Mechatronics by Analogy and Application to Legged Locomotion
NASA Astrophysics Data System (ADS)
Ragusila, Victor
A new design methodology for mechatronic systems, dubbed as Mechatronics by Analogy (MbA), is introduced and applied to designing a leg mechanism. The new methodology argues that by establishing a similarity relation between a complex system and a number of simpler models it is possible to design the former using the analysis and synthesis means developed for the latter. The methodology provides a framework for concurrent engineering of complex systems while maintaining the transparency of the system behaviour through making formal analogies between the system and those with more tractable dynamics. The application of the MbA methodology to the design of a monopod robot leg, called the Linkage Leg, is also studied. A series of simulations show that the dynamic behaviour of the Linkage Leg is similar to that of a combination of a double pendulum and a spring-loaded inverted pendulum, based on which the system kinematic, dynamic, and control parameters can be designed concurrently. The first stage of Mechatronics by Analogy is a method of extracting significant features of system dynamics through simpler models. The goal is to determine a set of simpler mechanisms with similar dynamic behaviour to that of the original system in various phases of its motion. A modular bond-graph representation of the system is determined, and subsequently simplified using two simplification algorithms. The first algorithm determines the relevant dynamic elements of the system for each phase of motion, and the second algorithm finds the simple mechanism described by the remaining dynamic elements. In addition to greatly simplifying the controller for the system, using simpler mechanisms with similar behaviour provides a greater insight into the dynamics of the system. This is seen in the second stage of the new methodology, which concurrently optimizes the simpler mechanisms together with a control system based on their dynamics. Once the optimal configuration of the simpler system is determined, the original mechanism is optimized such that its dynamic behaviour is analogous. It is shown that, if this analogy is achieved, the control system designed based on the simpler mechanisms can be directly implemented to the more complex system, and their dynamic behaviours are close enough for the system performance to be effectively the same. Finally it is shown that, for the employed objective of fast legged locomotion, the proposed methodology achieves a better design than Reduction-by-Feedback, a competing methodology that uses control layers to simplify the dynamics of the system.
NASA Astrophysics Data System (ADS)
Dvorak, R.; Henrard, J.
1996-03-01
The following topics were dealt with: celestial mechanics, dynamical astronomy, planetary systems, resonance scattering, Hamiltonian mechanics non-integrability, irregular periodic orbits, escape, dynamical system mapping, fast Fourier method, precession-nutation, Nekhoroshev theorem, asteroid dynamics, the Trojan problem, planet-crossing orbits, Kirkwood gaps, future research, human comprehension limitations.
Learning and adaptation: neural and behavioural mechanisms behind behaviour change
NASA Astrophysics Data System (ADS)
Lowe, Robert; Sandamirskaya, Yulia
2018-01-01
This special issue presents perspectives on learning and adaptation as they apply to a number of cognitive phenomena including pupil dilation in humans and attention in robots, natural language acquisition and production in embodied agents (robots), human-robot game play and social interaction, neural-dynamic modelling of active perception and neural-dynamic modelling of infant development in the Piagetian A-not-B task. The aim of the special issue, through its contributions, is to highlight some of the critical neural-dynamic and behavioural aspects of learning as it grounds adaptive responses in robotic- and neural-dynamic systems.
Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics
NASA Astrophysics Data System (ADS)
Mathiazhagan, S.; Anup, S.
2016-08-01
Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.
Ecological implications of behavioural syndromes.
Sih, Andrew; Cote, Julien; Evans, Mara; Fogarty, Sean; Pruitt, Jonathan
2012-03-01
Interspecific trait variation has long served as a conceptual foundation for our understanding of ecological patterns and dynamics. In particular, ecologists recognise the important role that animal behaviour plays in shaping ecological processes. An emerging area of interest in animal behaviour, the study of behavioural syndromes (animal personalities) considers how limited behavioural plasticity, as well as behavioural correlations affects an individual's fitness in diverse ecological contexts. In this article we explore how insights from the concept and study of behavioural syndromes provide fresh understanding of major issues in population ecology. We identify several general mechanisms for how population ecology phenomena can be influenced by a species or population's average behavioural type, by within-species variation in behavioural type, or by behavioural correlations across time or across ecological contexts. We note, in particular, the importance of behavioural type-dependent dispersal in spatial ecology. We then review recent literature and provide new syntheses for how these general mechanisms produce novel insights on five major issues in population ecology: (1) limits to species' distribution and abundance; (2) species interactions; (3) population dynamics; (4) relative responses to human-induced rapid environmental change; and (5) ecological invasions. © 2012 Blackwell Publishing Ltd/CNRS.
NASA Astrophysics Data System (ADS)
Schleussner, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders
2016-08-01
Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.
Schleussner, Carl-Friedrich; Donges, Jonathan F; Engemann, Denis A; Levermann, Anders
2016-08-11
Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking.
Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.
Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H
2004-01-01
Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.
Cooperative behaviour and prosocial reputation dynamics in a Dominican village.
Macfarlan, Shane J; Quinlan, Robert; Remiker, Mark
2013-06-22
Prosocial reputations play an important role, from the evolution of language to Internet transactions; however, questions remain about their behavioural correlates and dynamics. Formal models assume prosocial reputations correlate with the number of cooperative acts one performs; however, if reputations flow through information networks, then the number of individuals one assists may be a better proxy. Formal models demonstrate indirect experience must track behaviour with the same fidelity as direct experience for reputations to become viable; however, research on corporate reputations suggests performance change does not always affect reputation change. Debate exists over the cognitive mechanisms employed for assessing reputation dynamics. Image scoring suggests reputations fluctuate relative to the number of times one fails to assist others in need, while standing strategy claims reputations fluctuate relative to the number of times one fails to assist others in good standing. This study examines the behavioural correlates of prosocial reputations and their dynamics over a 20-month period in an Afro-Caribbean village. Analyses suggest prosocial reputations: (i) are correlated with the number of individuals one assists in economic production, not the number of cooperative acts; (ii) track cooperative behaviour, but are anchored across time; and (iii) are captured neither by image scoring nor standing strategy-type mechanisms.
True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.
Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio
2013-09-01
Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.
Camouflage during movement in the European cuttlefish (Sepia officinalis).
Josef, Noam; Berenshtein, Igal; Fiorito, Graziano; Sykes, António V; Shashar, Nadav
2015-11-01
A moving object is considered conspicuous because of the movement itself. When moving from one background to another, even dynamic camouflage experts such as cephalopods should sacrifice their extraordinary camouflage. Therefore, minimizing detection at this stage is crucial and highly beneficial. In this study, we describe a background-matching mechanism during movement, which aids the cuttlefish to downplay its presence throughout movement. In situ behavioural experiments using video and image analysis, revealed a delayed, sigmoidal, colour-changing mechanism during movement of Sepia officinalis across uniform black and grey backgrounds. This is a first important step in understanding dynamic camouflage during movement, and this new behavioural mechanism may be incorporated and applied to any dynamic camouflaging animal or man-made system on the move. © 2015. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Le Rouzic, J.; Delobelle, P.; Vairac, P.; Cretin, B.
2009-10-01
In this article the dynamic mechanical characterization of PDMS and SU8 resin using dynamic mechanical analysis, nanoindentation and the scanning microdeformation microscope have been presented. The methods are hereby explained, extended for viscoelastic behaviours, and their compatibility underlined. The storage and loss moduli of these polymers over a wide range of frequencies (from 0.01 Hz to somekHz) have been measured. These techniques are shown fairly matching and the two different viscoelastic behaviours of these two polymers have been exhibited. Indeed, PDMS shows moduli which still increase at 5kHz whereas SU8 ones decrease much sooner. From a material point of view, the Havriliak and Negami model to estimate instantaneous, relaxed moduli and time constant of these materials has been identified.
Schleussner, Carl-Friedrich; Donges, Jonathan F.; Engemann, Denis A.; Levermann, Anders
2016-01-01
Large-scale transitions in societies are associated with both individual behavioural change and restructuring of the social network. These two factors have often been considered independently, yet recent advances in social network research challenge this view. Here we show that common features of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary adaptive network model. This is achieved by explicitly considering the interplay between individual interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism by simulating how smoking behaviour and the network structure get reconfigured by changing social norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, remaining smokers were preferentially connected among each other and formed increasingly marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and dynamic restructuring of the network are main drivers of the transition. This generative mechanism for co-evolution of individual behaviour and social network structure may apply to a wide range of examples beyond smoking. PMID:27510641
Nonlinear control of high-frequency phonons in spider silk
NASA Astrophysics Data System (ADS)
Schneider, Dirk; Gomopoulos, Nikolaos; Koh, Cheong Y.; Papadopoulos, Periklis; Kremer, Friedrich; Thomas, Edwin L.; Fytas, George
2016-10-01
Spider dragline silk possesses superior mechanical properties compared with synthetic polymers with similar chemical structure due to its hierarchical structure comprised of partially crystalline oriented nanofibrils. To date, silk’s dynamic mechanical properties have been largely unexplored. Here we report an indirect hypersonic phononic bandgap and an anomalous dispersion of the acoustic-like branch from inelastic (Brillouin) light scattering experiments under varying applied elastic strains. We show the mechanical nonlinearity of the silk structure generates a unique region of negative group velocity, that together with the global (mechanical) anisotropy provides novel symmetry conditions for gap formation. The phononic bandgap and dispersion show strong nonlinear strain-dependent behaviour. Exploiting material nonlinearity along with tailored structural anisotropy could be a new design paradigm to access new types of dynamic behaviour.
Gaming Personality and Game Dynamics in Online Discussion Instructions
ERIC Educational Resources Information Center
Tu, Chih-Hsiung; Yen, Cherng-Jyh; Sujo-Montes, Laura; Roberts, Gayle A.
2015-01-01
Gamification is the use of game mechanics to drive game-like engagements and actions. It applies game mechanics, dynamics and frameworks to promote desired learning behaviours. Positive and effective gamification could enhance learning and engage learners in more social and context-rich decision-making for problem-solving in learning tasks.…
Compliant leg behaviour explains basic dynamics of walking and running
Geyer, Hartmut; Seyfarth, Andre; Blickhan, Reinhard
2006-01-01
The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed. PMID:17015312
Wimmer, Klaus; Compte, Albert; Roxin, Alex; Peixoto, Diogo; Renart, Alfonso; de la Rocha, Jaime
2015-01-01
Neuronal variability in sensory cortex predicts perceptual decisions. This relationship, termed choice probability (CP), can arise from sensory variability biasing behaviour and from top-down signals reflecting behaviour. To investigate the interaction of these mechanisms during the decision-making process, we use a hierarchical network model composed of reciprocally connected sensory and integration circuits. Consistent with monkey behaviour in a fixed-duration motion discrimination task, the model integrates sensory evidence transiently, giving rise to a decaying bottom-up CP component. However, the dynamics of the hierarchical loop recruits a concurrently rising top-down component, resulting in sustained CP. We compute the CP time-course of neurons in the medial temporal area (MT) and find an early transient component and a separate late contribution reflecting decision build-up. The stability of individual CPs and the dynamics of noise correlations further support this decomposition. Our model provides a unified understanding of the circuit dynamics linking neural and behavioural variability. PMID:25649611
Glassy dynamics in three-dimensional embryonic tissues
Schötz, Eva-Maria; Lanio, Marcos; Talbot, Jared A.; Manning, M. Lisa
2013-01-01
Many biological tissues are viscoelastic, behaving as elastic solids on short timescales and fluids on long timescales. This collective mechanical behaviour enables and helps to guide pattern formation and tissue layering. Here, we investigate the mechanical properties of three-dimensional tissue explants from zebrafish embryos by analysing individual cell tracks and macroscopic mechanical response. We find that the cell dynamics inside the tissue exhibit features of supercooled fluids, including subdiffusive trajectories and signatures of caging behaviour. We develop a minimal, three-parameter mechanical model for these dynamics, which we calibrate using only information about cell tracks. This model generates predictions about the macroscopic bulk response of the tissue (with no fit parameters) that are verified experimentally, providing a strong validation of the model. The best-fit model parameters indicate that although the tissue is fluid-like, it is close to a glass transition, suggesting that small changes to single-cell parameters could generate a significant change in the viscoelastic properties of the tissue. These results provide a robust framework for quantifying and modelling mechanically driven pattern formation in tissues. PMID:24068179
Dynamic constitutional frameworks for DNA biomimetic recognition.
Catana, Romina; Barboiu, Mihail; Moleavin, Ioana; Clima, Lilia; Rotaru, Alexandru; Ursu, Elena-Laura; Pinteala, Mariana
2015-02-07
Linear and cross-linked dynamic constitutional frameworks generated from reversibly interacting linear PEG/core constituents and cationic sites shed light on the dominant coiling versus linear DNA binding behaviours, closer to the histone DNA binding wrapping mechanism.
Wave propagation as a marker of structural and topographic properties of human skin
NASA Astrophysics Data System (ADS)
Djaghloul, M.; Abdouni, A.; Thieulin, C.; Zahouani, H.
2018-06-01
Chronological skin ageing is a phenomenon which imposes structural and functional changes on the cutaneous tissue. Mechanically, these changes can be related to structural rearrangements of the cutaneous tissue on surface and in volume (layers thickness). At the micro-structural level, the constitutional elements of the skin, collagen and elastin fibres, undergo also this rearrangement. The evolution of skin’s mechanical properties at this level is the origin of a primordial in-vivo mechanical characteristic known as the natural pretension. In the context of understanding the in-vivo skin mechanical behaviour, related to the natural pretension, a lot of instrumentations have been demonstrated in the literature. They are mainly based on the interaction between dynamic adapted solicitation and the observed reaction on the skin. In this study, we evaluate the mechanical behaviour of human skin, following an impact which induces wave propagation. The use of impact solicitation allows the direct correlation between the dynamic induced reaction (vibration, and wave propagation) of the cutaneous tissue and its mechanical property. In our development, impact solicitation is contactless, with an air blast as generator of local deformation. The estimation of the speed of wave propagation enables the characterization of the mechanical behaviour of the skin. In order to validate the developed approaches, to understand the chronological ageing, gender and anisotropy effects on the skin properties, measurements have been realized on 77 healthy volunteers separated in five age groups. The obtained results are consistent with earlier works and confirm the efficiency of the developed instrumentation to estimate the changes of mechanical behaviour of the skin under age and gender effects.
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes
NASA Astrophysics Data System (ADS)
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti
2016-08-01
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes.
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti
2016-08-28
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kineticsmore » resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.« less
Mathew, Sarah; Perreault, Charles
2015-01-01
The behavioural variation among human societies is vast and unmatched in the animal world. It is unclear whether this variation is due to variation in the ecological environment or to differences in cultural traditions. Underlying this debate is a more fundamental question: is the richness of humans’ behavioural repertoire due to non-cultural mechanisms, such as causal reasoning, inventiveness, reaction norms, trial-and-error learning and evoked culture, or is it due to the population-level dynamics of cultural transmission? Here, we measure the relative contribution of environment and cultural history in explaining the behavioural variation of 172 Native American tribes at the time of European contact. We find that the effect of cultural history is typically larger than that of environment. Behaviours also persist over millennia within cultural lineages. This indicates that human behaviour is not predominantly determined by single-generation adaptive responses, contra theories that emphasize non-cultural mechanisms as determinants of human behaviour. Rather, the main mode of human adaptation is social learning mechanisms that operate over multiple generations. PMID:26085589
Dynamic impact testing with servohydraulic testing machines
NASA Astrophysics Data System (ADS)
Bardenheier, R.; Rogers, G.
2006-08-01
The design concept of “Crashworthiness” requires the information on material behaviour under dynamic impact loading in order to describe and predict the crash behaviour of structures. Especially the transport related industries, like car, railway or aircraft industry, pursue the concept of lightweight design for a while now. The materials' maximum constraint during loading is pushed to permanently increasing figures. This means in terms of crashworthiness that the process of energy absorption in structures and the mechanical behaviour of materials must well understood and can be described appropriately by material models. In close cooperation with experts from various industries and research institutes Instron has developed throughout the past years a new family of servohydraulic testing machines specifically designed to cope with the dynamics of high rate testing. Main development steps are reflected versus their experimental necessities.
Social costs enforce honesty of a dynamic signal of motivation.
Ligon, Russell A; McGraw, Kevin J
2016-10-26
Understanding the processes that promote signal reliability may provide important insights into the evolution of diverse signalling strategies among species. The signals that animals use to communicate must comprise mechanisms that prohibit or punish dishonesty, and social costs of dishonesty have been demonstrated for several fixed morphological signals (e.g. colour badges of birds and wasps). The costs maintaining the honesty of dynamic signals, which are more flexible and potentially cheatable, are unknown. Using an experimental manipulation of the dynamic visual signals used by male veiled chameleons (Chamaeleo calyptratus) during aggressive interactions, we tested the idea that the honesty of rapid colour change signals is maintained by social costs. Our results reveal that social costs are an important mechanism maintaining the honesty of these dynamic colour signals-'dishonest' chameleons whose experimentally manipulated coloration was incongruent with their contest behaviour received more physical aggression than 'honest' individuals. This is the first demonstration, to the best our knowledge, that the honesty of a dynamic signal of motivation-physiological colour change-can be maintained by the social costliness of dishonesty. Behavioural responses of signal receivers, irrespective of any specific detection mechanisms, therefore prevent chameleon cheaters from prospering. © 2016 The Author(s).
Social costs enforce honesty of a dynamic signal of motivation
McGraw, Kevin J.
2016-01-01
Understanding the processes that promote signal reliability may provide important insights into the evolution of diverse signalling strategies among species. The signals that animals use to communicate must comprise mechanisms that prohibit or punish dishonesty, and social costs of dishonesty have been demonstrated for several fixed morphological signals (e.g. colour badges of birds and wasps). The costs maintaining the honesty of dynamic signals, which are more flexible and potentially cheatable, are unknown. Using an experimental manipulation of the dynamic visual signals used by male veiled chameleons (Chamaeleo calyptratus) during aggressive interactions, we tested the idea that the honesty of rapid colour change signals is maintained by social costs. Our results reveal that social costs are an important mechanism maintaining the honesty of these dynamic colour signals—‘dishonest’ chameleons whose experimentally manipulated coloration was incongruent with their contest behaviour received more physical aggression than ‘honest’ individuals. This is the first demonstration, to the best our knowledge, that the honesty of a dynamic signal of motivation—physiological colour change—can be maintained by the social costliness of dishonesty. Behavioural responses of signal receivers, irrespective of any specific detection mechanisms, therefore prevent chameleon cheaters from prospering. PMID:27798310
Looking for sexual selection in the female brain.
Cummings, Molly E
2012-08-19
Female mate choice behaviour has significant evolutionary consequences, yet its mechanistic origins are not fully understood. Recent studies of female sensory systems have made great strides in identifying internal mechanisms governing female preferences. Only recently, however, have we begun to identify the dynamic genomic response associated with mate choice behaviour. Poeciliids provide a powerful comparative system to examine genomic responses governing mate choice and female preference behaviour, given the great range of mating systems: from female mate choice taxa with ornamental courting males to species lacking male ornamentation and exhibiting only male coercion. Furthermore, they exhibit laboratory-tractable preference responses without sexual contact that are decoupled from reproductive state, allowing investigators to isolate mechanisms in the brain without physiological confounds. Early investigations with poeciliid species (Xiphophorus nigrensis and Gambusia affinis) have identified putative candidate genes associated with female preference response and highlight a possible genomic pathway underlying female social interactions with males linked functionally with synaptic plasticity and learning processes. This network is positively correlated with female preference behaviour in the female mate choice species, but appears inhibited in the male coercive species. This behavioural genomics approach provides opportunity to elucidate the fundamental building blocks, and evolutionary dynamics, of sexual selection.
The Dynamics of Chinese Face Mechanisms and Classroom Behaviour: A Case Study
ERIC Educational Resources Information Center
Wu, Xiaoxin
2009-01-01
Research on cross-cultural psychology, anthropology and sociology reveals that the impact of face on social interactions is both pervasive and powerful in Asia. Face, however, has not gained general acceptance as an important theoretical concept in the literature on Asian (Chinese in particular) classroom behaviour and management. This article…
Moioli, Renan C; Vargas, Patricia A; Husbands, Phil
2012-09-01
Oscillatory activity is ubiquitous in nervous systems, with solid evidence that synchronisation mechanisms underpin cognitive processes. Nevertheless, its informational content and relationship with behaviour are still to be fully understood. In addition, cognitive systems cannot be properly appreciated without taking into account brain-body- environment interactions. In this paper, we developed a model based on the Kuramoto Model of coupled phase oscillators to explore the role of neural synchronisation in the performance of a simulated robotic agent in two different minimally cognitive tasks. We show that there is a statistically significant difference in performance and evolvability depending on the synchronisation regime of the network. In both tasks, a combination of information flow and dynamical analyses show that networks with a definite, but not too strong, propensity for synchronisation are more able to reconfigure, to organise themselves functionally and to adapt to different behavioural conditions. The results highlight the asymmetry of information flow and its behavioural correspondence. Importantly, it also shows that neural synchronisation dynamics, when suitably flexible and reconfigurable, can generate minimally cognitive embodied behaviour.
Simulating dynamical features of escape panic
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Farkas, Illés; Vicsek, Tamás
2000-09-01
One of the most disastrous forms of collective human behaviour is the kind of crowd stampede induced by panic, often leading to fatalities as people are crushed or trampled. Sometimes this behaviour is triggered in life-threatening situations such as fires in crowded buildings; at other times, stampedes can arise during the rush for seats or seemingly without cause. Although engineers are finding ways to alleviate the scale of such disasters, their frequency seems to be increasing with the number and size of mass events. But systematic studies of panic behaviour and quantitative theories capable of predicting such crowd dynamics are rare. Here we use a model of pedestrian behaviour to investigate the mechanisms of (and preconditions for) panic and jamming by uncoordinated motion in crowds. Our simulations suggest practical ways to prevent dangerous crowd pressures. Moreover, we find an optimal strategy for escape from a smoke-filled room, involving a mixture of individualistic behaviour and collective `herding' instinct.
NASA Astrophysics Data System (ADS)
Bocian, Mateusz; Burn, Jeremy F.; Macdonald, John H. G.; Brownjohn, James M. W.
2017-03-01
The subject of this paper pertains to the contentious issue of synchronisation of walking pedestrians to lateral structural motion, which is the mechanism most commonly purported to cause lateral dynamic instability. Tests have been conducted on a custom-built experimental setup consisting of an instrumented treadmill laterally driven by a hydraulic shaking table. The experimental setup can accommodate adaptive pedestrian behaviour via a bespoke speed feedback control mechanism that allows automatic adjustment of the treadmill belt speed to that of the walker. 15 people participated in a total of 137 walking tests during which the treadmill underwent lateral sinusoidal motion. The amplitude of this motion was set from 5 to 15 mm and the frequency was set from 0.54 to 1.1 Hz. A variety of stepping behaviours are identified in the kinematic data obtained using a motion capture system. The most common behaviour is for the timing of footsteps to be essentially unaffected by the structural motion, but a few instances of synchronisation are found. A plausible mechanism comprising an intermediate state between unsynchronised and synchronised pedestrian and structural motion is observed. This mechanism, characterised by a weak form of modulation of the timing of footsteps, could possibly explain the under-estimation of negative damping coefficients in models and laboratory trials compared with previously reported site measurements. The results from tests conducted on the setup for which synchronisation is identified are evaluated in the context of structural stability and related to the predictions of the inverted pendulum model, providing insight into fundamental relations governing pedestrian behaviour on laterally oscillating structures.
NASA Astrophysics Data System (ADS)
Bleck, W.; Larour, P.
2003-09-01
Crash behaviour and light weight have become the major design criteria for car bodies. Modem high strength steels offer appropriate solutions for these requirements. The prediction of the crash behaviour in simulation programs requires the information on materials behaviour during dynamic testing. The reduction of the signal waviness and the inertia effects at strain rates above 50s^{-1} are major issues in dynamic tensile testing. Damping techniques or load measurement on the sample itself are the common way to reduce oscillations. Strain measurement from the piston displacement or from optical devices on the specimen itself are also compared. Advantages and drawbacks of those various measurement techniques are presented.
Mathew, Sarah; Perreault, Charles
2015-07-07
The behavioural variation among human societies is vast and unmatched in the animal world. It is unclear whether this variation is due to variation in the ecological environment or to differences in cultural traditions. Underlying this debate is a more fundamental question: is the richness of humans' behavioural repertoire due to non-cultural mechanisms, such as causal reasoning, inventiveness, reaction norms, trial-and-error learning and evoked culture, or is it due to the population-level dynamics of cultural transmission? Here, we measure the relative contribution of environment and cultural history in explaining the behavioural variation of 172 Native American tribes at the time of European contact. We find that the effect of cultural history is typically larger than that of environment. Behaviours also persist over millennia within cultural lineages. This indicates that human behaviour is not predominantly determined by single-generation adaptive responses, contra theories that emphasize non-cultural mechanisms as determinants of human behaviour. Rather, the main mode of human adaptation is social learning mechanisms that operate over multiple generations. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Mechanical Paradox: The Uphill Roller
ERIC Educational Resources Information Center
Cortes, Emilio; Cortes-Poza, D.
2011-01-01
We analyse in detail the dynamics of a mechanical system which is a rigid body with the geometry of a double cone. This double cone is apparently able to spontaneously roll uphill along inclined rails. The experiment has been known for some centuries, and because of its peculiar behaviour, it has been named "mechanical paradox". Although this…
Wnt signalling controls the response to mechanical loading during zebrafish joint development
Brunt, Lucy H.; Begg, Katie; Kague, Erika; Cross, Stephen
2017-01-01
Joint morphogenesis requires mechanical activity during development. Loss of mechanical strain causes abnormal joint development, which can impact long-term joint health. Although cell orientation and proliferation are known to shape the joint, dynamic imaging of developing joints in vivo has not been possible in other species. Using genetic labelling techniques in zebrafish we were able, for the first time, to dynamically track cell behaviours in intact moving joints. We identify that proliferation and migration, which contribute to joint morphogenesis, are mechanically controlled and are significantly reduced in immobilised larvae. By comparison with strain maps of the developing skeleton, we identify canonical Wnt signalling as a candidate for transducing mechanical forces into joint cell behaviours. We show that, in the jaw, Wnt signalling is reduced specifically in regions of high strain in response to loss of muscle activity. By pharmacological manipulation of canonical Wnt signalling, we demonstrate that Wnt acts downstream of mechanical activity and is required for joint patterning and chondrocyte maturation. Wnt16, which is also downstream of muscle activity, controls proliferation and migration, but plays no role in chondrocyte intercalation. PMID:28684625
NASA Astrophysics Data System (ADS)
Zilletti, Michele; Marker, Arthur; Elliott, Stephen John; Holland, Keith
2017-05-01
In this study model identification of the nonlinear dynamics of a micro-speaker is carried out by purely electrical measurements, avoiding any explicit vibration measurements. It is shown that a dynamic model of the micro-speaker, which takes into account the nonlinear damping characteristic of the device, can be identified by measuring the response between the voltage input and the current flowing into the coil. An analytical formulation of the quasi-linear model of the micro-speaker is first derived and an optimisation method is then used to identify a polynomial function which describes the mechanical damping behaviour of the micro-speaker. The analytical results of the quasi-linear model are compared with numerical results. This study potentially opens up the possibility of efficiently implementing nonlinear echo cancellers.
Learning dynamics explains human behaviour in prisoner's dilemma on networks.
Cimini, Giulio; Sánchez, Angel
2014-05-06
Cooperative behaviour lies at the very basis of human societies, yet its evolutionary origin remains a key unsolved puzzle. Whereas reciprocity or conditional cooperation is one of the most prominent mechanisms proposed to explain the emergence of cooperation in social dilemmas, recent experimental findings on networked Prisoner's Dilemma games suggest that conditional cooperation also depends on the previous action of the player-namely on the 'mood' in which the player is currently in. Roughly, a majority of people behave as conditional cooperators if they cooperated in the past, whereas they ignore the context and free ride with high probability if they did not. However, the ultimate origin of this behaviour represents a conundrum itself. Here, we aim specifically to provide an evolutionary explanation of moody conditional cooperation (MCC). To this end, we perform an extensive analysis of different evolutionary dynamics for players' behavioural traits-ranging from standard processes used in game theory based on pay-off comparison to others that include non-economic or social factors. Our results show that only a dynamic built upon reinforcement learning is able to give rise to evolutionarily stable MCC, and at the end to reproduce the human behaviours observed in the experiments.
Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite.
Mardoukhi, Ahmad; Mardoukhi, Yousof; Hokka, Mikko; Kuokkala, Veli-Tapani
2017-01-28
This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'. © 2016 The Author(s).
Effects of strain rate and surface cracks on the mechanical behaviour of Balmoral Red granite
Kuokkala, Veli-Tapani
2017-01-01
This work presents a systematic study on the effects of strain rate and surface cracks on the mechanical properties and behaviour of Balmoral Red granite. The tensile behaviour of the rock was studied at low and high strain rates using Brazilian disc samples. Heat shocks were used to produce samples with different amounts of surface cracks. The surface crack patterns were analysed using optical microscopy, and the complexity of the patterns was quantified by calculating the fractal dimensions of the patterns. The strength of the rock clearly drops as a function of increasing fractal dimensions in the studied strain rate range. However, the dynamic strength of the rock drops significantly faster than the quasi-static strength, and, because of this, also the strain rate sensitivity of the rock decreases with increasing fractal dimensions. This can be explained by the fracture behaviour and fragmentation during the dynamic loading, which is more strongly affected by the heat shock than the fragmentation at low strain rates. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’. PMID:27956513
Influence of the rotor-stator interaction on the dynamic stresses of Francis runners
NASA Astrophysics Data System (ADS)
Guillaume, R.; Deniau, J. L.; Scolaro, D.; Colombet, C.
2012-11-01
Thanks to advances in computing capabilities and Computational Fluid Dynamics (CFD) techniques, it is now possible to calculate realistic unsteady pressure fields in Francis turbines. This paper will explain methods to calculate the structural loads and the dynamic behaviour in order to optimize the turbine design and maximize its reliability and lifetime. Depending on the operating conditions of a Francis turbine, different hydraulic phenomena may impact the mechanical behaviour of the structure. According to their nature, these highly variable phenomena should be treated differently and specifically in order to estimate the potential risks arising on submerged structures, in particular the runner. The operating condition studied thereafter is the point at maximum power with the maximum head. Under this condition, the runner is excited by only one dynamic phenomenon named the Rotor-Stator Interaction (RSI). The origin of the phenomenon is located on the radial gap of the turbine and is the source of pressure fluctuations. A fluid-structure analysis is performed to observe the influence of that dynamic pressure field on the runner behaviour. The first part of the paper deals with the unsteady fluid computation. The RSI phenomenon is totally unsteady so the fluid simulation must take into account the entire machine and its rotation movement, in order to obtain a dynamic pressure field. In the second part of the paper, a method suitable for the RSI study is developed. It is known that the fluctuating pressure in this gap can be described as a sum of spatial components. By evaluating these components in the CFD results and on the scale model, it is possible to assess the relevance of the numerical results on the whole runner. After this step, the numerical pressure field can be used as the dynamic load of the structure. The final part of the paper presentsthe mechanical finite element calculations. A modal analysis of the runner in water and a harmonic analysis of its dynamic behaviour using the CFD results are carried out. These calculations will show that the RSI on the medium head Francis runner does not create damage on the runner even if the natural frequencies are closed to the wicket gates passing frequency. The numerical results are reinforced by experimental observations done on runner prototypes showing that the wicket gates passing frequency does not have significant influence on low and medium head Francis runner behaviour.
Experimental analysis and constitutive modelling of steel of A-IIIN strength class
NASA Astrophysics Data System (ADS)
Kruszka, Leopold; Janiszewski, Jacek
2015-09-01
Fundamentally important is the better understanding of behaviour of new building steels under impact loadings, including plastic deformations. Results of the experimental analysis in wide range of strain rates in compression at room temperature, as well as constitutive modelling for and B500SP structural steels of new A-IIIN Polish strength class, examined dynamically by split Hopkinson pressure bar technique at high strain rates, are presented in table and graphic forms. Dynamic mechanical characteristics of compressive strength for tested building structural steel are determined as well as dynamic mechanical properties of this material are compared with 18G2-b steel of A-II strength class, including effects of the shape of tested specimens, i.e. their slenderness. The paper focuses the attention on those experimental tests, their interpretation, and constitutive semi-empirical modelling of the behaviour of tested steels based on Johnson-Cook's model. Obtained results of analyses presented here are used for designing and numerical simulations of reinforced concrete protective structures.
Tensile behaviour of geopolymer-based materials under medium and high strain rates
NASA Astrophysics Data System (ADS)
Menna, Costantino; Asprone, Domenico; Forni, Daniele; Roviello, Giuseppina; Ricciotti, Laura; Ferone, Claudio; Bozza, Anna; Prota, Andrea; Cadoni, Ezio
2015-09-01
Geopolymers are a promising class of inorganic materials typically obtained from an alluminosilicate source and an alkaline solution, and characterized by an amorphous 3-D framework structure. These materials are particularly attractive for the construction industry due to mechanical and environmental advantages they exhibit compared to conventional systems. Indeed, geopolymer-based concretes represent a challenge for the large scale uses of such a binder material and many research studies currently focus on this topic. However, the behaviour of geopolymers under high dynamic loads is rarely investigated, even though it is of a fundamental concern for the integrity/vulnerability assessment under extreme dynamic events. The present study aims to investigate the effect of high dynamic loading conditions on the tensile behaviour of different geopolymer formulations. The dynamic tests were performed under different strain rates by using a Hydro-pneumatic machine and a modified Hopkinson bar at the DynaMat laboratory of the University of Applied Sciences of Southern Switzerland. The results are processed in terms of stress-strain relationships and strength dynamic increase factor at different strain-rate levels. The dynamic increase factor was also compared with CEB recommendations. The experimental outcomes can be used to assess the constitutive laws of geopolymers under dynamic load conditions and implemented into analytical models.
Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics
Bates, K. T.; Falkingham, P. L.
2012-01-01
Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000–57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals. PMID:22378742
Estimating maximum bite performance in Tyrannosaurus rex using multi-body dynamics.
Bates, K T; Falkingham, P L
2012-08-23
Bite mechanics and feeding behaviour in Tyrannosaurus rex are controversial. Some contend that a modest bite mechanically limited T. rex to scavenging, while others argue that high bite forces facilitated a predatory mode of life. We use dynamic musculoskeletal models to simulate maximal biting in T. rex. Models predict that adult T. rex generated sustained bite forces of 35 000-57 000 N at a single posterior tooth, by far the highest bite forces estimated for any terrestrial animal. Scaling analyses suggest that adult T. rex had a strong bite for its body size, and that bite performance increased allometrically during ontogeny. Positive allometry in bite performance during growth may have facilitated an ontogenetic change in feeding behaviour in T. rex, associated with an expansion of prey range in adults to include the largest contemporaneous animals.
Panchal, Mitesh B; Upadhyay, Sanjay H
2014-09-01
The unprecedented dynamic characteristics of nanoelectromechanical systems make them suitable for nanoscale mass sensing applications. Owing to superior biocompatibility, boron nitride nanotubes (BNNTs) are being increasingly used for such applications. In this study, the feasibility of single walled BNNT (SWBNNT)-based bio-sensor has been explored. Molecular structural mechanics-based finite element (FE) modelling approach has been used to analyse the dynamic behaviour of SWBNNT-based biosensors. The application of an SWBNNT-based mass sensing for zeptogram level of mass has been reported. Also, the effect of size of the nanotube in terms of length as well as different chiral atomic structures of SWBNNT has been analysed for their sensitivity analysis. The vibrational behaviour of SWBNNT has been analysed for higher-order modes of vibrations to identify the intermediate landing position of biological object of zeptogram scale. The present molecular structural mechanics-based FE modelling approach is found to be very effectual to incorporate different chiralities of the atomic structures. Also, different boundary conditions can be effectively simulated using the present approach to analyse the dynamic behaviour of the SWBNNT-based mass sensor. The presented study has explored the potential of SWBNNT, as a nanobiosensor having the capability of zeptogram level mass sensing.
Phenomenological study of a cellular material behaviour under dynamic loadings
NASA Astrophysics Data System (ADS)
Bouix, R.; Viot, Ph.; Lataillade, J.-L.
2006-08-01
Polypropylene foams are cellular materials, which are often use to fill structures subjected to crash or violent impacts. Therefore, it is necessary to know and to characterise in experiments their mechanical behaviour in compression at high strain rates. So, several apparatus have been used in order to highlight the influence of strain rate, material density and also temperature. A split Hopkinson Pressure Bar has been used for impact tests, a fly wheel to test theses materials at medium strain rate and an electro-mechanical testing machine associated to a climatic chamber for temperature tests. Then, a rheological model has been used in order to describe the material behaviour. The mechanical response to compression of these foams presents three typical domains: a linear elastic step, a wide collapse plateau stress, which leads to a densification, which are related to a standard rheological model.
Flexural creep behaviour of jute polypropylene composites
NASA Astrophysics Data System (ADS)
Chandekar, Harichandra; Chaudhari, Vikas
2016-09-01
Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.
Zhu, Liguo
2017-01-01
Rotation-traction (RT) manipulation is a commonly used physical therapy procedure in TCM (traditional Chinese medicine) for cervical spondylosis. This procedure temporarily separates the C3 and C4 cervical vertebrae from each other when a physician applies a jerky action while the neck is voluntarily turned by the patient to a specific position as instructed by the physician, where the cervical vertebrae are twisted and locked. However, a high rate of cervical injury occurs due to inexperienced physician interns who lack sufficient training. Therefore, we developed a cervical spine mechanism that imitates the dynamic behaviours of the human neck during RT manipulation. First, in vivo and in vitro experiments were performed to acquire the biomechanical feature curves of the human neck during RT manipulation. Second, a mass-spring-damper system with an electromagnetic clutch was designed to emulate the entire dynamic response of the human neck. In this system, a spring is designed as rectilinear and nonlinear to capture the viscoelasticity of soft tissues, and an electromagnetic clutch is used to simulate the sudden disengagement of the cervical vertebrae. Test results show that the mechanism can exhibit the desired behaviour when RT manipulation is applied in the same manner as on humans. PMID:29259395
The influence of the mechanical behaviour of the middle ear ligaments: a finite element analysis.
Gentil, F; Parente, M; Martins, P; Garbe, C; Jorge, R N; Ferreira, A; Tavares, João Manuel R S
2011-01-01
The interest in computer modelling of biomechanical systems, mainly by using the finite element method (FEM), has been increasing, in particular for analysis of the mechanical behaviour of the human ear. In this work, a finite element model of the middle ear was developed to study the dynamic structural response to harmonic vibrations for distinct sound pressure levels applied on the eardrum. The model includes different ligaments and muscle tendons with elastic and hyperelastic behaviour for these supportive structures. Additionally, the nonlinear behaviour of the ligaments and muscle tendons was investigated, as they are the connection between ossicles by contact formulation. Harmonic responses of the umbo and stapes footplate displacements, between 100 Hz and 10 kHz, were obtained and compared with previously published work. The stress state of ligaments (superior, lateral, and anterior of malleus and superior and posterior of incus) was analysed, with the focus on balance of the supportive structures of the middle ear, as ligaments make the link between the ossicular chain and the walls of the tympanic cavity. The results obtained in this work highlight the importance of using hyperelastic models to simulate the mechanical behaviour for the ligaments and tendons.
Porous media fracturing dynamics: stepwise crack advancement and fluid pressure oscillations
NASA Astrophysics Data System (ADS)
Cao, Toan D.; Hussain, Fazle; Schrefler, Bernhard A.
2018-02-01
We present new results explaining why fracturing in saturated porous media is not smooth and continuous but is a distinct stepwise process concomitant with fluid pressure oscillations. All exact solutions and almost all numerical models yield smooth fracture advancement and fluid pressure evolution, while recent experimental results, mainly from the oil industry, observation from geophysics and a very few numerical results for the quasi-static case indeed reveal the stepwise phenomenon. We summarize first these new experiments and these few numerical solutions for the quasi-static case. Both mechanical loading and pressure driven fractures are considered because their behaviours differ in the direction of the pressure jumps. Then we explore stepwise crack tip advancement and pressure fluctuations in dynamic fracturing with a hydro-mechanical model of porous media based on the Hybrid Mixture Theory. Full dynamic analyses of examples dealing with both hydraulic fracturing and mechanical loading are presented. The stepwise fracture advancement is confirmed in the dynamic setting as well as in the pressure fluctuations, but there are substantial differences in the frequency contents of the pressure waves in the two loading cases. Comparison between the quasi-static and fully dynamic solutions reveals that the dynamic response gives much more information such as the type of pressure oscillations and related frequencies and should be applied whenever there is a doubt about inertia forces playing a role - the case in most fracturing events. In the absence of direct relevant dynamic tests on saturated media some experimental results on dynamic fracture in dry materials, a fast hydraulic fracturing test and observations from geophysics confirm qualitatively the obtained results such as the type of pressure oscillations and the substantial difference in the behaviour under the two loading cases.
NASA Astrophysics Data System (ADS)
Barbera, Andrea N.; Bucca, Giuseppe; Corradi, Roberto; Facchinetti, Alan; Mapelli, Ferdinando
2014-05-01
The dynamic behaviour of railway vehicles depends on the wheelset configuration, i.e. solid axle wheelset or independently rotating wheels (IRWs). The self-centring behaviour, peculiar of the solid axle wheelset, makes this kind of wheelset very suitable for tangent track running at low speed: the absence of the self-centring mechanism in the IRWs may lead to anomalous wheel/rail wear, reduced vehicle safety and passengers' discomfort. On the contrary, during negotiation of the sharp curves typical of urban tramways, solid axle wheelsets produce lateral contact forces higher than those of IRWs. This paper illustrates an electronic differential system to be applied to tramcar bogies equipped with wheel-hub motors which allows switching from solid axle in tangent track to IRWs in sharp curve (and vice versa). An electro-mechanical vehicle model is adopted for the design of the control system and for the evaluation of the vehicle dynamic performances.
General description and understanding of the nonlinear dynamics of mode-locked fiber lasers.
Wei, Huai; Li, Bin; Shi, Wei; Zhu, Xiushan; Norwood, Robert A; Peyghambarian, Nasser; Jian, Shuisheng
2017-05-02
As a type of nonlinear system with complexity, mode-locked fiber lasers are known for their complex behaviour. It is a challenging task to understand the fundamental physics behind such complex behaviour, and a unified description for the nonlinear behaviour and the systematic and quantitative analysis of the underlying mechanisms of these lasers have not been developed. Here, we present a complexity science-based theoretical framework for understanding the behaviour of mode-locked fiber lasers by going beyond reductionism. This hierarchically structured framework provides a model with variable dimensionality, resulting in a simple view that can be used to systematically describe complex states. Moreover, research into the attractors' basins reveals the origin of stochasticity, hysteresis and multistability in these systems and presents a new method for quantitative analysis of these nonlinear phenomena. These findings pave the way for dynamics analysis and system designs of mode-locked fiber lasers. We expect that this paradigm will also enable potential applications in diverse research fields related to complex nonlinear phenomena.
NASA Astrophysics Data System (ADS)
Ghosh, Shankar; Merin, A. P.; Bhattacharya, S.; Nitsure, Nitin
2018-04-01
We present a geometric framework to deal with mechanical systems which have unilateral constraints, and are subject to damping/friction, which cannot be treated within usual classical mechanics. In this new framework, the dynamical evolution of the system takes place on a multidimensional curvilinear polyhedron, and energetics near the corners of the polyhedron leads to qualitative behaviour such as stable entrapment and bifurcation. We illustrate this by an experiment in which dumbbells, placed inside a tilted hollow cylindrical drum that rotates slowly around its axis, climb uphill by forming dynamically stable pairs, seemingly against the pull of gravity.
Jesse K. Kreye; J.Morgan Varner; Eric E. Knapp
2012-01-01
Mechanical mastication is increasingly used as a wildland fuel treatment, reducing standing trees and shrubs to compacted fuelbeds of fractured woody fuels. One major shortcoming in our understanding of these fuelbeds is how particle fracturing influences moisture gain or loss, a primary determinant of fire behaviour. To better understand fuel moisture dynamics, we...
Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue.
Brocklehurst, Paul; Ni, Haibo; Zhang, Henggui; Ye, Jianqiao
2017-01-01
We investigate the effect of mechano-electrical feedback and atrial fibrillation induced electrical remodelling (AFER) of cellular ion channel properties on the dynamics of spiral waves in a discrete 2D model of human atrial tissue. The tissue electro-mechanics are modelled using the discrete element method (DEM). Millions of bonded DEM particles form a network of coupled atrial cells representing 2D cardiac tissue, allowing simulations of the dynamic behaviour of electrical excitation waves and mechanical contraction in the tissue. In the tissue model, each cell is modelled by nine particles, accounting for the features of individual cellular geometry; and discrete inter-cellular spatial arrangement of cells is also considered. The electro-mechanical model of a human atrial single-cell was constructed by strongly coupling the electrophysiological model of Colman et al. to the mechanical myofilament model of Rice et al., with parameters modified based on experimental data. A stretch-activated channel was incorporated into the model to simulate the mechano-electrical feedback. In order to investigate the effect of mechano-electrical feedback on the dynamics of spiral waves, simulations of spiral waves were conducted in both the electromechanical model and the electrical-only model in normal and AFER conditions, to allow direct comparison of the results between the models. Dynamics of spiral waves were characterized by tracing their tip trajectories, stability, excitation frequencies and meandering range of tip trajectories. It was shown that the developed DEM method provides a stable and efficient model of human atrial tissue with considerations of the intrinsically discrete and anisotropic properties of the atrial tissue, which are challenges to handle in traditional continuum mechanics models. This study provides mechanistic insights into the complex behaviours of spiral waves and the genesis of atrial fibrillation by showing an important role of the mechano-electrical feedback in facilitating and promoting atrial fibrillation.
Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue
Zhang, Henggui
2017-01-01
We investigate the effect of mechano-electrical feedback and atrial fibrillation induced electrical remodelling (AFER) of cellular ion channel properties on the dynamics of spiral waves in a discrete 2D model of human atrial tissue. The tissue electro-mechanics are modelled using the discrete element method (DEM). Millions of bonded DEM particles form a network of coupled atrial cells representing 2D cardiac tissue, allowing simulations of the dynamic behaviour of electrical excitation waves and mechanical contraction in the tissue. In the tissue model, each cell is modelled by nine particles, accounting for the features of individual cellular geometry; and discrete inter-cellular spatial arrangement of cells is also considered. The electro-mechanical model of a human atrial single-cell was constructed by strongly coupling the electrophysiological model of Colman et al. to the mechanical myofilament model of Rice et al., with parameters modified based on experimental data. A stretch-activated channel was incorporated into the model to simulate the mechano-electrical feedback. In order to investigate the effect of mechano-electrical feedback on the dynamics of spiral waves, simulations of spiral waves were conducted in both the electromechanical model and the electrical-only model in normal and AFER conditions, to allow direct comparison of the results between the models. Dynamics of spiral waves were characterized by tracing their tip trajectories, stability, excitation frequencies and meandering range of tip trajectories. It was shown that the developed DEM method provides a stable and efficient model of human atrial tissue with considerations of the intrinsically discrete and anisotropic properties of the atrial tissue, which are challenges to handle in traditional continuum mechanics models. This study provides mechanistic insights into the complex behaviours of spiral waves and the genesis of atrial fibrillation by showing an important role of the mechano-electrical feedback in facilitating and promoting atrial fibrillation. PMID:28510575
Acoustic emission: A useful tool for damage evaluation in composite materials
NASA Astrophysics Data System (ADS)
Mouzakis, Dionysios E.; Dimogianopoulos, Dimitrios G.
2018-02-01
High performance composites for aviation-related structures are prone to constant aging by environmental agents. Previous data from our work reported on the stiffening behaviour of glass fibre polyester composites used in the manufacturing of wind turbine blades. Airplanes from such composites are already on service nowadays. This justifies the detailed study of the exposure of high performance materials to environmental conditions such as varying temperature, humidity, ultraviolet radiation, in order to assess the impact of these important aging factors on their mechanical behaviour. The dramatic changes in the dynamic mechanical response of polymer matrix carbon fibre composites upon exposure to acceleration aging has been assessed in the present study. In order to assess the synergistic effect action of temperature and humidity on composites subjected to changes of temperature from -35 to +40 °C and humidity variations from <10% to 95% RH (non-condensing) specimens were stored in a climatic chamber for 60 days. Conditions were cycled, as if actual flight cycles of 3-4 hours per flight, were to be simulated. Dynamic mechanical analysis tests were performed in three point bending mode. Scanning of frequency and temperature were performed in order to determine both the viscoelastic response as well as the time-dependent behaviour of the aged materials. All tests were run both for aged and pristine materials for comparison purposes. Three point bending testing was performed in both static as well as in Dynamic mechanical analysis, for a range of temperatures and frequencies. Acoustic Emission damage detection was also performed during the three point bending test both in static and dynamic mode. The aged materials had gained in dynamic stiffness. In addition, that, the gain in the storage moduli, was accompanied by a decrease in the material damping ability, as determined by the tanδ parameter. In the final stages of the study, impact testing was performed on both pristine and aged specimens. The experimentally recorded force/time signals were utilized for concluding on the specimens' condition, by means of signal based damage detection methodologies. Effort was invested in utilizing signal analysis in order to get comparative aging-related information on the tested specimens in order to ultimately validate results of mechanical testing.
Leduc, Antoine O. H. C.; Munday, Philip L.; Brown, Grant E.; Ferrari, Maud C. O.
2013-01-01
For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices. PMID:23980246
Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O
2013-01-01
For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.
Dynamical properties of the brain tissue under oscillatory shear stresses at large strain range
NASA Astrophysics Data System (ADS)
Boudjema, F.; Khelidj, B.; Lounis, M.
2017-01-01
In this experimental work, we study the viscoelastic behaviour of in vitro brain tissue, particularly the white matter, under oscillatory shear strain. The selective vulnerability of this tissue is the anisotropic mechanical properties of theirs different regions lead to a sensitivity to the angular shear rate and magnitude of strain. For this aim, shear storage modulus (G‧) and loss modulus (G″) were measured over a range of frequencies (1 to 100 Hz), for different levels of strain (1 %, to 50 %). The mechanical responses of the brain matter samples showed a viscoelastic behaviour that depend on the correlated strain level and frequency range and old age sample. The samples have been showed evolution behaviour by increasing then decreasing the strain level. Also, the stiffness anisotropy of brain matter was showed between regions and species.
ERIC Educational Resources Information Center
Grey, Simon; Grey, David; Gordon, Neil; Purdy, Jon
2017-01-01
This paper offers an approach to designing game-based learning experiences inspired by the Mechanics-Dynamics-Aesthetics (MDA) model (Hunicke et al., 2004) and the elemental tetrad model (Schell, 2008) for game design. A case for game based learning as an active and social learning experience is presented including arguments from both teachers and…
NASA Astrophysics Data System (ADS)
Delile, Julien; Herrmann, Matthieu; Peyriéras, Nadine; Doursat, René
2017-01-01
The study of multicellular development is grounded in two complementary domains: cell biomechanics, which examines how physical forces shape the embryo, and genetic regulation and molecular signalling, which concern how cells determine their states and behaviours. Integrating both sides into a unified framework is crucial to fully understand the self-organized dynamics of morphogenesis. Here we introduce MecaGen, an integrative modelling platform enabling the hypothesis-driven simulation of these dual processes via the coupling between mechanical and chemical variables. Our approach relies upon a minimal `cell behaviour ontology' comprising mesenchymal and epithelial cells and their associated behaviours. MecaGen enables the specification and control of complex collective movements in 3D space through a biologically relevant gene regulatory network and parameter space exploration. Three case studies investigating pattern formation, epithelial differentiation and tissue tectonics in zebrafish early embryogenesis, the latter with quantitative comparison to live imaging data, demonstrate the validity and usefulness of our framework.
Soft active matter: a contemporary example of Edwardsian statistical mechanics
NASA Astrophysics Data System (ADS)
Liverpool, Tanniemola
Colonies of swimming bacteria, algae or spermatozoa are examples of active systems composed of interacting units that consume energy and collectively generate motion and mechanical stresses. Due to the anisotropy of their interactions, these active particles can exhibit orientational order at high concentrations and have been called ``living liquid crystals''. Biology at the cellular and multicellular scale provides numerous examples of these active systems. They provide a novel class of experimentally accessible system far from equilibrium. Their rich collective behaviour includes non-equilibrium phase transitions and pattern formation on mesoscopic scales. Interestingly however, some of the theoretical insights gained from field theories applied to equilibrium soft matter systems can be used to explain aspects of their behaviour, but with a number of surprising new twists. I will describe and summarise recent theoretical results characterising the behaviour of such soft active systems highlighting in particular the effects of their internal dynamics on their macroscopic behaviour. With support of the EPSRC Grant No. EP/G026440/1.
Studies on gamma irradiated rubber materials
NASA Astrophysics Data System (ADS)
Lungu, I. B.; Stelescu, M. D.; Cutrubinis, M.
2018-01-01
Due to the increase in use and production of polymer materials, there is a constant pressure of finding a solution to more environmental friendly composites. Beside the constant effort of recycling used materials, it seems more appropriate to manufacture and use biodegradable and renewable row materials. Natural polymers like starch, cellulose, lignin etc are ideal for preparing biodegradable composites. Some of the dynamic markets that use polymer materials are the food and pharmaceutical industries. Because of their desinfastation and sometimes sterility requirements, different treatment processes are applied, one of it being radiation treatment. The scope of this paper is to analyze the mechanical behaviour of rubber based materials irradiated with gamma rays at four medium doses, 30.1 kGy, 60.6 kGy, 91 kGy and 121.8 kGy. The objectives are the following: to identify the optimum radiation dose in order to obtain a good mechanical behaviour and to identify the mechanical behaviour of the material when adding different quantities of natural filler (20 phr, 60 phr and 100 phr).
Cast aluminium single crystals cross the threshold from bulk to size-dependent stochastic plasticity
NASA Astrophysics Data System (ADS)
Krebs, J.; Rao, S. I.; Verheyden, S.; Miko, C.; Goodall, R.; Curtin, W. A.; Mortensen, A.
2017-07-01
Metals are known to exhibit mechanical behaviour at the nanoscale different to bulk samples. This transition typically initiates at the micrometre scale, yet existing techniques to produce micrometre-sized samples often introduce artefacts that can influence deformation mechanisms. Here, we demonstrate the casting of micrometre-scale aluminium single-crystal wires by infiltration of a salt mould. Samples have millimetre lengths, smooth surfaces, a range of crystallographic orientations, and a diameter D as small as 6 μm. The wires deform in bursts, at a stress that increases with decreasing D. Bursts greater than 200 nm account for roughly 50% of wire deformation and have exponentially distributed intensities. Dislocation dynamics simulations show that single-arm sources that produce large displacement bursts halted by stochastic cross-slip and lock formation explain microcast wire behaviour. This microcasting technique may be extended to several other metals or alloys and offers the possibility of exploring mechanical behaviour spanning the micrometre scale.
McCauley, Shannon J; Davis, Christopher J; Werner, Earl E; Robeson, Michael S
2014-07-01
Species' range sizes are shaped by fundamental differences in species' ecological and evolutionary characteristics, and understanding the mechanisms determining range size can shed light on the factors responsible for generating and structuring biological diversity. Moreover, because geographic range size is associated with a species' risk of extinction and their ability to respond to global changes in climate and land use, understanding these mechanisms has important conservation implications. Despite the hypotheses that dispersal behaviour is a strong determinant of species range areas, few data are available to directly compare the relationship between dispersal behaviour and range size. Here, we overcome this limitation by combining data from a multispecies dispersal experiment with additional species-level trait data that are commonly hypothesized to affect range size (e.g. niche breadth, local abundance and body size.). This enables us to examine the relationship between these species-level traits and range size across North America for fifteen dragonfly species. Ten models based on a priori predictions about the relationship between species traits and range size were evaluated and two models were identified as good predictors of species range size. These models indicated that only two species' level traits, dispersal behaviour and niche breadth were strongly related to range size. The evidence from these two models indicated that dragonfly species that disperse more often and further had larger North American ranges. Extinction and colonization dynamics are expected to be a key linkage between dispersal behaviour and range size in dragonflies. To evaluate how extinction and colonization dynamics among dragonflies were related to range size we used an independent data set of extinction and colonization rates for eleven dragonfly species and assessed the relationship between these populations rates and North American range areas for these species. We found a negative relationship between North American range size and species' extinction-to-colonization ratios. Our results indicate that metapopulation dynamics act to shape the extent of species' continental distributions. These population dynamics are likely to interact with dispersal behaviour, particularly at species range margins, to determine range limits and ultimately species range sizes. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.
Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights
2018-01-01
Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities—including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species—and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution. This article is part of the theme issue ‘Bridging cultural gaps: interdisciplinary studies in human cultural evolution’. PMID:29440515
Integrative studies of cultural evolution: crossing disciplinary boundaries to produce new insights.
Kolodny, Oren; Feldman, Marcus W; Creanza, Nicole
2018-04-05
Culture evolves according to dynamics on multiple temporal scales, from individuals' minute-by-minute behaviour to millennia of cultural accumulation that give rise to population-level differences. These dynamics act on a range of entities-including behavioural sequences, ideas and artefacts as well as individuals, populations and whole species-and involve mechanisms at multiple levels, from neurons in brains to inter-population interactions. Studying such complex phenomena requires an integration of perspectives from a diverse array of fields, as well as bridging gaps between traditionally disparate areas of study. In this article, which also serves as an introduction to the current special issue, we highlight some specific respects in which the study of cultural evolution has benefited and should continue to benefit from an integrative approach. We showcase a number of pioneering studies of cultural evolution that bring together numerous disciplines. These studies illustrate the value of perspectives from different fields for understanding cultural evolution, such as cognitive science and neuroanatomy, behavioural ecology, population dynamics, and evolutionary genetics. They also underscore the importance of understanding cultural processes when interpreting research about human genetics, neuroscience, behaviour and evolution.This article is part of the theme issue 'Bridging cultural gaps: interdisciplinary studies in human cultural evolution'. © 2018 The Author(s).
NASA Astrophysics Data System (ADS)
Liu, Ping; Pei, Qing-Xiang; Huang, Wei; Zhang, Yong-Wei
2017-12-01
The easy formation of vacancy defects and the asymmetry in the two sublayers of phosphorene nanotubes (PNTs) may result in brand new mechanical properties and failure behaviour. Herein, we investigate the mechanical properties and fracture behaviour of defective PNTs under uniaxial tension using molecular dynamics simulations. Our simulation results show that atomic vacancies cause local stress concentration and thus significantly reduce the fracture strength and fracture strain of PNTs. More specifically, a 1% defect concentration is able to reduce the fracture strength and fracture strain by as much as 50% and 66%, respectively. Interestingly, the reduction in the mechanical properties is found to depend on the defect location: a defect located in the outer sublayer has a stronger effect than one located in the inner layer, especially for PNTs with a small diameter. Temperature is also found to strongly influence the mechanical properties of both defect-free and defective PNTs. When the temperature is increased from 0 K to 400 K, the fracture strength and fracture strain of defective PNTs with a defect concentration of 1% are reduced further by 71% and 61%, respectively. These findings are of great importance for the structural design of PNTs as building blocks in nanodevices.
Time Scale Hierarchies in the Functional Organization of Complex Behaviors
Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K.
2011-01-01
Traditional approaches to cognitive modelling generally portray cognitive events in terms of ‘discrete’ states (point attractor dynamics) rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human) behaviour is decomposable into functional modes (elementary units), which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds). The ensemble of modes at an agent’s disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals), in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time). PMID:21980278
Social interaction-induced activation of RNA splicing in the amygdala of microbiome-deficient mice.
Stilling, Roman M; Moloney, Gerard M; Ryan, Feargal J; Hoban, Alan E; Bastiaanssen, Thomaz Fs; Shanahan, Fergus; Clarke, Gerard; Claesson, Marcus J; Dinan, Timothy G; Cryan, John F
2018-05-29
Social behaviour is regulated by activity of host-associated microbiota across multiple species. However, the molecular mechanisms mediating this relationship remain elusive. We therefore determined the dynamic, stimulus-dependent transcriptional regulation of germ-free (GF) and GF mice colonised post weaning (exGF) in the amygdala, a brain region critically involved in regulating social interaction. In GF mice the dynamic response seen in controls was attenuated and replaced by a marked increase in expression of splicing factors and alternative exon usage in GF mice upon stimulation, which was even more pronounced in exGF mice. In conclusion, we demonstrate a molecular basis for how the host microbiome is crucial for a normal behavioural response during social interaction. Our data further suggest that social behaviour is correlated with the gene-expression response in the amygdala, established during neurodevelopment as a result of host-microbe interactions. Our findings may help toward understanding neurodevelopmental events leading to social behaviour dysregulation, such as those found in autism spectrum disorders (ASDs). © 2018, Stilling et al.
Studies on thermal decomposition behaviors of polypropylene using molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Huang, Jinbao; He, Chao; Tong, Hong; Pan, Guiying
2017-11-01
Polypropylene (PP) is one of the main components of waste plastics. In order to understand the mechanism of PP thermal decomposition, the pyrolysis behaviour of PP has been simulated from 300 to 1000 K in periodic boundary conditions by molecular dynamic method, based on AMBER force field. The simulation results show that the pyrolysis process of PP can mostly be divided into three stages: low temperature pyrolysis stage, intermediate temperature stage and high temperature pyrolysis stage. PP pyrolysis is typical of random main-chain scission, and the possible formation mechanism of major pyrolysis products was analyzed.
Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.
Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano
2016-11-15
Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.
A probabilistic, distributed, recursive mechanism for decision-making in the brain
Gurney, Kevin N.
2018-01-01
Decision formation recruits many brain regions, but the procedure they jointly execute is unknown. Here we characterize its essential composition, using as a framework a novel recursive Bayesian algorithm that makes decisions based on spike-trains with the statistics of those in sensory cortex (MT). Using it to simulate the random-dot-motion task, we demonstrate it quantitatively replicates the choice behaviour of monkeys, whilst predicting losses of otherwise usable information from MT. Its architecture maps to the recurrent cortico-basal-ganglia-thalamo-cortical loops, whose components are all implicated in decision-making. We show that the dynamics of its mapped computations match those of neural activity in the sensorimotor cortex and striatum during decisions, and forecast those of basal ganglia output and thalamus. This also predicts which aspects of neural dynamics are and are not part of inference. Our single-equation algorithm is probabilistic, distributed, recursive, and parallel. Its success at capturing anatomy, behaviour, and electrophysiology suggests that the mechanism implemented by the brain has these same characteristics. PMID:29614077
NASA Astrophysics Data System (ADS)
Fontanela, F.; Grolet, A.; Salles, L.; Chabchoub, A.; Hoffmann, N.
2018-01-01
In the aerospace industry the trend for light-weight structures and the resulting complex dynamic behaviours currently challenge vibration engineers. In many cases, these light-weight structures deviate from linear behaviour, and complex nonlinear phenomena can be expected. We consider a cyclically symmetric system of coupled weakly nonlinear undamped oscillators that could be considered a minimal model for different cyclic and symmetric aerospace structures experiencing large deformations. The focus is on localised vibrations that arise from wave envelope modulation of travelling waves. For the defocussing parameter range of the approximative nonlinear evolution equation, we show the possible existence of dark solitons and discuss their characteristics. For the focussing parameter range, we characterise modulation instability and illustrate corresponding nonlinear breather dynamics. Furthermore, we show that for stronger nonlinearity or randomness in initial conditions, transient breather-type dynamics and decay into bright solitons appear. The findings suggest that significant vibration localisation may arise due to mechanisms of nonlinear modulation dynamics.
A model for seasonal phytoplankton blooms.
Huppert, Amit; Blasius, Bernd; Olinky, Ronen; Stone, Lewi
2005-10-07
We analyse a generic bottom-up nutrient phytoplankton model to help understand the dynamics of seasonally recurring algae blooms. The deterministic model displays a wide spectrum of dynamical behaviours, from simple cyclical blooms which trigger annually, to irregular chaotic blooms in which both the time between outbreaks and their magnitudes are erratic. Unusually, despite the persistent seasonal forcing, it is extremely difficult to generate blooms that are both annually recurring and also chaotic or irregular (i.e. in amplitude) even though this characterizes many real time-series. Instead the model has a tendency to 'skip' with outbreaks often being suppressed from 1 year to the next. This behaviour is studied in detail and we develop analytical expressions to describe the model's flow in phase space, yielding insights into the mechanism of the bloom recurrence. We also discuss how modifications to the equations through the inclusion of appropriate functional forms can generate more realistic dynamics.
Droplets and the three-phase contact line at the nano-scale. Statics and dynamics
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Sibley, David; Savva, Nikos; Kalliadasis, Serafim
2014-11-01
Understanding the behaviour of the solid-liquid-vapour contact line at the scale of several tens of molecular diameters is important in wetting hydrodynamics with applications in micro- and nano-fluidics, including the design of lab-on-a-chip devices and surfaces with specific wetting properties. Due to the fluid inhomogeneity at the nano-scale, the application of continuum-mechanical approaches is limited, and a natural way to remedy this is to seek descriptions accounting for the non-local molecular-level interactions. Density Functional Theory (DFT) for fluids offers a statistical-mechanical framework based on expressing the free energy of the fluid-solid pair as a functional of the spatially varying fluid density. DFT allows us to investigate small drops deposited on planar substrates whilst keeping track of the microscopic structural details of the fluid. Starting from a model of intermolecular forces, we systematically obtain interfaces, surface tensions, and the microscopic contact angle. Using a dynamic extension of equilibrium DFT, we investigate the diffusion-driven evolution of the three-phase contact line to gain insight into the dynamic behaviour of the microscopic contact angle, which is still under debate.
Gaffney, E A; Lee, S Seirin
2015-03-01
Turing morphogen models have been extensively explored in the context of large-scale self-organization in multicellular biological systems. However, reconciling the detailed biology of morphogen dynamics, while accounting for time delays associated with gene expression, reveals aberrant behaviours that are not consistent with early developmental self-organization, especially the requirement for exquisite temporal control. Attempts to reconcile the interpretation of Turing's ideas with an increasing understanding of the mechanisms driving zebrafish pigmentation suggests that one should reconsider Turing's model in terms of pigment cells rather than morphogens (Nakamasu et al., 2009, PNAS, 106: , 8429-8434; Yamaguchi et al., 2007, PNAS, 104: , 4790-4793). Here the dynamics of pigment cells is subject to response delays implicit in the cell cycle and apoptosis. Hence we explore simulations of fish skin patterning, focussing on the dynamical influence of gene expression delays in morphogen-based Turing models and response delays for cell-based Turing models. We find that reconciling the mechanisms driving the behaviour of Turing systems with observations of fish skin patterning remains a fundamental challenge. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
NASA Astrophysics Data System (ADS)
Jin, Xuesong; Wu, Lei; Fang, Jianying; Zhong, Shuoqiao; Ling, Liang
2012-12-01
This paper presents a detailed investigation conducted into the mechanism of the polygonal wear of metro train wheels through extensive experiments conducted at the sites. The purpose of the experimental investigation is to determine from where the resonant frequency that causes the polygonal wear of the metro train wheels originates. The experiments include the model tests of a vehicle and its parts and the tracks, the dynamic behaviour test of the vehicle in operation and the observation test of the polygonal wear development of the wheels. The tracks tested include the viaducts and the tunnel tracks. The structure model tests show that the average passing frequency of a polygonal wheel is approximately close to the first bending resonant frequency of the wheelset that is found by the wheelset model test and verified by the finite element analysis of the wheelset. Also, the dynamic behaviour test of the vehicle in operation indicates the main frequencies of the vertical acceleration vibration of the axle boxes, which are dominant in the vertical acceleration vibration of the axle boxes and close to the passing frequency of a polygonal wheel, which shows that the first bending resonant frequency of the wheelset is very exciting in the wheelset operation. The observation test of the polygonal wear development of the wheels indicates an increase in the rate of the polygonal wear of the wheels after their re-profiling. This paper also describes the dynamic models used for the metro vehicle coupled with the ballasted track and the slab track to analyse the effect of the polygonal wear of the wheels on the wheel/rail normal forces.
Scerif, Gaia; Baker, Kate
2015-03-01
Through the increased availability and sophistication of genetic testing, it is now possible to identify causal diagnoses in a growing proportion of children with neurodevelopmental disorders. In addition to developmental delay and intellectual disability, many genetic disorders are associated with high risks of psychopathology, which curtail the wellbeing of affected individuals and their families. Beyond the identification of significant clinical needs, understanding the diverse pathways from rare genetic mutations to cognitive dysfunction and emotional-behavioural disturbance has theoretical and practical utility. We overview (based on a strategic search of the literature) the state-of-the-art on causal mechanisms leading to one of the most common childhood behavioural diagnoses - attention deficit hyperactivity disorder (ADHD) - in the context of specific genetic disorders. We focus on new insights emerging from the mapping of causal pathways from identified genetic differences to neuronal biology, brain abnormalities, cognitive processing differences and ultimately behavioural symptoms of ADHD. First, ADHD research in the context of rare genotypes highlights the complexity of multilevel mechanisms contributing to psychopathology risk. Second, comparisons between genetic disorders associated with similar psychopathology risks can elucidate convergent or distinct mechanisms at each level of analysis, which may inform therapeutic interventions and prognosis. Third, genetic disorders provide an unparalleled opportunity to observe dynamic developmental interactions between neurocognitive risk and behavioural symptoms. Fourth, variation in expression of psychopathology risk within each genetic disorder points to putative moderating and protective factors within the genome and the environment. A common imperative emerging within psychopathology research is the need to investigate mechanistically how developmental trajectories converge or diverge between and within genotype-defined groups. Crucially, as genetic predispositions modify interaction dynamics from the outset, longitudinal research is required to understand the multi-level developmental processes that mediate symptom evolution. © 2014 Association for Child and Adolescent Mental Health.
[The role of plastic shock absorbers in dental implantation].
Szücs, A; Divinyi, T; Belina, K; Vörös, G
1999-01-01
The mechanical behaviour of different plastics (PE, PP, PI, PA, ABS, POM) was examined by static and dynamic loading. Detection of microdeformations and photoelastic stress analysis served as the examination method. According to the results, polyethylene is unsuitable, however the other plastics, with clauses, are suitable as shock absorbers. Apart from the mechanical investigation photoelastic stress analysis also revealed the benefit of osseointegration in force transmission to the bone.
NASA Astrophysics Data System (ADS)
Kunita, Itsuki; Ueda, Kei-Ichi; Akita, Dai; Kuroda, Shigeru; Nakagaki, Toshiyuki
2017-09-01
Organisms choose from among various courses of action in response to a wide variety of environmental conditions and the mechanism by which various behaviours are induced is an open question. Interesting behaviour was recently reported: that a unicellular organism of slime mold Physarum polycephalum known as an amoeba had multiple responses (crossing, returning, etc) when the amoeba encounters a zone with toxic levels of quinine, even under carefully controlled conditions. We here examined this elegant example in more detail to obtain insight into behavioural differentiation. We found that the statistical distribution of passage times across a quinine zone switch from unimodal to bimodal (with peaks corresponding to fast crossing and no crossing) when a periodic light stimulation to modulate a biorhythm in amoeba is applied homogeneously across the space, even under the same level of chemical stimuli. Based on a mathematical model for cell movement in amoeba, we successfully reproduced the stimulation-induced differentiation, which was observed experimentally. These dynamics may be explained by a saddle structure around a canard solution. Our results imply that the differentiation of behavioural types in amoeba is modified step-by-step via the compounding of stimulation inputs. The complex behaviour like the differentiation in amoeba may provide a basis for understanding the mechanism of behaviour selection in higher animals from an ethological perspective.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKeown, J.; Labrie, J.P.
1983-08-01
A general purpose finite element computer code called MARC is used to calculate the temperature distribution and dimensional changes in linear accelerator rf structures. Both steady state and transient behaviour are examined with the computer model. Combining results from MARC with the cavity evaluation computer code SUPERFISH, the static and dynamic behaviour of a structure under power is investigated. Structure cooling is studied to minimize loss in shunt impedance and frequency shifts during high power operation. Results are compared with an experimental test carried out on a cw 805 MHz on-axis coupled structure at an energy gradient of 1.8 MeV/m.more » The model has also been used to compare the performance of on-axis and coaxial structures and has guided the mechanical design of structures suitable for average gradients in excess of 2.0 MeV/m at 2.45 GHz.« less
Zhang, Junli; Zhu, Shimeng; Li, Hongli; Zhu, Liu; Hu, Yang; Xia, Weixing; Zhang, Xixiang; Peng, Yong; Fu, Jiecai
2018-05-31
Discovering how the magnetization reversal process is governed by the magnetic anisotropy in magnetic nanomaterials is essential and significant to understand the magnetic behaviour of micro-magnetics and to facilitate the design of magnetic nanostructures for diverse technological applications. In this study, we present a direct observation of a dynamical magnetization reversal process in single NiFe2O4 nanowire, thus clearly revealing the domination of shape anisotropy on its magnetic behaviour. Individual nanoparticles on the NiFe2O4 nanowire appear as single domain states in the remanence state, which is maintained until the magnetic field reaches 200 Oe. The magnetization reversal mechanism of the nanowire is observed to be a curling rotation mode. These observations are further verified by micromagnetic computational simulations. Our findings show that the modulation of shape anisotropy is an efficient way to tune the magnetic behaviours of cubic spinel nano-ferrites.
Large-scale climatic anomalies affect marine predator foraging behaviour and demography.
Bost, Charles A; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri
2015-10-27
Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.
Large-scale climatic anomalies affect marine predator foraging behaviour and demography
NASA Astrophysics Data System (ADS)
Bost, Charles A.; Cotté, Cedric; Terray, Pascal; Barbraud, Christophe; Bon, Cécile; Delord, Karine; Gimenez, Olivier; Handrich, Yves; Naito, Yasuhiko; Guinet, Christophe; Weimerskirch, Henri
2015-10-01
Determining the links between the behavioural and population responses of wild species to environmental variations is critical for understanding the impact of climate variability on ecosystems. Using long-term data sets, we show how large-scale climatic anomalies in the Southern Hemisphere affect the foraging behaviour and population dynamics of a key marine predator, the king penguin. When large-scale subtropical dipole events occur simultaneously in both subtropical Southern Indian and Atlantic Oceans, they generate tropical anomalies that shift the foraging zone southward. Consequently the distances that penguins foraged from the colony and their feeding depths increased and the population size decreased. This represents an example of a robust and fast impact of large-scale climatic anomalies affecting a marine predator through changes in its at-sea behaviour and demography, despite lack of information on prey availability. Our results highlight a possible behavioural mechanism through which climate variability may affect population processes.
Swarm robotics and complex behaviour of continuum material
NASA Astrophysics Data System (ADS)
dell'Erba, Ramiro
2018-05-01
In swarm robotics, just as for an animal swarm in nature, one of the aims is to reach and maintain a desired configuration. One of the possibilities for the team, to reach this aim, is to see what its neighbours are doing. This approach generates a rules system governing the movement of the single robot just by reference to neighbour's motion. The same approach is used in position-based dynamics to simulate behaviour of complex continuum materials under deformation. Therefore, in some previous works, we have considered a two-dimensional lattice of particles and calculated its time evolution by using a rules system derived from our experience in swarm robotics. The new position of a particle, like the element of a swarm, is determined by the spatial position of the other particles. No dynamic is considered, but it can be thought as being hidden in the behaviour rules. This method has given good results in some simple situations reproducing the behaviour of deformable bodies under imposed strain. In this paper we try to stress our model to highlight its limits and how they can be improved. Some other, more complex, examples are computed and discussed. Shear test, different lattices, different fracture mechanisms and ASTM shape sample behaviour have been investigated by the software tool we have developed.
Stress-induced reversible and irreversible ferroelectric domain switching
NASA Astrophysics Data System (ADS)
Chen, Zibin; Huang, Qianwei; Wang, Feifei; Ringer, Simon P.; Luo, Haosu; Liao, Xiaozhou
2018-04-01
Ferroelectric materials have been extensively explored for applications in electronic devices because of their ferroelectric/ferroelastic domain switching behaviour under electric bias or mechanical stress. Recent findings on applying mechanical loading to manipulate reversible logical signals in non-volatile ferroelectric memory devices make ferroelectric materials more attractive to scientists and engineers. However, the dynamical microscopic structural behaviour of ferroelectric domains under stress is not well understood, which limits the applications of ferroelectric/ferroelastic switching in memory devices. Here, the kinetics of reversible and irreversible ferroelectric domain switching induced by mechanical stress in relaxor-based ferroelectrics was explored. In-situ transmission electron microscopy investigation revealed that 90° ferroelastic and 180° ferroelectric domain switching can be induced by low and high mechanical stresses. The nucleation and growth of nanoscale domains overwhelm the defect-induced pinning effect on the stable micro-domain walls. This study provides deep insights for exploring the mechanical kinetics for ferroelectric/ferroelastic domains and a clear pathway to overcome the domain pinning effect of defects in ferroelectrics.
Ferroelastic domain switching dynamics under electrical and mechanical excitations.
Gao, Peng; Britson, Jason; Nelson, Christopher T; Jokisaari, Jacob R; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing
2014-05-02
In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.
Ferroelastic domain switching dynamics under electrical and mechanical excitations
NASA Astrophysics Data System (ADS)
Gao, Peng; Britson, Jason; Nelson, Christopher T.; Jokisaari, Jacob R.; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M.; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing
2014-05-01
In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.
Ezenwa, Vanessa O; Snider, Matthew H
2016-05-25
Parasites are ubiquitous components of the environment that contribute to behavioural and life-history variation among hosts. Although it is well known that host behaviour can affect parasite infection risk and that parasites can alter host behaviour, the potential for dynamic feedback between these processes is poorly characterized. Using Grant's gazelle (Nanger granti) as a model, we tested for reciprocal effects of behaviour on parasites and parasites on behaviour to understand whether behaviour-parasite feedback could play a role in maintaining variation in male reproductive behaviour. Adult male gazelles either defend territories to attract mates or reside in bachelor groups. Territoriality is highly variable both within- and between-individuals, suggesting that territory maintenance is costly. Using a combination of longitudinal and experimental studies, we found that individual males transition frequently between territorial and bachelor reproductive status, and that elevated parasite burdens are a cost of territoriality. Moreover, among territorial males, parasites suppress aspects of behaviour related to territory maintenance and defence. These results suggest that territorial behaviour promotes the accumulation of parasites in males, and these parasites dampen the very behaviours required for territory maintenance. Our findings suggest that reciprocal feedback between host behaviour and parasitism could be a mechanism maintaining variation in male reproductive behaviour in the system. © 2016 The Author(s).
Morphology and viscoelastic properties of sealing materials based on EPDM rubber.
Milić, J; Aroguz, A; Budinski-Simendić, J; Radicević, R; Prendzov, S
2008-12-01
In this applicative study, the ratio of active and inactive filler loadings was the prime factor for determining the dynamic-mechanical behaviour of ethylene-propylene-diene monomer rubbers. Scanning electron microscopy was used to study the structure of reinforced dense and microcellular elastomeric materials. The effects of filler and blowing agent content on the morphology of composites were investigated. Microcellular samples cured in salt bath show smaller cells and uniform cell size compared with samples cured in hot air. Dynamic-mechanical thermal analysis showed appreciable changes in the viscoelastic properties by increasing active filler content, which could enable tailoring the material properties to suit sealing applications.
Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.
2014-04-01
Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of <100>/{100} and <110>/{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of <100>/{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in <110>/{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in <110>/{111} shows higher strength and elastic modulus than <100>/{100} oriented nanowire.
Anelasticity maps for acoustic dissipation associated with phase transitions in minerals
NASA Astrophysics Data System (ADS)
Carpenter, Michael A.; Zhang, Zhiying
2011-07-01
Acoustic dissipation due to structural phase transitions in minerals could give rise to large seismic attenuation effects superimposed on the high temperature background contribution from dislocations and grain boundaries in the Earth. In addition to the possibility of a sharp peak actually at a transition point for both compressional and shear waves, significant attenuation might arise over wider temperature intervals due to the mobility of transformation twins or other defects associated with the transition. Attenuation due to structural phase transitions in quartz, pyroxenes, perovskites, stishovite and hollandite, or to spin state transitions of Fe2+ in magnesiowüstite and perovskite and the hcp/bcc transition in iron-nickel (Fe-Ni) alloy, are reviewed from this perspective. To these can be added possible loss behaviour associated with reconstructive transitions which might occur by a ledge mechanism on topotactic interfaces (orthopyroxene/clinopyroxene, olivine/spinel and perovskite/postperovskite), with impurities (Snoek effect) or with mobility of protons. There are experimental difficulties associated with measuring dissipation effects in situ at simultaneous high pressures and temperatures, so reliance is currently placed on investigation of analogue phases such as LaCoO3 for spin-state behaviour and LaAlO3 for the dynamics of ferroelastic twin walls. Similarly, it is not possible to measure loss dynamics simultaneously at the low stresses and low frequencies that pertain in seismic waves, so reliance must be placed on combining different techniques, such as dynamic mechanical analysis (low frequency, relatively high stress) and resonant ultrasound spectroscopy (high frequency, low stress), to extrapolate acoustic loss behaviour over wide frequency, temperature and stress intervals. In this context 'anelasticity maps' provide a convenient means of representing different loss mechanisms. Contouring of the inverse mechanical quality factor, Q-1, can be achieved if the appropriate constitutive laws are known. The overall approach is illustrated using the examples of spin-state transitions of Co3+ in LaCoO3 and twin mobility in single crystals of the rhombohedral phase of LaAlO3. Anelasticity maps of this type should give seismologists a clearer view of the characteristic patterns of seismic velocity and attenuation that could be used to detect (or rule out) the presence of particular phase transitions or loss behaviour in the core and mantle.
Olusanmi, D; Roberts, K J; Ghadiri, M; Ding, Y
2011-06-15
The influence of crystallographic structural anisotropy on the breakage behaviour of Aspirin under impact loading is highlighted. Under both quasi-static testing conditions, using nano-indentation, and dynamic impact tests, Aspirin demonstrates clear anisotropy in its slip and fracture behaviour. During nano-indentation on the (100) and (001) faces, cracks were propagated along the [010] direction. While the hardness was found to be comparatively similar for both these faces, it was observed that slip due to plastic deformation occurred more readily on the (100) than the (001) crystal planes suggesting the former as the preferred slip plane. Furthermore, the fracture toughness on the (001) planes was found to be distinctly lower than that of the (100) planes, indicating the former as the preferred cleavage plane. Observations of the crystal morphology of damaged particles after dynamic impact testing showed that both the chipping and fragmentation of Aspirin mostly occurred via cleavage in a manner consistent with the observed fracture behaviour following nano-indentation. This work highlights the importance of cleavage as a dominant factor underpinning the fracture mechanism of Aspirin under both quasi-static and impact loading conditions. Copyright © 2011 Elsevier B.V. All rights reserved.
Mathiazhagan, S; Anup, S
2016-06-01
Superior mechanical properties of biocomposites such as nacre and bone are attributed to their basic building blocks. These basic building blocks have nanoscale features and play a major role in achieving combined stiffening, strengthening and toughening mechanisms. Bioinspired nanocomposites based on these basic building blocks, regularly and stairwise staggered arrangements of hard platelets in soft matrix, have huge potential for developing advanced materials. The study of applicability of mechanical principles of biological materials to engineered materials will guide designing advanced materials. To probe the generic mechanical characteristics of these bioinspired nanocomposites, the model material concept in molecular dynamics (MD) is used. In this paper, the effect of platelets aspect ratio (AR) on the mechanical behaviour of bioinspired nanocomposites is investigated. The obtained Young׳s moduli of both the models and the strengths of the regularly staggered models agree with the available theories. However, the strengths of the stairwise staggered models show significant difference. For the stairwise staggered model, we demonstrate the existence of two critical ARs, a smaller critical AR above which platelet fracture occurs and a higher critical AR above which composite strength remains constant. Our MD study also shows the existence of mechanisms of platelet pull-out and breakage for lower and higher ARs. Pullout mechanism acts as a major source of plasticity. Further, we find that the regularly staggered model can achieve an optimal combination of high Young׳s modulus, flow strength and toughness, and the stairwise staggered model is efficient in obtaining high Young׳s modulus and tensile strength. Copyright © 2015 Elsevier Ltd. All rights reserved.
Development of Nonlinear Flight Mechanical Model of High Aspect Ratio Light Utility Aircraft
NASA Astrophysics Data System (ADS)
Bahri, S.; Sasongko, R. A.
2018-04-01
The implementation of Flight Control Law (FCL) for Aircraft Electronic Flight Control System (EFCS) aims to reduce pilot workload, while can also enhance the control performance during missions that require long endurance flight and high accuracy maneuver. In the development of FCL, a quantitative representation of the aircraft dynamics is needed for describing the aircraft dynamics characteristic and for becoming the basis of the FCL design. Hence, a 6 Degree of Freedom nonlinear model of a light utility aircraft dynamics, also called the nonlinear Flight Mechanical Model (FMM), is constructed. This paper shows the construction of FMM from mathematical formulation, the architecture design of FMM, the trimming process and simulations. The verification of FMM is done by analysis of aircraft behaviour in selected trimmed conditions.
Reprobing the mechanism of negative thermal expansion in siliceous faujasite
Attfield, Martin P.; Feygenson, Mikhail; Neuefeind, Joerg C.; ...
2016-02-11
A combination of Rietveld refinement and PDF analysis of total neutron scattering data are used to provide further insight into the negative thermal expansion mechanism of siliceous faujasite. The negative thermal expansion mechanism of siliceous faujasite is attributed to the transverse vibrations of bridging oxygen atoms resulting in the coupled librations of the SiO 4 tetrahedra. The constituent SiO 4 tetrahedra are revealed to expand in size with temperature which is a behaviour that has not been determined directly previously and they are also shown to undergo some distortion as temperature is increased. However, these distortions are not distinct enoughmore » in any geometric manner for the average behaviour of the SiO 4 tetrahedra not to be considered as that of a rigid units. The work further displays the benefits of using total scattering experiments to unveil the finer details of dynamic thermomechanical processes within crystalline materials.« less
Influence of Cellulose Nanofillers on the Rheological Properties of Polymer Electrolytes
NASA Astrophysics Data System (ADS)
El Kissi, Nadia; Alloin, Fannie; Dufresne, Alain; Sanchez, Jean-Yves; Bossard, Frédéric; D'Aprea, Alessandra; Leroy, Séverine
2008-07-01
In this study, nanocomposite polymer electrolytes, based on high molecular weight PEO were prepared from high aspect ratio natural cellulosic nanofillers. The thermomechanical behaviour of the resulting nanocomposites was investigated using differential scanning calorimetry, dynamic mechanical analysis and rheometrical measurements. The influence of entanglements versus percolation mechanism on the determination of the mechanical properties of the composite was also investigated. Shear rheometry of the unfilled PEO and related nanocomposites shows that the shear viscosity first decreases when the concentration in cellulose increases. Then typical suspension behaviour is obtained and the viscosity increases with the concentration. This observation is in agreement with DSC and DMA results and is explained in terms of polymer-filler interactions. Interactions between cellulose fillers, are responsible for the reinforcing effect above the melting temperature of the matrix, through the formation of a stiff network that is well predicted by a percolation concept.
Terahertz mechanical vibrations in lysozyme: Raman spectroscopy vs modal analysis
NASA Astrophysics Data System (ADS)
Carpinteri, Alberto; Lacidogna, Giuseppe; Piana, Gianfranco; Bassani, Andrea
2017-07-01
The mechanical behaviour of proteins is receiving an increasing attention from the scientific community. Recently it has been suggested that mechanical vibrations play a crucial role in controlling structural configuration changes (folding) which govern proteins biological function. The mechanism behind protein folding is still not completely understood, and many efforts are being made to investigate this phenomenon. Complex molecular dynamics simulations and sophisticated experimental measurements are conducted to investigate protein dynamics and to perform protein structure predictions; however, these are two related, although quite distinct, approaches. Here we investigate mechanical vibrations of lysozyme by Raman spectroscopy and linear normal mode calculations (modal analysis). The input mechanical parameters to the numerical computations are taken from the literature. We first give an estimate of the order of magnitude of protein vibration frequencies by considering both classical wave mechanics and structural dynamics formulas. Afterwards, we perform modal analyses of some relevant chemical groups and of the full lysozyme protein. The numerical results are compared to experimental data, obtained from both in-house and literature Raman measurements. In particular, the attention is focused on a large peak at 0.84 THz (29.3 cm-1) in the Raman spectrum obtained analyzing a lyophilized powder sample.
Money, Tomas G. A.; Sproule, Michael K. J.; Hamour, Amr F.; Robertson, R. Meldrum
2014-01-01
Nervous systems are energetically expensive to operate and maintain. Both synaptic and action potential signalling require a significant investment to maintain ion homeostasis. We have investigated the tuning of neural performance following a brief period of anoxia in a well-characterized visual pathway in the locust, the LGMD/DCMD looming motion-sensitive circuit. We hypothesised that the energetic cost of signalling can be dynamically modified by cellular mechanisms in response to metabolic stress. We examined whether recovery from anoxia resulted in a decrease in excitability of the electrophysiological properties in the DCMD neuron. We further examined the effect of these modifications on behavioural output. We show that recovery from anoxia affects metabolic rate, flight steering behaviour, and action potential properties. The effects of anoxia on action potentials can be mimicked by activation of the AMPK metabolic pathway. We suggest this is evidence of a coordinated cellular mechanism to reduce neural energetic demand following an anoxic stress. Together, this represents a dynamically-regulated means to link the energetic demands of neural signaling with the environmental constraints faced by the whole animal. PMID:24533112
Money, Tomas G A; Sproule, Michael K J; Hamour, Amr F; Robertson, R Meldrum
2014-01-01
Nervous systems are energetically expensive to operate and maintain. Both synaptic and action potential signalling require a significant investment to maintain ion homeostasis. We have investigated the tuning of neural performance following a brief period of anoxia in a well-characterized visual pathway in the locust, the LGMD/DCMD looming motion-sensitive circuit. We hypothesised that the energetic cost of signalling can be dynamically modified by cellular mechanisms in response to metabolic stress. We examined whether recovery from anoxia resulted in a decrease in excitability of the electrophysiological properties in the DCMD neuron. We further examined the effect of these modifications on behavioural output. We show that recovery from anoxia affects metabolic rate, flight steering behaviour, and action potential properties. The effects of anoxia on action potentials can be mimicked by activation of the AMPK metabolic pathway. We suggest this is evidence of a coordinated cellular mechanism to reduce neural energetic demand following an anoxic stress. Together, this represents a dynamically-regulated means to link the energetic demands of neural signaling with the environmental constraints faced by the whole animal.
The anhysteretic polarisation of ferroelectrics
NASA Astrophysics Data System (ADS)
Kaeswurm, B.; Segouin, V.; Daniel, L.; Webber, K. G.
2018-02-01
Measurement and calculation of anhysteretic curves is a well-established method in the field of magnetic materials and is applied to ferroelectric materials here. The anhysteretic curve is linked to a stable equilibrium state in the domain structure, and ignores dissipative effects related to mechanisms such as domain wall pinning. In this study, an experimental method for characterising the anhysteretic behaviour of ferroelectrics is presented, which is subsequently used to determine the anhysteretic polarisation response of polycrystalline barium titanate and a doped lead zirconate titanate composition at room temperature. Various external parameters, such as electric field, stress, and temperature, can significantly affect ferroelectric behaviour. Ferroelectric hysteresis curves can assess the importance of such effects but cannot distinguish their contribution on the different intrinsic and extrinsic mechanisms involved in ferroelectric behaviour. In this work, the influence of compressive stress on the anhysteretic polarisation is measured and discussed. The comparison of the polarization loop to the anhysteretic curve under compressive stress elucidates the effects on the stable equilibrium domain configuration and dynamic effects associated to dissipation.
Review of the dynamic behaviour of sports balls during normal and oblique impacts
NASA Astrophysics Data System (ADS)
Haron, Muhammad Adli; Jailani, Azrol; Abdullah, Nik Ahmad Faris Nik; Ismail, Rafis Suizwan; Rahim, Shayfull Zamree Abd; Ghazali, Mohd Fathullah
2017-09-01
In this paper are review of impact experiment to study the dynamic behaviour of sports ball during oblique and normal impacts. In previous studies, the investigation was done on the dynamic behaviour of a sports ball during oblique and normal impacts from experimental, numerical, and theoretical viewpoints. The experimental results are analysed and compared with the theories, in order to understand the dynamics behaviours based on the phenomenological occurrence. Throughout the experimental studies previously, there are results of dynamics behaviours examined by many researchers such as the coefficient of restitution, tangential coefficient, local deformation, dynamic impact force, contact time, angle of impact (inbound and rebound), spin rate of the ball, ball stiffness and damping coefficient which dependable of the initial or impact velocity.
A dynamic code for economic object valuation in prefrontal cortex neurons
Tsutsui, Ken-Ichiro; Grabenhorst, Fabian; Kobayashi, Shunsuke; Schultz, Wolfram
2016-01-01
Neuronal reward valuations provide the physiological basis for economic behaviour. Yet, how such valuations are converted to economic decisions remains unclear. Here we show that the dorsolateral prefrontal cortex (DLPFC) implements a flexible value code based on object-specific valuations by single neurons. As monkeys perform a reward-based foraging task, individual DLPFC neurons signal the value of specific choice objects derived from recent experience. These neuronal object values satisfy principles of competitive choice mechanisms, track performance fluctuations and follow predictions of a classical behavioural model (Herrnstein’s matching law). Individual neurons dynamically encode both, the updating of object values from recently experienced rewards, and their subsequent conversion to object choices during decision-making. Decoding from unselected populations enables a read-out of motivational and decision variables not emphasized by individual neurons. These findings suggest a dynamic single-neuron and population value code in DLPFC that advances from reward experiences to economic object values and future choices. PMID:27618960
Effect of graphene oxide nano filler on dynamic behaviour of GFRP composites
NASA Astrophysics Data System (ADS)
Pujar, Nagabhushan V.; Nanjundaradhya, N. V.; Sharma, Ramesh S.
2018-04-01
Nano fillers like Alumina oxide, Titanium oxide, Carbon nano tube, Nano clay have been used to improve the mechanical and damping properties of fiber reinforced polymer composites. In the recent years Graphene oxide nano filler is receiving considerable attention for its outstanding properties. Literature available shows that Graphene oxide nano filler can be used to improve the mechanical properties. The use of Graphene oxide in vibration attenuation by enhancing the passive damping in fiber reinforced polymer composite has not been fully explored. The objective of this work is to investigate the dynamic behaviour of Glass fiber-reinforced composite embedded with Graphene oxide nano filler. Graphene oxide is dispersed in epoxy resin with various concentration (0.1%, 0.5% and 1%wt) using ultra-sonification process. Composite laminates were made using the traditional hand-lay-up followed by vacuum bag process. Experimental modal analysis using traditional `strike method' is used to evaluate modal parameters using FFT analyzer and Data Acquisition System. Experiments were carried out for two different fiber orientations viz 0 ➙ & 45 ➙ and two boundary conditions (Free-Free and Cantilever). The modal parameters such as natural frequency, mode shape, damping ratio were studied. This research work demonstrates the vibration damping behaviour with incorporation of Graphene oxide and provides a basic understanding of the damping characteristics in design and manufacture of high performance composites.
NASA Astrophysics Data System (ADS)
Fanget, Alain
2009-06-01
Many authors claim that to understand the response of a propellant, specifically under quasi static and dynamic loading, the mesostructural morphology and the mechanical behaviour of each of its components have to be known. However the scale of the mechanical description of the behaviour of a propellant is relative to its heterogeneities and the wavelength of loading. The shorter it is, the more important the topological description of the material is. In our problems, involving the safety of energetic materials, the propellant can be subjected to a large spectrum of loadings. This presentation is divided into five parts. The first part describes the processes used to extract the information about the morphology of the meso-structure of the material and presents some results. The results, the difficulties and the perspectives for this part will be recalled. The second part determines the physical processes involved at this scale from experimental results. Taking into account the knowledge of the morphology, two ways have been chosen to describe the response of the material. One concerns the quasi static loading, the object of the third part, in which we show how we use the mesoscopic scale as a base of development to build constitutive models. The fourth part presents for low but dynamic loading the comparison between numerical analysis and experiments.
High-rate behaviour of iron ore pellet
NASA Astrophysics Data System (ADS)
Gustafsson, Gustaf; Häggblad, Hans-Åke; Jonsén, Pär; Nishida, Masahiro
2015-09-01
Iron ore pellets are sintered, centimetre-sized spheres of ore with high iron content. Together with carbonized coal, iron ore pellets are used in the production of steel. In the transportation from the pelletizing plants to the customers, the iron ore pellets are exposed to different loading situations, resulting in degradation of strength and in some cases fragmentation. For future reliable numerical simulations of the handling and transportation of iron ore pellets, knowledge about their mechanical properties is needed. This paper describes the experimental work to investigate the dynamic mechanical properties of blast furnace iron ore pellets. To study the dynamic fracture of iron ore pellets a number of split Hopkinson pressure bar tests are carried out and analysed.
Biaxial experimental and analytical characterization of a dielectric elastomer
NASA Astrophysics Data System (ADS)
Helal, Alexander; Doumit, Marc; Shaheen, Robert
2018-01-01
Electroactive polymers (EAPs) have emerged as a strong contender for use in low-cost efficient actuators in multiple applications especially related to biomimetic and mobile-assistive devices. Dielectric elastomers (DE), a subcategory of these smart materials, have been of particular interest due to their large achievable deformation and favourable mechanical and electro-mechanical properties. Previous work has been completed to understand the behaviour of these materials; however, their properties require further investigation to properly integrate them into real-world applications. In this study, a biaxial tensile experimental evaluation of 3M™ VHB 4905 and VHB 4910 is presented with the purpose of illustrating the elastomers' transversely isotropic mechanical behaviours. These tests were applied to both tapes for equibiaxial stretch rates ranging between 0.025 and 0.300 s-1. Subsequently, a dynamic planar biaxial visco-hyperelastic constitutive relationship was derived from a Kelvin-Voigt rheological model and the general Hooke's law for transversely isotropic materials. The model was then fitted to the experimental data to obtain three general material parameters for either tapes. The model's ability to predict tensile stress response and internal energy dissipation, with respect to experimental data, is evaluated with good agreement. The model's ability to predict variations in mechanical behaviour due to changes in kinematic variables is then illustrated for different conditions.
Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient
Karanth, K. Ullas; Srivathsa, Arjun; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N. Samba
2017-01-01
Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole (Cuon alpinus), leopard (Panthera pardus) and tiger (Panthera tigris) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. PMID:28179511
Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient.
Karanth, K Ullas; Srivathsa, Arjun; Vasudev, Divya; Puri, Mahi; Parameshwaran, Ravishankar; Kumar, N Samba
2017-02-08
Species within a guild vary their use of time, space and resources, thereby enabling sympatry. As intra-guild competition intensifies, such behavioural adaptations may become prominent. We assessed mechanisms of facilitating sympatry among dhole ( Cuon alpinus ), leopard ( Panthera pardus ) and tiger ( Panthera tigris ) in tropical forests of India using camera-trap surveys. We examined population-level temporal, spatial and spatio-temporal segregation among them across four reserves representing a gradient of carnivore and prey densities. Temporal and spatial overlaps were higher at lower prey densities. Combined spatio-temporal overlap was minimal, possibly due to chance. We found fine-scale avoidance behaviours at one high-density reserve. Our results suggest that: (i) patterns of spatial, temporal and spatio-temporal segregation in sympatric carnivores do not necessarily mirror each other; (ii) carnivores are likely to adopt temporal, spatial, and spatio-temporal segregation as alternative mechanisms to facilitate sympatry; and (iii) carnivores show adaptability across a gradient of resource availability, a driver of inter-species competition. We discuss behavioural mechanisms that permit carnivores to co-occupy rather than dominate functional niches, and adaptations to varying intensities of competition that are likely to shape structure and dynamics of carnivore guilds. © 2017 The Author(s).
Evidence of strategic periodicities in collective conflict dynamics.
Dedeo, Simon; Krakauer, David; Flack, Jessica
2011-09-07
We analyse the timescales of conflict decision-making in a primate society. We present evidence for multiple, periodic timescales associated with social decision-making and behavioural patterns. We demonstrate the existence of periodicities that are not directly coupled to environmental cycles or known ultraridian mechanisms. Among specific biological and socially defined demographic classes, periodicities span timescales between hours and days. Our results indicate that these periodicities are not driven by exogenous or internal regularities but are instead driven by strategic responses to social interaction patterns. Analyses also reveal that a class of individuals, playing a critical functional role, policing, have a signature timescale of the order of 1 h. We propose a classification of behavioural timescales analogous to those of the nervous system, with high frequency, or α-scale, behaviour occurring on hour-long scales, through to multi-hour, or β-scale, behaviour, and, finally γ periodicities observed on a timescale of days.
Active Polymers — Emergent Conformational and Dynamical Properties: A Brief Review
NASA Astrophysics Data System (ADS)
Winkler, Roland G.; Elgeti, Jens; Gompper, Gerhard
2017-10-01
Active matter exhibits a wealth of emerging nonequilibrium behaviours. A paradigmatic example is the interior of cells, where active components, such as the cytoskeleton, are responsible for its structural organization and the dynamics of the various components. Of particular interest are the properties of polymers and filaments. The intimate coupling of thermal and active noise, hydrodynamic interactions, and polymer conformations implies the emergence of novel structural and dynamical features. In this article, we review recent theoretical and simulation developments and results for the structural and dynamical properties of polymers exposed to activity. Two- and three-dimensional filaments are considered propelled by different mechanisms such as active Brownian particles or hydrodynamically-coupled force dipoles.
A network of molecular switches controls the activation of the two-component response regulator NtrC
NASA Astrophysics Data System (ADS)
Vanatta, Dan K.; Shukla, Diwakar; Lawrenz, Morgan; Pande, Vijay S.
2015-06-01
Recent successes in simulating protein structure and folding dynamics have demonstrated the power of molecular dynamics to predict the long timescale behaviour of proteins. Here, we extend and improve these methods to predict molecular switches that characterize conformational change pathways between the active and inactive state of nitrogen regulatory protein C (NtrC). By employing unbiased Markov state model-based molecular dynamics simulations, we construct a dynamic picture of the activation pathways of this key bacterial signalling protein that is consistent with experimental observations and predicts new mutants that could be used for validation of the mechanism. Moreover, these results suggest a novel mechanistic paradigm for conformational switching.
Hasselmo, Michael E.; Giocomo, Lisa M.; Yoshida, Motoharu
2010-01-01
Understanding the mechanisms of episodic memory requires linking behavioural data and lesion effects to data on the dynamics of cellular membrane potentials and population interactions within these brain regions. Linking behavior to specific membrane channels and neurochemicals has implications for therapeutic applications. Lesions of the hippocampus, entorhinal cortex and subcortical nuclei impair episodic memory function in humans and animals, and unit recording data from these regions in behaving animals indicate episodic memory processes. Intracellular recording in these regions demonstrates specific cellular properties including resonance, membrane potential oscillations and bistable persistent spiking that could underlie the encoding and retrieval of episodic trajectories. A model presented here shows how intrinsic dynamical properties of neurons could mediate the encoding of episodic memories as complex spatiotemporal trajectories. The dynamics of neurons allow encoding and retrieval of unique episodic trajectories in multiple continuous dimensions including temporal intervals, personal location, the spatial coordinates and sensory features of perceived objects and generated actions, and associations between these elements. The model also addresses how cellular dynamics could underlie unit firing data suggesting mechanisms for coding continuous dimensions of space, time, sensation and action. PMID:20018213
A hybrid computational model to explore the topological characteristics of epithelial tissues.
González-Valverde, Ismael; García-Aznar, José Manuel
2017-11-01
Epithelial tissues show a particular topology where cells resemble a polygon-like shape, but some biological processes can alter this tissue topology. During cell proliferation, mitotic cell dilation deforms the tissue and modifies the tissue topology. Additionally, cells are reorganized in the epithelial layer and these rearrangements also alter the polygon distribution. We present here a computer-based hybrid framework focused on the simulation of epithelial layer dynamics that combines discrete and continuum numerical models. In this framework, we consider topological and mechanical aspects of the epithelial tissue. Individual cells in the tissue are simulated by an off-lattice agent-based model, which keeps the information of each cell. In addition, we model the cell-cell interaction forces and the cell cycle. Otherwise, we simulate the passive mechanical behaviour of the cell monolayer using a material that approximates the mechanical properties of the cell. This continuum approach is solved by the finite element method, which uses a dynamic mesh generated by the triangulation of cell polygons. Forces generated by cell-cell interaction in the agent-based model are also applied on the finite element mesh. Cell movement in the agent-based model is driven by the displacements obtained from the deformed finite element mesh of the continuum mechanical approach. We successfully compare the results of our simulations with some experiments about the topology of proliferating epithelial tissues in Drosophila. Our framework is able to model the emergent behaviour of the cell monolayer that is due to local cell-cell interactions, which have a direct influence on the dynamics of the epithelial tissue. Copyright © 2017 John Wiley & Sons, Ltd.
A 1-D model of the nonlinear dynamics of the human lumbar intervertebral disc
NASA Astrophysics Data System (ADS)
Marini, Giacomo; Huber, Gerd; Püschel, Klaus; Ferguson, Stephen J.
2017-01-01
Lumped parameter models of the spine have been developed to investigate its response to whole body vibration. However, these models assume the behaviour of the intervertebral disc to be linear-elastic. Recently, the authors have reported on the nonlinear dynamic behaviour of the human lumbar intervertebral disc. This response was shown to be dependent on the applied preload and amplitude of the stimuli. However, the mechanical properties of a standard linear elastic model are not dependent on the current deformation state of the system. The aim of this study was therefore to develop a model that is able to describe the axial, nonlinear quasi-static response and to predict the nonlinear dynamic characteristics of the disc. The ability to adapt the model to an individual disc's response was a specific focus of the study, with model validation performed against prior experimental data. The influence of the numerical parameters used in the simulations was investigated. The developed model exhibited an axial quasi-static and dynamic response, which agreed well with the corresponding experiments. However, the model needs further improvement to capture additional peculiar characteristics of the system dynamics, such as the change of mean point of oscillation exhibited by the specimens when oscillating in the region of nonlinear resonance. Reference time steps were identified for specific integration scheme. The study has demonstrated that taking into account the nonlinear-elastic behaviour typical of the intervertebral disc results in a predicted system oscillation much closer to the physiological response than that provided by linear-elastic models. For dynamic analysis, the use of standard linear-elastic models should be avoided, or restricted to study cases where the amplitude of the stimuli is relatively small.
Collective dynamics of cell migration and cell rearrangements
NASA Astrophysics Data System (ADS)
Kabla, Alexandre
Understanding multicellular processes such as embryo development or cancer metastasis requires to decipher the contributions of local cell autonomous behaviours and long range interactions with the tissue environment. A key question in this context concerns the emergence of large scale coordination in cell behaviours, a requirement for collective cell migration or convergent extension. I will present a few examples where physical and mechanical aspects play a significant role in driving tissue scale dynamics.
Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherukara, Mathew J.; Sasikumar, Kiran; Cha, Wonsuk
Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behaviour is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use x-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic ‘hard’ or inhomogeneous and ‘soft’ or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystalmore » structure obtained from the ultrafast x-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Furthermore, understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.« less
Ultrafast Three-Dimensional X-ray Imaging of Deformation Modes in ZnO Nanocrystals
Cherukara, Mathew J.; Sasikumar, Kiran; Cha, Wonsuk; ...
2016-12-27
Imaging the dynamical response of materials following ultrafast excitation can reveal energy transduction mechanisms and their dissipation pathways, as well as material stability under conditions far from equilibrium. Such dynamical behaviour is challenging to characterize, especially operando at nanoscopic spatiotemporal scales. In this letter, we use x-ray coherent diffractive imaging to show that ultrafast laser excitation of a ZnO nanocrystal induces a rich set of deformation dynamics including characteristic ‘hard’ or inhomogeneous and ‘soft’ or homogeneous modes at different time scales, corresponding respectively to the propagation of acoustic phonons and resonant oscillation of the crystal. By integrating the 3D nanocrystalmore » structure obtained from the ultrafast x-ray measurements with a continuum thermo-electro-mechanical finite element model, we elucidate the deformation mechanisms following laser excitation, in particular, a torsional mode that generates a 50% greater electric potential gradient than that resulting from the flexural mode. Furthermore, understanding of the time-dependence of these mechanisms on ultrafast scales has significant implications for development of new materials for nanoscale power generation.« less
Gwinner, Helga; Capilla-Lasheras, Pablo; Cooper, Caren; Helm, Barbara
2018-06-13
Development of avian embryos requires thermal energy, usually from parents. Parents may, however, trade off catering for embryonic requirements against their own need to forage through intermittent incubation. This dynamically adjusted behaviour can be affected by properties of the nest. Here, we experimentally show a novel mechanism by which parents, through incorporation of aromatic herbs into nests, effectively modify their incubation behaviour to the benefit of their offspring. Our study species, the European starling, includes in its nest aromatic herbs which promote offspring fitness. We provided wild starlings with artificial nests including or excluding the typically selected fresh herbs and found strong support for our prediction of facilitated incubation. Herb effects were not explained by thermal changes of the nests per se , but by modified parental behaviours. Egg temperatures and nest attendance were higher in herb than herbless nests, egg temperatures dropped less frequently below critical thresholds and parents started their active day earlier. These effects were dynamic over time and particularly strong during early incubation. Incubation period was shorter in herb nests, and nestlings were heavier one week after hatching. Aromatic herbs hence influenced incubation in beneficial ways for offspring, possibly through pharmacological effects on incubating parents. © 2018 The Author(s).
Genetic variation in aggregation behaviour and interacting phenotypes in Drosophila.
Philippe, Anne-Sophie; Jeanson, Raphael; Pasquaretta, Cristian; Rebaudo, Francois; Sueur, Cedric; Mery, Frederic
2016-03-30
Aggregation behaviour is the tendency for animals to group together, which may have important consequences on individual fitness. We used a combination of experimental and simulation approaches to study how genetic variation and social environment interact to influence aggregation dynamics in Drosophila To do this, we used two different natural lines of Drosophila that arise from a polymorphism in the foraging gene (rovers and sitters). We placed groups of flies in a heated arena. Flies could freely move towards one of two small, cooler refuge areas. In groups of the same strain, sitters had a greater tendency to aggregate. The observed behavioural variation was based on only two parameters: the probability of entering a refuge and the likelihood of choosing a refuge based on the number of individuals present. We then directly addressed how different strains interact by mixing rovers and sitters within a group. Aggregation behaviour of each line was strongly affected by the presence of the other strain, without changing the decision rules used by each. Individuals obeying local rules shaped complex group dynamics via a constant feedback loop between the individual and the group. This study could help to identify the circumstances under which particular group compositions may improve individual fitness through underlying aggregation mechanisms under specific environmental conditions. © 2016 The Author(s).
NASA Astrophysics Data System (ADS)
Griffel, D. H.
1994-08-01
A mathematical model of the excitation of a vibrating system by a plucking action is studied. The mechanism is of the type used in musical instruments. The effectiveness of the mechanism is computed over a considerable range of the relevant parameters. As the speed of the pluck is increased, with other parameters held fixed, the amplitude of the vibration produced rises to a maximum and then decreases to zero. The optimum speed increases with the stiffness of the plectrum. Other aspects of the behaviour of the system are discussed.
Dynamics behaviour of an elastic non-ideal (NIS) portal frame, including fractional nonlinearities
NASA Astrophysics Data System (ADS)
Balthazar, J. M.; Brasil, R. M. L. F.; Felix, J. L. P.; Tusset, A. M.; Picirillo, V.; Iluik, I.; Rocha, R. T.; Nabarrete, A.; Oliveira, C.
2016-05-01
This paper overviews recent developments on some problems related to elastic structures, such as portal frames, taking into account the full interactions of the vibrating systems, with an energy source of limited power supply (small motors, electro-mechanical shakers). We include a discussion on fractional (rational) damping and stiffness effects on the adopted modelling. This was a plenary lecture, delivered in the event titled: Mechanics of Slender Structures, organized in Northampton, England from 21-22, September 2015.
Tiruta-Barna, Ligia; Fantozzi-Merle, Catherine; de Brauer, Christine; Barna, Radu
2006-11-16
The aim of this paper is the investigation of the leaching behaviour of different porous materials containing organic pollutants (PAH: naphthalene and phenanthrene). The assessment methodology of long term leaching behaviour of inorganic materials was extended to cement solidified organic pollutants. Based on a scenario-approach considering environmental factors, matrix and pollutants specificities, the applied methodology is composed of adapted equilibrium and dynamic leaching tests. The contributions of different physical and chemical mechanisms were identified and the leaching behaviour was modelled. The physical parameters of the analysed reference and polluted materials are similar. A difference in the pore size distribution appears for higher naphthalene content. The solubility of the PAH contained in the material is affected by the ionic strength and by the presence of a co-solvent; the solution pH does not influence PAH solubility. The solubility of the major mineral species is not influenced by the presence of the two PAH nor by the presence of the methanol as co-solvent in the range of the tested material compositions. In the case of the leaching of a monolith material the main transport mechanism is the diffusion in the porous system. For both mineral and organic species we observed at least two dynamic domains. At the beginning of the leaching process the released flux is due to the surface dissolution and to the diffusion of the main quantity dissolved in the initial pore solution. The second period is governed by a stationary regime between dissolution in pore water and diffusion. The model, coupling transport and chemical phenomena in the pore solution, at the monolith surface and in the leachate simulates satisfactory the release for both mineral and organic species.
Chaotic Ising-like dynamics in traffic signals
Suzuki, Hideyuki; Imura, Jun-ichi; Aihara, Kazuyuki
2013-01-01
The green and red lights of a traffic signal can be viewed as the up and down states of an Ising spin. Moreover, traffic signals in a city interact with each other, if they are controlled in a decentralised way. In this paper, a simple model of such interacting signals on a finite-size two-dimensional lattice is shown to have Ising-like dynamics that undergoes a ferromagnetic phase transition. Probabilistic behaviour of the model is realised by chaotic billiard dynamics that arises from coupled non-chaotic elements. This purely deterministic model is expected to serve as a starting point for considering statistical mechanics of traffic signals. PMID:23350034
Behforootan, Sara; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan; Naemi, Roozbeh
2017-04-01
Pathological conditions such as diabetic foot and plantar heel pain are associated with changes in the mechanical properties of plantar soft tissue. However, the causes and implications of these changes are not yet fully understood. This is mainly because accurate assessment of the mechanical properties of plantar soft tissue in the clinic remains extremely challenging. To develop a clinically viable non-invasive method of assessing the mechanical properties of the heel pad. Furthermore the effect of non-linear mechanical behaviour of the heel pad on its ability to uniformly distribute foot-ground contact loads in light of the effect of overloading is also investigated. An automated custom device for ultrasound indentation was developed along with custom algorithms for the automated subject-specific modeling of heel pad. Non-time-dependent and time-dependent material properties were inverse engineered from results from quasi-static indentation and stress relaxation test respectively. The validity of the calculated coefficients was assessed for five healthy participants. The implications of altered mechanical properties on the heel pad's ability to uniformly distribute plantar loading were also investigated in a parametric analysis. The subject-specific heel pad models with coefficients calculated based on quasi-static indentation and stress relaxation were able to accurately simulate dynamic indentation. Average error in the predicted forces for maximum deformation was only 6.6±4.0%. When the inverse engineered coefficients were used to simulate the first instance of heel strike the error in terms of peak plantar pressure was 27%. The parametric analysis indicated that the heel pad's ability to uniformly distribute plantar loads is influenced both by its overall deformability and by its stress-strain behaviour. When overall deformability stays constant, changes in stress/strain behaviour leading to a more "linear" mechanical behaviour appear to improve the heel pad's ability to uniformly distribute plantar loading. The developed technique can accurately assess the visco-hyperelastic behaviour of heel pad. It was observed that specific change in stress-strain behaviour can enhance/weaken the heel pad's ability to uniformly distribute plantar loading that will increase/decrease the risk for overloading and trauma. Copyright © 2017 Elsevier Ltd. All rights reserved.
Aguilera, Miguel; Barandiaran, Xabier E.; Bedia, Manuel G.; Seron, Francisco
2015-01-01
During the last two decades, analysis of 1/ƒ noise in cognitive science has led to a considerable progress in the way we understand the organization of our mental life. However, there is still a lack of specific models providing explanations of how 1/ƒ noise is generated in coupled brain-body-environment systems, since existing models and experiments typically target either externally observable behaviour or isolated neuronal systems but do not address the interplay between neuronal mechanisms and sensorimotor dynamics. We present a conceptual model of a minimal neurorobotic agent solving a behavioural task that makes it possible to relate mechanistic (neurodynamic) and behavioural levels of description. The model consists of a simulated robot controlled by a network of Kuramoto oscillators with homeostatic plasticity and the ability to develop behavioural preferences mediated by sensorimotor patterns. With only three oscillators, this simple model displays self-organized criticality in the form of robust 1/ƒ noise and a wide multifractal spectrum. We show that the emergence of self-organized criticality and 1/ƒ noise in our model is the result of three simultaneous conditions: a) non-linear interaction dynamics capable of generating stable collective patterns, b) internal plastic mechanisms modulating the sensorimotor flows, and c) strong sensorimotor coupling with the environment that induces transient metastable neurodynamic regimes. We carry out a number of experiments to show that both synaptic plasticity and strong sensorimotor coupling play a necessary role, as constituents of self-organized criticality, in the generation of 1/ƒ noise. The experiments also shown to be useful to test the robustness of 1/ƒ scaling comparing the results of different techniques. We finally discuss the role of conceptual models as mediators between nomothetic and mechanistic models and how they can inform future experimental research where self-organized critically includes sensorimotor coupling among the essential interaction-dominant process giving rise to 1/ƒ noise. PMID:25706744
Cells anticipate periodic events
NASA Astrophysics Data System (ADS)
Nakagaki, Toshiyuki
2009-03-01
We show that an amoeboid organism can anticipate the timing of periodic events. The plasmodium of the true slime mold Physarum polycephalum moves rapidly under favourable conditions, but stops moving when transferred to less-favourable conditions. Plasmodia exposed to unfavourable conditions, presented in three consecutive pulses at constant intervals, reduced their locomotive speed in response to each episode. When subsequently subjected to favourable conditions, the plasmodia spontaneously reduced their locomotive speed at the time point when the next unfavourable episode would have occurred. This implied anticipation of impending environmental change. After this behaviour had been evoked several times, the locomotion of the plasmodia returned to normal; however, the anticipatory response could subsequently be induced by a single unfavourable pulse, implying recall of the memorized periodicity. We explored the mechanisms underlying these behaviours from a dynamical systems perspective. Our results hint at the cellular origins of primitive intelligence and imply that simple dynamics might be sufficient to explain its emergence.
Slip behaviour of experimental faults subjected to fluid pressure stimulation: carbonates vs. shales
NASA Astrophysics Data System (ADS)
Collettini, C.; Scuderi, M. M.; Marone, C.
2017-12-01
Fluid overpressure is one of the primary mechanisms for triggering tectonic fault slip and human-induced seismicity. This mechanism has been invoked to explain the dramatic increase in seismicity associated with waste water disposal in intra-plate setting, and it is appealing because fluids lubricate the fault and reduce the effective normal stress that holds the fault in place. Although, this basic physical mechanism is well understood, several fundamental questions remain including the apparent delay between fluid injection and seismicity, the role of fault zone rheology, and the relationship between injection volume and earthquake size. Moreover, models of earthquake nucleation predict that a reduction in normal stress, as expected for fluid overpressure, should stabilize fault slip. Here, we address these questions using laboratory experiments, conducted in the double direct shear configuration in a true-triaxial machine on carbonates and shale fault gouges. In particular, we: 1) evaluate frictional strength and permeability, 2) characterize the rate- and state- friction parameters and 3) study fault slip evolution during fluid pressure stimulations. With increasing fluid pressure, when shear and effective normal stresses reach the failure condition, in calcite gouges, characterized by slightly velocity strengthening behaviour, we observe an acceleration of slip that spontaneously evolves into dynamic failure. For shale gouges, with a strong rate-strengthening behaviour, we document complex fault slip behavior characterized by periodic accelerations and decelerations with slip velocity that remains slow (i.e. v 200 µm/s), never approaching dynamic slip rates. Our data indicate that fault rheology and fault stability is controlled by the coupling between fluid pressure and rate- and state- friction parameters suggesting that their comprehensive characterization is fundamental for assessing the role of fluid pressure in natural and human induced earthquakes.
A graphical vector autoregressive modelling approach to the analysis of electronic diary data
2010-01-01
Background In recent years, electronic diaries are increasingly used in medical research and practice to investigate patients' processes and fluctuations in symptoms over time. To model dynamic dependence structures and feedback mechanisms between symptom-relevant variables, a multivariate time series method has to be applied. Methods We propose to analyse the temporal interrelationships among the variables by a structural modelling approach based on graphical vector autoregressive (VAR) models. We give a comprehensive description of the underlying concepts and explain how the dependence structure can be recovered from electronic diary data by a search over suitable constrained (graphical) VAR models. Results The graphical VAR approach is applied to the electronic diary data of 35 obese patients with and without binge eating disorder (BED). The dynamic relationships for the two subgroups between eating behaviour, depression, anxiety and eating control are visualized in two path diagrams. Results show that the two subgroups of obese patients with and without BED are distinguishable by the temporal patterns which influence their respective eating behaviours. Conclusion The use of the graphical VAR approach for the analysis of electronic diary data leads to a deeper insight into patient's dynamics and dependence structures. An increasing use of this modelling approach could lead to a better understanding of complex psychological and physiological mechanisms in different areas of medical care and research. PMID:20359333
The shear instability energy: a new parameter for materials design?
NASA Astrophysics Data System (ADS)
Kanani, M.; Hartmaier, A.; Janisch, R.
2017-10-01
Reliable and predictive relationships between fundamental microstructural material properties and observable macroscopic mechanical behaviour are needed for the successful design of new materials. In this study we establish a link between physical properties that are defined on the atomic level and the deformation mechanisms of slip planes and interfaces that govern the mechanical behaviour of a metallic material. To accomplish this, the shear instability energy Γ is introduced, which can be determined via quantum mechanical ab initio calculations or other atomistic methods. The concept is based on a multilayer generalised stacking fault energy calculation and can be applied to distinguish the different shear deformation mechanisms occurring at TiAl interfaces during finite-temperature molecular dynamics simulations. We use the new parameter Γ to construct a deformation mechanism map for different interfaces occurring in this intermetallic. Furthermore, Γ can be used to convert the results of ab initio density functional theory calculations into those obtained with an embedded atom method type potential for TiAl. We propose to include this new physical parameter into material databases to apply it for the design of materials and microstructures, which so far mainly relies on single-crystal values for the unstable and stable stacking fault energy.
Dynamic DNA nanotechnology using strand-displacement reactions
NASA Astrophysics Data System (ADS)
Zhang, David Yu; Seelig, Georg
2011-02-01
The specificity and predictability of Watson-Crick base pairing make DNA a powerful and versatile material for engineering at the nanoscale. This has enabled the construction of a diverse and rapidly growing set of DNA nanostructures and nanodevices through the programmed hybridization of complementary strands. Although it had initially focused on the self-assembly of static structures, DNA nanotechnology is now also becoming increasingly attractive for engineering systems with interesting dynamic properties. Various devices, including circuits, catalytic amplifiers, autonomous molecular motors and reconfigurable nanostructures, have recently been rationally designed to use DNA strand-displacement reactions, in which two strands with partial or full complementarity hybridize, displacing in the process one or more pre-hybridized strands. This mechanism allows for the kinetic control of reaction pathways. Here, we review DNA strand-displacement-based devices, and look at how this relatively simple mechanism can lead to a surprising diversity of dynamic behaviour.
Dynamic behaviour of coastal sedimentation in the Lions Gulf. [France
NASA Technical Reports Server (NTRS)
Guy, M. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A number of ERTS-1 images covering this geographical zone were studied and compared with cartographic maps, air photographs, and thermal-IR images. Old and recent sediments leave traces in the landscape which are decoded by interpreting the shapes of the clear zones forming a network against the black background representing water and humid zones. Current sedimentation and its mechanism were investigated. It had been hoped that a regular sequence of images would make it possible to follow the dynamics of the Rhone and the coastal rivers in relation to meteorological conditions. In any event only a small number of images spread over a wide period of time were obtained, and a complete study was therefore impossible. However, in comparing some of the ERTS-1 images certain thermal-IR images and information on the flow of the Rhone provided some clarification of mechanisms associated with river dynamics.
Klein, E S; Barbier, M R; Watson, J R
2017-08-01
Understanding how and when cooperative human behaviour forms in common-pool resource systems is critical to illuminating social-ecological systems and designing governance institutions that promote sustainable resource use. Before assessing the full complexity of social dynamics, it is essential to understand, concretely and mechanistically, how resource dynamics and human actions interact to create incentives and pay-offs for social behaviours. Here, we investigated how such incentives for information sharing are affected by spatial dynamics and management in a common-pool resource system. Using interviews with fishermen to inform an agent-based model, we reveal generic mechanisms through which, for a given ecological setting characterized by the spatial dynamics of the resource, the two 'human factors' of information sharing and management may heterogeneously impact various members of a group for whom theory would otherwise predict the same strategy. When users can deplete the resource, these interactions are further affected by the management approach. Finally, we discuss the implications of alternative motivations, such as equity among fishermen and consistency of the fleet's output. Our results indicate that resource spatial dynamics, form of management and level of depletion can interact to alter the sociality of people in common-pool resource systems, providing necessary insight for future study of strategic decision processes.
Effect of strain rate and temperature on mechanical properties of selected building Polish steels
NASA Astrophysics Data System (ADS)
Moćko, Wojciech; Kruszka, Leopold
2015-09-01
Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Causa, Andrea; Acierno, Domenico; Filippone, Giovanni
We prepare and characterize multiphase systems in which small amounts of recycled polymer, namely polyethylene terephtalate (PET) ground from waste bottles, are dispersed in a co-continuous blend of high-density polyethylene (HDPE) and polypropylene (PP). Some of such ternary systems are also filled with plate-like clay nanoparticles with different polarities, in order to assess their influence on the morphology and mechanical behaviour of the blends. On the basis of preliminary wettability considerations and inspections by means of scanning electron microscopy (SEM), the PET is found to preferentially locate within the PP phase. Such a positioning is desirable in order to minimizemore » the presence of multiple interfaces, which is one of the major issues in the recycling process of co-mingles plastics. By means of SEM, dynamic-mechanical analysis and tensile tests we show that the addition of a filler with low polarity, which locates at the PET-matrix interface, has relevant implications on the structure and properties of the ternary systems, refining their morphology at the micro-scale and enhancing their high-temperature mechanical behaviour.« less
A physical interpretation of softening of pressure-sensitive and anisotropic materials
NASA Astrophysics Data System (ADS)
Hu, W.; Wang, Z. R.
2010-07-01
Several new dynamic models are proposed to explain the mechanical behaviour of softening of pressure-sensitive and anisotropic materials at a macroscopic level. If a pressure-sensitive material is loaded by a force and a variable pressure or an anisotropic material is subjected to a load with a changeable loading direction relative to the material frame, their stress-strain relationships become more complicated. Mechanical behaviours of these stress-strain relationships have to cover the feature concerning the change of pressure or loading direction, i.e. mechanical properties of pressure-sensitive material corresponding to different pressure state or anisotropic material relating to different loading direction will play an important role in deciding their stress-strain relationships. Such shift of material properties due to the variable pressure or loading history may significantly expand the traditional concept of the stability of material deformation, and the second order of plastic work being negative may be a response of stable plastic deformation, which is commonly called softening.
Social humanoid robot SARA: development of the wrist mechanism
NASA Astrophysics Data System (ADS)
Penčić, M.; Rackov, M.; Čavić, M.; Kiss, I.; Cioată, V. G.
2018-01-01
This paper presents the development of a wrist mechanism for humanoid robots. The research was conducted within the project which develops social humanoid robot Sara - a mobile anthropomorphic platform for researching the social behaviour of robots. There are two basic ways for the realization of humanoid wrist. The first one is based on biologically inspired structures that have variable stiffness, and the second one on low backlash mechanisms that have high stiffness. Our solution is low backlash differential mechanism that requires small actuators. Based on the kinematic-dynamic requirements, a dynamic model of the robot wrist is formed. A dynamic simulation for several hand positions was performed and the driving torques of the wrist mechanism were determined. The realized wrist has 2 DOFs and enables movements in the direction of flexion/extension 115°, ulnar/radial deviation ±45° and the combination of these two movements. It consists of a differential mechanism with three spur bevel gears, two of which are driving and identical, while the last one is the driven gear to which the robot hand is attached. Power transmission and motion from the actuator to the input links of the differential mechanism is realized with two parallel placed identical gear mechanisms. The wrist mechanism has high carrying capacity and reliability, high efficiency, a compact design and low backlash that provides high positioning accuracy and repeatability of movements, which is essential for motion control.
The importance of mechanisms for the evolution of cooperation
van den Berg, Pieter; Weissing, Franz J.
2015-01-01
Studies aimed at explaining the evolution of phenotypic traits have often solely focused on fitness considerations, ignoring underlying mechanisms. In recent years, there has been an increasing call for integrating mechanistic perspectives in evolutionary considerations, but it is not clear whether and how mechanisms affect the course and outcome of evolution. To study this, we compare four mechanistic implementations of two well-studied models for the evolution of cooperation, the Iterated Prisoner's Dilemma (IPD) game and the Iterated Snowdrift (ISD) game. Behavioural strategies are either implemented by a 1 : 1 genotype–phenotype mapping or by a simple neural network. Moreover, we consider two different scenarios for the effect of mutations. The same set of strategies is feasible in all four implementations, but the probability that a given strategy arises owing to mutation is largely dependent on the behavioural and genetic architecture. Our individual-based simulations show that this has major implications for the evolutionary outcome. In the ISD, different evolutionarily stable strategies are predominant in the four implementations, while in the IPD each implementation creates a characteristic dynamical pattern. As a consequence, the evolved average level of cooperation is also strongly dependent on the underlying mechanism. We argue that our findings are of general relevance for the evolution of social behaviour, pleading for the integration of a mechanistic perspective in models of social evolution. PMID:26246554
The melting of stable glasses is governed by nucleation-and-growth dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jack, Robert L.; Berthier, Ludovic
2016-06-28
We discuss the microscopic mechanisms by which low-temperature amorphous states, such as ultrastable glasses, transform into equilibrium fluids, after a sudden temperature increase. Experiments suggest that this process is similar to the melting of crystals, thus differing from the behaviour found in ordinary glasses. We rationalize these observations using the physical idea that the transformation process takes place close to a “hidden” equilibrium first-order phase transition, which is observed in systems of coupled replicas. We illustrate our views using simulation results for a simple two-dimensional plaquette spin model, which is known to exhibit a range of glassy behaviour. Our resultsmore » suggest that nucleation-and-growth dynamics, as found near ordinary first-order transitions, is also the correct theoretical framework to analyse the melting of ultrastable glasses. Our approach provides a unified understanding of multiple experimental observations, such as propagating melting fronts, large kinetic stability ratios, and “giant” dynamic length scales. We also provide a comprehensive discussion of available theoretical pictures proposed in the context of ultrastable glass melting.« less
Dynamic camouflage by Nassau groupers Epinephelus striatus on a Caribbean coral reef.
Watson, A C; Siemann, L A; Hanlon, R T
2014-11-01
This field study describes the camouflage pattern repertoire, associated behaviours and speed of pattern change of Nassau groupers Epinephelus striatus at Little Cayman Island, British West Indies. Three basic camouflaged body patterns were observed under natural conditions and characterized quantitatively. The mean speed of pattern change across the entire body was 4.44 s (range = 0.97-9.87 s); the fastest pattern change as well as contrast change within a fixed pattern occurred within 1 s. Aside from apparent defensive camouflage, E. striatus used camouflage offensively to approach crustacean or fish prey, and three successful predation events were recorded. Although animal camouflage is a widespread tactic, dynamic camouflage is relatively uncommon and has been studied rarely in marine teleosts under natural conditions. The rapid changes observed in E. striatus suggest direct neural control of some skin colouration elements, and comparative studies of functional morphology and behaviour of colour change in other coral-reef teleosts are likely to reveal new mechanisms and adaptations of dynamic colouration. © 2014 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Dewalque, Florence; Schwartz, Cédric; Denoël, Vincent; Croisier, Jean-Louis; Forthomme, Bénédicte; Brüls, Olivier
2018-02-01
This paper studies the dynamics of tape springs which are characterised by a highly geometrical nonlinear behaviour including buckling, the formation of folds and hysteresis. An experimental set-up is designed to capture these complex nonlinear phenomena. The experimental data are acquired by the means of a 3D motion analysis system combined with a synchronised force plate. Deployment tests show that the motion can be divided into three phases characterised by different types of folds, frequencies of oscillation and damping behaviours. Furthermore, the reproducibility quality of the dynamic and quasi-static results is validated by performing a large number of tests. In parallel, a nonlinear finite element model is developed. The required model parameters are identified based on simple experimental tests such as static deformed configurations and small amplitude vibration tests. In the end, the model proves to be well correlated with the experimental results in opposite sense bending, while in equal sense, both the experimental set-up and the numerical model are particularly sensitive to the initial conditions.
A model for oscillations and pattern formation in protoplasmic droplets of Physarum polycephalum
NASA Astrophysics Data System (ADS)
Radszuweit, M.; Engel, H.; Bär, M.
2010-12-01
A mechano-chemical model for the spatiotemporal dynamics of free calcium and the thickness in protoplasmic droplets of the true slime mold Physarum polycephalum is derived starting from a physiologically detailed description of intracellular calcium oscillations proposed by Smith and Saldana (Biopys. J. 61, 368 (1992)). First, we have modified the Smith-Saldana model for the temporal calcium dynamics in order to reproduce the experimentally observed phase relation between calcium and mechanical tension oscillations. Then, we formulate a model for spatiotemporal dynamics by adding spatial coupling in the form of calcium diffusion and advection due to calcium-dependent mechanical contraction. In another step, the resulting reaction-diffusion model with mechanical coupling is simplified to a reaction-diffusion model with global coupling that approximates the mechanical part. We perform a bifurcation analysis of the local dynamics and observe a Hopf bifurcation upon increase of a biochemical activity parameter. The corresponding reaction-diffusion model with global coupling shows regular and chaotic spatiotemporal behaviour for parameters with oscillatory dynamics. In addition, we show that the global coupling leads to a long-wavelength instability even for parameters where the local dynamics possesses a stable spatially homogeneous steady state. This instability causes standing waves with a wavelength of twice the system size in one dimension. Simulations of the model in two dimensions are found to exhibit defect-mediated turbulence as well as various types of spiral wave patterns in qualitative agreement with earlier experimental observation by Takagi and Ueda (Physica D, 237, 420 (2008)).
De Gaetano, Francesco; Serrani, Marta; Bagnoli, Paola; Brubert, Jacob; Stasiak, Joanna; Moggridge, Geoff D.; Costantino, Maria Laura
2016-01-01
Introduction Only mechanical and biological heart valve prostheses are currently commercially available. The former show longer durability but require anticoagulant therapy, the latter display better fluid dynamic behaviour but do not have adequate durability. New Polymeric Heart Valves (PHVs) could potentially combine the haemodynamic properties of biological valves with the durability of mechanical valves. This work presents a hydrodynamic evaluation of two groups of newly developed supra-annular tri-leaflet prosthetic heart valves made from styrenic block copolymers (SBC): Poli-Valves. Methods Two types of Poli-Valves made of SBC differing in polystyrene fraction content were tested under continuous and pulsatile flow conditions as prescribed by ISO 5840 Standard. An ad - hoc designed pulse duplicator allowed the valve prototypes to be tested at different flow rates and frequencies. Pressure and flow were recorded; pressure drops, effective orifice area (EOA), and regurgitant volume were computed to assess the valve’s behaviour. Results Both types Poli-Valves met the minimum requirements in terms of regurgitation and EOA as specified by ISO 5840 Standard. Results were compared with five mechanical heart valves (MHVs) and five tissue heart valves (THVs), currently available on the market. Conclusion Based on these results, polymeric heart valves based on styrenic block copolymers, as Poli-Valves are, can be considered as promising alternative for heart valve replacement in near future. PMID:26689146
Spatial constancy mechanisms in motor control
Medendorp, W. Pieter
2011-01-01
The success of the human species in interacting with the environment depends on the ability to maintain spatial stability despite the continuous changes in sensory and motor inputs owing to movements of eyes, head and body. In this paper, I will review recent advances in the understanding of how the brain deals with the dynamic flow of sensory and motor information in order to maintain spatial constancy of movement goals. The first part summarizes studies in the saccadic system, showing that spatial constancy is governed by a dynamic feed-forward process, by gaze-centred remapping of target representations in anticipation of and across eye movements. The subsequent sections relate to other oculomotor behaviour, such as eye–head gaze shifts, smooth pursuit and vergence eye movements, and their implications for feed-forward mechanisms for spatial constancy. Work that studied the geometric complexities in spatial constancy and saccadic guidance across head and body movements, distinguishing between self-generated and passively induced motion, indicates that both feed-forward and sensory feedback processing play a role in spatial updating of movement goals. The paper ends with a discussion of the behavioural mechanisms of spatial constancy for arm motor control and their physiological implications for the brain. Taken together, the emerging picture is that the brain computes an evolving representation of three-dimensional action space, whose internal metric is updated in a nonlinear way, by optimally integrating noisy and ambiguous afferent and efferent signals. PMID:21242137
2011-01-01
Background Bacteria have evolved a rich set of mechanisms for sensing and adapting to adverse conditions in their environment. These are crucial for their survival, which requires them to react to extracellular stresses such as heat shock, ethanol treatment or phage infection. Here we focus on studying the phage shock protein (Psp) stress response in Escherichia coli induced by a phage infection or other damage to the bacterial membrane. This system has not yet been theoretically modelled or analysed in silico. Results We develop a model of the Psp response system, and illustrate how such models can be constructed and analyzed in light of available sparse and qualitative information in order to generate novel biological hypotheses about their dynamical behaviour. We analyze this model using tools from Petri-net theory and study its dynamical range that is consistent with currently available knowledge by conditioning model parameters on the available data in an approximate Bayesian computation (ABC) framework. Within this ABC approach we analyze stochastic and deterministic dynamics. This analysis allows us to identify different types of behaviour and these mechanistic insights can in turn be used to design new, more detailed and time-resolved experiments. Conclusions We have developed the first mechanistic model of the Psp response in E. coli. This model allows us to predict the possible qualitative stochastic and deterministic dynamic behaviours of key molecular players in the stress response. Our inferential approach can be applied to stress response and signalling systems more generally: in the ABC framework we can condition mathematical models on qualitative data in order to delimit e.g. parameter ranges or the qualitative system dynamics in light of available end-point or qualitative information. PMID:21569396
Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics
Hunter, A.
2016-01-01
In this paper, we discuss the formulation, recent developments and findings obtained from a mesoscale mechanics technique called phase field dislocation dynamics (PFDD). We begin by presenting recent advancements made in modelling face-centred cubic materials, such as integration with atomic-scale simulations to account for partial dislocations. We discuss calculations that help in understanding grain size effects on transitions from full to partial dislocation-mediated slip behaviour and deformation twinning. Finally, we present recent extensions of the PFDD framework to alternative crystal structures, such as body-centred cubic metals, and two-phase materials, including free surfaces, voids and bi-metallic crystals. With several examples we demonstrate that the PFDD model is a powerful and versatile method that can bridge the length and time scales between atomistic and continuum-scale methods, providing a much needed understanding of deformation mechanisms in the mesoscale regime. PMID:27002063
A unified design space of synthetic stripe-forming networks
Schaerli, Yolanda; Munteanu, Andreea; Gili, Magüi; Cotterell, James; Sharpe, James; Isalan, Mark
2014-01-01
Synthetic biology is a promising tool to study the function and properties of gene regulatory networks. Gene circuits with predefined behaviours have been successfully built and modelled, but largely on a case-by-case basis. Here we go beyond individual networks and explore both computationally and synthetically the design space of possible dynamical mechanisms for 3-node stripe-forming networks. First, we computationally test every possible 3-node network for stripe formation in a morphogen gradient. We discover four different dynamical mechanisms to form a stripe and identify the minimal network of each group. Next, with the help of newly established engineering criteria we build these four networks synthetically and show that they indeed operate with four fundamentally distinct mechanisms. Finally, this close match between theory and experiment allows us to infer and subsequently build a 2-node network that represents the archetype of the explored design space. PMID:25247316
A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
Naemi, Roozbeh; Chatzistergos, Panagiotis E; Chockalingam, Nachiappan
2016-03-01
Mechanical behaviour of the heel pad, as a shock attenuating interface during a foot strike, determines the loading on the musculoskeletal system during walking. The mathematical models that describe the force deformation relationship of the heel pad structure can determine the mechanical behaviour of heel pad under load. Hence, the purpose of this study was to propose a method of quantifying the heel pad stress-strain relationship using force-deformation data from an indentation test. The energy input and energy returned densities were calculated by numerically integrating the area below the stress-strain curve during loading and unloading, respectively. Elastic energy and energy absorbed densities were calculated as the sum of and the difference between energy input and energy returned densities, respectively. By fitting the energy function, derived from a nonlinear viscoelastic model, to the energy density-strain data, the elastic and viscous model parameters were quantified. The viscous and elastic exponent model parameters were significantly correlated with maximum strain, indicating the need to perform indentation tests at realistic maximum strains relevant to walking. The proposed method showed to be able to differentiate between the elastic and viscous components of the heel pad response to loading and to allow quantifying the corresponding stress-strain model parameters.
Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities
NASA Astrophysics Data System (ADS)
Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred
2012-07-01
The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in the frame of an ESA TRP study [1]. A bread-board including typical non-linearities has been designed, manufactured and tested through a typical spacecraft dynamic test campaign. The study has demonstrate the capabilities to perform non-linear dynamic test predictions on a flight representative spacecraft, the good correlation of test results with respect to Finite Elements Model (FEM) prediction and the possibility to identify modal behaviour and to characterize non-linearities characteristics from test results. As a synthesis for this study, overall guidelines have been derived on the mechanical verification process to improve level of expertise on tests involving spacecraft including non-linearity.
Generalisation benefits of output gating in a model of prefrontal cortex
NASA Astrophysics Data System (ADS)
Kriete, Trent; Noelle, David C.
2011-06-01
The prefrontal cortex (PFC) plays a central role in flexible cognitive control, including the suppression of habitual responding in favour of situation-appropriate behaviours that can be quite novel. PFC provides a kind of working memory, maintaining the rules, goals, and/or actions that are to control behaviour in the current context. For flexible control, these PFC representations must be sufficiently componential to support systematic generalisation to novel situations. The anatomical structure of PFC can be seen as implementing a componential 'slot-filler' structure, with different components encoded over isolated pools of neurons. Previous PFC models have highlighted the importance of a dynamic gating mechanism to selectively update individual 'slot' contents. In this article, we present simulation results that suggest that systematic generalisation also requires an 'output gating' mechanism that limits the influence of PFC on more posterior brain areas to reflect a small number of representational components at any one time.
Experiments and theory of undulatory locomotion in a simple structured medium
Majmudar, Trushant; Keaveny, Eric E.; Zhang, Jun; Shelley, Michael J.
2012-01-01
Undulatory locomotion of micro-organisms through geometrically complex, fluidic environments is ubiquitous in nature and requires the organism to negotiate both hydrodynamic effects and geometrical constraints. To understand locomotion through such media, we experimentally investigate swimming of the nematode Caenorhabditis elegans through fluid-filled arrays of micro-pillars and conduct numerical simulations based on a mechanical model of the worm that incorporates hydrodynamic and contact interactions with the lattice. We show that the nematode's path, speed and gait are significantly altered by the presence of the obstacles and depend strongly on lattice spacing. These changes and their dependence on lattice spacing are captured, both qualitatively and quantitatively, by our purely mechanical model. Using the model, we demonstrate that purely mechanical interactions between the swimmer and obstacles can produce complex trajectories, gait changes and velocity fluctuations, yielding some of the life-like dynamics exhibited by the real nematode. Our results show that mechanics, rather than biological sensing and behaviour, can explain some of the observed changes in the worm's locomotory dynamics. PMID:22319110
Changing micronutrient intake through (voluntary) behaviour change. The case of folate.
Jensen, Birger B; Lähteenmäki, Liisa; Grunert, Klaus G; Brown, Kerry A; Timotijevic, Lada; Barnett, Julie; Shepherd, Richard; Raats, Monique M
2012-06-01
The objective of this study was to relate behaviour change mechanisms to nutritionally relevant behaviour and demonstrate how the different mechanisms can affect attempts to change these behaviours. Folate was used as an example to illuminate the possibilities and challenges in inducing behaviour change. The behaviours affecting folate intake were recognised and categorised. Behaviour change mechanisms from "rational model of man", behavioural economics, health psychology and social psychology were identified and aligned against folate-related behaviours. The folate example demonstrated the complexity of mechanisms influencing possible behavioural changes, even though this only targets the intake of a single micronutrient. When considering possible options to promote folate intake, the feasibility of producing the desired outcome should be related to the mechanisms of required changes in behaviour and the possible alternatives that require no or only minor changes in behaviour. Dissecting the theories provides new approaches to food-related behaviour that will aid the development of batteries of policy options when targeting nutritional problems. Copyright © 2012 Elsevier Ltd. All rights reserved.
Intermittent dynamics in complex systems driven to depletion.
Escobar, Juan V; Pérez Castillo, Isaac
2018-03-19
When complex systems are driven to depletion by some external factor, their non-stationary dynamics can present an intermittent behaviour between relative tranquility and burst of activity whose consequences are often catastrophic. To understand and ultimately be able to predict such dynamics, we propose an underlying mechanism based on sharp thresholds of a local generalized energy density that naturally leads to negative feedback. We find a transition from a continuous regime to an intermittent one, in which avalanches can be predicted despite the stochastic nature of the process. This model may have applications in many natural and social complex systems where a rapid depletion of resources or generalized energy drives the dynamics. In particular, we show how this model accurately describes the time evolution and avalanches present in a real social system.
Quantification of Interactions between Dynamic Cellular Network Functionalities by Cascaded Layering
Prescott, Thomas P.; Lang, Moritz; Papachristodoulou, Antonis
2015-01-01
Large, naturally evolved biomolecular networks typically fulfil multiple functions. When modelling or redesigning such systems, functional subsystems are often analysed independently first, before subsequent integration into larger-scale computational models. In the design and analysis process, it is therefore important to quantitatively analyse and predict the dynamics of the interactions between integrated subsystems; in particular, how the incremental effect of integrating a subsystem into a network depends on the existing dynamics of that network. In this paper we present a framework for simulating the contribution of any given functional subsystem when integrated together with one or more other subsystems. This is achieved through a cascaded layering of a network into functional subsystems, where each layer is defined by an appropriate subset of the reactions. We exploit symmetries in our formulation to exhaustively quantify each subsystem’s incremental effects with minimal computational effort. When combining subsystems, their isolated behaviour may be amplified, attenuated, or be subject to more complicated effects. We propose the concept of mutual dynamics to quantify such nonlinear phenomena, thereby defining the incompatibility and cooperativity between all pairs of subsystems when integrated into any larger network. We exemplify our theoretical framework by analysing diverse behaviours in three dynamic models of signalling and metabolic pathways: the effect of crosstalk mechanisms on the dynamics of parallel signal transduction pathways; reciprocal side-effects between several integral feedback mechanisms and the subsystems they stabilise; and consequences of nonlinear interactions between elementary flux modes in glycolysis for metabolic engineering strategies. Our analysis shows that it is not sufficient to just specify subsystems and analyse their pairwise interactions; the environment in which the interaction takes place must also be explicitly defined. Our framework provides a natural representation of nonlinear interaction phenomena, and will therefore be an important tool for modelling large-scale evolved or synthetic biomolecular networks. PMID:25933116
The temporal structure of behaviour and sleep homeostasis.
Vyazovskiy, Vladyslav V; Tobler, Irene
2012-01-01
The amount and architecture of vigilance states are governed by two distinct processes, which occur at different time scales. The first, a slow one, is related to a wake/sleep dependent homeostatic Process S, which occurs on a time scale of hours, and is reflected in the dynamics of NREM sleep EEG slow-wave activity. The second, a fast one, is manifested in a regular alternation of two sleep states--NREM and REM sleep, which occur, in rodents, on a time scale of ~5-10 minutes. Neither the mechanisms underlying the time constants of these two processes--the slow one and the fast one, nor their functional significance are understood. Notably, both processes are primarily apparent during sleep, while their potential manifestation during wakefulness is obscured by ongoing behaviour. Here, we find, in mice provided with running wheels, that the two sleep processes become clearly apparent also during waking at the level of behavior and brain activity. Specifically, the slow process was manifested in the total duration of waking periods starting from dark onset, while the fast process was apparent in a regular occurrence of running bouts during the waking periods. The dynamics of both processes were stable within individual animals, but showed large interindividual variability. Importantly, the two processes were not independent: the periodic structure of waking behaviour (fast process) appeared to be a strong predictor of the capacity to sustain continuous wakefulness (slow process). The data indicate that the temporal organization of vigilance states on both the fast and the slow time scales may arise from a common neurophysiologic mechanism.
Physiological mechanisms underlying animal social behaviour.
Seebacher, Frank; Krause, Jens
2017-08-19
Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'. © 2017 The Author(s).
Physiological mechanisms underlying animal social behaviour
2017-01-01
Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission–fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments. This article is part of the themed issue ‘Physiological determinants of social behaviour in animals’. PMID:28673909
An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.
Rañó, Iñaki
2012-07-01
Motion camouflage is a stealth behaviour observed both in hover-flies and in dragonflies. Existing controllers for mimicking motion camouflage generate this behaviour on an empirical basis or without considering the kinematic motion restrictions present in animal trajectories. This study summarises our formal contributions to solve the generation of motion camouflage as a non-linear optimal control problem. The dynamics of the system capture the kinematic restrictions to motion of the agents, while the performance index ensures camouflage trajectories. An extensive set of simulations support the technique, and a novel analysis of the obtained trajectories contributes to our understanding of possible mechanisms to obtain sensor based motion camouflage, for instance, in mobile robots.
The developmental origin of brain tumours: a cellular and molecular framework.
Azzarelli, Roberta; Simons, Benjamin D; Philpott, Anna
2018-05-14
The development of the nervous system relies on the coordinated regulation of stem cell self-renewal and differentiation. The discovery that brain tumours contain a subpopulation of cells with stem/progenitor characteristics that are capable of sustaining tumour growth has emphasized the importance of understanding the cellular dynamics and the molecular pathways regulating neural stem cell behaviour. By focusing on recent work on glioma and medulloblastoma, we review how lineage tracing contributed to dissecting the embryonic origin of brain tumours and how lineage-specific mechanisms that regulate stem cell behaviour in the embryo may be subverted in cancer to achieve uncontrolled proliferation and suppression of differentiation. © 2018. Published by The Company of Biologists Ltd.
NASA Astrophysics Data System (ADS)
Gong, Fei; Di, Bangrang; Wei, Jianxin; Ding, Pinbo; Shuai, Da
2018-03-01
The presence of clay minerals can alter the elastic behaviour of reservoir rocks significantly as the type of clay minerals, their volume and distribution, and their orientation control the shale's intrinsic anisotropic behaviours. Clay minerals are the most abundant materials in shale, and it has been proven extremely difficult to measure the elastic properties of natural shale by means of a single variable (in this case, the type of clay minerals), due to the influences of multiple factors, including water, TOC content and complex mineral compositions. We used quartz, clay (kaolinite, illite and smectite), carbonate and kerogen extract as the primary materials to construct synthetic shale with different clay minerals. Ultrasonic experiments were conducted to investigate the anisotropy of velocity and mechanical properties in dry synthetic and natural shale as a function of confining pressure. Velocities in synthetic shale are sensitive to the type of clay minerals, possibly due to the different structures of the clay minerals. The velocities increase with confining pressure and show higher rate of velocity increase at low pressures, and P-wave velocity is usually more sensitive than S-wave velocity to confining pressure according to our results. Similarly, the dynamic Young's modulus and Poisson's ratio increase with applied pressure, and the results also reveal that E11 is always larger than E33 and ν31 is smaller than ν12. Velocity and mechanical anisotropy decrease with increasing stress, and are sensitive to stress and the type of clay minerals. However, the changes of mechanical anisotropy with applied stress are larger compared with the velocity anisotropy, indicating that mechanical properties are more sensitive to the change of rock properties.
NASA Astrophysics Data System (ADS)
Jiskoot, H.
2013-12-01
A multidecadal review of glacier fluctuations and case-studies of glacier processes and environments in central East Greenland will be used to demonstrate Mechanisms that Amplify, Attenuate and Deviate glacier response to climate forcings (MAAD). The different spatial and temporal scales at which MAAD affect mass balance and ice flow may complicate interpretation and longterm extrapolation of glacier response to climate change. A framework of MAAD characterisation and best-practice for interpreting climate signals while taking into account MAAD will be proposed. Glaciers in the Watkins Bjerge, Geikie Plateau and Stauning Alps regions of central East Greenland (68°-72°N) contain about 50000 km2 of glacierized area peripheral to the Greenland Ice Sheet. Within the region, large north-south and coast-inland climatic gradients, as well as complicated topography and glacier dynamics, result in discrepant glacier behaviour. Average retreat rates have doubled from about 2 to 4 km2 a-1 between the late 20th and early 21st centuries. However, glaciers terminating along the Atlantic coast display two times the retreat, thinning, and acceleration rates compared to glaciers terminating in inland fjords or on land. Despite similar climatic forcing variable glacier behaviour is apparent: individual glacier length change ranges from +57 m a-1 to -428 m a-1, though most retreat -20 to -100 m a-1. Interacting dynamic, mass balance and glacio-morphological mechanisms can amplify, attenuate or deviate glacier response (MAAD) to climate change, thus complicating the climatological interpretation of glacier length, area, and thickness changes. East Greenland MAAD include a range of common positive and negative feedback mechanisms in surface mass balance and terminus and subglacial boundary conditions affecting ice flow, but also mechanisms that have longterm or delayed effects. Certain MAAD may affect glacier change interpretation on multiple timescales: e.g. surging glaciers do not only pose problems for the direct interpretation of climate change from length and volume changes due to their dynamically-driven advance and retreat regimes, but also for the reconstruction of LIA extents from trimlines and moraines, and the reconstruction of surface mass balance due to crevasses, potholes or debris-cover. This presentation will address a range of MAAD, including thermal regime transitions; ocean influences on tidewater-terminating glaciers; glacier fragmentation and tributary-trunk interaction; glacier surging and tidewater behaviour; seasonal variations; glacier hypsometry and morphology; terrain and substrate; melt-albedo and melt-ice flow feedbacks; and ice marginal lakes.
NASA Astrophysics Data System (ADS)
Roy, Soumyajit; Chakraborty, G.; DasGupta, Anirvan
2018-02-01
The mutual interaction between a number of multi degrees of freedom mechanical systems moving with uniform speed along an infinite taut string supported by a viscoelastic layer has been studied using the substructure synthesis method when base excitations of a common frequency are given to the mechanical systems. The mobility or impedance matrices of the string have been calculated analytically by Fourier transform method as well as wave propagation technique. The above matrices are used to calculate the response of the discrete mechanical systems. Special attention is paid to the contact forces between the discrete and the continuous systems which are estimated by numerical simulation. The effects of phase difference, the distance between the systems and different base excitation amplitudes on the collective behaviour of the mechanical systems are also studied. The present study has relevance to the coupled dynamic problem of more than one railway pantographs and an overhead catenary system where the pantographs are modelled as discrete systems and the catenary is modelled as a taut string supported by continuous viscoelastic layer.
NASA Astrophysics Data System (ADS)
Neufeld, Zoltan
Recent studies have demonstrated that mechanical forces can lead to novel mechanisms of pattern formation such as clustering and oscillations in contractile systems. We investigate how contractile forces in mechanically active media can affect bistable front propagation. We found that contraction regulates the front speed or can fully suppress its propagation in space to create a static localized zone. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the actomyosin cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. The dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behaviour of the system when contractility is inhibited are in qualitative agreement with the predictions of the model. In collaboration with: Zoltan Neufeld, Guillermo A. Gomez, and Alpha S. Yap, University of Queensland, Brisbane, Australia
Predictive power of food web models based on body size decreases with trophic complexity.
Jonsson, Tomas; Kaartinen, Riikka; Jonsson, Mattias; Bommarco, Riccardo
2018-05-01
Food web models parameterised using body size show promise to predict trophic interaction strengths (IS) and abundance dynamics. However, this remains to be rigorously tested in food webs beyond simple trophic modules, where indirect and intraguild interactions could be important and driven by traits other than body size. We systematically varied predator body size, guild composition and richness in microcosm insect webs and compared experimental outcomes with predictions of IS from models with allometrically scaled parameters. Body size was a strong predictor of IS in simple modules (r 2 = 0.92), but with increasing complexity the predictive power decreased, with model IS being consistently overestimated. We quantify the strength of observed trophic interaction modifications, partition this into density-mediated vs. behaviour-mediated indirect effects and show that model shortcomings in predicting IS is related to the size of behaviour-mediated effects. Our findings encourage development of dynamical food web models explicitly including and exploring indirect mechanisms. © 2018 John Wiley & Sons Ltd/CNRS.
Data-driven modelling of social forces and collective behaviour in zebrafish.
Zienkiewicz, Adam K; Ladu, Fabrizio; Barton, David A W; Porfiri, Maurizio; Bernardo, Mario Di
2018-04-14
Zebrafish are rapidly emerging as a powerful model organism in hypothesis-driven studies targeting a number of functional and dysfunctional processes. Mathematical models of zebrafish behaviour can inform the design of experiments, through the unprecedented ability to perform pilot trials on a computer. At the same time, in-silico experiments could help refining the analysis of real data, by enabling the systematic investigation of key neurobehavioural factors. Here, we establish a data-driven model of zebrafish social interaction. Specifically, we derive a set of interaction rules to capture the primary response mechanisms which have been observed experimentally. Contrary to previous studies, we include dynamic speed regulation in addition to turning responses, which together provide attractive, repulsive and alignment interactions between individuals. The resulting multi-agent model provides a novel, bottom-up framework to describe both the spontaneous motion and individual-level interaction dynamics of zebrafish, inferred directly from experimental observations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Non-synchronous rotating damping effects in gyroscopic rotating systems
NASA Astrophysics Data System (ADS)
Brusa, Eugenio; Zolfini, Giacomo
2005-03-01
The effects of non-synchronous rotating damping, i.e., of energy dissipation in elements rotating at a speed different from that of the main rotor, on the dynamic behaviour of the latter have been already studied in a previous paper (J. Rotating Machinery 6 (6) (2000)) for the case of non-gyroscopic rotating systems. A planar model, namely the Jeffcott's rotor, was used. The present study is aimed at investigating, through analytical and numerical models, the behaviour of rotors having a non-negligible gyroscopic effect. The parameters of the system affecting the dynamic stability are identified and the threshold of instability is then computed. A sort of map of stability is provided to allow mechanical engineers predicting possibile range of instability for forward and backward whirling motions. An experimental validation on a simple test rig is presented in order to show the effectiveness of the proposed stability analysis. Non-synchronous rotating damping is implemented by using a non-synchronous electromagnetic damper based on eddy currents.
Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering
NASA Astrophysics Data System (ADS)
Barthes, Mariette; Eckert, Juegen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.
1992-10-01
A study of the anomalous modes in acetanilide and five deuterated derivatives by incoherent inelastic neutron scattering is reported. These data show that the dynamics of the amide and methyl groups influence each other. In addition, the anomalous temperature behaviour of the NH out-of-plane bending mode is confirmed. These observations suggest that the self-trapping mechanism in ACN may be more complex than hitherto assumed.
Complex contagion process in spreading of online innovation
Karsai, Márton; Iñiguez, Gerardo; Kaski, Kimmo; Kertész, János
2014-01-01
Diffusion of innovation can be interpreted as a social spreading phenomenon governed by the impact of media and social interactions. Although these mechanisms have been identified by quantitative theories, their role and relative importance are not entirely understood, as empirical verification has so far been hindered by the lack of appropriate data. Here we analyse a dataset recording the spreading dynamics of the world's largest Voice over Internet Protocol service to empirically support the assumptions behind models of social contagion. We show that the rate of spontaneous service adoption is constant, the probability of adoption via social influence is linearly proportional to the fraction of adopting neighbours, and the rate of service termination is time-invariant and independent of the behaviour of peers. By implementing the detected diffusion mechanisms into a dynamical agent-based model, we are able to emulate the adoption dynamics of the service in several countries worldwide. This approach enables us to make medium-term predictions of service adoption and disclose dependencies between the dynamics of innovation spreading and the socio-economic development of a country. PMID:25339685
NASA Astrophysics Data System (ADS)
de Arcangelis, L.; Lombardi, F.; Herrmann, H. J.
2014-03-01
Spontaneous brain activity has been recently characterized by avalanche dynamics with critical features for systems in vitro and in vivo. In this contribution we present a review of experimental results on neuronal avalanches in cortex slices, together with numerical results from a neuronal model implementing several physiological properties of living neurons. Numerical data reproduce experimental results for avalanche statistics. The temporal organization of avalanches can be characterized by the distribution of waiting times between successive avalanches. Experimental measurements exhibit a non-monotonic behaviour, not usually found in other natural processes. Numerical simulations provide evidence that this behaviour is a consequence of the alternation between states of high and low activity, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homoeostatic mechanisms. Interestingly, the same homoeostatic balance is detected for neuronal activity at the scale of the whole brain. We finally review the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules and the learning dynamics exhibits universal features as a function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.
Mixed-mode oscillations in a three-store calcium dynamics model
NASA Astrophysics Data System (ADS)
Liu, Peng; Liu, Xijun; Yu, Pei
2017-11-01
Calcium ions are important in cell process, which control cell functions. Many models on calcium oscillation have been proposed. Most of existing literature analyzed calcium oscillations using numerical methods, and found rich dynamical behaviours. In this paper, we explore a further study on an established three-store model, which contains endoplasmic reticulum (ER), mitochondria and calcium binding proteins. We conduct bifurcation analysis to identify two Hopf bifurcations, and apply normal form theory to study their stability and show that one of them is supercritical while the other is subcritical. Further, we transform the model into a slow-fast system, and then apply the geometrical singular perturbation theory to investigate the mechanism of generating slow-fast motions. The study reveals that the mechanism of generating the slow-fast oscillating behaviour in the three-store calcium model for certain parameter values is due to the relative fast change in the free calcium in cytosol, and relative slow changes in the free calcium in mitochondria and in the bounded Ca2+ binding sites on the cytosolic proteins. A further parametric study may provide some useful information for controlling harmful effect, by adjusting the amount of calcium in a human body. Numerical simulations are present to demonstrate the correct analytical predictions.
Complex double-mass dynamic model of rotor on thrust foil gas dynamic bearings
NASA Astrophysics Data System (ADS)
Sytin, A.; Babin, A.; Vasin, S.
2017-08-01
The present paper considers simulation of a rotor’s dynamics behaviour on thrust foil gas dynamic bearings based on simultaneous solution of gas dynamics differential equations, equations of theory of elasticity, motion equations and some additional equations. A double-mass dynamic system was considered during the rotor’s motion simulation which allows not only evaluation of rotor’s dynamic behaviour, but also to evaluate the influence of operational and load parameters on the dynamics of the rotor-bearing system.
NASA Astrophysics Data System (ADS)
Westley, Matthew; Sen, Surajit; Sinha, Anindya
2014-07-01
In this study, we computationally investigate decision-making by individuals and the ensuing social structure of a primate species, chimpanzees, using Newton's equations of classical mechanics, as opposed to agentbased analyses in which individual chimpanzees make independent decisions. Our model uses molecular dynamics simulation techniques to solve Newton's equations and is able to approximate the movements of female and male chimpanzees, especially in relation to the available food resources, in a manner that is consistent with their observed behavior in natural habitats. It is noteworthy that our Newtonian dynamics-based model may allow us to make certain specific observations of their behaviour, some of which may be difficult to achieve through agent-based modelling exercises or even field studies. Chimpanzees tend to live in fission-fusion social groups, with varying number of individuals, in which both females and males tend to display intrasexual competition for valuable food resources while the males also compete for oestrus females. Most populations of the species are also restricted to a small range of habitats, a clear indication that they are especially vulnerable to the availability and distribution of food sources. With reasonable assumptions of chimpanzee behaviour, we have been able to analyse the clustering behaviour of individuals in relation to local food sources as also patterns of their migration across groups. Our simulated results are qualitatively consistent with field observations conducted on a particular semi-isolated population of chimpanzees in Bossou, Guinea, in western Africa.
Biologically based neural circuit modelling for the study of fear learning and extinction
NASA Astrophysics Data System (ADS)
Nair, Satish S.; Paré, Denis; Vicentic, Aleksandra
2016-11-01
The neuronal systems that promote protective defensive behaviours have been studied extensively using Pavlovian conditioning. In this paradigm, an initially neutral-conditioned stimulus is paired with an aversive unconditioned stimulus leading the subjects to display behavioural signs of fear. Decades of research into the neural bases of this simple behavioural paradigm uncovered that the amygdala, a complex structure comprised of several interconnected nuclei, is an essential part of the neural circuits required for the acquisition, consolidation and expression of fear memory. However, emerging evidence from the confluence of electrophysiological, tract tracing, imaging, molecular, optogenetic and chemogenetic methodologies, reveals that fear learning is mediated by multiple connections between several amygdala nuclei and their distributed targets, dynamical changes in plasticity in local circuit elements as well as neuromodulatory mechanisms that promote synaptic plasticity. To uncover these complex relations and analyse multi-modal data sets acquired from these studies, we argue that biologically realistic computational modelling, in conjunction with experiments, offers an opportunity to advance our understanding of the neural circuit mechanisms of fear learning and to address how their dysfunction may lead to maladaptive fear responses in mental disorders.
Behaviour and Locomotor Activity of a Migratory Catostomid during Fishway Passage
Silva, Ana T.; Hatry, Charles; Thiem, Jason D.; Gutowsky, Lee F. G.; Hatin, Daniel; Zhu, David Z.; W. Dawson, Jeffery; Katopodis, Christos; J. Cooke, Steven
2015-01-01
Fishways have been developed to restore longitudinal connectivity in rivers. Despite their potential for aiding fish passage, fishways may represent a source of significant energetic expenditure for fish as they are highly turbulent environments. Nonetheless, our understanding of the physiological mechanisms underpinning fishway passage of fish is still limited. We examined swimming behaviour and activity of silver redhorse (Moxostoma anisurum) during its upriver spawning migration in a vertical slot fishway. We used an accelerometer-derived instantaneous activity metric (overall dynamic body acceleration) to estimate location-specific swimming activity. Silver redhorse demonstrated progressive increases in activity during upstream fishway passage. Moreover, location-specific passage duration decreased with an increasing number of passage attempts. Turning basins and the most upstream basin were found to delay fish passage. No relationship was found between basin-specific passage duration and activity and the respective values from previous basins. The results demonstrate that successful fishway passage requires periods of high activity. The resultant energetic expenditure may affect fitness, foraging behaviour and increase susceptibility to predation, compromising population sustainability. This study highlights the need to understand the physiological mechanisms underpinning fishway passage to improve future designs and interpretation of biological evaluations. PMID:25853245
Hentley, William T; Vanbergen, Adam J; Beckerman, Andrew P; Brien, Melanie N; Hails, Rosemary S; Jones, T Hefin; Johnson, Scott N
2016-07-01
Despite the capacity of invasive alien species to alter ecosystems, the mechanisms underlying their impact remain only partly understood. Invasive alien predators, for example, can significantly disrupt recipient communities by consuming prey species or acting as an intraguild predator (IGP). Behavioural interactions are key components of interspecific competition between predators, yet these are often overlooked invasion processes. Here, we show how behavioural, non-lethal IGP interactions might facilitate the establishment success of an invading alien species. We experimentally assessed changes in feeding behaviour (prey preference and consumption rate) of native UK coccinellid species (Adalia bipunctata and Coccinella septempunctata), whose populations are, respectively, declining and stable, when exposed to the invasive intraguild predator, Harmonia axyridis. Using a population dynamics model parameterized with these experimental data, we predicted how intraguild predation, accommodating interspecific behavioural interactions, might impact the abundance of the native and invasive alien species over time. When competing for the same aphid resource, the feeding rate of A. bipunctata significantly increased compared to the feeding in isolation, while the feeding rate of H. axyridis significantly decreased. This suggests that despite significant declines in the UK, A. bipunctata is a superior competitor to the intraguild predator H. axyridis. In contrast, the behaviour of non-declining C. septempunctata was unaltered by the presence of H. axyridis. Our experimental data show the differential behavioural plasticity of competing native and invasive alien predators, but do not explain A. bipunctata declines observed in the UK. Using behavioural plasticity as a parameter in a population dynamic model for A. bipunctata and H. axyridis, coexistence is predicted between the native and invasive alien following an initial period of decline in the native species. We demonstrate how empirical and theoretical techniques can be combined to understand better the processes and consequences of alien species invasions for native biodiversity. © 2016 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.
Dynamic behaviour of a rolling tyre: Experimental and numerical analyses
NASA Astrophysics Data System (ADS)
Gonzalez Diaz, Cristobal; Kindt, Peter; Middelberg, Jason; Vercammen, Stijn; Thiry, Christophe; Close, Roland; Leyssens, Jan
2016-03-01
Based on the results of experimental and numerical analyses, the effect of rotation on the tyre dynamic behaviour is investigated. Better understanding of these effects will further improve the ability to control and optimize the noise and vibrations that result from the interaction between the road surface and the rolling tyre. Therefore, more understanding in the complex tyre dynamic properties will contribute to develop tyre design strategies to lower the tyre/road noise while less affecting other tyre performances. The presented work is performed in the framework of the European industry-academia project TIRE-DYN, with partners Goodyear, Katholieke Universiteit Leuven and LMS International. The effect of rotation on the tyre dynamic behaviour is quantified for different operating conditions of the tyre, such as load, air pressure and rotation speed. By means of experimental and numerical analyses, the effects of rotation on the tyre dynamic behaviour are studied.
Melidis, Christos; Iizuka, Hiroyuki; Marocco, Davide
2018-05-01
In this paper, we present a novel approach to human-robot control. Taking inspiration from behaviour-based robotics and self-organisation principles, we present an interfacing mechanism, with the ability to adapt both towards the user and the robotic morphology. The aim is for a transparent mechanism connecting user and robot, allowing for a seamless integration of control signals and robot behaviours. Instead of the user adapting to the interface and control paradigm, the proposed architecture allows the user to shape the control motifs in their way of preference, moving away from the case where the user has to read and understand an operation manual, or it has to learn to operate a specific device. Starting from a tabula rasa basis, the architecture is able to identify control patterns (behaviours) for the given robotic morphology and successfully merge them with control signals from the user, regardless of the input device used. The structural components of the interface are presented and assessed both individually and as a whole. Inherent properties of the architecture are presented and explained. At the same time, emergent properties are presented and investigated. As a whole, this paradigm of control is found to highlight the potential for a change in the paradigm of robotic control, and a new level in the taxonomy of human in the loop systems.
Borek, Aleksandra J; Abraham, Charles
2018-03-01
Small groups are used to promote health, well-being, and personal change by altering members' perceptions, beliefs, expectations, and behaviour patterns. An extensive cross-disciplinary literature has articulated and tested theories explaining how such groups develop, function, and facilitate change. Yet these theoretical understandings are rarely applied in the development, description, and evaluation of health-promotion, group-based, behaviour-change interventions. Medline database, library catalogues, search engines, specific journals and reference lists were searched for relevant texts. Texts were reviewed for explanatory concepts or theories describing change processes in groups, which were integrated into the developing conceptual structure. This was designed to be a parsimonious conceptual framework that could be applied to design and delivery. Five categories of interacting processes and concepts were identified and defined: (1) group development processes, (2) dynamic group processes, (3) social change processes, (4) personal change processes, and (5) group design and operating parameters. Each of these categories encompasses a variety of theorised mechanisms explaining individual change in small groups. The final conceptual model, together with the design issues and practical recommendations derived from it, provides a practical basis for linking research and theory explaining group functioning to optimal design of group-based, behaviour-change interventions. © 2018 The Authors. Applied Psychology: Health and Well-Being published by John Wiley & Sons Ltd on behalf of International Association of Applied Psychology.
Hysteresis, nucleation and growth phenomena in spin-crossover solids
NASA Astrophysics Data System (ADS)
Ridier, Karl; Molnár, Gábor; Salmon, Lionel; Nicolazzi, William; Bousseksou, Azzedine
2017-12-01
The observation and the study of first-order phase transitions in cooperative spin-crossover (SCO) solids exhibiting hysteresis behaviours are of particular interest and currently constitute a burgeoning area in the field of bistable molecular materials. The understanding and the control of the transition mechanisms (nucleation and growth processes) and their dynamics within the hysteresis region appear to be a general and appealing problem from a fundamental point of view and for technological applications as well. This review reports on the recent progresses and most important findings made on the spatiotemporal dynamics of the spin transition in SCO solids, particularly through the universal nucleation and growth process. Both thermally induced and light-induced spin transitions are discussed. We open up this review to the central question of the evolution of the transition mechanisms and dynamics in SCO nano-objects, which constitute promising systems to reach ultra-fast switching, and the experimental issues inherent to such studies at the micro- and nanometric scale.
NASA Astrophysics Data System (ADS)
Ramani, R.; Alam, S.
2015-06-01
High performance polymer blend of poly(ether ether ketone) (PEEK) and poly(ether imide) (PEI) was examined for their free volume behaviour using positron annihilation lifetime spectroscopy and dynamic mechanical thermal analysis methods. The fractional free volume obtained from PALS shows a negative deviation from linear additivity rule implying good miscibility between PEEK and PEI. The dynamic modulus and loss tangent were obtained for the blends at three different frequencies 1, 10 and 100 Hz at temperatures close to and above their glass transition temperature. Applying Time-Temperature-Superposition (TTS) principle to the DMTA results, master curves were obtained at a reference temperature To and the WLF coefficients c01 and c02 were evaluated. Both the methods give similar results for the dependence of fractional free volume on PEI content in this blend. The results reveal that free volume plays an important role in determining the visco-elastic properties in miscible polymer blends.
Dynamics of bow-tie shaped bursting: Forced pendulum with dynamic feedback.
Hongray, Thotreithem; Balakrishnan, Janaki
2016-12-01
A detailed study is performed on the parameter space of the mechanical system of a driven pendulum with damping and constant torque under feedback control. We report an interesting bow-tie shaped bursting oscillatory behaviour, which is exhibited for small driving frequencies, in a certain parameter regime, which has not been reported earlier in this forced system with dynamic feedback. We show that the bursting oscillations are caused because of a transition of the quiescent state to the spiking state by a saddle-focus bifurcation, and because of another saddle-focus bifurcation, which leads to cessation of spiking, bringing the system back to the quiescent state. The resting period between two successive bursts (T rest ) is estimated analytically.
Functional coordination of muscles underlying changes in behavioural dynamics.
Vernooij, Carlijn A; Rao, Guillaume; Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K; Temprado, Jean-Jacques
2016-06-10
The dynamical systems approach addresses Bernstein's degrees of freedom problem by assuming that the neuro-musculo-skeletal system transiently assembles and dismantles its components into functional units (or synergies) to meet task demands. Strikingly, little is known from a dynamical point of view about the functioning of the muscular sub-system in this process. To investigate the interaction between the dynamical organisation at muscular and behavioural levels, we searched for specific signatures of a phase transition in muscular coordination when a transition is displayed at the behavioural level. Our results provide evidence that, during Fitts' task when behaviour switches to a different dynamical regime, muscular activation displays typical signatures of a phase transition; a reorganisation in muscular coordination patterns accompanied by a peak in the variability of muscle activation. This suggests that consistent changes occur in coordination processes across the different levels of description (i.e., behaviour and muscles). Specifically, in Fitts' task, target size acts as a control parameter that induces a destabilisation and a reorganisation of coordination patterns at different levels of the neuro-musculo-skeletal system.
Dynamic self-cleaning in gecko setae via digital hyperextension
Hu, Shihao; Lopez, Stephanie; Niewiarowski, Peter H.; Xia, Zhenhai
2012-01-01
Gecko toe pads show strong adhesion on various surfaces yet remain remarkably clean around everyday contaminants. An understanding of how geckos clean their toe pads while being in motion is essential for the elucidation of animal behaviours as well as the design of biomimetic devices with optimal performance. Here, we test the self-cleaning of geckos during locomotion. We provide, to our knowledge, the first evidence that geckos clean their feet through a unique dynamic self-cleaning mechanism via digital hyperextension. When walking naturally with hyperextension, geckos shed dirt from their toes twice as fast as they would if walking without hyperextension, returning their feet to nearly 80 per cent of their original stickiness in only four steps. Our dynamic model predicts that when setae suddenly release from the attached substrate, they generate enough inertial force to dislodge dirt particles from the attached spatulae. The predicted cleaning force on dirt particles significantly increases when the dynamic effect is included. The extraordinary design of gecko toe pads perfectly combines dynamic self-cleaning with repeated attachment/detachment, making gecko feet sticky yet clean. This work thus provides a new mechanism to be considered for biomimetic design of highly reuseable and reliable dry adhesives and devices. PMID:22696482
Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation.
Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro
2016-10-24
The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals' social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.
Asymptotic theory of time-varying social networks with heterogeneous activity and tie allocation
NASA Astrophysics Data System (ADS)
Ubaldi, Enrico; Perra, Nicola; Karsai, Márton; Vezzani, Alessandro; Burioni, Raffaella; Vespignani, Alessandro
2016-10-01
The dynamic of social networks is driven by the interplay between diverse mechanisms that still challenge our theoretical and modelling efforts. Amongst them, two are known to play a central role in shaping the networks evolution, namely the heterogeneous propensity of individuals to i) be socially active and ii) establish a new social relationships with their alters. Here, we empirically characterise these two mechanisms in seven real networks describing temporal human interactions in three different settings: scientific collaborations, Twitter mentions, and mobile phone calls. We find that the individuals’ social activity and their strategy in choosing ties where to allocate their social interactions can be quantitatively described and encoded in a simple stochastic network modelling framework. The Master Equation of the model can be solved in the asymptotic limit. The analytical solutions provide an explicit description of both the system dynamic and the dynamical scaling laws characterising crucial aspects about the evolution of the networks. The analytical predictions match with accuracy the empirical observations, thus validating the theoretical approach. Our results provide a rigorous dynamical system framework that can be extended to include other processes shaping social dynamics and to generate data driven predictions for the asymptotic behaviour of social networks.
Ellis, Alicia M
2008-01-01
1. Researchers often use the spatial distribution of insect offspring as a measure of adult oviposition preferences, and then make conclusions about the consequences of these preferences for population growth and the relationship between life-history traits (e.g. oviposition preference and offspring performance). However, several processes other than oviposition preference can generate spatial patterns of offspring density (e.g. dispersal limitations, spatially heterogeneous mortality rates). Incorrectly assuming that offspring distributions reflect oviposition preferences may therefore compromise our ability to understand the mechanisms determining population distributions and the relationship between life-history traits. 2. The purpose of this study was to perform an empirical study at the whole-system scale to examine the movement and oviposition behaviours of the eastern tree hole mosquito Ochlerotatus triseriatus (Say) and test the importance of these behaviours in determining population distribution relative to other mechanisms. 3. A mark-release-recapture experiment was performed to distinguish among the following alternative hypotheses that may explain a previously observed aggregated distribution of tree hole mosquito offspring: (H(1)) mosquitoes prefer habitats with particular vegetation characteristics and these preferences determine the distribution of their offspring; (H(2)) mosquitoes distribute their eggs randomly or evenly throughout their environment, but spatial differences in developmental success generate an aggregated pattern of larval density; (H(3)) mosquitoes randomly colonize habitats, but have limited dispersal capability causing them to distribute offspring where founder populations were established; (H(4)) wind or other environmental factors may lead to passive aggregation, or spatial heterogeneity in adult mortality (H(5)), rather than dispersal, generates clumped offspring distributions. 4. Results indicate that the distribution of tree hole mosquito larvae is determined in part by adult habitat selection (H(1)), but do not exclude additional effects from passive aggregation (H(4)), or spatial patterns in adult mortality (H(5)). 5. This research illustrates the importance of studying oviposition behaviour at the population scale to better evaluate its relative importance in determining population distribution and dynamics. Moreover, this study demonstrates the importance of linking behavioural and population dynamics for understanding evolutionary relationships among life-history traits (e.g. preference and offspring performance) and predicting when behaviour will be important in determining population phenomena.
Predator–prey interactions mediated by prey personality and predator hunting mode
Belgrad, Benjamin A.; Griffen, Blaine D.
2016-01-01
Predator–prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator–prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau. We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator–prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics. PMID:27075257
Predator-prey interactions mediated by prey personality and predator hunting mode.
Belgrad, Benjamin A; Griffen, Blaine D
2016-04-13
Predator-prey interactions are important drivers in structuring ecological communities. However, despite widespread acknowledgement that individual behaviours and predator species regulate ecological processes, studies have yet to incorporate individual behavioural variations in a multipredator system. We quantified a prevalent predator avoidance behaviour to examine the simultaneous roles of prey personality and predator hunting mode in governing predator-prey interactions. Mud crabs, Panopeus herbstii, reduce their activity levels and increase their refuge use in the presence of predator cues. We measured mud crab mortality and consistent individual variations in the strength of this predator avoidance behaviour in the presence of predatory blue crabs, Callinectes sapidus, and toadfish, Opsanus tau We found that prey personality and predator species significantly interacted to affect mortality with blue crabs primarily consuming bold mud crabs and toadfish preferentially selecting shy crabs. Additionally, the strength of the predator avoidance behaviour depended upon the predation risk from the predator species. Consequently, the personality composition of populations and predator hunting mode may be valuable predictors of both direct and indirect predator-prey interaction strength. These findings support theories postulating mechanisms for maintaining intraspecies diversity and have broad implications for community dynamics. © 2016 The Author(s).
Disgust as an adaptive system for disease avoidance behaviour
Curtis, Valerie; de Barra, Mícheál; Aunger, Robert
2011-01-01
Disgust is an evolved psychological system for protecting organisms from infection through disease avoidant behaviour. This ‘behavioural immune system’, present in a diverse array of species, exhibits universal features that orchestrate hygienic behaviour in response to cues of risk of contact with pathogens. However, disgust is also a dynamic adaptive system. Individuals show variation in pathogen avoidance associated with psychological traits like having a neurotic personality, as well as a consequence of being in certain physiological states such as pregnancy or infancy. Three specialized learning mechanisms modify the disgust response: the Garcia effect, evaluative conditioning and the law of contagion. Hygiene behaviour is influenced at the group level through social learning heuristics such as ‘copy the frequent’. Finally, group hygiene is extended symbolically to cultural rules about purity and pollution, which create social separations and are enforced as manners. Cooperative hygiene endeavours such as sanitation also reduce pathogen prevalence. Our model allows us to integrate perspectives from psychology, ecology and cultural evolution with those of epidemiology and anthropology. Understanding the nature of disease avoidance psychology at all levels of human organization can inform the design of programmes to improve public health. PMID:21199843
Rotational dynamics of cargos at pauses during axonal transport.
Gu, Yan; Sun, Wei; Wang, Gufeng; Jeftinija, Ksenija; Jeftinija, Srdija; Fang, Ning
2012-01-01
Direct visualization of axonal transport in live neurons is essential for our understanding of the neuronal functions and the working mechanisms of microtubule-based motor proteins. Here we use the high-speed single particle orientation and rotational tracking technique to directly visualize the rotational dynamics of cargos in both active directional transport and pausing stages of axonal transport, with a temporal resolution of 2 ms. Both long and short pauses are imaged, and the correlations between the pause duration, the rotational behaviour of the cargo at the pause, and the moving direction after the pause are established. Furthermore, the rotational dynamics leading to switching tracks are visualized in detail. These first-time observations of cargo's rotational dynamics provide new insights on how kinesin and dynein motors take the cargo through the alternating stages of active directional transport and pause.
Coupled grain boundary motion in aluminium: the effect of structural multiplicity
NASA Astrophysics Data System (ADS)
Cheng, Kuiyu; Zhang, Liang; Lu, Cheng; Tieu, Kiet
2016-05-01
The shear-induced coupled grain boundary motion plays an important role in the deformation of nanocrystalline (NC) materials. It has been known that the atomic structure of the grain boundary (GB) is not necessarily unique for a given set of misorientation and inclination of the boundary plane. However, the effect of the structural multiplicity of the GB on its coupled motion has not been reported. In the present study we investigated the structural multiplicity of the symmetric tilt Σ5(310) boundary in aluminium and its influence on the GB behaviour at a temperature range of 300 K-600 K using molecular dynamic simulations. Two starting atomic configurations were adopted in the simulations which resulted in three different GB structures at different temperatures. Under the applied shear deformation each GB structure exhibited its unique GB behaviour. A dual GB behaviour, namely the transformation of one GB behaviour to another during deformation, was observed for the second starting configuration at a temperature of 500 K. The atomistic mechanisms responsible for these behaviour were analysed in detail. The result of this study implicates a strong relationship between GB structures and their behaviour, and provides a further information of the grain boundary mediated plasticity in nanocrystalline materials.
Behaviour of Rotating Bose Einstein Condensates Under Shrinking
NASA Astrophysics Data System (ADS)
Zhai, Hui; Zhou, Qi
2005-01-01
When the repulsive interaction strength between atoms decreases, the size of a rotating Bose-Einstein condensate will consequently shrink. We find that the rotational frequency will increase during the shrinking of condensate, which is a quantum mechanical analogy to ballet dancing. Compared to a non-rotating condensate, the size of a rotating BEC will eventually be saturated at a finite value when the interaction strength is gradually reduced. We also calculate the vortex dynamics induced by the atomic current, and discuss the difference of vortex dynamics in this case and that observed in a recent experiment carried out by the JILA group [Phys. Rev. Lett. 90 (2003) 170405].
Zitnay, Jared L; Li, Yang; Qin, Zhao; San, Boi Hoa; Depalle, Baptiste; Reese, Shawn P; Buehler, Markus J; Yu, S Michael; Weiss, Jeffrey A
2017-03-22
Mechanical injury to connective tissue causes changes in collagen structure and material behaviour, but the role and mechanisms of molecular damage have not been established. In the case of mechanical subfailure damage, no apparent macroscale damage can be detected, yet this damage initiates and potentiates in pathological processes. Here, we utilize collagen hybridizing peptide (CHP), which binds unfolded collagen by triple helix formation, to detect molecular level subfailure damage to collagen in mechanically stretched rat tail tendon fascicle. Our results directly reveal that collagen triple helix unfolding occurs during tensile loading of collagenous tissues and thus is an important damage mechanism. Steered molecular dynamics simulations suggest that a likely mechanism for triple helix unfolding is intermolecular shearing of collagen α-chains. Our results elucidate a probable molecular failure mechanism associated with subfailure injuries, and demonstrate the potential of CHP targeting for diagnosis, treatment and monitoring of tissue disease and injury.
The role of shear and tensile failure in dynamically triggered landslides
Gipprich, T.L.; Snieder, R.K.; Jibson, R.W.; Kimman, W.
2008-01-01
Dynamic stresses generated by earthquakes can trigger landslides. Current methods of landslide analysis such as pseudo-static analysis and Newmark's method focus on the effects of earthquake accelerations on the landslide mass to characterize dynamic landslide behaviour. One limitation of these methods is their use Mohr-Coulomb failure criteria, which only accounts for shear failure, but the role of tensile failure is not accounted for. We develop a limit-equilibrium model to investigate the dynamic stresses generated by a given ground motion due to a plane wave and use this model to assess the role of shear and tensile failure in the initiation of slope instability. We do so by incorporating a modified Griffith failure envelope, which combines shear and tensile failure into a single criterion. Tests of dynamic stresses in both homogeneous and layered slopes demonstrate that two modes of failure exist, tensile failure in the uppermost meters of a slope and shear failure at greater depth. Further, we derive equations that express the dynamic stress in the near-surface in the acceleration measured at the surface. These equations are used to approximately define the depth range for each mechanism of failure. The depths at which these failure mechanisms occur suggest that shear and tensile failure might collaborate in generating slope failure. ?? 2007 The Authors Journal compilation ?? 2007 RAS.
NASA Astrophysics Data System (ADS)
Kumar, Mohit
The unique set of mechanical and magnetic properties possessed by metallic glasses has attracted a lot of recent scientific and technological interest. The development of new metallic glass alloys with improved manufacturability, enhanced properties and higher ductility relies on the fundamental understanding of the interconnections between their atomic structure, glass forming ability (GFA), transport properties, and elastic and plastic deformation mechanisms. This thesis is focused on finding these atomic structure-property relationships in Cu-Zr BMGs using molecular dynamics simulations. In the first study described herein, molecular dynamics simulations of the rapid solidification process over the Cu-Zr compositional domain were conducted to explore inter-dependencies of atomic transport and fragility, elasticity and structural ordering, and GFA. The second study investigated the atomic origins of serration events, which is the characteristic plastic deformation behaviour in BMGs. The combined results of this work suggest that GFA and ductility of metallic glasses could be compositionally tuned.
Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster
Iverson, Richard M.; George, David L.
2016-01-01
Some landslides move slowly or intermittently downslope, but others liquefy during the early stages of motion, leading to runaway acceleration and high-speed runout across low-relief terrain. Mechanisms responsible for this disparate behaviour are represented in a two-phase, depth-integrated, landslide dynamics model that melds principles from soil mechanics, granular mechanics and fluid mechanics. The model assumes that gradually increasing pore-water pressure causes slope failure to nucleate at the weakest point on a basal slip surface in a statically balanced mass. Failure then spreads to adjacent regions as a result of momentum exchange. Liquefaction is contingent on pore-pressure feedback that depends on the initial soil state. The importance of this feedback is illustrated by using the model to study the dynamics of a disastrous landslide that occurred near Oso, Washington, USA, on 22 March 2014. Alternative simulations of the event reveal the pronounced effects of a landslide mobility bifurcation that occurs if the initial void ratio of water-saturated soil equals the lithostatic, critical-state void ratio. They also show that the tendency for bifurcation increases as the soil permeability decreases. The bifurcation implies that it can be difficult to discriminate conditions that favour slow landsliding from those that favour liquefaction and long runout.
NASA Astrophysics Data System (ADS)
Chung, Hayoung; Choi, Joonmyung; Yun, Jung-Hoon; Cho, Maenghyo
2016-02-01
A liquid crystal network whose chromophores are functionalized by photochromic dye exhibits light-induced mechanical behaviour. As a result, the micro-scaled thermotropic traits of the network and the macroscopic phase behaviour are both influenced as light alternates the shape of the dyes. In this paper, we present an analysis of this photomechanical behaviour based on the proposed multiscale framework, which incorporates the molecular details of microstate evolution into a continuum-based understanding. The effects of trans-to-cis photoisomerization driven by actinic light irradiation are first examined using molecular dynamics simulations, and are compared against the predictions of the classical dilution model; this reveals certain characteristics of mesogenic interaction upon isomerization, followed by changes in the polymeric structure. We then upscale the thermotropic phase-related information with the aid of a nonlinear finite element analysis; macroscopic deflection with respect to the wide ranges of temperature and actinic light intensity are thereby examined, which reveals that the classical model underestimates the true deformation. This work therefore provides measures for analysing photomechanics in general by bridging the gap between the micro- and macro-scales.
Control mechanisms for stochastic biochemical systems via computation of reachable sets.
Lakatos, Eszter; Stumpf, Michael P H
2017-08-01
Controlling the behaviour of cells by rationally guiding molecular processes is an overarching aim of much of synthetic biology. Molecular processes, however, are notoriously noisy and frequently nonlinear. We present an approach to studying the impact of control measures on motifs of molecular interactions that addresses the problems faced in many biological systems: stochasticity, parameter uncertainty and nonlinearity. We show that our reachability analysis formalism can describe the potential behaviour of biological (naturally evolved as well as engineered) systems, and provides a set of bounds on their dynamics at the level of population statistics: for example, we can obtain the possible ranges of means and variances of mRNA and protein expression levels, even in the presence of uncertainty about model parameters.
Control mechanisms for stochastic biochemical systems via computation of reachable sets
Lakatos, Eszter
2017-01-01
Controlling the behaviour of cells by rationally guiding molecular processes is an overarching aim of much of synthetic biology. Molecular processes, however, are notoriously noisy and frequently nonlinear. We present an approach to studying the impact of control measures on motifs of molecular interactions that addresses the problems faced in many biological systems: stochasticity, parameter uncertainty and nonlinearity. We show that our reachability analysis formalism can describe the potential behaviour of biological (naturally evolved as well as engineered) systems, and provides a set of bounds on their dynamics at the level of population statistics: for example, we can obtain the possible ranges of means and variances of mRNA and protein expression levels, even in the presence of uncertainty about model parameters. PMID:28878957
Dynamic contraction behaviour of pneumatic artificial muscle
NASA Astrophysics Data System (ADS)
Doumit, Marc D.; Pardoel, Scott
2017-07-01
The development of a dynamic model for the Pneumatic Artificial Muscle (PAM) is an imperative undertaking for understanding and analyzing the behaviour of the PAM as a function of time. This paper proposes a Newtonian based dynamic PAM model that includes the modeling of the muscle geometry, force, inertia, fluid dynamic, static and dynamic friction, heat transfer and valve flow while ignoring the effect of bladder elasticity. This modeling contribution allows the designer to predict, analyze and optimize PAM performance prior to its development. Thus advancing successful implementations of PAM based powered exoskeletons and medical systems. To date, most muscle dynamic properties are determined experimentally, furthermore, no analytical models that can accurately predict the muscle's dynamic behaviour are found in the literature. Most developed analytical models adequately predict the muscle force in static cases but neglect the behaviour of the system in the transient response. This could be attributed to the highly challenging task of deriving such a dynamic model given the number of system elements that need to be identified and the system's highly non-linear properties. The proposed dynamic model in this paper is successfully simulated through MATLAB programing and validated the pressure, contraction distance and muscle temperature with experimental testing that is conducted with in-house built prototype PAM's.
Birds achieve high robustness in uneven terrain through active control of landing conditions.
Birn-Jeffery, Aleksandra V; Daley, Monica A
2012-06-15
We understand little about how animals adjust locomotor behaviour to negotiate uneven terrain. The mechanical demands and constraints of such behaviours likely differ from uniform terrain locomotion. Here we investigated how common pheasants negotiate visible obstacles with heights from 10 to 50% of leg length. Our goal was to determine the neuro-mechanical strategies used to achieve robust stability, and address whether strategies vary with obstacle height. We found that control of landing conditions was crucial for minimising fluctuations in stance leg loading and work in uneven terrain. Variation in touchdown leg angle (θ(TD)) was correlated with the orientation of ground force during stance, and the angle between the leg and body velocity vector at touchdown (β(TD)) was correlated with net limb work. Pheasants actively targeted obstacles to control body velocity and leg posture at touchdown to achieve nearly steady dynamics on the obstacle step. In the approach step to an obstacle, the birds produced net positive limb work to launch themselves upward. On the obstacle, body dynamics were similar to uniform terrain. Pheasants also increased swing leg retraction velocity during obstacle negotiation, which we suggest is an active strategy to minimise fluctuations in peak force and leg posture in uneven terrain. Thus, pheasants appear to achieve robustly stable locomotion through a combination of path planning using visual feedback and active adjustment of leg swing dynamics to control landing conditions. We suggest that strategies for robust stability are context specific, depending on the quality of sensory feedback available, especially visual input.
Entanglement dynamics in itinerant fermionic and bosonic systems
NASA Astrophysics Data System (ADS)
Pillarishetty, Durganandini
2017-04-01
The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.
Pathways for diffusion in the potential energy landscape of the network glass former SiO2
NASA Astrophysics Data System (ADS)
Niblett, S. P.; Biedermann, M.; Wales, D. J.; de Souza, V. K.
2017-10-01
We study the dynamical behaviour of a computer model for viscous silica, the archetypal strong glass former, and compare its diffusion mechanism with earlier studies of a fragile binary Lennard-Jones liquid. Three different methods of analysis are employed. First, the temperature and time scale dependence of the diffusion constant is analysed. Negative correlation of particle displacements influences transport properties in silica as well as in fragile liquids. We suggest that the difference between Arrhenius and super-Arrhenius diffusive behaviour results from competition between the correlation time scale and the caging time scale. Second, we analyse the dynamics using a geometrical definition of cage-breaking transitions that was proposed previously for fragile glass formers. We find that this definition accurately captures the bond rearrangement mechanisms that control transport in open network liquids, and reproduces the diffusion constants accurately at low temperatures. As the same method is applicable to both strong and fragile glass formers, we can compare correlation time scales in these two types of systems. We compare the time spent in chains of correlated cage breaks with the characteristic caging time and find that correlations in the fragile binary Lennard-Jones system persist for an order of magnitude longer than those in the strong silica system. We investigate the origin of the correlation behaviour by sampling the potential energy landscape for silica and comparing it with the binary Lennard-Jones model. We find no qualitative difference between the landscapes, but several metrics suggest that the landscape of the fragile liquid is rougher and more frustrated. Metabasins in silica are smaller than those in binary Lennard-Jones and contain fewer high-barrier processes. This difference probably leads to the observed separation of correlation and caging time scales.
Belov, Oleg V; Belokopytova, Ksenia V; Bazyan, Ara S; Kudrin, Vladimir S; Narkevich, Viktor B; Ivanov, Aleksandr A; Severiukhin, Yury S; Timoshenko, Gennady N; Krasavin, Eugene A
2016-09-01
Planning of the deep-space exploration missions raises a number of questions on the radiation protection of astronauts. One of the medical concerns is associated with exposure of a crew to highly energetic particles of galactic cosmic rays. Among many other health disorders, irradiation with these particles has a substantial impact on the central nervous system (CNS). Although radiation damage to CNS has been addressed extensively during the last years, the mechanisms underlying observed impairments remain mostly unknown. The present study reveals neurochemical and behavioural alterations induced in rats by 1Gy of 500MeV/u (12)C particles with a relatively moderate linear energy transfer (10.6keV/μm). It is found that exposure to carbon ions leads to significant modification of the normal monoamine metabolism dynamics as well as the locomotor, exploratory, and anxiety-like behaviours during a two-month period. The obtained results indicate an abnormal redistribution of monoamines and their metabolites in different brain regions after exposure. The most pronounced impairments are detected in the prefrontal cortex, nucleus accumbens, and hypothalamus that illustrate the sensitivity of these brain regions to densely ionizing radiations. It is also shown that exposure to (12)C particles enhances the anxiety in animals and accelerates the age-related reduction in their exploratory capability. The observed monoamine metabolism pattern may indicate the presence of certain compensatory mechanisms being induced in response to irradiation and capable of partial restoration of monoaminergic systems' functions. Overall, these findings support a possibility of CNS damage by space-born particles of a relatively moderate linear energy transfer. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Borah, Utpal; Aashranth, B.; Samantaray, Dipti; Kumar, Santosh; Davinci, M. Arvinth; Albert, Shaju K.; Bhaduri, A. K.
2017-10-01
Work hardening, dynamic recovery and dynamic recrystallization (DRX) occurring during hot working of austenitic steel have been extensively studied. Various empirical models describe the nature and effects of these phenomena in a typical framework. However, the typical model is sometimes violated following atypical transitions in deformation mechanisms of the material. To ascertain the nature of these atypical transitions, researchers have intentionally introduced discontinuities in the deformation process, such as interrupting the deformation as in multi-step rolling and abruptly changing the rate of deformation. In this work, we demonstrate that atypical transitions are possible even in conventional single-step, constant strain rate deformation of austenitic steel. Towards this aim, isothermal, constant true strain rate deformation of austenitic steel has been carried out in a temperature range of 1173-1473 K and strain rate range of 0.01-100 s-1. The microstructural response corresponding to each deformation condition is thoroughly investigated. The conventional power-law variation of deformation grain size (D) with peak stress (σp) during DRX is taken as a typical model and experimental data is tested against it. It is shown that σp-D relations exhibit an atypical two-slope linear behaviour rather than a continuous power law relation. Similarly, the reduction in σp with temperature (T) is found to consist of two discrete linear segments. In practical terms, the two linear segments denote two distinct microstructural responses to deformation. As a consequence of this distinction, the typical model breaks down and is unable to completely relate microstructural evolution to flow behaviour. The present work highlights the microstructural mechanisms responsible for this atypical behavior and suggests strategies to incorporate the two-slope behaviour in the DRX model.
Inhomogeneity of the ultrafast insulator-to-metal transition dynamics of VO2.
O'Callahan, Brian T; Jones, Andrew C; Hyung Park, Jae; Cobden, David H; Atkin, Joanna M; Raschke, Markus B
2015-04-21
The insulator-metal transition (IMT) of vanadium dioxide (VO2) has remained a long-standing challenge in correlated electron physics since its discovery five decades ago. Most interpretations of experimental observations have implicitly assumed a homogeneous material response. Here we reveal inhomogeneous behaviour of even individual VO2 microcrystals using pump-probe microscopy and nanoimaging. The timescales of the ultrafast IMT vary from 40±8 fs, that is, shorter than a suggested phonon bottleneck, to 200±20 fs, uncorrelated with crystal size, transition temperature and initial insulating structural phase, with average value similar to results from polycrystalline thin-film studies. In combination with the observed sensitive variations in the thermal nanodomain IMT behaviour, this suggests that the IMT is highly susceptible to local changes in, for example, doping, defects and strain. Our results suggest an electronic mechanism dominating the photoinduced IMT, but also highlight the difficulty to deduce microscopic mechanisms when the true intrinsic material response is yet unclear.
NASA Astrophysics Data System (ADS)
Petley, D. N.; Carey, J.; Massey, C. I.; Brain, M.
2015-12-01
The mechanisms of pre- and post-failure movement of translational landslides remain surprisingly poorly investigated. Previous approaches have focussed on field monitoring, for example through high resolution automated surveying and/or GPS measurements, or from modelling using dedicated codes. There has been some experimental work too, most notably using ring shear devices, although there are limitations as to the type of analyses that can be completed in these devices. In recent years the author has been involved in a series of studies that have sought to understand pre- and post-failure behaviour in translational landslides using both high precision monitoring and experimental investigation using novel apparatus. The latter approach has involved the use of the back pressured shear box, a direct shear machine that allows near-infinite variation of the normal and shear stress state, and measurement and control of the pore water pressure. More recently, a more advanced version of this machine has been developed that allows dynamic loading of both direct and normal shear stresses. This paper presents key lessons learnt about the behaviour of translational landslides from these approaches. The data highlight a number of key elements: The important differences in pre-failure behaviour for materials that show a brittle response compared with those that are ductile. In particular, some aspects of behaviour (e.g. the hyperbolic acceleration to failure) can only be replicated in materials that show brittle cracking processes; In the post-failure domain, all materials show a high level of sensitivity to small changes in pore water pressure when the Factor of Safety is close to unity; Rates of strain are not simply related to pore water pressure / stress state. In particular, some materials show a different deformation response during phases of increasing pore water pressure to that during periods of pore water pressure reduction. The reasons for this require further study; Dynamic behaviour is complex, with variations in behaviour between different materials types being greater than expected. These results show that the behaviour of materials in the post-failure domain is more complex than had been appreciated previously, suggesting that more work is needed to explain landslide behaviour in this regime.
Calcite Decarbonation and its Influence on the Mechanical Behaviour of Carbonate-bearing Faults
NASA Astrophysics Data System (ADS)
Carpenter, Brett; Collettini, Cristiano; Mollo, Silvio; Viti, Cecilia
2014-05-01
Calcite decarbonation has been identified as one of the important, thermally-activated physicochemical processes that are triggered by temperature rise during fast fault motion. This process has been observed in the laboratory during high-velocity friction experiments where the dynamic weakening that occurs for carbonate-rich gouges is strictly controlled by the thermal decomposition of calcite. Furthermore, this process has also been identified along ancient, exhumed faults and is an important indicator of seismic slip. The thermally-induced decarbonation (CaCO3 → CaO + CO2) and microcracking (due to thermal expansion) of calcite are likely to be primary mechanisms in controlling the mechanical and hydrologic properties of carbonate rocks. In addition, the process and products of decarbonation will likely exert significant influence on the behaviour of faults at both geologic and earthquake time scales by causing changes in (1) the effective normal stress on the fault and (2) the frictional behaviour of material within it. Due to the paucity of scientific information on the effects of decarbonation and thermal microcracking on the mechanical properties of carbonate fault rocks, we present results from experiments performed on portlandite (>90 wt.%), a hydrous mineral formed by the recombination of CaO and water, and stable product of the decarbonation reaction. We produced portlandite by thermally-treating powdered Carrara Marble (calcite >98 wt.%) in the laboratory at 1100 °C under air buffering conditions. We then sheared gouge layers of this water-reacted, decarbonation product under saturated conditions at room temperature. These tests were designed to evaluate the frictional strength, stability, and healing behaviour of portlandite-bearing rocks to better understand how its presence affects fault mechanics. Our data indicate that the conversion of calcite to portlandite, results in a distinct change in the mechanical behaviour of the fault gouge. The difference in frictional strength, between marble and portlandite, increases from 0µ to 0.4µ as the normal stress is increased from 1 to 50 MPa. Additionally, at the low shearing rates of 0.1 and 0.3 µm/s, portlandite fails through stick-slip motion whereas calcite slides stably. Furthermore, we observe power-law type healing in portlandite that results in a dramatic increase in static frictional strength of ~0.2 µ over a relatively short hold time of 3000s. We suggest that decarbonated fault patches are (1) frictionally weaker, (2) more frictionally unstable, and (3) likely to regain their frictional strength more quickly, than patches in pure carbonate rocks. Under water-saturated conditions, the occurrence of portlandite and other hydrous minerals is undoubtedly the key for interpreting changes in the mechanical behaviour, both transient and long-term, of decarbonated faults.
An electromechanical based deformable model for soft tissue simulation.
Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan
2009-11-01
Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.
Criaud, Marion; Longcamp, Marieke; Anton, Jean-Luc; Nazarian, Bruno; Roth, Muriel; Sescousse, Guillaume; Strafella, Antonio P; Ballanger, Bénédicte; Boulinguez, Philippe
2017-08-30
The neural mechanisms underlying response inhibition and related disorders are unclear and controversial for several reasons. First, it is a major challenge to assess the psychological bases of behaviour, and ultimately brain-behaviour relationships, of a function which is precisely intended to suppress overt measurable behaviours. Second, response inhibition is difficult to disentangle from other parallel processes involved in more general aspects of cognitive control. Consequently, different psychological and anatomo-functional models coexist, which often appear in conflict with each other even though they are not necessarily mutually exclusive. The standard model of response inhibition in go/no-go tasks assumes that inhibitory processes are reactively and selectively triggered by the stimulus that participants must refrain from reacting to. Recent alternative models suggest that action restraint could instead rely on reactive but non-selective mechanisms (all automatic responses are automatically inhibited in uncertain contexts) or on proactive and non-selective mechanisms (a gating function by which reaction to any stimulus is prevented in anticipation of stimulation when the situation is unpredictable). Here, we assessed the physiological plausibility of these different models by testing their respective predictions regarding event-related BOLD modulations (forward inference using fMRI). We set up a single fMRI design which allowed for us to record simultaneously the different possible forms of inhibition while limiting confounds between response inhibition and parallel cognitive processes. We found BOLD dynamics consistent with non-selective models. These results provide new theoretical and methodological lines of inquiry for the study of basic functions involved in behavioural control and related disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Fully three-dimensional analysis of high-speed train-track-soil-structure dynamic interaction
NASA Astrophysics Data System (ADS)
Galvín, P.; Romero, A.; Domínguez, J.
2010-11-01
In this paper, a general and fully three dimensional multi-body-finite element-boundary element model, formulated in the time domain to predict vibrations due to train passage at the vehicle, the track and the free field, is presented. The vehicle is modelled as a multi-body system and, therefore, the quasi-static and the dynamic excitation mechanisms due to train passage can be considered. The track is modelled using finite elements. The soil is considered as a homogeneous half-space by the boundary element method. This methodology could be used to take into account local soil discontinuities, underground constructions such as underpasses, and coupling with nearby structures that break the uniformity of the geometry along the track line. The nonlinear behaviour of the structures could be also considered. In the present paper, in order to test the model, vibrations induced by high-speed train passage are evaluated for a ballasted track. The quasi-static and dynamic load components are studied and the influence of the suspended mass on the vertical loads is analyzed. The numerical model is validated by comparison with experimental records from two HST lines. Finally, the dynamic behaviour of a transition zone between a ballast track and a slab track is analyzed and the obtained results from the proposed model are compared with those obtained from a model with invariant geometry with respect to the track direction.
Dual aging behaviour in a clay-polymer dispersion.
Zulian, Laura; Augusto de Melo Marques, Flavio; Emilitri, Elisa; Ruocco, Giancarlo; Ruzicka, Barbara
2014-07-07
Clay-polymer compounds have recently attracted increasing attention due to their intriguing physical properties in colloidal science and their rheological non-trivial behaviour in technological applications. Aqueous solutions of Laponite clay spontaneously age from a liquid up to an arrested state of different nature (gel or glass) depending on the colloidal volume fraction and ionic strength. We have investigated, through dynamic light scattering, how the aging dynamics of Laponite dispersions at fixed clay concentration (Cw = 2.0%) is modified by the addition of various amounts of poly(ethylene oxide) (PEO) (CPEO = (0.05 ÷ 0.50) %) at two different molecular weights (Mw = 100 kg mol(-1) and Mw = 200 kg mol(-1)). A surprising and intriguing phenomenon has been observed: the existence of a critical polymer concentration C that discriminates between two different aging dynamics. With respect to pure Laponite systems the aging will be assisted (faster) or hindered (slower) for PEO concentrations respectively lower (CPEO < C) or higher (CPEO > C) than the critical concentration. In this way a control on the aging dynamics of PEO-Laponite systems is obtained. A possible explanation based on the balance of competitive mechanisms related to the progressive saturation of the clay surface by polymers is proposed. This study shows how a real control on the aging speed of the PEO-Laponite system is at hand and renders possible a real control of the complex interparticle interaction potential.
Spinfoam cosmology with the proper vertex amplitude
NASA Astrophysics Data System (ADS)
Vilensky, Ilya
2017-11-01
The proper vertex amplitude is derived from the Engle-Pereira-Rovelli-Livine vertex by restricting to a single gravitational sector in order to achieve the correct semi-classical behaviour. We apply the proper vertex to calculate a cosmological transition amplitude that can be viewed as the Hartle-Hawking wavefunction. To perform this calculation we deduce the integral form of the proper vertex and use extended stationary phase methods to estimate the large-volume limit. We show that the resulting amplitude satisfies an operator constraint whose classical analogue is the Hamiltonian constraint of the Friedmann-Robertson-Walker cosmology. We find that the constraint dynamically selects the relevant family of coherent states and demonstrate a similar dynamic selection in standard quantum mechanics. We investigate the effects of dynamical selection on long-range correlations.
Theories of time-dependent and time-independent nearside-farside reactive scattering dynamics
NASA Astrophysics Data System (ADS)
Monks, Phillip David Durrant
The first application of nearside-farside (NF) theory is made to the time-dependent partial wave series (PWS) representation of the scattering amplitude for the reaction H + D[2](v = 0,j = 0, m = 0) → HD(v' = 3,j' = 0, m'= 0) + D. Time-dependent NF angular distributions and time-dependent NF local angular momenta (LAMs) are defined and used to analyse the dynamics in terms of time- direct and time-delayed reaction mechanisms. The concept of a cumulative time-evolving differential cross section (DCS) is introduced and used to provide a new method for visualising the time evolution of a chemical reaction. Time-independent NF DCS and LAM analyses of the H + D[2] reaction are presented, highlighting a distinctive "trench-ridge" feature present in the full and N LAMs. It is used to define a cut line which separates the energy-analogs of the two time- distinct reaction mechanisms. This trench-ridge feature is shown to be an interference between the time-direct (backward-scattered) and time-delayed (forward-scattered) reaction mechanisms. Resummation PWS theory is used to "clean" plots of the NF DCSs and LAMs of unphysical effects. A limitation of the resummation theory is described, whereby unphysical behaviour is sometimes introduced into the N and F subamplitudes. A technique for predicting and avoiding these undesired effects is used to further improve the usefulness of the resummation technique. The fundamental identity for NF local angular momenta is stated and derived by two methods. This identity gives rise to a CLAM plot (where CLAM denotes Cross section x LAM), which provides insight into the empirical obsei'vation that DCS and LAM analyses give consistent, yet complementary, information on the reaction dynamics. Applications are reported for the H + D[2] reaction, as well as for F + H[2](v = 0,j=0, m = 0)→ FH(v' = 3,j' = 3, m' = 0) + H. The angular time-delay for a state-to-state reactive collision often displays complicated behaviour. It is shown for the H + D[2] and F + H[2] reactions that this behaviour is caused by NF interference. The fundamental identity for NF angular time-delays is stated, and CATD (Cross section x Angular Time-Delay) results are reported, which provide further insight into the properties of the angular time-delay.
Reputation drives cooperative behaviour and network formation in human groups.
Cuesta, Jose A; Gracia-Lázaro, Carlos; Ferrer, Alfredo; Moreno, Yamir; Sánchez, Angel
2015-01-19
Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce.
The Dynamic Performance of Flexural Ultrasonic Transducers.
Feeney, Andrew; Kang, Lei; Rowlands, George; Dixon, Steve
2018-01-18
Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.
The Dynamic Performance of Flexural Ultrasonic Transducers
Kang, Lei; Rowlands, George; Dixon, Steve
2018-01-01
Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems. PMID:29346297
Reputation drives cooperative behaviour and network formation in human groups
Cuesta, Jose A.; Gracia-Lázaro, Carlos; Ferrer, Alfredo; Moreno, Yamir; Sánchez, Angel
2015-01-01
Cooperativeness is a defining feature of human nature. Theoreticians have suggested several mechanisms to explain this ubiquitous phenomenon, including reciprocity, reputation, and punishment, but the problem is still unsolved. Here we show, through experiments conducted with groups of people playing an iterated Prisoner's Dilemma on a dynamic network, that it is reputation what really fosters cooperation. While this mechanism has already been observed in unstructured populations, we find that it acts equally when interactions are given by a network that players can reconfigure dynamically. Furthermore, our observations reveal that memory also drives the network formation process, and cooperators assort more, with longer link lifetimes, the longer the past actions record. Our analysis demonstrates, for the first time, that reputation can be very well quantified as a weighted mean of the fractions of past cooperative acts and the last action performed. This finding has potential applications in collaborative systems and e-commerce. PMID:25598347
Direct observation of TALE protein dynamics reveals a two-state search mechanism
Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.
2015-01-01
Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process—a search state and a recognition state—facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state. PMID:26027871
Direct observation of TALE protein dynamics reveals a two-state search mechanism.
Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M
2015-06-01
Transcription activator-like effector (TALE) proteins are a class of programmable DNA-binding proteins for which the fundamental mechanisms governing the search process are not fully understood. Here we use single-molecule techniques to directly observe TALE search dynamics along DNA templates. We find that TALE proteins are capable of rapid diffusion along DNA using a combination of sliding and hopping behaviour, which suggests that the TALE search process is governed in part by facilitated diffusion. We also observe that TALE proteins exhibit two distinct modes of action during the search process-a search state and a recognition state-facilitated by different subdomains in monomeric TALE proteins. Using TALE truncation mutants, we further demonstrate that the N-terminal region of TALEs is required for the initial non-specific binding and subsequent rapid search along DNA, whereas the central repeat domain is required for transitioning into the site-specific recognition state.
Classical Molecular Dynamics Simulation of Nuclear Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram; Krack, Matthias; Bertolus, Marjorie
2015-10-10
Molecular dynamics simulation is well suited to study primary damage production by irradiation, defect interactions with fission gas atoms, gas bubble nucleation, grain boundary effects on defect and gas bubble evolution in nuclear fuel, and the resulting changes in thermo-mechanical properties. In these simulations, the forces on the ions are dictated by interaction potentials generated by fitting properties of interest to experimental data. The results obtained from the present generation of potentials are qualitatively similar, but quantitatively different. There is a need to refine existing potentials to provide a better representation of the performance of polycrystalline fuel under a varietymore » of operating conditions, and to develop models that are equipped to handle deviations from stoichiometry. In addition to providing insights into fundamental mechanisms governing the behaviour of nuclear fuel, MD simulations can also provide parameters that can be used as inputs for mesoscale models.« less
Nazarynasab, Dariush; Farahmand, Farzam; Mirbagheri, Alireza; Afshari, Elnaz
2017-07-01
Data related to force-deformation behaviour of soft tissue plays an important role in medical/surgical applications such as realistically modelling mechanical behaviour of soft tissue as well as minimally invasive surgery (MIS) and medical diagnosis. While the mechanical behaviour of soft tissue is very complex due to its different constitutive components, some issues increase its complexity like behavioural changes between the live and dead tissues. Indeed, an adequate quantitative description of mechanical behaviour of soft tissues requires high quality in vivo experimental data to be obtained and analysed. This paper describes a novel laparoscopic grasper with two parallel jaws capable of obtaining compressive force-deformation data related to mechanical behaviour of soft tissues. This new laparoscopic grasper includes four sections as mechanical hardware, sensory part, electrical/electronical part and data storage part. By considering a unique design for mechanical hardware, data recording conditions will be close to unconfined-compression-test conditions; so obtained data can be properly used in extracting the mechanical behaviour of soft tissues. Also, the other distinguishing feature of this new system is its applicability during different laparoscopic surgeries and subsequently obtaining in vivo data. However, more preclinical examinations are needed to evaluate the practicality of the novel laparoscopic grasper with two parallel jaws.
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-01
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion–fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies. PMID:26786848
Sugiura, Haruka; Ito, Manami; Okuaki, Tomoya; Mori, Yoshihito; Kitahata, Hiroyuki; Takinoue, Masahiro
2016-01-20
The design, construction and control of artificial self-organized systems modelled on dynamical behaviours of living systems are important issues in biologically inspired engineering. Such systems are usually based on complex reaction dynamics far from equilibrium; therefore, the control of non-equilibrium conditions is required. Here we report a droplet open-reactor system, based on droplet fusion and fission, that achieves dynamical control over chemical fluxes into/out of the reactor for chemical reactions far from equilibrium. We mathematically reveal that the control mechanism is formulated as pulse-density modulation control of the fusion-fission timing. We produce the droplet open-reactor system using microfluidic technologies and then perform external control and autonomous feedback control over autocatalytic chemical oscillation reactions far from equilibrium. We believe that this system will be valuable for the dynamical control over self-organized phenomena far from equilibrium in chemical and biomedical studies.
ERIC Educational Resources Information Center
Brymer, Eric; Davids, Keith
2013-01-01
This paper proposes how the theoretical framework of ecological dynamics can provide an influential model of the learner and the learning process to pre-empt effective behaviour changes. Here we argue that ecological dynamics supports a well-established model of the learner ideally suited to the environmental education context because of its…
Tomkins, Patrick; Saaristo, Minna; Bertram, Michael G; Tomkins, Raymond B; Allinson, Mayumi; Wong, Bob B M
2017-11-01
Despite a growing literature highlighting the potential impact of human-induced environmental change on mechanisms of sexual selection, relatively little is known about the effects of chemical pollutants on male-male competition. One class of environmental pollutant likely to impact male competitive interactions is the endocrine-disrupting chemicals (EDCs), a large and heterogeneous group of chemical contaminants with the potential to influence morphology, physiology and behaviour at minute concentrations. One EDC of increasing concern is the synthetic, androgenic steroid 17β-trenbolone, which is used globally to promote growth in beef cattle. Although 17β-trenbolone has been found to cause severe morphological and behavioural abnormalities in fish, its potential impact on male-male competition has yet to be investigated. To address this, we exposed wild male guppies (Poecilia reticulata) to an environmentally realistic concentration of 17β-trenbolone (average measured concentration: 8 ng/L) for 21 days using a flow-through system. We found that, in the presence of a competitor, 17β-trenbolone-exposed males carried out more frequent aggressive behaviours towards rival males than did unexposed males, as well as performing less courting behaviour and more sneak (i.e., coercive) mating attempts towards females. Considering that, by influencing mating outcomes, male-male competition has important consequences for population dynamics and broader evolutionary processes, this study highlights the need for greater understanding of the potential impact of EDCs on the mechanisms of sexual selection. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Spike threshold dynamics in spinal motoneurons during scratching and swimming.
Grigonis, Ramunas; Alaburda, Aidas
2017-09-01
Action potential threshold can vary depending on firing history and synaptic inputs. We used an ex vivo carapace-spinal cord preparation from adult turtles to study spike threshold dynamics in motoneurons during two distinct types of functional motor behaviour - fictive scratching and fictive swimming. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Slow synaptic integration resulting in a wave of membrane potential depolarization is the factor influencing the threshold potential within firing bursts during motor behaviours. Depolarization of the threshold potential decreases the excitability of motoneurons and may provide a mechanism for stabilization of the response of a motoneuron to intense synaptic inputs to maintain the motor commands within an optimal range for muscle activation. During functional spinal neural network activity motoneurons receive intense synaptic input, and this could modulate the threshold for action potential generation, providing the ability to dynamically adjust the excitability and recruitment order for functional needs. In the present study we investigated the dynamics of action potential threshold during motor network activity. Intracellular recordings from spinal motoneurons in an ex vivo carapace-spinal cord preparation from adult turtles were performed during two distinct types of motor behaviour - fictive scratching and fictive swimming. We found that the threshold of the first spike in episodes of scratching and swimming was the lowest. The threshold potential depolarizes by about 10 mV within each burst of spikes generated during scratch and swim network activity and recovers between bursts to a slightly depolarized level. Depolarization of the threshold potential results in decreased excitability of motoneurons. Synaptic inputs do not modulate the threshold of the first action potential during episodes of scratching or of swimming. There is no correlation between changes in spike threshold and interspike intervals within bursts. Slow synaptic integration that results in a wave of membrane potential depolarization rather than fast synaptic events preceding each spike is the factor influencing the threshold potential within firing bursts during motor behaviours. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Social and economic influences on human behavioural response in an emerging epidemic
NASA Astrophysics Data System (ADS)
Phang, P.; Wiwatanapataphee, B.; Wu, Y. H.
2017-10-01
The human behavioural changes have been recognized as an important key in shaping the disease spreading and determining the success of control measures in the course of epidemic outbreaks. However, apart from cost-benefit considerations, in reality, people are heterogeneous in their preferences towards adopting certain protective actions to reduce their risk of infection, and social norms have a function in individuals’ decision making. Here, we studied the interplay between the epidemic dynamics, imitation dynamics and the heterogeneity of individual protective behavioural response under the considerations of both economic and social factors, with a simple mathematical compartmental model and multi-population game dynamical replicator equations. We assume that susceptibles in different subpopulations have different preferences in adopting either normal or altered behaviour. By incorporating both intra- and inter-group social pressure, the outcome of the strategy distribution depends on the initial proportion of susceptible with normal and altered strategies in both subpopulations. The increase of additional cost to susceptible with altered behaviour will discourage people to take up protective actions and hence results in higher epidemic final size. For a specific cost of altered behaviour, the social group pressure could be a “double edge sword”, though. We conclude that the interplays between individual protective behaviour adoption, imitation and epidemic dynamics are necessarily complex if both economic and social factors act on populations with existing preferences.
Novick, Kimberly A; Miniat, Chelcy F; Vose, James M
2016-03-01
We merge concepts from stomatal optimization theory and cohesion-tension theory to examine the dynamics of three mechanisms that are potentially limiting to leaf-level gas exchange in trees during drought: (1) a 'demand limitation' driven by an assumption of optimal stomatal functioning; (2) 'hydraulic limitation' of water movement from the roots to the leaves; and (3) 'non-stomatal' limitations imposed by declining leaf water status within the leaf. Model results suggest that species-specific 'economics' of stomatal behaviour may play an important role in differentiating species along the continuum of isohydric to anisohydric behaviour; specifically, we show that non-stomatal and demand limitations may reduce stomatal conductance and increase leaf water potential, promoting wide safety margins characteristic of isohydric species. We used model results to develop a diagnostic framework to identify the most likely limiting mechanism to stomatal functioning during drought and showed that many of those features were commonly observed in field observations of tree water use dynamics. Direct comparisons of modelled and measured stomatal conductance further indicated that non-stomatal and demand limitations reproduced observed patterns of tree water use well for an isohydric species but that a hydraulic limitation likely applies in the case of an anisohydric species. Published 2015. This article is a US Government work and is in the public domain in the USA.
Ice bridges and ridges in the Maxwell-EB sea ice rheology
NASA Astrophysics Data System (ADS)
Dansereau, Véronique; Weiss, Jérôme; Saramito, Pierre; Lattes, Philippe; Coche, Edmond
2017-09-01
This paper presents a first implementation of a new rheological model for sea ice on geophysical scales. This continuum model, called Maxwell elasto-brittle (Maxwell-EB), is based on a Maxwell constitutive law, a progressive damage mechanism that is coupled to both the elastic modulus and apparent viscosity of the ice cover and a Mohr-Coulomb damage criterion that allows for pure (uniaxial and biaxial) tensile strength. The model is tested on the basis of its capability to reproduce the complex mechanical and dynamical behaviour of sea ice drifting through a narrow passage. Idealized as well as realistic simulations of the flow of ice through Nares Strait are presented. These demonstrate that the model reproduces the formation of stable ice bridges as well as the stoppage of the flow, a phenomenon occurring within numerous channels of the Arctic. In agreement with observations, the model captures the propagation of damage along narrow arch-like kinematic features, the discontinuities in the velocity field across these features dividing the ice cover into floes, the strong spatial localization of the thickest, ridged ice, the presence of landfast ice in bays and fjords and the opening of polynyas downstream of the strait. The model represents various dynamical behaviours linked to an overall weakening of the ice cover and to the shorter lifespan of ice bridges, with implications in terms of increased ice export through narrow outflow pathways of the Arctic.
Exploring the importance of quantum effects in nucleation: The archetypical Nen case
NASA Astrophysics Data System (ADS)
Unn-Toc, Wesley; Halberstadt, Nadine; Meier, Christoph; Mella, Massimo
2012-07-01
The effect of quantum mechanics (QM) on the details of the nucleation process is explored employing Ne clusters as test cases due to their semi-quantal nature. In particular, we investigate the impact of quantum mechanics on both condensation and dissociation rates in the framework of the microcanonical ensemble. Using both classical trajectories and two semi-quantal approaches (zero point averaged dynamics, ZPAD, and Gaussian-based time dependent Hartree, G-TDH) to model cluster and collision dynamics, we simulate the dissociation and monomer capture for Ne8 as a function of the cluster internal energy, impact parameter and collision speed. The results for the capture probability Ps(b) as a function of the impact parameter suggest that classical trajectories always underestimate capture probabilities with respect to ZPAD, albeit at most by 15%-20% in the cases we studied. They also do so in some important situations when using G-TDH. More interestingly, dissociation rates kdiss are grossly overestimated by classical mechanics, at least by one order of magnitude. We interpret both behaviours as mainly due to the reduced amount of kinetic energy available to a quantum cluster for a chosen total internal energy. We also find that the decrease in monomer dissociation energy due to zero point energy effects plays a key role in defining dissociation rates. In fact, semi-quantal and classical results for kdiss seem to follow a common "corresponding states" behaviour when the proper definition of internal and dissociation energies are used in a transition state model estimation of the evaporation rate constants.
Integrating human behaviour dynamics into flood disaster risk assessment
NASA Astrophysics Data System (ADS)
Aerts, J. C. J. H.; Botzen, W. J.; Clarke, K. C.; Cutter, S. L.; Hall, J. W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther, H.
2018-03-01
The behaviour of individuals, businesses, and government entities before, during, and immediately after a disaster can dramatically affect the impact and recovery time. However, existing risk-assessment methods rarely include this critical factor. In this Perspective, we show why this is a concern, and demonstrate that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments. Such multidisciplinary approaches can inform flood-risk management policy development.
Complex contagion process in spreading of online innovation.
Karsai, Márton; Iñiguez, Gerardo; Kaski, Kimmo; Kertész, János
2014-12-06
Diffusion of innovation can be interpreted as a social spreading phenomenon governed by the impact of media and social interactions. Although these mechanisms have been identified by quantitative theories, their role and relative importance are not entirely understood, as empirical verification has so far been hindered by the lack of appropriate data. Here we analyse a dataset recording the spreading dynamics of the world's largest Voice over Internet Protocol service to empirically support the assumptions behind models of social contagion. We show that the rate of spontaneous service adoption is constant, the probability of adoption via social influence is linearly proportional to the fraction of adopting neighbours, and the rate of service termination is time-invariant and independent of the behaviour of peers. By implementing the detected diffusion mechanisms into a dynamical agent-based model, we are able to emulate the adoption dynamics of the service in several countries worldwide. This approach enables us to make medium-term predictions of service adoption and disclose dependencies between the dynamics of innovation spreading and the socio-economic development of a country. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures
Warmuth, Franziska; Körner, Carolin
2015-01-01
The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented. PMID:28793713
Phononic Band Gaps in 2D Quadratic and 3D Cubic Cellular Structures.
Warmuth, Franziska; Körner, Carolin
2015-12-02
The static and dynamic mechanical behaviour of cellular materials can be designed by the architecture of the underlying unit cell. In this paper, the phononic band structure of 2D and 3D cellular structures is investigated. It is shown how the geometry of the unit cell influences the band structure and eventually leads to full band gaps. The mechanism leading to full band gaps is elucidated. Based on this knowledge, a 3D cellular structure with a broad full band gap is identified. Furthermore, the dependence of the width of the gap on the geometry parameters of the unit cell is presented.
Dustan, A C; Cohen, B; Petrie, J G
2005-05-30
An understanding of the mechanisms which control solids formation can provide information on the characteristics of the solids which are formed. The nature of the solids formed in turn impacts on dewatering behaviour. The 'upstream' solids formation determines a set of suspension characteristics: solids concentration, particle size distribution, solution ionic strength and electrostatic surface potential. These characteristics together define the suspension's rheological properties. However, the complicated interdependence of these has precluded the prediction of suspension rheology from such a fundamental description of suspension characteristics. Recent shear yield stress models, applied in this study to compressive yield, significantly reduce the empiricism required for the description of compressive rheology. Suspension compressibility and permeability uniquely define the dewatering behaviour, described in terms of settling, filtration and mechanical expression. These modes of dewatering may be described in terms of the same fundamental suspension mechanics model. In this way, it is possible to link dynamically the processes of solids formation and dewatering of the resultant suspension. This, ultimately, opens the door to improved operability of these processes. In part I of this paper we introduced an integrated system model for solids formation and dewatering. This model was demonstrated for the upstream processes using experimental data. In this current paper models of colloidal interactions and dewatering are presented and compared to experimental results from batch filtration tests. A novel approach to predicting suspension compressibility and permeability using a single test configuration is presented and tested.
Liao, C-M; You, S-H; Cheng, Y-H
2015-01-01
Influenza poses a significant public health burden worldwide. Understanding how and to what extent people would change their behaviour in response to influenza outbreaks is critical for formulating public health policies. We incorporated the information-theoretic framework into a behaviour-influenza (BI) transmission dynamics system in order to understand the effects of individual behavioural change on influenza epidemics. We showed that information transmission of risk perception played a crucial role in the spread of health-seeking behaviour throughout influenza epidemics. Here a network BI model provides a new approach for understanding the risk perception spread and human behavioural change during disease outbreaks. Our study allows simultaneous consideration of epidemiological, psychological, and social factors as predictors of individual perception rates in behaviour-disease transmission systems. We suggest that a monitoring system with precise information on risk perception should be constructed to effectively promote health behaviours in preparation for emerging disease outbreaks.
Aman, Urooj; Subhan, Fazal; Shahid, Muhammad; Akbar, Shehla; Ahmad, Nisar; Ali, Gowhar; Fawad, Khwaja; Sewell, Robert D E
2016-02-24
Passiflora incarnata is widely used as an anxiolytic and sedative due to its putative GABAergic properties. Passiflora incarnata L. methanolic extract (PI-ME) was evaluated in an animal model of streptozotocin-induced diabetic neuropathic allodynia and vulvodynia in rats along with antinociceptive, anxiolytic and sedative activities in mice in order to examine possible underlying mechanisms. PI-ME was tested preliminary for qualitative phytochemical analysis and then quantitatively by proximate and GC-MS analysis. The antinociceptive property was evaluated using the abdominal constriction assay and hot plate test. The anxiolytic activity was performed in a stair case model and sedative activity in an open field test. The antagonistic activities were evaluated using naloxone and/or pentylenetetrazole (PTZ). PI-ME was evaluated for prospective anti-allodynic and anti-vulvodynic properties in a rat model of streptozotocin induced neuropathic pain using the static and dynamic testing paradigms of mechanical allodynia and vulvodynia. GC-MS analysis revealed that PI-ME contained predominant quantities of oleamide (9-octadecenamide), palmitic acid (hexadecanoic acid) and 3-hydroxy-dodecanoic acid, among other active constituents. In the abdominal constriction assay and hot plate test, PI-ME produced dose dependant, naloxone and pentylenetetrazole reversible antinociception suggesting an involvement of opioidergic and GABAergic mechanisms. In the stair case test, PI-ME at 200 mg/kg increased the number of steps climbed while at 600 mg/kg a significant decrease was observed. The rearing incidence was diminished by PI-ME at all tested doses and in the open field test, PI-ME decreased locomotor activity to an extent that was analagous to diazepam. The effects of PI-ME were antagonized by PTZ in both the staircase and open field tests implicating GABAergic mechanisms in its anxiolytic and sedative activities. In the streptozotocin-induced neuropathic nociceptive model, PI-ME (200 and 300 mg/kg) exhibited static and dynamic anti-allodynic effects exemplified by an increase in paw withdrawal threshold and paw withdrawal latency. PI-ME relieved only the dynamic component of vulvodynia by increasing flinching response latency. These findings suggest that Passiflora incarnata might be useful for treating neuropathic pain. The antinociceptive and behavioural findings inferring that its activity may stem from underlying opioidergic and GABAergic mechanisms though a potential oleamide-sourced cannabimimetic involvement is also discussed.
Preliminary analysis of turbochargers rotors dynamic behaviour
NASA Astrophysics Data System (ADS)
Monoranu, R.; Ştirbu, C.; Bujoreanu, C.
2016-08-01
Turbocharger rotors for the spark and compression ignition engines are resistant steels manufactured in order to support the exhaust gas temperatures exceeding 1200 K. In fact, the mechanical stress is not large as the power consumption of these systems is up to 10 kW, but the operating speeds are high, ranging between 30000 ÷ 250000 rpm. Therefore, the correct turbochargers functioning involves, even from the design stage, the accurate evaluation of the temperature effects, of the turbine torque due to the engine exhaust gases and of the vibration system behaviour caused by very high operating speeds. In addition, the turbocharger lubrication complicates the model, because the classical hydrodynamic theory cannot be applied to evaluate the floating bush bearings. The paper proposes a FEM study using CATIA environment, both as modeling medium and as tool for the numerical analysis, in order to highlight the turbocharger complex behaviour. An accurate design may prevent some major issues which can occur during its operation.
[Changes of the neuronal membrane excitability as cellular mechanisms of learning and memory].
Gaĭnutdinov, Kh L; Andrianov, V V; Gaĭnutdinova, T Kh
2011-01-01
In the presented review given literature and results of own studies of dynamics of electrical characteristics of neurons, which change are included in processes both an elaboration of learning, and retention of the long-term memory. Literary datas and our results allow to conclusion, that long-term retention of behavioural reactions during learning is accompanied not only by changing efficiency of synaptic transmission, as well as increasing of excitability of command neurons of the defensive reflex. This means, that in the process of learning are involved long-term changes of the characteristics a membrane of certain elements of neuronal network, dependent from the metabolism of the cells. see text). Thou phenomena possible mark as cellular (electrophysiological) correlates of long-term plastic modifications of the behaviour. The analyses of having results demonstrates an important role of membrane characteristics of neurons (their excitability) and parameters an synaptic transmission not only in initial stage of learning, as well as in long-term modifications of the behaviour (long-term memory).
Molecular Mobility in Hyperbranched Polymers and Their Interaction with an Epoxy Matrix
Román, Frida; Colomer, Pere; Calventus, Yolanda; Hutchinson, John M.
2016-01-01
The molecular mobility related to the glass transition and secondary relaxations in a hyperbranched polyethyleneimine, HBPEI, and its relaxation behaviour when incorporated into an epoxy resin matrix are investigated by dielectric relaxation spectroscopy (DRS) and dynamic mechanical analysis (DMA). Three systems are analysed: HBPEI, epoxy and an epoxy/HBPEI mixture, denoted ELP. The DRS behaviour is monitored in the ELP system in three stages: prior to curing, during curing, and in the fully cured system. In the stage prior to curing, DRS measurements show three dipolar relaxations: γ, β and α, for all systems (HBPEI, epoxy and ELP). The α-relaxation for the ELP system deviates significantly from that for HBPEI, but superposes on that for the epoxy resin. The fully cured thermoset displays both β- and α-relaxations. In DMA measurements, both α- and β-relaxations are observed in all systems and in both the uncured and fully cured systems, similar to the behaviour identified by DRS. PMID:28773319
Sumner, T; Shephard, E; Bogle, I D L
2012-09-07
One of the main challenges in the development of mathematical and computational models of biological systems is the precise estimation of parameter values. Understanding the effects of uncertainties in parameter values on model behaviour is crucial to the successful use of these models. Global sensitivity analysis (SA) can be used to quantify the variability in model predictions resulting from the uncertainty in multiple parameters and to shed light on the biological mechanisms driving system behaviour. We present a new methodology for global SA in systems biology which is computationally efficient and can be used to identify the key parameters and their interactions which drive the dynamic behaviour of a complex biological model. The approach combines functional principal component analysis with established global SA techniques. The methodology is applied to a model of the insulin signalling pathway, defects of which are a major cause of type 2 diabetes and a number of key features of the system are identified.
Design of a biochemical circuit motif for learning linear functions
Lakin, Matthew R.; Minnich, Amanda; Lane, Terran; Stefanovic, Darko
2014-01-01
Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective. PMID:25401175
Design of a biochemical circuit motif for learning linear functions.
Lakin, Matthew R; Minnich, Amanda; Lane, Terran; Stefanovic, Darko
2014-12-06
Learning and adaptive behaviour are fundamental biological processes. A key goal in the field of bioengineering is to develop biochemical circuit architectures with the ability to adapt to dynamic chemical environments. Here, we present a novel design for a biomolecular circuit capable of supervised learning of linear functions, using a model based on chemical reactions catalysed by DNAzymes. To achieve this, we propose a novel mechanism of maintaining and modifying internal state in biochemical systems, thereby advancing the state of the art in biomolecular circuit architecture. We use simulations to demonstrate that the circuit is capable of learning behaviour and assess its asymptotic learning performance, scalability and robustness to noise. Such circuits show great potential for building autonomous in vivo nanomedical devices. While such a biochemical system can tell us a great deal about the fundamentals of learning in living systems and may have broad applications in biomedicine (e.g. autonomous and adaptive drugs), it also offers some intriguing challenges and surprising behaviours from a machine learning perspective.
NASA Astrophysics Data System (ADS)
Vanaja, J.; Laha, K.; Sam, Shiju; Nandagopal, M.; Panneer Selvi, S.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.
2012-05-01
Tensile strength and flow behaviour of a Reduced Activation Ferritic-Martensitic (RAFM) steel (9Cr-1W-0.06Ta-0.22V-0.08C) have been investigated over a temperature range of 300-873 K at different strain rates. Tensile strength of the steel decreased with temperature and increased with strain rate except at intermediate temperatures. Negative strain rate sensitivity of flow stress of the steel at intermediate temperatures revealed the occurrence of dynamic strain ageing in the steel, even though no serrated flow was observed. The tensile flow behaviour of the material was well represented by the Voce strain hardening equation for all the test conditions. Temperature and strain rate dependence of the various parameters of Voce equation were interpreted with the possible deformation mechanisms. The equivalence between the saturation stress at a given strain rate in tensile test and steady state deformation rate at a given stress in creep test was found to be satisfied by the RAFM steel.
[The molecular-cellular mechanisms of learning in the edible snail].
Nikitin, V P
1993-01-01
Elaboration of sensitization and associative habit of a rejection of a certain kind of food is accompanied by short-term and long-term changes of behaviour, bioelectric activity and the dynamics of bound calcium (Ca-b) level in the command neurons of defensive behaviour. Approximately in the course of an hour from the moment of the beginning of learning were revealed in general similar behavioural and neurophysiological effects during elaboration of both these habits. During elaboration of sensitization the responses to testing tactile stimulations, quinine and carrot juice applications appeared and/or markedly increased beginning from 50-60 minutes from the moment of the first sensitizing stimulation. During conditioning the responses to sensory stimulations characterizing the state of sensitization were also facilitated in 50-60 minutes. At the same time, responses to a conditioned stimulus appeared and increased approximately 30 minutes later. Protein synthesis blockers anisomycin and cyclohexamide blocked the development of the long-term neurophysiological and metabolic Ca-b effects during elaboration of sensitization.
Peolsson, Anneli; Peterson, Gunnel; Trygg, Johan; Nilsson, David
2016-08-03
Whiplash Associated Disorders (WAD) refers to the multifaceted and chronic burden that is common after a whiplash injury. Tools to assist in the diagnosis of WAD and an increased understanding of neck muscle behaviour are needed. We examined the multilayer dorsal neck muscle behaviour in nine women with chronic WAD versus healthy controls during the entire sequence of a dynamic low-loaded neck extension exercise, which was recorded using real-time ultrasound movies with high frame rates. Principal component analysis and orthogonal partial least squares were used to analyse mechanical muscle strain (deformation in elongation and shortening). The WAD group showed more shortening during the neck extension phase in the trapezius muscle and during both the neck extension and the return to neutral phase in the multifidus muscle. For the first time, a novel non-invasive method is presented that is capable of detecting altered dorsal muscle strain in women with WAD during an entire exercise sequence. This method may be a breakthrough for the future diagnosis and treatment of WAD.
Transient dynamics of vulcanian explosions and column collapse.
Clarke, A B; Voight, B; Neri, A; Macedonio, G
2002-02-21
Several analytical and numerical eruption models have provided insight into volcanic eruption behaviour, but most address plinian-type eruptions where vent conditions are quasi-steady. Only a few studies have explored the physics of short-duration vulcanian explosions with unsteady vent conditions and blast events. Here we present a technique that links unsteady vent flux of vulcanian explosions to the resulting dispersal of volcanic ejecta, using a numerical, axisymmetric model with multiple particle sizes. We use observational data from well documented explosions in 1997 at the Soufrière Hills volcano in Montserrat, West Indies, to constrain pre-eruptive subsurface initial conditions and to compare with our simulation results. The resulting simulations duplicate many features of the observed explosions, showing transitional behaviour where mass is divided between a buoyant plume and hazardous radial pyroclastic currents fed by a collapsing fountain. We find that leakage of volcanic gas from the conduit through surrounding rocks over a short period (of the order of 10 hours) or retarded exsolution can dictate the style of explosion. Our simulations also reveal the internal plume dynamics and particle-size segregation mechanisms that may occur in such eruptions.
Peolsson, Anneli; Peterson, Gunnel; Trygg, Johan; Nilsson, David
2016-01-01
Whiplash Associated Disorders (WAD) refers to the multifaceted and chronic burden that is common after a whiplash injury. Tools to assist in the diagnosis of WAD and an increased understanding of neck muscle behaviour are needed. We examined the multilayer dorsal neck muscle behaviour in nine women with chronic WAD versus healthy controls during the entire sequence of a dynamic low-loaded neck extension exercise, which was recorded using real-time ultrasound movies with high frame rates. Principal component analysis and orthogonal partial least squares were used to analyse mechanical muscle strain (deformation in elongation and shortening). The WAD group showed more shortening during the neck extension phase in the trapezius muscle and during both the neck extension and the return to neutral phase in the multifidus muscle. For the first time, a novel non-invasive method is presented that is capable of detecting altered dorsal muscle strain in women with WAD during an entire exercise sequence. This method may be a breakthrough for the future diagnosis and treatment of WAD. PMID:27484361
NASA Astrophysics Data System (ADS)
Peolsson, Anneli; Peterson, Gunnel; Trygg, Johan; Nilsson, David
2016-08-01
Whiplash Associated Disorders (WAD) refers to the multifaceted and chronic burden that is common after a whiplash injury. Tools to assist in the diagnosis of WAD and an increased understanding of neck muscle behaviour are needed. We examined the multilayer dorsal neck muscle behaviour in nine women with chronic WAD versus healthy controls during the entire sequence of a dynamic low-loaded neck extension exercise, which was recorded using real-time ultrasound movies with high frame rates. Principal component analysis and orthogonal partial least squares were used to analyse mechanical muscle strain (deformation in elongation and shortening). The WAD group showed more shortening during the neck extension phase in the trapezius muscle and during both the neck extension and the return to neutral phase in the multifidus muscle. For the first time, a novel non-invasive method is presented that is capable of detecting altered dorsal muscle strain in women with WAD during an entire exercise sequence. This method may be a breakthrough for the future diagnosis and treatment of WAD.
Kaur, Gurpreet; Costa, Mauro W; Nefzger, Christian M; Silva, Juan; Fierro-González, Juan Carlos; Polo, Jose M; Bell, Toby D M; Plachta, Nicolas
2013-01-01
Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.
Propagation of variability in railway dynamic simulations: application to virtual homologation
NASA Astrophysics Data System (ADS)
Funfschilling, Christine; Perrin, Guillaume; Kraft, Sönke
2012-01-01
Railway dynamic simulations are increasingly used to predict and analyse the behaviour of the vehicle and of the track during their whole life cycle. Up to now however, no simulation has been used in the certification procedure even if the expected benefits are important: cheaper and shorter procedures, more objectivity, better knowledge of the behaviour around critical situations. Deterministic simulations are nevertheless too poor to represent the whole physical of the track/vehicle system which contains several sources of variability: variability of the mechanical parameters of a train among a class of vehicles (mass, stiffness and damping of different suspensions), variability of the contact parameters (friction coefficient, wheel and rail profiles) and variability of the track design and quality. This variability plays an important role on the safety, on the ride quality, and thus on the certification criteria. When using the simulation for certification purposes, it seems therefore crucial to take into account the variability of the different inputs. The main goal of this article is thus to propose a method to introduce the variability in railway dynamics. A four-step method is described namely the definition of the stochastic problem, the modelling of the inputs variability, the propagation and the analysis of the output. Each step is illustrated with railway examples.
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Dilkush; Madhusudhan Reddy, G.; Srinivasa Rao, K.
2018-03-01
DMR249A Medium strength (low carbon) Low-alloy steels are used as structural components in naval applications due to its low cost and high availability. An attempt has been made to weld the DMR 249A steel plates of 8mm thickness using shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW). Welds were characterized for metallography to carry out the microstructural changes, mechanical properties were evaluated using vickers hardness tester and universal testing machine. Potentio-dynamic polarization tests were carried out to determine the pitting corrosion behaviour. Constant load type Stress corrosion cracking (SCC) testing was done to observe the cracking tendency of the joints in a 3.5%NaCl solution. Results of the present study established that SMA welds resulted in formation of relatively higher amount of martensite in ferrite matrix when compared to gas tungsten arc welding (GTAW). It is attributed to faster cooling rates achieved due to high thermal efficiency. Improved mechanical properties were observed for the SMA welds and are due to higher amount of martensite. Pitting corrosion and stress corrosion cracking resistance of SMA welds were poor when compared to GTA welds.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Wang, Yagang; Zega, Valentina; Su, Yan; Corigliano, Alberto
2018-07-01
In this work the nonlinear dynamic behaviour under varying temperature conditions of the resonating beams of a differential resonant accelerometer is studied from the theoretical, numerical and experimental points of view. A complete analytical model based on the Hamilton’s principle is proposed to describe the nonlinear behaviour of the resonators under varying temperature conditions and numerical solutions are presented in comparison with experimental data. This provides a novel perspective to examine the relationship between temperature and nonlinearity, which helps predicting the dynamic behaviour of resonant devices and can guide their optimal design.
Use of statecharts in the modelling of dynamic behaviour in the ATLAS DAQ prototype-1
NASA Astrophysics Data System (ADS)
Croll, P.; Duval, P.-Y.; Jones, R.; Kolos, S.; Sari, R. F.; Wheeler, S.
1998-08-01
Many applications within the ATLAS DAQ prototype-1 system have complicated dynamic behaviour which can be successfully modelled in terms of states and transitions between states. Previously, state diagrams implemented as finite-state machines have been used. Although effective, they become ungainly as system size increases. Harel statecharts address this problem by implementing additional features such as hierarchy and concurrency. The CHSM object-oriented language system is freeware which implements Harel statecharts as concurrent, hierarchical, finite-state machines (CHSMs). An evaluation of this language system by the ATLAS DAQ group has shown it to be suitable for describing the dynamic behaviour of typical DAQ applications. The language is currently being used to model the dynamic behaviour of the prototype-1 run-control system. The design is specified by means of a CHSM description file, and C++ code is obtained by running the CHSM compiler on the file. In parallel with the modelling work, a code generator has been developed which translates statecharts, drawn using the StP CASE tool, into the CHSM language. C++ code, describing the dynamic behaviour of the run-control system, has been successfully generated directly from StP statecharts using the CHSM generator and compiler. The validity of the design was tested using the simulation features of the Statemate CASE tool.
Jackson, Debra; Hutchinson, Marie; Everett, Bronwyn; Mannix, Judy; Peters, Kath; Weaver, Roslyn; Salamonson, Yenna
2011-06-01
There is a considerable body of literature scrutinising and theorising negative and hostile behaviour such as violence and interpersonal conflict in the nursing workplace. However, relatively little empirical work has examined the experiences of undergraduate nursing students in the context of negative workplace cultures, and even fewer studies have explored how students develop and enact strategies to counter hostile behaviours in the clinical workplace. Based on qualitative analysis of open-ended survey questions, this study explored undergraduate students' experiences of negative behaviours in the clinical environment to identify strategies used to manage and resist such behaviours. While dominant individuals in the clinical environment sought to enforce and uphold their version of legitimacy--one where students were relegated to complete subordination--the tenacity and resourcefulness of students was evident in their attempts to counter this oppression with acts of resistance. Our findings provide new and valuable insights into organisational aggression and acts of resistance in the nursing workplace. The resistance offered by these students draws attention to the struggles for legitimacy within institutions. In drawing attention to organisational aggression as a mechanism by which students are 'othered' through pejorative behaviour, homogenisation, and de-authentication, and the dynamics of resistance offered by these student nurses, we provide an alternative explanation of nursing socialisation. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Kondo, Toru; Pinnola, Alberta; Chen, Wei Jia; Dall'Osto, Luca; Bassi, Roberto; Schlau-Cohen, Gabriela S.
2017-08-01
In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity—step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.
Mechanisms of dynamic wetting failure in the presence of soluble surfactants
NASA Astrophysics Data System (ADS)
Kumar, Satish; Liu, Chen-Yu; Carvalho, Marcio S.
2017-11-01
A hydrodynamic model and flow visualization experiments are used to understand the mechanisms through which soluble surfactants can influence the onset of dynamic wetting failure. In the model, a Newtonian liquid displaces air in a rectangular channel in the absence of inertia. A Navier-slip boundary condition and constant contact angle are used to describe the dynamic contact line, and surfactants are allowed to adsorb to the interface and moving channel wall (substrate). The Galerkin finite element method is used to calculate steady states and identify the critical capillary number Cacrit at which wetting failure occurs. It is found that surfactant solubility weakens the influence of Marangoni stresses, which tend to promote the onset of wetting failure. The experiments indicate that Cacrit increases with surfactant concentration. For the more viscous solutions used, this behaviour can largely be explained by accounting for changes to the mean surface tension and static contact angle produced by surfactants. For the lowest-viscosity solution used, comparison between the model predictions and experimental observations suggests that other surfactant-induced phenomena such as Marangoni stresses may play a more important role.
Bio-inspired network optimization in soft materials — Insights from the plant cell wall
NASA Astrophysics Data System (ADS)
Vincent, R. R.; Cucheval, A.; Hemar, Y.; Williams, M. A. K.
2009-01-01
The dynamic-mechanical responses of ionotropic gels made from the biopolymer pectin have recently been investigated by microrheological experiments and found to exhibit behaviour indicative of semi-flexible polymer networks. In this work we investigate the gelling behaviour of pectin systems in which an enzyme (pectinmethylesterase, PME) is used to liberate ion-binding sites on initially inert polymers, while in the presence of ions. This is in contrast to the previous work, where it was the release of ions (rather than ion-binding groups) that was controlled and the polymers had pre-existing cross-linkable moieties. In stark contrast to the semi-flexible network paradigm of biological gels and the previous work on pectin, the gels studied herein exhibit the properties of chemically cross-linked networks of flexible polymers.
Multifractal Analysis of Human Heartbeat in Sleep
NASA Astrophysics Data System (ADS)
Ding, Liang-Jing; Peng, Hu; Cai, Shi-Min; Zhou, Pei-Ling
2007-07-01
We study the dynamical properties of heart rate variability (HRV) in sleep by analysing the scaling behaviour with the multifractal detrended fluctuation analysis method. It is well known that heart rate is regulated by the interaction of two branches of the autonomic nervous system: the parasympathetic and sympathetic nervous systems. By investigating the multifractal properties of light, deep, rapid-eye-movement (REM) sleep and wake stages, we firstly find an increasing multifractal behaviour during REM sleep which may be caused by augmented sympathetic activities relative to non-REM sleep. In addition, the investigation of long-range correlations of HRV in sleep with second order detrended fluctuation analysis presents irregular phenomena. These findings may be helpful to understand the underlying regulating mechanism of heart rate by autonomic nervous system during wake-sleep transitions.
Dynamics of a neural system with a multiscale architecture
Breakspear, Michael; Stam, Cornelis J
2005-01-01
The architecture of the brain is characterized by a modular organization repeated across a hierarchy of spatial scales—neurons, minicolumns, cortical columns, functional brain regions, and so on. It is important to consider that the processes governing neural dynamics at any given scale are not only determined by the behaviour of other neural structures at that scale, but also by the emergent behaviour of smaller scales, and the constraining influence of activity at larger scales. In this paper, we introduce a theoretical framework for neural systems in which the dynamics are nested within a multiscale architecture. In essence, the dynamics at each scale are determined by a coupled ensemble of nonlinear oscillators, which embody the principle scale-specific neurobiological processes. The dynamics at larger scales are ‘slaved’ to the emergent behaviour of smaller scales through a coupling function that depends on a multiscale wavelet decomposition. The approach is first explicated mathematically. Numerical examples are then given to illustrate phenomena such as between-scale bifurcations, and how synchronization in small-scale structures influences the dynamics in larger structures in an intuitive manner that cannot be captured by existing modelling approaches. A framework for relating the dynamical behaviour of the system to measured observables is presented and further extensions to capture wave phenomena and mode coupling are suggested. PMID:16087448
Das Mahanta, Debasish; Patra, Animesh; Samanta, Nirnay; Luong, Trung Quan; Mukherjee, Biswaroop; Mitra, Rajib Kumar
2016-10-28
A combined experimental (mid- and far-infrared FTIR spectroscopy and THz time domain spectroscopy (TTDS) (0.3-1.6 THz)) and molecular dynamics (MD) simulation technique are used to understand the evolution of the structure and dynamics of water in its binary mixture with 1,2-dimethoxy ethane (DME) over the entire concentration range. The cooperative hydrogen bond dynamics of water obtained from Debye relaxation of TTDS data reveals a non-monotonous behaviour in which the collective dynamics is much faster in the low X w region (where X w is the mole fraction of water in the mixture), whereas in X w ∼ 0.8 region, the dynamics gets slower than that of pure water. The concentration dependence of the reorientation times of water, calculated from the MD simulations, also captures this non-monotonous character. The MD simulation trajectories reveal presence of large amplitude angular jumps, which dominate the orientational relaxation. We rationalize the non-monotonous, concentration dependent orientational dynamics by identifying two different physical mechanisms which operate at high and low water concentration regimes.
NASA Astrophysics Data System (ADS)
Trucu, Dumitru
2016-09-01
In this comprehensive review concerning the modelling of human behaviours in crowd dynamics [3], the authors explore a wide range of mathematical approaches spanning over multiple scales that are suitable to describe emerging crowd behaviours in extreme situations. Focused on deciphering the key aspects leading to emerging crowd patterns evolutions in challenging times such as those requiring an evacuation on a complex venue, the authors address this complex dynamics at both microscale (individual level), mesoscale (probability distributions of interacting individuals), and macroscale (population level), ultimately aiming to gain valuable understanding and knowledge that would inform decision making in managing crisis situations.
Geometry can provide long-range mechanical guidance for embryogenesis
Dicko, Mahamar; Saramito, Pierre
2017-01-01
Downstream of gene expression, effectors such as the actomyosin contractile machinery drive embryo morphogenesis. During Drosophila embryonic axis extension, actomyosin has a specific planar-polarised organisation, which is responsible for oriented cell intercalation. In addition to these cell rearrangements, cell shape changes also contribute to tissue deformation. While cell-autonomous dynamics are well described, understanding the tissue-scale behaviour challenges us to solve the corresponding mechanical problem at the scale of the whole embryo, since mechanical resistance of all neighbouring epithelia will feedback on individual cells. Here we propose a novel numerical approach to compute the whole-embryo dynamics of the actomyosin-rich apical epithelial surface. We input in the model specific patterns of actomyosin contractility, such as the planar-polarisation of actomyosin in defined ventro-lateral regions of the embryo. Tissue strain rates and displacements are then predicted over the whole embryo surface according to the global balance of stresses and the material behaviour of the epithelium. Epithelia are modelled using a rheological law that relates the rate of deformation to the local stresses and actomyosin anisotropic contractility. Predicted flow patterns are consistent with the cell flows observed when imaging Drosophila axis extension in toto, using light sheet microscopy. The agreement between model and experimental data indicates that the anisotropic contractility of planar-polarised actomyosin in the ventro-lateral germband tissue can directly cause the tissue-scale deformations of the whole embryo. The three-dimensional mechanical balance is dependent on the geometry of the embryo, whose curved surface is taken into account in the simulations. Importantly, we find that to reproduce experimental flows, the model requires the presence of the cephalic furrow, a fold located anteriorly of the extending tissues. The presence of this geometric feature, through the global mechanical balance, guides the flow and orients extension towards the posterior end. PMID:28346461
Lenci, Stefano; Rega, Giuseppe; Ruzziconi, Laura
2013-06-28
The dynamical integrity, a new concept proposed by J.M.T. Thompson, and developed by the authors, is used to interpret experimental results. After reviewing the main issues involved in this analysis, including the proposal of a new integrity measure able to capture in an easy way the safe part of basins, attention is dedicated to two experiments, a rotating pendulum and a micro-electro-mechanical system, where the theoretical predictions are not fulfilled. These mechanical systems, the former at the macro-scale and the latter at the micro-scale, permit a comparative analysis of different mechanical and dynamical behaviours. The fact that in both cases the dynamical integrity permits one to justify the difference between experimental and theoretical results, which is the main achievement of this paper, shows the effectiveness of this new approach and suggests its use in practical situations. The men of experiment are like the ant, they only collect and use; the reasoners resemble spiders, who make cobwebs out of their own substance. But the bee takes the middle course: it gathers its material from the flowers of the garden and field, but transforms and digests it by a power of its own. Not unlike this is the true business of philosophy (science); for it neither relies solely or chiefly on the powers of the mind, nor does it take the matter which it gathers from natural history and mechanical experiments and lay up in the memory whole, as it finds it, but lays it up in the understanding altered and digested. Therefore, from a closer and purer league between these two faculties, the experimental and the rational (such as has never been made), much may be hoped. (Francis Bacon 1561-1626) But are we sure of our observational facts? Scientific men are rather fond of saying pontifically that one ought to be quite sure of one's observational facts before embarking on theory. Fortunately those who give this advice do not practice what they preach. Observation and theory get on best when they are mixed together, both helping one another in the pursuit of truth. It is a good rule not to put overmuch confidence in a theory until it has been confirmed by observation. I hope I shall not shock the experimental physicists too much if I add that it is also a good rule not to put overmuch confidence in the observational results that are put forward until they have been confirmed by theory. (Arthur Stanley Eddington 1882-1944).
Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal.
Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang
2017-08-01
Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.
Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal
NASA Astrophysics Data System (ADS)
Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang
2017-08-01
Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.
Mechanosensitive subcellular rheostasis drives emergent single-cell mechanical homeostasis
NASA Astrophysics Data System (ADS)
Weng, Shinuo; Shao, Yue; Chen, Weiqiang; Fu, Jianping
2016-09-01
Mechanical homeostasis--a fundamental process by which cells maintain stable states under environmental perturbations--is regulated by two subcellular mechanotransducers: cytoskeleton tension and integrin-mediated focal adhesions (FAs). Here, we show that single-cell mechanical homeostasis is collectively driven by the distinct, graduated dynamics (rheostasis) of subcellular cytoskeleton tension and FAs. Such rheostasis involves a mechanosensitive pattern wherein ground states of cytoskeleton tension and FA determine their distinct reactive paths through either relaxation or reinforcement. Pharmacological perturbations of the cytoskeleton and molecularly modulated integrin catch-slip bonds biased the rheostasis and induced non-homeostasis of FAs, but not of cytoskeleton tension, suggesting a unique sensitivity of FAs in regulating homeostasis. Theoretical modelling revealed myosin-mediated cytoskeleton contractility and catch-slip-bond-like behaviours in FAs and the cytoskeleton as sufficient and necessary mechanisms for quantitatively recapitulating mechanosensitive rheostasis. Our findings highlight the previously underappreciated physical nature of the mechanical homeostasis of cells.
NASA Astrophysics Data System (ADS)
Gamini, Suresh; Vasu, V.; Bose, Suryasarathi
2017-04-01
In the current study, PTFE (polytetrafluroethylene) matrix is reinforced with different wt% (2%-10%) of Halloysite nanotubes (HNTs). PTFE samples are fabricated with 2 wt% increment and are designated from ‘B’to ‘F’ and designation ‘A’ refers to neat PTFE. Thermal and mechanical characterization of the fabricated composites is studied. The calorimetric measurements showed enhanced degree of crystallinity of the nanocomposites, which is from 57.83% to 74.7%. The dynamic mechanical analysis results have shown enhanced storage modulus and loss modulus and reduced damping behaviour, without affecting glass transition temperature. Moreover, significant improvements in mechanical properties are observed from the experimental results. The results are discussed and validated with the existing literature. The phase and the fracture morphology of the nanocomposites is studied using scanning electron microscope and discussed herein.
Predator confusion is sufficient to evolve swarming behaviour
Olson, Randal S.; Hintze, Arend; Dyer, Fred C.; Knoester, David B.; Adami, Christoph
2013-01-01
Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator–prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator–prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint—predator confusion—could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey. PMID:23740485
Predator confusion is sufficient to evolve swarming behaviour.
Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph
2013-08-06
Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.
A study on atomic diffusion behaviours in an Al-Mg compound casting process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yongning; Chen, Yiqing; Yang, Chunhui, E-mail: r.yang@uws.edu.au
Al and Mg alloys are main lightweight alloys of research interest and they both have superb material properties, i.e., low density and high specific strength, etc. Being different from Al alloys, the corrosion of Mg alloys is much more difficult to control. Therefore to combine merits of these two lightweight alloys as a composite-like structure is an ideal solution through using Al alloys as a protective layer for Mg alloys. Compound casting is a realistic technique to manufacture such a bi-metal structure. In this study, a compound casting technique is employed to fabricate bi-layered samples using Al and Mg andmore » then the samples are analysed using electron probe micro-analyzer (EPMA) to determine diffusion behaviours between Al and Mg. The diffusion mechanism and behaviours between Al and Mg are studied numerically at atomic scale using molecular dynamics (MD) and parametric studies are conducted to find out influences of ambient temperature and pressure on the diffusion behaviours between Al and Mg. The results obtained clearly show the effectiveness of the compound casting process to increase the diffusion between Al and Mg and thus create the Al-base protection layer for Mg.« less
Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G
2011-07-01
Milk whey proteins (MWP) and pectins (Ps) are biopolymer ingredients commonly used in the manufacture of colloidal food products. Therefore, knowledge of the interfacial characteristics of these biopolymers and their mixtures is very important for the design of food dispersion formulations (foams and/or emulsions). In this paper, we examine the adsorption and surface dilatational behaviour of MWP/Ps systems under conditions in which biopolymers can saturate the air-water interface on their own. Experiments were performed at constant temperature (20 °C), pH 7 and ionic strength 0.05 M. Two MWP samples, β-lactoglobulin (β-LG) and whey protein concentrate (WPC), and two Ps samples, low-methoxyl pectin (LMP) and high-methoxyl pectin (HMP) were evaluated. The contribution of biopolymers (MWP and Ps) to the interfacial properties of mixed systems was evaluated on the basis of their individual surface molecular characteristics. Biopolymer bulk concentration capable of saturating the air-water interface was estimated from surface pressure isotherms. Under conditions of interfacial saturation, dynamic adsorption behaviour (surface pressure and dilatational rheological characteristics) of MWP/Ps systems was discussed from a kinetic point of view, in terms of molecular diffusion, penetration and configurational rearrangement at the air-water interface. The main adsorption mechanism in MWP/LMP mixtures might be the MWP interfacial segregation due to the thermodynamic incompatibility between MWP and LMP (synergistic mechanism); while the interfacial adsorption in MWP/HMP mixtures could be characterized by a competitive mechanism between MWP and HMP at the air-water interface (antagonistic mechanism). The magnitude of these phenomena could be closely related to differences in molecular composition and/or aggregation state of MWP (β-LG and WPC). Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cadoni, Ezio
2018-03-01
The aim of this paper is the description of the mechanical characterization of alloys under extreme conditions of temperature and loading. In fact, in the frame of the Cost Action CA15102 “Solutions for Critical Raw Materials Under Extreme Conditions (CRM-EXTREME)” this aspect is crucial and many industrial applications have to consider the dynamic response of materials. Indeed, for a reduction and substitution of CRMs in alloys is necessary to design the materials and understand if the new materials behave better or if the substitution or reduction badly affect their performance. For this reason, a deep knowledge of the mechanical behaviour at high strain-rates of considered materials is required. In general, machinery manufacturing industry or transport industry as well as energy industry have important dynamic phenomena that are simultaneously affected by extended strain, high strain-rate, damage and pressure, as well as conspicuous temperature gradients. The experimental results in extreme conditions of high strain rate and high temperature of an austenitic stainless steel as well as a high-chromium tempered martensitic reduced activation steel Eurofer97 are presented.
Mechanics and polarity in cell motility
NASA Astrophysics Data System (ADS)
Ambrosi, D.; Zanzottera, A.
2016-09-01
The motility of a fish keratocyte on a flat substrate exhibits two distinct regimes: the non-migrating and the migrating one. In both configurations the shape is fixed in time and, when the cell is moving, the velocity is constant in magnitude and direction. Transition from a stable configuration to the other one can be produced by a mechanical or chemotactic perturbation. In order to point out the mechanical nature of such a bistable behaviour, we focus on the actin dynamics inside the cell using a minimal mathematical model. While the protein diffusion, recruitment and segregation govern the polarization process, we show that the free actin mass balance, driven by diffusion, and the polymerized actin retrograde flow, regulated by the active stress, are sufficient ingredients to account for the motile bistability. The length and velocity of the cell are predicted on the basis of the parameters of the substrate and of the cell itself. The key physical ingredient of the theory is the exchange among actin phases at the edges of the cell, that plays a central role both in kinematics and in dynamics.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir; Skripnyak, Evgeniya; Meyer, Lothar W.; Herzig, Norman; Skripnyak, Nataliya
2012-02-01
Researches of the last years have allowed to establish that the laws of deformation and fracture of bulk ultrafine-grained and coarse-grained materials are various both in static and in dynamic loading conditions. Development of adequate constitutive equations for the description of mechanical behavior of bulk ultrafine-grained materials at intensive dynamic influences is complicated in consequence of insufficient knowledge about general rules of inelastic deformation and nucleation and growth of cracks. Multi-scale computational model was used for the investigation of deformation and fracture of bulk structured aluminum and magnesium alloys under stress pulse loadings on mesoscale level. The increment of plastic deformation is defined by the sum of the increments caused by a nucleation and gliding of dislocations, the twinning, meso-blocks movement, and grain boundary sliding. The model takes into account the influence on mechanical properties of alloys an average grains size, grain sizes distribution of and concentration of precipitates. It was obtained the nucleation and gliding of dislocations caused the high attenuation rate of the elastic precursor of ultrafine-grained alloys than in coarse grained counterparts.
A nonlinear dynamic finite element approach for simulating muscular hydrostats.
Vavourakis, V; Kazakidi, A; Tsakiris, D P; Ekaterinaris, J A
2014-01-01
An implicit nonlinear finite element model for simulating biological muscle mechanics is developed. The numerical method is suitable for dynamic simulations of three-dimensional, nonlinear, nearly incompressible, hyperelastic materials that undergo large deformations. These features characterise biological muscles, which consist of fibres and connective tissues. It can be assumed that the stress distribution inside the muscles is the superposition of stresses along the fibres and the connective tissues. The mechanical behaviour of the surrounding tissues is determined by adopting a Mooney-Rivlin constitutive model, while the mechanical description of fibres is considered to be the sum of active and passive stresses. Due to the nonlinear nature of the problem, evaluation of the Jacobian matrix is carried out in order to subsequently utilise the standard Newton-Raphson iterative procedure and to carry out time integration with an implicit scheme. The proposed methodology is implemented into our in-house, open source, finite element software, which is validated by comparing numerical results with experimental measurements and other numerical results. Finally, the numerical procedure is utilised to simulate primitive octopus arm manoeuvres, such as bending and reaching.
NASA Astrophysics Data System (ADS)
Tiwary, C. S.; Chakraborty, S.; Mahapatra, D. R.; Chattopadhyay, K.
2014-05-01
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al2Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al2Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different length scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.
Sliogeryte, Kristina; Thorpe, Stephen D; Wang, Zhao; Thompson, Clare L; Gavara, Nuria; Knight, Martin M
2016-01-25
The actin cytoskeleton forms a dynamic structure involved in many fundamental cellular processes including the control of cell morphology, migration and biomechanics. Recently LifeAct-GFP (green fluorescent protein) has been proposed for visualising actin structure and dynamics in live cells as an alternative to actin-GFP which has been shown to affect cell mechanics. Here we compare the two approaches in terms of their effect on cellular mechanical behaviour. Human mesenchymal stem cells (hMSCs) were analysed using micropipette aspiration and the effective cellular equilibrium and instantaneous moduli calculated using the standard linear solid model. We show that LifeAct-GFP provides clearer visualisation of F-actin organisation and dynamics. Furthermore, LifeAct-GFP does not alter effective cellular mechanical properties whereas actin-GFP expression causes an increase in the cell modulus. Interestingly, LifeAct-GFP expression did produce a small (~10%) increase in the percentage of cells exhibiting aspiration-induced membrane bleb formation, whilst actin-GFP expression reduced blebbing. Further studies examined the influence of LifeAct-GFP in other cell types, namely chondrogenically differentiated hMSCs and murine chondrocytes. LifeAct-GFP also had no effect on the moduli of these non-blebbing cells for which mechanical properties are largely dependent on the actin cortex. In conclusion we show that LifeAct-GFP enables clearer visualisation of actin organisation and dynamics without disruption of the biomechanical properties of either the whole cell or the actin cortex. Thus the study provides new evidence supporting the use of LifeAct-GFP rather than actin-GFP for live cell microscopy and the study of cellular mechanobiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Computational analysis of nonlinearities within dynamics of cable-based driving systems
NASA Astrophysics Data System (ADS)
Anghelache, G. D.; Nastac, S.
2017-08-01
This paper deals with computational nonlinear dynamics of mechanical systems containing some flexural parts within the actuating scheme, and, especially, the situations of the cable-based driving systems were treated. It was supposed both functional nonlinearities and the real characteristic of the power supply, in order to obtain a realistically computer simulation model being able to provide very feasible results regarding the system dynamics. It was taken into account the transitory and stable regimes during a regular exploitation cycle. The authors present a particular case of a lift system, supposed to be representatively for the objective of this study. The simulations were made based on the values of the essential parameters acquired from the experimental tests and/or the regular practice in the field. The results analysis and the final discussions reveal the correlated dynamic aspects within the mechanical parts, the driving system, and the power supply, whole of these supplying potential sources of particular resonances, within some transitory phases of the working cycle, and which can affect structural and functional dynamics. In addition, it was underlines the influences of computational hypotheses on the both quantitative and qualitative behaviour of the system. Obviously, the most significant consequence of this theoretical and computational research consist by developing an unitary and feasible model, useful to dignify the nonlinear dynamic effects into the systems with cable-based driving scheme, and hereby to help an optimization of the exploitation regime including a dynamics control measures.
Somers, Michael J; Graf, Jan A; Szykman, Micaela; Slotow, Rob; Gusset, Markus
2008-11-01
We analysed 25 years (1980-2004) of demographic data on a small re-introduced population of endangered African wild dogs (Lycaon pictus) in Hluhluwe-iMfolozi Park (HiP), South Africa, to describe population and pack dynamics. As small populations of cooperative breeders may be particularly prone to Allee effects, this extensive data set was used to test the prediction that, if Allee effects occur, aspects of reproductive success, individual survival and population growth should increase with pack and population size. The results suggest that behavioural aspects of wild dogs rather than ecological factors (i.e. competitors, prey and rainfall) primarily have been limiting the HiP wild dog population, particularly a low probability of finding suitable mates upon dispersal at low pack number (i.e. a mate-finding Allee effect). Wild dogs in HiP were not subject to component Allee effects at the pack level, most likely due to low interspecific competition and high prey availability. This suggests that aspects of the environment can mediate the strength of Allee effects. There was also no demographic Allee effect in the HiP wild dog population, as the population growth rate was significantly negatively related to population size, despite no apparent ecological resource limitation. Such negative density dependence at low numbers indicates that behavioural studies of the causal mechanisms potentially generating Allee effects in small populations can provide a key to understanding their dynamics. This study demonstrates how aspects of a species' social behaviour can influence the vulnerability of small populations to extinction and illustrates the profound implications of sociality for endangered species' recovery.
Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels
Fox, Courtney H.; ter Hurrne, Gijs M.; Wojtecki, Rudy J.; Jones, Gavin O.; Horn, Hans W.; Meijer, E. W.; Frank, Curtis W.; Hedrick, James L.; García, Jeannette M.
2015-01-01
Dynamic covalent materials are stable materials that possess reversible behaviour triggered by stimuli such as light, redox conditions or temperature; whereas supramolecular crosslinks depend on the equilibrium constant and relative concentrations of crosslinks as a function of temperature. The combination of these two reversible chemistries can allow access to materials with unique properties. Here, we show that this combination of dynamic covalent and supramolecular chemistry can be used to prepare organogels comprising distinct networks. Two materials containing hemiaminal crosslink junctions were synthesized; one material is comprised of dynamic covalent junctions and the other contains hydrogen-bonding bis-hemiaminal moieties. Under specific network synthesis conditions, these materials exhibited self-healing behaviour. This work reports on both the molecular-level detail of hemiaminal crosslink junction formation as well as the macroscopic behaviour of hemiaminal dynamic covalent network (HDCN) elastomeric organogels. These materials have potential applications as elastomeric components in printable materials, cargo carriers and adhesives. PMID:26174864
On the effect of unsupported sleepers on the dynamic behaviour of a railway track
NASA Astrophysics Data System (ADS)
Zhu, J. Y.; Thompson, D. J.; Jones, C. J. C.
2011-09-01
The effect of unsupported sleepers on the dynamic behaviour of a railway track is studied based on vehicle-track dynamic interaction theory, using a model of the track as a Timoshenko beam supported on a periodic elastic foundation. Considering the vehicle's running speed and the number of unsupported sleepers, the track dynamic characteristics are investigated and verified in the time and frequency domains by experiments on a 1:5 scale model wheel-rail test rig. The results show that when hanging sleepers are present, leading to a discontinuous and irregular track support, additional wheel-rail interaction forces are generated. These forces increase as further sleepers become unsupported and as the vehicle's running speed increases. The adjacent supports experience increased dynamic forces which will lead to further deterioration of track quality and the formation of long wavelength track irregularities, which worsen the vehicles' running stability and riding comfort. Stationary transfer functions measurements of the dynamic behaviour of the track are also presented to support the findings.
Dynamic causal modelling of brain-behaviour relationships.
Rigoux, L; Daunizeau, J
2015-08-15
In this work, we expose a mathematical treatment of brain-behaviour relationships, which we coin behavioural Dynamic Causal Modelling or bDCM. This approach aims at decomposing the brain's transformation of stimuli into behavioural outcomes, in terms of the relative contribution of brain regions and their connections. In brief, bDCM places the brain at the interplay between stimulus and behaviour: behavioural outcomes arise from coordinated activity in (hidden) neural networks, whose dynamics are driven by experimental inputs. Estimating neural parameters that control network connectivity and plasticity effectively performs a neurobiologically-constrained approximation to the brain's input-outcome transform. In other words, neuroimaging data essentially serves to enforce the realism of bDCM's decomposition of input-output relationships. In addition, post-hoc artificial lesions analyses allow us to predict induced behavioural deficits and quantify the importance of network features for funnelling input-output relationships. This is important, because this enables one to bridge the gap with neuropsychological studies of brain-damaged patients. We demonstrate the face validity of the approach using Monte-Carlo simulations, and its predictive validity using empirical fMRI/behavioural data from an inhibitory control task. Lastly, we discuss promising applications of this work, including the assessment of functional degeneracy (in the healthy brain) and the prediction of functional recovery after lesions (in neurological patients). Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanical properties of intra-ocular lenses
NASA Astrophysics Data System (ADS)
Ehrmann, Klaus; Kim, Eon; Parel, Jean-Marie
2008-02-01
Cataract surgery usually involves the replacement of the natural crystalline lens with a rigid or foldable intraocular lens to restore clear vision for the patient. While great efforts have been placed on optimising the shape and optical characteristics of IOLs, little is know about the mechanical properties of these devices and how they interact with the capsular bag once implanted. Mechanical properties measurements were performed on 8 of the most commonly implanted IOLs using a custom build micro tensometer. Measurement data will be presented for the stiffness of the haptic elements, the buckling resistance of foldable IOLs, the dynamic behaviour of the different lens materials and the axial compressibility. The biggest difference between the lens types was found between one-piece and 3-piece lenses with respect to the flexibility of the haptic elements
Fluctuating observation time ensembles in the thermodynamics of trajectories
NASA Astrophysics Data System (ADS)
Budini, Adrián A.; Turner, Robert M.; Garrahan, Juan P.
2014-03-01
The dynamics of stochastic systems, both classical and quantum, can be studied by analysing the statistical properties of dynamical trajectories. The properties of ensembles of such trajectories for long, but fixed, times are described by large-deviation (LD) rate functions. These LD functions play the role of dynamical free energies: they are cumulant generating functions for time-integrated observables, and their analytic structure encodes dynamical phase behaviour. This ‘thermodynamics of trajectories’ approach is to trajectories and dynamics what the equilibrium ensemble method of statistical mechanics is to configurations and statics. Here we show that, just like in the static case, there are a variety of alternative ensembles of trajectories, each defined by their global constraints, with that of trajectories of fixed total time being just one of these. We show how the LD functions that describe an ensemble of trajectories where some time-extensive quantity is constant (and large) but where total observation time fluctuates can be mapped to those of the fixed-time ensemble. We discuss how the correspondence between generalized ensembles can be exploited in path sampling schemes for generating rare dynamical trajectories.
Chaotic behaviour of Zeeman machines at introductory course of mechanics
NASA Astrophysics Data System (ADS)
Nagy, Péter; Tasnádi, Péter
2016-05-01
Investigation of chaotic motions and cooperative systems offers a magnificent opportunity to involve modern physics into the basic course of mechanics taught to engineering students. In the present paper it will be demonstrated that Zeeman Machine can be a versatile and motivating tool for students to get introductory knowledge about chaotic motion via interactive simulations. It works in a relatively simple way and its properties can be understood very easily. Since the machine can be built easily and the simulation of its movement is also simple the experimental investigation and the theoretical description can be connected intuitively. Although Zeeman Machine is known mainly for its quasi-static and catastrophic behaviour, its dynamic properties are also of interest with its typical chaotic features. By means of a periodically driven Zeeman Machine a wide range of chaotic properties of the simple systems can be demonstrated such as bifurcation diagrams, chaotic attractors, transient chaos and so on. The main goal of this paper is the presentation of an interactive learning material for teaching the basic features of the chaotic systems through the investigation of the Zeeman Machine.
Modelling of a bridge-shaped nonlinear piezoelectric energy harvester
NASA Astrophysics Data System (ADS)
Gafforelli, G.; Xu, R.; Corigliano, A.; Kim, S. G.
2013-12-01
Piezoelectric MicroElectroMechanical Systems (MEMS) energy harvesting is an attractive technology for harvesting small magnitudes of energy from ambient vibrations. Increasing the operating frequency bandwidth of such devices is one of the major issues for real world applications. A MEMS-scale doubly clamped nonlinear beam resonator is designed and developed to demonstrate very wide bandwidth and high power density. In this paper a first complete theoretical discussion of nonlinear resonating piezoelectric energy harvesting is provided. The sectional behaviour of the beam is studied through the Classical Lamination Theory (CLT) specifically modified to introduce the piezoelectric coupling and nonlinear Green-Lagrange strain tensor. A lumped parameter model is built through Rayleigh-Ritz Method and the resulting nonlinear coupled equations are solved in the frequency domain through the Harmonic Balance Method (HBM). Finally, the influence of external load resistance on the dynamic behaviour is studied. The theoretical model shows that nonlinear resonant harvesters have much wider power bandwidth than that of linear resonators but their maximum power is still bounded by the mechanical damping as is the case for linear resonating harvesters.
NASA Astrophysics Data System (ADS)
Matabos, M.; Cuvelier, D.; Brouard, J.; Shillito, B.; Ravaux, J.; Zbinden, M.; Barthelemy, D.; Sarradin, P. M.; Sarrazin, J.
2015-11-01
Identifying the factors driving community dynamics in hydrothermal vent communities, and in particular biological interactions, is challenged by our ability to make direct observations and the difficulty to conduct experiments in those remote ecosystems. As a result, we have very limited knowledge on species' behaviour and interactions in these communities and how they in turn influence community dynamics. Interactions such as competition or predation significantly affect community structure in vent communities, and video time-series have successfully been used to gain insights in biological interactions and species behaviour, including responses to short-term changes in temperature or feeding strategies. In this study, we combined in situ and ex situ approaches to characterise the behaviour and interactions among two key species encountered along the Mid-Atlantic Ridge (MAR): the shrimp Mirocaris fortunata and the crab Segonzacia mesatlantica. In situ, species small-scale distribution, interactions and behaviour were studied using the TEMPO observatory module deployed on the seafloor at the base of the active Eiffel Tower edifice in the Lucky Strike vent field as part of the EMSO-Açores MoMAR observatory. TEMPO sampled 2 min of video four times a day from July 2011 to April 2012. One week of observations per month was used for 'long-term' variations, and a full video data set was analysed for January 2012. In addition, observations of crab and shrimp individuals maintained for the first time under controlled conditions in atmospheric pressure (classic tank) and pressurised (AbyssBox) aquaria allowed better characterisation and description of the different types of behaviour and interactions observed in nature. While the identified in situ spatial distribution pattern was stable over the nine months, both species displayed a significant preference for mussel bed and anhydrite substrata, and preferentially occupied the area located directly in the fluid flow axis. The aggregation behaviour of M. fortunata resulted in the occurrence of numerous intraspecific interactions mainly involving the use of two pairs of sensory organs (antenna/antennule) and fleeing behaviours when in contact or close to individuals of S. mesatlantica. The higher level of passiveness observed in the ex situ artificial environment compared to the in situ environment was attributed to the lack of stimulation related to low densities of congeners and/or of sympatric species compared to the natural environment and the absence of continuous food supply, as both species displayed a significant higher level of activity during feeding time. This result emphasises the role of food supply as a driver of species distribution and behaviour. Direct in situ observations using cameras deployed on deep-sea observatories, combined with experimental set-up in pressurised aquaria, will help investigators understand the factors influencing community dynamics and species biology at vents as well as their underlying mechanisms.
Impact behaviour of an innovative plasticized poly(vinyl chloride) for the automotive industry
NASA Astrophysics Data System (ADS)
Bernard, C. A.; Bahlouli, N.; Wagner-Kocher, C.; Ahzi, S.; Rémond, Y.
2015-09-01
Plasticized poly(vinyl chloride) (PPVC) is widely used in the automotive industry in the design of structural parts for crashworthiness applications. Thus, it is necessary to study and understand the influence of the mechanical response and mechanical properties of PPVC over a wide range of strain rate, from quasi-static to dynamic loadings. The process is also investigated using different sample thicknesses. In this work, the strain rate effect of a new PPVC is investigated over a wide range of strain rates at three temperatures and for three thicknesses. A modelling of the yield stress is also proposed. The numerical prediction is in good agreement with the experimental results.
[The limbic system and the motivation process].
Karli, P
1968-01-01
Understanding the part played by the limbic system in the shaping of overall behaviour is assisted by the previous study of that system's involvement in the mechanisms underlying certain sections of behaviour. a) Limbic structures contribute to the dynamic synthesis of contemporary information, by reason of their share in mechanisms: I. of modulatory central control in the production and transmission of sensory messages, 2. in the genesis of states of vigilance, especially the focussing of attention. On the other hand, they have an inhibitory role in somatic motility by way of progressive elimination of all inadequate motor response. b) Limbic structures participate in the elaboration of emotional states, in the initiation of both positive and negative reinforcement. That is to say they participate in the processes by which: I. "appetitive" or "aversive" significance is progressively conferred upon a given stimulus or situation, 2. behaviour is subjected to a positive or negative reinforcement, assuring its stabilization or its extinction. c) The comparison of the present situation with experience, enabling the organism to foresee the results of its behaviour; and similarly the comparison of results achieved with those anticipated, imply information storage, and the formation of lasting memory traces. It appears that the limbic system by integration of cognitive and affective components of sensory information, contributes to the compilation of experience which can be drawn upon in recognition or evocation. When the lasting results of different limbic lesions upon total behaviour are studied, it is clear that these effects are all the more profound as, among the motivational factors involved, those due to experience and to adaptation to environment, play the more important part. Behavioural deficits appear especially due to the absence of inhibition of certain inadequate responses, which results in a "maladaptation" of behavior as much towards present environmental conditions as to the experience of the organism. a) Regarding alimentary behaviour, the limbic system seems only to have importance in fixing the various individual attitudes towards feeding (competition, feeding habits, time to repletion, etc.). b) Sexually, experimental facts suggest that the limbic system plays an essential part in facilitation and especially selective inhibition which, by the exclusion of inadequate responses, may differentiate adult heterosexual conduct from ambivalent sexuality. Thus, in the adult, sexual behaviour can appear which is adapted to the environment, and consistent with the genetic sex and certain individual behavioural characteristics of the organism.(ABSTRACT TRUNCATED AT 400 WORDS)
Universality of clone dynamics during tissue development
NASA Astrophysics Data System (ADS)
Rulands, Steffen; Lescroart, Fabienne; Chabab, Samira; Hindley, Christopher J.; Prior, Nicole; Sznurkowska, Magdalena K.; Huch, Meritxell; Philpott, Anna; Blanpain, Cedric; Simons, Benjamin D.
2018-05-01
The emergence of complex organs is driven by the coordinated proliferation, migration and differentiation of precursor cells. The fate behaviour of these cells is reflected in the time evolution of their progeny, termed clones, which serve as a key experimental observable. In adult tissues, where cell dynamics is constrained by the condition of homeostasis, clonal tracing studies based on transgenic animal models have advanced our understanding of cell fate behaviour and its dysregulation in disease1,2. But what can be learnt from clonal dynamics in development, where the spatial cohesiveness of clones is impaired by tissue deformations during tissue growth? Drawing on the results of clonal tracing studies, we show that, despite the complexity of organ development, clonal dynamics may converge to a critical state characterized by universal scaling behaviour of clone sizes. By mapping clonal dynamics onto a generalization of the classical theory of aerosols, we elucidate the origin and range of scaling behaviours and show how the identification of universal scaling dependences may allow lineage-specific information to be distilled from experiments. Our study shows the emergence of core concepts of statistical physics in an unexpected context, identifying cellular systems as a laboratory to study non-equilibrium statistical physics.
Modelling the influence of human behaviour on the spread of infectious diseases: a review.
Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A A
2010-09-06
Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps.
Modelling the influence of human behaviour on the spread of infectious diseases: a review
Funk, Sebastian; Salathé, Marcel; Jansen, Vincent A. A.
2010-01-01
Human behaviour plays an important role in the spread of infectious diseases, and understanding the influence of behaviour on the spread of diseases can be key to improving control efforts. While behavioural responses to the spread of a disease have often been reported anecdotally, there has been relatively little systematic investigation into how behavioural changes can affect disease dynamics. Mathematical models for the spread of infectious diseases are an important tool for investigating and quantifying such effects, not least because the spread of a disease among humans is not amenable to direct experimental study. Here, we review recent efforts to incorporate human behaviour into disease models, and propose that such models can be broadly classified according to the type and source of information which individuals are assumed to base their behaviour on, and according to the assumed effects of such behaviour. We highlight recent advances as well as gaps in our understanding of the interplay between infectious disease dynamics and human behaviour, and suggest what kind of data taking efforts would be helpful in filling these gaps. PMID:20504800
Modelling Parasite Transmission in a Grazing System: The Importance of Host Behaviour and Immunity
Fox, Naomi J.; Marion, Glenn; Davidson, Ross S.; White, Piran C. L.; Hutchings, Michael R.
2013-01-01
Parasitic helminths present one of the most pervasive challenges to grazing herbivores. Many macro-parasite transmission models focus on host physiological defence strategies, omitting more complex interactions between hosts and their environments. This work represents the first model that integrates both the behavioural and physiological elements of gastro-intestinal nematode transmission dynamics in a managed grazing system. A spatially explicit, individual-based, stochastic model is developed, that incorporates both the hosts’ immunological responses to parasitism, and key grazing behaviours including faecal avoidance. The results demonstrate that grazing behaviour affects both the timing and intensity of parasite outbreaks, through generating spatial heterogeneity in parasite risk and nutritional resources, and changing the timing of exposure to the parasites’ free-living stages. The influence of grazing behaviour varies with the host-parasite combination, dependent on the development times of different parasite species and variations in host immune response. Our outputs include the counterintuitive finding that under certain conditions perceived parasite avoidance behaviours (faecal avoidance) can increase parasite risk, for certain host-parasite combinations. Through incorporating the two-way interaction between infection dynamics and grazing behaviour, the potential benefits of parasite-induced anorexia are also demonstrated. Hosts with phenotypic plasticity in grazing behaviour, that make grazing decisions dependent on current parasite burden, can reduce infection with minimal loss of intake over the grazing season. This paper explores how both host behaviours and immunity influence macro-parasite transmission in a spatially and temporally heterogeneous environment. The magnitude and timing of parasite outbreaks is influenced by host immunity and behaviour, and the interactions between them; the incorporation of both regulatory processes is required to fully understand transmission dynamics. Understanding of both physiological and behavioural defence strategies will aid the development of novel approaches for control. PMID:24223133
Neuronal avalanches and learning
NASA Astrophysics Data System (ADS)
de Arcangelis, Lucilla
2011-05-01
Networks of living neurons represent one of the most fascinating systems of biology. If the physical and chemical mechanisms at the basis of the functioning of a single neuron are quite well understood, the collective behaviour of a system of many neurons is an extremely intriguing subject. Crucial ingredient of this complex behaviour is the plasticity property of the network, namely the capacity to adapt and evolve depending on the level of activity. This plastic ability is believed, nowadays, to be at the basis of learning and memory in real brains. Spontaneous neuronal activity has recently shown features in common to other complex systems. Experimental data have, in fact, shown that electrical information propagates in a cortex slice via an avalanche mode. These avalanches are characterized by a power law distribution for the size and duration, features found in other problems in the context of the physics of complex systems and successful models have been developed to describe their behaviour. In this contribution we discuss a statistical mechanical model for the complex activity in a neuronal network. The model implements the main physiological properties of living neurons and is able to reproduce recent experimental results. Then, we discuss the learning abilities of this neuronal network. Learning occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. The system is able to learn all the tested rules, in particular the exclusive OR (XOR) and a random rule with three inputs. The learning dynamics exhibits universal features as function of the strength of plastic adaptation. Any rule could be learned provided that the plastic adaptation is sufficiently slow.
Analysis of dynamics and fit of diving suits
NASA Astrophysics Data System (ADS)
Mahnic Naglic, M.; Petrak, S.; Gersak, J.; Rolich, T.
2017-10-01
Paper presents research on dynamical behaviour and fit analysis of customised diving suits. Diving suits models are developed using the 3D flattening method, which enables the construction of a garment model directly on the 3D computer body model and separation of discrete 3D surfaces as well as transformation into 2D cutting parts. 3D body scanning of male and female test subjects was performed with the purpose of body measurements analysis in static and dynamic postures and processed body models were used for construction and simulation of diving suits prototypes. All necessary parameters, for 3D simulation were applied on obtained cutting parts, as well as parameters values for mechanical properties of neoprene material. Developed computer diving suits prototypes were used for stretch analysis on areas relevant for body dimensional changes according to dynamic anthropometrics. Garment pressures against the body in static and dynamic conditions was also analysed. Garments patterns for which the computer prototype verification was conducted were used for real prototype production. Real prototypes were also used for stretch and pressure analysis in static and dynamic conditions. Based on the obtained results, correlation analysis between body changes in dynamic positions and dynamic stress, determined on computer and real prototypes, was performed.
Collective effects in models for interacting molecular motors and motor-microtubule mixtures
NASA Astrophysics Data System (ADS)
Menon, Gautam I.
2006-12-01
Three problems in the statistical mechanics of models for an assembly of molecular motors interacting with cytoskeletal filaments are reviewed. First, a description of the hydrodynamical behaviour of density-density correlations in fluctuating ratchet models for interacting molecular motors is outlined. Numerical evidence indicates that the scaling properties of dynamical behaviour in such models belong to the KPZ universality class. Second, the generalization of such models to include boundary injection and removal of motors is provided. In common with known results for the asymmetric exclusion processes, simulations indicate that such models exhibit sharp boundary driven phase transitions in the thermodynamic limit. In the third part of this paper, recent progress towards a continuum description of pattern formation in mixtures of motors and microtubules is described, and a non-equilibrium “phase-diagram” for such systems discussed.
Cyr, André; Boukadoum, Mounir
2013-03-01
This paper presents a novel bio-inspired habituation function for robots under control by an artificial spiking neural network. This non-associative learning rule is modelled at the synaptic level and validated through robotic behaviours in reaction to different stimuli patterns in a dynamical virtual 3D world. Habituation is minimally represented to show an attenuated response after exposure to and perception of persistent external stimuli. Based on current neurosciences research, the originality of this rule includes modulated response to variable frequencies of the captured stimuli. Filtering out repetitive data from the natural habituation mechanism has been demonstrated to be a key factor in the attention phenomenon, and inserting such a rule operating at multiple temporal dimensions of stimuli increases a robot's adaptive behaviours by ignoring broader contextual irrelevant information.
NASA Astrophysics Data System (ADS)
Knopoff, Damián A.
2016-09-01
The recent review paper [4] constitutes a valuable contribution on the understanding, modeling and simulation of crowd dynamics in extreme situations. It provides a very comprehensive revision about the complexity features of the system under consideration, scaling and the consequent justification of the used methods. In particular, macro and microscopic models have so far been used to model crowd dynamics [9] and authors appropriately explain that working at the mesoscale is a good choice to deal with the heterogeneous behaviour of walkers as well as with the difficulty of their deterministic identification. In this way, methods based on the kinetic theory and statistical dynamics are employed, more precisely the so-called kinetic theory for active particles [7]. This approach has successfully been applied in the modeling of several complex dynamics, with recent applications to learning [2,8] that constitutes the key to understand communication and is of great importance in social dynamics and behavioral sciences.
NASA Astrophysics Data System (ADS)
Roy, G.; Llorca, F.; Lanier, G.; Lamalle, S.; Beaulieu, J.; Antoine, P.; Martinuzzi, P.
2006-08-01
This paper is a technical presentation about a new experimental facility recently developed at CEA/Valduc, BAGHEERA, a French acronym for “Hopkinson And High Speed Experiments Glove Box”. This facility is used since mid-2003 to characterize the physical and mechanical behaviour of actinides under high dynamic loadings. For this purpose, four basic experimental devices are confined inside a single glove box: a 50 mm bore diameter single stage light gas gun, two compression and torsion split Hopkinson bars (SHPB and TSHB respectively) and a Taylor test device (TTD). Design and technical data on the experimental equipment are addressed, with a particular emphasis on the gas gun specific features due to actinide applications.
Michie, Susan; Carey, Rachel N; Johnston, Marie; Rothman, Alexander J; de Bruin, Marijn; Kelly, Michael P; Connell, Lauren E
2018-05-18
Understanding links between behaviour change techniques (BCTs) and mechanisms of action (the processes through which they affect behaviour) helps inform the systematic development of behaviour change interventions. This research aims to develop and test a methodology for linking BCTs to their mechanisms of action. Study 1 (published explicit links): Hypothesised links between 93 BCTs (from the 93-item BCT taxonomy, BCTTv1) and mechanisms of action will be identified from published interventions and their frequency, explicitness and precision documented. Study 2 (expert-agreed explicit links): Behaviour change experts will identify links between 61 BCTs and 26 mechanisms of action in a formal consensus study. Study 3 (integrated matrix of explicit links): Agreement between studies 1 and 2 will be evaluated and a new group of experts will discuss discrepancies. An integrated matrix of BCT-mechanism of action links, annotated to indicate strength of evidence, will be generated. Study 4 (published implicit links): To determine whether groups of co-occurring BCTs can be linked to theories, we will identify groups of BCTs that are used together from the study 1 literature. A consensus exercise will be used to rate strength of links between groups of BCT and theories. A formal methodology for linking BCTs to their hypothesised mechanisms of action can contribute to the development and evaluation of behaviour change interventions. This research is a step towards developing a behaviour change 'ontology', specifying relations between BCTs, mechanisms of action, modes of delivery, populations, settings and types of behaviour.
Towards a neuro-computational account of prism adaptation.
Petitet, Pierre; O'Reilly, Jill X; O'Shea, Jacinta
2017-12-14
Prism adaptation has a long history as an experimental paradigm used to investigate the functional and neural processes that underlie sensorimotor control. In the neuropsychology literature, prism adaptation behaviour is typically explained by reference to a traditional cognitive psychology framework that distinguishes putative functions, such as 'strategic control' versus 'spatial realignment'. This theoretical framework lacks conceptual clarity, quantitative precision and explanatory power. Here, we advocate for an alternative computational framework that offers several advantages: 1) an algorithmic explanatory account of the computations and operations that drive behaviour; 2) expressed in quantitative mathematical terms; 3) embedded within a principled theoretical framework (Bayesian decision theory, state-space modelling); 4) that offers a means to generate and test quantitative behavioural predictions. This computational framework offers a route towards mechanistic neurocognitive explanations of prism adaptation behaviour. Thus it constitutes a conceptual advance compared to the traditional theoretical framework. In this paper, we illustrate how Bayesian decision theory and state-space models offer principled explanations for a range of behavioural phenomena in the field of prism adaptation (e.g. visual capture, magnitude of visual versus proprioceptive realignment, spontaneous recovery and dynamics of adaptation memory). We argue that this explanatory framework can advance understanding of the functional and neural mechanisms that implement prism adaptation behaviour, by enabling quantitative tests of hypotheses that go beyond merely descriptive mapping claims that 'brain area X is (somehow) involved in psychological process Y'. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements
NASA Astrophysics Data System (ADS)
Mack, Reiner; Probst, Christian
2016-11-01
A reliable mechanical design of Pelton runners is very important in the layout of new installations and modernizations. Especially in horizontal machines, where the housing is not embedded into concrete, a rupture of a runner bucket can have severe consequences. Even if a crack in the runner is detected on time, the outage time that follows the malfunction of the runner is shortening the return of investment. It is a fact that stresses caused by the runner rotation and the jet forces are superposed by high frequent dynamic stresses. In case of resonance it even can be the dominating effect that is limiting the lifetime of a runner. Therefore a clear understanding of the dynamic mechanisms is essential for a safe runner design. This paper describes the evaluation of the dynamic behavior of a Pelton runner installed in a model turbine based on strain gauge measurements. Equipped with strain gauges at the root area of the buckets, the time responses of the strains under the influence of various operational parameters were measured. As a result basic theories for the jet bucket excitation were verified and the influence of the water mass was detected by evaluating the frequency shift in case of resonance. Furthermore, the influence of the individual bucket masses onto the dynamic behaviour for different mode shapes got measured.
Puffed and bothered: Personality, performance, and the effects of stress on checkered pufferfish.
Pleizier, Naomi; Wilson, Alexander D M; Shultz, Aaron D; Cooke, Steven J
2015-12-01
Although consistent individual-level differences in behaviour are widespread and potentially important in evolutionary and ecological processes, relatively few studies focus on the physiological mechanisms that might underlie and regulate these individual-level differences in wild populations. We conducted experiments to determine whether checkered pufferfish (Sphoeroides testudineus), which were collected from a dynamic (in terms of depth and water temperature) tidal mangrove creek environment in The Bahamas, have consistent individual-level differences in locomotor activity and the response to a simulated predator threat, as well as swimming performance and puffing in response to stressors. The relationships between personality and performance traits were evaluated to determine whether they represented stress-coping styles or syndromes. Subsequently, a displacement study was conducted to determine how personality and performance in the laboratory compared to movements in the field. In addition, we tested whether a physiological dose of the stress hormone cortisol would alter individual consistency in behavioural and performance traits. We found that pufferfish exhibited consistent individual differences in personality traits over time (e.g., activity and the duration of a response to a threat) and that performance was consistent between the lab and the natural enclosure. Locomotor activity and the duration of startled behaviour were not associated with swimming and puffing performance. Locomotor activity, puffing performance, and swimming performance were not related to whether fish returned to the tidal creek of capture after displacement. Similarly, a cortisol treatment did not modify behaviour or performance in the laboratory. The results reveal that consistent individual-level differences in behaviour and performance were present in a population from a fluctuating and physiologically challenging environment but that such traits are not necessarily correlated. We also determined that certain individual performance traits were repeatable between the lab and a natural enclosure. However, we found no evidence of a relationship between exogenous cortisol levels and behavioural traits or performance in these fish, which suggests that other internal and external mechanisms may underlie the behaviours and performance tested. Copyright © 2015 Elsevier Inc. All rights reserved.
Navarro-Barrientos, J.-Emeterio; Rivera, Daniel E.; Collins, Linda M.
2011-01-01
We present a dynamical model incorporating both physiological and psychological factors that predicts changes in body mass and composition during the course of a behavioral intervention for weight loss. The model consists of a three-compartment energy balance integrated with a mechanistic psychological model inspired by the Theory of Planned Behavior (TPB). The latter describes how important variables in a behavioural intervention can influence healthy eating habits and increased physical activity over time. The novelty of the approach lies in representing the behavioural intervention as a dynamical system, and the integration of the psychological and energy balance models. Two simulation scenarios are presented that illustrate how the model can improve the understanding of how changes in intervention components and participant differences affect outcomes. Consequently, the model can be used to inform behavioural scientists in the design of optimised interventions for weight loss and body composition change. PMID:21673826
Colloquium: Mechanical formalisms for tissue dynamics.
Tlili, Sham; Gay, Cyprien; Graner, François; Marcq, Philippe; Molino, François; Saramito, Pierre
2015-05-01
The understanding of morphogenesis in living organisms has been renewed by tremendous progress in experimental techniques that provide access to cell scale, quantitative information both on the shapes of cells within tissues and on the genes being expressed. This information suggests that our understanding of the respective contributions of gene expression and mechanics, and of their crucial entanglement, will soon leap forward. Biomechanics increasingly benefits from models, which assist the design and interpretation of experiments, point out the main ingredients and assumptions, and ultimately lead to predictions. The newly accessible local information thus calls for a reflection on how to select suitable classes of mechanical models. We review both mechanical ingredients suggested by the current knowledge of tissue behaviour, and modelling methods that can help generate a rheological diagram or a constitutive equation. We distinguish cell scale ("intra-cell") and tissue scale ("inter-cell") contributions. We recall the mathematical framework developed for continuum materials and explain how to transform a constitutive equation into a set of partial differential equations amenable to numerical resolution. We show that when plastic behaviour is relevant, the dissipation function formalism appears appropriate to generate constitutive equations; its variational nature facilitates numerical implementation, and we discuss adaptations needed in the case of large deformations. The present article gathers theoretical methods that can readily enhance the significance of the data to be extracted from recent or future high throughput biomechanical experiments.
Application of the Virtual Fields Method to a relaxation behaviour of rubbers
NASA Astrophysics Data System (ADS)
Yoon, Sung-ho; Siviour, Clive R.
2018-07-01
This paper presents the application of the Virtual Fields Method (VFM) for the characterization of viscoelastic behaviour of rubbers. The relaxation behaviour of the rubbers following a dynamic loading event is characterized using the dynamic VFM in which full-field (two dimensional) strain and acceleration data, obtained from high-speed imaging, are analysed by the principle of virtual work without traction force data, instead using the acceleration fields in the specimen to provide stress information. Two (silicone and nitrile) rubbers were tested in tension using a drop-weight apparatus. It is assumed that the dynamic behaviour is described by the combination of hyperelastic and Prony series models. A VFM based procedure is designed and used to produce the identification of the modulus term of a hyperelastic model and the Prony series parameters within a time scale determined by two experimental factors: imaging speed and loading duration. Then, the time range of the data is extended using experiments at different temperatures combined with the time-temperature superposition principle. Prior to these experimental analyses, finite element simulations were performed to validate the application of the proposed VFM analysis. Therefore, for the first time, it has been possible to identify relaxation behaviour of a material following dynamic loading, using a technique that can be applied to both small and large deformations.
NASA Astrophysics Data System (ADS)
Tasquier, Giulia; Pongiglione, Francesca
2017-09-01
Climate change is one of the significant global challenges currently facing humanity. Even though its seriousness seems to be common knowledge among the public, the reaction of individuals to it has been slow and uncertain. Many studies assert that simply knowing about climate change is not enough to generate people's behavioural response. They claim, indeed, that in some cases scientific literacy can even obstruct behavioural response instead. However, recent surveys show a rather poor understanding of climate dynamics and argue that lack of knowledge about causal relationships within climate dynamics can hinder behavioural response, since the individual is not able to understand his/her role as causal agent and therefore doesn't know how to take proper action. This study starts from the hypothesis that scientific knowledge focused on clarifying climate dynamics can make people understand not only dynamics themselves, but also their interactive relationship with the environment. Teaching materials on climate change based on such considerations were designed and implemented in a course for secondary-school students with the aim of investigating whether this kind of knowledge had an influence on students' willingness to adopt pro-environmental behaviours. Questionnaires were delivered for testing the effect of the teaching experience on knowledge and behaviour.
Dynamic risk control by human nucleus accumbens
Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio
2015-01-01
Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667
Evolution of central pattern generators and rhythmic behaviours
Katz, Paul S.
2016-01-01
Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. PMID:26598733
Evolution of central pattern generators and rhythmic behaviours.
Katz, Paul S
2016-01-05
Comparisons of rhythmic movements and the central pattern generators (CPGs) that control them uncover principles about the evolution of behaviour and neural circuits. Over the course of evolutionary history, gradual evolution of behaviours and their neural circuitry within any lineage of animals has been a predominant occurrence. Small changes in gene regulation can lead to divergence of circuit organization and corresponding changes in behaviour. However, some behavioural divergence has resulted from large-scale rewiring of the neural network. Divergence of CPG circuits has also occurred without a corresponding change in behaviour. When analogous rhythmic behaviours have evolved independently, it has generally been with different neural mechanisms. Repeated evolution of particular rhythmic behaviours has occurred within some lineages due to parallel evolution or latent CPGs. Particular motor pattern generating mechanisms have also evolved independently in separate lineages. The evolution of CPGs and rhythmic behaviours shows that although most behaviours and neural circuits are highly conserved, the nature of the behaviour does not dictate the neural mechanism and that the presence of homologous neural components does not determine the behaviour. This suggests that although behaviour is generated by neural circuits, natural selection can act separately on these two levels of biological organization. © 2015 The Author(s).
Dynamic environmental control mechanisms for pneumatic foil constructions
NASA Astrophysics Data System (ADS)
Flor, Jan-Frederik; Wu, Yupeng; Beccarelli, Paolo; Chilton, John
2017-11-01
Membrane and foil structures have become over the last decades an attractive alternative to conventional materials and building systems with increasing implementation in different typologies and scale. The development of transparent, light, flexible and resistant materials like Ethylene Tetrafluoroethylene (ETFE) has triggered a rethinking of the building envelope in the building industry towards lightweight systems. ETFE foil cushions have proven to fulfil the design requirements in terms of structural efficiency and aesthetic values. But the strategies to satisfy increasing demands of energy efficiency and comfort conditions are still under development. The prediction and manipulation of the thermo-optical behaviour of ETFE foil cushion structures currently remain as one of the main challenges for designers and manufacturers. This paper reviews ongoing research regarding the control of the thermo-optical performance of ETFE cushion structures and highlights challenges and possible improvements. An overview of different dynamic and responsive environmental control mechanisms for multilayer foil constructions is provided and the state of the art in building application outlined by the discussion of case studies.
A heuristic mathematical model for the dynamics of sensory conflict and motion sickness
NASA Technical Reports Server (NTRS)
Oman, C. M.
1982-01-01
By consideration of the information processing task faced by the central nervous system in estimating body spatial orientation and in controlling active body movement using an internal model referenced control strategy, a mathematical model for sensory conflict generation is developed. The model postulates a major dynamic functional role for sensory conflict signals in movement control, as well as in sensory-motor adaptation. It accounts for the role of active movement in creating motion sickness symptoms in some experimental circumstance, and in alleviating them in others. The relationship between motion sickness produced by sensory rearrangement and that resulting from external motion disturbances is explicitly defined. A nonlinear conflict averaging model is proposed which describes dynamic aspects of experimentally observed subjective discomfort sensation, and suggests resulting behaviours. The model admits several possibilities for adaptive mechanisms which do not involve internal model updating. Further systematic efforts to experimentally refine and validate the model are indicated.
Static and Dynamic Behaviour Assessment of the Trajan Arch by Means of New Monitoring Technologies
NASA Astrophysics Data System (ADS)
Petti, L.; Barone, F.; Mammone, A.; Giordano, G.
2017-08-01
An effective assessment of the static and dynamic structural behavior of historical monuments requires the development and validation of suitable adaptive structural models using high-quality experimental data acquired with an effectively continuous and distributed monitoring. Furthermore, the adaptive strategy allows an efficient evaluation of the health status and of the evolution along the time of a historical monument, providing relevant information to plan appropriate actions for its long-term preservation. The Trajan Arch in Benevento chosen as a case of study to develop and apply this new adaptive strategy in cultural heritage conservation. The paper, after a description of the innovative monitoring system, based on state-of-the-art mechanical sensors, presents and discusses the results of two tests, comparing the measurements with the predictions of an adaptive structural FEM model developed for the dynamical simulation of the Trajan Arch.
Malijevský, Alexandr; Archer, Andrew J
2013-10-14
We present dynamical density functional theory results for the time evolution of the density distribution of a sedimenting model two-dimensional binary mixture of colloids. The interplay between the bulk phase behaviour of the mixture, its interfacial properties at the confining walls, and the gravitational field gives rise to a rich variety of equilibrium and non-equilibrium morphologies. In the fluid state, the system exhibits both liquid-liquid and gas-liquid phase separation. As the system sediments, the phase separation significantly affects the dynamics and we explore situations where the final state is a coexistence of up to three different phases. Solving the dynamical equations in two-dimensions, we find that in certain situations the final density profiles of the two species have a symmetry that is different from that of the external potentials, which is perhaps surprising, given the statistical mechanics origin of the theory. The paper concludes with a discussion on this.
Costs for switching partners reduce network dynamics but not cooperative behaviour
Bednarik, Peter; Fehl, Katrin; Semmann, Dirk
2014-01-01
Social networks represent the structuring of interactions between group members. Above all, many interactions are profoundly cooperative in humans and other animals. In accordance with this natural observation, theoretical work demonstrates that certain network structures favour the evolution of cooperation. Yet, recent experimental evidence suggests that static networks do not enhance cooperative behaviour in humans. By contrast, dynamic networks do foster cooperation. However, costs associated with dynamism such as time or resource investments in finding and establishing new partnerships have been neglected so far. Here, we show that human participants are much less likely to break links when costs arise for building new links. Especially, when costs were high, the network was nearly static. Surprisingly, cooperation levels in Prisoner's Dilemma games were not affected by reduced dynamism in social networks. We conclude that the mere potential to quit collaborations is sufficient in humans to reach high levels of cooperative behaviour. Effects of self-structuring processes or assortment on the network played a minor role: participants simply adjusted their cooperative behaviour in response to the threats of losing a partner or of being expelled. PMID:25122233
NASA Astrophysics Data System (ADS)
Mohammed, Raffi; Dilkush; Srinivasa Rao, K.; Madhusudhan Reddy, G.
2018-03-01
In the present study, an attempt has been made to weld dissimilar alloys of 5mm thick plates i.e., austenitic stainless steel (316L) and duplex stainless steel (2205) and compared with that of similar welds. Welds are made with conventional gas tungsten arc welding (GTAW) process with two different filler wires namely i.e., 309L and 2209. Welds were characterized using optical microscopy to observe the microstructural changes and correlate with mechanical properties using hardness, tensile and impact testing. Potentio-dynamic polarization studies were carried out to observe the pitting corrosion behaviour in different regions of the welds. Results of the present study established that change in filler wire composition resulted in microstructural variation in all the welds with different morphology of ferrite and austenite. Welds made with 2209 filler showed plate like widmanstatten austenite (WA) nucleated at grain boundaries. Compared to similar stainless steel welds inferior mechanical properties was observed in dissimilar stainless steel welds. Pitting corrosion resistance is observed to be low for dissimilar stainless steel welds when compared to similar stainless steel welds. Overall study showed that similar duplex stainless steel welds having favorable microstructure and resulted in better mechanical properties and corrosion resistance. Relatively dissimilar stainless steel welds made with 309L filler obtained optimum combination of mechanical properties and pitting corrosion resistance when compared to 2209 filler and is recommended for industrial practice.
Comprehensive 3D-elastohydrodynamic simulation of hermetic compressor crank drive
NASA Astrophysics Data System (ADS)
Posch, S.; Hopfgartner, J.; Berger, E.; Zuber, B.; Almbauer, R.; Schöllauf, P.
2017-08-01
Mechanical, electrical and thermodynamic losses form the major loss mechanisms of hermetic compressors for refrigeration application. The present work deals with the investigation of the mechanical losses of a hermetic compressor crank drive. Focus is on 3d-elastohydrodynamic (EHD) modelling of the journal bearings, piston-liner contact and piston secondary motion in combination with multi-body and structural dynamics of the crank drive elements. A detailed description of the model development within the commercial software AVL EXCITE Power Unit is given in the work. The model is used to create a comprehensive analysis of the mechanical losses of a hermetic compressor. Further on, a parametric study concerning oil viscosity and compressor speed is carried out which shows the possibilities of the usage of the model in the development process of hermetic compressors for refrigeration application. Additionally, the usage of the results in an overall thermal network for the determination of the thermal compressor behaviour is discussed.
Synchronization transition in neuronal networks composed of chaotic or non-chaotic oscillators.
Xu, Kesheng; Maidana, Jean Paul; Castro, Samy; Orio, Patricio
2018-05-30
Chaotic dynamics has been shown in the dynamics of neurons and neural networks, in experimental data and numerical simulations. Theoretical studies have proposed an underlying role of chaos in neural systems. Nevertheless, whether chaotic neural oscillators make a significant contribution to network behaviour and whether the dynamical richness of neural networks is sensitive to the dynamics of isolated neurons, still remain open questions. We investigated synchronization transitions in heterogeneous neural networks of neurons connected by electrical coupling in a small world topology. The nodes in our model are oscillatory neurons that - when isolated - can exhibit either chaotic or non-chaotic behaviour, depending on conductance parameters. We found that the heterogeneity of firing rates and firing patterns make a greater contribution than chaos to the steepness of the synchronization transition curve. We also show that chaotic dynamics of the isolated neurons do not always make a visible difference in the transition to full synchrony. Moreover, macroscopic chaos is observed regardless of the dynamics nature of the neurons. However, performing a Functional Connectivity Dynamics analysis, we show that chaotic nodes can promote what is known as multi-stable behaviour, where the network dynamically switches between a number of different semi-synchronized, metastable states.
NASA Astrophysics Data System (ADS)
Miguel, António F.
2016-09-01
Walking is the most basic form of transportation. A good understanding of pedestrian's dynamics is essential in meeting the mobility and accessibility needs of people by providing a safe and quick walking flow [1]. Advances in the dynamics of pedestrians in crowds are of great theoretical and practical interest, as they lead to new insights regarding the planning of pedestrian facilities, crowd management, or evacuation analysis. Nicola Bellomo's et al. article [2] is a very timely review of the related research on modelling approaches, computational simulations, decision-making and crisis response. It also includes an attempt to accurately define commonly used terms, as well as a critical analysis of crowd dynamics and safety problems. As noted by the authors, ;models and simulations offer a virtual representation of real dynamics; that are essential to understand and predict the ;behavioural dynamics of crowds; [2]. As a physicist, I would like to put forward some additional theoretical and practical contributions that could be interesting to explore, regarding the perspective of physics on about human crowd dynamics (panic as a specific form of behaviour excluded).
The dynamics of consumer behaviour. On habit, discontent, and other fish to fry.
Scholderer, Joachim; Trondsen, Torbjørn
2008-11-01
Recent research has drawn attention to the role of past behaviour and habit in the overall structure of consumer behaviour. We argue that in cross-sectional data past behaviour and habit must be confounded with present beliefs and attitudes when the behaviour in question has been enacted numerous times before. To disentangle the effects, longitudinal data were collected from a large panel of Norwegian consumers (effective N=4184) in 1996, 2000, and 2004. Cross-lagged panel analysis indicated that higher consumption of traditional seafood led to increasingly negative evaluations of the product supply. These negative evaluations, in turn, prompted substitution of traditional seafood with newly available, processed seafood products and an increasing dominance of aqua-cultured species. The theoretical discussion focuses on the inability of static models of consumer behaviour (in particular, the theory of planned behaviour) to capture such dynamic effects. Marketing and policy implications related to the changing structure of the seafood market are outlined.
Self-organization processes in field-invasion team sports : implications for leadership.
Passos, Pedro; Araújo, Duarte; Davids, Keith
2013-01-01
In nature, the interactions between agents in a complex system (fish schools; colonies of ants) are governed by information that is locally created. Each agent self-organizes (adjusts) its behaviour, not through a central command centre, but based on variables that emerge from the interactions with other system agents in the neighbourhood. Self-organization has been proposed as a mechanism to explain the tendencies for individual performers to interact with each other in field-invasion sports teams, displaying functional co-adaptive behaviours, without the need for central control. The relevance of self-organization as a mechanism that explains pattern-forming dynamics within attacker-defender interactions in field-invasion sports has been sustained in the literature. Nonetheless, other levels of interpersonal coordination, such as intra-team interactions, still raise important questions, particularly with reference to the role of leadership or match strategies that have been prescribed in advance by a coach. The existence of key properties of complex systems, such as system degeneracy, nonlinearity or contextual dependency, suggests that self-organization is a functional mechanism to explain the emergence of interpersonal coordination tendencies within intra-team interactions. In this opinion article we propose how leadership may act as a key constraint on the emergent, self-organizational tendencies of performers in field-invasion sports.
NASA Astrophysics Data System (ADS)
Wolanski, Eric
2017-11-01
Recent advances in our understanding of the self-recruitment and connectivity of estuarine and coastal fauna and flora were made possible by an integration of physical oceanographic observations and modelling with results from studies of the behaviour of the seeds, eggs, larvae, propagules, juveniles and polyps, of population dynamics, microchemical tagging using natural and artificial markers, genetics and direct observations of trajectories. The species studied in those case studies were jellyfish in marine lakes, corals in acidified bays, seagrass, mangrove propagules, mussels and oysters, prawns, some estuarine fish larvae, the copepod Calanus finmarchius in the North Sea, sea turtles in the Coral Sea, and the ornate spiny lobster Panulirus ornatus in the Southeast Asia archipelago. The spatial scales for self-recruitment and connectivity vary with the species from a few m to 10,000 km, and the temporal scales vary from one to three generations. These studies suggest that, with increasing physical openness of a given site for a given species, self-recruiting increasingly relies on the behaviour of the species. Estuarine and coastal systems thus are simultaneously bounded and unbounded depending on the sites and the species considered and, although often ignored, the integration of oceanographic and behavioural understanding is increasingly required. This paper has shown the importance of understanding the hydrological and ecological dynamics with unbounded boundaries in creating the connectivity between parts of the aquatic continuum from the river catchment to the open seas.
Rike, Per-Ola; Ulleberg, Pål; Schultheis, Maria T; Lundqvist, Anna; Schanke, Anne-Kristine
2014-01-01
To explore whether measurements of self-regulatory mechanisms and cognition predict driving behaviour after an acquired brain injury (ABI). Consecutive follow-up study. At baseline participants included 77 persons with stroke and 32 persons with a traumatic brain injury (TBI), all of whom completed a multidisciplinary driving assessment (MDA). A follow-up cohort of 34 persons that succeeded the MDA was included. Baseline measurements: Neuropsychological tests and measurements of self-regulatory mechanisms (BRIEF-A and UPPS Impulsive Behaviour Scale), driving behaviour (DBQ) and pre-injury driving characteristics (mileage, compensatory driving strategies and accident rates). Follow-up measurements: Post-injury driving characteristics were collected by mailed questionnaires from the participants who succeeded the MDA. A MDA, which included a medical examination, neuropsychological testing and an on-road driving test, was considered in the decision for or against granting a driver's license. Self-regulatory mechanisms and driving behaviour were examined for research purposes only. At baseline, self-regulatory mechanisms were significantly associated to aberrant driving behaviour, but not with neuropsychological data or with the outcome of the on-road driving test. Aspects of self-regulation were associated to driving behaviour at follow-up. It is recommended that self-regulatory measurements should regularly be considered in the driving assessments after ABI.
Nonequilibrium localization and the interplay between disorder and interactions.
Mascarenhas, Eduardo; Bragança, Helena; Drumond, R; Aguiar, M C O; França Santos, M
2016-05-18
We study the nonequilibrium interplay between disorder and interactions in a closed quantum system. We base our analysis on the notion of dynamical state-space localization, calculated via the Loschmidt echo. Although real-space and state-space localization are independent concepts in general, we show that both perspectives may be directly connected through a specific choice of initial states, namely, maximally localized states (ML-states). We show numerically that in the noninteracting case the average echo is found to be monotonically increasing with increasing disorder; these results are in agreement with an analytical evaluation in the single particle case in which the echo is found to be inversely proportional to the localization length. We also show that for interacting systems, the length scale under which equilibration may occur is upper bounded and such bound is smaller the greater the average echo of ML-states. When disorder and interactions, both being localization mechanisms, are simultaneously at play the echo features a non-monotonic behaviour indicating a non-trivial interplay of the two processes. This interplay induces delocalization of the dynamics which is accompanied by delocalization in real-space. This non-monotonic behaviour is also present in the effective integrability which we show by evaluating the gap statistics.
Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie
2017-01-01
In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing. PMID:28772860
Zhang, Daohai; He, Min; He, Weidi; Zhou, Ying; Qin, Shuhao; Yu, Jie
2017-05-04
In this work, the long glass fibre-reinforced poly(butylene terephthalate) (PBT) composites filled with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) were prepared by melt blending, and the influence of thermo-oxidative ageing on the static and dynamic mechanical properties, thermal behaviours and morphology of composites with different ageing time at 120 °C were investigated and analysed. The results showed that the mechanical properties decreased in the primary stage of ageing, while embrittlement occurs in the later period, and the crystallinity of PBT decreases first, and then recovers to some extent. The scanning electron microscopy (SEM) photos of the samples indicated that the obvious crack appeared on the sample surface and a deeper, broader crack occurred with a longer ageing time. The results of energy dispersive X-ray analysis (EDAX) proved the DOPO filler diffused to the sample surface by measuring the content of phosphorus. Thermal gravimetric analysis (TGA) curves showed that the thermal stabilities of composites increased with longer ageing time, as did the values of the limited oxygen index (LOI). Meanwhile, the results of dynamic mechanical analysis (DMA) indicated that the glass transition temperature shifted to a higher temperature after ageing due to the effect of crosslinking, and both the crosslinking and degradation of PBT molecular chains act as the main factors in the whole process of thermo-oxidative ageing.
Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour
Qin, Dong-dong; Rizak, Joshua; Feng, Xiao-li; Yang, Shang-chuan; Lü, Long-bao; Pan, Lei; Yin, Yong; Hu, Xin-tian
2016-01-01
Stress is associated with the onset of depressive episodes, and cortisol hypersecretion is considered a biological risk factor of depression. However, the possible mechanisms underlying stress, cortisol and depressive behaviours are inconsistent in the literature. This study examined the interrelationships among stress, cortisol and observed depressive behaviours in female rhesus macaques for the first time and explored the possible mechanism underlying stress and depressive behaviour. Female monkeys were video-recorded, and the frequencies of life events and the duration of huddling were analysed to measure stress and depressive behaviour. Hair samples were used to measure chronic cortisol levels, and the interactions between stress and cortisol in the development of depressive behaviour were further evaluated. Significant correlations were found between stress and depressive behaviour measures and between cortisol levels and depressive behaviour. Stress was positively correlated with cortisol levels, and these two factors interacted with each other to predict the monkeys’ depressive behaviours. This finding extends the current understanding of stress/cortisol interactions in depression, especially pertaining to females. PMID:27443987
NASA Astrophysics Data System (ADS)
Neill, A. J.; Tetzlaff, D.; Strachan, N.; Soulsby, C.
2016-12-01
The non-linearities of runoff generation processes are strongly influenced by the connectivity of hillslopes and channel networks, particularly where overland flow is an important runoff mechanism. Despite major advances in understanding hydrological connectivity and runoff generation, the role of connectivity in the contamination of potable water supplies by faecal pathogens from grazing animals remains unclear. This is a water quality issue with serious implications for public health. Here, we sought to understand the dynamics of hydrological connectivity, flow paths and linked faecal pathogen transport in a montane catchment in Scotland with high deer populations. We firstly calibrated, within an uncertainty framework, a parsimonious tracer-aided hydrological model to daily discharge and stream isotope data. The model, developed on the basis of past empirical and tracer studies, conceptualises the catchment as three interacting hydrological source areas (dynamic saturation zone, dynamic hillslope, and groundwater) for which water fluxes, water ages and storage-based connectivity can be simulated. We next coupled several faecal indicator organism (FIO; a common indicator of faecal pathogen contamination) behaviour and transport schemes to the robust hydrological models. A further calibration was then undertaken based on the ability of each coupled model to simulate daily FIO concentrations. This gave us a final set of coupled behavioural models from which we explored how in-stream FIO dynamics could be related to the changing connectivity between the three hydrological source areas, flow paths, water ages and consequent dominant runoff generation processes. We found that high levels of FIOs were transient and episodic, and strongly correlated with periods of high connectivity through overland flow. This non-linearity in connectivity and FIO flux was successfully captured within our dynamic, tracer-aided hydrological model.
Okuyama, M; Kato, S; Sato, S; Okazaki, J; Kitamura, Y; Ishikawa, T; Sato, Y; Isono, S
2018-01-01
Difficult mask ventilation is common and is known to be associated with sleep-disordered breathing (SDB). It is our hypothesis that the incidence of expiratory retropalatal (RP) airway closure (primary outcome) during nasal positive pressure ventilation (PPV) is more frequent in patients with SDB (apnea hypopnea index ≥5 h -1 ) than non-SDB subjects. The severity of SDB was assessed before surgery using a portable sleep monitor. In anaesthetized and paralysed patients with (n=11) and without SDB (n=9), we observed the behaviour of the RP airway endoscopically during nasal PPV with the mouth closed and determined the dynamic RP closing pressure, which was defined as the highest airway pressure above which the RP airway closure was reversed. The static RP closing pressure was obtained during cessation of mechanical ventilation in patients with dynamic RP closure during nasal PPV. The expiratory RP airway closure accompanied by expiratory flow limitation occurred more frequently in SDB patients (9/11, 82%) than in non-SDB subjects (2/9, 22%; exact logistic regression analysis: P=0.022, odds ratio 3.6, 95% confidence interval 1.1-15.4). Receiver operating characteristic curve analyses indicated AHI >10h -1 and presence of habitual snoring as clinically useful predictors for the occurrence of RP closure during PPV. Dynamic RP closing pressure was greater than the static RP closing pressure by approximately 4-5 cm H 2 O. Valve-like dynamic RP closure that limits expiratory flow during nasal PPV occurs more frequently in SDB patients. Copyright © 2017. Published by Elsevier Ltd.
Fractal analysis of GPS time series for early detection of disastrous seismic events
NASA Astrophysics Data System (ADS)
Filatov, Denis M.; Lyubushin, Alexey A.
2017-03-01
A new method of fractal analysis of time series for estimating the chaoticity of behaviour of open stochastic dynamical systems is developed. The method is a modification of the conventional detrended fluctuation analysis (DFA) technique. We start from analysing both methods from the physical point of view and demonstrate the difference between them which results in a higher accuracy of the new method compared to the conventional DFA. Then, applying the developed method to estimate the measure of chaoticity of a real dynamical system - the Earth's crust, we reveal that the latter exhibits two distinct mechanisms of transition to a critical state: while the first mechanism has already been known due to numerous studies of other dynamical systems, the second one is new and has not previously been described. Using GPS time series, we demonstrate efficiency of the developed method in identification of critical states of the Earth's crust. Finally we employ the method to solve a practically important task: we show how the developed measure of chaoticity can be used for early detection of disastrous seismic events and provide a detailed discussion of the numerical results, which are shown to be consistent with outcomes of other researches on the topic.
NASA Astrophysics Data System (ADS)
Sattar, M.; Wei, C.; Jalali, A.; Sattar, R.
2017-07-01
To address the impact of solar array (SA) anomalies and vibrations on performance of precision space-based operations, it is important to complete its accurate jitter analysis. This work provides mathematical modelling scheme to approximate kinematics and coupled micro disturbance dynamics of rigid load supported and operated by solar array drive assembly (SADA). SADA employed in analysis provides a step wave excitation torque to activate the system. Analytical investigations into kinematics is accomplished by using generalized linear and Euler angle coordinates, applying multi-body dynamics concepts and transformations principles. Theoretical model is extended, to develop equations of motion (EoM), through energy method (Lagrange equation). The main emphasis is to research coupled frequency response by determining energies dissipated and observing dynamic behaviour of internal vibratory systems of SADA. The disturbance model captures discrete active harmonics of SADA, natural modes and vibration amplifications caused by interactions between active harmonics and structural modes of mechanical assembly. The proposed methodology can help to predict true micro disturbance nature of SADA operating rigid load. Moreover, performance outputs may be compared against actual mission requirements to assess precise spacecraft controller design to meet next space generation stringent accuracy goals.
a Self-Excited System for Percussive-Rotary Drilling
NASA Astrophysics Data System (ADS)
Batako, A. D.; Babitsky, V. I.; Halliwell, N. A.
2003-01-01
A dynamic model for a new principle of percussive-rotary drilling is presented. This is a non-linear mechanical system with two degrees of freedom, in which friction-induced vibration is used for excitation of impacts, which influence the parameters of stick-slip motion. The model incorporates the friction force as a function of sliding velocity, which allows for the self-excitation of the coupled vibration of the rotating bit and striker, which tends to a steady state periodic cycle. The dynamic coupling of vibro-impact action with the stick-slip process provides an entirely new adaptive feature in the drilling process. The dynamic behaviour of the system with and without impact is studied numerically. Special attention is given to analysis of the relationship between the sticking and impacting phase of the process in order to achieve an optimal drilling performance. This paper provides an understanding of the mechanics of percussive -rotary drilling and design of new drilling tools with advanced characteristics. Conventional percussive-rotary drilling requires two independent actuators and special control for the synchronization of impact and rotation. In the approach presented, a combined complex interaction of drill bit and striker is synchronized by a single rotating drive.
Nonlinear dynamics as an engine of computation.
Kia, Behnam; Lindner, John F; Ditto, William L
2017-03-06
Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics-cybernetical physics-opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).
Nonlinear dynamics as an engine of computation
Lindner, John F.; Ditto, William L.
2017-01-01
Control of chaos teaches that control theory can tame the complex, random-like behaviour of chaotic systems. This alliance between control methods and physics—cybernetical physics—opens the door to many applications, including dynamics-based computing. In this article, we introduce nonlinear dynamics and its rich, sometimes chaotic behaviour as an engine of computation. We review our work that has demonstrated how to compute using nonlinear dynamics. Furthermore, we investigate the interrelationship between invariant measures of a dynamical system and its computing power to strengthen the bridge between physics and computation. This article is part of the themed issue ‘Horizons of cybernetical physics’. PMID:28115619
NASA Astrophysics Data System (ADS)
Morecroft, John
System dynamics is an approach for thinking about and simulating situations and organisations of all kinds and sizes by visualising how the elements fit together, interact and change over time. This chapter, written by John Morecroft, describes modern system dynamics which retains the fundamentals developed in the 1950s by Jay W. Forrester of the MIT Sloan School of Management. It looks at feedback loops and time delays that affect system behaviour in a non-linear way, and illustrates how dynamic behaviour depends upon feedback loop structures. It also recognises improvements as part of the ongoing process of managing a situation in order to achieve goals. Significantly it recognises the importance of context, and practitioner skills. Feedback systems thinking views problems and solutions as being intertwined. The main concepts and tools: feedback structure and behaviour, causal loop diagrams, dynamics, are practically illustrated in a wide variety of contexts from a hot water shower through to a symphony orchestra and the practical application of the approach is described through several real examples of its use for strategic planning and evaluation.
NASA Astrophysics Data System (ADS)
Schümann, M.; Morich, J.; Kaufhold, T.; Böhm, V.; Zimmermann, K.; Odenbach, S.
2018-05-01
Magnetorheological elastomers are a type of smart hybrid material which combines elastic properties of a soft elastomer matrix with magnetic properties of magnetic micro particles. This leads to a material with magnetically controllable mechanical properties of which the magnetorheological effect is the best known. The addition of electroconductive particles to the polymer mix adds electrical properties to the material behaviour. The resulting electrical resistance of the sample can be manipulated by external magnetic fields and mechanical loads. This results in a distinct interplay of mechanical, electrical and magnetic effects with a highly complex time behaviour. In this paper a mechanical characterisation on multiple time scales was conducted to get an insight on the short and long-term electrical and mechanical behaviour of this novel material. The results show a complex resistivity behaviour on several timescales, sensitive to magnetic fields and strain velocity. The observed material exhibits fatigue and relaxation behaviour, whereas the magnetorheological effect appears not to interfere with the piezoresistive properties.
Defect dynamics in active nematics
Giomi, Luca; Bowick, Mark J; Mishra, Prashant; Sknepnek, Rastko; Cristina Marchetti, M
2014-01-01
Topological defects are distinctive signatures of liquid crystals. They profoundly affect the viscoelastic behaviour of the fluid by constraining the orientational structure in a way that inevitably requires global changes not achievable with any set of local deformations. In active nematic liquid crystals, topological defects not only dictate the global structure of the director, but also act as local sources of motion, behaving as self-propelled particles. In this article, we present a detailed analytical and numerical study of the mechanics of topological defects in active nematic liquid crystals. PMID:25332389
Dynamics of two-phase interfaces and surface tensions: A density-functional theory perspective
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Sibley, David N.; Duran-Olivencia, Miguel A.; Kalliadasis, Serafim
2016-11-01
Classical density functional theory (DFT) is a statistical mechanical framework for the description of fluids at the nanoscale, where the inhomogeneity of the fluid structure needs to be carefully accounted for. By expressing the grand free-energy of the fluid as a functional of the one-body density, DFT offers a theoretically consistent and computationally accessible way to obtain two-phase interfaces and respective interfacial tensions in a ternary solid-liquid-gas system. The dynamic version of DFT (DDFT) can be rigorously derived from the Smoluchowsky picture of the dynamics of colloidal particles in a solvent. It is generally agreed that DDFT can capture the diffusion-driven evolution of many soft-matter systems. In this context, we use DDFT to investigate the dynamic behaviour of two-phase interfaces in both equilibrium and dynamic wetting and discuss the possibility of defining a time-dependent surface tension, which still remains in debate. We acknowledge financial support from the European Research Council via Advanced Grant No. 247031 and from the Engineering and Physical Sciences Research Council of the UK via Grants No. EP/L027186 and EP/L020564.
Fatigue behaviour of core-spun yarns containing filament by means of cyclic dynamic loading
NASA Astrophysics Data System (ADS)
Esin, S.; Osman, B.
2017-10-01
The behaviour of yarns under dynamic loading is important that leads to understand the growth characteristics which is exposed to repetitive loadings during usage of fabric made from these yarns. Fabric growth is undesirable property that originated from low resilience characteristics of fabric. In this study, the effects of the filament fineness and yarn linear density on fatigue behaviour of rigid-core spun yarns were determined. Cotton covered yarns containing different filament fineness of polyester (PET) draw textured yarns (DTY) (100d/36f, 100d/96f, 100d/144f, 100d/192f and 100d/333f) and yarn linear densities (37 tex, 30 tex, 25 tex and 21 tex) were manufactured by using a modified ring spinning system at the same spinning parameters. Repetitive loads were applied for 25 cycles at levels between 0.1 and 3 N. Dynamic modulus and dynamic strain of yarn samples were analyzed statistically. Results showed that filament fineness and yarn linear density have significance effect on dynamic modulus and dynamic strain after cyclic loading.
Dynamism or Disorder at High Pressures?
NASA Astrophysics Data System (ADS)
Angel, R. J.; Bismayer, U.; Marshall, W. G.
2002-12-01
Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.
Applying Dynamic Fuzzy Petri Net to Web Learning System
ERIC Educational Resources Information Center
Chen, Juei-Nan; Huang, Yueh-Min; Chu, William
2005-01-01
This investigation presents a DFPN (Dynamic Fuzzy Petri Net) model to increase the flexibility of the tutoring agent's behaviour and thus provide a learning content structure for a lecture course. The tutoring agent is a software assistant for a single user, who may be an expert in an e-Learning course. Based on each learner's behaviour, the…
Ings, Thomas C.; Chittka, Lars
2009-01-01
Predators of pollinators can influence pollination services and plant fitness via both consumptive (reducing pollinator density) and non-consumptive (altering pollinator behaviour) effects. However, a better knowledge of the mechanisms underlying behaviourally mediated indirect effects of predators is necessary to properly understand their role in community dynamics. We used the tripartite relationship between bumblebees, predatory crab spiders and flowers to ask whether behaviourally mediated effects are localized to flowers harbouring predators, or whether bees extend their avoidance to entire plant species. In a tightly controlled laboratory environment, bumblebees (Bombus terrestris) were exposed to a random mixture of equally rewarding yellow and white artificial flowers, but foraging on yellow flowers was very risky: bees had a 25 per cent chance of receiving a simulated predation attempt by ‘robotic’ crab spiders. As bees learnt to avoid ‘dangerous’ flowers, their foraging preferences changed and they began to visit fewer yellow flowers than expected by chance. Bees avoided spider-free yellow flowers as well as dangerous yellow flowers when spiders were more difficult to detect (the colour of yellow spiders was indistinguishable from that of yellow flowers). Therefore, this interaction between bee learning and predator crypsis could lead flower species harbouring cryptic predators to suffer from reduced reproductive success. PMID:19324797
We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood
Young, Hayley; Benton, David
2015-01-01
Both heart rate (HR) and brain functioning involve the integrated output of a multitude of regulatory mechanisms, that are not quantified adequately by linear approximations such as means and standard deviations. It was therefore considered whether non-linear measures of HR complexity are more strongly associated with cognition and mood. Whilst resting, the inter-beat (R-R) time series of twenty-one males and twenty-four females were measured for five minutes. The data were summarised using time, frequency and nonlinear complexity measures. Attention, memory, reaction times, mood and cortisol levels were assessed. Nonlinear HR indices captured additional information, enabling a greater percentage of the variance in behaviour to be explained. On occasions non-linear indices were related to aspects for behaviour, for example focused attention and cortisol production, when time or frequency indices were not. These effects were sexually dimorphic with HR complexity being more strongly associated with the behaviour of females. It was concluded that nonlinear rather than linear methods of summarizing the HR times series offers a novel way of relating brain functioning and behaviour. It should be considered whether non-linear measures of HR complexity can be used as a biomarker of the integrated functioning of the brain. PMID:26565560
Electromagnetic-field effects on structure and dynamics of amyloidogenic peptides
NASA Astrophysics Data System (ADS)
Todorova, Nevena; Bentvelzen, Alan; English, Niall J.; Yarovsky, Irene
2016-02-01
Electromagnetic fields (EMFs) are ever-present, and so is the need to better understand their influence on human health and biological matter in general. The interaction between a molecular system and external EMF can alter the structure, and dynamical behaviour, and, hence, biological function of proteins with uncertain health consequences. This urges a detailed investigation of EMF-induced effects on basic protein biophysics. Here, we used all-atom non-equilibrium molecular dynamics simulations to understand and quantify the response mechanisms of the amyloidogenic apoC-II(60-70) peptides to non-ionising radiation by modelling their behaviour under external electromagnetic and electric fields of different strengths. Our simulations show high strength fields (>0.04 V/nm) cause structural changes in apoC-II(60-70) due to the peptide dipole alignment along the applied field direction, which disrupts the inherent β-hairpin conformation known to be the intermediate state for fibril formation. The intermediate field-strength range (0.04-0.004 V/nm) causes a significant acceleration in peptide dynamics, which leads to the increased population of structures with fibril-inhibiting characteristics, such as the separated N- and C-termini and colocation of the aromatic residues at the same peptide face. In contrast, lower field strengths (<0.004 V/nm) promote the formation of the amyloid-prone hairpin structures relative to the ambient conditions. These findings suggest that intermediate-strength electromagnetic fields could be considered for designing alternative treatments of amyloid diseases, while the very high and low field strengths could be employed for engineering well-ordered fibrillar aggregates for non-medicinal applications.
In-process, non-destructive, dynamic testing of high-speed polymer composite rotors
NASA Astrophysics Data System (ADS)
Kuschmierz, Robert; Filippatos, Angelos; Günther, Philipp; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgen; Fischer, Andreas
2015-03-01
Polymer composite rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency and lifetime, as well as allowing for higher dynamic loads. However, due to the complexity of the composite materials an in-process measurement system is required. This allows for monitoring the evolution of damages under dynamic loads, for testing and predicting the structural integrity of composite rotors in process. In rotor design, it can be used for calibrating and improving models, simulating the dynamic behaviour of polymer composite rotors. The measurement system is to work non-invasive, offer micron uncertainty, as well as a high measurement rate of several tens of kHz. Furthermore, it must be applicable at high surface speeds and under technical vacuum. In order to fulfil these demands a novel laser distance measurement system was developed. It provides the angle resolved measurement of the biaxial deformation of a fibre-reinforced polymer composite rotor with micron uncertainty at surface speeds of more than 300 m/s. Furthermore, a simulation procedure combining a finite element model and a damage mechanics model is applied. A comparison of the measured data and the numerically calculated data is performed to validate the simulation towards rotor expansion. This validating procedure can be used for a model calibration in the future. The simulation procedure could be used to investigate different damage-test cases of the rotor, in order to define its structural behaviour without further experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parab, Niranjan D.; Guo, Zherui; Hudspeth, Matthew
The mechanical properties and fracture mechanisms of geomaterials and construction materials such as concrete are reported to be dependent on the loading rates. However, the in situ cracking inside such specimens cannot be visualized using traditional optical imaging methods since the materials are opaque. In this study, the in situ sub-surface failure/damage mechanisms in Cor-Tuf (a reactive powder concrete), a high-strength concrete (HSC) and Indiana limestone under dynamic loading were investigated using high-speed synchrotron X-ray phase-contrast imaging. Dynamic compressive loading was applied using a modified Kolsky bar and fracture images were recorded using a synchronized high-speed synchrotron X-ray imaging set-up.more » Three-dimensional synchrotron X-ray tomography was also performed to record the microstructure of the specimens before dynamic loading. In the Cor-Tuf and HSC specimens, two different modes of cracking were observed: straight cracking or angular cracking with respect to the direction of loading. In limestone, cracks followed the grain boundaries and voids, ultimately fracturing the specimen. Cracks in HSC were more tortuous than the cracks in Cor-Tuf specimens. The effects of the microstructure on the observed cracking behaviour are discussed. This article is part of the themed issue ‘Experimental testing and modelling of brittle materials at high strain rates’.« less
Ahn, A N; Monti, R J; Biewener, A A
2003-01-01
Many studies examine sarcomere dynamics in single fibres or length–tension dynamics in whole muscles in vivo or in vitro, but few studies link the various levels of organisation. To relate data addressing in vitro muscle segment behaviour with in vivo whole muscle behaviour during locomotion, we measured in vivo strain patterns of muscle segments using three sonomicrometry crystals implanted along a fascicle of the semimembranosus muscle in the American toad (Bufo americanus; n = 6) during hopping. The centre crystal emitted an ultrasonic signal, while the outer crystals received the signal allowing the instantaneous measurement of lengths from two adjacent muscle segments. On the first day, we recorded from the central and distal segments. On the second day of recordings, the most distal crystal was moved to a proximal position to record from a proximal segment and the same central segment. When the toads hopped a distance of two body lengths, the proximal and central segments strained −15.1 ± 6.1 and −14.0 ± 4.9 % (i.e. shortening), respectively. Strain of the distal segment, however, was significantly lower and more variable in pattern, often lengthening before shortening during a hop. From rest length, the distal segment initially lengthened by 2.6 ± 2.0 % before shortening by 6.5 ± 3.2 % at the same hop distance. Under in vitro conditions, the central segment always shortened more than the distal segment, except when passively cycled, during which the segments strained similarly. When the whole muscle was cycled sinusoidally and stimulated phasically in vitro, the two adjacent segments strained in opposite directions over much (up to 34 %) of the cycle. These differences in strain amplitude and direction imply that two adjacent segments can not only produce and/or absorb varying amounts of mechanical energy, but can also operate on different regions of their force–length and force–velocity relationships when activated by the same neural signal. Understanding regional differences in contractile dynamics within muscles is therefore important to linking our understanding of sarcomere behaviour with whole muscle behaviour during locomotion. PMID:12717006
Todorović, Dajana; Marković, Tamara; Prolić, Zlatko; Mihajlović, Spomenko; Rauš, Snežana; Nikolić, Ljiljana; Janać, Branka
2013-01-01
There is considerable concern about potential effects associated with exposure to magnetic fields on organisms. Therefore, duration of pupa-adult development and motor behaviour of adults were analyzed in Tenebrio obscursus and T. molitor after exposure to static magnetic field (50 mT). The experimental groups were: Control (kept 5 m from the magnets), groups which pupae and adults were placed closer to the North pole, or closer to the South pole of magnetic dipole. The pupae were exposed to the magnetic field until the moment of adult eclosion. The pupa-adult development dynamics were recorded daily. Subsequently, behaviour (distance travelled, average speed and immobility) of adults exposed to the magnetic field was monitored in a circular open field arena. Static magnetic field did not affect pupa-adult developmental dynamic of examined Tenebrio species. Exposure to magnetic field did not significantly change motor behaviour of T. obscurus adults. The changes in the motor behaviour of T. molitor induced by static magnetic field were opposite in two experimental groups developed closer to the North pole or closer to the South pole of magnetic dipole. Static magnetic field (50 mT) did not affect on pupa-adult development dynamic of two examined Tenebrio species, but modulated their motor behaviour.
Dynamical Systems in Psychology: Linguistic Approaches
NASA Astrophysics Data System (ADS)
Sulis, William
Major goals for psychoanalysis and psychology are the description, analysis, prediction, and control of behaviour. Natural language has long provided the medium for the formulation of our theoretical understanding of behavior. But with the advent of nonlinear dynamics, a new language has appeared which offers promise to provide a quantitative theory of behaviour. In this paper, some of the limitations of natural and formal languages are discussed. Several approaches to understanding the links between natural and formal languages, as applied to the study of behavior, are discussed. These include symbolic dynamics, Moore's generalized shifts, Crutchfield's ɛ machines, and dynamical automata.
Purely hydrodynamic ordering of rotating disks at a finite Reynolds number.
Goto, Yusuke; Tanaka, Hajime
2015-01-28
Self-organization of moving objects in hydrodynamic environments has recently attracted considerable attention in connection to natural phenomena and living systems. However, the underlying physical mechanism is much less clear due to the intrinsically nonequilibrium nature, compared with self-organization of thermal systems. Hydrodynamic interactions are believed to play a crucial role in such phenomena. To elucidate the fundamental physical nature of many-body hydrodynamic interactions at a finite Reynolds number, here we study a system of co-rotating hard disks in a two-dimensional viscous fluid at zero temperature. Despite the absence of thermal noise, this system exhibits rich phase behaviours, including a fluid state with diffusive dynamics, a cluster state, a hexatic state, a glassy state, a plastic crystal state and phase demixing. We reveal that these behaviours are induced by the off-axis and many-body nature of nonlinear hydrodynamic interactions and the finite time required for propagating the interactions by momentum diffusion.
Effect of hydro mechanical coupling on natural fracture network formation in sedimentary basins
NASA Astrophysics Data System (ADS)
Ouraga, Zady; Guy, Nicolas; Pouya, Amade
2018-05-01
In sedimentary basin context, numerous phenomena, depending on the geological time span, can result in natural fracture network formation. In this paper, fracture network and dynamic fracture spacing triggered by significant sedimentation rate are studied considering mode I fracture propagation using a coupled hydro-mechanical numerical methods. The focus is put on synthetic geological structure under a constant sedimentation rate on its top. This model contains vertical fracture network initially closed and homogeneously distributed. The fractures are modelled with cohesive zone model undergoing damage and the flow is described by Poiseuille's law. The effect of the behaviour of the rock is studied and the analysis leads to a pattern of fracture network and fracture spacing in the geological layer.
Numerical damage models using a structural approach: application in bones and ligaments
NASA Astrophysics Data System (ADS)
Arnoux, P. J.; Bonnoit, J.; Chabrand, P.; Jean, M.; Pithioux, M.
2002-01-01
The purpose of the present study was to apply knowledge of structural properties to perform numerical simulations with models of bones and knee ligaments exposed to dynamic tensile loading leading to tissue damage. Compact bones and knee ligaments exhibit the same geometrical pattern in their different levels of structural hierarchy from the tropocollagen molecule to the fibre. Nevertheless, their mechanical behaviours differ considerably at the fibril level. These differences are due to the contribution of the joints in the microfibril-fibril-fibre assembly and to the mechanical properties of the structural components. Two finite element models of the fibrous bone and ligament structure were used to describe damage in terms of elastoplastic laws or joint decohesion processes.
Gergely, Anna; Petró, Eszter; Topál, József; Miklósi, Ádám
2013-01-01
Robots offer new possibilities for investigating animal social behaviour. This method enhances controllability and reproducibility of experimental techniques, and it allows also the experimental separation of the effects of bodily appearance (embodiment) and behaviour. In the present study we examined dogs' interactive behaviour in a problem solving task (in which the dog has no access to the food) with three different social partners, two of which were robots and the third a human behaving in a robot-like manner. The Mechanical UMO (Unidentified Moving Object) and the Mechanical Human differed only in their embodiment, but showed similar behaviour toward the dog. In contrast, the Social UMO was interactive, showed contingent responsiveness and goal-directed behaviour and moved along varied routes. The dogs showed shorter looking and touching duration, but increased gaze alternation toward the Mechanical Human than to the Mechanical UMO. This suggests that dogs' interactive behaviour may have been affected by previous experience with typical humans. We found that dogs also looked longer and showed more gaze alternations between the food and the Social UMO compared to the Mechanical UMO. These results suggest that dogs form expectations about an unfamiliar moving object within a short period of time and they recognise some social aspects of UMOs' behaviour. This is the first evidence that interactive behaviour of a robot is important for evoking dogs' social responsiveness.
Mixed mechanisms of multi-site phosphorylation
Suwanmajo, Thapanar; Krishnan, J.
2015-01-01
Multi-site phosphorylation is ubiquitous in cell biology and has been widely studied experimentally and theoretically. The underlying chemical modification mechanisms are typically assumed to be distributive or processive. In this paper, we study the behaviour of mixed mechanisms that can arise either because phosphorylation and dephosphorylation involve different mechanisms or because phosphorylation and/or dephosphorylation can occur through a combination of mechanisms. We examine a hierarchy of models to assess chemical information processing through different mixed mechanisms, using simulations, bifurcation analysis and analytical work. We demonstrate how mixed mechanisms can show important and unintuitive differences from pure distributive and processive mechanisms, in some cases resulting in monostable behaviour with simple dose–response behaviour, while in other cases generating new behaviour-like oscillations. Our results also suggest patterns of information processing that are relevant as the number of modification sites increases. Overall, our work creates a framework to examine information processing arising from complexities of multi-site modification mechanisms and their impact on signal transduction. PMID:25972433
Mirroring and beyond: coupled dynamics as a generalized framework for modelling social interactions
Hasson, Uri; Frith, Chris D.
2016-01-01
When people observe one another, behavioural alignment can be detected at many levels, from the physical to the mental. Likewise, when people process the same highly complex stimulus sequences, such as films and stories, alignment is detected in the elicited brain activity. In early sensory areas, shared neural patterns are coupled to the low-level properties of the stimulus (shape, motion, volume, etc.), while in high-order brain areas, shared neural patterns are coupled to high-levels aspects of the stimulus, such as meaning. Successful social interactions require such alignments (both behavioural and neural), as communication cannot occur without shared understanding. However, we need to go beyond simple, symmetric (mirror) alignment once we start interacting. Interactions are dynamic processes, which involve continuous mutual adaptation, development of complementary behaviour and division of labour such as leader–follower roles. Here, we argue that interacting individuals are dynamically coupled rather than simply aligned. This broader framework for understanding interactions can encompass both processes by which behaviour and brain activity mirror each other (neural alignment), and situations in which behaviour and brain activity in one participant are coupled (but not mirrored) to the dynamics in the other participant. To apply these more sophisticated accounts of social interactions to the study of the underlying neural processes we need to develop new experimental paradigms and novel methods of data analysis PMID:27069044
Hormonal mechanisms of cooperative behaviour
Soares, Marta C.; Bshary, Redouan; Fusani, Leonida; Goymann, Wolfgang; Hau, Michaela; Hirschenhauser, Katharina; Oliveira, Rui F.
2010-01-01
Research on the diversity, evolution and stability of cooperative behaviour has generated a considerable body of work. As concepts simplify the real world, theoretical solutions are typically also simple. Real behaviour, in contrast, is often much more diverse. Such diversity, which is increasingly acknowledged to help in stabilizing cooperative outcomes, warrants detailed research about the proximate mechanisms underlying decision-making. Our aim here is to focus on the potential role of neuroendocrine mechanisms on the regulation of the expression of cooperative behaviour in vertebrates. We first provide a brief introduction into the neuroendocrine basis of social behaviour. We then evaluate how hormones may influence known cognitive modules that are involved in decision-making processes that may lead to cooperative behaviour. Based on this evaluation, we will discuss specific examples of how hormones may contribute to the variability of cooperative behaviour at three different levels: (i) within an individual; (ii) between individuals and (iii) between species. We hope that these ideas spur increased research on the behavioural endocrinology of cooperation. PMID:20679116
Hadač, Otto; Kohout, Martin; Havlica, Jaromír; Schreiber, Igor
2015-03-07
A model describing simultaneous catalytic oxidation of CO and C2H2 and reduction of NOx in a cross-flow tubular reactor is explored with the aim of relating spatiotemporal patterns to specific pathways in the mechanism. For that purpose, a detailed mechanism proposed for three-way catalytic converters is split into two subsystems, (i) simultaneous oxidation of CO and C2H2, and (ii) oxidation of CO combined with NOx reduction. The ability of these two subsystems to display mechanism-specific dynamical effects is studied initially by neglecting transport phenomena and applying stoichiometric network and bifurcation analyses. We obtain inlet temperature - inlet oxygen concentration bifurcation diagrams, where each region possessing specific dynamics - oscillatory, bistable and excitable - is associated with a dominant reaction pathway. Next, the spatiotemporal behaviour due to reaction kinetics combined with transport processes is studied. The observed spatiotemporal patterns include phase waves, travelling fronts, pulse waves and spatiotemporal chaos. Although these types of pattern occur generally when the kinetic scheme possesses autocatalysis, we find that some of their properties depend on the underlying dominant reaction pathway. The relation of patterns to specific reaction pathways is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiwary, C. S., E-mail: cst.iisc@gmail.com; Chattopadhyay, K.; Chakraborty, S.
2014-05-28
This paper attempts to gain an understanding of the effect of lamellar length scale on the mechanical properties of two-phase metal-intermetallic eutectic structure. We first develop a molecular dynamics model for the in-situ grown eutectic interface followed by a model of deformation of Al-Al{sub 2}Cu lamellar eutectic. Leveraging the insights obtained from the simulation on the behaviour of dislocations at different length scales of the eutectic, we present and explain the experimental results on Al-Al{sub 2}Cu eutectic with various different lamellar spacing. The physics behind the mechanism is further quantified with help of atomic level energy model for different lengthmore » scale as well as different strain. An atomic level energy partitioning of the lamellae and the interface regions reveals that the energy of the lamellae core are accumulated more due to dislocations irrespective of the length-scale. Whereas the energy of the interface is accumulated more due to dislocations when the length-scale is smaller, but the trend is reversed when the length-scale is large beyond a critical size of about 80 nm.« less
Nanoscale movements of cellulose microfibrils in primary cell walls.
Zhang, Tian; Vavylonis, Dimitrios; Durachko, Daniel M; Cosgrove, Daniel J
2017-04-28
The growing plant cell wall is commonly considered to be a fibre-reinforced structure whose strength, extensibility and anisotropy depend on the orientation of crystalline cellulose microfibrils, their bonding to the polysaccharide matrix and matrix viscoelasticity 1-4 . Structural reinforcement of the wall by stiff cellulose microfibrils is central to contemporary models of plant growth, mechanics and meristem dynamics 4-12 . Although passive microfibril reorientation during wall extension has been inferred from theory and from bulk measurements 13-15 , nanometre-scale movements of individual microfibrils have not been directly observed. Here we combined nanometre-scale imaging of wet cell walls by atomic force microscopy (AFM) with a stretching device and endoglucanase treatment that induces wall stress relaxation and creep, mimicking wall behaviours during cell growth. Microfibril movements during forced mechanical extensions differ from those during creep of the enzymatically loosened wall. In addition to passive angular reorientation, we observed a diverse repertoire of microfibril movements that reveal the spatial scale of molecular connections between microfibrils. Our results show that wall loosening alters microfibril connectivity, enabling microfibril dynamics not seen during mechanical stretch. These insights into microfibril movements and connectivities need to be incorporated into refined models of plant cell wall structure, growth and morphogenesis.
Partial coalescence of drops at liquid interfaces
NASA Astrophysics Data System (ADS)
Blanchette, François; Bigioni, Terry P.
2006-04-01
When two separate masses of the same fluid are brought gently into contact, they are expected to fully merge into a single larger mass to minimize surface energy. However, when a stationary drop coalesces with an underlying reservoir of identical fluid, merging does not always proceed to completion. Occasionally, a drop in the process of merging apparently defies surface tension by `pinching off' before total coalescence occurs, leaving behind a smaller daughter droplet. Moreover, this process can repeat itself for subsequent generations of daughter droplets, resulting in a cascade of self-similar events. Such partial coalescence behaviour has implications for the dynamics of a variety of systems, including the droplets in clouds, ocean mist and airborne salt particles, emulsions, and the generation of vortices near an interface. Although it was first observed almost half a century ago, little is known about its precise mechanism. Here, we combine high-speed video imaging with numerical simulations to determine the conditions under which partial coalescence occurs, and to reveal a dynamic pinch-off mechanism. This mechanism is critically dependent on the ability of capillary waves to vertically stretch the drop by focusing energy on its summit.
Experimental evidence links volcanic particle characteristics to pyroclastic flow hazard
NASA Astrophysics Data System (ADS)
Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico M.; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd
2010-06-01
Pyroclastic flows represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Vesuvius that destroyed Pompeii (AD 79). Much of our knowledge of the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, including the particles contained in pyroclastic deposits, but the deposit characteristics are rarely used for quantifying the destructive potential of pyroclastic flows. By means of experiments, we validate a model that is based on data from pyroclastic deposits. The model allows the reconstruction of the current's fluid-dynamic behaviour. Model results are consistent with measured values of dynamic pressure in the experiments, and allow the quantification of the damage potential of pyroclastic flows.
NASA Astrophysics Data System (ADS)
García-Huete, N.; Laza, J. M.; Cuevas, J. M.; Vilas, J. L.; Bilbao, E.; León, L. M.
2014-09-01
A gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical, chemical and mechanical properties. Gamma irradiation originates free radicals able to induce chain scission or recombination of radicals, which induces annihilation, branching or crosslinking processes. The aim of this work is to research the structural, thermal and mechanical changes induced on a commercial polycyclooctene (PCO) when it is irradiated with a gamma source of 60Co at different doses (25-200 kGy). After gamma irradiation, gel content was determined by Soxhlet extraction in cyclohexane. Furthermore, thermal properties were evaluated before and after Soxhlet extraction by means of Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC), as well as mechanical properties were measured by Dynamic Mechanical Thermal Analysis (DMTA). The results showed the variations of the properties depending on the irradiation dose. Finally, a first approach to evaluate qualitatively the shape memory behaviour of all irradiated PCO samples was performed by a visually monitoring shape recovery process.
The hydrogen-bond collective dynamics in liquid methanol
Bellissima, Stefano; Cunsolo, Alessandro; DePanfilis, Simone; ...
2016-12-20
The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HBmore » dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature.« less
Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.
Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša
2017-03-06
Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).
The nature of the colloidal 'glass' transition.
Dawson, Kenneth A; Lawlor, A; DeGregorio, Paolo; McCullagh, Gavin D; Zaccarelli, Emanuela; Foffi, Giuseppe; Tartaglia, Piero
2003-01-01
The dynamically arrested state of matter is discussed in the context of athermal systems, such as the hard sphere colloidal arrest. We believe that the singular dynamical behaviour near arrest expressed, for example, in how the diffusion constant vanishes may be 'universal', in a sense to be discussed in the paper. Based on this we argue the merits of studying the problem with simple lattice models. This, by analogy with the the critical point of the Ising model, should lead us to clarify the questions, and begin the program of establishing the degree of universality to be expected. We deal only with 'ideal' athermal dynamical arrest transitions, such as those found for hard sphere systems. However, it is argued that dynamically available volume (DAV) is the relevant order parameter of the transition, and that universal mechanisms may be well expressed in terms of DAV. For simple lattice models we give examples of simple laws that emerge near the dynamical arrest, emphasising the idea of a near-ideal gas of 'holes', interacting to give the power law diffusion constant scaling near the arrest. We also seek to open the discussion of the possibility of an underlying weak coupling theory of the dynamical arrest transition, based on DAV.
Mondal, S; Pawar, S A; Sujith, R I
2017-10-01
Thermoacoustic instability, caused by a positive feedback between the unsteady heat release and the acoustic field in a combustor, is a major challenge faced in most practical combustors such as those used in rockets and gas turbines. We employ the synchronization theory for understanding the coupling between the unsteady heat release and the acoustic field of a thermoacoustic system. Interactions between coupled subsystems exhibiting different collective dynamics such as periodic, quasiperiodic, and chaotic oscillations are addressed. Even though synchronization studies have focused on different dynamical states separately, synchronous behaviour of two coupled systems exhibiting a quasiperiodic route to chaos has not been studied. In this study, we report the first experimental observation of different synchronous behaviours between two subsystems of a thermoacoustic system exhibiting such a transition as reported in Kabiraj et al. [Chaos 22, 023129 (2012)]. A rich variety of synchronous behaviours such as phase locking, intermittent phase locking, and phase drifting are observed as the dynamics of such subsystem change. The observed synchronization behaviour is further characterized using phase locking value, correlation coefficient, and relative mean frequency. These measures clearly reveal the boundaries between different states of synchronization.
NASA Astrophysics Data System (ADS)
Shamsuddin, N. F. H.; Isa, N. M.; Taib, I.; Mohammed, A. N.
2017-09-01
Meniere’s disease or known as endolymphatic hydrops is an incurable vestibular disorder of the inner ear. This is due to the excessive fluid build-up in the endolymphatic sac which causing the vestibular endolymphatic membrane to start stretching. Although this mechanism has been widely accepted as the likely mechanism of Meniere’s syndrome, the reason for its occurrence remains unclear. Thus, the aims of this study to investigate the critical parameters of fluid flow in membranous labyrinth that is influencing instability of vestibular system. In addition, to visualise the flow behaviour between a normal membranous labyrinth and dilated membranous labyrinth in Meniere’s disease in predicting instability of vestibular system. Three dimensional geometry of endolymphatic sac is obtained from Magnetic Resonance Images (MRI) and reconstructed using commercial software. As basis of comparison the two different model of endolymphatic sac is considered in this study which are normal membranous labyrinth for model I and dilated membranous labyrinth for model II. Computational fluid dynamics (CFD) method is used to analyse the behaviour of pressure and velocity flow in the endolymphatic sac. The comparison was made in terms of pressure distribution and velocity profile. The results show that the pressure for dilated membranous labyrinth is greater than normal membranous labyrinth. Due to abnormally pressure in the vestibular system, it leads to the increasing value of the velocity at dilated membranous labyrinth while at the normal membranous labyrinth the velocity values decreasing. As a conclusion by changing the parameters which is pressure and velocity can significantly affect to the instability of vestibular system for Meniere’s disease.
Modulation of frontal effective connectivity during speech.
Holland, Rachel; Leff, Alex P; Penny, William D; Rothwell, John C; Crinion, Jenny
2016-10-15
Noninvasive neurostimulation methods such as transcranial direct current stimulation (tDCS) can elicit long-lasting, polarity-dependent changes in neocortical excitability. In a previous concurrent tDCS-fMRI study of overt picture naming, we reported significant behavioural and regionally specific neural facilitation effects in left inferior frontal cortex (IFC) with anodal tDCS applied to left frontal cortex (Holland et al., 2011). Although distributed connectivity effects of anodal tDCS have been modelled at rest, the mechanism by which 'on-line' tDCS may modulate neuronal connectivity during a task-state remains unclear. Here, we used Dynamic Causal Modelling (DCM) to determine: (i) how neural connectivity within the frontal speech network is modulated during anodal tDCS; and, (ii) how individual variability in behavioural response to anodal tDCS relates to changes in effective connectivity strength. Results showed that compared to sham, anodal tDCS elicited stronger feedback from inferior frontal sulcus (IFS) to ventral premotor (VPM) accompanied by weaker self-connections within VPM, consistent with processes of neuronal adaptation. During anodal tDCS individual variability in the feedforward connection strength from IFS to VPM positively correlated with the degree of facilitation in naming behaviour. These results provide an essential step towards understanding the mechanism of 'online' tDCS paired with a cognitive task. They also identify left IFS as a 'top-down' hub and driver for speech change. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Rike, Per-Ola; Johansen, Hans J; Ulleberg, Pål; Lundqvist, Anna; Schanke, Anne-Kristine
2018-04-01
The objective of this prospective one-year follow-up study was to explore the associations between self-regulatory mechanisms and neuropsychological tests as well as baseline and follow-up ratings of driver behaviour. The participants were a cohort of subjects with stroke and traumatic brain injury (TBI) who were found fit to drive after a multi-disciplinary driver assessment (baseline). Baseline measures included neuropsychological tests and ratings of self-regulatory mechanisms, i.e., executive functions (Behavior Rating Inventory of Executive Function-Adult Version; BRIEF-A) and impulsive personality traits (UPPS Impulsive Behavior Scale). The participants rated pre-injury driving behaviour on the Driver Behaviour Qestionnaire (DBQ) retrospectively at baseline and after one year of post-injury driving (follow-up). Better performance on neuropsychological tests was significantly associated with more post-injury DBQ Violations. The BRIEF-A main indexes were significantly associated with baseline and follow-up ratings of DBQ Mistakes and follow-up DBQ Inattention. UPPS (lack of) Perseverance was significantly associated with baseline DBQ Inattention, whereas UPPS Urgency was significantly associated with baseline DBQ Inexperience and post-injury DBQ Mistakes. There were no significant changes in DBQ ratings from baseline (pre-injury) to follow-up (post-injury). It was concluded that neuropsychological functioning and self-regulatory mechanisms are related to driver behaviour. Some aspects of driver behaviour do not necessarily change after brain injury, reflecting the influence of premorbid driving behaviour or impaired awareness of deficits on post-injury driving behaviour. Further evidence is required to predict the role of self-regulatory mechanisms on driver behaviour and crashes or near misses.
NASA Astrophysics Data System (ADS)
Ciubotariu–Ana, P.; Micu, C. A.; Lohan, N. M.; Pricop, B.; Bujoreanu, L. G.; Bejinariu, C.
2018-06-01
Safety helmets represent essential Personal Protection Equipment (PPE) used in firefighter protection and emergency situations. They protect firefighter’s face and eyes against flames, heat and flying debris. When temperature levels are high, user’s thermal comfort is affected. A glass fibre-reinforced bismaleimide composite material has a number of improved properties in terms of mechanical and thermal characteristics, as compared to the materials that are currently used. The present paper aims to comparatively analyse the thermal behaviour of an injection moulded polypropylene helmet and the newly developed hot modelling material, under the form of a glass fibre-reinforced bismaleimide composite material. Thermal analysis was performed using Differential Scanning Calorimetry (DSC) and Dynamic-Mechanical Analysis (DMA). DSC and DMA thermograms were corroborated and discussed, from the point of view of the consecutive solid state transitions occurring during heating, mostly in the second heating-cooling cycle. The isothermal behaviour of glass fibre-reinforced bismaleimide composite material, during strain sweeps performed by DMA, enabled the determination of internal friction and storage modulus, under vibratory loads, at different temperatures. The advantages of the newly developed glass fibre-reinforced bismaleimide composite material were highlighted.
NASA Astrophysics Data System (ADS)
Gigan, Olivier; Chen, Hua; Robert, Olivier; Renard, Stephane; Marty, Frederic
2002-11-01
This paper is dedicated to the fabrication and technological aspect of a silicon microresonator sensor. The entire project includes the fabrication processes, the system modelling/simulation, and the electronic interface. The mechanical model of such resonator is presented including description of frequency stability and Hysterises behaviour of the electrostatically driven resonator. Numeric model and FEM simulations are used to simulate the system dynamic behaviour. The complete fabrication process is based on standard microelectronics technology with specific MEMS technological steps. The key steps are described: micromachining on SOI by Deep Reactive Ion Etching (DRIE), specific release processes to prevent sticking (resist and HF-vapour release process) and collective vacuum encapsulation by Silicon Direct Bonding (SDB). The complete process has been validated and prototypes have been fabricated. The ASIC was designed to interface the sensor and to control the vibration amplitude. This electronic was simulated and designed to work up to 200°C and implemented in a standard 0.6μ CMOS technology. Characterizations of sensor prototypes are done both mechanically and electrostatically. These measurements showed good agreements with theory and FEM simulations.
Interactive natural language acquisition in a multi-modal recurrent neural architecture
NASA Astrophysics Data System (ADS)
Heinrich, Stefan; Wermter, Stefan
2018-01-01
For the complex human brain that enables us to communicate in natural language, we gathered good understandings of principles underlying language acquisition and processing, knowledge about sociocultural conditions, and insights into activity patterns in the brain. However, we were not yet able to understand the behavioural and mechanistic characteristics for natural language and how mechanisms in the brain allow to acquire and process language. In bridging the insights from behavioural psychology and neuroscience, the goal of this paper is to contribute a computational understanding of appropriate characteristics that favour language acquisition. Accordingly, we provide concepts and refinements in cognitive modelling regarding principles and mechanisms in the brain and propose a neurocognitively plausible model for embodied language acquisition from real-world interaction of a humanoid robot with its environment. In particular, the architecture consists of a continuous time recurrent neural network, where parts have different leakage characteristics and thus operate on multiple timescales for every modality and the association of the higher level nodes of all modalities into cell assemblies. The model is capable of learning language production grounded in both, temporal dynamic somatosensation and vision, and features hierarchical concept abstraction, concept decomposition, multi-modal integration, and self-organisation of latent representations.
Spontaneous neuronal activity as a self-organized critical phenomenon
NASA Astrophysics Data System (ADS)
de Arcangelis, L.; Herrmann, H. J.
2013-01-01
Neuronal avalanches are a novel mode of activity in neuronal networks, experimentally found in vitro and in vivo, and exhibit a robust critical behaviour. Avalanche activity can be modelled within the self-organized criticality framework, including threshold firing, refractory period and activity-dependent synaptic plasticity. The size and duration distributions confirm that the system acts in a critical state, whose scaling behaviour is very robust. Next, we discuss the temporal organization of neuronal avalanches. This is given by the alternation between states of high and low activity, named up and down states, leading to a balance between excitation and inhibition controlled by a single parameter. During these periods both the single neuron state and the network excitability level, keeping memory of past activity, are tuned by homeostatic mechanisms. Finally, we verify if a system with no characteristic response can ever learn in a controlled and reproducible way. Learning in the model occurs via plastic adaptation of synaptic strengths by a non-uniform negative feedback mechanism. Learning is a truly collective process and the learning dynamics exhibits universal features. Even complex rules can be learned provided that the plastic adaptation is sufficiently slow.
Dimensioning Principles in Potash and Salt: Stability and Integrity
NASA Astrophysics Data System (ADS)
Minkley, W.; Mühlbauer, J.; Lüdeling, C.
2016-11-01
The paper describes the principal geomechanical approaches to mine dimensioning in salt and potash mining, focusing on stability of the mining system and integrity of the hydraulic barrier. Several common dimensioning are subjected to a comparative analysis. We identify geomechanical discontinuum models as essential physical ingredients for examining the collapse of working fields in potash mining. The basic mechanisms rely on the softening behaviour of salt rocks and the interfaces. A visco-elasto-plastic material model with strain softening, dilatancy and creep describes the time-dependent softening behaviour of the salt pillars, while a shear model with velocity-dependent adhesive friction with shear displacement-dependent softening is used for bedding planes and discontinuities. Pillar stability critically depends on the shear conditions of the bedding planes to the overlying and underlying beds, which provide the necessary confining pressure for the pillar core, but can fail dynamically, leading to large-scale field collapses. We further discuss the integrity conditions for the hydraulic barrier, most notably the minimal stress criterion, the violation of which leads to pressure-driven percolation as the mechanism of fluid transport and hence barrier failure. We present a number of examples where violation of the minimal stress criterion has led to mine floodings.
A theoretical model of speed-dependent steering torque for rolling tyres
NASA Astrophysics Data System (ADS)
Wei, Yintao; Oertel, Christian; Liu, Yahui; Li, Xuebing
2016-04-01
It is well known that the tyre steering torque is highly dependent on the tyre rolling speed. In limited cases, i.e. parking manoeuvre, the steering torque approaches the maximum. With the increasing tyre speed, the steering torque decreased rapidly. Accurate modelling of the speed-dependent behaviour for the tyre steering torque is a key factor to calibrate the electric power steering (EPS) system and tune the handling performance of vehicles. However, no satisfactory theoretical model can be found in the existing literature to explain this phenomenon. This paper proposes a new theoretical framework to model this important tyre behaviour, which includes three key factors: (1) tyre three-dimensional transient rolling kinematics with turn-slip; (2) dynamical force and moment generation; and (3) the mixed Lagrange-Euler method for contact deformation solving. A nonlinear finite-element code has been developed to implement the proposed approach. It can be found that the main mechanism for the speed-dependent steering torque is due to turn-slip-related kinematics. This paper provides a theory to explain the complex mechanism of the tyre steering torque generation, which helps to understand the speed-dependent tyre steering torque, tyre road feeling and EPS calibration.
CFD analysis of linear compressors considering load conditions
NASA Astrophysics Data System (ADS)
Bae, Sanghyun; Oh, Wonsik
2017-08-01
This paper is a study on computational fluid dynamics (CFD) analysis of linear compressor considering load conditions. In the conventional CFD analysis of the linear compressor, the load condition was not considered in the behaviour of the piston. In some papers, behaviour of piston is assumed as sinusoidal motion provided by user defined function (UDF). In the reciprocating type compressor, the stroke of the piston is restrained by the rod, while the stroke of the linear compressor is not restrained, and the stroke changes depending on the load condition. The greater the pressure difference between the discharge refrigerant and the suction refrigerant, the more the centre point of the stroke is pushed backward. And the behaviour of the piston is not a complete sine wave. For this reason, when the load condition changes in the CFD analysis of the linear compressor, it may happen that the ANSYS code is changed or unfortunately the modelling is changed. In addition, a separate analysis or calculation is required to find a stroke that meets the load condition, which may contain errors. In this study, the coupled mechanical equations and electrical equations are solved using the UDF, and the behaviour of the piston is solved considering the pressure difference across the piston. Using the above method, the stroke of the piston with respect to the motor specification of the analytical model can be calculated according to the input voltage, and the piston behaviour can be realized considering the thrust amount due to the pressure difference.
NASA Astrophysics Data System (ADS)
Carreon-Freyre, D.; Cerca, M.; Barrientos, B.; Gutierrez, R.; Blancas, D.
2012-12-01
Major cities of Central Mexico with lowering of land elevation problems are located in inter-volcanic and fault bounded basins within the central Trans-Mexican Volcanic Belt (TMVB). The most representative and studied case of ground deformation is Mexico City, where the Iztapalapa Municipality presents the highest population density. This area is located over the geological contact between the "Sierra de Santa Catarina" volcanic range and a lacustrine plain. Filling of lacustrine basins includes silty and clayey sediments as well as pyroclastic deposits (coarse and fine grained) and volcanic rocks layers. We used Ground Penetrating Radar (GPR) and MASW prospection to evaluate contrasts in the physical properties of fine grained soils and identify geometry of the deformational features and implemented a mechanical system for in situ monitoring in fractured sites. Deformational features in this basin reflect an interplay between the geological history (depositional conditions), load history, seismic activity, and faulting. Plastic mechanical behaviour predominates in these clayey sediments and differential deformation locally triggers brittle fracturing and/or subsidence of the surface. In this work we present the results of monitoring and characterization of ground deformation and fracturing in different sequences, our results show a dynamic interplay between the mechanisms of ground fracturing and the stress history of sedimentary sequences. Relating the mechanical behaviour of the studied sequences with variations of physical and geological properties should be taken into account to estimate land level lowering and risk of fracturing for urban development planning.
Understanding Behavioural Rigidity in Autism Spectrum Conditions: The Role of Intentional Control
ERIC Educational Resources Information Center
Poljac, Edita; Hoofs, Vincent; Princen, Myrthe M.; Poljac, Ervin
2017-01-01
Although behavioural rigidity belongs to the core symptoms of autism spectrum conditions, little is known about its underlying cognitive mechanisms. The current study investigated the role of intentional control mechanisms in behavioural rigidity in autism. Autistic individuals and their matched controls were instructed to repeatedly choose…
Gergely, Anna; Petró, Eszter; Topál, József; Miklósi, Ádám
2013-01-01
Robots offer new possibilities for investigating animal social behaviour. This method enhances controllability and reproducibility of experimental techniques, and it allows also the experimental separation of the effects of bodily appearance (embodiment) and behaviour. In the present study we examined dogs’ interactive behaviour in a problem solving task (in which the dog has no access to the food) with three different social partners, two of which were robots and the third a human behaving in a robot-like manner. The Mechanical UMO (Unidentified Moving Object) and the Mechanical Human differed only in their embodiment, but showed similar behaviour toward the dog. In contrast, the Social UMO was interactive, showed contingent responsiveness and goal-directed behaviour and moved along varied routes. The dogs showed shorter looking and touching duration, but increased gaze alternation toward the Mechanical Human than to the Mechanical UMO. This suggests that dogs’ interactive behaviour may have been affected by previous experience with typical humans. We found that dogs also looked longer and showed more gaze alternations between the food and the Social UMO compared to the Mechanical UMO. These results suggest that dogs form expectations about an unfamiliar moving object within a short period of time and they recognise some social aspects of UMOs’ behaviour. This is the first evidence that interactive behaviour of a robot is important for evoking dogs’ social responsiveness. PMID:24015272
Hernández-Gascón, B; Peña, E; Melero, H; Pascual, G; Doblaré, M; Ginebra, M P; Bellón, J M; Calvo, B
2011-11-01
The material properties of meshes used in hernia surgery contribute to the overall mechanical behaviour of the repaired abdominal wall. The mechanical response of a surgical mesh has to be defined since the haphazard orientation of an anisotropic mesh can lead to inconsistent surgical outcomes. This study was designed to characterize the mechanical behaviour of three surgical meshes (Surgipro®, Optilene® and Infinit®) and to describe a mechanical constitutive law that accurately reproduces the experimental results. Finally, through finite element simulation, the behaviour of the abdominal wall was modelled before and after surgical mesh implant. Uniaxial loading of mesh samples in two perpendicular directions revealed the isotropic response of Surgipro® and the anisotropic behaviour of Optilene® and Infinit®. A phenomenological constitutive law was used to reproduce the measured experimental curves. To analyze the mechanical effect of the meshes once implanted in the abdomen, finite element simulation of the healthy and partially herniated repaired rabbit abdominal wall served to reproduce wall behaviour before and after mesh implant. In all cases, maximal displacements were lower and maximal principal stresses higher in the implanted abdomen than the intact wall model. Despite the fact that no mesh showed a behaviour that perfectly matched that of abdominal muscle, the Infinit® mesh was able to best comply with the biomechanics of the abdominal wall. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kalenchuk, K. S.; Hutchinson, D.; Diederichs, M. S.
2013-12-01
Downie Slide, one of the world's largest landslides, is a massive, active, composite, extremely slow rockslide located on the west bank of the Revelstoke Reservoir in British Columbia. It is a 1.5 billion m3 rockslide measuring 2400 m along the river valley, 3300m from toe to headscarp and up to 245 m thick. Significant contributions to the field of landslide geomechanics have been made by analyses of spatially and temporally discriminated slope deformations, and how these are controlled by complex geological and geotechnical factors. Downie Slide research demonstrates the importance of delineating massive landslides into morphological regions in order to characterize global slope behaviour and identify localized events, which may or may not influence the overall slope deformation patterns. Massive slope instabilities do not behave as monolithic masses, rather, different landslide zones can display specific landslide processes occurring at variable rates of deformation. The global deformation of Downie Slide is extremely slow moving; however localized regions of the slope incur moderate to high rates of movement. Complex deformation processes and composite failure mechanism are contributed to by topography, non-uniform shear surfaces, heterogeneous rockmass and shear zone strength and stiffness characteristics. Further, from the analysis of temporal changes in landslide behaviour it has been clearly recognized that different regions of the slope respond differently to changing hydrogeological boundary conditions. State-of-the-art methodologies have been developed for numerical simulation of large landslides; these provide important tools for investigating dynamic landslide systems which account for complex three-dimensional geometries, heterogenous shear zone strength parameters, internal shear zones, the interaction of discrete landslide zones and piezometric fluctuations. Numerical models of Downie Slide have been calibrated to reproduce observed slope behaviour, and the calibration process has provided important insight to key factors controlling massive slope mechanics. Through numerical studies it has been shown that the three-dimensional interpretation of basal slip surface geometry and spatial heterogeneity in shear zone stiffness are important factors controlling large-scale slope deformation processes. The role of secondary internal shears and the interaction between landslide morphological zones has also been assessed. Further, numerical simulation of changing groundwater conditions has produced reasonable correlation with field observations. Calibrated models are valuable tools for the forward prediction of landslide dynamics. Calibrated Downie Slide models have been used to investigate how trigger scenarios may accelerate deformations at Downie Slide. The ability to reproduce observed behaviour and forward test hypothesized changes to boundary conditions has valuable application in hazard management of massive landslides. The capacity of decision makers to interpret large amounts of data, respond to rapid changes in a system and understand complex slope dynamics has been enhanced.
The diminishing role of hubs in dynamical processes on complex networks.
Quax, Rick; Apolloni, Andrea; Sloot, Peter M A
2013-11-06
It is notoriously difficult to predict the behaviour of a complex self-organizing system, where the interactions among dynamical units form a heterogeneous topology. Even if the dynamics of each microscopic unit is known, a real understanding of their contributions to the macroscopic system behaviour is still lacking. Here, we develop information-theoretical methods to distinguish the contribution of each individual unit to the collective out-of-equilibrium dynamics. We show that for a system of units connected by a network of interaction potentials with an arbitrary degree distribution, highly connected units have less impact on the system dynamics when compared with intermediately connected units. In an equilibrium setting, the hubs are often found to dictate the long-term behaviour. However, we find both analytically and experimentally that the instantaneous states of these units have a short-lasting effect on the state trajectory of the entire system. We present qualitative evidence of this phenomenon from empirical findings about a social network of product recommendations, a protein-protein interaction network and a neural network, suggesting that it might indeed be a widespread property in nature.
Axisymmetric whole pin life modelling of advanced gas-cooled reactor nuclear fuel
NASA Astrophysics Data System (ADS)
Mella, R.; Wenman, M. R.
2013-06-01
Thermo-mechanical contributions to pellet-clad interaction (PCI) in advanced gas-cooled reactors (AGRs) are modelled in the ABAQUS finite element (FE) code. User supplied sub-routines permit the modelling of the non-linear behaviour of AGR fuel through life. Through utilisation of ABAQUS's well-developed pre- and post-processing ability, the behaviour of the axially constrained steel clad fuel was modelled. The 2D axisymmetric model includes thermo-mechanical behaviour of the fuel with time and condition dependent material properties. Pellet cladding gap dynamics and thermal behaviour are also modelled. The model treats heat up as a fully coupled temperature-displacement study. Dwell time and direct power cycling was applied to model the impact of online refuelling, a key feature of the AGR. The model includes the visco-plastic behaviour of the fuel under the stress and irradiation conditions within an AGR core and a non-linear heat transfer model. A multiscale fission gas release model is applied to compute pin pressure; this model is coupled to the PCI gap model through an explicit fission gas inventory code. Whole pin, whole life, models are able to show the impact of the fuel on all segments of cladding including weld end caps and cladding pellet locking mechanisms (unique to AGR fuel). The development of this model in a commercial FE package shows that the development of a potentially verified and future-proof fuel performance code can be created and used. The usability of a FE based fuel performance code would be an enhancement over past codes. Pre- and post-processors have lowered the entry barrier for the development of a fuel performance model to permit the ability to model complicated systems. Typical runtimes for a 5 year axisymmetric model takes less than one hour on a single core workstation. The current model has implemented: Non-linear fuel thermal behaviour, including a complex description of heat flow in the fuel. Coupled with a variety of different FE and finite difference models. Non-linear mechanical behaviour of the fuel and cladding including, fuel creep and swelling and cladding creep and plasticity each with dependencies on a variety of different properties. A fission gas release model which takes inputs from first principles calculations. Explicitly integrated inventory calculations performed in a coupled manner. Freedom to model steady state and transient behaviour using implicit time integration. The whole pin geometry is considered over an entire typical fuel life. The model showed by examination of normal operation and a subsequent transient chosen for software demonstration purposes: ABAQUS may be a sufficiently flexible platform to develop a complete and verified fuel performance code. The importance and effectiveness of the geometry of the fuel spacer pellets was characterised. The fuels performance under normal conditions (high friction no power spikes) would not suggest serious degradation of the cladding in fuel life. Large plastic strains were found when pellet bonding was strong, these would appear at all pellets cladding triple points and all pellet radial crack and cladding interfaces thus showing a possible axial direction to cracks forming from ductility exhaustion.
Veering and nonlinear interactions of a clamped beam in bending and torsion
NASA Astrophysics Data System (ADS)
Ehrhardt, David A.; Hill, Thomas L.; Neild, Simon A.; Cooper, Jonathan E.
2018-03-01
Understanding the linear and nonlinear dynamic behaviour of beams is critical for the design of many engineering structures such as spacecraft antennae, aircraft wings, and turbine blades. When the eigenvalues of such structures are closely-spaced, nonlinearity may lead to interactions between the underlying linear normal modes (LNMs). This work considers a clamped-clamped beam which exhibits nonlinear behaviour due to axial tension from large amplitudes of deformation. An additional cross-beam, mounted transversely and with a movable mass at each tip, allows tuning of the primary torsion LNM such that it is close to the primary bending LNM. Perturbing the location of one mass relative to that of the other leads to veering between the eigenvalues of the bending and torsion LNMs. For a number of selected geometries in the region of veering, a nonlinear reduced order model (NLROM) is created and the nonlinear normal modes (NNMs) are used to describe the underlying nonlinear behaviour of the structure. The relationship between the 'closeness' of the eigenvalues and the nonlinear dynamic behaviour is demonstrated in the NNM backbone curves, and veering-like behaviour is observed. Finally, the forced and damped dynamics of the structure are predicted using several analytical and numerical tools and are compared to experimental measurements. As well as showing a good agreement between the predicted and measured responses, phenomena such as a 1:1 internal resonance and quasi-periodic behaviour are identified.
Single-particle dynamics of the Anderson model: a local moment approach
NASA Astrophysics Data System (ADS)
Glossop, Matthew T.; Logan, David E.
2002-07-01
A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valence and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.
The Down Syndrome Behavioural Phenotype: Taking a Developmental Approach
ERIC Educational Resources Information Center
Fidler, Deborah; Most, David; Philofsky, Amy
2009-01-01
Individuals with Down syndrome are predisposed to show a specific behavioural phenotype, or a pattern of strengths and challenges in functioning across different domains of development. It is argued that a developmental approach to researching the Down syndrome behavioural phenotype, including an examination of the dynamic process of the unfolding…
NASA Astrophysics Data System (ADS)
Gillies, D.; Gamal, W.; Downes, A.; Reinwald, Y.; Yang, Y.; El Haj, A.; Bagnaninchi, P. O.
2017-02-01
There is an unmet need in tissue engineering for non-invasive, label-free monitoring of cell mechanical behaviour in their physiological environment. Here, we describe a novel optical coherence phase microscopy (OCPM) set-up which can map relative cell mechanical behaviour in monolayers and 3D systems non-invasively, and in real-time. 3T3 and MCF-7 cells were investigated, with MCF-7 demonstrating an increased response to hydrostatic stimulus indicating MCF-7 being softer than 3T3. Thus, OCPM shows the ability to provide qualitative data on cell mechanical behaviour. Quantitative measurements of 6% agarose beads have been taken with commercial Cell Scale Microsquisher system demonstrating that their mechanical properties are in the same order of magnitude of cells, indicating that this is an appropriate test sample for the novel method described.
High damage tolerance of electrochemically lithiated silicon
Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman
2015-01-01
Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro–chemo–mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries. PMID:26400671
High damage tolerance of electrochemically lithiated silicon
NASA Astrophysics Data System (ADS)
Wang, Xueju; Fan, Feifei; Wang, Jiangwei; Wang, Haoran; Tao, Siyu; Yang, Avery; Liu, Yang; Beng Chew, Huck; Mao, Scott X.; Zhu, Ting; Xia, Shuman
2015-09-01
Mechanical degradation and resultant capacity fade in high-capacity electrode materials critically hinder their use in high-performance rechargeable batteries. Despite tremendous efforts devoted to the study of the electro-chemo-mechanical behaviours of high-capacity electrode materials, their fracture properties and mechanisms remain largely unknown. Here we report a nanomechanical study on the damage tolerance of electrochemically lithiated silicon. Our in situ transmission electron microscopy experiments reveal a striking contrast of brittle fracture in pristine silicon versus ductile tensile deformation in fully lithiated silicon. Quantitative fracture toughness measurements by nanoindentation show a rapid brittle-to-ductile transition of fracture as the lithium-to-silicon molar ratio is increased to above 1.5. Molecular dynamics simulations elucidate the mechanistic underpinnings of the brittle-to-ductile transition governed by atomic bonding and lithiation-induced toughening. Our results reveal the high damage tolerance in amorphous lithium-rich silicon alloys and have important implications for the development of durable rechargeable batteries.
Rheological properties of poly(vinyl alcohol) (PVA) derived composite membranes for fuel cells
NASA Astrophysics Data System (ADS)
Remiš, T.
2017-01-01
Rheological properties of new anhydrous proton conducting membrane based on PVA, tetraethyl orthosilicate (TEOS),sulfosuccinic acid (SSA), titanium dioxide (TiO2)was examined at various stoichiometric ratios. SSA was used as sulfonating agents to form a crosslinked structure and as proton source, whereas TEO Sand TiO2were utilized to improve the thermal and mechanical properties of the membrane. In order to verify that all the substances were immobilized into the matrix, the membranes were analysed by means of FT-IR. The rheological, mechanical and thermal properties of the membranes were investigated using rheometer ARES G2 and thermogravimetic analyser (TGA).The analysis of mixed PVA solutions exhibited a unique behaviour of viscosity with increased crosslink density. The dynamic storage modulus G´ of dried composite membranes shows better mechanical resistance and increased tolerance to pressure applied during membrane electrode assembly (MEA).
Effect of heterocyclic capping groups on the self-assembly of a dipeptide hydrogel.
Martin, Adam D; Wojciechowski, Jonathan P; Warren, Holly; in het Panhuis, Marc; Thordarson, Pall
2016-03-14
The mechanism and design rules associated with the self-assembly of short peptides into hydrogels is currently not well understood. In this work, four diphenylalanine-based peptides have been synthesised, bearing heterocyclic capping groups which have different degrees of hydrogen bonding potential and nitrogen substitution. For these four peptides, zeta potential and electrical impedance spectroscopy measurements were undertaken to monitor gelation, with the impedance data showing different gelation times for each peptide hydrogel. Through a combination of atomic force microscopy and rheological measurmeents, including dynamic strain and frequency sweeps, and thixotropic tests, the relationship between the mechanism of self-assembly in these hydrogels and their macroscopic behaviour can be established. It is observed that the degree of nitrogen substitution affects the self-assembly mechanisms of the hydrogels and as such, that there is an interplay between branching and bundling self-assembly pathways that are responsible for the final properties of each hydrogel.
Timescales for exploratory tactical behaviour in football small-sided games.
Ric, Angel; Hristovski, Robert; Gonçalves, Bruno; Torres, Lorena; Sampaio, Jaime; Torrents, Carlota
2016-09-01
The aim of this study was to identify the dynamics of tactical behaviour emerging on different timescales in football small-sided games and to quantify short- and long-term exploratory behaviour according to the number of opponents. Two teams of four professional male footballers played small-sided games against two different teams with a variable number of opponents (3, 5 and 7). Data were collected using a combination of systematic observation and a non-differential global positioning system (15 Hz). The temporal diversity and structural flexibility of the players were determined by calculating the dynamic overlap order parameter q, entropy and trapping strength. Analysis of the exploratory dynamics revealed two different timescales, forming a different metastable landscape of action for each constraint. Fast dynamics lasted on average a few seconds and consisted of changes in tactical patterns. The long timescale corresponded to the shared tasks of offence and defence lasting tens of seconds. The players' tactical diversity decreased with an increasing number of opponents, especially in defence. Manipulating numerical imbalance is likely to promote changes in the diversity, unpredictability and flexibility of tactical solutions. The fact that the temporally nested structure of constraints shaped the emergence of tactical behaviour provides a new rationale for practice task design. The manipulation of numerical imbalance on the timescale of a few tens of seconds, on which the exploratory behaviour of players saturates, may help coaches to optimise the exploratory efficiency of the small-sided games.
Impact Capacity Reduction in Railway Prestressed Concrete Sleepers with Surface Abrasions
NASA Astrophysics Data System (ADS)
Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat
2017-10-01
Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted railway tracks are a main part of railway track structures. Its important role is to transfer the loads evenly from the rails to a wider area of ballast bed and to secure rail gauge and enable safe passages of rolling stocks. By nature, railway infrastructure is nonlinear, evidenced by its behaviours, geometry and alignment, wheel-rail contact and operational parameters such as tractive efforts. Based on our critical review, the dynamic behaviour of railway sleepers has not been fully investigated, especially when the sleepers are deteriorated by excessive wears. In fact, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions in concrete sleepers due to the unbalanced loading conditions. This paper presents a structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers under impact loading will be highlighted in this study. The influences of surface abrasions, including surface abrasion and soffit abrasion, on the dynamic behaviour of prestressed concrete sleepers, are firstly highlighted. The outcome of this study will improve the rail maintenance and inspection criteria in order to establish appropriate and sensible remote track condition monitoring network in practice. Moreover, this study will also improve the understanding of the fundamental dynamic behaviour of prestressed concrete sleepers with surface abrasions. The insight into these behaviours will not only improve safety and reliability of railway infrastructure but will enhance the structural safety of other concrete structures.
Wanko, Adrien; Laurent, Julien; Bois, Paul; Mosé, Robert; Wagner-Kocher, Christiane; Bahlouli, Nadia; Tiffay, Serge; Braun, Bouke; Provo kluit, Pieter-Willem
2016-01-01
This study proposes mechanical and hydrodynamic characterization of rock wool used as support material in compact filter. A double-pronged approach, based on experimental simulation of various physical states of this material was done. First of all a scanning electron microscopy observation allows to highlight the fibrous network structure, the fibres sizing distribution and the atomic absorption spectrum. The material was essentially lacunar with 97 ± 2% of void space. Static compression tests on variably saturated rock wool samples provide the fact that the strain/stress behaviours depend on both the sample conditioning and the saturation level. Results showed that water exerts plastifying effect on mechanical behaviour of rock wool. The load-displacement curves and drainage evolution under different water saturation levels allowed exhibiting hydraulic retention capacities under stress. Finally, several tracer experiments on rock wool column considering continuous and batch feeding flow regime allowed: (i) to determine the flow model for each test case and the implications for water dynamic in rock wool medium, (ii) to assess the rock wool double porosity and discuss its advantages for wastewater treatment, (iii) to analyse the benefits effect for water treatment when the high level of rock wool hydric retention was associated with the plug-flow effect, and (iv) to discuss the practical contributions for compact filter conception and management.
NASA Astrophysics Data System (ADS)
Debroy, Sanghamitra; Pavan Kumar, V.; Vijaya Sekhar, K.; Acharyya, Swati Ghosh; Acharyya, Amit
2017-10-01
The present study reports a comprehensive molecular dynamics simulation of the effect of a) temperature (300-1073 K at intervals of every 100 K) and b) point defect on the mechanical behaviour of single (armchair and zigzag direction) and bilayer layer graphene (AA and AB stacking). Adaptive intermolecular reactive bond order (AIREBO) potential function was used to describe the many-body short-range interatomic interactions for the single layer graphene sheet. Moreover, Lennard Jones model was considered for bilayer graphene to incorporate the van der Waals interactions among the interlayers of graphene. The effect of temperature on the strain energy of single layer and bilayer graphene was studied in order to understand the difference in mechanical behaviour of the two systems. The strength of the pristine single layer graphene was found to be higher as compared to bilayer AA stacked graphene at all temperatures. It was observed at 1073 K and in the presence of vacancy defect the strength for single layer armchair sheet falls by 30% and for bilayer armchair sheet by 33% as compared to the pristine sheets at 300 K. The AB stacked graphene sheet was found to have a two-step rupture process. The strength of pristine AB sheet was found to decrease by 22% on increase of temperature from 300 K to 1073 K.
Reflections on the nature of non-linear responses of the climate to forcing
NASA Astrophysics Data System (ADS)
Ditlevsen, Peter
2017-04-01
On centennial to multi-millennial time scales the paleoclimatic record shows that climate responds in a very non-linear way to the external forcing. Perhaps most puzzling is the change in glacial period duration at the Middle Pleistocene Transition. From a dynamical systems perspective, this could be a change in frequency locking between the orbital forcing and the climatic response or it could be a non-linear resonance phenomenon. In both cases the climate system shows a non-trivial oscillatory behaviour. From the records it seems that this behaviour can be described by an effective dynamics on a low-dimensional slow manifold. These different possible dynamical behaviours will be discussed. References: Arianna Marchionne, Peter Ditlevsen, and Sebastian Wieczorek, "Three types of nonlinear resonances", arXiv:1605.00858 Peter Ashwin and Peter Ditlevsen, "The middle Pleistocene transition as a generic bifurcation on a slow manifold", Climate Dynamics, 45, 2683, 2015. Peter D. Ditlevsen, "The bifurcation structure and noise assisted transitions in the Pleistocene glacial cycles", Paleoceanography, 24, PA3204, 2009
Lattice gas simulations of dynamical geometry in one dimension.
Love, Peter J; Boghosian, Bruce M; Meyer, David A
2004-08-15
We present numerical results obtained using a lattice gas model with dynamical geometry. The (irreversible) macroscopic behaviour of the geometry (size) of the lattice is discussed in terms of a simple scaling theory and obtained numerically. The emergence of irreversible behaviour from the reversible microscopic lattice gas rules is discussed in terms of the constraint that the macroscopic evolution be reproducible. The average size of the lattice exhibits power-law growth with exponent at late times. The deviation of the macroscopic behaviour from reproducibility for particular initial conditions ('rogue states') is investigated as a function of system size. The number of such 'rogue states' is observed to decrease with increasing system size. Two mean-field analyses of the macroscopic behaviour are also presented. Copyright 2004 The Royal Society
Roth, Sébastien; Torres, Fabien; Feuerstein, Philippe; Thoral-Pierre, Karine
2013-05-01
Finite element analysis is frequently used in several fields such as automotive simulations or biomechanics. It helps researchers and engineers to understand the mechanical behaviour of complex structures. The development of computer science brought the possibility to develop realistic computational models which can behave like physical ones, avoiding the difficulties and costs of experimental tests. In the framework of biomechanics, lots of FE models have been developed in the last few decades, enabling the investigation of the behaviour of the human body submitted to heavy damage such as in road traffic accidents or in ballistic impact. In both cases, the thorax/abdomen/pelvis system is frequently injured. The understanding of the behaviour of this complex system is of extreme importance. In order to explore the dynamic response of this system to impact loading, a finite element model of the human thorax/abdomen/pelvis system has, therefore, been developed including the main organs: heart, lungs, kidneys, liver, spleen, the skeleton (with vertebrae, intervertebral discs, ribs), stomach, intestines, muscles, and skin. The FE model is based on a 3D reconstruction, which has been made from medical records of anonymous patients, who have had medical scans with no relation to the present study. Several scans have been analyzed, and specific attention has been paid to the anthropometry of the reconstructed model, which can be considered as a 50th percentile male model. The biometric parameters and laws have been implemented in the dynamic FE code (Radioss, Altair Hyperworks 11©) used for dynamic simulations. Then the 50th percentile model was validated against experimental data available in the literature, in terms of deflection, force, whose curve must be in experimental corridors. However, for other anthropometries (small male or large male models) question about the validation and results of numerical accident replications can be raised. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Neuronal modulation of D. melanogaster sexual behaviour.
Ellendersen, Bárður Eyjólfsson; von Philipsborn, Anne C
2017-12-01
Drosophila melanogaster sexual behaviour relies on well-studied genetically determined neuronal circuits. At the same time, it can be flexible and is modulated by multiple external and internal factors. This review focuses on how physiological state, behavioural context and social experience impact sexual circuits in the two sexes. We discuss how females tune receptivity and other behaviours depending on mating status and how males adjust courtship intensity based on sexual satiety, age and the conflicting drive for aggression. Neuronal mechanisms for behavioural modulation include changes in sensory and central processing. Activity of modulatory neurons can enhance, suppress or reverse the behavioural response to sensory cues. In summary, fly sexual behaviour is an excellent model to study mechanisms of neuromodulation of complex innate behaviour on the circuit level. Copyright © 2017 Elsevier Inc. All rights reserved.
Wrath of God: religious primes and punishment
McKay, Ryan; Efferson, Charles; Whitehouse, Harvey; Fehr, Ernst
2011-01-01
Recent evidence indicates that priming participants with religious concepts promotes prosocial sharing behaviour. In the present study, we investigated whether religious priming also promotes the costly punishment of unfair behaviour. A total of 304 participants played a punishment game. Before the punishment stage began, participants were subliminally primed with religion primes, secular punishment primes or control primes. We found that religious primes strongly increased the costly punishment of unfair behaviours for a subset of our participants—those who had previously donated to a religious organization. We discuss two proximate mechanisms potentially underpinning this effect. The first is a ‘supernatural watcher’ mechanism, whereby religious participants punish unfair behaviours when primed because they sense that not doing so will enrage or disappoint an observing supernatural agent. The second is a ‘behavioural priming’ mechanism, whereby religious primes activate cultural norms pertaining to fairness and its enforcement and occasion behaviour consistent with those norms. We conclude that our results are consistent with dual inheritance proposals about religion and cooperation, whereby religions harness the byproducts of genetically inherited cognitive mechanisms in ways that enhance the survival prospects of their adherents. PMID:21106588
Guignard, Brice; Rouard, Annie; Chollet, Didier; Hart, John; Davids, Keith; Seifert, Ludovic
2017-08-01
Displacement in competitive swimming is highly dependent on fluid characteristics, since athletes use these properties to propel themselves. It is essential for sport scientists and practitioners to clearly identify the interactions that emerge between each individual swimmer and properties of an aquatic environment. Traditionally, the two protagonists in these interactions have been studied separately. Determining the impact of each swimmer's movements on fluid flow, and vice versa, is a major challenge. Classic biomechanical research approaches have focused on swimmers' actions, decomposing stroke characteristics for analysis, without exploring perturbations to fluid flows. Conversely, fluid mechanics research has sought to record fluid behaviours, isolated from the constraints of competitive swimming environments (e.g. analyses in two-dimensions, fluid flows passively studied on mannequins or robot effectors). With improvements in technology, however, recent investigations have focused on the emergent circular couplings between swimmers' movements and fluid dynamics. Here, we provide insights into concepts and tools that can explain these on-going dynamic interactions in competitive swimming within the theoretical framework of ecological dynamics.
Dynamic Grain Growth in Forsterite Aggregates Experimentally Deformed to High Strain
NASA Astrophysics Data System (ADS)
Kellermann Slotemaker, A.; de Bresser, H.; Spiers, C.; Drury, M.
2004-12-01
The dynamics of the outer Earth are largely controlled by olivine rheology. From previous work it has become clear that if olivine rocks are deformed to high strain, substantial weakening may occur before steady state mechanical behaviour is approached. This weakening appears directly related to progressive modification of the grain size distribution through competing effects of dynamic recrystallization and syn-deformational grain growth. However, most of our understanding of these processes in olivine comes from tests on coarse-grained materials that were reduced in grain size during straining by grain size insensitive (dislocation) creep mechanisms. The aim of the present study was to investigate microstructure evolution of fine-grained olivine rocks that coarsen in grain size while deforming by grain size sensitive (GSS) creep. We used fine-grained (~1 μ m) olivine aggregates (i.e., forsterite/Mg2SiO4), containing ~0.5 wt% water and 10 vol% enstatite (MgSiO3). Two types of experiments were carried out: 1) Hot isostatic pressing (HIP) followed by axial compression to varying strains up to a maximum of ~45%, at 600 MPa confining pressure and a temperature of 950°C, 2) HIP treatment without axial deformation. Microstructures were characterized by analyzing full grain size distributions and texture using SEM/EBSD. Our stress-strain curves showed continuous hardening. When samples were temporally unloaded for short time intervals, no difference in flow stress was observed before and after the interruption in straining. Strain rate sensitivity analysis showed a low value of ~1.5 for the stress exponent n. Measured grain sizes show an increase with strain up to a value twice that of the starting value. HIP-only samples showed only minor increase in grain size. A random LPO combined with the low n ~1.5 suggests dominant GSS creep controlled by grain boundary sliding. These results indicate that dynamic grain growth occurs in forsterite aggregates deforming by GSS creep, and we relate the continuous strain hardening to this process. A dynamic grain growth model involving an increase in cellular defect fraction seems best applicable to the grain growth observed in this study. We suggest that the employment of this model to fine-grained olivine rocks can further improve our understanding of the microstructural evolution of this material and related rheological behaviour.
NASA Astrophysics Data System (ADS)
Erice, B.; Pérez-Martín, M. J.; Cendón, D. A.; Gálvez, F.
2012-05-01
A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850 ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.
Hoye, Bethany J; Fouchier, Ron A M; Klaassen, Marcel
2012-02-07
Individual variation in infection modulates both the dynamics of pathogens and their impact on host populations. It is therefore crucial to identify differential patterns of infection and understand the mechanisms responsible. Yet our understanding of infection heterogeneity in wildlife is limited, even for important zoonotic host-pathogen systems, owing to the intractability of host status prior to infection. Using novel applications of stable isotope ecology and eco-immunology, we distinguish antecedent behavioural and physiological traits associated with avian influenza virus (AIV) infection in free-living Bewick's swans (Cygnus columbianus bewickii). Swans infected with AIV exhibited higher serum δ13C (-25.3±0.4) than their non-infected counterparts (-26.3±0.2). Thus, individuals preferentially foraging in aquatic rather than terrestrial habitats experienced a higher risk of infection, suggesting that the abiotic requirements of AIV give rise to heterogeneity in pathogen exposure. Juveniles were more likely to be infected (30.8% compared with 11.3% for adults), shed approximately 15-fold higher quantity of virus and exhibited a lower specific immune response than adults. Together, these results demonstrate the potential for heterogeneity in infection to have a profound influence on the dynamics of pathogens, with concomitant impacts on host habitat selection and fitness.
Proprioceptive feedback determines visuomotor gain in Drosophila
Bartussek, Jan; Lehmann, Fritz-Olaf
2016-01-01
Multisensory integration is a prerequisite for effective locomotor control in most animals. Especially, the impressive aerial performance of insects relies on rapid and precise integration of multiple sensory modalities that provide feedback on different time scales. In flies, continuous visual signalling from the compound eyes is fused with phasic proprioceptive feedback to ensure precise neural activation of wing steering muscles (WSM) within narrow temporal phase bands of the stroke cycle. This phase-locked activation relies on mechanoreceptors distributed over wings and gyroscopic halteres. Here we investigate visual steering performance of tethered flying fruit flies with reduced haltere and wing feedback signalling. Using a flight simulator, we evaluated visual object fixation behaviour, optomotor altitude control and saccadic escape reflexes. The behavioural assays show an antagonistic effect of wing and haltere signalling on visuomotor gain during flight. Compared with controls, suppression of haltere feedback attenuates while suppression of wing feedback enhances the animal’s wing steering range. Our results suggest that the generation of motor commands owing to visual perception is dynamically controlled by proprioception. We outline a potential physiological mechanism based on the biomechanical properties of WSM and sensory integration processes at the level of motoneurons. Collectively, the findings contribute to our general understanding how moving animals integrate sensory information with dynamically changing temporal structure. PMID:26909184
Reconnection Dynamics and Mutual Friction in Quantum Turbulence
NASA Astrophysics Data System (ADS)
Laurie, Jason; Baggaley, Andrew W.
2015-07-01
We investigate the behaviour of the mutual friction force in finite temperature quantum turbulence in He, paying particular attention to the role of quantized vortex reconnections. Through the use of the vortex filament model, we produce three experimentally relevant types of vortex tangles in steady-state conditions, and examine through statistical analysis, how local properties of the tangle influence the mutual friction force. Finally, by monitoring reconnection events, we present evidence to indicate that vortex reconnections are the dominant mechanism for producing areas of high curvature and velocity leading to regions of high mutual friction, particularly for homogeneous and isotropic vortex tangles.
NASA Astrophysics Data System (ADS)
Dvorak, R.; Henrard, J.
1993-06-01
Topics addressed include planetary theories, the Sitnikov problem, asteroids, resonance, general dynamical systems, and chaos and stability. Particular attention is given to recent progress in the theory and application of symplectic integrators, a computer-aided analysis of the Sitnikov problem, the chaotic behavior of trajectories for the asteroidal resonances, and the resonant motion in the restricted three-body problem. Also discussed are the second order long-period motion of Hyperion, meteorites from the asteroid 6 Hebe, and least squares parameter estimation in chaotic differential equations.
Multicomponent exciton gas in cuprous oxide: cooling behaviour and the role of Auger decay
NASA Astrophysics Data System (ADS)
Semkat, D.; Sobkowiak, S.; Schöne, F.; Stolz, H.; Koch, Th; Fehske, H.
2017-10-01
In this paper we present a hydrodynamic model to describe the dynamics of para- and orthoexcitons in cuprous oxide at ultralow temperatures inside a stress induced potential trap. We take into account the finite lifetime of the excitons, the excitation process and exciton-phonon as well as exciton-exciton interaction. Furthermore, we model the two-body loss mechanism assuming an Auger-like effect and compare it to an alternative explanation which relies on the formation of biexcitons. We discuss in detail the influence on the numerical results and compare the predictions to experimental data.
NASA Astrophysics Data System (ADS)
Plenio, M. B.; Almeida, J.; Huelga, S. F.
2013-12-01
We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.
Strain rate effects on fracture behavior of Austempered Ductile Irons
NASA Astrophysics Data System (ADS)
Ruggiero, Andrew; Bonora, Nicola; Gentile, Domenico; Iannitti, Gianluca; Testa, Gabriel; Hörnqvist Colliander, Magnus; Masaggia, Stefano; Vettore, Federico
2017-06-01
Austempered Ductile Irons (ADIs), combining high strength, good ductility and low density, are candidates to be a suitable alternative to high-strength steels. Nevertheless, the concern about a low ductility under dynamic loads often leads designers to exclude cast irons for structural applications. However, results from dynamic tensile tests contradict this perception showing larger failure strain with respect to quasistatic data. The fracture behaviour of ADIs depends on damage mechanisms occurring in the spheroids of graphite, in the matrix and at their interface, with the matrix (ausferrite) consisting of acicular ferrite in carbon-enriched austenite. Here, a detailed microstructural analysis was performed on the ADI 1050-6 deformed under different conditions of strain rates, temperatures, and states of stress. Beside the smooth specimens used for uniaxial tensile tests, round notched bars to evaluate the ductility reduction with increasing stress triaxiality and tophat geometries to evaluate the propensity to shear localization and the associated microstructural alterations were tested. The aim of the work is to link the mechanical and fracture behavior of ADIs to the load condition through the microstructural modifications that occur for the corresponding deformation path.
Synchronizing MIDI and wireless EEG measurements during natural piano performance.
Zamm, Anna; Palmer, Caroline; Bauer, Anna-Katharina R; Bleichner, Martin G; Demos, Alexander P; Debener, Stefan
2017-07-08
Although music performance has been widely studied in the behavioural sciences, less work has addressed the underlying neural mechanisms, perhaps due to technical difficulties in acquiring high-quality neural data during tasks requiring natural motion. The advent of wireless electroencephalography (EEG) presents a solution to this problem by allowing for neural measurement with minimal motion artefacts. In the current study, we provide the first validation of a mobile wireless EEG system for capturing the neural dynamics associated with piano performance. First, we propose a novel method for synchronously recording music performance and wireless mobile EEG. Second, we provide results of several timing tests that characterize the timing accuracy of our system. Finally, we report EEG time domain and frequency domain results from N=40 pianists demonstrating that wireless EEG data capture the unique temporal signatures of musicians' performances with fine-grained precision and accuracy. Taken together, we demonstrate that mobile wireless EEG can be used to measure the neural dynamics of piano performance with minimal motion constraints. This opens many new possibilities for investigating the brain mechanisms underlying music performance. Copyright © 2017 Elsevier B.V. All rights reserved.
Setterbo, J J; Fyhrie, P B; Hubbard, M; Upadhyaya, S K; Stover, S M
2013-01-01
Racetrack surface is a risk factor for Thoroughbred racehorse injury and death that can be engineered and managed. To investigate the relationship between surface and injury, the mechanical behaviour of dirt and synthetic track surfaces must be quantified. To compare dynamic properties of a dirt and a synthetic surface in situ using a track-testing device designed to simulate equine hoof impact; and to determine the effects of impact velocity, impact angle and repeated impact on dynamic surface behaviour. A track-testing device measured force and displacement during impact into a dirt and a synthetic surface at 3 impact velocities (1.91, 2.30, 2.63 m/s), 2 impact angles (0°, 20° from vertical), and 2 consecutive impacts (initial, repeat). Surfaces were measured at 3 locations/day for 3 days. The effects of surface type, impact velocity, impact angle and impact number on dynamic surface properties were assessed using analysis of variance. Synthetic surface maximum forces, load rates and stiffnesses were 37-67% of dirt surface values. Surfaces were less stiff with lower impact velocities, angled impacts and initial impacts. The magnitude of differences between dirt and synthetic surfaces increased for repeat impacts and higher impact velocities. The synthetic surface was generally softer than the dirt surface. Greatly increased hardness for repeat impacts corroborates the importance of maintenance. Results at different impact velocities suggest that surface differences will persist at higher impact velocities. For both surfaces it is clearly important to prevent horse exposure to precompacted surfaces, particularly during high-speed training when the surface has already been trampled. These data should be useful in coordinating racetrack surface management with racehorse training to prevent injuries. © 2012 EVJ Ltd.
NASA Astrophysics Data System (ADS)
Gramelsberger, Gabriele
The scientific understanding of atmospheric processes has been rooted in the mechanical and physical view of nature ever since dynamic meteorology gained ground in the late 19th century. Conceiving the atmosphere as a giant 'air mass circulation engine' entails applying hydro- and thermodynamical theory to the subject in order to describe the atmosphere's behaviour on small scales. But when it comes to forecasting, it turns out that this view is far too complex to be computed. The limitation of analytical methods precludes an exact solution, forcing scientists to make use of numerical simulation. However, simulation introduces two prerequisites to meteorology: First, the partitioning of the theoretical view into two parts-the large-scale behaviour of the atmosphere, and the effects of smaller-scale processes on this large-scale behaviour, so-called parametrizations; and second, the dependency on computational power in order to achieve a higher resolution. The history of today's atmospheric circulation modelling can be reconstructed as the attempt to improve the handling of these basic constraints. It can be further seen as the old schism between theory and application under new circumstances, which triggers a new discussion about the question of how processes may be conceived in atmospheric modelling.
Coevolution in host-parasite systems: behavioural strategies of slave-making ants and their hosts.
Foitzik, S; DeHeer, C J; Hunjan, D N; Herbers, J M
2001-06-07
Recently, avian brood parasites and their hosts have emerged as model systems for the study of host-parasite coevolution. However, empirical studies of the highly analogous social parasites, which use the workers of another eusocial species to raise their own young, have never explicitly examined the dynamics of these systems from a coevolutionary perspective. Here, we demonstrate interpopulational variation in behavioural interactions between a socially parasitic slave-maker ant and its host that is consistent with the expectations of host-parasite coevolution. Parasite pressure, as inferred by the size, abundance and raiding frequency of Protomognathus americanus colonies, was highest in a New York population of the host Leptothorax longispinosus and lowest in a West Virginia population. As host-parasite coevolutionary theory would predict, we found that the slave-makers and the hosts from New York were more effective at raiding and defending against raiders, respectively, than were conspecifics from the West Virginia population. Some of these variations in efficacy were brought about by apparently simple shifts in behaviour. These results demonstrate that defence mechanisms against social parasites can evolve, and they give the first indications of the existence of a coevolutionary arms race between a social parasite and its host.
Optimality approaches to describe characteristic fluvial patterns on landscapes
Paik, Kyungrock; Kumar, Praveen
2010-01-01
Mother Nature has left amazingly regular geomorphic patterns on the Earth's surface. These patterns are often explained as having arisen as a result of some optimal behaviour of natural processes. However, there is little agreement on what is being optimized. As a result, a number of alternatives have been proposed, often with little a priori justification with the argument that successful predictions will lend a posteriori support to the hypothesized optimality principle. Given that maximum entropy production is an optimality principle attempting to predict the microscopic behaviour from a macroscopic characterization, this paper provides a review of similar approaches with the goal of providing a comparison and contrast between them to enable synthesis. While assumptions of optimal behaviour approach a system from a macroscopic viewpoint, process-based formulations attempt to resolve the mechanistic details whose interactions lead to the system level functions. Using observed optimality trends may help simplify problem formulation at appropriate levels of scale of interest. However, for such an approach to be successful, we suggest that optimality approaches should be formulated at a broader level of environmental systems' viewpoint, i.e. incorporating the dynamic nature of environmental variables and complex feedback mechanisms between fluvial and non-fluvial processes. PMID:20368257
The effect of a prudent adaptive behaviour on disease transmission
NASA Astrophysics Data System (ADS)
Scarpino, Samuel V.; Allard, Antoine; Hébert-Dufresne, Laurent
2016-11-01
The spread of disease can be slowed by certain aspects of real-world social networks, such as clustering and community structure, and of human behaviour, including social distancing and increased hygiene, many of which have already been studied. Here, we consider a model in which individuals with essential societal roles--be they teachers, first responders or health-care workers--fall ill, and are replaced with healthy individuals. We refer to this process as relational exchange, and incorporate it into a dynamic network model to demonstrate that replacing individuals can accelerate disease transmission. We find that the effects of this process are trivial in the context of a standard mass-action model, but dramatic when considering network structure, featuring accelerating spread, discontinuous transitions and hysteresis loops. This result highlights the inability of mass-action models to account for many behavioural processes. Using empirical data, we find that this mechanism parsimoniously explains observed patterns across 17 influenza outbreaks in the USA at a national level, 25 years of influenza data at the state level, and 19 years of dengue virus data from Puerto Rico. We anticipate that our findings will advance the emerging field of disease forecasting and better inform public health decision making during outbreaks.
NASA Astrophysics Data System (ADS)
Thomaz, Andrea; Breazeal, Cynthia
2008-06-01
We present a learning system, socially guided exploration, in which a social robot learns new tasks through a combination of self-exploration and social interaction. The system's motivational drives, along with social scaffolding from a human partner, bias behaviour to create learning opportunities for a hierarchical reinforcement learning mechanism. The robot is able to learn on its own, but can flexibly take advantage of the guidance of a human teacher. We report the results of an experiment that analyses what the robot learns on its own as compared to being taught by human subjects. We also analyse the video of these interactions to understand human teaching behaviour and the social dynamics of the human-teacher/robot-learner system. With respect to learning performance, human guidance results in a task set that is significantly more focused and efficient at the tasks the human was trying to teach, whereas self-exploration results in a more diverse set. Analysis of human teaching behaviour reveals insights of social coupling between the human teacher and robot learner, different teaching styles, strong consistency in the kinds and frequency of scaffolding acts across teachers and nuances in the communicative intent behind positive and negative feedback.
Wells, C R; Bauch, C T
2012-08-01
Personal experiences with past infection events, or perceived vaccine failures and complications, are known to drive vaccine uptake. We coupled a model of individual vaccinating decisions, influenced by these drivers, with a contact network model of influenza transmission dynamics. The impact of non-influenzal influenza-like illness (niILI) on decision-making was also incorporated: it was possible for individuals to mistake niILI for true influenza. Our objectives were to (1) evaluate the impact of personal experiences on vaccine coverage; (2) understand the impact of niILI on behaviour-incidence dynamics; (3) determine which factors influence vaccine coverage stability; and (4) determine whether vaccination strategies can become correlated on the network in the absence of social influence. We found that certain aspects of personal experience can significantly impact behaviour-incidence dynamics. For instance, longer term memory for past events had a strong stabilising effect on vaccine coverage dynamics, although it could either increase or decrease average vaccine coverage depending on whether memory of past infections or past vaccine failures dominated. When vaccine immunity wanes slowly, vaccine coverage is low and stable, and infection incidence is also very low, unless the effects of niILI are ignored. Strategy correlations can occur in the absence of imitation, on account of the neighbour-neighbour transmission of infection and history-dependent decision making. Finally, niILI weakens the behaviour-incidence coupling and therefore tends to stabilise dynamics, as well as breaking up strategy correlations. Behavioural feedbacks, and the quality of self-diagnosis of niILI, may need to be considered in future programs adopting "universal" flu vaccines conferring long-term immunity. Public health interventions that focus on reminding individuals about their previous influenza infections, as well as communicating facts about vaccine efficacy and the difference between influenza and niILI, may be an effective way to increase vaccine coverage and prevent unexpected drops in coverage. Copyright © 2012 Elsevier B.V. All rights reserved.
Carbon Nanotubes in Water: MD Simulations of Internal and External Flow, Self Organization
NASA Technical Reports Server (NTRS)
Jaffe, Richard L.; Halicioglu, Timur; Werder, Thomas; Walther, Jens; Koumoutsakos, Petros; Arnold, James (Technical Monitor)
2001-01-01
We have developed computational tools, based on particle codes, for molecular dynamics (MD) simulation of carbon nanotubes (CNT) in aqueous environments. The interaction of CNTs with water is envisioned as a prototype for the design of engineering nano-devices, such as artificial sterocillia and molecular biosensors. Large scale simulations involving thousands of water molecules are possible due to our efficient parallel MD code that takes long range electrostatic interactions into account. Since CNTs can be considered as rolled up sheets of graphite, we expect the CNT-water interaction to be similar to the interaction of graphite with water. However, there are fundamental differences between considering graphite and CNTs, since the curvature of CNTs affects their chemical activity and also since capillary effects play an important role for both dynamic and static behaviour of materials inside CNTs. In recent studies Gordillo and Marti described the hydrogen bond structure as well as time dependent properties of water confined in CNTs. We are presenting results from the development of force fields describing the interaction of CNTs and water based on ab-initio quantum mechanical calculations. Furthermore, our results include both water flows external to CNTs and the behaviour of water nanodroplets inside heated CNTs. In the first case (external flows) the hydrophobic behaviour of CNTs is quantified and we analyze structural properties of water in the vicinity of CNTs with diagnostics such as hydrogen bond distribution, water dipole orientation and radial distribution functions. The presence of water leads to attractive forces between CNTs as a result of their hydrophobicity. Through extensive simulations we quantify these attractive forces in terms of the number and separation of the CNT. Results of our simulations involving arrays of CNTs indicate that these exhibit a hydrophobic behaviour that leads to self-organising structures capable of trapping water clusters. In the second case (internal flows) we study the behaviour of water droplets confined inside CNTs. Constant temperature simulations allow us to capture structural properties such as the contact angles and density profiles of the equilibrated drops. By heating and subsequently cooling of the CNT, we are able to measure the evaporation and the condensation rate of the entrapped water.
Behaviour, the key factor for sports injury prevention.
Verhagen, Evert A L M; van Stralen, Maartje M; van Mechelen, Willem
2010-11-01
Safety in sports and physical activity is an important prerequisite for continuing participation in sports, as well as for maintenance of a healthy physically active lifestyle. For this reason, prevention, reduction and control of sports injuries are important goals for society as a whole. Recent advances in sports medicine discuss the need for research on real-life injury prevention. Such views call for a more behavioural approach when it comes to actual sports injury prevention. Nevertheless, the role of behaviour in sports injury prevention remains under-researched. In order to push the field of sports injury prevention forward, this article provides an overview of the relationship between behaviour and sports injury risk. Different types of behaviour relate to injury risk factors and injury mechanisms. Behaviour that influences risk factors and injury mechanisms is not confined only to the athlete. Various types of behaviour by, for example, the coach, referee, physical therapist or sports associations, also influence risk factors and injury mechanisms. In addition, multiple behaviours often act together. Some types of behaviour may directly affect injury risk and are by definition a risk factor. Other behaviours may only affect risk factors and injury mechanisms, and influence injury risk indirectly. Recent ideas on injury prevention that call for studies on real-life injury prevention still rely heavily on preventive measures that are established through efficacy research. A serious limitation in such an approach is that one expects that proven preventive measures will be adopted if the determinants and influences of sports safety behaviours are understood. Therefore, if one truly wants to prevent sports injuries in a real-life situation, a broader research focus is needed. In trying to do so, we need to look at lessons learned from other fields of injury prevention research.
NASA Astrophysics Data System (ADS)
Uchida, Satoshi; Yoshida, Taketo; Tochikubo, Fumiyoshi
2017-10-01
Plasma medicine is one of the most attractive applications using atmospheric pressure nonequilibrium plasma. With respect to direct contact of the discharge plasma with a biological membrane, reactive oxygen species play an important role in induction of medical effects. However, complicated interactions between the plasma radicals and membrane have not been understood well. In the present work, we simulated elemental processes at the first stage of physicochemical interactions between oxygen atom and phosphatidylcholine using the quantum mechanical molecular dynamics code in a general software AMBER. The change in the above processes was classified according to the incident energy of oxygen atom. At an energy of 1 eV, the abstraction of a hydrogen atom and recombination to phosphatidylcholine were simultaneously occurred in chemical attachment of incident oxygen atom. The exothermal energy of the reaction was about 80% of estimated one based on the bond energies of ethane. An oxygen atom over 10 eV separated phosphatidylcholine partially. The behaviour became increasingly similar to physical sputtering. The reaction probability of oxygen atom was remarkably high in comparison with that of hydrogen peroxide. These results suggest that we can uniformly estimate various physicochemical dynamics of reactive oxygen species against membrane lipids.
Potts, Jonathan R; Petrovskii, Sergei V
2017-05-07
Animal movement is a key mechanism for shaping population dynamics. The effect of interactions between competing animals on a population's survival has been studied for many decades. However, interactions also affect an animal's subsequent movement decisions. Despite this, the indirect effect of these decisions on animal survival is much less well-understood. Here, we incorporate movement responses to foreign animals into a model of two competing populations, where inter-specific competition is greater than intra-specific competition. When movement is diffusive, the travelling wave moves from the stronger population to the weaker. However, by incorporating behaviourally induced directed movement towards the stronger population, the weaker one can slow the travelling wave down, even reversing its direction. Hence movement responses can switch the predictions of traditional mechanistic models. Furthermore, when environmental heterogeneity is combined with aggressive movement strategies, it is possible for spatially segregated co-existence to emerge. In this situation, the spatial patterns of the competing populations have the unusual feature that they are slightly out-of-phase with the environmental patterns. Finally, incorporating dynamic movement responses can also enable stable co-existence in a homogeneous environment, giving a new mechanism for spatially segregated co-existence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Predation risk suppresses the positive feedback between size structure and cannibalism.
Kishida, Osamu; Trussell, Geoffrey C; Ohno, Ayaka; Kuwano, Shinya; Ikawa, Takuya; Nishimura, Kinya
2011-11-01
1. Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2. This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3. We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4. The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5. We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
Constitutive equations for multiphase TRIP steels at high rates of strain
NASA Astrophysics Data System (ADS)
van Slycken, J.; Verleysen, P.; Degrieck, J.; Bouquerel, J.
2006-08-01
Multiphase TRansformation Induced Plasticity (TRIP) steels show an excellent combination of high strength and high strain values, making them ideally suited for use in vehicle body structures. A complex synergy of three different phases (ferrite, bainite and austenite) on the one hand, and the meta-stable character of the austenite on the other hand, give the material indeed a high energy absorption potential. The knowledge and understanding of the dynamic behaviour of these sheet steels is essential to investigate the impact-dynamic characteristics of the structures. Therefore split Hopkinson tensile tests are performed in a strain rate range of 500 to 2000 s-1. Three TRIP steel grades with a different Al and Si content were studied. The experimental results show that these steels preserve their excellent shock-absorbing properties in dynamic conditions. The typical high strain rate loading conditions and the complex behaviour of TRIP steels offer a unique investigation opportunity. This behaviour can be described with phenomenological material models that can be used for numerical simulations of car crashes. The Johnson-Cook model, a frequently used model in finite element codes, is well-suited to describe the dynamic behaviour of the investigated TRIP steels. This model is compared to the Rusinek-Klepaczko model.
Clustering in Cell Cycle Dynamics with General Response/Signaling Feedback
Young, Todd R.; Fernandez, Bastien; Buckalew, Richard; Moses, Gregory; Boczko, Erik M.
2011-01-01
Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call Responsive/Signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behaviour of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as “uniform” solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude from various details of the mathematical analysis that negative feedback is most consistent with observations in yeast experiments. PMID:22001733
Ma, Yanlei; Yue, Jiping; Zhang, Yao; Shi, Chenzhang; Odenwald, Matt; Liang, Wenguang G.; Wei, Qing; Goel, Ajay; Gou, Xuewen; Zhang, Jamie; Chen, Shao-Yu; Tang, Wei-Jen; Turner, Jerrold R.; Yang, Feng; Liang, Hong; Qin, Huanlong; Wu, Xiaoyang
2017-01-01
In the intestinal epithelium, the aberrant regulation of cell/cell junctions leads to intestinal barrier defects, which may promote the onset and enhance the severity of inflammatory bowel disease (IBD). However, it remains unclear how the coordinated behaviour of cytoskeletal network may contribute to cell junctional dynamics. In this report, we identified ACF7, a crosslinker of microtubules and F-actin, as an essential player in this process. Loss of ACF7 leads to aberrant microtubule organization, tight junction stabilization and impaired wound closure in vitro. With the mouse genetics approach, we show that ablation of ACF7 inhibits intestinal wound healing and greatly increases susceptibility to experimental colitis in mice. ACF7 level is also correlated with development and progression of ulcerative colitis (UC) in human patients. Together, our results reveal an important molecular mechanism whereby coordinated cytoskeletal dynamics contributes to cell adhesion regulation during intestinal wound repair and the development of IBD. PMID:28541346
Effect of Mo on dynamic recrystallization and microstructure development of microalloyed steels
NASA Astrophysics Data System (ADS)
Schambron, Thomas; Dehghan-Manshadi, Ali; Chen, Liang; Gooch, Taliah; Killmore, Chris; Pereloma, Elena
2017-07-01
The dynamic recrystallization (DRX) behaviour, mechanical properties and microstructure development of four low carbon, Nb-Ti-containing micro-alloyed steels with Mo contents from 0 to 0.27 wt% were studied. Plane strain compression tests were performed in a Gleeble 3500 thermomechanical simulator. The effects of composition, deformation temperature and strain rate on the DRX parameters and resultant microstructures were examined. The volume fraction of recrystallised grains was estimated from micrographs and a DRX model. The stress-strain curves showed the typical signs of DRX over a wide range of deformation conditions. Dynamic recovery was only observed for higher strain rates (5 s-1) and/or lower deformation temperatures (below 1000 °C). It was shown that Mo increases the hot strength by around 100 MPa per weight percent. In addition, it has an effect on retarding recrystallization in microalloyed steels by increasing the activation energy for DRX by 320 kJ/molK per weight percent. This was attributed to solute drag and the interaction with other microalloying elements.
Multifractal analysis of the time series of daily means of wind speed in complex regions
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Golay, Jean; Telesca, Luciano; Kanevski, Mikhail
2018-04-01
In this paper, we applied the multifractal detrended fluctuation analysis to the daily means of wind speed measured by 119 weather stations distributed over the territory of Switzerland. The analysis was focused on the inner time fluctuations of wind speed, which could be more linked with the local conditions of the highly varying topography of Switzerland. Our findings point out to a persistent behaviour of all the measured wind speed series (indicated by a Hurst exponent significantly larger than 0.5), and to a high multifractality degree indicating a relative dominance of the large fluctuations in the dynamics of wind speed, especially in the Swiss plateau, which is comprised between the Jura and Alp mountain ranges. The study represents a contribution to the understanding of the dynamical mechanisms of wind speed variability in mountainous regions.
Sub-monolayer growth of Ag on flat and nanorippled SiO{sub 2} surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatnagar, Mukul; Ranjan, Mukesh; Mukherjee, Subroto
2016-05-30
In-situ Rutherford Backscattering Spectrometry (RBS) and Molecular Dynamics (MD) simulations have been used to investigate the growth dynamics of silver on a flat and the rippled silica surface. The calculated sticking coefficient of silver over a range of incidence angles shows a similar behaviour to the experimental results for an average surface binding energy of a silver adatom of 0.2 eV. This value was used to parameterise the MD model of the cumulative deposition of silver in order to understand the growth mechanisms. Both the model and the RBS results show marginal difference between the atomic concentration of silver on themore » flat and the rippled silica surface, for the same growth conditions. For oblique incidence, cluster growth occurs mainly on the leading edge of the rippled structure.« less
NASA Astrophysics Data System (ADS)
Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd
2010-05-01
Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.
Virtual prototyping of drop test using explicit analysis
NASA Astrophysics Data System (ADS)
Todorov, Georgi; Kamberov, Konstantin
2017-12-01
Increased requirements for reliability and safety, included in contemporary standards and norms, has high impact over new product development. New numerical techniques based on virtual prototyping technology, facilitates imrpoving product development cycle, resutling in reduced time/money spent for this stage as well as increased knowledge about certain failure mechanism. So called "drop test" became nearly a "must" step in development of any human operated product. This study aims to demonstrate dynamic behaviour assessment of a structure under impact loads, based on virtual prototyping using a typical nonlinear analysis - explicit dynamics. An example is presneted, based on a plastic container that is used as cartridge for a dispenser machine exposed to various work conditions. Different drop orientations were analyzed and critical load cases and design weaknesses have been found. Several design modifications have been proposed, based on detailed analyses results review.
NASA Astrophysics Data System (ADS)
Gerace, Giuliana
What mechanisms induce and support cooperation in social interaction? Traditional rational-choice perspective has resulted ineffective to keep track of complex real-world dynamics of cooperation. On the other hand, perspectives based on the justification of fairness preferences as internalized behavioural forces driving realistic cooperative interactions are notoriously incomplete and rather fuzzy with respect to their theoretical foundations. After considering recognized evolutionary accounts of the emergence and resilience of social standards, we endorse the view according to which the key to understanding evolutionary dynamics of social engagement is to be found in individual motivational attitudes to interaction. But, beyond any psychological implications, we suggest not exiting from the "logic of reciprocity" in considering the rationality of preferences for social interaction. Preliminary supporting experimental evidence is provided.
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
NASA Astrophysics Data System (ADS)
Oubbati, Mohamed; Kord, Bahram; Koprinkova-Hristova, Petia; Palm, Günther
2014-04-01
The new tendency of artificial intelligence suggests that intelligence must be seen as a result of the interaction between brains, bodies and environments. This view implies that designing sophisticated behaviour requires a primary focus on how agents are functionally coupled to their environments. Under this perspective, we present early results with the application of reservoir computing as an efficient tool to understand how behaviour emerges from interaction. Specifically, we present reservoir computing models, that are inspired by imitation learning designs, to extract the essential components of behaviour that results from agent-environment interaction dynamics. Experimental results using a mobile robot are reported to validate the learning architectures.
Single wheel hub motor failures and their impact on vehicle and driver behaviour
NASA Astrophysics Data System (ADS)
Wanner, Daniel; Kreußlein, Maria; Augusto, Bruno; Drugge, Lars; Stensson Trigell, Annika
2016-10-01
This research work studies the impact of single wheel hub motor failures on the dynamic behaviour of electric vehicles and the corresponding driver reactions. An experimental study in a moving-base driving simulator is conducted to analyse the influence of single wheel hub motor failures for motorway speeds. Driver reaction times are derived from the measured data and discussed in their experimental context. The failure is rated objectively on the dynamic behaviour of the vehicle and compared to the subjective evaluation. Findings indicate that critical traffic situations impairing traffic safety can occur for motorway speeds. Clear counteractions by the drivers had to be taken.
Amorim, Diana; Puga, Sónia; Bragança, Rui; Braga, António; Pertovaara, Antti; Almeida, Armando; Pinto-Ribeiro, Filipa
2017-06-01
A common and devastating complication of diabetes mellitus is painful diabetic neuropathy (PDN) that can be accompanied by emotional disorders such as depression. A few studies have suggested that minocycline that inhibits microglia may attenuate pain hypersensitivity in PDN. Moreover, a recent study reported that minocycline has an acute antidepressive-like effect in diabetic animals. Here we studied whether (i) prolonged minocycline treatment suppresses pain behaviour in PDN, (ii) the minocycline effect varies with submodality of pain, and (iii) the suppression of pain behaviour by prolonged minocycline treatment is associated with antidepressive-like effect. The experiments were performed in streptozotocin-induced rat model of type-1 diabetes. Pain behaviour was evoked by innocuous (monofilaments) and noxious (paw pressure) mechanical stimulation, innocuous cold (acetone drops) and noxious heat (radiant heat). Depression-like behaviour was assessed using forced swimming test. Minocycline treatment (daily 80mg/kg per os) of three-week duration started four weeks after induction of diabetes. Diabetes induced mechanical allodynia and hyperalgesia, cold allodynia, heat hypoalgesia, and depression-like behaviour. Minocycline treatment significantly attenuated mechanical allodynia and depression-like behaviour, while it failed to produce significant changes in mechanical hyperalgesia, cold allodynia or heat hypoalgesia. The results indicate that prolonged per oral treatment with minocycline has a sustained mechanical antiallodynic and antidepressive-like effect in PDN. These results support the proposal that minocycline might provide a treatment option for attenuating sensory and comorbid emotional symptoms in chronic PDN. Copyright © 2017 Elsevier B.V. All rights reserved.
Intrinsic Valuation of Information in Decision Making under Uncertainty
Bode, Stefan; Brydevall, Maja; Murawski, Carsten
2016-01-01
In a dynamic world, an accurate model of the environment is vital for survival, and agents ought regularly to seek out new information with which to update their world models. This aspect of behaviour is not captured well by classical theories of decision making, and the cognitive mechanisms of information seeking are poorly understood. In particular, it is not known whether information is valued only for its instrumental use, or whether humans also assign it a non-instrumental intrinsic value. To address this question, the present study assessed preference for non-instrumental information among 80 healthy participants in two experiments. Participants performed a novel information preference task in which they could choose to pay a monetary cost to receive advance information about the outcome of a monetary lottery. Importantly, acquiring information did not alter lottery outcome probabilities. We found that participants were willing to incur considerable monetary costs to acquire payoff-irrelevant information about the lottery outcome. This behaviour was well explained by a computational cognitive model in which information preference resulted from aversion to temporally prolonged uncertainty. These results strongly suggest that humans assign an intrinsic value to information in a manner inconsistent with normative accounts of decision making under uncertainty. This intrinsic value may be associated with adaptive behaviour in real-world environments by producing a bias towards exploratory and information-seeking behaviour. PMID:27416034
Using Hidden Markov Models to characterise intermittent social behaviour in fish shoals
NASA Astrophysics Data System (ADS)
Bode, Nikolai W. F.; Seitz, Michael J.
2018-02-01
The movement of animals in groups is widespread in nature. Understanding this phenomenon presents an important problem in ecology with many applications that range from conservation to robotics. Underlying all group movements are interactions between individual animals and it is therefore crucial to understand the mechanisms of this social behaviour. To date, despite promising methodological developments, there are few applications to data of practical statistical techniques that inferentially investigate the extent and nature of social interactions in group movement. We address this gap by demonstrating the usefulness of a Hidden Markov Model approach to characterise individual-level social movement in published trajectory data on three-spined stickleback shoals ( Gasterosteus aculeatus) and novel data on guppy shoals ( Poecilia reticulata). With these models, we formally test for speed-mediated social interactions and verify that they are present. We further characterise this inferred social behaviour and find that despite the substantial shoal-level differences in movement dynamics between species, it is qualitatively similar in guppies and sticklebacks. It is intermittent, occurring in varying numbers of individuals at different time points. The speeds of interacting fish follow a bimodal distribution, indicating that they are either stationary or move at a preferred mean speed, and social fish with more social neighbours move at higher speeds, on average. Our findings and methodology present steps towards characterising social behaviour in animal groups.
Jolles, Jolle W; Fleetwood-Wilson, Adeline; Nakayama, Shinnosuke; Stumpe, Martin C; Johnstone, Rufus A; Manica, Andrea
2015-01-01
Social animals must time and coordinate their behaviour to ensure the benefits of grouping, resulting in collective movements and the potential emergence of leaders and followers. However, individuals often differ consistently from one another in how they cope with their environment, a phenomenon known as animal personality, which may affect how individuals use coordination rules and requiring them to compromise. Here we tracked the movements of pairs of three-spined sticklebacks, Gasterosteus aculeatus , separated by a transparent partition that allowed them to observe and interact with one another in a context containing cover. Individuals differed consistently in their tendency to approach their partner's compartment during collective movements. The strength of this social attraction was positively correlated with the behavioural coordination between members of a pair but was negatively correlated with an individual's tendency to lead. Social attraction may form part of a broader behavioural syndrome as it was predicted by the boldness of an individual, measured in isolation prior to the observation of pairs, and by the boldness of the partner. We found that bolder fish, and those paired with bolder partners, tended to approach their partner's compartment less closely. These findings provide important insights into the mechanisms that govern the dynamics and functioning of social groups and the emergence and maintenance of consistent behavioural differences.
Jolles, Jolle W.; Fleetwood-Wilson, Adeline; Nakayama, Shinnosuke; Stumpe, Martin C.; Johnstone, Rufus A.; Manica, Andrea
2015-01-01
Social animals must time and coordinate their behaviour to ensure the benefits of grouping, resulting in collective movements and the potential emergence of leaders and followers. However, individuals often differ consistently from one another in how they cope with their environment, a phenomenon known as animal personality, which may affect how individuals use coordination rules and requiring them to compromise. Here we tracked the movements of pairs of three-spined sticklebacks, Gasterosteus aculeatus, separated by a transparent partition that allowed them to observe and interact with one another in a context containing cover. Individuals differed consistently in their tendency to approach their partner's compartment during collective movements. The strength of this social attraction was positively correlated with the behavioural coordination between members of a pair but was negatively correlated with an individual's tendency to lead. Social attraction may form part of a broader behavioural syndrome as it was predicted by the boldness of an individual, measured in isolation prior to the observation of pairs, and by the boldness of the partner. We found that bolder fish, and those paired with bolder partners, tended to approach their partner's compartment less closely. These findings provide important insights into the mechanisms that govern the dynamics and functioning of social groups and the emergence and maintenance of consistent behavioural differences. PMID:25598543
NASA Astrophysics Data System (ADS)
Kruszka, L.; Magier, M.
2012-08-01
The main aim of studies on dynamic behaviour of construction materials at high strain rates is to determine the variation of mechanical properties (strength, plasticity) in function of the strain rate and temperature. On the basis of results of dynamic tests on the properties of constructional materials the constitutive models are formulated to create numerical codes applied to solve constructional problems with computer simulation methods. In the case of military applications connected with the phenomena of gunshot and terminal ballistics it's particularly important to develop a model of strength and armour penetration with KE projectile founded on reliable results of dynamic experiments and constituting the base for further analyses and optimization of projectile designs in order to achieve required penetration depth. Static and dynamic results of strength investigations of the EN AW-7012 aluminium alloy (sabot) and tungsten alloy (penetrator) are discussed in this paper. Static testing was carried out with the INSTRON testing machine. Dynamic tests have been conducted using the split Hopkinson pressure bars technique at strain rates up to 1,2 ṡ 104s-1 (for aluminium alloy) and 6 ṡ 103s-1 (for tungsten alloy).
A non-asymptotic model of dynamics of honeycomb lattice-type plates
NASA Astrophysics Data System (ADS)
Cielecka, Iwona; Jędrysiak, Jarosław
2006-09-01
Lightweight structures, consisted of special composite material systems like sandwich plates, are often used in aerospace or naval engineering. In composite sandwich plates, the intermediate core is usually made of cellular structures, e.g. honeycomb micro-frames, reinforcing static and dynamic properties of these plates. Here, a new non-asymptotic continuum model of honeycomb lattice-type plates is shown and applied to the analysis of dynamic problems. The general formulation of the model for periodic lattice-type plates of an arbitrary lay-out was presented by Cielecka and Jędrysiak [Journal of Theoretical and Applied Mechanics 40 (2002) 23-46]. This model, partly based on the tolerance averaging method developed for periodic composite solids by Woźniak and Wierzbicki [Averaging techniques in thermomechanics of composite solids, Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2000], takes into account the effect of the length microstructure size on the dynamic plate behaviour. The shown method leads to the model equations describing the above effect for honeycomb lattice-type plates. These equations have the form similar to equations for isotropic cases. The dynamic analysis of such plates exemplifies this effect, which is significant and cannot be neglected. The physical correctness of the obtained results is also discussed.
NASA Astrophysics Data System (ADS)
Morales, Marco A.; Fernández-Cervantes, Irving; Agustín-Serrano, Ricardo; Anzo, Andrés; Sampedro, Mercedes P.
2016-08-01
A functional with interactions short-range and long-range low coarse-grained approximation is proposed. This functional satisfies models with dissipative dynamics A, B and the stochastic Swift-Hohenberg equation. Furthermore, terms associated with multiplicative noise source are added in these models. These models are solved numerically using the method known as fast Fourier transform. Results of the spatio-temporal dynamic show similarity with respect to patterns behaviour in ferrofluids phases subject to external fields (magnetic, electric and temperature), as well as with the nucleation and growth phenomena present in some solid dissolutions. As a result of the multiplicative noise effect over the dynamic, some microstructures formed by changing solid phase and composed by binary alloys of Pb-Sn, Fe-C and Cu-Ni, as well as a NiAl-Cr(Mo) eutectic composite material. The model A for active-particles with a non-potential term in form of quadratic gradient explain the formation of nanostructured particles of silver phosphate. With these models is shown that the underlying mechanisms in the patterns formation in all these systems depends of: (a) dissipative dynamics; (b) the short-range and long-range interactions and (c) the appropiate combination of quadratic and multiplicative noise terms.
Quasi-coarse-grained dynamics: modelling of metallic materials at mesoscales
NASA Astrophysics Data System (ADS)
Dongare, Avinash M.
2014-12-01
A computationally efficient modelling method called quasi-coarse-grained dynamics (QCGD) is developed to expand the capabilities of molecular dynamics (MD) simulations to model behaviour of metallic materials at the mesoscales. This mesoscale method is based on solving the equations of motion for a chosen set of representative atoms from an atomistic microstructure and using scaling relationships for the atomic-scale interatomic potentials in MD simulations to define the interactions between representative atoms. The scaling relationships retain the atomic-scale degrees of freedom and therefore energetics of the representative atoms as would be predicted in MD simulations. The total energetics of the system is retained by scaling the energetics and the atomic-scale degrees of freedom of these representative atoms to account for the missing atoms in the microstructure. This scaling of the energetics renders improved time steps for the QCGD simulations. The success of the QCGD method is demonstrated by the prediction of the structural energetics, high-temperature thermodynamics, deformation behaviour of interfaces, phase transformation behaviour, plastic deformation behaviour, heat generation during plastic deformation, as well as the wave propagation behaviour, as would be predicted using MD simulations for a reduced number of representative atoms. The reduced number of atoms and the improved time steps enables the modelling of metallic materials at the mesoscale in extreme environments.
The Influence of Learning Behaviour on Team Adaptability
ERIC Educational Resources Information Center
Murray, Peter A.; Millett, Bruce
2011-01-01
Multiple contexts shape team activities and how they learn, and group learning is a dynamic construct that reflects a repertoire of potential behaviour. The purpose of this developmental paper is to examine how better learning behaviours in semi-autonomous teams improves the level of team adaptability and performance. The discussion suggests that…
Partial diel migration: A facultative migration underpinned by long-term inter-individual variation.
Harrison, Philip M; Gutowsky, Lee F G; Martins, Eduardo G; Patterson, David A; Cooke, Steven J; Power, Michael
2017-09-01
The variations in migration that comprise partial diel migrations, putatively occur entirely as a consequence of behavioural flexibility. However, seasonal partial migrations are increasingly recognised to be mediated by a combination of reversible plasticity in response to environmental variation and individual variation due to genetic and environmental effects. Here, we test the hypothesis that while partial diel migration heterogeneity occurs primarily due to short-term within-individual flexibility in behaviour, long-term individual differences in migratory behaviour also underpin this migration variation. Specifically, we use a hierarchical behavioural reaction norm approach to partition within- and among-individual variation in depth use and diel plasticity in depth use, across short- and long-term time-scales, in a group of 47 burbot (Lota lota) tagged with depth-sensing acoustic telemetry transmitters. We found that within-individual variation at the among-dates-within-seasons and among-seasons scale, explained the dominant proportion of phenotypic variation. However, individuals also repeatedly differed in their expression of migration behaviour over the 2 year study duration. These results reveal that diel migration variation occurs primarily due to short-term within-individual flexibility in depth use and diel migration behaviour. However, repeatable individual differences also played a key role in mediating partial diel migration. These findings represent a significant advancement of our understanding of the mechanisms generating the important, yet poorly understood phenomena of partial diel migration. Moreover, given the pervasive occurrence of diel migrations across aquatic taxa, these findings indicate that individual differences have an important, yet previously unacknowledged role in structuring the temporal and vertical dynamics of aquatic ecosystems. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Benbouriche, M; Renaud, P; Pelletier, J-F; De Loor, P
2016-12-01
Forensic psychiatry is the field whose expertise is the assessment and treatment of offending behaviours, in particular when offenses are related to mental illness. An underlying question for all etiological models concerns the manner in which an individual's behaviours are organized. Specifically, it becomes crucial to understand how certain individuals come to display maladaptive behaviours in a given environment, especially when considering issues such as offenders' responsibility and their ability to change their behaviours. Thanks to its ability to generate specific environments, associated with a high experimental control on generated simulations, virtual reality is gaining recognition in forensic psychiatry. Virtual reality has generated promising research data and may turn out to be a remarkable clinical tool in the near future. While research has increased, a conceptual work about its theoretical underpinnings is still lacking. However, no important benefit should be expected from the introduction of a new tool (as innovative as virtual reality) without an explicit and heuristic theoretical framework capable of clarifying its benefits in forensic psychiatry. Our paper introduces self-regulation perspective as the most suitable theoretical framework for virtual reality in forensic psychiatry. It will be argued that virtual reality does not solely help to increase ecological validity. However, it does allow one to grant access to an improved understanding of violent offending behaviours by probing into the underlying mechanisms involved in the self-regulation of behaviours in a dynamical environment. Illustrations are given as well as a discussion regarding perspectives in the use of virtual reality in forensic psychiatry. Copyright © 2015 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Complexity, self-organisation and variation in behaviour in meandering rivers
NASA Astrophysics Data System (ADS)
Hooke, J. M.
2007-11-01
River meanders are natural features on the surface of Earth that present some degree of regularity of form. They range from being highly dynamic to being stable under present conditions. Conventional theory is that meanders develop to an equilibrium form which is related to discharge and sediment load. Other research has demonstrated that many highly active meanders exhibit a continuous evolution over time and a non-linearity in rate of development. Ideas of autogenesis and of self-organised criticality as being an explanation of some meander changes have been proposed. In this paper data from rivers around the world are examined for further evidence of autogenic, self-organised or non-linear behaviour through analysis of change in sinuosity over time for reaches and change in individual bend form, particularly bend curvature and bend elongation. Some examples do exhibit trends of increasing sinuosity over time and a few show limits from which large decreases occur. Several case studies show non-linearity of behaviour and increasing complexity of form. Other case studies, however, do not exhibit such trends. Phase space plots are used to help uncover emergent behaviour but show a variety of patterns. The example of a reach in which multiple cut-offs occurred is analysed for mechanisms of self-organisation of the planform and in the pool-riffle pattern. Riffles are more closely spaced and also more transient in the more rapidly changing and higher sinuosity parts of the channel. Hypothetical trajectories of different meander behaviour, including for bedrock meanders, are plotted but the challenge remains to uncover the conditions for occurrence and for divergence of tendencies to stability and instability. Identification of attractors and phase space of behaviour of different meandering systems offer the potential for application to sustainable channel management.
ERIC Educational Resources Information Center
van Nieuwenhuijzen, M.; Orobio de Castro, B.; van Aken, M. A. G.; Matthys, W.
2009-01-01
Background: A growing interest exists in mechanisms involved in behaviour problems in children with mild intellectual disabilities and borderline intelligence (MID/BI). Social problem solving difficulties have been found to be an explanatory mechanism for aggressive behaviour in these children. However, recently a discrepancy was found between…
Jain, Vivek; Pareek, Ashutosh; Paliwal, Nishant; Ratan, Yashumati; Jaggi, Amteshwar Singh; Singh, Nirmal
2014-02-01
This study was designed to investigate the ameliorative potential of Momordica charantia L. (MC) in tibial and sural nerve transection (TST)-induced neuropathic pain in rats. TST was performed by sectioning tibial and sural nerve portions (2 mm) of the sciatic nerve, and leaving the common peroneal nerve intact. Acetone drop, pin-prick, hot plate, paint-brush, and walking track tests were performed to assess cold allodynia, mechanical and heat hyperalgesia, and dynamic mechanical allodynia and tibial functional index, respectively. The levels of tumour necrosis factor (TNF)-alpha and thio-barbituric acid reactive substances (TBARS) were measured in the sciatic nerve as an index of inflammation and oxidative stress. MC (all doses, orally, once daily) was administered to the rats for 24 consecutive days. TST led to significant development of cold allodynia, mechanical and heat hyperalgesia, dynamic mechanical allodynia, and functional deficit in walking along with rise in the levels of TBARS and TNF-alpha. Administration of MC (200, 400, and 800 mg/kg) significantly attenuated TST-induced behavioural and biochemical changes. Furthermore, pretreatment of BADGE (120 mg/kg, intraperitoneally) abolished the protective effect of MC in TST-induced neuropathic pain. Collectively, it is speculated that PPAR-gamma agonistic activity, anti-inflammatory, and antioxidative potential is critical for antinociceptive effect of MC in neuropathic pain.
Dynamic Impact Behaviour of High Entropy Alloys Used in the Military Domain
NASA Astrophysics Data System (ADS)
Geantă, V.; Voiculescu, I.; Stefănoiu, R.; Chereches, T.; Zecheru, T.; Matache, L.; Rotariu, A.
2018-06-01
AlFeCrCoNi high entropy alloys (HEA) feature significant compressive strength characteristics, being usable for severe impact applications in the military domain. The research paper presents the results obtained by testing the impact resistance of four HEA samples of different chemical compositions at perforation with 7.62 mm calibre incendiary armour-piercing bullets. The dynamical behaviour was modelled by numerical simulation based on the results of the dynamic tests conducted in the firing range, thus allowing the development of more efficient high entropy alloys, to be used for collective/personal protection.
NASA Astrophysics Data System (ADS)
Van der Kelen, C.; Göransson, P.; Pluymers, B.; Desmet, W.
2014-12-01
The aspects related to modelling the frequency dependence of the elastic properties of air-saturated porous materials have been largely neglected in the past for several reasons. For acoustic excitation of porous materials, the material behaviour can be quite well represented by models where the properties of the solid frame have little influence. Only recently has the importance of the dynamic moduli of the frame come into focus. This is related to a growing interest in the material behaviour due to structural excitation. Two aspects stand out in connection with the elastic-dynamic behaviour. The first is related to methods for the characterisation of the dynamic moduli of porous materials. The second is a perceived lack of numerical methods able to model the complex material behaviour under structural excitation, in particular at higher frequencies. In the current paper, experimental data from a panel under structural excitation, coated with a porous material, are presented. In an attempt to correlate the experimental data to numerical predictions, it is found that the measured quasi-static material parameters do not suffice for an accurate prediction of the measured results. The elastic material parameters are then estimated by correlating the numerical prediction to the experimental data, following the physical behaviour predicted by the augmented Hooke's law. The change in material behaviour due to the frequency-dependent properties is illustrated in terms of the propagation of the slow wave and the shear wave in the porous material.
Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
NASA Astrophysics Data System (ADS)
Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai
2016-02-01
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media.
Non-equilibrium behaviour in coacervate-based protocells under electric-field-induced excitation
Yin, Yudan; Niu, Lin; Zhu, Xiaocui; Zhao, Meiping; Zhang, Zexin; Mann, Stephen; Liang, Dehai
2016-01-01
Although numerous strategies are now available to generate rudimentary forms of synthetic cell-like entities, minimal progress has been made in the sustained excitation of artificial protocells under non-equilibrium conditions. Here we demonstrate that the electric field energization of coacervate microdroplets comprising polylysine and short single strands of DNA generates membrane-free protocells with complex, dynamical behaviours. By confining the droplets within a microfluidic channel and applying a range of electric field strengths, we produce protocells that exhibit repetitive cycles of vacuolarization, dynamical fluctuations in size and shape, chaotic growth and fusion, spontaneous ejection and sequestration of matter, directional capture of solute molecules, and pulsed enhancement of enzyme cascade reactions. Our results highlight new opportunities for the study of non-equilibrium phenomena in synthetic protocells, provide a strategy for inducing complex behaviour in electrostatically assembled soft matter microsystems and illustrate how dynamical properties can be activated and sustained in microcompartmentalized media. PMID:26876162
Brain-wide neuronal dynamics during motor adaptation in zebrafish.
Ahrens, Misha B; Li, Jennifer M; Orger, Michael B; Robson, Drew N; Schier, Alexander F; Engert, Florian; Portugues, Ruben
2012-05-09
A fundamental question in neuroscience is how entire neural circuits generate behaviour and adapt it to changes in sensory feedback. Here we use two-photon calcium imaging to record the activity of large populations of neurons at the cellular level, throughout the brain of larval zebrafish expressing a genetically encoded calcium sensor, while the paralysed animals interact fictively with a virtual environment and rapidly adapt their motor output to changes in visual feedback. We decompose the network dynamics involved in adaptive locomotion into four types of neuronal response properties, and provide anatomical maps of the corresponding sites. A subset of these signals occurred during behavioural adjustments and are candidates for the functional elements that drive motor learning. Lesions to the inferior olive indicate a specific functional role for olivocerebellar circuitry in adaptive locomotion. This study enables the analysis of brain-wide dynamics at single-cell resolution during behaviour.
Groenesteijn, L; Commissaris, D A C M; Van den Berg-Zwetsloot, M; Hiemstra-Van Mastrigt, S
2016-07-19
Working in an office environment is characterised by physical inactivity and sedentary behaviour. This behaviour contributes to several health risks in the long run. Dynamic workstations which allow people to combine desk activities with physical activity, may contribute to prevention of these health risks. A dynamic workstation, called Oxidesk, was evaluated to determine the possible contribution to healthy behaviour and the impact on perceived work performance. A field test was conducted with 22 office workers, employed at a health insurance company in the Netherlands. The Oxidesk was well accepted, positively perceived for fitness and the participants maintained their work performance. Physical activity was lower than the activity level required in the Dutch guidelines for sufficient physical activity. Although there was a slight increase in physical activity, the Oxidesk may be helpful in the reducing health risks involved and seems applicable for introduction to office environments.
A Langevin model for fluctuating contact angle behaviour parametrised using molecular dynamics.
Smith, E R; Müller, E A; Craster, R V; Matar, O K
2016-12-06
Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.
Experimental and modelling of Arthrospira platensis cultivation in open raceway ponds.
Ranganathan, Panneerselvam; Amal, J C; Savithri, S; Haridas, Ajith
2017-10-01
In this study, the growth of Arthrospira platensis was studied in an open raceway pond. Furthermore, dynamic model for algae growth and CFD modelling of hydrodynamics in open raceway pond were developed. The dynamic behaviour of the algal system was developed by solving mass balance equations of various components, considering light intensity and gas-liquid mass transfer. A CFD modelling of the hydrodynamics of open raceway pond was developed by solving mass and momentum balance equations of the liquid medium. The prediction of algae concentration from the dynamic model was compared with the experimental data. The hydrodynamic behaviour of the open raceway pond was compared with the literature data for model validation. The model predictions match the experimental findings. Furthermore, the hydrodynamic behaviour and residence time distribution in our small raceway pond were predicted. These models can serve as a tool to assess the pond performance criteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops
NASA Astrophysics Data System (ADS)
Rahman, Aminur; Jordan, Ian; Blackmore, Denis
2018-01-01
It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.
Qualitative models and experimental investigation of chaotic NOR gates and set/reset flip-flops.
Rahman, Aminur; Jordan, Ian; Blackmore, Denis
2018-01-01
It has been observed through experiments and SPICE simulations that logical circuits based upon Chua's circuit exhibit complex dynamical behaviour. This behaviour can be used to design analogues of more complex logic families and some properties can be exploited for electronics applications. Some of these circuits have been modelled as systems of ordinary differential equations. However, as the number of components in newer circuits increases so does the complexity. This renders continuous dynamical systems models impractical and necessitates new modelling techniques. In recent years, some discrete dynamical models have been developed using various simplifying assumptions. To create a robust modelling framework for chaotic logical circuits, we developed both deterministic and stochastic discrete dynamical models, which exploit the natural recurrence behaviour, for two chaotic NOR gates and a chaotic set/reset flip-flop. This work presents a complete applied mathematical investigation of logical circuits. Experiments on our own designs of the above circuits are modelled and the models are rigorously analysed and simulated showing surprisingly close qualitative agreement with the experiments. Furthermore, the models are designed to accommodate dynamics of similarly designed circuits. This will allow researchers to develop ever more complex chaotic logical circuits with a simple modelling framework.
Critical dynamic approach to stationary states in complex systems
NASA Astrophysics Data System (ADS)
Rozenfeld, A. F.; Laneri, K.; Albano, E. V.
2007-04-01
A dynamic scaling Ansatz for the approach to stationary states in complex systems is proposed and tested by means of extensive simulations applied to both the Bak-Sneppen (BS) model, which exhibits robust Self-Organised Critical (SOC) behaviour, and the Game of Life (GOL) of J. Conway, whose critical behaviour is under debate. Considering the dynamic scaling behaviour of the density of sites (ρ(t)), it is shown that i) by starting the dynamic measurements with configurations such that ρ(t=0) →0, one observes an initial increase of the density with exponents θ= 0.12(2) and θ= 0.11(2) for the BS and GOL models, respectively; ii) by using initial configurations with ρ(t=0) →1, the density decays with exponents δ= 0.47(2) and δ= 0.28(2) for the BS and GOL models, respectively. It is also shown that the temporal autocorrelation decays with exponents Ca = 0.35(2) (Ca = 0.35(5)) for the BS (GOL) model. By using these dynamically determined critical exponents and suitable scaling relationships, we also obtain the dynamic exponents z = 2.10(5) (z = 2.10(5)) for the BS (GOL) model. Based on this evidence we conclude that the dynamic approach to stationary states of the investigated models can be described by suitable power-law functions of time with well-defined exponents.
Risk, resources and state-dependent adaptive behavioural syndromes
Luttbeg, Barney; Sih, Andrew
2010-01-01
Many animals exhibit behavioural syndromes—consistent individual differences in behaviour across two or more contexts or situations. Here, we present adaptive, state-dependent mathematical models for analysing issues about behavioural syndromes. We find that asset protection (where individuals with more ‘assets’ tend be more cautious) and starvation avoidance, two state-dependent mechanisms, can explain short-term behavioural consistency, but not long-term stable behavioural types (BTs). These negative-feedback mechanisms tend to produce convergence in state and behaviour over time. In contrast, a positive-feedback mechanism, state-dependent safety (where individuals with higher energy reserves, size, condition or vigour are better at coping with predators), can explain stable differences in personality over the long term. The relative importance of negative- and positive-feedback mechanisms in governing behavioural consistency depends on environmental conditions (predation risk and resource availability). Behavioural syndromes emerge more readily in conditions of intermediate ecological favourability (e.g. medium risk and medium resources, or high risk and resources, or low risk and resources). Under these conditions, individuals with higher initial state maintain a tendency to be bolder than individuals that start with low initial state; i.e. later BT is determined by state during an early ‘developmental window’. In contrast, when conditions are highly favourable (low risk, high resources) or highly unfavourable (high risk, low resources), individuals converge to be all relatively bold or all relatively cautious, respectively. In those circumstances, initial differences in BT are not maintained over the long term, and there is no early developmental window where initial state governs later BT. The exact range of ecological conditions favouring behavioural syndromes depends also on the strength of state-dependent safety. PMID:21078650
Mademli, Lida; Arampatzis, Adamantios; Karamanidis, Kiros
2008-06-01
Many studies report that muscle strength loss may alter the human system's capacity to generate rapid force for balance corrections after perturbations, leading to deficient recovery behaviours. Yet little is known regarding the effect of modifications in the neuromuscular system induced by fatigue on dynamic stability control during postural perturbations. This study investigates the effect of muscle strength decline induced by fatiguing contractions on the dynamic stability control of young and older adults during forward falls. Eleven young and eleven older male adults had to regain balance after sudden falls before and after submaximal fatiguing knee extension-flexion contractions. Young subjects had a higher margin of stability than older ones before and after the fatiguing task. This reflects their enhanced ability in using mechanisms for maintaining dynamic stability (i.e. a greater base of support). The margin of stability, the boundary of the base of support and the position of the extrapolated centre of mass, remained unaffected by the reduction in muscle strength induced by the fatiguing contractions, indicating an appropriate adjustment of the motor commands to compensate the deficit in muscle strength. Both young and older adults were able to counteract the decreased horizontal ground reaction forces after the fatiguing task by flexing their knee to a greater extent, leading to similar decreases in the horizontal velocity of centre of mass as in the pre fatigue condition. The results demonstrate the ability of the central nervous system to rapidly modify the execution of postural corrections including mechanisms for maintaining dynamic stability.
Okpara, Uche T; Stringer, Lindsay C; Dougill, Andrew J
2016-11-01
This article examines lake drying and livelihood dynamics in the context of multiple stressors through a case study of the "Small Lake Chad" in the Republic of Chad. Livelihoods research in regions experiencing persistent lake water fluctuations has largely focused on the well-being and security of lakeshore dwellers. Little is known about the mechanisms through which lake drying shapes livelihood drawbacks and opportunities, and whether locally evolved responses are enhancing livelihoods. Here we address these gaps using empirical, mixed-methods field research couched within the framework of livelihoods and human well-being contexts. The analysis demonstrates that limited opportunities outside agriculture, the influx of mixed ethnic migrants and the increasing spate of violence all enhance livelihood challenges. Livelihood opportunities centre on the renewal effects of seasonal flood pulses on lake waters and the learning opportunities triggered by past droughts. Although drying has spurred new adaptive behaviours predicated on seasonality, traditional predictive factors and the availability of assets, responses have remained largely reactive. The article points to where lake drying fits amongst changes in the wider socio-economic landscape in which people live, and suggests that awareness of the particularities of the mechanisms that connect lake drying to livelihoods can offer insights into the ways local people might be assisted by governments and development actors.
ERIC Educational Resources Information Center
Kim, Eun Young
2010-01-01
This study examines an activating mechanism of aggressive behaviour in young children. Many studies on attachment theories have indicated disorganised attachment as a significant risk factor for externalising problems and have explained the aetiology of disorganised attachment in terms of deficits in affect, behaviour and cognitive functions from…
Perez, Adrián A; Sánchez, Cecilio Carrera; Patino, Juan M Rodríguez; Rubiolo, Amelia C; Santiago, Liliana G
2010-11-01
In this contribution, we present experimental information about the effect of xanthan gum (XG) on the adsorption behaviour of two milk whey protein samples (MWP), beta-lactoglobulin (beta-LG) and whey protein concentrate (WPC), at the air-water interface. The MWP concentration studied corresponded to the protein bulk concentration which is able to saturate the air-water interface (1.0 wt%). Temperature, pH and ionic strength of aqueous systems were kept constant at 20 degrees C, pH 7 and 0.05 M, respectively, while the XG bulk concentration varied in the range 0.00-0.25 wt%. Biopolymer interactions in solution were analyzed by extrinsic fluorescence spectroscopy using 1-anilino-8-naphtalene sulphonic acid (ANS) as a protein fluorescence probe. Interfacial biopolymer interactions were evaluated by dynamic tensiometry and surface dilatational rheology. Adsorption behaviour was discussed from a rheokinetic point of view in terms of molecular diffusion, penetration and conformational rearrangement of adsorbed protein residues at the air-water interface. Differences in the interaction magnitude, both in solution and at the interface vicinity, and in the adsorption rheokinetic parameters were observed in MWP/XG mixed systems depending on the protein type (beta-LG or WPC) and biopolymer relative concentration. beta-LG adsorption in XG presence could be promoted by mechanisms based on biopolymer segregative interactions and thermodynamic incompatibility in the interface vicinity, resulting in better surface and viscoelastic properties. The same mechanism could be responsible of WPC interfacial adsorption in the presence of XG. The interfacial functionality of WPC was improved by the synergistic interactions with XG, although WPC chemical complexity might complicate the elucidation of molecular events that govern adsorption dynamics of WPC/XG mixed systems at the air-water interface. Copyright (c) 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abidin, Norhaslinda Zainal; Zaibidi, Nerda Zura; Zulkepli, Jafri Hj
2015-10-01
Obesity is a medical condition where an individual has an excessive amount of body fat. There are many factors contributing to obesity and one of them is the sedentary behaviour. Rapid development in industrialization and urbanization has brought changes to Malaysia's socioeconomic, especially the lifestyles of Malaysians. With this lifestyle transition, one of the impact is on weight and obesity. How does sedentary behaviour have an impact on the growth of Malaysian population's weight and obesity? What is the most effective sedentary behaviour preventing strategy to obesity? Is it through reduction in duration or frequency of sedentary behaviour? Thus, the aim of this paper is to design an intervention to analyse the effect of decreasing duration and frequency of sedentary behaviour on the population reversion trends of average weight (AW), average body mass index (ABMI), and prevalence of overweight and obesity (POVB). This study combines the different strands of sub-models comprised of nutrition, physical activity and body metabolism, and then synthesis these knowledge into a system dynamics of weight behaviour model, namely SIMULObese. Findings from this study revealed that Malaysian's adults spend a lot of time engaged in sedentary behaviour and this resulted in weight gain and obesity. Comparing between frequency and duration of sedentary behaviour, this study reported that reduced in duration or time spend in sedentary behaviour is a better preventing strategy to obesity compared to duration. As a summary, this study highlighted the importance of decreasing the frequency and duration of sedentary behaviour in developing guidelines to prevent obesity.
Impact of individual behaviour change on the spread of emerging infectious diseases.
Yan, Q L; Tang, S Y; Xiao, Y N
2018-03-15
Human behaviour plays an important role in the spread of emerging infectious diseases, and understanding the influence of behaviour changes on epidemics can be key to improving control efforts. However, how the dynamics of individual behaviour changes affects the development of emerging infectious disease is a key public health issue. To develop different formula for individual behaviour change and introduce how to embed it into a dynamic model of infectious diseases, we choose A/H1N1 and Ebola as typical examples, combined with the epidemic reported cases and media related news reports. Thus, the logistic model with the health belief model is used to determine behaviour decisions through the health belief model constructs. Furthermore, we propose 4 candidate infectious disease models without and with individual behaviour change and use approximate Bayesian computation based on sequential Monte Carlo method for model selection. The main results indicate that the classical compartment model without behaviour change and the model with average rate of behaviour change depicted by an exponential function could fit the observed data best. The results provide a new way on how to choose an infectious disease model to predict the disease prevalence trend or to evaluate the influence of intervention measures on disease control. However, sensitivity analyses indicate that the accumulated number of hospital notifications and deaths could be largely reduced as the rate of behaviour change increases. Therefore, in terms of mitigating emerging infectious diseases, both media publicity focused on how to guide people's behaviour change and positive responses of individuals are critical. Copyright © 2017 John Wiley & Sons, Ltd.
Katoh, Keiichi; Horii, Yoji; Yasuda, Nobuhiro; Wernsdorfer, Wolfgang; Toriumi, Koshiro; Breedlove, Brian K; Yamashita, Masahiro
2012-11-28
The SMM behaviour of dinuclear Ln(III)-Pc multiple-decker complexes (Ln = Tb(3+) and Dy(3+)) with energy barriers and slow-relaxation behaviour were explained by using X-ray crystallography and static and dynamic susceptibility measurements. In particular, interactions among the 4f electrons of several dinuclear Ln(III)-Pc type SMMs have never been discussed on the basis of the crystal structure. For dinuclear Tb(III)-Pc complexes, a dual magnetic relaxation process was observed. The relaxation processes are due to the anisotropic centres. Our results clearly show that the two Tb(3+) ion sites are equivalent and are consistent with the crystal structure. On the other hand, the mononuclear Tb(III)-Pc complex exhibited only a single magnetic relaxation process. This is clear evidence that the magnetic relaxation mechanism depends heavily on the dipole-dipole (f-f) interactions between the Tb(3+) ions in the dinuclear systems. Furthermore, the SMM behaviour of dinuclear Dy(III)-Pc type SMMs with smaller energy barriers compared with that of Tb(III)-Pc and slow-relaxation behaviour was explained. Dinuclear Dy(III)-Pc SMMs exhibited single-component magnetic relaxation behaviour. The results indicate that the magnetic relaxation properties of dinuclear Ln(III)-Pc multiple-decker complexes are affected by the local molecular symmetry and are extremely sensitive to tiny distortions in the coordination geometry. In other words, the spatial arrangement of the Ln(3+) ions (f-f interactions) in the crystal is important. Our work shows that the SMM properties can be fine-tuned by introducing weak intermolecular magnetic interactions in a controlled SMM spatial arrangement.
Animal-to-robot social attachment: initial requisites in a gallinaceous bird.
Jolly, L; Pittet, F; Caudal, J-P; Mouret, J-B; Houdelier, C; Lumineau, S; de Margerie, E
2016-02-04
Animal-Robot Interaction experiments have demonstrated their usefulness to understand the social behaviour of a growing number of animal species. In order to study the mechanisms of social influences (from parents and peers) on behavioural development, we design an experimental setup where young quail chicks, after hatching, continuously live with autonomous mobile robots in mixed triadic groups of two chicks and one robot. As precocial birds are subject to imprinting, we compare groups where chicks meet the robot as their very first social partner, on their first day after hatching (R chicks), with groups where chicks meet a real conspecific first (C chicks), and the robot later (on the second day after hatching). We measured the behavioural synchronization between chicks and robot over three days. Afterwards, we directly tested the existence of a possible social bond between animal and robot, by performing separation-reunion behavioural tests. R chicks were more synchronized with the robot in their daily feeding-resting activities than C chicks. Moreover, R chicks emitted numerous distress calls when separated from the robot, even in the presence of another chick, whereas C chicks emitted calls only when separated from the other chick. Whether the observed chick-robot attachment bond reflects filial, or sibling-imprinting of chicks towards the robot remains unclear, as the latter process is not fully understood in natural familial groups. Still, these results reveal the necessary initial conditions for stable, cohesive mixed groups of chicks and robots, a promising tool to experiment on the long-term dynamics of social behaviour.
Investigation of the mechanical behaviour of the foot skin.
Fontanella, C G; Carniel, E L; Forestiero, A; Natali, A N
2014-11-01
The aim of this work was to provide computational tools for the characterization of the actual mechanical behaviour of foot skin, accounting for results from experimental testing and histological investigation. Such results show the typical features of skin mechanics, such as anisotropic configuration, almost incompressible behaviour, material and geometrical non linearity. The anisotropic behaviour is mainly determined by the distribution of collagen fibres along specific directions, usually identified as cleavage lines. To evaluate the biomechanical response of foot skin, a refined numerical model of the foot is developed. The overall mechanical behaviour of the skin is interpreted by a fibre-reinforced hyperelastic constitutive model and the orientation of the cleavage lines is implemented by a specific procedure. Numerical analyses that interpret typical loading conditions of the foot are performed. The influence of fibres orientation and distribution on skin mechanics is outlined also by a comparison with results using an isotropic scheme. A specific constitutive formulation is provided to characterize the mechanical behaviour of foot skin. The formulation is applied within a numerical model of the foot to investigate the skin functionality during typical foot movements. Numerical analyses developed accounting for the actual anisotropic configuration of the skin show lower maximum principal stress fields than results from isotropic analyses. The developed computational models provide reliable tools for the investigation of foot tissues functionality. Furthermore, the comparison between numerical results from anisotropic and isotropic models shows the optimal configuration of foot skin. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The behavioural immune system and the psychology of human sociality.
Schaller, Mark
2011-12-12
Because immunological defence against pathogens is costly and merely reactive, human anti-pathogen defence is also characterized by proactive behavioural mechanisms that inhibit contact with pathogens in the first place. This behavioural immune system comprises psychological processes that infer infection risk from perceptual cues, and that respond to these perceptual cues through the activation of aversive emotions, cognitions and behavioural impulses. These processes are engaged flexibly, producing context-contingent variation in the nature and magnitude of aversive responses. These processes have important implications for human social cognition and social behaviour-including implications for social gregariousness, person perception, intergroup prejudice, mate preferences, sexual behaviour and conformity. Empirical evidence bearing on these many implications is reviewed and discussed. This review also identifies important directions for future research on the human behavioural immune system--including the need for enquiry into underlying mechanisms, additional behavioural consequences and implications for human health and well-being.
Mechanisms for Non-Linear Optical Behaviour in Molecular Fluids
NASA Astrophysics Data System (ADS)
McEwan, Kenneth J.
Available from UMI in association with The British Library. Requires signed TDF. This thesis describes a study of the non-linear optical mechanisms that allow high power laser radiation to interact and change the optical properties of fluid based media. Attention is focused on understanding the finite time-scale of the microscopic response and its influence on the experimental observation. Two classes of material are studied: liquid crystalline fluids in their isotropic phase and suspensions of particles capable of absorbing the laser radiation. In the former case a quantitative description of the optical transients seen in two experiments, degenerate four wave mixing and "z-scan" (self-focusing), is obtained. This description is based upon an analysis of refractive index changes associated with laser-induced molecular reorientation and with thermal effects, for molecules that absorb the laser radiation. Material parameters for a large range of nematogens are obtained by applying this description to experimental data. In the absorbing colloidal suspensions a novel mechanism for degenerate four wave mixing is identified and studied. The experimental results are suggestive of a mechanism in which vapour bubbles nucleate explosively around the colloidal particles and drive a coherent sound -wave excitation of the fluid. Theoretical studies confirm that rapid bubble nucleation is possible by a process of spinodal decomposition under the experimental conditions and it is shown that this mechanism can be expected to give rise to transient behaviour of the type observed. Finally laser-induced refractive index changes in a colloidal suspension in a solid matrix are studied. The dynamics of the formation of refractive index gratings is examined and correlated with microscopically observed structural changes in the matrix. ftn*Funded by DRA, Electronics Division (formerly RSRE).
NASA Astrophysics Data System (ADS)
Ahmadi, S. M.; Jain, R. K. Ashok Kumar; Zadpoor, A. A.; Ayas, C.; Popovich, V. A.
2017-12-01
Titanium and its alloys such as Ti6Al4V play a major role in the medical industry as bone implants. Nowadays, by the aid of additive manufacturing (AM), it is possible to manufacture porous complex structures which mimic human bone. However, AM parts are near net shape and post processing may be needed to improve their mechanical properties. For instance, AM Ti6Al4V samples may be brittle and incapable of withstanding dynamic mechanical loads due to their martensitic microstructure. The aim of this study was to apply two different heat treatment regimes (below and above β-transus) to investigate their effects on the microstructure and mechanical properties of porous Ti6Al4V specimens. After heat treatment, fine acicular α‧ martensitic microstructure was transformed to a mixture of α and β phases. The ductility of the heat-treated specimens, as well as some mechanical properties such as hardness, plateau stress, and first maximum stress changed while the density and elastic gradient of the porous structure remained unchanged.
A lateral dynamics of a wheelchair: identification and analysis of tire parameters.
Silva, L C A; Corrêa, F C; Eckert, J J; Santiciolli, F M; Dedini, F G
2017-02-01
In vehicle dynamics studies, the tire behaviour plays an important role in planar motion of the vehicle. Therefore, a correct representation of tire is a necessity. This paper describes a mathematical model for wheelchair tire based on the Magic Formula model. This model is widely used to represent forces and moments between the tire and the ground; however some experimental parameters must be determined. The purpose of this work is to identify the tire parameters for the wheelchair tire model, implementing them in a dynamic model of the wheelchair. For this, we developed an experimental test rig to measure the tires parameters for the lateral dynamics of a wheelchair. This dynamic model was made using a multi-body software and the wheelchair behaviour was analysed and discussed according to the tire parameters. The result of this work is one step further towards the understanding of wheelchair dynamics.
Feng, Hongru; Lin, Yuan; Sun, Yuzhen; Cao, Huiming; Fu, Jianjie; Gao, Ke; Zhang, Aiqian
2017-05-01
Short chain perfluorinated sulfonic acids (PFSAs) that were introduced as alternatives for perfluorooctane sulfonic acid (PFOS) have been widely produced and used. However, few studies have investigated the environmental process of short chain PFSAs, and the related adsorption mechanisms still need to be uncovered. The water-oxide interface is one of the major environmental interfaces that plays an important role in affecting the adsorption behaviour and transport potential of the environmental pollutant. In this study, we performed molecular dynamics simulations and quantum chemistry calculations to investigate the adsorption mechanisms of five PFSAs and their adsorption on hydrated hematite surface as well. Different to the vertical configuration reported for PFOS on titanium oxide, all PFSAs share the same adsorption configuration as the long carbon chains parallel to the surface. The formation of hydrogen bonds between F and inter-surface H helps to stabilize the unique configuration. As a result, the sorption capacity increases with increasing C-F chain length. Moreover, both calculated adsorption energy and partial density of states (PDOS) analysis demonstrate a PFSAs adsorption mechanism in between physical and chemical adsorption because the hydrogen bonds formed by the overlap of F (p) orbital and H (s) orbital are weak intermolecular interactions while the physical adsorption are mainly ascribed to the electrostatic interactions. This massive calculation provides a new insight into the pollutant adsorption behaviour, and in particular, may help to evaluate the environmental influence of pollutants. Copyright © 2017. Published by Elsevier Ltd.
Kralj-Fiser, Simona; Scheiber, Isabella B R; Kotrschal, Kurt; Weiss, Brigitte M; Wascher, Claudia A F
2010-06-16
Stress responses involve autonomic, endocrine and behavioural changes. Each of these responses has been studied thoroughly in avian species, but hardly in an integrative way, in free-living birds. This is necessary to reveal the temporal dynamics of the stress response. Towards that goal, we recorded heart rate (HR) and behaviour in free-ranging male greylag geese (Anser anser) simultaneously over 2h. The geese were subjected to (a) unmanipulated control condition, (b) capture, handling and injection of ACTH, and (c) capture, handling and injection of a saline solution (SHAM). Fecal samples for the non-invasive determination of immuno-reactive glucocorticoid metabolite (BM) concentrations were collected for 7h thereafter. The SHAM control caused a significant BM increase, a transient increase in HR, an initial increase of preening behaviour and a delay in feeding. ACTH treatment, relative to SHAM, produced significantly higher BM concentrations, and activation of "displacement behaviours" such as wing flapping, body shaking and preening. Also, feeding activity as well as resting was postponed and/or lower for a longer period of time after ACTH than after SHAM. ACTH injection had a greater effect than SHAM injection on HR increase in the first hour, but particularly on HR decline in the second hour following the injection. Hence, glucocorticoids had time- and dose-dependent stimulatory and suppressive effects on cardiovascular activity and behaviour. HR dynamics after ACTH actually matched with behavioural dynamics: both were first enhanced and later suppressed, which is in alignment with adaptive stress management involving the fight-flight response and recovery from stress, respectively. (c) 2010 Elsevier Inc. All rights reserved.
A new transiently chaotic flow with ellipsoid equilibria
NASA Astrophysics Data System (ADS)
Panahi, Shirin; Aram, Zainab; Jafari, Sajad; Pham, Viet-Thanh; Volos, Christos; Rajagopal, Karthikeyan
2018-03-01
In this article, a simple autonomous transiently chaotic flow with cubic nonlinearities is proposed. This system represents some unusual features such as having a surface of equilibria. We shall describe some dynamical properties and behaviours of this system in terms of eigenvalue structures, bifurcation diagrams, time series, and phase portraits. Various behaviours of this system such as periodic and transiently chaotic dynamics can be shown by setting special parameters in proper values. Our system belongs to a newly introduced category of transiently chaotic systems: systems with hidden attractors. Transiently chaotic behaviour of our proposed system has been implemented and tested by the OrCAD-PSpise software. We have found a proper qualitative similarity between circuit and simulation results.
Astronomical and atmospheric impacts on deep-sea hydrothermal vent invertebrates
Legendre, Pierre; Matabos, Marjolaine; Mihály, Steve; Lee, Raymond W.; Sarradin, Pierre-Marie; Arango, Claudia P.; Sarrazin, Jozée
2017-01-01
Ocean tides and winter surface storms are among the main factors driving the dynamics and spatial structure of marine coastal species, but the understanding of their impact on deep-sea and hydrothermal vent communities is still limited. Multidisciplinary deep-sea observatories offer an essential tool to study behavioural rhythms and interactions between hydrothermal community dynamics and environmental fluctuations. Here, we investigated whether species associated with a Ridgeia piscesae tubeworm vent assemblage respond to local ocean dynamics. By tracking variations in vent macrofaunal abundance at different temporal scales, we provide the first evidence that tides and winter surface storms influence the distribution patterns of mobile and non-symbiotic hydrothermal species (i.e. pycnogonids Sericosura sp. and Polynoidae polychaetes) at more than 2 km depth. Local ocean dynamics affected the mixing between hydrothermal fluid inputs and surrounding seawater, modifying the environmental conditions in vent habitats. We suggest that hydrothermal species respond to these habitat modifications by adjusting their behaviour to ensure optimal living conditions. This behaviour may reflect a specific adaptation of vent species to their highly variable habitat. PMID:28381618
NASA Astrophysics Data System (ADS)
Adake, Chandrashekhar V.; Bhargava, Parag; Gandhi, Prasanna
2018-02-01
Ceramic microstereolithography (CMSL) has emerged as solid free form (SFF) fabrication technology in which complex ceramic parts are fabricated from ceramic suspensions which are formulated by dispersing ceramic particles in UV curable resins. Ceramic parts are fabricated by exposing ceramic suspension to computer controlled UV light which polymerizes resin to polymer and this polymer forms rigid network around ceramic particles. A 3-dimensional part is created by piling cured layers one over the other. These ceramic parts are used to build microelectromechanical (MEMS) devices after thermal treatment. In many cases green ceramic parts can be directly utilized to build MEMS devices. Hence characterization of these parts is essential in terms of their mechanical behaviour prior to their use in MEMS devices. Mechanical behaviour of these green ceramic parts depends on cross link density which in turn depends on chemical structure of monomer, concentrations of photoinitiator and UV energy dose. Mechanical behaviour can be determined with the aid of nanoindentation. And extent of crosslinking can be verified with the aid of DSC. FTIR characterization is used to analyse (-C=C-) double bond conversion. This paper explains characterization tools to predict the mechanical behaviour of green ceramic bodies fabricated in CMSL
Design of crystal-like aperiodic solids with selective disorder–phonon coupling
Overy, Alistair R.; Cairns, Andrew B.; Cliffe, Matthew J.; Simonov, Arkadiy; Tucker, Matthew G.; Goodwin, Andrew L.
2016-01-01
Functional materials design normally focuses on structurally ordered systems because disorder is considered detrimental to many functional properties. Here we challenge this paradigm by showing that particular types of strongly correlated disorder can give rise to useful characteristics that are inaccessible to ordered states. A judicious combination of low-symmetry building unit and high-symmetry topological template leads to aperiodic ‘procrystalline' solids that harbour this type of disorder. We identify key classes of procrystalline states together with their characteristic diffraction behaviour, and establish mappings onto known and target materials. The strongly correlated disorder found in these systems is associated with specific sets of modulation periodicities distributed throughout the Brillouin zone. Lattice dynamical calculations reveal selective disorder-driven phonon broadening that resembles the poorly understood ‘waterfall' effect observed in relaxor ferroelectrics. This property of procrystalline solids suggests a mechanism by which strongly correlated topological disorder might allow independently optimized thermal and electronic transport behaviour, such as required for high-performance thermoelectrics. PMID:26842772
[Where do the parasites of man come from?].
Combes, C
1990-01-01
The Hominids have come in contact, over the last few million years, with the infective stages of many parasites which had up to then evolved in non Primate hosts; this is because Hominids have occupied multiple environments and acquired diversified behaviour. The high number of these lateral transfers explains the multiplicity of current human parasitic diseases whereas their youth on an evolutionary scale accounts for the seriousness of most of these diseases. The basic questions arising from the exceptional opportunities offered to parasites by the evolution of the human lineage concern: the precise role played by human behaviour, the mechanisms of alterations in specificity, the identity of the original host phyla, the dynamic and genetic consequences for parasites, the relationship with the evolutionary history of the ancestors of Homo sapiens sapiens; for instance, it is suggested that man's mastery of fire, allowing him to cook his food, dramatically reduced his contamination by certain parasites and that this contributed to the subsequent success of Hominids.
Thalamic reticular nucleus induces fast and local modulation of arousal state
Lewis, Laura D; Voigts, Jakob; Flores, Francisco J; Schmitt, L Ian; Wilson, Matthew A
2015-01-01
During low arousal states such as drowsiness and sleep, cortical neurons exhibit rhythmic slow wave activity associated with periods of neuronal silence. Slow waves are locally regulated, and local slow wave dynamics are important for memory, cognition, and behaviour. While several brainstem structures for controlling global sleep states have now been well characterized, a mechanism underlying fast and local modulation of cortical slow waves has not been identified. Here, using optogenetics and whole cortex electrophysiology, we show that local tonic activation of thalamic reticular nucleus (TRN) rapidly induces slow wave activity in a spatially restricted region of cortex. These slow waves resemble those seen in sleep, as cortical units undergo periods of silence phase-locked to the slow wave. Furthermore, animals exhibit behavioural changes consistent with a decrease in arousal state during TRN stimulation. We conclude that TRN can induce rapid modulation of local cortical state. DOI: http://dx.doi.org/10.7554/eLife.08760.001 PMID:26460547
The origin of incipient ferroelectricity in lead telluride
Jiang, M. P.; Trigo, M.; Savić, I.; ...
2016-07-22
The interactions between electrons and lattice vibrations are fundamental to materials behaviour. In the case of group IV–VI, V and related materials, these interactions are strong, and the materials exist near electronic and structural phase transitions. The prototypical example is PbTe whose incipient ferroelectric behaviour has been recently associated with large phonon anharmonicity and thermoelectricity. Here we show that it is primarily electron-phonon coupling involving electron states near the band edges that leads to the ferroelectric instability in PbTe. Using a combination of nonequilibrium lattice dynamics measurements and first principles calculations, we find that photoexcitation reduces the Peierls-like electronic instabilitymore » and reinforces the paraelectric state. This weakens the long-range forces along the cubic direction tied to resonant bonding and low lattice thermal conductivity. Lastly, our results demonstrate how free-electron-laser-based ultrafast X-ray scattering can be utilized to shed light on the microscopic mechanisms that determine materials properties.« less
A micromachined device describing over a hundred orders of parametric resonance
NASA Astrophysics Data System (ADS)
Jia, Yu; Du, Sijun; Arroyo, Emmanuelle; Seshia, Ashwin A.
2018-04-01
Parametric resonance in mechanical oscillators can onset from the periodic modulation of at least one of the system parameters, and the behaviour of the principal (1st order) parametric resonance has long been well established. However, the theoretically predicted higher orders of parametric resonance, in excess of the first few orders, have mostly been experimentally elusive due to the fast diminishing instability intervals. A recent paper experimentally reported up to 28 orders in a micromachined membrane oscillator. This paper reports the design and characterisation of a micromachined membrane oscillator with a segmented proof mass topology, in an attempt to amplify the inherent nonlinearities within the membrane layer. The resultant oscillator device exhibited up to over a hundred orders of parametric resonance, thus experimentally validating these ultra-high orders as well as overlapping instability transitions between these higher orders. This research introduces design possibilities for the transducer and dynamic communities, by exploiting the behaviour of these previously elusive higher order resonant regimes.
Scrounging by foragers can resolve the paradox of enrichment
2017-01-01
Theoretical models of predator–prey systems predict that sufficient enrichment of prey can generate large amplitude limit cycles, paradoxically causing a high risk of extinction (the paradox of enrichment). Although real ecological communities contain many gregarious species, whose foraging behaviour should be influenced by socially transmitted information, few theoretical studies have examined the possibility that social foraging might resolve this paradox. I considered a predator population in which individuals play the producer–scrounger foraging game in one-prey-one-predator and two-prey-one-predator systems. I analysed the stability of a coexisting equilibrium point in the one-prey system and that of non-equilibrium dynamics in the two-prey system. The results revealed that social foraging could stabilize both systems, and thereby resolve the paradox of enrichment when scrounging behaviour (i.e. kleptoparasitism) is prevalent in predators. This suggests a previously neglected mechanism underlying a powerful effect of group-living animals on the sustainability of ecological communities. PMID:28405371
Morales Hurtado, M; de Vries, E G; Zeng, X; van der Heide, E
2016-09-01
Poly(vinyl) alcohol hydrogel (PVA) is a well-known polymer widely used in the medical field due to its biocompatibility properties and easy manufacturing. In this work, the tribo-mechanical properties of PVA-based blocks are studied to evaluate their suitability as a part of a structure simulating the length scale dependence of human skin. Thus, blocks of pure PVA and PVA mixed with Cellulose (PVA-Cel) were synthesised via freezing/thawing cycles and their mechanical properties were determined by Dynamic Mechanical Analysis (DMA) and creep tests. The dynamic tests addressed to elastic moduli between 38 and 50kPa for the PVA and PVA-Cel, respectively. The fitting of the creep compliance tests in the SLS model confirmed the viscoelastic behaviour of the samples with retardation times of 23 and 16 seconds for the PVA and PVA-Cel, respectively. Micro indentation tests were also achieved and the results indicated elastic moduli in the same range of the dynamic tests. Specifically, values between 45-55 and 56-81kPa were obtained for the PVA and PVA-Cel samples, respectively. The tribological results indicated values of 0.55 at low forces for the PVA decreasing to 0.13 at higher forces. The PVA-Cel blocks showed lower friction even at low forces with values between 0.2 and 0.07. The implementation of these building blocks in the design of a 2-layered skin model (2LSM) is also presented in this work. The 2LSM was stamped with four different textures and their surface properties were evaluated. The hydration of the 2LSM was also evaluated with a corneometer and the results indicated a gradient of hydration comparable to the human skin. Copyright © 2016 Elsevier Ltd. All rights reserved.
Controlling aliased dynamics in motion systems? An identification for sampled-data control approach
NASA Astrophysics Data System (ADS)
Oomen, Tom
2014-07-01
Sampled-data control systems occasionally exhibit aliased resonance phenomena within the control bandwidth. The aim of this paper is to investigate the aspect of these aliased dynamics with application to a high performance industrial nano-positioning machine. This necessitates a full sampled-data control design approach, since these aliased dynamics endanger both the at-sample performance and the intersample behaviour. The proposed framework comprises both system identification and sampled-data control. In particular, the sampled-data control objective necessitates models that encompass the intersample behaviour, i.e., ideally continuous time models. Application of the proposed approach on an industrial wafer stage system provides a thorough insight and new control design guidelines for controlling aliased dynamics.
Exploring dynamic lighting, colour and form with smart textiles
NASA Astrophysics Data System (ADS)
Cabral, I.; Silva, C.; Worbin, L.; Souto, A. P.
2017-10-01
This paper addresses an ongoing research, aiming at the development of smart textiles that transform the incident light that passes through them - light transmittance - to design dynamic light without acting upon the light source. A colour and shape change prototype was developed with the objective of studying textile changes in time; to explore temperature as a dynamic variable through electrical activation of the smart materials and conductive threads integrated in the textile substrate; and to analyse the relation between textile chromic and morphologic behaviour in interaction with light. Based on the experiments conducted, results have highlighted some considerations of the dynamic parameters involved in the behaviour of thermo-responsive textiles and demonstrated design possibilities to create interactive lighting scenarios.
Lai, Zheng Bo; Yan, Cheng
2017-01-01
Many biological composite materials such as bone have demonstrated unique mechanical performance, i.e., a combination of superior stiffness and toughness. It has become increasingly clear that the constituents at the nano- and micro-length scales play a critical role in determining the mechanical performance of these biological composites. In this study, the underlying mechanisms governing the mechanical behaviour of the staggered array of mineralised collagen fibrils (MCF) embedded in extra-fibrillar protein matrix were numerically investigated. The evolution of damage zone in protein was estimated using cohesive zone models (CZM). The results indicate that the mechanisms and mechanical behaviour of MCF array are largely dependent on the MCF dimensions and the intrinsic failure energy in extra-fibrillar protein matrix. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hayot, Céline M.; Forouzesh, Elham; Goel, Ashwani; Avramova, Zoya; Turner, Joseph A.
2012-01-01
Plant development results from controlled cell divisions, structural modifications, and reorganizations of the cell wall. Thereby, regulation of cell wall behaviour takes place at multiple length scales involving compositional and architectural aspects in addition to various developmental and/or environmental factors. The physical properties of the primary wall are largely determined by the nature of the complex polymer network, which exhibits time-dependent behaviour representative of viscoelastic materials. Here, a dynamic nanoindentation technique is used to measure the time-dependent response and the viscoelastic behaviour of the cell wall in single living cells at a micron or sub-micron scale. With this approach, significant changes in storage (stiffness) and loss (loss of energy) moduli are captured among the tested cells. The results reveal hitherto unknown differences in the viscoelastic parameters of the walls of same-age similarly positioned cells of the Arabidopsis ecotypes (Col 0 and Ws 2). The technique is also shown to be sensitive enough to detect changes in cell wall properties in cells deficient in the activity of the chromatin modifier ATX1. Extensive computational modelling of the experimental measurements (i.e. modelling the cell as a viscoelastic pressure vessel) is used to analyse the influence of the wall thickness, as well as the turgor pressure, at the positions of our measurements. By combining the nanoDMA technique with finite element simulations quantifiable measurements of the viscoelastic properties of plant cell walls are achieved. Such techniques are expected to find broader applications in quantifying the influence of genetic, biological, and environmental factors on the nanoscale mechanical properties of the cell wall. PMID:22291130
Building exploration with leeches Hirudo verbana.
Adamatzky, Andrew; Sirakoulis, Georgios Ch
2015-08-01
Safe evacuation of people from building and outdoor environments, and search and rescue operations, always will remain actual in course of all socio-technological developments. Modern facilities offer a range of automated systems to guide residents towards emergency exists. The systems are assumed to be infallible. But what if they fail? How occupants not familiar with a building layout will be looking for exits in case of very limited visibility where tactile sensing is the only way to assess the environment? Analogous models of human behaviour, and socio-dynamics in general, are provided to be fruitful ways to explore alternative, or would-be scenarios. Crowd, or a single person, dynamics could be imitated using particle systems, reaction-diffusion chemical medium, electro-magnetic fields, or social insects. Each type of analogous model offer unique insights on behavioural patterns of natural systems in constrained geometries. In this particular paper we have chosen leeches to analyse patterns of exploration. Reasons are two-fold. First, when deprived from other stimuli leeches change their behavioural modes in an automated regime in response to mechanical stimulation. Therefore leeches can give us invaluable information on how human beings might behave under stress and limited visibility. Second, leeches are ideal blueprints of future soft-bodied rescue robots. Leeches have modular nervous circuitry with a rich behavioral spectrum. Leeches are multi-functional, fault-tolerant with autonomous inter-segment coordination and adaptive decision-making. We aim to answer the question: how efficiently a real building can be explored and whether there any dependencies on the pathways of exploration and geometrical complexity of the building. In our case studies we use templates made on the floor plan of real building. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Observations of quasi-periodic phenomena associated with a large blowout solar jet
NASA Astrophysics Data System (ADS)
Morton, R. J.; Srivastava, A. K.; Erdélyi, R.
2012-06-01
Aims: A variety of periodic phenomena have been observed in conjunction with large solar jets. We aim to find further evidence for (quasi-)periodic behaviour in solar jets and determine what the periodic behaviour can tell us about the excitation mechanism and formation process of the large solar jet. Methods: Using the 304 Å (He-II), 171 Å (Fe IX), 193 Å (Fe XII/XXIV) and 131 Å (Fe VIII/XXI) filters onboard the Solar Dynamic Observatory (SDO) Atmospheric Imaging Assembly (AIA), we investigate the intensity oscillations associated with a solar jet. Results: Evidence is provided for multiple magnetic reconnection events occurring between a pre-twisted, closed field and open field lines. Components of the jet are seen in multiple SDO/AIA filters covering a wide range of temperatures, suggesting the jet can be classified as a blowout jet. Two bright, elongated features are observed to be co-spatial with the large jet, appearing at the jet's footpoints. Investigation of these features reveal they are defined by multiple plasma ejections. The ejecta display (quasi-)periodic behaviour on timescales of 50 s and have rise velocities of 40-150 km s-1 along the open field lines. Due to the suggestion that the large jet is reconnection-driven and the observed properties of the ejecta, we further propose that these ejecta events are similar to type-II spicules. The bright features also display (quasi)-periodic intensity perturbations on the timescale of 300 s. Possible explanations for the existence of the (quasi-)periodic perturbations in terms of jet dynamics and the response of the transition region are discussed. Movies are available in electronic form at http://www.aanda.org
Cortical region-specific sleep homeostasis in mice: effects of time of day and waking experience.
Guillaumin, Mathilde C C; McKillop, Laura E; Cui, Nanyi; Fisher, Simon P; Foster, Russell G; de Vos, Maarten; Peirson, Stuart N; Achermann, Peter; Vyazovskiy, Vladyslav V
2018-04-25
Sleep-wake history, wake behaviours, lighting conditions and circadian time influence sleep, but neither their relative contribution, nor the underlying mechanisms are fully understood. The dynamics of EEG slow-wave activity (SWA) during sleep can be described using the two-process model, whereby the parameters of homeostatic Process S are estimated using empirical EEG SWA (0.5-4 Hz) in non-rapid eye movement sleep (NREM), and the 24-h distribution of vigilance states. We hypothesised that the influence of extrinsic factors on sleep homeostasis, such as the time of day or wake behaviour, would manifest in systematic deviations between empirical SWA and model predictions. To test this hypothesis, we performed parameter estimation and tested model predictions using NREM SWA derived from continuous EEG recordings from the frontal and occipital cortex in mice. The animals showed prolonged wake periods, followed by consolidated sleep, both during the dark and light phases, and wakefulness primarily consisted of voluntary wheel running, learning a new motor skill or novel object exploration. Simulated SWA matched empirical levels well across conditions, and neither waking experience nor time of day had a significant influence on the fit between data and simulation. However, we consistently observed that Process S declined during sleep significantly faster in the frontal than in the occipital area of the neocortex. The striking resilience of the model to specific wake behaviours, lighting conditions and time of day suggests that intrinsic factors underpinning the dynamics of Process S are robust to extrinsic influences, despite their major role in shaping the overall amount and distribution of vigilance states across 24 h.
Sadeghi, Soroush G.; Minor, Lloyd B.; Cullen, Kathleen E.
2010-01-01
Motor learning is required for the reacquisition of skills that have been compromised as a result of brain lesion or disease, as well as for the acquisition of new skills. Behaviors with well-characterized anatomy and physiology are required to yield significant insight into changes that occur in the brain during motor learning. The vestibulo-ocular-reflex (VOR) is well suited to establish connections between neurons, neural circuits, and motor performance during learning. Here we examined the linkage between neuronal and behavioural VOR responses in alert behaving monkeys (macaca mulatta) during the impressive recovery that occurs after unilateral vestibular loss. We show, for the first time, that motor learning is characterized by the dynamic reweighting of inputs from different modalities (i.e., vestibular versus extra-vestibular) at the level of the single neurons which constitute the first central stage of vestibular processing. Specifically, two types of information, which did not influence neuronal responses prior to the lesion, had an important role during compensation. First, unmasked neck proprioceptive inputs played a critical role in the early stages of this process demonstrated by faster and more substantial recovery of vestibular responses in proprioceptive sensitive neurons. Second, neuronal and VOR responses were significantly enhanced during active relative to passive head motion later in the compensation process (>3 weeks). Taken together, our findings provide evidence linking the dynamic regulation of multimodal integration at the level of single neurons and behavioural recovery, suggesting a role for homeostatic mechanisms in VOR motor learning. PMID:20668199