x 30 mm) were prepared from each material. The complex modulus E* (MPa) and loss tangent (tan delta) of each specimen were determined with a non-resonance forced vibration method using an automatic dynamic viscoelastometer at 1 Hz after 1 day of dry storage, and after 1, 30, 60, 90 and 180 days of wet storage at 37 degrees C. All data were analysed using one-way anova and Bonferroni/Dunn's test for multiple comparisons with a significance level of P < 0.01. All materials varied widely in terms of viscoelasticities and showed both an increase in E* and a decrease in tan delta at 1 Hz after the 1-day wet storage. After 60 days of wet storage, both E* and tan delta did not change significantly. The stiffer materials (>30% filler content) with high E* values (>2.00 MPa) showed elastic behaviour with tan delta values of around 0.03. The softer materials (6% filler content) with high tan delta values (initial value > 0.10) showed viscous behaviour and were easily affected by water absorption after the 1-day wet storage. It can be concluded that for the proper selection of vinyl polysiloxane denture soft lining materials, it is very important to evaluate the viscoelastic properties after 60 days of wet storage. PMID:19840358

  20. Low frequency sound attenuation in a flow duct using a thin slow sound material.

    PubMed

    Aurégan, Yves; Farooqui, Maaz; Groby, Jean-Philippe

    2016-05-01

    A thin subwavelength material that can be flush mounted in a duct and that gives an attenuation band at low frequencies in air flow channels is presented. To decrease the material thickness, the sound is slowed in the material using folded side branch tubes. The impedance of the material is compared to the optimal value given by the Cremer condition, which can differ greatly from the air characteristic impedance. Grazing flow on this material increases the losses at the interface between the flow and the material.

  1. Effect of weld line shape on material flow during friction stir welding of aluminum and steel

    NASA Astrophysics Data System (ADS)

    Yasui, Toshiaki; Ando, Naoyuki; Morinaka, Shinpei; Mizushima, Hiroki; Fukumoto, Masahiro

    2014-08-01

    The effect of weld line shape on material flow during the friction stir welding of aluminum and steel was investigated. The material flow velocity was evaluated with simulated experiments using plasticine as the simulant material. The validity of the simulated experiments was verified by the marker material experiments on aluminum. The circumferential velocity of material around the probe increased with the depth from the weld surface. The effect is significant in cases where the advancing side is located on the outside of curve and those with higher curvature. Thus, there is an influence of weld line shape on material flow.

  2. Numerical simulation of two-dimensional single- and multiple-material flow fields

    SciTech Connect

    Lopez, A.R.; Baty, R.S.; Kashiwa, B.A.

    1992-03-01

    Over the last several years, Sandia National Laboratories has had an interest in developing capabilities to predict the flow fields around vehicles entering or exiting the water at a wide range of speeds. Such prediction schemes have numerous engineering applications in the design of weapon systems. For example, such a scheme could be used to predict the forces and moments experienced by an air-launched anti-submarine weapon on water-entry. Furthermore, a water-exit prediction capability could be used to model the complicated surface closure jet resulting from a missile being shot out of the water. The CCICE (Cell-Centered Implicit Continuous-fluid Eulerian) code developed at Los Alamos National Laboratory (LANL) was chosen to provide the fluid dynamics solver for high speed water-entry and water-exit problems. This implicit time-marching, two-dimensional, conservative, finite-volume code solves the multi-material, compressible, inviscid fluid dynamics equations. The incompressible version of the CCICE code, CCMAC (cell-Centered Marker and Cell), was chosen for low speed water- entry and water-exit problems in order to reduce the computational expense. These codes were chosen to take advantage of certain advances in numerical methods for computational fluid dynamics (CFD) that have taken place at LANL. Notable among these advances is the ability to perform implicit, multi-material, compressible flow simulations, with a fully cell-centered data structure. This means that a single set of control volumes are used, on which a discrete form of the conservation laws is satisfied. This is in control to the more classical staggered mesh methods, in which separate control volumes are defined for mass and momentum. 12 refs.

  3. Numerical simulation of two-dimensional single- and multiple-material flow fields

    SciTech Connect

    Lopez, A.R.; Baty, R.S. ); Kashiwa, B.A. )

    1992-01-01

    Over the last several years, Sandia National Laboratories has had an interest in developing capabilities to predict the flow fields around vehicles entering or exiting the water at a wide range of speeds. Such prediction schemes have numerous engineering applications in the design of weapon systems. For example, such a scheme could be used to predict the forces and moments experienced by an air-launched anti-submarine weapon on water-entry. Furthermore, a water-exit prediction capability could be used to model the complicated surface closure jet resulting from a missile being shot out of the water. The CCICE (Cell-Centered Implicit Continuous-fluid Eulerian) code developed at Los Alamos National Laboratory (LANL) was chosen to provide the fluid dynamics solver for high speed water-entry and water-exit problems. This implicit time-marching, two-dimensional, conservative, finite-volume code solves the multi-material, compressible, inviscid fluid dynamics equations. The incompressible version of the CCICE code, CCMAC (cell-Centered Marker and Cell), was chosen for low speed water- entry and water-exit problems in order to reduce the computational expense. These codes were chosen to take advantage of certain advances in numerical methods for computational fluid dynamics (CFD) that have taken place at LANL. Notable among these advances is the ability to perform implicit, multi-material, compressible flow simulations, with a fully cell-centered data structure. This means that a single set of control volumes are used, on which a discrete form of the conservation laws is satisfied. This is in control to the more classical staggered mesh methods, in which separate control volumes are defined for mass and momentum. 12 refs.

  4. Computational Flow Dynamics in a Geometric Model of Intussusceptive Angiogenesis

    PubMed Central

    Filipovic, Nenad; Tsuda, Akira; Lee, Grace S.; Miele, Lino F.; Lin, Miao; Konerding, Moritz A.; Mentzer, Steven J.

    2009-01-01

    Intussusceptive angiogenesis is a process that forms new blood vessels by the intraluminal division of a single blood vessel into two lumens. Referred to as nonsprouting or intussusceptive angiogenesis, this angiogenic process has been described in morphogenesis and chronic inflammation. Mechanical forces are relevant to the structural changes associated with intussusceptive angiogenesis because of the growing evidence that physiologic forces influence gene transcription. To provide a detailed analysis of the spatial distribution of physiologic shear stresses, we developed a 3D finite element model of the intraluminal intussusceptive pillar. Based on geometries observed in adult intussusceptive angiogenesis, physiologic shear stress distribution was studied at pillar sizes ranging from 1μm to 10μm. The wall shear stress calculations demonstrated a marked spatial dependence with discrete regions of high shear stress on the intraluminal pillar and lateral vessel wall. Further, the intussusceptive pillar created a “dead zone” of low wall shear stress between the pillar and vessel bifurcation apex. We conclude that the intraluminal flow fields demonstrate sufficient spatial resolution and dynamic range to participate in the regulation of intussusceptive angiogenesis by intraluminal flow fields. PMID:19715707

  5. Lagrangian, Eulerian, and Dynamically Accessible Stability of MHD flows

    NASA Astrophysics Data System (ADS)

    Andreussi, Tommaso; Morrison, Philip; Pegoraro, Francesco

    2012-10-01

    Stability conditions of magnetized plasma flows are obtained by exploiting the Hamiltonian structure of the magnetohydrodynamics (MHD) equations and, in particular, by using three kinds of energy principles. First, the Lagrangian energy principle of Ref. [1] is introduced and sufficient stability conditions are presented. Next, plasma flows are described in terms of Eulerian variables and the noncanonical Hamiltonian formulation of MHD [2] is exploited. For symmetric equilibria, the energy-Casimir principle of Ref. [3] is expanded to second order and sufficient conditions for stability to symmetric perturbation are obtained. Then, dynamically accessible variations, i.e. variations that explicitly preserve the invariants of the system, are introduced and the respective energy principle is considered. As in Ref. [4], general criteria for stability are obtained. A comparison between the three different approaches is finally presented. [4pt] [1] E.A. Frieman and M. Rotenberg, Rev. Mod. Phys., 32 898 (1960).[0pt] [2] P.J. Morrison, J.M. Greene, Phys. Rev. Lett., 45 790 (1980).[0pt] [3] T. Andreussi, P.J. Morrison, F. Pegoraro, Phys. Plasmas, 19 052102 (2012).[0pt] [4] E. Hameiri, Phys. Plasmas, 10 2643 (2003).

  6. Dynamic Load Balancing Strategies for Parallel Reacting Flow Simulations

    NASA Astrophysics Data System (ADS)

    Pisciuneri, Patrick; Meneses, Esteban; Givi, Peyman

    2014-11-01

    Load balancing in parallel computing aims at distributing the work as evenly as possible among the processors. This is a critical issue in the performance of parallel, time accurate, flow simulators. The constraint of time accuracy requires that all processes must be finished with their calculation for a given time step before any process can begin calculation of the next time step. Thus, an irregularly balanced compute load will result in idle time for many processes for each iteration and thus increased walltimes for calculations. Two existing, dynamic load balancing approaches are applied to the simplified case of a partially stirred reactor for methane combustion. The first is Zoltan, a parallel partitioning, load balancing, and data management library developed at the Sandia National Laboratories. The second is Charm++, which is its own machine independent parallel programming system developed at the University of Illinois at Urbana-Champaign. The performance of these two approaches is compared, and the prospects for their application to full 3D, reacting flow solvers is assessed.

  7. A Lagrangian model of Copepod dynamics in turbulent flows

    NASA Astrophysics Data System (ADS)

    Ardeshiri, Hamidreza; Benkeddad, Ibtissem; Schmitt, Francois G.; Souissi, Sami; Toschi, Federico; Calzavarini, Enrico

    2016-04-01

    Planktonic copepods are small crustaceans that have the ability to swim by quick powerful jumps. Such an aptness is used to escape from high shear regions, which may be caused either by flow perturbations, produced by a large predator such as fish larave, or by the inherent highly turbulent dynamics of the ocean. Through a combined experimental and numerical study, we investigate the impact of jumping behaviour on the small-scale patchiness of copepods in a turbulent environment. Recorded velocity tracks of copepods displaying escape response jumps in still water are used to define and tune a Lagrangian Copepod (LC) model. The model is further employed to simulate the behaviour of thousands of copepods in a fully developed hydrodynamic turbulent flow obtained by direct numerical simulation of the Navier-Stokes equations. First, we show that the LC velocity statistics is in qualitative agreement with available experimental observations of copepods in turbulence. Second, we quantify the clustering of LC, via the fractal dimension D2. We show that D2 can be as low as 2.3, corresponding to local sheetlike aggregates, and that it critically depends on the shear-rate sensitivity of the proposed LC model. We further investigate the effect of jump intensity, jump orientation and geometrical aspect ratio of the copepods on the small-scale spatial distribution. Possible ecological implications of the observed clustering on encounter rates and mating success are discussed.

  8. Modeling self-consistent multi-class dynamic traffic flow

    NASA Astrophysics Data System (ADS)

    Cho, Hsun-Jung; Lo, Shih-Ching

    2002-09-01

    In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.

  9. Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Marston, J. B.; Hastings, M. B.

    2005-03-01

    The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.

  10. Continuous Processing of Active Pharmaceutical Ingredients Suspensions via Dynamic Cross-Flow Filtration.

    PubMed

    Gursch, Johannes; Hohl, Roland; Toschkoff, Gregor; Dujmovic, Diana; Brozio, Jörg; Krumme, Markus; Rasenack, Norbert; Khinast, Johannes

    2015-10-01

    Over the last years, continuous manufacturing has created significant interest in the pharmaceutical industry. Continuous filtration at low flow rates and high solid loadings poses, however, a significant challenge. A commercially available, continuously operating, dynamic cross-flow filtration device (CFF) is tested and characterized. It is shown that the CFF is a highly suitable technology for continuous filtration. For all tested model active pharmaceutical ingredients, a material-specific strictly linear relationship between feed and permeate rate is identified. Moreover, for each tested substance, a constant concentration factor is reached. A one-parameter model based on a linear equation is suitable to fully describe the CFF filtration performance. This rather unexpected finding and the concentration polarization layer buildup is analyzed and a basic model to describe the observed filtration behavior is developed.

  11. Studies of powder flow using a recording powder flowmeter and measurement of the dynamic angle of repose.

    PubMed

    Hegde, R P; Rheingold, J L; Welch, S; Rhodes, C T

    1985-01-01

    This paper describes the utility of the dynamic measurement of the angle of repose for pharmaceutical systems, using a variable rotating cylinder to quantify powder flow. The dynamic angle of repose of sodium chloride powder sieve fractions was evaluated using a variable rotating cylinder. The relationship between the static and the dynamic angle of repose is discussed. The dynamic angle of repose of six lots of a multivitamin preparation were compared for inter- and intralot variation. In both cases, no significant differences (p greater than 0.05) were observed. In the multivitamin formulation, lubricants at lower concentration levels did not show a significant effect (p greater than 0.05) on the dynamic angle of repose when compared with flow rates. The effect of different hopper sizes and geometry has been evaluated using the recording powder flowmeter. The results indicate that although different hoppers affect the quantitative nature of the results, the same general trends are apparent. Thus, it appears possible to use a recording powder flowmeter with small quantities of material to predict the effect of formulation and processing variables on the flow of production scale quantities. This paper does not describe a comprehensive evaluation of the pharmaceutical utility of measuring the dynamic angle of repose. However, the results discussed are not encouraging and suggest that the recording powder flowmeter is more sensitive to the effects of formulation and production variables on powder flow.

  12. Crushed cement concrete substitution for construction aggregates; a materials flow analysis

    USGS Publications Warehouse

    Kelly, Thomas

    1998-01-01

    An analysis of the substitution of crushed cement concrete for natural construction aggregates is performed by using a materials flow diagram that tracks all material flows into and out of the cement concrete portion of the products made with cement concrete: highways, roads, and buildings. Crushed cement concrete is only one of the materials flowing into these products, and the amount of crushed cement concrete substituted influences the amount of other materials in the flow. Factors such as availability and transportation costs, as well as physical properties, that can affect stability and finishability, influence whether crushed cement concrete or construction aggregates should be used or predominate for a particular end use.

  13. Dynamic deformation of heterogeneous media: A materials scientist's perspective

    NASA Astrophysics Data System (ADS)

    Kumar, Mukul

    2015-06-01

    Traditionally, materials design assumes full density during the usage of materials, and rather explicitly excludes open spaces. However, with increasing usage in structural applications of cellular solids and the advent of additive manufacturing to make intricate shapes this assumption is flying out the window. But this raises the question of how we deal with the underlying physics associated with the void space, particularly when such materials architectures are dynamically loaded. This builds upon decades of work on granular systems, particularly powder composites and sand. Using as examples polymeric structured lattices and particle composite mixtures we will examine the influence of the void space on the overall response of the material mesostructure. This work was performed under the auspices of the US DOE by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Simulating Fiber Ordering and Aggregation In Shear Flow Using Dissipative Particle Dynamics

    NASA Astrophysics Data System (ADS)

    Stimatze, Justin T.

    We have developed a mesoscale simulation of fiber aggregation in shear flow using LAMMPS and its implementation of dissipative particle dynamics. Understanding fiber aggregation in shear flow and flow-induced microstructural fiber networks is critical to our interest in high-performance composite materials. Dissipative particle dynamics enables the consideration of hydrodynamic interactions between fibers through the coarse-grained simulation of the matrix fluid. Correctly simulating hydrodynamic interactions and accounting for fluid forces on the microstructure is required to correctly model the shear-induced aggregation process. We are able to determine stresses, viscosity, and fiber forces while simulating the evolution of a model fiber system undergoing shear flow. Fiber-fiber contact interactions are approximated by combinations of common pairwise forces, allowing the exploration of interaction-influenced fiber behaviors such as aggregation and bundling. We are then able to quantify aggregate structure and effective volume fraction for a range of relevant system and fiber-fiber interaction parameters. Our simulations have demonstrated several aggregate types dependent on system parameters such as shear rate, short-range attractive forces, and a resistance to relative rotation while in contact. A resistance to relative rotation at fiber-fiber contact points has been found to strongly contribute to an increased angle between neighboring aggregated fibers and therefore an increase in average aggregate volume fraction. This increase in aggregate volume fraction is strongly correlated with a significant enhancement of system viscosity, leading us to hypothesize that controlling the resistance to relative rotation during manufacturing processes is important when optimizing for desired composite material characteristics.

  15. Modeling the dynamic crush of impact mitigating materials

    SciTech Connect

    Logan, R.W.; McMichael, L.D.

    1995-05-12

    Crushable materials are commonly utilized in the design of structural components to absorb energy and mitigate shock during the dynamic impact of a complex structure, such as an automobile chassis or drum-type shipping container. The development and application of several finite-element material models which have been developed at various times at LLNL for DYNA3D will be discussed. Between the models, they are able to account for several of the predominant mechanisms which typically influence the dynamic mechanical behavior of crushable materials. One issue we addressed was that no single existing model would account for the entire gambit of constitutive features which are important for crushable materials. Thus, we describe the implementation and use of an additional material model which attempts to provide a more comprehensive model of the mechanics of crushable material behavior. This model combines features of the pre-existing DYNA models and incorporates some new features as well in an invariant large-strain formulation. In addition to examining the behavior of a unit cell in uniaxial compression, two cases were chosen to evaluate the capabilities and accuracy of the various material models in DYNA. In the first case, a model for foam filled box beams was developed and compared to test data from a 4-point bend test. The model was subsequently used to study its effectiveness in energy absorption in an aluminum extrusion, spaceframe, vehicle chassis. The second case examined the response of the AT-400A shipping container and the performance of the overpack material during accident environments selected from 10CFR71 and IAEA regulations.

  16. Modeling the dynamic crush of impact mitigating materials

    NASA Astrophysics Data System (ADS)

    Logan, R. W.; McMichael, L. D.

    1995-05-01

    Crushable materials are commonly utilized in the design of structural components to absorb energy and mitigate shock during the dynamic impact of a complex structure, such as an automobile chassis or drum-type shipping container. The development and application of several finite-element material models which have been developed at various times at LLNL for DYNA3D are discussed. Between the models, they are able to account for several of the predominant mechanisms which typically influence the dynamic mechanical behavior of crushable materials. One issue we addressed was that no single existing model would account for the entire gambit of constitutive features which are important for crushable materials. Thus, we describe the implementation and use of an additional material model which attempts to provide a more comprehensive model of the mechanics of crushable material behavior. This model combines features of the pre-existing DYNA models and incorporates some new features as well in an invariant large-strain formulation. In addition to examining the behavior of a unit cell in uniaxial compression, two cases were chosen to evaluate the capabilities and accuracy of the various material models in DYNA. In the first case, a model for foam filled box beams was developed and compared to test data from a four-point bend test. The model was subsequently used to study its effectiveness in energy absorption in an aluminum extrusion, spaceframe, vehicle chassis. The second case examined the response of the AT-400A shipping container and the performance of the overpack material during accident environments selected from 10CFR71 and IAEA regulations.

  17. Large scale molecular dynamics modeling of materials fabrication processes

    SciTech Connect

    Belak, J.; Glosli, J.N.; Boercker, D.B.; Stowers, I.F.

    1994-02-01

    An atomistic molecular dynamics model of materials fabrication processes is presented. Several material removal processes are shown to be within the domain of this simulation method. Results are presented for orthogonal cutting of copper and silicon and for crack propagation in silica glass. Both copper and silicon show ductile behavior, but the atomistic mechanisms that allow this behavior are significantly different in the two cases. The copper chip remains crystalline while the silicon chip transforms into an amorphous state. The critical stress for crack propagation in silica glass was found to be in reasonable agreement with experiment and a novel stick-slip phenomenon was observed.

  18. Rheology and particle dynamics near the flow-arrest transition: a constant stress and pressure approach

    NASA Astrophysics Data System (ADS)

    Wang, Mu; Brady, John

    2015-11-01

    We use Brownian dynamics to investigate the relation between the rheology and the microscopic particle dynamics in dense colloidal dispersions at constant stress and pressure. For each imposed stress/pressure pair, the suspension exhibits distinct strain rate distributions depending on the observation time. We measure the long-time self-diffusivity (LTSD) corresponding to the strain rate (inverse shear viscosity) and find that the LTSD results at different imposed stresses collapse to master curves that depends only on the imposed pressure. For low-pressure suspensions, the stress-scaled LTSD diverges at a finite scaled strain rate due to its liquid-like behavior, while at high pressures the scaled LTSD emerges from zero due to the flow-arrest transition. On the other hand, we discover that the particle friction coefficient--the ratio of the particle shear stress to the particle (osmotic) pressure--is proportional to the strain rate scaled by the LTSD for all flowing suspensions. Our results demonstrate the effectiveness of the constant stress and pressure approach for dense suspension rheology, and show that, although the flow of amorphous materials is inherently far-from-equilibrium without a linear response regime, a mean-field description should remain valid.

  19. Dynamic pore-pressure fluctuations in rapidly shearing granular materials

    USGS Publications Warehouse

    Iverson, R.M.; LaHusen, R.G.

    1989-01-01

    Results from two types of experiments show that intergranular pore pressures fluctuated dynamically during rapid, steady shear deformation of water-saturated granular materials. During some fluctuations, the pore water locally supported all normal and shear stresses, while grain-contact stresses transiently fell to zero. Fluctuations also propagated outward from the shear zone; this process modifies grain-contact stresses in adjacent areas and potentially instigates shear-zone growth.

  20. Modelling dynamic compaction of porous materials with the overstress approach

    NASA Astrophysics Data System (ADS)

    Partom, Y.

    2014-05-01

    To model compaction of a porous material we need 1) an equation of state of the porous material in terms of the equation of state of its matrix, and 2) a compaction law. For an equation of state it is common to use Herrmann's suggestion, as in his Pα model. For a compaction law it is common to use a quasi-static compaction relation obtained from 1) a meso-scale model (as in Carroll and Holt's spherical shell model), or from 2) quasi-static tests. Here we are interested in dynamic compaction, like in a planar impact test. In dynamic compaction the state may change too fast for the state point to follow the quasi-static compaction curve. We therefore get an overstress situation. The state point moves out of the quasi-static compaction boundary, and only with time collapses back towards it at a certain rate. In this way the dynamic compaction event becomes rate dependent. In the paper we first write down the rate equations for dynamic compaction according to the overstress approach. We then implement these equations in a hydro-code and run some examples. We show how the overstress rate parameter can be calibrated from tests.

  1. Numerical modeling of plasma meta-materials for electromagnetic energy flow control

    NASA Astrophysics Data System (ADS)

    Kourtzanidis, Konstantinos; Pederson, Dylan; Raja, Laxminarayan

    2015-09-01

    Meta-materials are a new and promising technology that could enable advances in several scientific fields - especially in electromagnetic (EM) energy flow control. These materials though present a major drawback: They can only interact with a limited range of EM frequencies and their structure is pre-defined, rendering them non-tunable and non-reconfigurable. Instead of using structural crystal patterns as in common meta-materials, micro-plasma discharges can be used to control the EM energy propagation. Plasmas present resonant frequencies depending on their degree of ionization - their charged particles density. By adjusting the plasma density, different EM wave frequencies can be manipulated - controlled. In this article, we present 2D and 3D numerical results of plasma meta-materials and their interaction with high frequency (HF) EM waves. Maxwell's equations are coupled with the electron momentum equation and a quasi-neutral fluid description for the plasma dynamics. We study the interaction between a plasma array and HF EM waves demonstrating significant reduction in the transmitted EM energy. Remote ignition of the plasma micro-discharges by the EM waves is also numerically investigated in a simplified configuration. Supported by the Air Force Office of Scientific Research (AFOSR) through a Multi-University Research Initiative (MURI) grant titled ``Plasma-Based Reconfigurable Photonic Crystals and Metamaterials'' with Dr. Mitat Birkan as the program manager.

  2. The dynamics of a channel-fed lava flow on Pico Partido volcano, Lanzarote

    NASA Astrophysics Data System (ADS)

    Woodcock, Duncan; Harris, Andrew

    2006-09-01

    A short length of channel on Pico Partido volcano, Lanzarote, provides us the opportunity to examine the dynamics of lava flowing in a channel that extends over a sudden break in slope. The 1 2-m-wide, 0.5 2-m-deep channel was built during the 1730 1736 eruptions on Lanzarote and exhibits a sinuous, well-formed channel over a steep (11° slope) 100-m-long proximal section. Over-flow units comprising smooth pahoehoe sheet flow, as well as evidence on the inner channel walls for multiple (at least 11) flow levels, attest to unsteady flow in the channel. In addition, superelevation is apparent at each of the six bends along the proximal channel section. Superelevation results from banking of the lava as it moves around the bend thus causing preferential construction of the outer bank. As a result, the channel profile at each bend is asymmetric with an outer bank that is higher than the inner bank. Analysis of superelevation indicates flow velocities of ~8 m s 1. Our analysis of the superelevation features is based on an inertia-gravity balance, which we show is appropriate, even though the down-channel flow is in laminar flow. We use a viscosity-gravity balance model, together with the velocities calculated from superelevation, to obtain viscosities in the range 25 60 Pa s (assuming that the lava behaved as a Newtonian liquid). Estimated volume fluxes are in the range 7 12 m3 s 1. An apparent down-flow increase in derived volume flux may have resulted from variable supply or bulking up of the flow due to vesiculation. Where the channel moves over a sharp break in slope and onto slopes of ~6°, the channel becomes less well defined and widens considerably. At the break of slope, an elongate ridge extends across the channel. We speculate that this ridge was formed as a result of a reduction in velocity immediately below the break of slope to allow deposition of entrained material or accretion of lava to the channel bed as a result of a change in flow regime or depth.

  3. Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity)

    NASA Astrophysics Data System (ADS)

    Weijermars, Ruud; Schmeling, Harro

    1986-09-01

    Scale model theory for constructing dynamically scaled analogue models of rock flowing in the solid state has until now assumed that the natural and model flows were both viscous. In viscous flows, at the very low Reynolds numbers ( Re ≪ 1) common in solid rocks, geometrical similarity is sufficient to achieve dynamic similarity between a homogeneous material (scale) model and its natural prototype. However, experiments on the rheology of natural rocks suggest that they flow predominantly as non-Newtonian strain rate softening materials at the characteristic geological strain rate 10 -14 s -1. Non-dimensionalisation of both the equation of motion and the constitutive flow law of non-Newtonian flows is carried out to investigate what criteria are required to achieve dynamic similarity. It is shown that dynamic similarity of non-Newtonian flows at low inertia (e.g., a rock with Re ≪ 1 and its model analogue) can only be attained if the steady-state flow curves of the model materials and the various rocks in the prototype have mutually similar shapes and slopes, and if these flows operate on similar parts of their respective flow curves. We term this the requirement of rheological similarity. Dynamic similarity of low inertia flows ( Re ≪ 1) in non-Newtonian continua is achieved if they are rheologically and geometrically similar. Additional criteria for dynamic similarity of low inertia flows in inhomogeneous media (with Newtonian or non-Newtonian subregions, or both) are formulated in section 5. Scaling of thermal properties is not included. Steady-state flow curves of common rocks are compiled in log stress-log strain rate space together with analogue materials suitable for modelling of solid state rock deformation. This compilation aids the selection of model materials with flow curves geometrically similar to those of rocks in the prototype. Laboratory scale models of rock flow should generally be constructed of materials which strain rate soften during

  4. Dynamic Value-flow Model, A Case Study of The Zambezi Basin

    NASA Astrophysics Data System (ADS)

    Seyam, I. M.; Boer, A. W.; Hoekstra, A. Y.; Savenije, H. H. G.

    Water valuation is often based on annual values generated from a specific water use. This view ignores two important aspects of water. First, water availability varies over the year and second water is a dynamic system of flows and stocks. From a water resources management point of view, water valuation should consider the dynamics of the water system and should also account for the fact that water flows and stocks are interconnected. This implies that a certain water flow in a particular month and in a specific location can be attributed an indirect value based on its contribution to the values generated later or downstream. The aim of this paper is to study the effect of the dynamics of the water system on the calculation of the value of water flows. The paper presents a value-flow model for the Zambezi basin with a monthly time step. Inputs for the value-flow model are monthly water flows and stocks, and direct (in situ) water values. Based on these inputs and using a dynamic value-flow equation, the model calculates the monthly value of water flows and stocks throughout the Zambezi basin. In order to understand and evaluate the implications of introducing dynamic equations in the value-flow calculation, the results from the dynamic value-flow model (with a monthly time step) are compared with the results of an annually based value-flow model. The results show that the value of water flows varies significantly over the year. It is shown that water storage in the Zambezi has a strong buffering effect such that the fluctuation of the value of a water flow follows the fluctuation of the water flow itself. The results also show that introducing storage to the value flow model can have a pronounced effect on the absolute and relative values of water flows.

  5. A Microfluidic Bioreactor with in Situ SERS Imaging for the Study of Controlled Flow Patterns of Biofilm Precursor Materials

    PubMed Central

    Paquet-Mercier, François; Aznaveh, Nahid Babaei; Safdar, Muhammad; Greener, Jesse

    2013-01-01

    A microfluidic bioreactor with an easy to fabricate nano-plasmonic surface is demonstrated for studies of biofilms and their precursor materials via Surface Enhanced Raman Spectroscopy (SERS). The system uses a novel design to induce sheath flow confinement of a sodium citrate biofilm precursor stream against the SERS imaging surface to measure spatial variations in the concentration profile. The unoptimised SERS enhancement was approximately 2.5 × 104, thereby improving data acquisition time, reducing laser power requirements and enabling a citrate detection limit of 0.1 mM, which was well below the concentrations used in biofilm nutrient solutions. The flow confinement was observed by both optical microscopy and SERS imaging with good complementarity. We demonstrate the new bioreactor by growing flow-templated biofilms on the microchannel wall. This work opens the way for in situ spectral imaging of biofilms and their biochemical environment under dynamic flow conditions. PMID:24172286

  6. Flow fields, bed shear stresses, and suspended bed sediment dynamics in bifurcations of a large river

    NASA Astrophysics Data System (ADS)

    Szupiany, R. N.; Amsler, M. L.; Hernandez, J.; Parsons, D. R.; Best, J. L.; Fornari, E.; Trento, A.

    2012-11-01

    Channel bifurcations associated with bars and islands are important nodes in braided rivers and may control flow partitioning and thus affect downstream confluences, as well as the formation and dynamics of bars. However, the morphodynamic processes associated with bar formation are poorly understood, and previous studies have largely concerned laboratory experiments, small natural streams, or numerical analyses with large Froude numbers, high slopes, and low Shields stresses. In these cases, the morphologic changes at bifurcations are relatively rapid, with predominant bed load transport and the suspended load playing a minor role. In this paper, the evolution of the flow structure and suspended bed sediment transport along four expansion-diffluence units in the Rio Paraná, Argentina, are described. The Rio Paraná is a large multichannel river with a bed composed of medium and fine sands and possesses low Froude numbers and high suspended bed material transport. Primary and secondary flow velocity components were measured with an acoustic Doppler current profiler (ADCP) along the expansion-diffluence units, and the backscatter signal of the ADCP was calibrated to allow simultaneous measurements of suspended bed sediment concentrations. The interactions between these variables show that the cores of primary flow velocity and suspended bed sediment concentration do not necessarily follow the thalweg at the bifurcation and that inertial effects on the suspended bed sediment may influence the morphodynamics of bar formation. It is suggested that changes in flow stage, as well as the presence of vegetation, may further increase the deposition of suspended bed sediment at the bar head. This study suggests that the ratio of suspended bed material to bed load is an important factor controlling the morphodynamics of bifurcations in large sand bed braided rivers.

  7. Flow simulation system for generalized static and dynamic grids

    NASA Astrophysics Data System (ADS)

    Koomullil, Roy Paulose

    The objective of this study is to develop a flow simulation system using generalized grids that can be used on static geometries and on dynamically moving bodies. In a generalized grid, the physical domain of interest is decomposed into cells with arbitrary number of sides. The grid can be structured, unstructured, hanging node type, or a combination of the above. An edge-based data structure is used to store the grid information. This makes it easier to handle cells with any number of sides. The full Navier-Stokes equations, in the integral form, are taken as the relations that govern the fluid flow. A cell centered finite volume scheme is used for solving the governing equations. The numerical flux across the cell faces is calculated by an upwind scheme based on Roe's approximate Riemann solver. Taylor's series expansion of a function of multiple variables together with Green's theorem is used for the linear reconstruction of the conserved variables. The accuracy of the computations with first order and higher order schemes are compared. Limiter functions are used to preserve monotonocity and the effect of two different limiter functions on the convergence history is studied. Skin friction coefficient is used to study the accuracy of the limiter functions. Explicit and implicit schemes are implemented and the Generalized Minimal Residual (GMRES) method is used to solve the sparse linear system of equations resulting from the implicit scheme. The flux Jacobians for the implicit schemes are evaluated either using an approximate analytical method or numerical differentiation procedure. The effect of these Jacobians on the convergence of the solution to steady state is compared. Boundary conditions based on the characteristic variables are implemented for generalized grids. The viscous fluxes are evaluated explicitly. Spalart-Almaras one equation turbulence model is implemented for hybrid grids to evaluate the turbulent viscosity. For dynamically moving bodies, the

  8. Internal dynamics of a free-surface viscoplastic flow down an inclined plane: experimental results through PIV measurements

    NASA Astrophysics Data System (ADS)

    Freydier, Perrine; Chambon, Guillaume; Naaim, Mohamed

    2015-04-01

    Debris flows constitute one of the most important natural hazards throughout the mountainous regions of the world, causing significant damages and economic losses. These mass are composed of particles of all sizes from clay to boulders suspended in a viscous fluid. An important goal resides in developing models that are able to accurately predict the hydraulic properties of debris flows. First, these flows are generally represented using models based on a momentum integral approach that consists in assuming a shallow flow and in depth averaging the local conservation equations. These models take into account closure terms depending on the shape of the velocity profile inside the flow. Second, the specific migration mechanisms of the suspended particles, which have a strong influence on the propagation of the surges, also depend on the internal dynamics within the flow. However, to date, few studies concerning the internal dynamics in particular in the vicinity of the front, of such flows have been carried out. The aim of this study is to document the internal dynamics in free-surface viscoplastic flows down an inclined channel. The rheological studies concerning natural muddy debris flows, rich in fine particles, have shown that these materials can be modeled, at least as a first approximation as non-Newtonian viscoplastic fluids. Experiments are conducted in an inclined channel whose bottom is constituted by an upward-moving conveyor belt with controlled velocity. Carbopol microgel has been used as a homogeneous transparent viscoplastic fluid. This experimental setup allows generating and monitoring stationary gravity-driven surges in the laboratory frame. We use PIV technique (Particle Image Velocimetry) to obtain velocity fields both in the uniform zone and within the front zone where flow thickness is variable and where recirculation takes place. Experimental velocity profiles and determination of plug position will be presented and compared to theoretical

  9. The Use of Logistics n the Quality Parameters Control System of Material Flow

    ERIC Educational Resources Information Center

    Karpova, Natalia P.; Toymentseva, Irina A.; Shvetsova, Elena V.; Chichkina, Vera D.; Chubarkova, Elena V.

    2016-01-01

    The relevance of the research problem is conditioned on the need to justify the use of the logistics methodologies in the quality parameters control process of material flows. The goal of the article is to develop theoretical principles and practical recommendations for logistical system control in material flows quality parameters. A leading…

  10. Coarse-grained simulations of vortex dynamics and transition in complex high-Re flows

    SciTech Connect

    Grinstein, Fernando F

    2011-01-21

    prohibitively expensive in the foreseeable future for most practical flows of interest at moderate-to-high Reynolds number (Re). On the other end of the simulation spectrum are the Reynolds-Averaged Navier-Stokes (RANS) approaches - which model the turbulent effects. In the coarsegrained large eddy simulation (LES) strategies, the large energy containing structures are resolved, the smaller structures are filtered out, and unresolved SGS effects are modeled. By necessity - rather than choice, LES effectively becomes the intermediate approach between DNS and RANS. Extensive work has demonstrated that predictive simulations of turbulent velocity fields are possible using a particular LES denoted implicit LES (ILES), using the class of nonoscillatory finite-volume (NFV) numerical algorithms. Use of the modified equation as framework for theoretical analysis, demonstrates that leading truncation tenns associated with NFV methods provide implicit SGS models of mixed anisotropic type and regularized motion of discrete observables. Tests in fundamental applications ranging from canonical to very complex flows indicate that ILES is competitive with conventional LES in the LES realm proper - flows driven by large scale features. High-Re flows are vortex dominated and governed by short convective timescales compared to those of diffusion, and kinematically characterized at the smallest scales by slender worm vortices with insignificant internal structure. This motivates nominally inviscid ILES methods capable of capturing the high-Re dissipation dynamics and of handling vortices as shocks in shock capturing schemes. Depending on flow regimes, initial conditions, and resolution, additional modeling may be needed to emulate SGS driven physics, such as backscatter, chemical reaction, material mixing, and near-wall flow-dynamics - where typically-intertwined SGS/SPG issues need to be addressed. A major research focus is recognizing when additional explicit models and/or numerical treatments

  11. Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives

    SciTech Connect

    Faybishenko, Boris

    2002-11-27

    The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.

  12. Code System to Calculate Transient 2-Dimensional 2-Fluid Flow Dynamics.

    1999-07-19

    Version 00 The transient dynamics of two-dimensional, two-phase flow with interfacial exchange are calculated at all flow speeds. Each phase is described in terms of its own density, velocity, and temperature. Separate sets of field equations govern the gas and liquid phase dynamics. The six field equations for the two phases couple through mass, momentum, and energy exchange.

  13. Sources of debris flow material in burned areas

    USGS Publications Warehouse

    Santi, P.M.; deWolfe, V.G.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E.

    2008-01-01

    The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9??m3 of debris produced for every meter of channel length, with an overall average value of 2.5??m3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3??m3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are

  14. Dynamic change of collateral flow varying with distribution of regional blood flow in acute ischemic rat cortex

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Luo, Weihua; Zhou, Fangyuan; Li, Pengcheng; Luo, Qingming

    2012-12-01

    Cerebral blood flow (CBF) is critical for the maintenance of cerebral function by guaranteed constant oxygen and glucose supply to brain. Collateral channels (CCs) are recruited to provide alternatives to CBF to ischemic regions once the primary vessel is occluded during ischemic stroke. However, the knowledge of the relationship between dynamic evolution of collateral flow and the distribution of regional blood flow remains limited. In this study, laser speckle imaging was used to assess dynamic changes of CCs and regional blood flow in a rat cortex with permanent middle cerebral artery occlusion (MCAo). We found that CCs immediately provided blood flow to ischemic territories after MCAo. More importantly, there were three kinds of dynamic changes of CCs during acute stroke: persistent CC, impermanent CC, and transient CC, respectively, related to different distributions of regional blood flow. Although there was the possible occurrence of peri-infarct depolarization (PID) during ischemia, there was no obvious significance about the onset time and duration of CCs between rats with and without PID. These results suggest that the initial arising of CCs does not ensure their persistence, and that collateral flow could be varied with distribution of regional blood flow in acute ischemic stroke, which may facilitate the understanding of collateral recruitment and promote the development of collateral therapeutics in the future.

  15. Nonlinear dynamics and breakup of free-surface flows

    SciTech Connect

    Eggers, J.

    1997-07-01

    Surface-tension-driven flows and, in particular, their tendency to decay spontaneously into drops have long fascinated naturalists, the earliest systematic experiments dating back to the beginning of the 19th century. Linear stability theory governs the onset of breakup and was developed by Rayleigh, Plateau, and Maxwell. However, only recently has attention turned to the nonlinear behavior in the vicinity of the singular point where a drop separates. The increased attention is due to a number of recent and increasingly refined experiments, as well as to a host of technological applications, ranging from printing to mixing and fiber spinning. The description of drop separation becomes possible because jet motion turns out to be effectively governed by one-dimensional equations, which still contain most of the richness of the original dynamics. In addition, an attraction for physicists lies in the fact that the separation singularity is governed by universal scaling laws, which constitute an asymptotic solution of the Navier-Stokes equation before and after breakup. The Navier-Stokes equation is thus continued uniquely through the singularity. At high viscosities, a series of noise-driven instabilities has been observed, which are a nested superposition of singularities of the same universal form. At low viscosities, there is rich scaling behavior in addition to aesthetically pleasing breakup patterns driven by capillary waves. The author reviews the theoretical development of this field alongside recent experimental work, and outlines unsolved problems. {copyright} {ital 1997} {ital The American Physical Society}

  16. Dynamics of interaction of directed energy flows with matter

    NASA Astrophysics Data System (ADS)

    Skvortsov, Vladimir A.; Fortov, Vladimir E.

    1992-04-01

    Directed energy flows (DEF), including a High Power ion beams (PIB), are used in different areas of science, engineering and technology. For example, very worth-while is the use of PIB for: the realization of inertial controlled fusion, pumping up gas lasers, the investigations in the area of nuclear physics and energy high density physics, the formation of powerful pulse sources of X-ray and neutron radiation, ion alloying of metals and making surfaces, which improve physical and chemical properties of metals (enlargement of their hardness, corrosion, stability, etc.). The simulation of interaction processes of X-ray radiation with the matter now becomes more actual because of the progress in physics of short length wave laser. High cost and difficulties of the experiments and also the difficulties to get fast changing physical parameters in the area of the DEF--interaction with the target make it necessary to carry out a preliminary computer simulations for the evaluation of the expected physical parameters and the very expediency of such physical experiment. The examples and results of such mathematical simulation on dynamics of intensive pulse actions on metal targets by DEF (high-power ion beams, sharped - charged jets, hypervelocity projectiles, X-ray radiation), are represented in this paper with brief description of used computer models, worked out by High Energy Density Research Center, Russia).

  17. Headwater sediment dynamics in a debris flow catchment constrained by high-resolution topographic surveys

    NASA Astrophysics Data System (ADS)

    Loye, Alexandre; Jaboyedoff, Michel; Theule, Joshua Isaac; Liébault, Frédéric

    2016-06-01

    Debris flows have been recognized to be linked to the amounts of material temporarily stored in torrent channels. Hence, sediment supply and storage changes from low-order channels of the Manival catchment, a small tributary valley with an active torrent system located exclusively in sedimentary rocks of the Chartreuse Massif (French Alps), were surveyed periodically for 16 months using terrestrial laser scanning (TLS) to study the coupling between sediment dynamics and torrent responses in terms of debris flow events, which occurred twice during the monitoring period. Sediment transfer in the main torrent was monitored with cross-section surveys. Sediment budgets were generated seasonally using sequential TLS data differencing and morphological extrapolations. Debris production depends strongly on rockfall occurring during the winter-early spring season, following a power law distribution for volumes of rockfall events above 0.1 m3, while hillslope sediment reworking dominates debris recharge in spring and autumn, which shows effective hillslope-channel coupling. The occurrence of both debris flow events that occurred during the monitoring was linked to recharge from previous debris pulses coming from the hillside and from bedload transfer. Headwater debris sources display an ambiguous behaviour in sediment transfer: low geomorphic activity occurred in the production zone, despite rainstorms inducing debris flows in the torrent; still, a general reactivation of sediment transport in headwater channels was observed in autumn without new debris supply, suggesting that the stored debris was not exhausted. The seasonal cycle of sediment yield seems to depend not only on debris supply and runoff (flow capacity) but also on geomorphic conditions that destabilize remnant debris stocks. This study shows that monitoring the changes within a torrent's in-channel storage and its debris supply can improve knowledge on recharge thresholds leading to debris flow.

  18. Fundamental changes of granular flows dynamics, deposition and erosion processes at high slope angles: insights from laboratory experiments.

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Roche, Olivier

    2014-05-01

    Geophysical granular flows commonly interact with their substrate in various ways depending on the mechanical properties of the underlying material. Granular substrates, resulting from deposition of earlier flows or various geological events, are often eroded by avalanches [see Hungr and Evans, 2004 for review]. The entrainment of underlying debris by the flow is suspected to affect flow dynamics because qualitative and quantitative field observations suggest that it can increase the flow velocity and deposit extent, depending on the geological setting and flow type [Sovilla et al., 2006; Iverson et al., 2011]. Direct measurement of material entrainment in nature, however, is very difficult. We conducted laboratory experiments on granular column collapse over an inclined channel with and without an erodible bed of granular material. The controlling parameters were the channel slope angle, the granular column volume and its aspect ratio (i.e. height over length), the inclination of the column with respect to the channel base, the channel width, and the thickness and compaction of the erodible bed. For slope angles below a critical value θc, between 10° and 16°, the runout distance rf is proportional to the initial column height h0 and is unaffected by the presence of an erodible bed. On steeper slopes, the flow dynamics change fundamentally since a last phase of slow propagation develops at the end of the flow front deceleration, and prolongates significantly the flow duration. This phase has similar characteristics that steady, uniform flows. The slow propagation phase lasts longer for increasing slope angle, column volume, column inclination with respect to the slope, and channel width, and for decreasing column aspect ratio. It is however independent of the maximum front velocity and, on an erodible bed, of the maximum depth of excavation within the bed. Both on rigid and erodible beds, the increase of the slow propagation phase duration has a crucial effect

  19. Encyclopedia of fluid mechanics. Volume 2 - Dynamics of single-fluid flows and mixing

    NASA Astrophysics Data System (ADS)

    Cheremisinoff, N. P.

    Various papers on the dynamics of single-fluid flows and mixing are presented. The general topics addressed include: channel and free surface flows, mixing phenomena and practices, and fluid transport equipment. Individual papers discuss: statistics of deep water surface waves, unstable turbulent channel flow, hydraulic jumps and internal flows, wave attenuation in open channel flow, straight sediment stable channels, three-dimensional deep-water waves, estimating peak flows, hydrodynamics of laminar buoyant jets, impinging jets, hydrodynamics of confined coaxial jets, and turbulent mixing and diffusion of jets. Also addressed are: hydrodynamics of jets in cross flow, modelling turbulent jets in cross flow, batchwise jet mixing in tanks, stability of jets in liquid-liquid systems, jet mixing of fluids in vessels, mixing in loop reactors, backmixing in stirred vessels, industrial mixing equipment, pump classifications and design features, oscillating displacement pumps, fluid dynamics of inducers, hydrodynamics of outflow from vessels, and analysis of axial flow turbines.

  20. Dynamic fracture of functionally graded magnetoelectroelastic composite materials

    SciTech Connect

    Stoynov, Y.; Dineva, P.

    2014-11-12

    The stress, magnetic and electric field analysis of multifunctional composites, weakened by impermeable cracks, is of fundamental importance for their structural integrity and reliable service performance. The aim is to study dynamic behavior of a plane of functionally graded magnetoelectroelastic composite with more than one crack. The coupled material properties vary exponentially in an arbitrary direction. The plane is subjected to anti-plane mechanical and in-plane electric and magnetic load. The boundary value problem described by the partial differential equations with variable coefficients is reduced to a non-hypersingular traction boundary integral equation based on the appropriate functional transform and frequency-dependent fundamental solution derived in a closed form by Radon transform. Software code based on the boundary integral equation method (BIEM) is developed, validated and inserted in numerical simulations. The obtained results show the sensitivity of the dynamic stress, magnetic and electric field concentration in the cracked plane to the type and characteristics of the dynamic load, to the location and cracks disposition, to the wave-crack-crack interactions and to the magnitude and direction of the material gradient.

  1. Characterization of micro- and mesoporous materials using accelerated dynamics adsorption.

    PubMed

    Qajar, Ali; Peer, Maryam; Rajagopalan, Ramakrishnan; Foley, Henry C

    2013-10-01

    Porosimetry is a fundamental characterization technique used in development of new porous materials for catalysis, membrane separation, and adsorptive gas storage. Conventional methods like nitrogen and argon adsorption at cryogenic temperatures suffer from slow adsorption dynamics especially for microporous materials. In addition, CO2, the other common probe, is only useful for micropore characterization unless being compressed to exceedingly high pressures to cover all required adsorption pressures. Here, we investigated the effect of adsorption temperature, pressure, and type of probe molecule on the adsorption dynamics. Methyl chloride (MeCl) was used as the probe molecule, and measurements were conducted near room temperature under nonisothermal condition and subatmospheric pressure. A pressure control algorithm was proposed to accelerate adsorption dynamics by manipulating the chemical potential of the gas. Collected adsorption data are transformed into pore size distribution profiles using the Horvath-Kavazoe (HK), Saito-Foley (SF), and modified Kelvin methods revised for MeCl. Our study shows that the proposed algorithm significantly speeds up the rate of data collection without compromising the accuracy of the measurements. On average, the adsorption rates on carbonaceous and aluminosilicate samples were accelerated by at least a factor of 4-5. PMID:23919893

  2. Dynamic viscoelastic properties of experimental silicone soft lining materials.

    PubMed

    Santawisuk, Wallapat; Kanchanavasita, Widchaya; Sirisinha, Chakrit; Harnirattisai, Choltacha

    2010-08-01

    The purpose of this study was to evaluate the dynamic viscoelastic properties of experimental silicone soft lining materials, Silastic MDX 4-4210 reinforced with silica fillers. Storage modulus (E'), loss modulus (E") and damping factor (tan delta) were determined using a dynamic mechanical analyzer under a deformation strain level of 0.27% at test frequency and a temperature range of 1 Hz and 0 to 60 degrees C, respectively. The degree of silica dispersion was also studied using a field emission scanning electron microscopy (FE-SEM). One-way ANOVA and Tukey's HSD test results indicated that the prepared silicone elastomers provided a significantly greater damping factor, but less storage modulus than GC Reline Soft and Tokuyama Sofreliner Tough (p<0.001). The storage moduli, loss moduli and damping factor of the experimental silicone elastomers increased with increasing amounts of fumed silica. In conclusion, the experimental silicone elastomers revealed acceptable dynamic viscoelastic properties to be used as denture soft lining materials.

  3. Micromechanical modeling of dynamic fracture in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Zhai, Jun

    Fracture is the principal mode of failure for a variety of materials under dynamic conditions. The mathematical complexity precludes analytical solution to be obtained. The difficulty is especially pronounced when material inhomogeneities and anisotropy need to be considered. Recently, alumina/titanium diboride (Al2O3/TiB 2) composites with a wide range of micro and nano phase sizes and phase morphologies have been developed in the School of Materials Science and Engineering at Georgia Tech. In order to understand failure mechanisms in this material system and the influence of phase morphologies and phase size on fracture resistance, a numerical framework is needed to explicitly account for arbitrary microstructures and fracture patterns. Micromechanical modeling and simulation provide an important approach for analyzing the effects of material inhomogeneity and anisotropy over a range of microscopic length scales. A framework is proposed in this research for explicit modeling and simulation of microscopic damage/fracture/failure processes. The model and approach account for the real arbitrary microstructural morphologies. A cohesive finite element method (CFEM) based on cohesive surface theory is used. A fully dynamic kinetic framework and finite deformation kinematic formulation are used. Mesh independence of solution is studied and verified. Idealized microstructures containing circular and elliptical particles and real microstructures with arbitrary morphologies are used to investigate the effects of phase morphologies, phase size and phase anisotropy on fracture of this ceramic composite system. Numerical results show that rnicrostructural variations give rise to a range of fracture resistance. Higher fracture resistance is obtained from microstructures with fine evenly distributed microstructural reinforcement entities. The failure mode is found to be significantly influenced by the interfacial bonding strength between the phases. Two distinct failure modes

  4. Emergence of spatio-temporal dynamics from exact coherent solutions in pipe flow

    NASA Astrophysics Data System (ADS)

    Ritter, Paul; Mellibovsky, Fernando; Avila, Marc

    2016-08-01

    Turbulent-laminar patterns are ubiquitous near transition in wall-bounded shear flows. Despite recent progress in describing their dynamics in analogy to non-equilibrium phase transitions, there is no theory explaining their emergence. Dynamical-system approaches suggest that invariant solutions to the Navier–Stokes equations, such as traveling waves and relative periodic orbits in pipe flow, act as building blocks of the disordered dynamics. While recent studies have shown how transient chaos arises from such solutions, the ensuing dynamics lacks the strong fluctuations in size, shape and speed of the turbulent spots observed in experiments. We here show that chaotic spots with distinct dynamical and kinematic properties merge in phase space and give rise to the enhanced spatio-temporal patterns observed in pipe flow. This paves the way for a dynamical-system foundation to the phenomenology of turbulent-laminar patterns in wall-bounded extended shear flows.

  5. Emergence of spatio-temporal dynamics from exact coherent solutions in pipe flow

    NASA Astrophysics Data System (ADS)

    Ritter, Paul; Mellibovsky, Fernando; Avila, Marc

    2016-08-01

    Turbulent-laminar patterns are ubiquitous near transition in wall-bounded shear flows. Despite recent progress in describing their dynamics in analogy to non-equilibrium phase transitions, there is no theory explaining their emergence. Dynamical-system approaches suggest that invariant solutions to the Navier-Stokes equations, such as traveling waves and relative periodic orbits in pipe flow, act as building blocks of the disordered dynamics. While recent studies have shown how transient chaos arises from such solutions, the ensuing dynamics lacks the strong fluctuations in size, shape and speed of the turbulent spots observed in experiments. We here show that chaotic spots with distinct dynamical and kinematic properties merge in phase space and give rise to the enhanced spatio-temporal patterns observed in pipe flow. This paves the way for a dynamical-system foundation to the phenomenology of turbulent-laminar patterns in wall-bounded extended shear flows.

  6. Dynamics of flow behind backward-facing step in a narrow channel

    NASA Astrophysics Data System (ADS)

    Uruba, V.

    2013-04-01

    The results and their analysis from experiments obtained by TR-PIV are presented on the model of backward-facing step in a narrow channel. The recirculation zone is studied in details. Mean structures are evaluated from fluctuating velocity fields. Then dynamics of the flow is characterized with help of POD (BOD) technique. Substantial differences in high energy dynamical structures behaviour within the back-flow region and further downstream behind the flow reattachment have been found.

  7. SIMPLIFIED MODELING OF AIR FLOW DYNAMICS IN SSD RADON MITIGATION SYSTEMS FOR RESIDENCES WITH GRAVEL BEDS

    EPA Science Inventory

    In an attempt to better understand the dynamics of subslab air flow, the report suggests that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained between two impermeable disks. (NOTE: Many subslab depressurization syste...

  8. Effect of Check Dams on Erosion and Flow Dynamics on Small Semi-Arid Watersheds

    NASA Astrophysics Data System (ADS)

    Polyakov, V.; Nearing, M.; Nichols, M.; McClaran, M. P.

    2012-12-01

    Erosion dynamics in semi-arid environments is defined by high magnitude, low frequency rainfalls that produce runoff with high sediment concentration. Check dams were shown to be an effective sedimentation mitigation technique on small watersheds. Constructed of rocks, or other materials placed across the flow and anchored into the bottom and sides of the channel, these barriers produce upstream and downstream effects. By impounding runoff they reduce flow velocity, increase infiltration and allow sediment settling thus decreasing channel slope. Decreased sediment load downstream of the dam may result in accelerated channel scouring. While the effect of check dams on channel stability has been studied extensively their impact on overall watershed sediment balance is not well known. In 2008 a total of 37 loose rock semi permeable check dams were installed on two small (4.0 and 3.1 ha) watersheds located on the alluvial fan of the Santa Rita Mountains in southern Arizona, USA. Each watershed was equipped with high resolution weighing type rain gauge a supercritical flow flume and sediment sampler. Hyetographs, hydrographs, and sediment load data for the watersheds were collected since 1975. The erosion dynamics and flow characteristics following the check dam installation were compared with historical records. The volume of the sediment retained upstream of each dam was calculated through survey. After 4 years the check dams were filled to over 80% of their capacity and no significant increase in downstream scouring has been observed. Maximum 30-min intensity (I30) was overall best predictor variable for total runoff. After check dam installation the number ratio of runoff to rainfall events has been reduced by half. However, runoff peak rates were not significantly effected.

  9. Modeling Dynamic Compaction of Porous Materials with the Overstress Approach

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda

    2013-06-01

    To model compaction of a porous material (PM) we need 1) an equation of state (EOS) of the PM in terms of the EOS of its matrix, and 2) a compaction law. For the EOS it is common to use Herrmann's suggestion, as in his P α model. For a compaction law it is common to use a quasi-static compaction relation obtained from 1) a mezzo-scale model (as in Carroll and Holt's spherical shell model), or from 2) quasi-static tests. Here we are interested in dynamic compaction, like in a planar impact test. In dynamic compaction, the state may change too fast for the state point to follow the quasi-static compaction curve. We therefore get an overstress situation. The state point moves out of the quasi-static compaction boundary, and only with time collapses back towards it at a certain rate. In this way the dynamic compaction event becomes rate dependent. In the paper we first write down the rate equations for dynamic compaction according to this overstress approach. We then implement these equations in a hydro-code, and run some examples. We show how the overstress rate parameter can be calibrated from tests.

  10. Optimization of the dynamic behavior of strongly nonlinear heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Herbold, Eric B.

    New aspects of strongly nonlinear wave and structural phenomena in granular media are developed numerically, theoretically and experimentally. One-dimensional chains of particles and compressed powder composites are the two main types of materials considered here. Typical granular assemblies consist of linearly elastic spheres or layers of masses and effective nonlinear springs in one-dimensional columns for dynamic testing. These materials are highly sensitive to initial and boundary conditions, making them useful for acoustic and shock-mitigating applications. One-dimensional assemblies of spherical particles are examples of strongly nonlinear systems with unique properties. For example, if initially uncompressed, these materials have a sound speed equal to zero (sonic vacuum), supporting strongly nonlinear compression solitary waves with a finite width. Different types of assembled metamaterials will be presented with a discussion of the material's response to static compression. The acoustic diode effect will be presented, which may be useful in shock mitigation applications. Systems with controlled dissipation will also be discussed from an experimental and theoretical standpoint emphasizing the critical viscosity that defines the transition from an oscillatory to monotonous shock profile. The dynamic compression of compressed powder composites may lead to self-organizing mesoscale structures in two and three dimensions. A reactive granular material composed of a compressed mixture of polytetrafluoroethylene (PTFE), tungsten (W) and aluminum (Al) fine-grain powders exhibit this behavior. Quasistatic, Hopkinson bar, and drop-weight experiments show that composite materials with a high porosity and fine metallic particles exhibit a higher strength than less porous mixtures with larger particles, given the same mass fraction of constituents. A two-dimensional Eulerian hydrocode is implemented to investigate the mechanical deformation and failure of the compressed

  11. Ultrafast Dynamic Ellipsometry And Spectroscopy Of Laser Shocked Materials

    SciTech Connect

    McGrane, S. D.; Bolme, C. A.; Whitley, V. H.; Moore, D. S.

    2010-10-08

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  12. Ultrafast dynamic ellipsometry and spectroscopy of laser shocked materials

    SciTech Connect

    Mcgrane, Shawn David; Bolme, Cindy B; Whitley, Von H; Moore, David S

    2010-01-01

    Shock waves create extreme states of matter with very high pressures, temperatures, and volumetric compressions, at an exceedingly rapid rate of change. We review how to use a beamsplitter and a note card to turn a typical chirp pulse amplified femtosecond laser system into an ultrafast shock dynamics machine. Open scientific questions that can be addressed with such an apparatus are described. We report on the development of several single shot time resolved diagnostics needed to answer these questions. These single shot diagnostics are expected to be broadly applicable to other types of laser ablation experiments. Experimental results measured from shocked material dynamics of several systems are detailed. Finally, we report on progress towards using transient absorption as a measure of electronic excitation and coherent Raman as a picosecond probe of temperature in shock compressed condensed matter.

  13. A Nonlocal Peridynamic Plasticity Model for the Dynamic Flow and Fracture of Concrete.

    SciTech Connect

    Vogler, Tracy; Lammi, Christopher James

    2014-10-01

    A nonlocal, ordinary peridynamic constitutive model is formulated to numerically simulate the pressure-dependent flow and fracture of heterogeneous, quasi-brittle ma- terials, such as concrete. Classical mechanics and traditional computational modeling methods do not accurately model the distributed fracture observed within this family of materials. The peridynamic horizon, or range of influence, provides a characteristic length to the continuum and limits localization of fracture. Scaling laws are derived to relate the parameters of peridynamic constitutive model to the parameters of the classical Drucker-Prager plasticity model. Thermodynamic analysis of associated and non-associated plastic flow is performed. An implicit integration algorithm is formu- lated to calculate the accumulated plastic bond extension and force state. The gov- erning equations are linearized and the simulation of the quasi-static compression of a cylinder is compared to the classical theory. A dissipation-based peridynamic bond failure criteria is implemented to model fracture and the splitting of a concrete cylinder is numerically simulated. Finally, calculation of the impact and spallation of a con- crete structure is performed to assess the suitability of the material and failure models for simulating concrete during dynamic loadings. The peridynamic model is found to accurately simulate the inelastic deformation and fracture behavior of concrete during compression, splitting, and dynamically induced spall. The work expands the types of materials that can be modeled using peridynamics. A multi-scale methodology for simulating concrete to be used in conjunction with the plasticity model is presented. The work was funded by LDRD 158806.

  14. Apparatus and method for constant flow oxidizing of organic materials

    DOEpatents

    Surma, Jeffrey E.; Nelson, Norvell; Steward, G. Anthony; Bryan, Garry H.

    1999-01-01

    The invention is a method and apparatus using high cerium concentration in the anolyte of an electrochemical cell to oxidize organic materials. The method and apparatus further use an ultrasonic mixer to enhance the oxidation rate of the organic material in the electrochemical cell. A reaction vessel provides an advantage of independent reaction temperature control and electrochemical cell temperature control. A separate or independent reaction vessel may be used without an ultrasonic mixer to oxidize gaseous phase organic materials.

  15. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    PubMed

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P < 0.05) lower than to DLC-PDMS-h (0.671 ± 0.001 × 10(7)/cm(2) and 0.751 ± 0.002 × 10(7)/cm(2) vs. 1.055 ± 0.002 × 10(7)/cm(2), respectively). No significant differences were detected between other tested materials. Hence DLC-PTFE-h coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P < 0.05) different between the materials tested. This suggests that DLC-PTFE-h films could be used as a biomaterial coating without increasing the risk of implant-related infections. PMID:21243516

  16. In vitro adhesion of staphylococci to diamond-like carbon polymer hybrids under dynamic flow conditions.

    PubMed

    Soininen, Antti; Levon, Jaakko; Katsikogianni, Maria; Myllymaa, Katja; Lappalainen, Reijo; Konttinen, Yrjö T; Kinnari, Teemu J; Tiainen, Veli-Matti; Missirlis, Yannis

    2011-03-01

    This study compares the ability of selected materials to inhibit adhesion of two bacterial strains commonly implicated in implant-related infections. These two strains are Staphylococcus aureus (S-15981) and Staphylococcus epidermidis (ATCC 35984). In experiments we tested six different materials, three conventional implant metals: titanium, tantalum and chromium, and three diamond-like carbon (DLC) coatings: DLC, DLC-polydimethylsiloxane hybrid (DLC-PDMS-h) and DLC-polytetrafluoroethylene hybrid (DLC-PTFE-h) coatings. DLC coating represents extremely hard material whereas DLC hybrids represent novel nanocomposite coatings. The two DLC polymer hybrid films were chosen for testing due to their hardness, corrosion resistance and extremely good non-stick (hydrophobic and oleophobic) properties. Bacterial adhesion assay tests were performed under dynamic flow conditions by using parallel plate flow chambers (PPFC). The results show that adhesion of S. aureus to DLC-PTFE-h and to tantalum was significantly (P < 0.05) lower than to DLC-PDMS-h (0.671 ± 0.001 × 10(7)/cm(2) and 0.751 ± 0.002 × 10(7)/cm(2) vs. 1.055 ± 0.002 × 10(7)/cm(2), respectively). No significant differences were detected between other tested materials. Hence DLC-PTFE-h coating showed as low susceptibility to S. aureus adhesion as all the tested conventional implant metals. The adherence of S. epidermidis to biomaterials was not significantly (P < 0.05) different between the materials tested. This suggests that DLC-PTFE-h films could be used as a biomaterial coating without increasing the risk of implant-related infections.

  17. Dynamic thermal-hydraulic modeling and stack flow pattern analysis for all-vanadium redox flow battery

    NASA Astrophysics Data System (ADS)

    Wei, Zhongbao; Zhao, Jiyun; Skyllas-Kazacos, Maria; Xiong, Binyu

    2014-08-01

    The present study focuses on dynamic thermal-hydraulic modeling for the all-vanadium flow battery and investigations on the impact of stack flow patterns on battery performance. The inhomogeneity of flow rate distribution and reversible entropic heat are included in the thermal-hydraulic model. The electrolyte temperature in tanks is modeled with the finite element modeling (FEM) technique considering the possible non-uniform distribution of electrolyte temperature. Results show that the established model predicts electrolyte temperature accurately under various ambient temperatures and current densities. Significant temperature gradients exist in the battery system at extremely low flow rates, while the electrolyte temperature tends to be the same in different components under relatively high flow rates. Three stack flow patterns including flow without distribution channels and two cases of flow with distribution channels are compared to investigate their effects on battery performance. It is found that the flow rates are not uniformly distributed in cells especially when the stack is not well designed, while adding distribution channels alleviates the inhomogeneous phenomenon. By comparing the three flow patterns, it is found that the serpentine-parallel pattern is preferable and effectively controls the uniformity of flow rates, pressure drop and electrolyte temperature all at expected levels.

  18. Regulation of DNA conformations and dynamics in flows with hybrid field microfluidics

    PubMed Central

    Ren, Fangfang; Zu, Yingbo; Kumar Rajagopalan, Kartik; Wang, Shengnian

    2012-01-01

    Visualizing single DNA dynamics in flow provides a wealth of physical insights in biophysics and complex flow study. However, large signal fluctuations, generated from diversified conformations, deformation history dependent dynamics and flow induced stochastic tumbling, often frustrate its wide adoption in single molecule and polymer flow study. We use a hybrid field microfluidic (HFM) approach, in which an electric field is imposed at desired locations and appropriate moments to balance the flow stress on charged molecules, to effectively regulate the initial conformations and the deformation dynamics of macromolecules in flow. With λ-DNA and a steady laminar shear flow as the model system, we herein studied the performance of HFM on regulating DNA trapping, relaxation, coil-stretch transition, and accumulation. DNA molecules were found to get captured in the focused planes when motions caused by flow, and the electric field were balanced. The trapped macromolecules relaxed in two different routes while eventually became more uniform in size and globule conformations. When removing the electric field, the sudden stretching dynamics of DNA molecules exhibited a more pronounced extension overshoot in their transient response under a true step function of flow stress while similar behaviors to what other pioneering work in steady shear flow. Such regulation strategies could be useful to control the conformations of other important macromolecules (e.g., proteins) and help better reveal their molecular dynamics. PMID:24155864

  19. Compatibility of molten salts with advanced solar dynamic receiver materials

    NASA Technical Reports Server (NTRS)

    Jaworske, D. A.; Perry, W. D.

    1989-01-01

    Metal-coated graphite fibers are being considered as a thermal conductivity enhancement filler material for molten salts in solar dynamic thermal energy storage systems. The successful metal coating chosen for this application must exhibit acceptable wettability and must be compatible with the molten salt environment. Contact angle values between molten lithium fluoride and several metal, metal fluoride, and metal oxide substrates have been determined at 892 C using a modification of the Wilhelmy plate technique. Reproducible contact angles with repeated exposure to the molten LiF indicated compatibility.

  20. Treatment of material creep and nonlinearities in flexible mulitbody dynamics

    SciTech Connect

    Xie, M.; Amirouche, F.M.L.

    1994-01-01

    This paper addresses the modeling of the generalized active forces resulting from deformable bodies when subjected to high temperature conditions, elastic-plastic deformations, creep effects, and material nonlinearities. The effects of elastic-plastic deformations are studied making use of the nonlinear stress-strain relationship and the geometrical stiffness concepts. Creep conditions resulting from high temperature are studied through several proposed models. Materials nonlinearities for isotropic and composites are accounted for by their tangential elasticity matrix. A general procedure used in the study of multibody systems dynamics with elastic-plastic bodies depicting the characteristics mentioned is developed. This includes an explicit formulation of the equations of motion using Kane`s equations, finite element method, continuum mechanics, and modal coordinate reduction techniques. A numerical simulation of a flexible robotic arm with a prescribed angular velocity subject to high temperature conditions is analyzed. The effects of creep are discussed.

  1. A three dimensional dynamic study of electrostatic charging in materials

    NASA Technical Reports Server (NTRS)

    Katz, I.; Parks, D. E.; Mandell, M. J.; Harvey, J. M.; Brownell, D. H., Jr.; Wang, S. S.; Rotenberg, M.

    1977-01-01

    A description is given of the physical models employed in the NASCAP (NASA Charging Analyzer Program) code, and several test cases are presented. NASCAP dynamically simulates the charging of an object made of conducting segments which may be entirely or partially covered with thin dielectric films. The object may be subject to either ground test or space user-specified environments. The simulation alternately treats (1) the tendency of materials to accumulate and emit charge when subject to plasma environment, and (2) the consequent response of the charged particle environment to an object's electrostatic field. Parameterized formulations of the emission properties of materials subject to bombardment by electrons, protons, and sunlight are presented. Values of the parameters are suggested for clean aluminum, Al2O3, clean magnesium, MgO, SiO2 kapton, and teflon. A discussion of conductivity in thin dielectrics subject to radiation and high fields is given, together with a sample calculation.

  2. Model for charge/discharge-rate-dependent plastic flow in amorphous battery materials

    NASA Astrophysics Data System (ADS)

    Khosrownejad, S. M.; Curtin, W. A.

    2016-09-01

    Plastic flow is an important mechanism for relaxing stresses that develop due to swelling/shrinkage during charging/discharging of battery materials. Amorphous high-storage-capacity Li-Si has lower flow stresses than crystalline materials but there is evidence that the plastic flow stress depends on the conditions of charging and discharging, indicating important non-equilibrium aspects to the flow behavior. Here, a mechanistically-based constitutive model for rate-dependent plastic flow in amorphous materials, such as LixSi alloys, during charging and discharging is developed based on two physical concepts: (i) excess energy is stored in the material during electrochemical charging and discharging due to the inability of the amorphous material to fully relax during the charging/discharging process and (ii) this excess energy reduces the barriers for plastic flow processes and thus reduces the applied stresses necessary to cause plastic flow. The plastic flow stress is thus a competition between the time scales of charging/discharging and the time scales of glassy relaxation. The two concepts, as well as other aspects of the model, are validated using molecular simulations on a model Li-Si system. The model is applied to examine the plastic flow behavior of typical specimen geometries due to combined charging/discharging and stress history, and the results generally rationalize experimental observations.

  3. Effect of Trailing Edge Shape on the Unsteady Aerodynamics of Reverse Flow Dynamic Stall

    NASA Astrophysics Data System (ADS)

    Lind, Andrew; Jones, Anya

    2015-11-01

    This work considers dynamic stall in reverse flow, where flow travels over an oscillating airfoil from the geometric trailing edge towards the leading edge. An airfoil with a sharp geometric trailing edge causes early formation of a primary dynamic stall vortex since the sharp edge acts as the aerodynamic leading edge in reverse flow. The present work experimentally examines the potential merits of using an airfoil with a blunt geometric trailing edge to delay flow separation and dynamic stall vortex formation while undergoing oscillations in reverse flow. Time-resolved and phase-averaged flow fields and pressure distributions are compared for airfoils with different trailing edge shapes. Specifically, the evolution of unsteady flow features such as primary, secondary, and trailing edge vortices is examined. The influence of these flow features on the unsteady pressure distributions and integrated unsteady airloads provide insight on the torsional loading of rotor blades as they oscillate in reverse flow. The airfoil with a blunt trailing edge delays reverse flow dynamic stall, but this leads to greater downward-acting lift and pitching moment. These results are fundamental to alleviating vibrations of high-speed helicopters, where much of the rotor operates in reverse flow.

  4. Flaw-induced plastic-flow dynamics in bulk metallic glasses under tension

    PubMed Central

    Chen, S. H.; Yue, T. M.; Tsui, C. P.; Chan, K. C.

    2016-01-01

    Inheriting amorphous atomic structures without crystalline lattices, bulk metallic glasses (BMGs) are known to have superior mechanical properties, such as high strength approaching the ideal value, but are susceptible to catastrophic failures. Understanding the plastic-flow dynamics of BMGs is important for achieving stable plastic flow in order to avoid catastrophic failures, especially under tension, where almost all BMGs demonstrate limited plastic flow with catastrophic failure. Previous findings have shown that the plastic flow of BMGs displays critical dynamics under compression tests, however, the plastic-flow dynamics under tension are still unknown. Here we report that power-law critical dynamics can also be achieved in the plastic flow of tensile BMGs by introducing flaws. Differing from the plastic flow under compression, the flaw-induced plastic flow under tension shows an upward trend in the amplitudes of the load drops with time, resulting in a stable plastic-flow stage with a power-law distribution of the load drop. We found that the flaw-induced plastic flow resulted from the stress gradients around the notch roots, and the stable plastic-flow stage increased with the increase of the stress concentration factor ahead of the notch root. The findings are potentially useful for predicting and avoiding the catastrophic failures in tensile BMGs by tailoring the complex stress fields in practical structural-applications. PMID:27779221

  5. Particle motion in granular materials: three dimensional imaging of slow flows and compaction

    NASA Astrophysics Data System (ADS)

    Slotterback, Steven Charles

    Granular materials have been a subject of study for centuries. Their bulk properties are well known and are quite reproducible. However, it is not well understood how motions at the grain level relate to bulk behaviors. In this thesis, we describe the use of a 3D imaging technique to determine the motions of individual grains in known geometries. We use a method known as the Refractive Index-Matched Scanning (RIMS) method to locate and track centers of individual grains in dense granular piles. This method enables us to capture grain scale rearrangements where other techniques, such as displacement field imaging, may fail. We may also track motions of grains with respect to their nearest neighbors in order to measure local flows. We first apply the RIMS method to the study of a gentle compaction process, known as thermal cycling. We track the centers of grains between temperature cycles, capturing cycle-to-cycle displacements. The tracks are used to generate dynamic Voronoi volumes about the centers of grains at each cycle. We are able to observe fluctuations in the shapes of the Voronoi volumes which correlate strongly with subsequent motion of grains. We find that the grains move preferentially toward the centroid of the vertices of their respective Voronoi cells. We then study grain motions in quasistatic flows in a split-bottom geometry. We observe nearest neighbor separation events during both steady and cyclic shearing processes. We find a critical strain beyond which there is a qualitative change in the breakage of contacts between neighbors. Cyclic shear flows with amplitudes below this critical strain settle into a nearly reversible flow pattern, while those with amplitudes above the critical strain remain in a persistent diffusive, irreversible state. Overall, the RIMS method is a powerful tool for probing the structure of slow granular flows. We are now able to examine particle level rearrangements which were previously explored in simulations

  6. Notes on Well-Posed, Ensemble Averaged Conservation Equations for Multiphase, Multi-Component, and Multi-Material Flows

    SciTech Connect

    Ray A. Berry

    2005-07-01

    At the INL researchers and engineers routinely encounter multiphase, multi-component, and/or multi-material flows. Some examples include: Reactor coolant flows Molten corium flows Dynamic compaction of metal powders Spray forming and thermal plasma spraying Plasma quench reactor Subsurface flows, particularly in the vadose zone Internal flows within fuel cells Black liquor atomization and combustion Wheat-chaff classification in combine harvesters Generation IV pebble bed, high temperature gas reactor The complexity of these flows dictates that they be examined in an averaged sense. Typically one would begin with known (or at least postulated) microscopic flow relations that hold on the “small” scale. These include continuum level conservation of mass, balance of species mass and momentum, conservation of energy, and a statement of the second law of thermodynamics often in the form of an entropy inequality (such as the Clausius-Duhem inequality). The averaged or macroscopic conservation equations and entropy inequalities are then obtained from the microscopic equations through suitable averaging procedures. At this stage a stronger form of the second law may also be postulated for the mixture of phases or materials. To render the evolutionary material flow balance system unique, constitutive equations and phase or material interaction relations are introduced from experimental observation, or by postulation, through strict enforcement of the constraints or restrictions resulting from the averaged entropy inequalities. These averaged equations form the governing equation system for the dynamic evolution of these mixture flows. Most commonly, the averaging technique utilized is either volume or time averaging or a combination of the two. The flow restrictions required for volume and time averaging to be valid can be severe, and violations of these restrictions are often found. A more general, less restrictive (and far less commonly used) type of averaging known

  7. The Flow of American Television Materials to Australia.

    ERIC Educational Resources Information Center

    Breen, Myles P.

    A review of the current situation regarding the media flow between the United States and Australia shows that the traditional pattern--American content dominating the Australian media--still holds, but that there is evidence of movement by the Australians to establish their own media identity. An analysis of the television ratings for Australia's…

  8. Flow dynamics and magnetic induction in the von-Kármán plasma experiment

    NASA Astrophysics Data System (ADS)

    Plihon, N.; Bousselin, G.; Palermo, F.; Morales, J.; Bos, W. J. T.; Godeferd, F.; Bourgoin, M.; Pinton, J.-F.; Moulin, M.; Aanesland, A.

    2015-01-01

    The von-Kármán plasma experiment is a novel versatile experimental device designed to explore the dynamics of basic magnetic induction processes and the dynamics of flows driven in weakly magnetized plasmas. A high-density plasma column (1016-1019 particles. m-3) is created by two radio-frequency plasma sources located at each end of a 1 m long linear device. Flows are driven through J × B azimuthal torques created from independently controlled emissive cathodes. The device has been designed such that magnetic induction processes and turbulent plasma dynamics can be studied from a variety of time-averaged axisymmetric flows in a cylinder. MHD simulations implementing volume-penalization support the experimental development to design the most efficient flow-driving schemes and understand the flow dynamics. Preliminary experimental results show that a rotating motion of up to nearly 1 km/s is controlled by the J × B azimuthal torque.

  9. Dynamic modeling of mass-flowing linear medium with large amplitude displacement and rotation

    NASA Astrophysics Data System (ADS)

    Hong, Difeng; Tang, Jiali; Ren, Gexue

    2011-11-01

    In this paper, a dynamic model of a linear medium with mass flow, such as traveling strings, cables, belts, beams or pipes conveying fluids, is proposed, in the framework of Arbitrary-Lagrange-Euler (ALE) description. The material coordinate is introduced to characterize the mass-flow of the medium, and the Absolute Nodal Coordinate Formulation (ANCF) is employed to capture geometric nonlinearity of the linear media under large displacement and rotation. The governing equations are derived in terms of d'Alembert's principle. When using an ALE description, complex mass-flowing boundary conditions can be easily enforced. Numerical examples are presented to validate the proposed method by comparison with analytical results of simplified models. The computed critical fluid velocity for the stability of a cantilevered pipe conveying fluid is correlated with the available theory in literature. The large amplitude limit-cycle oscillations of flexible pipes conveying fluid are presented, and the effect of the velocity of the fluid on the static equilibrium of the pipe under gravity is investigated.

  10. Flow structure of loose material in an incline pipeline

    SciTech Connect

    Mukhin, I.I.; Petrov, V.N.

    1983-11-01

    In the pnuematic transport systems of catalytic cracking units, use is made of inclined pipelines. This paper studies the conditions of movement of a loose material in inclined delivery standpipes. Characteristic zones in a moving bed of fine-grained materials were determined: a zone of stabilized movement, an outflow zone, a transition zone, and a zone of immobile material. These movements were tested in pipes with various slope angles alpha and different locations of the discharge opening. The results obtained can be used in designing inclined feed standpipes for pneumatic transport systems in catalytic cracking units.

  11. Unsteady aerodynamics of reverse flow dynamic stall on an oscillating blade section

    NASA Astrophysics Data System (ADS)

    Lind, Andrew H.; Jones, Anya R.

    2016-07-01

    Wind tunnel experiments were performed on a sinusoidally oscillating NACA 0012 blade section in reverse flow. Time-resolved particle image velocimetry and unsteady surface pressure measurements were used to characterize the evolution of reverse flow dynamic stall and its sensitivity to pitch and flow parameters. The effects of a sharp aerodynamic leading edge on the fundamental flow physics of reverse flow dynamic stall are explored in depth. Reynolds number was varied up to Re = 5 × 105, reduced frequency was varied up to k = 0.511, mean pitch angle was varied up to 15∘, and two pitch amplitudes of 5∘ and 10∘ were studied. It was found that reverse flow dynamic stall of the NACA 0012 airfoil is weakly sensitive to the Reynolds numbers tested due to flow separation at the sharp aerodynamic leading edge. Reduced frequency strongly affects the onset and persistence of dynamic stall vortices. The type of dynamic stall observed (i.e., number of vortex structures) increases with a decrease in reduced frequency and increase in maximum pitch angle. The characterization and parameter sensitivity of reverse flow dynamic stall given in the present work will enable the development of a physics-based analytical model of this unsteady aerodynamic phenomenon.

  12. Flow dynamics and solute transport in unsaturated rock fractures

    SciTech Connect

    Su, G. W.

    1999-10-01

    Rock fractures play an important role in flow and contaminant transport in fractured aquifers, production of oil from petroleum reservoirs, and steam generation from geothermal reservoirs. In this dissertation, phenomenological aspects of flow in unsaturated fractures were studied in visualization experiments conducted on a transparent replica of a natural, rough-walled rock fracture for inlet conditions of constant pressure and flow rate over a range of angles of inclination. The experiments demonstrated that infiltrating liquid proceeds through unsaturated rock fractures along non-uniform, localized preferential flow paths. Even in the presence of constant boundary conditions, intermittent flow was a persistent flow feature observed, where portions of the flow channel underwent cycles of snapping and reforming. Two modes of intermittent flow were observed, the pulsating blob mode and the rivulet snapping mode. A conceptual model for the rivulet snapping mode was proposed and examined using idealized, variable-aperture fractures. The frequency of intermittent flow events was measured in several experiments and related to the capillary and Bond numbers to characterize this flow behavior.

  13. Chemical Dynamics in Energetic Materials Incorporating Aluminum Nanoparticles

    NASA Astrophysics Data System (ADS)

    Lewis, William K.; Harruff, Barbara A.; Fernando, K. A. Shiral; Smith, Marcus J.; Guliants, Elena A.; Bunker, Christopher E.

    2010-06-01

    Aluminum nanoparticles are widely considered attractive as fuels due to the high heat of reaction associated with their oxidation, and the potential for fast reaction due to their small size. However, the reaction dynamics can also be strongly influenced by the passivation layer that coats the reactive metal surface. Typically, this takes the form of a naturally-occurring oxide shell on the nanoparticle, but other passivation schemes are now available. We have recently developed a sonochemical synthesis procedure to produce aluminum nanoparticles capped with oleic acid. These nanoparticles have an aluminum metal core, some organic-provided oxide, and an organic shell. To investigate the effect of the passivation method on the chemical dynamics in energetic materials, we have studied samples consisting of a mixture of a metal nanoparticle fuel and an ammonium nitrate or ammonium perchlorate oxidizer. The metal fuel is either commercially available oxide-coated aluminum nanoparticles, or the oleic acid-capped nanoparticles. The energetic samples are ignited with an IR laser pulse. Following ignition, the chemical dynamics are studied using visible emission spectroscopy and mass spectrometry. Preliminary results suggest that our Al-oleic acid nanoparticles are able to react more rapidly than those that are conventionally passivated with a naturally-occurring oxide shell. K. A. S. Fernando, M. J. Smith, B. A. Harruff, W. K. Lewis, E. A. Guliants and C. E. Bunker J. Phys. Chem. C, 113, 500 (2009).

  14. Left-right organizer flow dynamics: how much cilia activity reliably yields laterality?

    PubMed

    Sampaio, Pedro; Ferreira, Rita R; Guerrero, Adán; Pintado, Petra; Tavares, Bárbara; Amaro, Joana; Smith, Andrew A; Montenegro-Johnson, Thomas; Smith, David J; Lopes, Susana S

    2014-06-23

    Internal organs are asymmetrically positioned inside the body. Embryonic motile cilia play an essential role in this process by generating a directional fluid flow inside the vertebrate left-right organizer. Detailed characterization of how fluid flow dynamics modulates laterality is lacking. We used zebrafish genetics to experimentally generate a range of flow dynamics. By following the development of each embryo, we show that fluid flow in the left-right organizer is asymmetric and provides a good predictor of organ laterality. This was tested in mosaic organizers composed of motile and immotile cilia generated by dnah7 knockdowns. In parallel, we used simulations of fluid dynamics to analyze our experimental data. These revealed that fluid flow generated by 30 or more cilia predicts 90% situs solitus, similar to experimental observations. We conclude that cilia number, dorsal anterior motile cilia clustering, and left flow are critical to situs solitus via robust asymmetric charon expression. PMID:24930722

  15. Two-dimensional fluid dynamics in a sharply bent channel: Laminar flow, separation bubble, and vortex dynamics

    NASA Astrophysics Data System (ADS)

    Matsumoto, Daichi; Fukudome, Koji; Wada, Hirofumi

    2016-10-01

    Understanding the hydrodynamic properties of fluid flow in a curving pipe and channel is important for controlling the flow behavior in technologies and biomechanics. The nature of the resulting flow in a bent pipe is extremely complicated because of the presence of a cross-stream secondary flow. In an attempt to disentangle this complexity, we investigate the fluid dynamics in a bent channel via the direct numerical simulation of the Navier-Stokes equation in two spatial dimensions. We exploit the absence of secondary flow from our model and systematically investigate the flow structure along the channel as a function of both the bend angle and Reynolds number of the laminar-to-turbulent regime. We numerically suggest a scaling relation between the shape of the separation bubble and the flow conductance, and construct an integrated phase diagram.

  16. Material dynamics under extreme conditions of pressure and strain rate

    SciTech Connect

    Remington, B A; Allen, P; Bringa, E; Hawreliak, J; Ho, D; Lorenz, K T; Lorenzana, H; Meyers, M A; Pollaine, S W; Rosolankova, K; Sadik, B; Schneider, M S; Swift, D; Wark, J; Yaakobi, B

    2005-09-06

    Solid state experiments at extreme pressures (10-100 GPa) and strain rates ({approx}10{sup 6}-10{sup 8}s{sup -1}) are being developed on high-energy laser facilities, and offer the possibility for exploring new regimes of materials science. These extreme solid-state conditions can be accessed with either shock loading or with a quasi-isentropic ramped pressure drive. Velocity interferometer measurements establish the high pressure conditions. Constitutive models for solid-state strength under these conditions are tested by comparing 2D continuum simulations with experiments measuring perturbation growth due to the Rayleigh-Taylor instability in solid-state samples. Lattice compression, phase, and temperature are deduced from extended x-ray absorption fine structure (EXAFS) measurements, from which the shock-induced {alpha}-{omega} phase transition in Ti and the {alpha}-{var_epsilon} phase transition in Fe are inferred to occur on sub-nanosec time scales. Time resolved lattice response and phase can also be measured with dynamic x-ray diffraction measurements, where the elastic-plastic (1D-3D) lattice relaxation in shocked Cu is shown to occur promptly (< 1 ns). Subsequent large-scale molecular dynamics (MD) simulations elucidate the microscopic dynamics that underlie the 3D lattice relaxation. Deformation mechanisms are identified by examining the residual microstructure in recovered samples. The slip-twinning threshold in single-crystal Cu shocked along the [001] direction is shown to occur at shock strengths of {approx}20 GPa, whereas the corresponding transition for Cu shocked along the [134] direction occurs at higher shock strengths. This slip-twinning threshold also depends on the stacking fault energy (SFE), being lower for low SFE materials. Designs have been developed for achieving much higher pressures, P > 1000 GPa, in the solid state on the National Ignition Facility (NIF) laser.

  17. Dynamics of unusual debris flows on Martian sand dunes

    NASA Astrophysics Data System (ADS)

    Miyamoto, Hideaki; Dohm, James M.; Baker, Victor R.; Beyer, Ross A.; Bourke, Mary

    2004-07-01

    Gullies that dissect sand dunes in Russell impact crater often display debris flow-like deposits in their distal reaches. The possible range of both the rheological properties and the flow rates are estimated using a numerical simulation code of a Bingham plastic flow to help explain the formation of these features. Our simulated results are best explained by a rapid debris flow. For example, a debris flow with the viscosity of 102 Pa s and the yield strength of 102 Pa can form the observed deposits with a flow rate of 0.5 m3/s sustained over several minutes and total discharged water volume on the order of hundreds of cubic meters, which may be produced by melting a surface layer of interstitial ice within the dune deposits to several centimeters depth.

  18. Pattern formation during mixing and segregation of flowing granular materials

    NASA Astrophysics Data System (ADS)

    Metcalfe, Guy; Shattuck, Mark

    1996-02-01

    Powder mixing plays an important role in a number of industries ranging from pharmaceuticals and food to ceramics and mining. Avalanches provide a mechanism for the stretching and folding needed to mix granular solids. However, unlike fluids, when particles dissimilar in size, density, or shape flow, they can spontaneously demix or segregate. Using magnetic resonance imaging, we track the transport of granular solids in a slowly rotating tube both with and without segregation effects. Compared with experiments in a 2-dimensional rotating disk partially filled with colored particles, the mixing kinematics and the granular pattern formation in a tube are changed by an axial flow instability. From simple physical principles we argue how size and density segregation mechanisms can be made to cancel, allowing good mixing of dissimilar particles, and we show experiments verifying this. Further experiments isolate the axial transport in the slowly rotating tube. Axial transport can appear faster with segregation than without.

  19. Lava flow dynamics driven by temperature-dependent viscosity variations

    NASA Astrophysics Data System (ADS)

    Diniega, S.; Smrekar, S. E.; Anderson, S. W.; Stofan, E. R.

    2011-12-01

    As lava viscosity can change 1-2 orders of magnitude due to small changes in temperature, several studies have predicted the formation of low-viscosity/high-temperature "fingers" (similar to a Saffman-Taylor type instability) within an initially near-uniform flow. We examine the onset and evolution of such fingers within a uniform lava sheet flow due to an influx of lava with slightly-variable temperature. We assume Hele-shaw-type geometry (depth << other dimensions), Newtonian and laminar fluid flow, a simple Nahme's exponential law relating temperature and viscosity, and radiative heat-loss through the flow's upper surface. Through the use of numerical simulation and steady-state analysis of model equations, we identify solutions that provide pahoehoe lava flows with a natural mechanism for the formation of lava channels/tubes within a sheet flow. Preliminary results indicate that flow-focusing occurs rapidly due to the thermo-viscosity relation, but zones of hotter flow commonly settle into a new steady-state and it is difficult to create perpetually-lengthening hot-fingers of lava (which seem more physically similar to developing lava tubes). This suggests that additional and/or discontinuous physical processes (such as decreasing radiative rates due to thickening of the surface crust or crystallization abruptly retarding flow within lower-temperature regions) may play important roles in the continued growth of preferred flow zones. We also derive qualitative and quantitative estimates of environmental controls on finger size, spacing, and location. This work has application to Earth and planetary volcanology studies as pahoehoe flows dominate terrestrial basaltic lavas and the eruption/emplacement mechanics that yield long lava flows on the Earth and Mars are not yet well understood.

  20. Unsteady fluid dynamic model for propeller induced flow fields

    NASA Technical Reports Server (NTRS)

    Katz, Joseph; Ashby, Dale L.; Yon, Steven

    1991-01-01

    A potential flow based three-dimensional panel method was modified to treat time dependent flow conditions in which the body's geometry may vary with time. The main objective of this effort was the study of a flow field due to a propeller rotating relative to a nonrotating body which is otherwise moving at a constant forward speed. Calculated surface pressure, thrust and torque coefficient data for a four-bladed marine propeller/body compared favorably with previously published experimental results.

  1. Age distributions and dynamically changing hydrologic systems: Exploring topography-driven flow

    NASA Astrophysics Data System (ADS)

    Gomez, J. D.; Wilson, J. L.

    2013-03-01

    Natural systems are driven by dynamic forcings that change in time as well as space, behavior that is inherited by the system flow field and results in time-varying age distributions (ADs). This work presents a review of the mathematical tools and solution approaches used to model ADs in dynamic time-varying flow systems. A simple conceptual, numerical model is then used to explore the role of flow dynamics in ADs for topography-driven flow systems. This model is an analog for regional groundwater systems and hyporheic zones. This model demonstrates that relatively small fluctuations in the forcing, even though importantly affecting the flow in the system, can have minimal effects in ADs. However, as the intensity of fluctuation increases, still within the bounds observed in natural systems, ADs in shallow parts of the system become highly sensitive to dynamic flow conditions, leading to considerable changes in the moments and modality of the distributions with time. In particular, transient flow can lead to emergence of new modes in the AD, which would not be present under steady flow conditions. The discrepancy observed between ADs under steady and transient flow conditions is explained by enhancement of mixing due to temporal variations in the flow field. ADs in deeper parts of the system are characterized by multimodality and tend to be more stable over time even for large forcing fluctuations.

  2. Smoothed Particle Hydrodynamics simulation and laboratory-scale experiments of complex flow dynamics in unsaturated fractures

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Tartakovsky, A. M.; Pan, W.; Shigorina, E.; Noffz, T.; Geyer, T.

    2015-12-01

    Unsaturated flow in fractured porous media exhibits highly complex flow dynamics and a wide range of intermittent flow processes. Especially in wide aperture fractures, flow processes may be dominated by gravitational instead of capillary forces leading to a deviation from the classical volume effective approaches (Richard's equation, Van Genuchten type relationships). The existence of various flow modes such as droplets, rivulets, turbulent and adsorbed films is well known, however, their spatial and temporal distribution within fracture networks is still an open question partially due to the lack of appropriate modeling tools. With our work we want to gain a deeper understanding of the underlying flow and transport dynamics in unsaturated fractured media in order to support the development of more refined upscaled methods, applicable on catchment scales. We present fracture-scale flow simulations obtained with a parallelized Smoothed Particle Hydrodynamics (SPH) model. The model allows us to simulate free-surface flow dynamics including the effect of surface tension for a wide range of wetting conditions in smooth and rough fractures. Due to the highly efficient generation of surface tension via particle-particle interaction forces the dynamic wetting of surfaces can readily be obtained. We validated the model via empirical and semi-analytical solutions and conducted laboratory-scale percolation experiments of unsaturated flow through synthetic fracture systems. The setup allows us to obtain travel time distributions and identify characteristic flow mode distributions on wide aperture fractures intercepted by horizontal fracture elements.

  3. Building the Material Flow Networks of Aluminum in the 2007 U.S. Economy.

    PubMed

    Chen, Wei-Qiang; Graedel, T E; Nuss, Philip; Ohno, Hajime

    2016-04-01

    Based on the combination of the U.S. economic input-output table and the stocks and flows framework for characterizing anthropogenic metal cycles, this study presents a methodology for building material flow networks of bulk metals in the U.S. economy and applies it to aluminum. The results, which we term the Input-Output Material Flow Networks (IO-MFNs), achieve a complete picture of aluminum flow in the entire U.S. economy and for any chosen industrial sector (illustrated for the Automobile Manufacturing sector). The results are compared with information from our former study on U.S. aluminum stocks and flows to demonstrate the robustness and value of this new methodology. We find that the IO-MFN approach has the following advantages: (1) it helps to uncover the network of material flows in the manufacturing stage in the life cycle of metals; (2) it provides a method that may be less time-consuming but more complete and accurate in estimating new scrap generation, process loss, domestic final demand, and trade of final products of metals, than existing material flow analysis approaches; and, most importantly, (3) it enables the analysis of the material flows of metals in the U.S. economy from a network perspective, rather than merely that of a life cycle chain.

  4. Solid Suspension Flow Batteries Using Earth Abundant Materials.

    PubMed

    Mubeen, Syed; Jun, Young-Si; Lee, Joun; McFarland, Eric W

    2016-01-27

    The technical features of solid-electrode batteries (e.g., high energy density, relatively low capital cost ($/kWh)) and flow batteries (e.g., long cycle life, design flexibility) are highly complementary. It is therefore extremely desirable to integrate their advantages into a single storage device for large-scale energy storage applications where lifetime cost ($/kW-h/cycle) is an extremely important parameter. Here, we demonstrate a non-Li-based-flow battery concept that replaces the aqueous solution of redox-active molecules found in typical redox flow batteries with suspensions of hydrophilic carbon particles ("solid suspension electrodes") coated with earth-abundant redox-active metals. The solid suspension electrodes charge by depositing earth-abundant redox-active metals onto the carbon particle suspension, which are then stripped during discharge operation. The electrical contact to the solid suspension electrodes is fed through fixed redox-inert hydrophobic carbon current collectors through "contact charge transfer" mechanism. The hydrophobicity of the current collectors prevents direct plating of redox-active metals onto their surfaces. The above concept was successfully used to demonstrate several non-Li-based battery chemistries including zinc-copper, zinc-manganese oxide, zinc-bromine, and zinc-sulfur, providing a pathway for potential applications in medium and large-scale electrical energy storage. PMID:26727225

  5. Solid Suspension Flow Batteries Using Earth Abundant Materials.

    PubMed

    Mubeen, Syed; Jun, Young-Si; Lee, Joun; McFarland, Eric W

    2016-01-27

    The technical features of solid-electrode batteries (e.g., high energy density, relatively low capital cost ($/kWh)) and flow batteries (e.g., long cycle life, design flexibility) are highly complementary. It is therefore extremely desirable to integrate their advantages into a single storage device for large-scale energy storage applications where lifetime cost ($/kW-h/cycle) is an extremely important parameter. Here, we demonstrate a non-Li-based-flow battery concept that replaces the aqueous solution of redox-active molecules found in typical redox flow batteries with suspensions of hydrophilic carbon particles ("solid suspension electrodes") coated with earth-abundant redox-active metals. The solid suspension electrodes charge by depositing earth-abundant redox-active metals onto the carbon particle suspension, which are then stripped during discharge operation. The electrical contact to the solid suspension electrodes is fed through fixed redox-inert hydrophobic carbon current collectors through "contact charge transfer" mechanism. The hydrophobicity of the current collectors prevents direct plating of redox-active metals onto their surfaces. The above concept was successfully used to demonstrate several non-Li-based battery chemistries including zinc-copper, zinc-manganese oxide, zinc-bromine, and zinc-sulfur, providing a pathway for potential applications in medium and large-scale electrical energy storage.

  6. Dynamics of a vortex pair in radial flow

    SciTech Connect

    Bannikova, E. Yu. Kontorovich, V. M. Reznik, G. M.

    2007-10-15

    The problem of vortex pair motion in two-dimensional radial flow is solved. Under certain conditions for flow parameters, the vortex pair can reverse its motion within a bounded region. The vortex-pair translational velocity decreases or increases after passing through the source/sink region, depending on whether the flow is diverging or converging, respectively. The rotational motion of a corotating vortex pair in a quiescent environment transforms into motion along a logarithmic spiral in radial flow. The problem may have applications in astrophysics and geophysics.

  7. Dynamic ionic clusters with flowing electron bubbles from warm to hot dense iron along the Hugoniot curve.

    PubMed

    Dai, Jiayu; Kang, Dongdong; Zhao, Zengxiu; Wu, Yanqun; Yuan, Jianmin

    2012-10-26

    Complex structures of warm and hot dense matter are essential to understanding the behavior of materials in high energy density processes and provide new features of matter constitutions. Here, around a new unified first-principles determined Hugoniot curve of iron from the normal condensed condition up to 1 Gbar, the novel structures characterized by the ionic clusters with electron bubbles are found using quantum Langevin molecular dynamics. Subsistence of complex clusters can persist in the time scale of 50 fs dynamically with quantum flowing bubbles, which are produced by the interplay of Fermi electron degeneracy, the ionic coupling, and the dynamical nature. With the inclusion of those complicated features in quantum Langevin molecular dynamics, the present equation of states could serve as a first-principles based database in a wide range of temperatures and densities.

  8. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    PubMed Central

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  9. Complex network analysis of phase dynamics underlying oil-water two-phase flows.

    PubMed

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-01-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows. PMID:27306101

  10. Complex network analysis of phase dynamics underlying oil-water two-phase flows

    NASA Astrophysics Data System (ADS)

    Gao, Zhong-Ke; Zhang, Shan-Shan; Cai, Qing; Yang, Yu-Xuan; Jin, Ning-De

    2016-06-01

    Characterizing the complicated flow behaviors arising from high water cut and low velocity oil-water flows is an important problem of significant challenge. We design a high-speed cycle motivation conductance sensor and carry out experiments for measuring the local flow information from different oil-in-water flow patterns. We first use multivariate time-frequency analysis to probe the typical features of three flow patterns from the perspective of energy and frequency. Then we infer complex networks from multi-channel measurements in terms of phase lag index, aiming to uncovering the phase dynamics governing the transition and evolution of different oil-in-water flow patterns. In particular, we employ spectral radius and weighted clustering coefficient entropy to characterize the derived unweighted and weighted networks and the results indicate that our approach yields quantitative insights into the phase dynamics underlying the high water cut and low velocity oil-water flows.

  11. Molecular Dynamics of Shock Wave Interaction with Nanoscale Structured Materials

    NASA Astrophysics Data System (ADS)

    Al-Qananwah, Ahmad K.

    Typical theoretical treatments of shock wave interactions are based on a continuum approach, which cannot resolve the spatial variations in solids with nano-scale porous structure. Nano-structured materials have the potential to attenuate the strength of traveling shock waves because of their high surface-to-volume ratio. To investigate such interactions we have developed a molecular dynamics simulation model, based on Short Range Attractive interactions. A piston, modeled as a uni-directional repulsive force field translating at a prescribed velocity, impinges on a region of gas which is compressed to form a shock, which in turn is driven against an atomistic solid wall. Periodic boundary conditions are used in the directions orthogonal to the piston motion, and we have considered solids based on either embedded atom potentials (target structure) or tethered potential (rigid piston, holding wall). Velocity, temperature and stress fields are computed locally in both gas and solid regions, and displacements within the solid are interpreted in terms of its elastic constants. In this work we present results of the elastic behavior of solid structures subjected to shock wave impact and analysis of energy transport and absorption in porous materials. The results indicated that the presence of nano-porous material layers in front of a target wall reduced the stress magnitude detected inside and the energy deposited there by about 30 percent while, at the same time, its loading rate was decreased substantially.

  12. Regional Groundwater Processes and Flow Dynamics from Age Tracer Data

    NASA Astrophysics Data System (ADS)

    Morgenstern, Uwe; Stewart, Mike K.; Matthews, Abby

    2016-04-01

    Age tracers are now used in New Zealand on regional scales for quantifying the impact and lag time of land use and climate change on the quantity and quality of available groundwater resources within the framework of the National Policy Statement for Freshwater Management 2014. Age tracers provide measurable information on the dynamics of groundwater systems and reaction rates (e.g. denitrification), essential for conceptualising the regional groundwater - surface water system and informing the development of land use and groundwater flow and transport models. In the Horizons Region of New Zealand, around 200 wells have tracer data available, including tritium, SF6, CFCs, 2H, 18O, Ar, N2, CH4 and radon. Well depths range from shallower wells in gravel aquifers in the Horowhenua and Tararua districts, and deeper wells in the aquifers between Palmerston North and Wanganui. Most of the groundwater samples around and north of the Manawatu River west of the Tararua ranges are extremely old (>100 years), even from relatively shallow wells, indicating that these groundwaters are relatively disconnected from fresh surface recharge. The groundwater wells in the Horowhenua tap into a considerably younger groundwater reservoir with groundwater mean residence time (MRT) of 10 - 40 years. Groundwater along the eastern side of the Tararua and Ruahine ranges is significantly younger, typically <5 years MRT. Vertical groundwater recharge rates, as deduced from groundwater depth and MRT, are extremely low in the central coastal area, consistent with confined groundwater systems, or with upwelling of old groundwater close to the coast. Very low vertical recharge rates along the Manawatu River west of the Manawatu Gorge indicate upwelling groundwater conditions in this area, implying groundwater discharge into the river is more likely here than loss of river water into the groundwater system. High recharge rates observed at several wells in the Horowhenua area and in the area east of

  13. Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: Stability, frequency shift and energy dissipation

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Ming; Yan, Han; Jiang, Hui-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang

    2016-04-01

    In this paper, the dynamics of suspended microchannel resonators which convey internal flows with opposite directions are investigated. The fluid-structure interactions between the laminar fluid flow and oscillating cantilever are analyzed by comprehensively considering the effects of velocity profile, flow viscosity and added flowing particle. A new model is developed to characterize the dynamic behavior of suspended microchannel resonators with the fluid-structure interactions. The stability, frequency shift and energy dissipation of suspended microchannel resonators are analyzed and discussed. The results demonstrate that the frequency shifts induced by the added flowing particle which are obtained from the new model have a good agreement with the experimental data. The steady mean flow can cause the frequency shift and influence the stability of the dynamic system. As the flow velocity reaches the critical value, the coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation. The perturbation flow resulted from the vibration of the microcantilever leads to energy dissipation, while the steady flow does not directly cause the damping which increases with the increasing of the flow velocity predicted by the classical model. It can also be found that the steady flow firstly changes the mode shape of the cantilever and consequently affects the energy dissipation.

  14. The Dynamics of Rapidly Emplaced Terrestrial Lava Flows and Implications for Planetary Volcanism

    NASA Technical Reports Server (NTRS)

    Baloga, Stephen; Spudis, Paul D.; Guest, John E.

    1995-01-01

    The Kaupulehu 1800-1801 lava flow of Hualalai volcano and the 1823 Keaiwa flow from the Great Crack of the Kilauea southwest rift zone had certain unusual and possibly unique properties for terrestrial basaltic lava flows. Both flows apparently had very low viscosities, high effusion rates, and uncommonly rapid rates of advance. Ultramafic xenolith nodules in the 1801 flow form stacks of cobbles with lava rinds of only millimeter thicknesses. The velocity of the lava stream in the 1801 flow was extremely high, at least 10 m/s (more than 40 km/h). Observations and geological evidence suggest similarly high velocities for the 1823 flow. The unusual eruption conditions that produced these lava flows suggest a floodlike mode of emplacement unlike that of most other present-day flows. Although considerable effort has gone into understanding the viscous fluid dynamics and thermal processes that often occur in basaltic flows, the unusual conditions prevalent for the Kaupulehu and Keaiwa flows necessitate different modeling considerations. We propose an elementary flood model for this type of lava emplacement and show that it produces consistent agreement with the overall dimensions of the flow, channel sizes, and other supporting field evidence. The reconstructed dynamics of these rapidly emplaced terrestrial lava flows provide significant insights about the nature of these eruptions and their analogs in planetary volcanism.

  15. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    SciTech Connect

    Smith, F.; Flach, G.

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  16. The Effects of Pulsating Flow on Eruption Column Dynamics

    NASA Astrophysics Data System (ADS)

    Black, T.; Dufek, J.; Benage, M. C.

    2015-12-01

    Pulsating flow, at frequencies ranging from 10-2 to 101 Hz, has been recorded in explosive eruptions through video, thermal imagery, and infrasonic and seismic data. Such pulsating flow can be generated from instabilities in bubbly magma, and from granular instabilities in post-fragmentation conduit flow. Variable fluxes of gas and particles at the vent can alter entrainment conditions, and consequently affect eruption column stability. However, volcanic eruption models typically assume steady flow from the vent, and regime diagrams of eruption column stability are based on such steady flow assumptions. Using Eulerian-Eulerian multiphase numerical simulations of eruption columns with both steady and pulsating sources, we compared the relative behavior of steady and pulsed columns across a range of pulse frequencies and mass fluxes at the vent (mass flux is time-averaged for pulsating cases). Preliminary results suggest that pulsating flow increases air entrainment into the column relative to steady flow for otherwise constant eruption conditions, and that entrainment increases with decreasing pulse frequency. Increased entrainment at low frequency implies that low-frequency pulsed columns are more buoyant and potentially more stable than their steady counterparts, for a given mass flux. This effect disrupts the steady flow-based understanding of eruption column stability regimes and may be a factor to consider for future assessment of volcanic hazards and interpreting mass flux conditions from deposits.

  17. An electrochemical-sensor system for real-time flow measurements in porous materials.

    PubMed

    Bathany, Cédric; Han, Ja-Ryoung; Abi-Samra, Kameel; Takayama, Shuichi; Cho, Yoon-Kyoung

    2015-08-15

    Flow monitoring in porous materials is critical for the engineering of paper-based microfluidic bioassays. Here, we present an electrochemical-sensor system that monitors the liquid flow in porous materials without affecting the real flow in paper-strip samples. The developed microfluidic sensor records an amperometric signal created by the solution movement mediated by paper wicking. This approach allows the in situ monitoring of the different hydrodynamic conditions of a specific paper geometry or composition. In addition, the method proposed in this work was employed to characterise the fluid flow of different nitrocellulose paper strips after oxygen-plasma treatment or dextran coating. The dextran fluid-flow modifiers were further used on the paper strip-based assays as means of signal enhancement. The proposed electrochemical-sensing method offers a valuable alternative to existing optical-based monitoring techniques for flow measurement in paper-based microfluidic systems.

  18. Constitutive equations for coupled flows in clay materials

    NASA Astrophysics Data System (ADS)

    Revil, A.; Woodruff, W. F.; Lu, N.

    2011-05-01

    We first upscale the local transport (Stokes and Nernst-Planck) equations to the scale of a single capillary saturated by a binary 1:1 electrolyte. These equations are then upscaled to the scale of a network of tortuous capillaries embedded in a homogeneous and continuous mineral matrix, including the influence of the distribution of pore sizes but excluding the effect of connectivity between the pores. One of the features of our theory is to account for transport along the mineral surface in the so-called Stern layer because of recent evidence that this mechanism is effective in describing frequency-dependent electrical conductivity. Real clay materials are, however, not described by a set of capillaries, so we have to modify the model to include the effect of transversal dispersivity, for example. We found no evidence for transport in the Stern layer because of the discontinuity of the solid phase at the scale of a representative elementary volume in clay materials. The effect of the diffuse layer is accounted for through the use of a Donnan equilibrium approach to determine the effective concentrations of the ions in the pore space, which are different from the ionic concentrations of an ionic reservoir in local equilibrium with the porous material. We found that the diffuse layer controls various transport properties, including, for example, the DC electrical conductivity, the osmotic efficiency coefficient, the streaming potential coupling coefficient, and the macroscopic Hittorf numbers. Comparison to a large data set of experimental data, mainly on clay materials, confirms the validity of the derived relationships used to describe the material properties entering into the constitutive equations.

  19. Comprehensive Flow Meter for All Materials. Final report

    SciTech Connect

    1999-11-15

    The electromagnetic flowmeter is obstructionless and insensitive to the metered stuff's constitutive properties. For low zero-point drift, EM flowmeters employ a low frequency alternating induction, usually with square waveshape. With conventional signal conditioning, high frequency induction leads to excessive zero-point drift for the instrument. The conventional instrument is usable with electrically conductive fluids, where there is no triboelectric noise. Nonconductive fluids have substantial triboelectric noise, with spectral density experimentally measured to be f{sup {minus}2.6}. Here we use an electromagnet and signal conditioner that allows high frequency induction, where the noise is low, but eliminates the heretofore excessive drift--such that the EM flowmeter can be used to meter any stuff, whether conductive or insulating, that can be pumped, blown or extruded through a pipe. Designs and test hardware are shown. An injury occurred, with slow recovery: the principal investigator could not do all the flow test stand work desired. As an option, the flow testing has been simulated on a computer. Using characteristics of transformer oil as the metered fluid, the new signal conditioner has produced: (1) signal/noise/drift behavior experienced in prior published work, and (2) signal--without noise and drift--with performance of today's commercial EM flowmeters.

  20. A High-Resolution Godunov Method for Compressible Multi-Material Flow on Overlapping Grids

    SciTech Connect

    Banks, J W; Schwendeman, D W; Kapila, A K; Henshaw, W D

    2006-02-13

    A numerical method is described for inviscid, compressible, multi-material flow in two space dimensions. The flow is governed by the multi-material Euler equations with a general mixture equation of state. Composite overlapping grids are used to handle complex flow geometry and block-structured adaptive mesh refinement (AMR) is used to locally increase grid resolution near shocks and material interfaces. The discretization of the governing equations is based on a high-resolution Godunov method, but includes an energy correction designed to suppress numerical errors that develop near a material interface for standard, conservative shock-capturing schemes. The energy correction is constructed based on a uniform pressure-velocity flow and is significant only near the captured interface. A variety of two-material flows are presented to verify the accuracy of the numerical approach and to illustrate its use. These flows assume an equation of state for the mixture based on Jones-Wilkins-Lee (JWL) forms for the components. This equation of state includes a mixture of ideal gases as a special case. Flow problems considered include unsteady one-dimensional shock-interface collision, steady interaction of an planar interface and an oblique shock, planar shock interaction with a collection of gas-filled cylindrical inhomogeneities, and the impulsive motion of the two-component mixture in a rigid cylindrical vessel.

  1. Fracturing as a Quantitative Indicator of Lava Flow Dynamics

    NASA Astrophysics Data System (ADS)

    Kilburn, C. R.; Solana, C.

    2005-12-01

    The traditional classification of lava flows into pahoehoe and aa varieties reflects differences in how a flow can fracture its surface during advance. Both types of lava have a low strength upon eruption and require surface cooling to produce a crust that can fracture. Among pahoehoe lavas, applied stresses are small enough to allow the growth of a continuous crust, which is broken intermittently as the flow advances by propagating a collection of lava tongues. Among aa lavas, in contrast, applied stresses are large enough to maintain persistent crustal failure. The differences in fracturing characteristics has been used to quantify the transition between flow regimes and suggests that shear fracture may dominate tensile failure. Applied to Lanzarote, the model confirms the inference from incomplete eye-witness accounts of the 1730-36 Timanfaya eruption that pahoehoe flows were able to advance about an order of magnitude more quickly than would have been expected by analogy with Hawaiian pahoehoe flow-fields of similar dimensions. Surface texture and morphology, therefore, are insufficient guides for constraining the rate and style of pahoehoe emplacement. Applications include improved hazard assessments during effusive eruptions and new evaluations of the emplacement conditions for very large-volume pahoehoe lava flows.

  2. Temporal variability of colloidal material in agricultural storm runoff from managed grassland using flow field-flow fractionation.

    PubMed

    Gimbert, Laura J; Worsfold, Paul J

    2009-12-25

    This paper reports the use of flow field-flow fractionation (FlFFF) to determine the temporal variability of colloidal (<1mum) particle size distributions in agricultural runoff waters in a small managed catchment in SW England during storm events. Three storm events of varying intensity were captured and the colloidal material in the runoff analysed by FlFFF. The technique had sufficient sensitivity to determine directly the changing colloidal profile over the 0.08-1.0mum size range in the runoff waters during these storm events. Rainfall, total phosphorus and suspended solids in the bulk runoff samples were also determined throughout one storm and showed significant correlation (P<0.01) with the amount of colloidal material. Whilst there are some uncertainties in the resolution and absolute calibration of the FlFFF profiles, the technique has considerable potential for the quantification of colloidal material in storm runoff waters. PMID:19577239

  3. A Comparative Study of Material Flow Behavior in Friction Stir Welding Using Laminar and Turbulent Models

    NASA Astrophysics Data System (ADS)

    Kadian, Arun Kumar; Biswas, Pankaj

    2015-10-01

    Friction stir welding has been quite successful in joining aluminum alloy which has gained importance in almost all industrial sectors over the past two decades. It is a newer technique and therefore needs more attention in many sectors, flow of material being one among them. The material flow pattern actually helps in deciding the parameters required for particular tool geometry. The knowledge of material flow is very significant in removing defects from the weldment. In the work presented in this paper, the flow behavior of AA6061 under a threaded tool has been studied. The convective heat loss has been considered from all the surfaces, and a comparative study has been made with and without the use of temperature-dependent properties and their significance in the finite volume method model. The two types of models that have been implemented are turbulent and laminar models. Their thermal histories have been studied for all the cases. The material flow velocity has been analyzed to predict the flow of material. A swirl inside the weld material has been observed in all the simulations.

  4. Geophysical flows as dynamical systems: the influence of Hide's experiments

    NASA Astrophysics Data System (ADS)

    Ghil, Michael; Read, Peter; Smith, Leonard

    2010-08-01

    Michael Ghil, Peter L Read and Leonard A Smith recount the many and various ways that Raymond Hide has influenced their life and work in geophysical fluid dynamics, meteorology, climatology and planetary sciences, as well as in developing the study of dynamical systems in general.

  5. Thermal/Pyrolysis Gas Flow Analysis of Carbon Phenolic Material

    NASA Technical Reports Server (NTRS)

    Clayton, J. Louie

    2001-01-01

    Provided in this study are predicted in-depth temperature and pyrolysis gas pressure distributions for carbon phenolic materials that are externally heated with a laser source. Governing equations, numerical techniques and comparisons to measured temperature data are also presented. Surface thermochemical conditions were determined using the Aerotherm Chemical Equilibrium (ACE) program. Surface heating simulation used facility calibrated radiative and convective flux levels. Temperatures and pyrolysis gas pressures are predicted using an upgraded form of the SINDA/CMA program that was developed by NASA during the Solid Propulsion Integrity Program (SPIP). Multispecie mass balance, tracking of condensable vapors, high heat rate kinetics, real gas compressibility and reduced mixture viscosity's have been added to the algorithm. In general, surface and in-depth temperature comparisons are very good. Specie partial pressures calculations show that a saturated water-vapor mixture is the main contributor to peak in-depth total pressure. Further, for most of the cases studied, the water-vapor mixture is driven near the critical point and is believed to significantly increase the local heat capacity of the composite material. This phenomenon if not accounted for in analysis models may lead to an over prediction in temperature response in charring regions of the material.

  6. Dynamic radioisotope bone imaging as a noninvasive indicator of canine tibial blood flow

    SciTech Connect

    Nutton, R.W.; Fitzgerald, R.H. Jr.; Brown, M.L.; Kelly, P.J.

    1984-01-01

    The relative values of dynamic and static bone imaging with hydroxymethylenediphosphonate technetium /sup 99m/ (/sup 99m/Tc HDP) as an indicator of bone blood flow was investigated in the tibia of mature dogs. The dynamic bone scan consisted of 60 1-s images formed after the intravenous injection of /sup 99m/Tc HDP, and the static bone scan was a 45-min uptake image. Blood flow to the tibia was determined by using radioactively labeled microspheres. Studies were carried out in control dogs, in dogs in which blood flow was increased in one leg with ATP, and in dogs in which blood flow was decreased in one leg with norepinephrine. A significant linear relationship between the dynamic scan values and bone blood flow was found at a wide range of blood flow rates. When blood flow increased by more than 50%, the effects of diffusion limitation were seen in the static scans: increase in tracer uptake was disproportionately small for a significant increase in blood flow. There is no method currently available for estimating bone blood flow by a noninvasive technique. The method described here may be useful for providing a semiquantitative measure of bone blood flow. This improved versatility of bone imaging may have a role in the management of osteomyelitis or complicated fractures, or in assessing the viability of vascularized bone grafts.

  7. Braided river flow and invasive vegetation dynamics in the Southern Alps, New Zealand.

    PubMed

    Caruso, Brian S; Edmondson, Laura; Pithie, Callum

    2013-07-01

    In mountain braided rivers, extreme flow variability, floods and high flow pulses are fundamental elements of natural flow regimes and drivers of floodplain processes, understanding of which is essential for management and restoration. This study evaluated flow dynamics and invasive vegetation characteristics and changes in the Ahuriri River, a free-flowing braided, gravel-bed river in the Southern Alps of New Zealand's South Island. Sixty-seven flow metrics based on indicators of hydrologic alteration and environmental flow components (extreme low flows, low flows, high flow pulses, small floods and large floods) were analyzed using a 48-year flow record. Changes in the areal cover of floodplain and invasive vegetation classes and patch characteristics over 20 years (1991-2011) were quantified using five sets of aerial photographs, and the correlation between flow metrics and cover changes were evaluated. The river exhibits considerable hydrologic variability characteristic of mountain braided rivers, with large variation in floods and other flow regime metrics. The flow regime, including flood and high flow pulses, has variable effects on floodplain invasive vegetation, and creates dynamic patch mosaics that demonstrate the concepts of a shifting mosaic steady state and biogeomorphic succession. As much as 25 % of the vegetation cover was removed by the largest flood on record (570 m(3)/s, ~50-year return period), with preferential removal of lupin and less removal of willow. However, most of the vegetation regenerated and spread relatively quickly after floods. Some flow metrics analyzed were highly correlated with vegetation cover, and key metrics included the peak magnitude of the largest flood, flood frequency, and time since the last flood in the interval between photos. These metrics provided a simple multiple regression model of invasive vegetation cover in the aerial photos evaluated. Our analysis of relationships among flow regimes and invasive

  8. Measuring Material Microstructure Under Flow Using 1-2 Plane Flow-Small Angle Neutron Scattering

    PubMed Central

    Gurnon, A. Kate; Godfrin, P. Douglas; Wagner, Norman J.; Eberle, Aaron P. R.; Butler, Paul; Porcar, Lionel

    2014-01-01

    A new small-angle neutron scattering (SANS) sample environment optimized for studying the microstructure of complex fluids under simple shear flow is presented. The SANS shear cell consists of a concentric cylinder Couette geometry that is sealed and rotating about a horizontal axis so that the vorticity direction of the flow field is aligned with the neutron beam enabling scattering from the 1-2 plane of shear (velocity-velocity gradient, respectively). This approach is an advance over previous shear cell sample environments as there is a strong coupling between the bulk rheology and microstructural features in the 1-2 plane of shear. Flow-instabilities, such as shear banding, can also be studied by spatially resolved measurements. This is accomplished in this sample environment by using a narrow aperture for the neutron beam and scanning along the velocity gradient direction. Time resolved experiments, such as flow start-ups and large amplitude oscillatory shear flow are also possible by synchronization of the shear motion and time-resolved detection of scattered neutrons. Representative results using the methods outlined here demonstrate the useful nature of spatial resolution for measuring the microstructure of a wormlike micelle solution that exhibits shear banding, a phenomenon that can only be investigated by resolving the structure along the velocity gradient direction. Finally, potential improvements to the current design are discussed along with suggestions for supplementary experiments as motivation for future experiments on a broad range of complex fluids in a variety of shear motions. PMID:24561395

  9. Coupled dynamics of flow, microstructure, and conductivity in sheared suspensions.

    PubMed

    Olsen, Tyler; Helal, Ahmed; McKinley, Gareth H; Kamrin, Ken

    2016-09-28

    We propose a model for the evolution of the conductivity tensor for a flowing suspension of electrically conductive particles. We use discrete particle numerical simulations together with a continuum physical framework to construct an evolution law for the suspension microstructure during flow. This model is then coupled with a relationship between the microstructure and the electrical conductivity tensor. Certain parameters of the joint model are fit experimentally using rheo-electrical conductivity measurements of carbon black suspensions under flow over a range of shear rates. The model is applied to the case of steady shearing as well as time-varying conductivity of unsteady flow experiments. We find that the model prediction agrees closely with the measured experimental data in all cases. PMID:27532243

  10. Nonlinear dynamics near the stability margin in rotating pipe flow

    NASA Technical Reports Server (NTRS)

    Yang, Z.; Leibovich, S.

    1991-01-01

    The nonlinear evolution of marginally unstable wave packets in rotating pipe flow is studied. These flows depend on two control parameters, which may be taken to be the axial Reynolds number R and a Rossby number, q. Marginal stability is realized on a curve in the (R, q)-plane, and the entire marginal stability boundary is explored. As the flow passes through any point on the marginal stability curve, it undergoes a supercritical Hopf bifurcation and the steady base flow is replaced by a traveling wave. The envelope of the wave system is governed by a complex Ginzburg-Landau equation. The Ginzburg-Landau equation admits Stokes waves, which correspond to standing modulations of the linear traveling wavetrain, as well as traveling wave modulations of the linear wavetrain. Bands of wavenumbers are identified in which the nonlinear modulated waves are subject to a sideband instability.

  11. Total materials consumption; an estimation methodology and example using lead; a materials flow analysis

    USGS Publications Warehouse

    Biviano, Marilyn B.; Wagner, Lorie A.; Sullivan, Daniel E.

    1999-01-01

    Materials consumption estimates, such as apparent consumption of raw materials, can be important indicators of sustainability. Apparent consumption of raw materials does not account for material contained in manufactured products that are imported or exported and may thus under- or over-estimate total consumption of materials in the domestic economy. This report demonstrates a methodology to measure the amount of materials contained in net imports (imports minus exports), using lead as an example. The analysis presents illustrations of differences between apparent and total consumption of lead and distributes these differences into individual lead-consuming sectors.

  12. MR measurement of critical phase transition dynamics and supercritical fluid dynamics in capillary and porous media flow.

    PubMed

    Rassi, Erik M; Codd, Sarah L; Seymour, Joseph D

    2012-01-01

    Supercritical fluids (SCF) are useful solvents in green chemistry and oil recovery and are of great current interest in the context of carbon sequestration. Magnetic resonance techniques were applied to study near critical and supercritical dynamics for pump driven flow through a capillary and a packed bed porous media. Velocity maps and displacement propagators measure the dynamics of C(2)F(6) at pressures below, at, and above the critical pressure and at temperatures below and above the critical temperature. Displacement propagators were measured at various displacement observation times to quantify the time evolution of dynamics. In capillary flow, the critical phase transition fluid C(2)F(6) showed increased compressibility compared to the near critical gas and supercritical fluid. These flows exhibit large variations in buoyancy arising from large changes in density due to very small changes in temperature. PMID:22018694

  13. Control of unsteady separated flow associated with the dynamic stall of airfoils

    NASA Technical Reports Server (NTRS)

    Wilder, M. C.

    1994-01-01

    A unique active flow-control device is proposed for the control of unsteady separated flow associated with the dynamic stall of airfoils. The device is an adaptive-geometry leading-edge which will allow controlled, dynamic modification of the leading-edge profile of an airfoil while the airfoil is executing an angle-of-attack pitch-up maneuver. A carbon-fiber composite skin has been bench tested, and a wind tunnel model is under construction. A baseline parameter study of compressible dynamic stall was performed for flow over an NACA 0012 airfoil. Parameters included Mach number, pitch rate, pitch history, and boundary layer tripping. Dynamic stall data were recorded via point-diffraction interferometry and the interferograms were analyzed with in-house developed image processing software. A new high-speed phase-locked photographic image recording system was developed for real-time documentation of dynamic stall.

  14. Dynamics of compressible air flow in ducts with heat exchange

    NASA Astrophysics Data System (ADS)

    Abdulhadi, M.

    1986-12-01

    An investigation into the effect of heat addition on subsonic flow of an air stream in a constant-area duct preceded by a convergent nozzle is carried out. A nozzle flow apparatus with a heat exchanger encasing the constant-area duct has been built for this purpose. Hot water is provided from an electric boiler where the flow rate and the in-flow hot water temperature could be controlled. It is confirmed experimentally, as predicted analytically, that heat transfer to the gas decreases its local static pressure along the duct axis, and that this decrease is associated with an increase in Mach number toward M = 1 at the exit (thermal choking). In the case of subsonic flow, the additional entropy generated by the heat interaction exceeding the amount that produces thermal choking can only be accommodated by moving to a new Rayleigh line, at a decreased flow rate which lowers the inlet Mach number. The good correlation between the experimental results and the analytical derivations illustrates that the experimental arrangement has potential for further experiments and investigations.

  15. Fundamental change of granular flows dynamics, deposition and erosion processes at sufficiently high slope angles: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, M.; Mangeney, A.; Roche, O.

    2013-12-01

    Geophysical granular flows commonly interact with their substrate in various ways depending on the mechanical properties of the underlying material. Granular substrates, resulting from deposition of earlier flows or various geological events, are often eroded by avalanches [see Hungr and Evans, 2004 for review]. The entrainment of underlying debris by the flow is suspected to affect flow dynamics because qualitative and quantitative field observations suggest that it can increase the flow velocity and deposit extent, depending on the geological setting and flow type [Sovilla et al., 2006; Iverson et al., 2011]. Direct measurement of material entrainment in nature, however, is very difficult. We conducted laboratory experiments on granular column collapse over an inclined channel with and without an erodible bed of granular material. The controlling parameters were the channel slope angle, the granular column volume and its aspect ratio (i.e. height over length), the inclination of the column with respect to the channel base, the channel width, and the thickness and compaction of the erodible bed. For slope angles below a critical value θc, between 10° and 16°, the runout distance rf is proportional to the initial column height h0 and is unaffected by the presence of an erodible bed. On slopes greater than θc, the flow dynamics change fundamentally since a last phase of slow propagation develops at the end of the flow front deceleration, and prolongates significantly the flow duration. This phase has similar characteristics that steady, uniform flows. The slow propagation phase lasts longer for increasing column volume, column inclination with respect to the slope, and channel width, and for decreasing column aspect ratio. It is however independent of the maximum front velocity and, on an erodible bed, of the maximum depth of excavation within the bed. Both on rigid and erodible beds, the increase of the slow propagation phase duration has a crucial effect on

  16. Flow dynamics of multi-lateral jets injection into a round pipe flow

    NASA Astrophysics Data System (ADS)

    Thong, Chia X.; Kalt, Peter A. M.; Dally, Bassam B.; Birzer, Cristian H.

    2015-01-01

    Controlling the mixing field of turbulent jets is an important approach in optimizing practical combustion systems. The use of multi-lateral jets upstream from the nozzle exit to control mixing fields is one particular method. Existing studies have investigated jets into a confined cross-flow (JICCF) for dilution mixing, but there is a paucity of data available on the fundamentals for turbulent mixing capabilities of JICCF. The current study investigates the flow structures and Primary Reynolds number mixing characteristics within a round pipe flow modified by four equi-spaced, lateral side injectors. Experiments are conducted in a primary water jet flow that is modified with smaller jets located one central (axial) jet diameter upstream of the nozzle exit. Flow structures and mixing within the nozzle are non-intrusively characterized using simultaneous planar optical techniques. Planar laser-induced fluorescence is used to measure the scalar mixing of the side and axial jet streams, and particle imaging velocimetry is used to measure the planar velocities. Several cases are investigated with variable primary flow to explore the influence of cross-flow velocity on the induced mixing structures within the nozzle. By varying the momentum ratio, three characteristic flow modes are identified within the primary flow, namely streaming mode, impinging mode, and backflow mode. The impact of these modes on the flow and scalar fields is presented and discussed.

  17. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.

    PubMed

    Milenkovic, J; Alexopoulos, A H; Kiparissides, C

    2014-01-30

    In this work the dynamic flow as well as the particle motion and deposition in a commercial dry powder inhaler, DPI (i.e., Turbuhaler) is described using computational fluid dynamics, CFD. The dynamic flow model presented here is an extension of a steady flow model previously described in Milenkovic et al. (2013). The model integrates CFD simulations for dynamic flow, an Eulerian-fluid/Lagrangian-particle description of particle motion as well as a particle/wall interaction model providing the sticking efficiency of particles colliding with the DPI walls. The dynamic flow is imposed by a time varying outlet pressure and the particle injections into the DPI are assumed to occur instantaneously and follow a prescribed particle size distribution, PSD. The total particle deposition and the production of fine particles in the DPI are determined for different peak inspiratory flow rates, PIFR, flow increase rates, FIR, and particle injection times. The simulation results for particle deposition are found to agree well with available experimental data for different values of PIFR and FIR. The predicted values of fine particle fraction are in agreement with available experimental results when the mean size of the injected PSD is taken to depend on the PIFR.

  18. On the magnetic reconnection of resistive tearing mode with the dynamic flow effects

    SciTech Connect

    Ali, A.; Li, Jiquan Kishimoto, Y.

    2015-04-15

    Magnetic reconnection usually occurs in turbulent environments, which may not only provide anomalous resistivity to enhance reconnection rates but also significantly modify the reconnection process through direct nonlinear interaction with magnetic islands. This study presents numerical simulations investigating the effects of an imposed dynamic flow on magnetic reconnection, based on a two-dimensional reduced resistive MHD model. Results show that while the linear stability properties of the resistive tearing mode are moderately affected by the dynamic flow, nonlinear evolution is significantly modified by radial parity, amplitude, and frequency of the dynamic flow. After the slowly evolving nonlinear Rutherford stage, the reconnection process is found to progress in two phases by including the dynamic flow. A Sweet-Parker like current sheet is formed in the first phase. Afterwards, plasmoid instability is triggered in the second phase, where multiple plasmoids are continuously generated and ejected along the current sheet, leading to an impulsive bursty reconnection. The reconnection rate is considerably enhanced in the range of low resistivity as compared to without flow. We found that plasmoid instability onset and evolution are strongly influenced by the frequency and radial parity of the dynamic flows. The scaling of effective reconnection rates with the flow is found to be independent of resistivity.

  19. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    SciTech Connect

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gas causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design production

  20. Gas Flow Tightly Coupled to Elastoplastic Geomechanics for Tight- and Shale-Gas Reservoirs: Material Failure and Enhanced Permeability

    DOE PAGES

    Kim, Jihoon; Moridis, George J.

    2014-12-01

    We investigate coupled flow and geomechanics in gas production from extremely low permeability reservoirs such as tight and shale gas reservoirs, using dynamic porosity and permeability during numerical simulation. In particular, we take the intrinsic permeability as a step function of the status of material failure, and the permeability is updated every time step. We consider gas reservoirs with the vertical and horizontal primary fractures, employing the single and dynamic double porosity (dual continuum) models. We modify the multiple porosity constitutive relations for modeling the double porous continua for flow and geomechanics. The numerical results indicate that production of gasmore » causes redistribution of the effective stress fields, increasing the effective shear stress and resulting in plasticity. Shear failure occurs not only near the fracture tips but also away from the primary fractures, which indicates generation of secondary fractures. These secondary fractures increase the permeability significantly, and change the flow pattern, which in turn causes a change in distribution of geomechanical variables. From various numerical tests, we find that shear failure is enhanced by a large pressure drop at the production well, high Biot's coefficient, low frictional and dilation angles. Smaller spacing between the horizontal wells also contributes to faster secondary fracturing. When the dynamic double porosity model is used, we observe a faster evolution of the enhanced permeability areas than that obtained from the single porosity model, mainly due to a higher permeability of the fractures in the double porosity model. These complicated physics for stress sensitive reservoirs cannot properly be captured by the uncoupled or flow-only simulation, and thus tightly coupled flow and geomechanical models are highly recommended to accurately describe the reservoir behavior during gas production in tight and shale gas reservoirs and to smartly design

  1. Magnon-phonon interconversion in a dynamically reconfigurable magnetic material

    NASA Astrophysics Data System (ADS)

    Guerreiro, Sergio C.; Rezende, Sergio M.

    2015-12-01

    The ferrimagnetic insulator yttrium iron garnet (YIG) is an important material in the field of magnon spintronics, mainly because of its low magnetic losses. YIG also has very low acoustic losses, and for this reason the conversion of a state of magnetic excitation (magnons) into a state of lattice vibration (phonons), or vice versa, broadens its possible applications in spintronics. Since the magnetic parameters can be varied by some external action, the magnon-phonon interconversion can be tuned to perform a desired function. We present a quantum theory of the interaction between magnons and phonons in a ferromagnetic material subject to a dynamic variation of the applied magnetic field. It is shown that when the field gradient at the magnetoelastic crossover region is much smaller than a critical value, an initial elastic excitation can be completely converted into a magnetic excitation, or vice versa. This occurs with conservation of linear momentum and spin angular momentum, implying that phonons created by the conversion of magnons have spin angular momentum and carry spin current. It is shown further that if the system is initially in a quantum coherent state, its coherence properties are maintained regardless of the time dependence of the field.

  2. Energy dissipation in dynamic fracture of brittle materials

    NASA Astrophysics Data System (ADS)

    Miller, O.; Freund, L. B.; Needleman, A.

    1999-07-01

    Dynamic crack growth in a plane strain strip is analysed using a cohesive surface fracture framework where the continuum is characterized by two constitutive relations: a material constitutive law that relates stress and strain, and a relation between the tractions and displacement jumps across a specified set of cohesive surfaces. The material constitutive relation is that of an isotropic hyperelastic solid. The cohesive surface constitutive relation introduces a characteristic length into the formulation. The resistance to crack initiation and the crack speed history are predicted without invoking any additional failure criterion. Finite-strain transient analyses are carried out, with a focus on the relation between the increase in fracture energy with crack speed and the increase in surface area due to crack branching. The numerical results show that, even with a fixed work of separation per unit area, there is a substantial increase in fracture energy with increasing crack speed. This arises from an increase in fracture surface area due to crack branching. The computational results are in good agreement with experimental observations in Sharon et al (1996).

  3. Hotspots of boundary accumulation: dynamics and statistics of micro-swimmers in flowing films.

    PubMed

    Mathijssen, Arnold J T M; Doostmohammadi, Amin; Yeomans, Julia M; Shendruk, Tyler N

    2016-02-01

    Biological flows over surfaces and interfaces can result in accumulation hotspots or depleted voids of microorganisms in natural environments. Apprehending the mechanisms that lead to such distributions is essential for understanding biofilm initiation. Using a systematic framework, we resolve the dynamics and statistics of swimming microbes within flowing films, considering the impact of confinement through steric and hydrodynamic interactions, flow and motility, along with Brownian and run-tumble fluctuations. Micro-swimmers can be peeled off the solid wall above a critical flow strength. However, the interplay of flow and fluctuations causes organisms to migrate back towards the wall above a secondary critical value. Hence, faster flows may not always be the most efficacious strategy to discourage biofilm initiation. Moreover, we find run-tumble dynamics commonly used by flagellated microbes to be an intrinsically more successful strategy to escape from boundaries than equivalent levels of enhanced Brownian noise in ciliated organisms.

  4. Vesicle dynamics in a confined Poiseuille flow: From steady state to chaos

    NASA Astrophysics Data System (ADS)

    Aouane, Othmane; Thiébaud, Marine; Benyoussef, Abdelilah; Wagner, Christian; Misbah, Chaouqi

    2014-09-01

    Red blood cells (RBCs) are the major component of blood, and the flow of blood is dictated by that of RBCs. We employ vesicles, which consist of closed bilayer membranes enclosing a fluid, as a model system to study the behavior of RBCs under a confined Poiseuille flow. We extensively explore two main parameters: (i) the degree of confinement of vesicles within the channel and (ii) the flow strength. Rich and complex dynamics for vesicles are revealed, ranging from steady-state shapes (in the form of parachute and slipper shapes) to chaotic dynamics of shape. Chaos occurs through a cascade of multiple periodic oscillations of the vesicle shape. We summarize our results in a phase diagram in the parameter plane (degree of confinement and flow strength). This finding highlights the level of complexity of a flowing vesicle in the small Reynolds number where the flow is laminar in the absence of vesicles and can be rendered turbulent due to elasticity of vesicles.

  5. Intraoperative, Real-Time Monitoring of Blood Flow Dynamics Associated With Laser Surgery of Port Wine Stain Birthmarks

    PubMed Central

    Yang, Bruce; Yang, Owen; Guzman, John; Nguyen, Paul; Crouzet, Christian; Osann, Kathryn E.; Kelly, Kristen M.; Nelson, J. Stuart; Choi, Bernard

    2015-01-01

    Background and Objective Port-wine stain (PWS) birthmarks affect ~22 million people worldwide. After several treatment sessions, complete disappearance of the PWS occurs in only ~10% of treated patients. There is a need to develop a new strategy to improve the efficacy of each treatment session and the overall treatment outcome. The study objective was to determine how intraoperative measurements of blood flow correlate with treatment response assessed several weeks post treatment. Study Design/Materials and Methods We employed Laser Speckle Imaging (LSI) to measure intraoperative blood-flow dynamics. We collected data from 24 subjects undergoing laser therapy for facial PWS birthmarks. Photographs were taken before treatment and at a follow-up visit, and analyzed by two expert observers. Results Intraoperative LSI enables real-time monitoring of blood-flow dynamics in response to laser treatment and can inform clinicians on the need for focused re-treatment. The degree of PWS blanching achieved is positively correlated with the log-transformed acute blood-flow reduction (P =0.022). Conclusion LSI is a simple, intraoperative monitoring tool during laser therapy of PWS birthmarks. LSI provides a single value for blood flow that correlates well with the degree of blanching achieved with laser therapy. Lasers Surg. Med. PMID:26040983

  6. Plasma flow structures as analytical solution of a magneto-hydro-dynamic model with pressure

    NASA Astrophysics Data System (ADS)

    Paccagnella, R.

    2012-03-01

    In this work starting from a set of magnetohydrodynamic (MHD) equations that describe the dynamical evolution for the pressure driven resistive/interchange modes in a magnetic confinement system, global solutions for the plasma flow relevant for toroidal pinches like tokamaks and reversed field pinches (RFPs) are derived. Analytical solutions for the flow stream function associated with the dominant modes are presented.

  7. Brownian-dynamics simulation studies of a charge-stabilized colloidal suspension under shear flow

    SciTech Connect

    Chakrabarti, J. ); Sood, A.K.; Krishnamurthy, H.R. Jawaharlal Nehru Center for Advanced Scientific Research, Indian Institute of Science campus, Bangalore 560012 )

    1994-11-01

    We have carried out Brownian-dynamics simulations of a charged colloidal suspension under oscillatory shear flow with both Couette and Poiseuille velocity profiles. We show that in the steady-shear'' limit, for both of the velocity profiles, the enhancement of the self-diffusion coefficient in directions transverse to the flow shows a crossover from a [dot [gamma

  8. Dynamic tensile material properties of human pelvic cortical bone.

    PubMed

    Kemper, Andrew R; McNally, Craig; Duma, Stefan M

    2008-01-01

    IIn order for finite element models of the human body to predict pelvic injuries accurately, the appropriate material properties must be applied. Therefore, the purpose of this study was to quantify the dynamic material properties of human pelvic cortical bone in tension. In order to accomplish this, a total of 20 tension coupon specimens were obtained from four regions of four human cadaver pelves: anterior ilium wing, posterior ilium wing, superior pubic ramus, and ischium body. For the anterior and posterior regions of the ilium wing, samples were taken in two orientations to investigate any direction dependence. A high-rate servo-hydraulic Material Testing System (MTS) with a custom slack adaptor was used to apply tension loads to failure at a constant loading rate of 0.5 strains/s. The horizontally oriented anterior ilium specimens were found to have a significantly larger ultimate stress (p=0.02), ultimate strain (p>0.01), and modulus (p=0.02) than the vertically oriented anterior ilium specimens. There were no significant differences in ultimate stress (p=0.27), ultimate strain (p=0.85), or modulus (p=0.87) found between horizontally oriented and vertically oriented posterior ilium specimens. However, additional testing should be conducted at specimen orientation 45 degree from the orientations used in the current study to further investigate the effect of specimen orientation on the posterior portion of the ilium wing. There were no significant differences in ultimate stress (p=0.79), ultimate strain (p=0.31), or modulus (p=0.15) found between the superior pubic ramus and ischium body specimens. However, the statistical comparison between superior pubic ramus and ischium body specimens was considered weak due to the limited samples and large variation between subjects. PMID:19141951

  9. Methodology Development of a Gas-Liquid Dynamic Flow Regime Transition Model

    NASA Astrophysics Data System (ADS)

    Doup, Benjamin Casey

    Current reactor safety analysis codes, such as RELAP5, TRACE, and CATHARE, use flow regime maps or flow regime transition criteria that were developed for static fully-developed two-phase flows to choose interfacial transfer models that are necessary to solve the two-fluid model. The flow regime is therefore difficult to identify near the flow regime transitions, in developing two-phase flows, and in transient two-phase flows. Interfacial area transport equations were developed to more accurately predict the dynamic nature of two-phase flows. However, other model coefficients are still flow regime dependent. Therefore, an accurate prediction of the flow regime is still important. In the current work, the methodology for the development of a dynamic flow regime transition model that uses the void fraction and interfacial area concentration obtained by solving three-field the two-fluid model and two-group interfacial area transport equation is investigated. To develop this model, detailed local experimental data are obtained, the two-group interfacial area transport equations are revised, and a dynamic flow regime transition model is evaluated using a computational fluid dynamics model. Local experimental data is acquired for 63 different flow conditions in bubbly, cap-bubbly, slug, and churn-turbulent flow regimes. The measured parameters are the group-1 and group-2 bubble number frequency, void fraction, interfacial area concentration, and interfacial bubble velocities. The measurements are benchmarked by comparing the prediction of the superficial gas velocities, determined using the local measurements with those determined from volumetric flow rate measurements and the agreement is generally within +/-20%. The repeatability four-sensor probe construction process is within +/-10%. The repeatability of the measurement process is within +/-7%. The symmetry of the test section is examined and the average agreement is within +/-5.3% at z/D = 10 and +/-3.4% at z/D = 32

  10. Active mantle flow and crustal dynamics in southern California

    NASA Astrophysics Data System (ADS)

    Fay, N.; Bennett, R.; Spinler, J.

    2007-12-01

    We present numerical modeling analysis of active upper mantle flow and its role in driving crustal deformation in southern California. The forces driving lithospheric deformation at tectonic plate boundaries can be thought of as the sum from two sources: (1) forces transmitted from the far-field by rigid tectonic plates, and (2) forces created locally at the plate boundary by heterogeneous density distribution. Here we quantify the latter by estimating the stresses acting on the base of the crust caused by density-driven flow of the upper mantle. Anomalous density structure is derived from shear wave velocity models (Yang & Forsyth, 2006) and is used to drive instantaneous incompressible viscous upper mantle flow relative to a fixed crust; this allows isolation of stresses acting on the crust. Comparison of results with the finite element codes Abaqus (commercial) and GALE (community- developed) is good. We find that horizontal tractions range from 0 to ~3 MPa and vertical tractions range between approximately -15 to 15 MPa (negative indicating downward, positive upward); Absolute magnitudes depend on the assumed velocity-density scaling relationship but the overall patterns of flow are more robust. Anomalous density beneath the Transverse Ranges, in particular beneath the San Bernardino Mountains and offshore beneath the Channel Islands, drives convergent horizontal tractions and negative vertical tractions on the base of the crust there. Anomalous buoyancy beneath the southern Walker Lane Belt and anomalous density beneath the southern Great Valley create a small convective cell (the Sierra Nevada "drip"), which promotes extension on the eastern edge of the Sierra Nevada block and subsidence of the Great Valley. Favorable comparison with contemporary crustal thickness, heat flow, and surface strain rate indicates that upper mantle flow plays a very important role in active crustal deformation in southern California and much of the non-ideal behavior of this

  11. Blood flow dynamics under venipuncture and viscosity estimation from pressure and flow variations

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Makov, Yu. N.; Gurbatov, S. N.

    2013-01-01

    We have calculated the nonstationary flow of a viscous liquid in a narrow tube under the action of pressure variations with time. Such a flow accompanies venipuncture the procedure of taking a sample from a vein with a hypodermic needle. We show how the changes in the flow characterstics during venipuncture make it possible to actively estimate viscosity. This method is "nonperturbative" for blood in the sense that the measurement process weakly affects the measured quantity. It may find application in medicine.

  12. Fluid-Dynamic Optimal Design of Helical Vascular Graft for Stenotic Disturbed Flow

    PubMed Central

    Ha, Hojin; Hwang, Dongha; Choi, Woo-Rak; Baek, Jehyun; Lee, Sang Joon

    2014-01-01

    Although a helical configuration of a prosthetic vascular graft appears to be clinically beneficial in suppressing thrombosis and intimal hyperplasia, an optimization of a helical design has yet to be achieved because of the lack of a detailed understanding on hemodynamic features in helical grafts and their fluid dynamic influences. In the present study, the swirling flow in a helical graft was hypothesized to have beneficial influences on a disturbed flow structure such as stenotic flow. The characteristics of swirling flows generated by helical tubes with various helical pitches and curvatures were investigated to prove the hypothesis. The fluid dynamic influences of these helical tubes on stenotic flow were quantitatively analysed by using a particle image velocimetry technique. Results showed that the swirling intensity and helicity of the swirling flow have a linear relation with a modified Germano number (Gn*) of the helical pipe. In addition, the swirling flow generated a beneficial flow structure at the stenosis by reducing the size of the recirculation flow under steady and pulsatile flow conditions. Therefore, the beneficial effects of a helical graft on the flow field can be estimated by using the magnitude of Gn*. Finally, an optimized helical design with a maximum Gn* was suggested for the future design of a vascular graft. PMID:25360705

  13. Thermal/chemical degradation of ceramic cross-flow filter materials

    SciTech Connect

    Alvin, M.A.; Lane, J.E.; Lippert, T.E.

    1989-11-01

    This report summarizes the 14-month, Phase 1 effort conducted by Westinghouse on the Thermal/Chemical Degradation of Ceramic Cross-Flow Filter Materials program. In Phase 1 expected filter process conditions were identified for a fixed-bed, fluid-bed, and entrained-bed gasification, direct coal fired turbine, and pressurized fluidized-bed combustion system. Ceramic cross-flow filter materials were also selected, procured, and subjected to chemical and physical characterization. The stability of each of the ceramic cross-flow materials was assessed in terms of potential reactions or phase change as a result of process temperature, and effluent gas compositions containing alkali and fines. In addition chemical and physical characterization was conducted on cross-flow filters that were exposed to the METC fluid-bed gasifier and the New York University pressurized fluidized-bed combustor. Long-term high temperature degradation mechanisms were proposed for each ceramic cross-flow material at process operating conditions. An experimental bench-scale test program is recommended to be conducted in Phase 2, generating data that support the proposed cross-flow filter material thermal/chemical degradation mechanisms. Papers on the individual subtasks have been processed separately for inclusion on the data base.

  14. APPLICATION FO FLOW FORMING FOR USE IN RADIOACTIVE MATERIAL PACKAGING DESIGNS

    SciTech Connect

    Blanton, P.; Eberl, K.; Abramczyk, G.

    2012-07-11

    This paper reports on the development and testing performed to demonstrate the use of flow forming as an alternate method of manufacturing containment vessels for use in radioactive material shipping packaging designs. Additionally, ASME Boiler and Pressure Vessel Code, Section III, Subsection NB compliance along with the benefits compared to typical welding of containment vessels will be discussed. SRNL has completed fabrication development and the testing on flow formed containment vessels to demonstrate the use of flow forming as an alternate method of manufacturing a welded 6-inch diameter containment vessel currently used in the 9975 and 9977 radioactive material shipping packaging. Material testing and nondestructive evaluation of the flow formed parts demonstrate compliance to the minimum material requirements specified in applicable parts of ASME Boiler and Pressure Vessel Code, Section II. Destructive burst testing shows comparable results to that of a welded design. The benefits of flow forming as compared to typical welding of containment vessels are significant: dimensional control is improved due to no weld distortion; less final machining; weld fit-up issues associated with pipes and pipe caps are eliminated; post-weld non-destructive testing (i.e., radiography and die penetrant tests) is not necessary; and less fabrication steps are required. Results presented in this paper indicate some of the benefits in adapting flow forming to design of future radioactive material shipping packages containment vessels.

  15. Flow of colloidal solids and fluids through constrictions: dynamical density functional theory versus simulation.

    PubMed

    Zimmermann, Urs; Smallenburg, Frank; Löwen, Hartmut

    2016-06-22

    Using both dynamical density functional theory and particle-resolved Brownian dynamics simulations, we explore the flow of two-dimensional colloidal solids and fluids driven through a linear channel with a constriction. The flow is generated by a constant external force acting on all colloids. The initial configuration is equilibrated in the absence of flow and then the external force is switched on instantaneously. Upon starting the flow, we observe four different scenarios: a complete blockade, a monotonic decay to a constant particle flux (typical for a fluid), a damped oscillatory behaviour in the particle flux, and a long-lived stop-and-go behaviour in the flow (typical for a solid). The dynamical density functional theory describes all four situations but predicts infinitely long undamped oscillations in the flow which are always damped in the simulations. We attribute the mechanisms of the underlying stop-and-go flow to symmetry conditions on the flowing solid. Our predictions are verifiable in real-space experiments on magnetic colloidal monolayers which are driven through structured microchannels and can be exploited to steer the flow throughput in microfluidics.

  16. Flow of colloidal solids and fluids through constrictions: dynamical density functional theory versus simulation

    NASA Astrophysics Data System (ADS)

    Zimmermann, Urs; Smallenburg, Frank; Löwen, Hartmut

    2016-06-01

    Using both dynamical density functional theory and particle-resolved Brownian dynamics simulations, we explore the flow of two-dimensional colloidal solids and fluids driven through a linear channel with a constriction. The flow is generated by a constant external force acting on all colloids. The initial configuration is equilibrated in the absence of flow and then the external force is switched on instantaneously. Upon starting the flow, we observe four different scenarios: a complete blockade, a monotonic decay to a constant particle flux (typical for a fluid), a damped oscillatory behaviour in the particle flux, and a long-lived stop-and-go behaviour in the flow (typical for a solid). The dynamical density functional theory describes all four situations but predicts infinitely long undamped oscillations in the flow which are always damped in the simulations. We attribute the mechanisms of the underlying stop-and-go flow to symmetry conditions on the flowing solid. Our predictions are verifiable in real-space experiments on magnetic colloidal monolayers which are driven through structured microchannels and can be exploited to steer the flow throughput in microfluidics.

  17. The frictional flow of a dense granular material based on the dilatant double shearing model

    SciTech Connect

    Zhu, H.; Mehrabadi, M.M.; Massoudi, M.C.

    2007-01-01

    Slow flow of granular materials, which typically occurs during the emptying of industrial storage hoppers and bins, has great industrial relevance. In the present study, we have employed our newly developed dilatant double shearing model [H. Zhu, M.M. Mehrabadi, M. Massoudi, Incorporating the effects of fabric in the dilatant double shearing model for granular materials, Int. J. Plast. 22 (2006) 628-653] to study the slow flow of a frictional, dense granular material. Although most models pertain only to the fully developed granular flow, the application of the dilatant double shearing model is shown to be valid from the onset of granular flow to the fully developed granular flow. In this paper, we use the finite element program ABAQUS/Explicit to numerically simulate the granular Couette flow and the frictional granular flow in a silo. For the granular Couette flow, the relative density variation and the velocity profile obtained by using the dilatant double shearing model are in good quantitative agreement with those obtained from a DEM simulation. For the frictional flow in a silo, the major principal stress directions are obtained at various time steps after the onset of silo discharge. We find that, in the hopper zone, the arching of the granular material between the sloping hopper walls is clearly demonstrated by the change in direction of the major principal stress. We also compare the pressure distribution along the wall before and after the onset of silo discharge. The numerical results show that the dilatant double shearing model is capable of capturing the essential features of the frictional granular flow.

  18. Dynamic Effect of Rolling Massage on Blood Flow

    NASA Astrophysics Data System (ADS)

    Chen, Yan-Yan; Yi, Hou-Hui; Li, Hua-Bing; Fang, Hai-Ping

    2009-02-01

    The Chinese traditional medical massage has been used as a natural therapy to eliminate some diseases. Here, the effect of the rolling massage frequency to the blood flow in the blood vessels under the rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulation results show that when the frequency is smaller than or comparable to the pulsatile frequency of the blood flow, the effect on the blood flux by the rolling massage is small. On the contrast, if the frequency is twice or more times of the pulsatile frequency of the blood flow, the blood flux is greatly enhanced and increases linearly with respect to the frequency. Similar behavior has also been observed on the shear stress on the blood vessel walls. The result is helpful for understanding that the rolling massage has the function of promoting the blood circulation and removing the blood stasis.

  19. Effect of deposits on corrosion of materials exposed in the Coal-Fired Flow Facility

    SciTech Connect

    Natesan, K.

    1993-05-01

    Candidate heat exchanger materials tested in the Low Mass Flow train at the Coal-Fired Flow Facility (CFFF) at Tullahoma, TN. were analyzed to evaluate their corrosion performance. Tube specimens obtained at each foot of the 14-ft-long Unbend tubes were analyzed for corrosion-scale morphologies, scale thicknesses, and internal penetration depths. Results developed on 1500- and 2000- h exposed specimens were correlated with exposure temperature. In addition, deposit materials collected at several locations in the CFFF were analyzed in detail to characterize the chemical and physical properties of the deposits and their influence on corrosion performance of tube materials.

  20. Hydrodynamic resistance parameters for ErPr rare-earth regenerator material under steady and periodic flow conditions

    NASA Astrophysics Data System (ADS)

    Pathak, M. G.; Helvensteijn, B. P.; Patel, V. C.; Ghiaasiaan, S. M.; Mulcahey, T. I.; Kashani, A.; Feller, J. R.

    2014-01-01

    The regenerator, typically a microporous structure that is subject to periodic flow of a cryogenic fluid, is a critical component of pulse tube or Stirling cryocoolers, which are widely used for high-demand aerospace and defense applications. In this investigation, experiments were conducted in which steady and oscillatory flows of helium were imposed on ErPr rare-Earth regenerator filler material and mass flow and pressure drop data were recorded under ambient temperature conditions. A computational fluid dynamics (CFD)-assisted method was applied for the analysis and interpretation of the experimental data. The permeability and inertial coefficients that lead to agreement between the experimental data and computational simulations were iteratively obtained. The Darcy permeability and Forchheimer inertial coefficients were obtained and were found to be functions of the system charge pressure, operating frequency, and compressor piston stroke within the studied range of interest. The results also exhibit that the periodic flow hydrodynamic resistance parameters are in general different than steady flow parameters.

  1. Groundwater flow evaluation through backfilling materials of a surface coal mining site of Northeast Mexico

    NASA Astrophysics Data System (ADS)

    Gutierrez-Ojeda, C.; Martínez-Morales, M.; Ortíz-Flores, G.

    2013-05-01

    Surface coal mining at the Allende-Piedras Negras aquifer system requires the complete dewatering and removal of the aquifer. The aquifer contains several geologic layers of variable hydraulic conductivity. Backfilling material is composed of a mixture of permeable and impermeable layers and it was initially considered as impermeable. Exploratory drillings, pumping tests and a geophysical survey were performed in the backfilling materials and the surrounding unaltered materials in order to evaluate the natural groundwater flow modification due to the mining activities. Results of geophysical survey evidenced a saturated water table within the back filling material which was verified by exploratory drilling. Pumping tests showed that unaltered materials have a mean hydraulic conductivity of 34.5 m/day while the backfilling of 5.3 m/day. Although the mining activities reduce the hydraulic conductivity by almost an order of magnitude, it was corroborated the existence of a groundwater flow through the backfilling materials.

  2. Fixation of waste materials in grouts: Part 3, Equation for critical flow rate. [Velocity for turbulent flow in a pipe

    SciTech Connect

    Tallent, O.K.; McDaniel, E.W.; Spence, R.D.; Godsey, T.T.; Dodson, K.E.

    1986-12-01

    Critical flow rate data for grouts prepared from three distinctly different nuclear waste materials have been correlated. The wastes include Oak Ridge National Laboratory (ORNL) low-level waste (LLW) solution, Hanford Facility waste (HFW) solution, and cladding removal waste (CRW) slurry. Data for the three wastes have been correlated with a 0.96 coefficient of correlation by the following equation: log V/sub E/ = 0.289 + 0.707 log ..mu../sub E/, where V/sub E/ and ..mu../sub E/ denote critical flow rate in m/sup 3//min and apparent viscosity in Pa.s, respectively. The equation may be used to estimate critical flow rate for grouts prepared within the compositional range of the investigation. 5 refs., 4 figs., 7 tabs.

  3. Evaluating flow laws for dynamically recrystallized quartz based on field data

    NASA Astrophysics Data System (ADS)

    Peters, Max; Herwegh, Marco

    2013-04-01

    The extrapolation of experimentally controlled deformation conditions, and the resulting relations between physical parameters acting during ductile deformation, to nature is considered controversial (see Herwegh et al., 2005 and references therein). Whereas the relationship between flow stress and recrystallized grain size can be empirically derived from lab experiments using paleopiezometers (e.g. Stipp & Tullis, 2003), the relation between recrystallized grain size, strain rate, differential stress, temperature and activation energy for dislocation creep requires further constraints. For these relations, various power law flow laws for dynamically recrystallized quartz were proposed over the past years (Paterson & Luan, 1990; Luan & Paterson, 1992; Gleason & Tullis, 1995; Hirth et al., 2001, Rutter & Brodie, 2004). The variations in the flow laws are mainly characterized by different starting materials, experimental conditions, the activation energy for dislocation creep and the stress exponent n. In this study we compare and evaluate experimentally derived flow laws regarding their reliability for the prediction of rheology of background deformation of naturally deformed crystalline samples from mylonites of the Aar massif (Swiss Central Alps). The majority of samples comprises highly deformed rocks (e.g. Central Aare granite), which exhibit severe grain size reduction. This reduction dominantly occurred by subgrain rotation (SGR), in the case of low temperature overprint by bulging recrystallization (BLG). Towards elevated temperatures, grain boundary migration (GBM) and SGR recrystallization were active. Along the metamorphic gradient (300 - 475°C) quartz microstructures and associated recrystallized grain size distributions indicate steady state mean grain sizes. The quantification of the metamorphic gradient (temperature, pressure, water fugacity) over the sampling area allowed the application of flow laws, yielding variations of 6 orders of magnitude in

  4. Multiscale Particle-Based Modeling of Flowing Platelets in Blood Plasma Using Dissipative Particle Dynamics and Coarse Grained Molecular Dynamics

    PubMed Central

    Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny

    2014-01-01

    We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818

  5. Polymer dynamics and fluid flow in microfabricated devices

    NASA Astrophysics Data System (ADS)

    Bakajin, Olgica B.; Brody, James P.; Chou, Jeff; Chan, Shirley S.; Duke, Thomas A. J.; Knight, James; Sohn, Lydia L.; Vishwanath, Ashvin; Austin, Robert H.; Cox, E. C.

    1998-03-01

    We will discuss two recent directions of our work: (1) The influence of submicron length scales on polymer dynamics, (2) Ultra-rapid mixing via sub-micron hydrodynamic focusing. (1) Polymer dynamics at sub-micron length scales. We have explored the changes in the dynamics of long polymers as the thickness of the quasi-2 dimensional space is varied from 0.09 microns to 10 microns. We will show how the thickness of this space, scaled with the persistence length of the polymer, changes the dynamics of the polymer. The consequences of this qualitative change in polymer dynamics is quite important, since it controls the elongation of the polymer at a given force field and hence the ability of he array to fractionate the polymer. (2) Mixing at the sub- micron length scale cannot be tubulent but only diffusive in nature. We will show how it is possible using hydrodynamics to produce liquid jets of width under 20 nanometers which can mix fluids in under 1 microsecond times.

  6. Ascending aortic blood flow dynamics following intense exercise.

    PubMed

    Kilgour, R D; Sellers, W R

    1990-10-01

    The purpose of this study was to compare and contrast aortic blood flow kinetics during recovery from intense aerobic (maximal oxygen uptake test) and anaerobic (Wingate anaerobic power test) exercise. Fifteen healthy male subjects (VO2max = 56.1 +/- 5.8 mk/kg/min) participated in this study. Beat-to-beat peak aortic blood flow velocity (pkV) and acceleration (pkA) measurements were obtained by placing a 3.0 MHz continuous-wave ultrasonic transducer on the suprasternal notch at rest and during recovery (immediately post-exercise, 2.5 min, and 5.0 min) following the two exercise conditions. Peak velocity and acceleration significantly increased (p less than 0.01) from rest to immediately post-exercise and remained elevated throughout the 5-min recovery period. No differences were observed between the aerobic and anaerobic tests. Stroke distance significantly declined (p less than 0.01) immediately following exercise and progressively rose during the 5-min recovery period. The results indicate that: 1) aortic blood flow kinetics remained elevated during short-term recovery, and 2) intense aerobic and anaerobic exercise exhibit similar post-exercise aortic blood flow kinetics. PMID:2262232

  7. An analytical study of reduced-gravity flow dynamics

    NASA Technical Reports Server (NTRS)

    Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.

    1976-01-01

    Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.

  8. Dynamic penetration behavior of core-material in multi-cavity co-injection molding

    NASA Astrophysics Data System (ADS)

    Huang, Chao-Tsai CT; Yang, Jackie; Chang, Rong-Yeu

    2015-12-01

    Co-Injection Molding and multi-cavity molding are very common processes for plastic manufacturing. These two systems are sometimes combined and applied to some structure products. The core penetration and flow balance control problems are very difficult to manage. The inside mechanism of co-injection multi-cavity system is not fully figured out yet. In this study, we have focused on the penetration phenomena of core-material in a co-injection multi-cavity molding. The dynamic penetration behavior of core is very sensitive to injection flow rate and skin/core ratio. The longest core penetration has been shown to change dramatically from one runner to the other. In addition, the core penetration behavior will display imbalance at the end of filling. The more core ratio it is, the longer core penetration flows through runner to cavity. However, due to the multi-cavity geometrical structure, the balance of the core penetration for multi-cavity is still challenging. Finally, the simulation is validated with some literature. The results showed that both simulation and experiment are in a good agreement in trend

  9. A continuum dislocation dynamics framework for plasticity of polycrystalline materials

    NASA Astrophysics Data System (ADS)

    Askari, Hesam Aldin

    The objective of this research is to investigate the mechanical response of polycrystals in different settings to identify the mechanisms that give rise to specific response observed in the deformation process. Particularly the large deformation of magnesium alloys and yield properties of copper in small scales are investigated. We develop a continuum dislocation dynamics framework based on dislocation mechanisms and interaction laws and implement this formulation in a viscoplastic self-consistent scheme to obtain the mechanical response in a polycrystalline system. The versatility of this method allows various applications in the study of problems involving large deformation, study of microstructure and its evolution, superplasticity, study of size effect in polycrystals and stochastic plasticity. The findings from the numerical solution are compared to the experimental results to validate the simulation results. We apply this framework to study the deformation mechanisms in magnesium alloys at moderate to fast strain rates and room temperature to 450 °C. Experiments for the same range of strain rates and temperatures were carried out to obtain the mechanical and material properties, and to compare with the numerical results. The numerical approach for magnesium is divided into four main steps; 1) room temperature unidirectional loading 2) high temperature deformation without grain boundary sliding 3) high temperature with grain boundary sliding mechanism 4) room temperature cyclic loading. We demonstrate the capability of our modeling approach in prediction of mechanical properties and texture evolution and discuss the improvement obtained by using the continuum dislocation dynamics method. The framework was also applied to nano-sized copper polycrystals to study the yield properties at small scales and address the observed yield scatter. By combining our developed method with a Monte Carlo simulation approach, the stochastic plasticity at small length scales

  10. Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach.

    PubMed

    Soares, Joao S; Gao, Chao; Alemu, Yared; Slepian, Marvin; Bluestein, Danny

    2013-11-01

    Stresses on blood cellular constituents induced by blood flow can be represented by a continuum approach down to the μm level; however, the molecular mechanisms of thrombosis and platelet activation and aggregation are on the order of nm. The coupling of the disparate length and time scales between molecular and macroscopic transport phenomena represents a major computational challenge. In order to bridge the gap between macroscopic flow scales and the cellular scales with the goal of depicting and predicting flow induced thrombogenicity, multi-scale approaches based on particle methods are better suited. We present a top-scale model to describe bulk flow of platelet suspensions: we employ dissipative particle dynamics to model viscous flow dynamics and present a novel and general no-slip boundary condition that allows the description of three-dimensional viscous flows through complex geometries. Dissipative phenomena associated with boundary layers and recirculation zones are observed and favorably compared to benchmark viscous flow solutions (Poiseuille and Couette flows). Platelets in suspension, modeled as coarse-grained finite-sized ensembles of bound particles constituting an enclosed deformable membrane with flat ellipsoid shape, show self-orbiting motions in shear flows consistent with Jeffery's orbits, and are transported with the flow, flipping and colliding with the walls and interacting with other platelets. PMID:23695489

  11. Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach

    PubMed Central

    Soares, Joao S.; Gao, Chao; Alemu, Yared; Slepian, Marvin; Bluestein, Danny

    2013-01-01

    Stresses on blood cellular constituents induced by blood flow can be represented by a continuum approach down to the μm level; however, the molecular mechanisms of thrombosis and platelet activation and aggregation are on the order of nm. The coupling of the disparate length and time scales between molecular and macroscopic transport phenomena represent a major computational challenge. In order to bridge the gap between macroscopic flow scales and the cellular scales with the goal of depicting and predicting flow induced thrombogenicity, multi-scale approaches based on particle methods are better suited. We present a top-scale model to describe bulk flow of platelet suspensions: we employ dissipative particle dynamics to model viscous flow dynamics and present a novel and general no-slip boundary condition that allows the description of three-dimensional viscous flows through complex geometries. Dissipative phenomena associated with boundary layers and recirculation zones are observed and favorably compared to benchmark viscous flow solutions (Poiseuille and Couette flows). Platelets in suspension, modeled as coarse-grained finite-sized ensembles of bound particles constituting an enclosed deformable membrane with flat ellipsoid shape, show self-orbiting motions in shear flows consistent with Jeffery's orbits, and are transported with the flow, flipping and colliding with the walls and interacting with other platelets. PMID:23695489

  12. The chromatographic performance of flow-through particles: A computational fluid dynamics study.

    PubMed

    Smits, Wim; Nakanishi, Kazuki; Desmet, Gert

    2016-01-15

    The performance of flow-through particles has been studied by computational fluid dynamics. Computational fluid dynamics simulations was used to calculate the flow behaviour around and inside the particles rather than estimate it. The obtained flow field has been used to accurately simulate plate heights generated by flow-through particles and compare them to standard fully porous particles. The effects of particle size, particle porosity and microparticle size on the intra-particle flow and plate heights is investigated. It is shown that the intra-particle flow generates mass transfer enhancement which lowers the total plate height. An empirical model is proposed for the mass transfer enhancement and it is compared to previously proposed models. Kinetic plots are constructed for the flow-through particles. Counter-intuitively, columns packed with flow-through particles have a higher flow resistance which counters the advantages of lower plate heights. Flow-through particles offer no significant gain in kinetic performance over fully porous particles. PMID:26724098

  13. Morphology and dynamics of inflated subaqueous basaltic lava flows

    NASA Astrophysics Data System (ADS)

    Deschamps, Anne; Grigné, Cécile; Le Saout, Morgane; Soule, Samuel Adam; Allemand, Pascal; Van Vliet-Lanoe, Brigitte; Floc'h, France

    2014-06-01

    eruptions onto low slopes, basaltic Pahoehoe lava can form thin lobes that progressively coalesce and inflate to many times their original thickness, due to a steady injection of magma beneath brittle and viscoelastic layers of cooled lava that develop sufficient strength to retain the flow. Inflated lava flows forming tumuli and pressure ridges have been reported in different kinds of environments, such as at contemporary subaerial Hawaiian-type volcanoes in Hawaii, La Réunion and Iceland, in continental environments (states of Oregon, Idaho, Washington), and in the deep sea at Juan de Fuca Ridge, the Galapagos spreading center, and at the East Pacific Rise (this study). These lava have all undergone inflation processes, yet they display highly contrasting morphologies that correlate with their depositional environment, the most striking difference being the presence of water. Lava that have inflated in subaerial environments display inflation structures with morphologies that significantly differ from subaqueous lava emplaced in the deep sea, lakes, and rivers. Their height is 2-3 times smaller and their length being 10-15 times shorter. Based on heat diffusion equation, we demonstrate that more efficient cooling of a lava flow in water leads to the rapid development of thicker (by 25%) cooled layer at the flow surface, which has greater yield strength to counteract its internal hydrostatic pressure than in subaerial environments, thus limiting lava breakouts to form new lobes, hence promoting inflation. Buoyancy also increases the ability of a lava to inflate by 60%. Together, these differences can account for the observed variations in the thickness and extent of subaerial and subaqueous inflated lava flows.

  14. Dynamical properties of a confined diatomic fluid undergoing zero mean oscillatory flow: Effect of molecular rotation

    NASA Astrophysics Data System (ADS)

    Hansen, J. S.; Todd, B. D.; Daivis, Peter J.

    2008-06-01

    In this paper we investigate the spatiotemporal dynamics of a diatomic fluid undergoing zero mean oscillatory flow in a slit pore. The study is based on nonequilibrium molecular dynamics simulations together with two limiting solutions to the Navier-Stokes equations which include the effect of molecular rotation. By examining the viscoelastic properties of the system we can estimate the extent of the Newtonian regime, and a direct comparison between the molecular dynamics data and the solutions to the Navier-Stokes equations is then possible. It is found that the agreement is excellent, and that the vortex viscosity can be estimated by fitting the data obtained in the molecular dynamics simulations to the solutions to the Navier-Stokes equations. The quantitative effect of the coupling between the linear momentum and the spin angular momentum on flow is also investigated. We find that the maximum flow can be reduced up to 3 4 % due to the coupling.

  15. Continuous and Discontinuous Dynamic Unbinding Transitions in Drawn Film Flow

    NASA Astrophysics Data System (ADS)

    Galvagno, M.; Tseluiko, D.; Lopez, H.; Thiele, U.

    2014-04-01

    When a plate is withdrawn from a liquid bath a coating layer is deposited whose thickness and homogeneity depend on the velocity and the wetting properties of the plate. Using a long-wave mesoscopic hydrodynamic description that incorporates wettability via a Derjaguin (disjoining) pressure we identify four qualitatively different dynamic transitions between microscopic and macroscopic coatings that are out-of-equilibrium equivalents of known equilibrium unbinding transitions. Namely, these are continuous and discontinuous dynamic wetting and emptying transitions. Several of their features have no equivalent at equilibrium.

  16. Brownian dynamics simulations of polyelectrolyte adsorption in shear flow with hydrodynamic interaction.

    PubMed

    Hoda, Nazish; Kumar, Satish

    2007-12-21

    The adsorption of single polyelectrolyte molecules in shear flow is studied using Brownian dynamics simulations with hydrodynamic interaction (HI). Simulations are performed with bead-rod and bead-spring chains, and electrostatic interactions are incorporated through a screened Coulombic potential with excluded volume accounted for by the repulsive part of a Lennard-Jones potential. A correction to the Rotne-Prager-Yamakawa tensor is derived that accounts for the presence of a planar wall. The simulations show that migration away from an uncharged wall, which is due to bead-wall HI, is enhanced by increases in the strength of flow and intrachain electrostatic repulsion, consistent with kinetic theory predictions. When the wall and polyelectrolyte are oppositely charged, chain behavior depends on the strength of electrostatic screening. For strong screening, chains get depleted from a region close to the wall and the thickness of this depletion layer scales as N(1/3)Wi(2/3) at high Wi, where N is the chain length and Wi is the Weissenberg number. At intermediate screening, bead-wall electrostatic attraction competes with bead-wall HI, and it is found that there is a critical Weissenberg number for desorption which scales as N(-1/2)kappa(-3)(l(B)|sigmaq|)(3/2), where kappa is the inverse screening length, l(B) is the Bjerrum length, sigma is the surface charge density, and q is the bead charge. When the screening is weak, adsorbed chains are observed to align in the vorticity direction at low shear rates due to the effects of repulsive intramolecular interactions. At higher shear rates, the chains align in the flow direction. The simulation method and results of this work are expected to be useful for a number of applications in biophysics and materials science in which polyelectrolyte adsorption plays a key role.

  17. Experimental and analytical investigations of granular materials: Shear flow and convective heat transfer

    NASA Astrophysics Data System (ADS)

    Ahn, Hojin

    1989-12-01

    Granular materials flowing down an inclined chute were studied experimentally and analytically. Characteristics of convective heat transfer to granular flows were also investigated experimentally and numerically. Experiments on continuous, steady flows of granular materials in an inclined chute were conducted with the objectives of understanding the characteristics of chute flows and of acquiring information on the rheological behavior of granular material flow. Existing constitutive equations and governing equations were used to solve for fully developed chute flows of granular materials, and thus the boundary value problem was formulated with two parameters (the coefficient of restitution between particles, and the chute inclination) and three boundary values at the chute base wall (the values of solid fraction, granular temperature, and mean velocity at the wall). The boundary value problem was numerically solved by the shooting method. These analytical results were also compared with the present experimental values and with the computer simulations by other investigators in their literature. Experiments on heat transfer to granular flows over a flat heating plate were conducted with three sizes of glass beads, polystyrene beads, and mustard seeds. A modification on the existing model for the convective heat transfer was made using the effective Nusselt number and the effective Peclet number, which include the effects of solid fraction variations. The slightly modified model could describe the heat transfer characteristics of both fast and slow flows (supercritical and subcritical). A numerical analysis of the transfer to granular flows was also performed. The results were compared with the present experimental data, and reasonable agreement was found in the comparison.

  18. Granular Flow Dynamics on Earth, Moon, and Mars from analytical, numerical and field analysis

    NASA Astrophysics Data System (ADS)

    Lucas, A.; Mangeney, A.; Mhge, D.

    2010-12-01

    Prediction of landslides dynamics remains difficult in spite of a considerable body of work. A number of previous studies have been based on runout analysis in relation to mean dissipation calibration via the friction coefficient. However, the shape of the initial scar is generally unknown in real cases, which weakens landslide material spreading predictions and has alters calibration parameters of numerical models. We study numerically the effects of scar geometry on flow and distribution of the deposits and show that the initial shape of the scar, independent of the friction coefficient, does not affect the runout distance. In contrast, 3D tests show that the shape of the final deposits is a function of the scar geometry, and hence information on initial scar geometry and initial volume involved in the mass spreading may be retrieved from analysis of final deposit morphology. From an analytical solution we show here why the classical mobility (defined as the ratio between total height and runout distance) decreases when the volume increases, as is generally observed in geological data. We thus introduce analytically a new mobility variable obtained from geomorphic measurements reflecting the intrinsic dissipation independent of the aspect ratio, of the volume of the granular mass involved, of the underlying topography, and of the initial scar geometry. Comparison between experimental results, terrestrial, Lunar and Martian cases highlights a larger new mobility measure of natural granular flows compared to dry mass spreading simulated in the laboratory. In addition, landslides in a similar geological context give a single value showing the robustness of this new parameter. Finally, the new mobility provides a first order estimate of the effective friction required in models to reproduce the extent of the deposits in a given geological context. This enables a feedback analysis method for retrieving the volume and shape of the initial landslide material and then

  19. Thermal and dynamical regimes of single- and two-phase magmatic flow in dikes

    NASA Technical Reports Server (NTRS)

    Carrigan, Charles R.; Schubert, Gerald; Eichelberger, John C.

    1992-01-01

    The coupling between thermal and dynamical regimes of single- and two-phase magmatic flow in dikes, due to temperature-dependent viscosity and dissipation, was investigated using finite element calculations of magma flow in dikelike channels with length-to-width ratios of 1000:1 or more. Solutions of the steady state equations governing magma flow are obtained for a variety of conditions ranging from idealized plane-parallel models to cases involving nonparallel geometry and two-phase flows. The implications of the numerical simulations for the dynamics of flow in a dike-reservoir system and the consequences of dike entrance conditions on magmatic storage are discussed. Consideration is also given to an unmixing/self-lubrication mechanism which may be important for the lubrication of silicic magmas rising to the earth's surface in mixed magma ascent scenarios, which naturally segregates magma mixtures of two components with differing viscosities to minimize the driving pressure gradient.

  20. Flow Angularity Measurements in the NASA-Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Yeager, William T., Jr.; Wilbur, Matthew L.; Mirick, Paul H.; Rivera, Jose A., Jr.

    2005-01-01

    An investigation using a survey rake with 11 five-hole pyramid-head probes has been conducted in the Langley Transonic Dynamics Tunnel (TDT) to measure the test section flow angularity. Flow measurements were made in a 10-ft square grid centered about the test section centerline at a single streamwise location for nine Mach numbers ranging from 0.50 to 1.19 at dynamic pressures of 100 and 225 pounds per square foot. Test section flow angularity was found to be minimal with a generally random flow pattern. Corrections for survey rake induced in-plane flow were determined to be necessary; however, corrections for rake induced lift effects were not required.

  1. Process For Controlling Flow Rate Of Viscous Materials Including Use Of Nozzle With Changeable Openings

    DOEpatents

    Ellingson, William A.; Forster, George A.

    1999-11-02

    Apparatus and a method for controlling the flow rate of viscous materials through a nozzle includes an apertured main body and an apertured end cap coupled together and having an elongated, linear flow channel extending the length thereof. An end of the main body is disposed within the end cap and includes a plurality of elongated slots concentrically disposed about and aligned with the flow channel. A generally flat cam plate having a center aperture is disposed between the main body and end cap and is rotatable about the flow channel. A plurality of flow control vane assemblies are concentrically disposed about the flow channel and are coupled to the cam plate. Each vane assembly includes a vane element disposed adjacent the end of the flow channel. Rotation of the cam plate in a first direction causes a corresponding rotation of each of the vane elements for positioning the individual vane elements over the aperture in the end cap blocking flow through the flow channel, while rotation in an opposite direction removes the vane elements from the aperture and positions them about the flow channel in a nested configuration in the full open position, with a continuous range of vane element positions available between the full open and closed positions.

  2. A theoretical study of resin flows for thermosetting materials during prepreg processing

    NASA Technical Reports Server (NTRS)

    Hou, T. H.

    1984-01-01

    A flow model which describes the process of resin consolidation during prepreg lamination was developed. The salient features of model predictions were explored. It is assumed that resin flows in all directions originate from squeezing action between two approaching adjacent fiber/fabric layers. In the horizontal direction, a squeezing flow between two nonporous parallel plates is analyzed, while in the vertical direction a poiseuille type pressure flow through porous media is assumed. Proper force and mass balance was established for the whole system which is composed of these two types of flow. A flow parameter, CF, shows to be a measure of processibility for the curing resin. For a given external load-F the responses of resin flow during prepreg lamination, as measured by CF, are categorized into three regions: (1) the low CF region where resin flows are inhibited by the high chemoviscosity during initial curing stages; (2) the median CF region where resin flows are properly controllable; and (3) the high CF region where resin flows are ceased due to fiber/fabric compression effects. Resin losses in both directions are calculated. Potential uses of this model and quality control of incoming prepreg material are discussed.

  3. Fluid dynamic characterization of operating conditions for continuous flow blood pumps.

    PubMed

    Wu, Z J; Antaki, J F; Burgreen, G W; Butler, K C; Thomas, D C; Griffith, B P

    1999-01-01

    As continuous flow pumps become more prominent as long-term ventricular assist devices, the wide range of conditions under which they must be operated has become evident. Designed to operate at a single, best-efficiency, operating point, continuous flow pumps are required to perform at off-design conditions quite frequently. The present study investigated the internal fluid dynamics within two representative rotary fluid pumps to characterize the quality of the flow field over a full range of operating conditions. A Nimbus/UoP axial flow blood pump and a small centrifugal pump were used as the study models. Full field visualization of flow features in the two pumps was conducted using a laser based fluorescent particle imaging technique. Experiments were performed under steady flow conditions. Flow patterns at inlet and outlet sections were visualized over a series of operating points. Flow features specific to each pump design were observed to exist under all operating conditions. At off-design conditions, an annular region of reverse flow was commonly observed within the inlet of the axial pump, while a small annulus of backflow in the inlet duct and a strong disturbed flow at the outlet tongue were observed for the centrifugal pump. These observations were correlated to a critical nondimensional flow coefficient. The creation of a "map" of flow behavior provides an additional, important criterion for determining favorable operating speed for rotary blood pumps. Many unfavorable flow features may be avoided by maintaining the flow coefficient above a characteristic critical coefficient for a particular pump, whereas the intrinsic deleterious flow features can only be minimized by design improvement. Broadening the operating range by raising the band between the critical flow coefficient and the designed flow coefficient, is also a worthy goal for design improvement.

  4. Dynamics of a two-phase flow through a minichannel: Transition from churn to slug flow

    NASA Astrophysics Data System (ADS)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2016-04-01

    The churn-to-slug flow bifurcations of two-phase (air-water) flow patterns in a 2mm diameter minichannel were investigated. With increasing a water flow rate, we observed the transition of slugs to bubbles of different sizes. The process was recorded by a digital camera. The sequences of light transmission time series were recorded by a laser-phototransistor sensor, and then analyzed using the recurrence plots and recurrence quantification analysis (RQA). Due to volume dependence of bubbles velocities, we observed the formation of periodic modulations in the laser signal.

  5. Modeling the Material Flow and Heat Transfer in Reverse Dual-Rotation Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Shi, L.; Wu, C. S.; Liu, H. J.

    2014-08-01

    Reverse dual-rotation friction stir welding (RDR-FSW) is a novel modification of conventional friction stir welding (FSW) process. During the RDR-FSW process, the tool pin and the assisted shoulder are separated and rotate with opposite direction independently, so that there are two material flows with reverse direction. The material flow and heat transfer in RDR-FSW have significant effects on the microstructure and properties of the weld joint. A 3D model is developed to quantitatively analyze the effects of the separated tool pin and the assisted shoulder which rotate in reverse direction on the material flow and heat transfer during RDR-FSW process. Numerical simulation is conducted to predict the temperature profile, material flow field, streamlines, strain rate, and viscosity distributions near the tool. The calculated results show that as the rotation speed of the tool pin increases, the temperature near the tool gets higher, the zone with higher temperature expands, and approximately symmetric temperature distribution is obtained near the tool. Along the workpiece thickness direction, the calculated material flow velocity and its layer thickness near the tool get lowered because the effect of the shoulder is weakened as the distance away from the top surface increases. The model is validated by comparing the predicted values of peak temperature at some typical locations with the experimentally measured ones.

  6. Flow Dynamics and Nutrient Reduction in Rain Gardens

    EPA Science Inventory

    The hydrological dynamics and changes in stormwater nutrient concentrations within rain gardens were studied by introducing captured stormwater runoff to rain gardens at EPA’s Urban Water Research Facility in Edison, New Jersey. The runoff used in these experiments was collected...

  7. Effect of oxidation of carbon material on suspension electrodes for flow electrode capacitive deionization.

    PubMed

    Hatzell, Kelsey B; Hatzell, Marta C; Cook, Kevin M; Boota, Muhammad; Housel, Gabrielle M; McBride, Alexander; Kumbur, E Caglan; Gogotsi, Yury

    2015-03-01

    Flow electrode deionization (FCDI) is an emerging area for continuous and scalable deionization, but the electrochemical and flow properties of the flow electrode need to be improved to minimize energy consumption. Chemical oxidation of granular activated carbon (AC) was examined here to study the role of surface heteroatoms on rheology and electrochemical performance of a flow electrode (carbon slurry) for deionization processes. Moreover, it was demonstrated that higher mass densities could be used without increasing energy for pumping when using oxidized active material. High mass-loaded