Mechanical, Thermal and Dynamic Mechanical Properties of PP/GF/xGnP Nanocomposites
NASA Astrophysics Data System (ADS)
Ashenai Ghasemi, F.; Ghorbani, A.; Ghasemi, I.
2017-03-01
The mechanical, thermal, and dynamic mechanical properties of ternary nanocomposites based on polypropylene, short glass fibers, and exfoliated graphene nanoplatelets were studied. To investigate the mechanical properties, uniaxial tensile and Charpy impact tests were carried out. To study the crystallinity of the compositions, a DSC test was performed. A dynamic mechanical analysis was used to characterize the storage modulus and loss factor (tan δ). The morphology of the composites was studied by a scanning electron microscope (SEM). The results obtained are presented in tables and graphics.
Pressure Dynamic Characteristics of Pressure Controlled Ventilation System of a Lung Simulator
Shi, Yan; Ren, Shuai; Cai, Maolin; Xu, Weiqing; Deng, Qiyou
2014-01-01
Mechanical ventilation is an important life support treatment of critically ill patients, and air pressure dynamics of human lung affect ventilation treatment effects. In this paper, in order to obtain the influences of seven key parameters of mechanical ventilation system on the pressure dynamics of human lung, firstly, mechanical ventilation system was considered as a pure pneumatic system, and then its mathematical model was set up. Furthermore, to verify the mathematical model, a prototype mechanical ventilation system of a lung simulator was proposed for experimental study. Last, simulation and experimental studies on the air flow dynamic of the mechanical ventilation system were done, and then the pressure dynamic characteristics of the mechanical system were obtained. The study can be referred to in the pulmonary diagnostics, treatment, and design of various medical devices or diagnostic systems. PMID:25197318
Computational Methods for Structural Mechanics and Dynamics
NASA Technical Reports Server (NTRS)
Stroud, W. Jefferson (Editor); Housner, Jerrold M. (Editor); Tanner, John A. (Editor); Hayduk, Robert J. (Editor)
1989-01-01
Topics addressed include: transient dynamics; transient finite element method; transient analysis in impact and crash dynamic studies; multibody computer codes; dynamic analysis of space structures; multibody mechanics and manipulators; spatial and coplanar linkage systems; flexible body simulation; multibody dynamics; dynamical systems; and nonlinear characteristics of joints.
Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Jawad, Abbas F; Birk, David E; Soslowsky, Louis J
2016-06-14
Recent advances in technology have allowed for the measurement of dynamic processes (re-alignment, crimp, deformation, sliding), but only a limited number of studies have investigated their relationship with mechanical properties. The overall objective of this study was to investigate the role of composition, structure, and the dynamic response to load in predicting tendon mechanical properties in a multi-level fashion mimicking native hierarchical collagen structure. Multiple linear regression models were investigated to determine the relationships between composition/structure, dynamic processes, and mechanical properties. Mediation was then used to determine if dynamic processes mediated structure-function relationships. Dynamic processes were strong predictors of mechanical properties. These predictions were location-dependent, with the insertion site utilizing all four dynamic responses and the midsubstance responding primarily with fibril deformation and sliding. In addition, dynamic processes were moderately predicted by composition and structure in a regionally-dependent manner. Finally, dynamic processes were partial mediators of the relationship between composition/structure and mechanical function, and results suggested that mediation is likely shared between multiple dynamic processes. In conclusion, the mechanical properties at the midsubstance of the tendon are controlled primarily by fibril structure and this region responds to load via fibril deformation and sliding. Conversely, the mechanical function at the insertion site is controlled by many other important parameters and the region responds to load via all four dynamic mechanisms. Overall, this study presents a strong foundation on which to design future experimental and modeling efforts in order to fully understand the complex structure-function relationships present in tendon. Copyright © 2016 Elsevier Ltd. All rights reserved.
2013-01-01
Abstract Since the concept of team science gained recognition among biomedical researchers, social scientists have been challenged with investigating evidence of team mechanisms and functional dynamics within transdisciplinary teams. Identification of these mechanisms has lacked substantial research using grounded theory models to adequately describe their dynamical qualities. Research trends continue to favor the measurement of teams by isolating occurrences of production over relational mechanistic team tendencies. This study uses a social constructionist‐grounded multilevel mixed methods approach to identify social dynamics and mechanisms within a transdisciplinary team. A National Institutes of Health—funded research team served as a sample. Data from observations, interviews, and focus groups were qualitatively coded to generate micro/meso level analyses. Social mechanisms operative within this biomedical scientific team were identified. Dynamics that support such mechanisms were documented and explored. Through theoretical and emergent coding, four social mechanisms dominated in the analysis—change, kinship, tension, and heritage. Each contains relational social dynamics. This micro/meso level study suggests such mechanisms and dynamics are key features of team science and as such can inform problems of integration, praxis, and engagement in teams. PMID:23919361
Lotrecchiano, Gaetano R
2013-08-01
Since the concept of team science gained recognition among biomedical researchers, social scientists have been challenged with investigating evidence of team mechanisms and functional dynamics within transdisciplinary teams. Identification of these mechanisms has lacked substantial research using grounded theory models to adequately describe their dynamical qualities. Research trends continue to favor the measurement of teams by isolating occurrences of production over relational mechanistic team tendencies. This study uses a social constructionist-grounded multilevel mixed methods approach to identify social dynamics and mechanisms within a transdisciplinary team. A National Institutes of Health-funded research team served as a sample. Data from observations, interviews, and focus groups were qualitatively coded to generate micro/meso level analyses. Social mechanisms operative within this biomedical scientific team were identified. Dynamics that support such mechanisms were documented and explored. Through theoretical and emergent coding, four social mechanisms dominated in the analysis-change, kinship, tension, and heritage. Each contains relational social dynamics. This micro/meso level study suggests such mechanisms and dynamics are key features of team science and as such can inform problems of integration, praxis, and engagement in teams. © 2013 Wiley Periodicals, Inc.
In Vitro Tissue Differentiation using Dynamics of Tissue Mechanical Properties
NASA Astrophysics Data System (ADS)
Lin, Wei-Chiang; Phillips, Paul J.
2002-03-01
Dynamics of tissue mechanical properties of various human tissue types were studied at macroscopic as well as microscopic level in vitro. This study was conducted to enable the development of a feedback system based on dynamics of tissue mechanical properties for intraoperative guidance for tumor treatment (e.g., RF ablation of liver tumor) and noninvasive tumor localization. Human liver tissues, including normal, cancerous, and cirrhotic tissues, were obtained from patients receiving liver transplant or tumor resection at Vanderbilt University Medical Center with the approval of the Vanderbilt Institutional Review Board. Tissue samples, once resected from the patients, were snap-frozen using liquid nitrogen and stored at -70 oC. Measurements of the mechanical properties of these tissue samples were conducted at the University of Tennessee at Knoxville. Dynamics of tissue mechanical properties were measured from both native and thermally coagulated tissue samples at macroscopic and microscopic level. Preliminary results suggest the dynamics of mechanical properties of normal liver tissues are very different from those of cancerous liver tissues. The correlation between the dynamics of mechanical properties at macroscopic level and those at microscopic level is currently under investigation.
Boxberger, John I.; Orlansky, Amy S.; Sen, Sounok; Elliott, Dawn M.
2009-01-01
The intervertebral disc functions over a range of dynamic loading regimes including axial loads applied across a spectrum of frequencies at varying compressive loads. Biochemical changes occurring in early degeneration, including reduced nucleus pulposus glycosaminoglycan content, may alter disc mechanical behavior and thus may contribute to the progression of degeneration. The objective of this study was to determine disc dynamic viscoelastic properties under several equilibrium loads and loading frequencies, and further, to determine how reduced nucleus glycosaminglycan content alters dynamic mechanics. We hypothesized (1) that dynamic stiffness would be elevated with increasing equilibrium load and increasing frequency, (2) that the disc would behave more elastically at higher frequencies, and finally, (3) that dynamic stiffness would be reduced at low equilibrium loads under all frequencies due to nucleus glycosaminoglycan loss. We mechanically tested control and chondroitinase-ABC injected rat lumbar motion segments at several equilibrium loads using oscillatory loading at frequencies ranging from 0.05 to 5 Hz. The rat lumbar disc behaved non-linearly with higher dynamic stiffness at elevated compressive loads irrespective of frequency. Phase angle was not affected by equilibrium load, although it decreased as frequency was increased. Reduced glycosaminoglycan decreased dynamic stiffness at low loads but not at high equilibrium loads and led to increased phase angle at all loads and frequencies. The findings of this study demonstrate the effect of equilibrium load and loading frequencies on dynamic disc mechanics and indicate possible mechanical mechanisms through which disc degeneration can progress. PMID:19539936
Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.
Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels
2016-01-26
Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.
Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.
Anderson, Devon E; Johnstone, Brian
2017-01-01
Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.
Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin
2017-02-21
Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance.
Hou, Yue; Wang, Linbing; Wang, Dawei; Guo, Meng; Liu, Pengfei; Yu, Jianxin
2017-01-01
Fundamental understanding of micro-mechanical behaviors in bitumen, including phase separation, micro-friction, micro-abrasion, etc., can help the pavement engineers better understand the bitumen mechanical performances at macroscale. Recent researches show that the microstructure evolution in bitumen will directly affect its surface structure and micro-mechanical performance. In this study, the bitumen microstructure and micro-mechanical behaviors are studied using Atomic Force Microscopy (AFM) experiments, Phase Dynamics Theory and Molecular Dynamics (MD) Simulation. The AFM experiment results show that different phase-structure will occur at the surface of the bitumen samples under certain thermodynamic conditions at microscale. The phenomenon can be explained using the phase dynamics theory, where the effects of stability parameter and temperature on bitumen microstructure and micro-mechanical behavior are studied combined with MD Simulation. Simulation results show that the saturates phase, in contrast to the naphthene aromatics phase, plays a major role in bitumen micro-mechanical behavior. A high stress zone occurs at the interface between the saturates phase and the naphthene aromatics phase, which may form discontinuities that further affect the bitumen frictional performance. PMID:28772570
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shenglong; Zhang, Mingxian; Wu, Huanchun
In this study, the dynamic recrystallization behaviors of a nuclear grade 316LN austenitic stainless steel were researched through hot compression experiment performed on a Gleeble-1500 simulator at temperatures of 900–1250 °C and strain rates of 0.01–1 s{sup −1}. By multiple linear regressions of the flow stress-strain data, the dynamic recrystallization mathematical models of this steel as functions of strain rate, strain and temperature were developed. Then these models were verified in a real experiment. Furthermore, the dynamic recrystallization mechanism of the steel was determined. The results indicated that the subgrains in this steel are formed through dislocations polygonization and thenmore » grow up through subgrain boundaries migration towards high density dislocation areas and subgrain coalescence mechanism. Dynamic recrystallization nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism. The nuclei grow up through high angle grain boundaries migration. - Highlights: •Establish the DRX mathematical models of nuclear grade 316LN stainless steel •Determine the DRX mechanism of this steel •Subgrains are formed through dislocations polygonization. •Subgrains grow up through subgrain boundaries migration and coalescence mechanism. •DRX nucleation performs in grain boundary bulging mechanism and subgrain growth mechanism.« less
Using LEGO Kits to Teach Higher Level Problem Solving Skills in System Dynamics: A Case Study
ERIC Educational Resources Information Center
Wu, Yi; de Vries, Charlotte; Dunsworth, Qi
2018-01-01
System Dynamics is a required course offered to junior Mechanical Engineering students at Penn State Erie, the Behrend College. It addresses the intercoupling dynamics of a wide range of dynamic systems: including mechanical, electrical, fluid, hydraulic, electromechanical, and biomedical systems. This course is challenging for students due to the…
Synchronization and chaotic dynamics of coupled mechanical metronomes
NASA Astrophysics Data System (ADS)
Ulrichs, Henning; Mann, Andreas; Parlitz, Ulrich
2009-12-01
Synchronization scenarios of coupled mechanical metronomes are studied by means of numerical simulations showing the onset of synchronization for two, three, and 100 globally coupled metronomes in terms of Arnol'd tongues in parameter space and a Kuramoto transition as a function of coupling strength. Furthermore, we study the dynamics of metronomes where overturning is possible. In this case hyperchaotic dynamics associated with some diffusion process in configuration space is observed, indicating the potential complexity of metronome dynamics.
Dynamic Aftershock Triggering Correlated with Cyclic Loading in the Slip Direction
NASA Astrophysics Data System (ADS)
Hardebeck, J.
2014-12-01
Dynamic stress changes have been shown to contribute to aftershock triggering, but the physical triggering mechanisms are not fully understood. Some proposed mechanisms are based on dynamic stress loading of the target fault in a direction that encourages earthquake slip (e.g. dynamic Coulomb stress triggering), while other mechanisms are based on fault weakening due to shaking. If dynamic stress loading in the fault slip direction plays a role in aftershock triggering, we would expect to see a relationship between the dynamic stress orientations and the aftershock focal mechanisms. Alternatively, if dynamic stress change triggering functions only through a fault weakening mechanism that is independent of the slip direction of the target fault, no such relationship is expected. I study aftershock sequences of 4 M≥6.7 mainshocks in southern California, and find a small but significant relationship between modeled dynamic stress direction and aftershock focal mechanisms. The mainshock dynamic stress changes have two observed impacts: changing the focal mechanisms in a given location to favor those aligned with the dynamic stress change, and changing the spatial distribution of seismicity to favor locations where the dynamic stress change aligns with the background stress. The aftershock focal mechanisms are significantly more aligned with the dynamic stress changes than the preshock mechanisms for only the first 0.5-1 year following most mainshocks, although for at least 10 years following Hector Mine. Dynamic stress effects on focal mechanisms are best observed at long periods (30-60 sec). Dynamic stress effects are only observed when using metrics based on repeated stress cycling in the same direction, for example considering the dominant stress orientation over the full time series, and not for the peak dynamic stress. These results imply that dynamic aftershock triggering operates at least in part through cyclic loading in the direction of fault slip, although non-directional fault weakening may be important as well. This suggests that the orientation of the dynamic stresses, as well as their amplitude, should be considered in the development of physics-based aftershock forecasting models.
Fundamental Study on Quantum Nanojets
2004-08-01
Pergamon Press. Bell , J. S . 1966 On the problem of hidden variables in quantum mechanics. Rev. of Modern Phys., 38, 447. Berndl, K., Daumer, M...fluid dynamics based on two quantum mechanical perspectives; Schrödinger’s wave mechanics and quantum fluid dynamics based on Hamilton-Jacoby...References 8 2). Direct Problems a). Quantum fluid dynamics formalism based on Hamilton-Jacoby equation are adapted for the numerical
Takase, Kazuma; Watanabe, Ikuya; Kurogi, Tadafumi; Murata, Hiroshi
2015-01-01
This study assessed methods for evaluation of glass transition temperature (Tg) of autopolymerized hard direct denture reline resins using dynamic mechanical analysis and differential scanning calorimetry in addition to the dynamic mechanical properties. The Tg values of 3 different reline resins were determined using a dynamic viscoelastometer and differential scanning calorimeter, and rheological parameters were also determined. Although all materials exhibited higher storage modulus and loss modulus values, and a lower loss tangent at 37˚C with a higher frequency, the frequency dependence was not large. Tg values obtained by dynamic mechanical analysis were higher than those by differential scanning calorimetry and higher frequency led to higher Tg, while more stable Tg values were also obtained by that method. These results suggest that dynamic mechanical analysis is more advantageous for characterization of autopolymerized hard direct denture reline resins than differential scanning calorimetry.
Shi, Yan; Zhang, Bolun; Cai, Maolin; Zhang, Xiaohua Douglas
2017-09-01
Mechanical ventilation is a key therapy for patients who cannot breathe adequately by themselves, and dynamics of mechanical ventilation system is of great significance for life support of patients. Recently, models of mechanical ventilated respiratory system with 1 lung are used to simulate the respiratory system of patients. However, humans have 2 lungs. When the respiratory characteristics of 2 lungs are different, a single-lung model cannot reflect real respiratory system. In this paper, to illustrate dynamic characteristics of mechanical ventilated respiratory system with 2 different lungs, we propose a mathematical model of mechanical ventilated respiratory system with 2 different lungs and conduct experiments to verify the model. Furthermore, we study the dynamics of mechanical ventilated respiratory system with 2 different lungs. This research study can be used for improving the efficiency and safety of volume-controlled mechanical ventilation system. Copyright © 2016 John Wiley & Sons, Ltd.
Cations Modulate Actin Bundle Mechanics, Assembly Dynamics, and Structure.
Castaneda, Nicholas; Zheng, Tianyu; Rivera-Jacquez, Hector J; Lee, Hyun-Ju; Hyun, Jaekyung; Balaeff, Alexander; Huo, Qun; Kang, Hyeran
2018-04-12
Actin bundles are key factors in the mechanical support and dynamic reorganization of the cytoskeleton. High concentrations of multivalent counterions promote bundle formation through electrostatic attraction between actin filaments that are negatively charged polyelectrolytes. In this study, we evaluate how physiologically relevant divalent cations affect the mechanical, dynamic, and structural properties of actin bundles. Using a combination of total internal reflection fluorescence microscopy, transmission electron microscopy, and dynamic light scattering, we demonstrate that divalent cations modulate bundle stiffness, length distribution, and lateral growth. Molecular dynamics simulations of an all-atom model of the actin bundle reveal specific actin residues coordinate cation-binding sites that promote the bundle formation. Our work suggests that specific cation interactions may play a fundamental role in the assembly, structure, and mechanical properties of actin bundles.
Dynamic analysis of news streams: institutional versus environmental effects.
Dooley, Kevin; Corman, Steven
2004-07-01
Many societal phenomena are studied through analysis of their representation in media-related texts, such as news articles. The dynamics of such data reflect the phenomenon's underlying generative mechanism. Media artifacts are assumed to mirror the social activity occurring in the environment, thus observed dynamics are assumed to reflect environmental dynamics. The institutional mechanics of media production also affect the observed dynamics however. In this study we examine the extent to which institutional versus environmental effects explain the observed dynamics of media content, in particular focusing on semi-continuous "news streams". We examine the dynamics of news streams produced by the electronic news organization Reuters, immediately following the events of September 11, 2001. We find that many of the observed dynamics appear institutionally generated. We conclude with methodological suggestions concerning the dynamic analysis of media content.
Evolutionary vaccination dynamics with internal support mechanisms
NASA Astrophysics Data System (ADS)
Tang, Guo-Mei; Cai, Chao-Ran; Wu, Zhi-Xi
2017-05-01
This paper reports internal support mechanisms (i.e., without external intervention) to enhance the vaccine coverage in the evolutionary vaccination dynamics. We present two internal support mechanisms, one is global support mechanism in which each individual pays a support cost to build up a public fund and then the public fund is divided by all vaccinated individuals, while another is local support mechanism in which each individual pays a support cost and then this support cost will be divided by its immediate vaccinated neighbors. By means of extensive computer simulations, we show that, in the same strength of support cost, the heterogeneous (local) support mechanism can encourage more people to take vaccination than the homogeneous (global) support mechanism. And then, we study the most general case that includes supporters and troublemakers together, where supporters (troublemakers) mean that the individuals join (do not join) the internal support mechanism, in the population. We surprisingly find that, in scale-free networks, the voluntary vaccination dynamics with the local support mechanism will not degrade into the original voluntary vaccination dynamics, and the vaccination level can still be effectively improved. In view of most social networks are of scale-free degree distribution, we study further in empirical networks and find that the vaccination level can still be improved in the absence of external intervention.
Mehdi Behzad; Medhi Tajvidi; Ghanbar Ehrahimi; Robert H. Falk
2004-01-01
In this study, effect of MAPE (maleic anhydride polyethylene) as the compatibilizer on the mechanical properties of wood-flour polyethylene composites has been investigated by using Dynamic Mechanical Analysis (DMA). Composites were made at 25% and 50% by weight fiber contents and 1% and 2% compatibilizer respectively. Controls were also made at the same fiber contents...
Biological Implications of Dynamical Phases in Non-equilibrium Networks
NASA Astrophysics Data System (ADS)
Murugan, Arvind; Vaikuntanathan, Suriyanarayanan
2016-03-01
Biology achieves novel functions like error correction, ultra-sensitivity and accurate concentration measurement at the expense of free energy through Maxwell Demon-like mechanisms. The design principles and free energy trade-offs have been studied for a variety of such mechanisms. In this review, we emphasize a perspective based on dynamical phases that can explain commonalities shared by these mechanisms. Dynamical phases are defined by typical trajectories executed by non-equilibrium systems in the space of internal states. We find that coexistence of dynamical phases can have dramatic consequences for function vs free energy cost trade-offs. Dynamical phases can also provide an intuitive picture of the design principles behind such biological Maxwell Demons.
Kaviani, Rosa; Londono, Irene; Parent, Stefan; Moldovan, Florina; Villemure, Isabelle
2016-08-01
Longitudinal growth of long bones and vertebrae occurs in growth plate cartilage. This process is partly regulated by mechanical forces, which are one of the underlying reasons for progression of growth deformities such as idiopathic adolescent scoliosis and early-onset scoliosis. This concept of mechanical modulation of bone growth is also exploited in the development of fusionless treatments of these deformities. However, the optimal loading condition for the mechanical modulation of growth plate remains to be identified. The objective of this study was to evaluate the effects of in vitro static versus dynamic modulation and of dynamic loading parameters, such as frequency and amplitude, on the mechanical responses and histomorphology of growth plate explants. Growth plate explants from distal ulnae of 4-week-old swines were extracted and randomly distributed among six experimental groups: baseline ([Formula: see text]), control ([Formula: see text]), static ([Formula: see text]) and dynamic ([Formula: see text]). For static and dynamic groups, mechanical modulation was performed in vitro using an Indexed CartiGen bioreactor. A stress relaxation test combined with confocal microscopy and digital image correlation was used to characterize the mechanical responses of each explant in terms of peak stress, equilibrium stress, equilibrium modulus of elasticity and strain pattern. Histomorphometrical measurements were performed on toluidine blue tissue sections using a semi-automatic custom-developed MATLAB toolbox. Results suggest that compared to dynamic modulation, static modulation changes the strain pattern of the tissue and thus is more detrimental for tissue biomechanics, while the histomorphological parameters are not affected by mechanical modulation. Also, under dynamic modulation, changing the frequency or amplitude does not affect the biomechanical response of the tissue. Results of this study will be useful in finding optimal and non-damaging parameters for the mechanical modulation of growth plate in fusionless treatments.
Ren, X D; He, H; Tong, Y Q; Ren, Y P; Yuan, S Q; Liu, R; Zuo, C Y; Wu, K; Sui, S; Wang, D S
2016-09-01
The dynamic features of nanosecond laser-induced cavitation bubbles near the light alloy boundary were investigated with the high-speed photography. The shock-waves and the dynamic characteristics of the cavitation bubbles generated by the laser were detected using the hydrophone. The dynamic features and strengthening mechanism of cavitation bubbles were studied. The strengthening mechanisms of cavitation bubble were discussed when the relative distance parameter γ was within the range of 0.5-2.5. It showed that the strengthening mechanisms caused by liquid jet or shock-waves depended on γ much. The research results provided a new strengthening method based on laser-induced cavitation shotless peening (CSP). Copyright © 2016 Elsevier B.V. All rights reserved.
A Mathematical Model to study the Dynamics of Epithelial Cellular Networks
Abate, Alessandro; Vincent, Stéphane; Dobbe, Roel; Silletti, Alberto; Master, Neal; Axelrod, Jeffrey D.; Tomlin, Claire J.
2013-01-01
Epithelia are sheets of connected cells that are essential across the animal kingdom. Experimental observations suggest that the dynamical behavior of many single-layered epithelial tissues has strong analogies with that of specific mechanical systems, namely large networks consisting of point masses connected through spring-damper elements and undergoing the influence of active and dissipating forces. Based on this analogy, this work develops a modeling framework to enable the study of the mechanical properties and of the dynamic behavior of large epithelial cellular networks. The model is built first by creating a network topology that is extracted from the actual cellular geometry as obtained from experiments, then by associating a mechanical structure and dynamics to the network via spring-damper elements. This scalable approach enables running simulations of large network dynamics: the derived modeling framework in particular is predisposed to be tailored to study general dynamics (for example, morphogenesis) of various classes of single-layered epithelial cellular networks. In this contribution we test the model on a case study of the dorsal epithelium of the Drosophila melanogaster embryo during early dorsal closure (and, less conspicuously, germband retraction). PMID:23221083
Dynamic behavior of the mechanical systems from the structure of a hybrid automobile
NASA Astrophysics Data System (ADS)
Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu
2017-10-01
In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.
Overview of the GRC Stirling Convertor System Dynamic Model
NASA Technical Reports Server (NTRS)
Lewandowski, Edward J.; Regan, Timothy F.
2004-01-01
A Stirling Convertor System Dynamic Model has been developed at the Glenn Research Center for controls, dynamics, and systems development of free-piston convertor power systems. It models the Stirling cycle thermodynamics, heat flow, gas, mechanical, and mounting dynamics, the linear alternator, and the controller. The model's scope extends from the thermal energy input to thermal, mechanical dynamics, and electrical energy out, allowing one to study complex system interactions among subsystems. The model is a non-linear time-domain model containing sub-cycle dynamics, allowing it to simulate transient and dynamic phenomena that other models cannot. The model details and capability are discussed.
[Research progress on mechanical performance evaluation of artificial intervertebral disc].
Li, Rui; Wang, Song; Liao, Zhenhua; Liu, Weiqiang
2018-03-01
The mechanical properties of artificial intervertebral disc (AID) are related to long-term reliability of prosthesis. There are three testing methods involved in the mechanical performance evaluation of AID based on different tools: the testing method using mechanical simulator, in vitro specimen testing method and finite element analysis method. In this study, the testing standard, testing equipment and materials of AID were firstly introduced. Then, the present status of AID static mechanical properties test (static axial compression, static axial compression-shear), dynamic mechanical properties test (dynamic axial compression, dynamic axial compression-shear), creep and stress relaxation test, device pushout test, core pushout test, subsidence test, etc. were focused on. The experimental techniques using in vitro specimen testing method and testing results of available artificial discs were summarized. The experimental methods and research status of finite element analysis were also summarized. Finally, the research trends of AID mechanical performance evaluation were forecasted. The simulator, load, dynamic cycle, motion mode, specimen and test standard would be important research fields in the future.
Auctions with Dynamic Populations: Efficiency and Revenue Maximization
NASA Astrophysics Data System (ADS)
Said, Maher
We study a stochastic sequential allocation problem with a dynamic population of privately-informed buyers. We characterize the set of efficient allocation rules and show that a dynamic VCG mechanism is both efficient and periodic ex post incentive compatible; we also show that the revenue-maximizing direct mechanism is a pivot mechanism with a reserve price. We then consider sequential ascending auctions in this setting, both with and without a reserve price. We construct equilibrium bidding strategies in this indirect mechanism where bidders reveal their private information in every period, yielding the same outcomes as the direct mechanisms. Thus, the sequential ascending auction is a natural institution for achieving either efficient or optimal outcomes.
Melt-growth dynamics in CdTe crystals
Zhou, X. W.; Ward, D. K.; Wong, B. M.; ...
2012-06-01
We use a new, quantum-mechanics-based bond-order potential (BOP) to reveal melt growth dynamics and fine scale defect formation mechanisms in CdTe crystals. Previous molecular dynamics simulations of semiconductors have shown qualitatively incorrect behavior due to the lack of an interatomic potential capable of predicting both crystalline growth and property trends of many transitional structures encountered during the melt → crystal transformation. Here, we demonstrate successful molecular dynamics simulations of melt growth in CdTe using a BOP that significantly improves over other potentials on property trends of different phases. Our simulations result in a detailed understanding of defect formation during themore » melt growth process. Equally important, we show that the new BOP enables defect formation mechanisms to be studied at a scale level comparable to empirical molecular dynamics simulation methods with a fidelity level approaching quantum-mechanical methods.« less
NASA Astrophysics Data System (ADS)
Gao, Fei; Liu, Zhenyu; Misra, R. D. K.; Liu, Haitao; Yu, Fuxiao
2014-09-01
The hot deformation behavior of an ultra-pure 17%Cr ferritic stainless steel was studied in the temperature range of 750-1000 °C and strain rates of 0.5 to 10 s-1 using isothermal hot compression tests in a thermomechanical simulator. The microstructural evolution was investigated using electron backscattered diffraction and transmission electron microscopy. A modified constitutive equation considering the effect of strain on material constant was developed, which predicted the flow stress for the deformation conditions studied, except at 950 °C in 1 s-1 and 900 °C in 10 s-1. Decreasing deformation temperature and increasing strain was beneficial in refining the microstructure. Decreasing deformation temperature, the in-grain shear bands appeared in the microstructure. It is suggested that the dynamic softening mechanism is closely related to deformation temperature. At low deformation temperature, dynamic recovery was major softening mechanism and no dynamic recrystallization occurred. At high deformation temperature, dynamic softening was explained in terms of efficient dynamic recovery and limited continuous dynamic recrystallization. A drop in the flow stress was not found due to very small fraction of new grains nucleated during dynamic recrystallization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Nan; Liu, Xiang-Yang
In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less
Li, Nan; Liu, Xiang-Yang
2017-11-03
In this study, recent experimental and modeling studies in nanolayered metal/ceramic composites are reviewed, with focus on the mechanical behaviors of metal/nitrides interfaces. The experimental and modeling studies of the slip systems in bulk TiN are reviewed first. Then, the experimental studies of interfaces, including co-deformation mechanism by micropillar compression tests, in situ TEM straining tests for the dynamic process of the co-deformation, thickness-dependent fracture behavior, and interrelationship among the interfacial bonding, microstructure, and mechanical response, are reviewed for the specific material systems of Al/TiN and Cu/TiN multilayers at nanoscale. The modeling studies reviewed cover first-principles density functional theory-based modeling,more » atomistic molecular dynamics simulations, and mesoscale modeling of nanolayered composites using discrete dislocation dynamics. The phase transformation between zinc-blende and wurtzite AlN phases in Al/AlN multilayers at nanoscale is also reviewed. Finally, a summary and perspective of possible research directions and challenges are given.« less
Mathematical modeling and computational prediction of cancer drug resistance.
Sun, Xiaoqiang; Hu, Bin
2017-06-23
Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of computational methods for studying drug resistance, including inferring drug-induced signaling networks, multiscale modeling, drug combinations and precision medicine. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Mert, Burak; Aytac, Zeynep; Tascioglu, Yigit; Celebioglu, Kutay; Aradag, Selin; ETU Hydro Research Center Team
2014-11-01
This study deals with the design of a power regulation mechanism for a Hydroelectric Power Plant (HEPP) model turbine test system which is designed to test Francis type hydroturbines up to 2 MW power with varying head and flow(discharge) values. Unlike the tailor made regulation mechanisms of full-sized, functional HEPPs; the design for the test system must be easily adapted to various turbines that are to be tested. In order to achieve this adaptability, a dynamic simulation model is constructed in MATLAB/Simulink SimMechanics. This model acquires geometric data and hydraulic loading data of the regulation system from Autodesk Inventor CAD models and Computational Fluid Dynamics (CFD) analysis respectively. The dynamic model is explained and case studies of two different HEPPs are performed for validation. CFD aided design of the turbine guide vanes, which is used as input for the dynamic model, is also presented. This research is financially supported by Turkish Ministry of Development.
Environment-Dependent Guest Exchange in Supramolecular Hosts
2015-01-01
Dynamic exchange of guest molecules, encapsulated in host assemblies, is a phenomenon in supramolecular chemistry that has important implications in several applications. While the mechanism of exchange in micellar assemblies has been previously investigated, the effect of host and guest environment upon the guest-exchange dynamics has received little attention, if any. In this paper, we study the guest-exchange mechanism in pH-sensitive nanogels along with pH-insensitive nanogels as a control. By systematically comparing the behavior of these nanogels, we show that size, concentration, and hydrophobicity can all play a critical role in guest-exchange dynamics. More importantly, these studies reveal that the dominant mechanism of guest exchange can intimately depend on environmental factors. PMID:25244305
Current problems in the dynamics and design of mechanisms and machines
NASA Astrophysics Data System (ADS)
Kestel'Man, V. N.
The papers contained in this volume deal with possible ways of improving the dynamic and structural properties of machines and mechanisms and also with problems associated with the design of aircraft equipment. Topics discussed include estimation of the stressed state of a model of an orbital film structure, a study of the operation of an aerodynamic angle transducer in flow of a hot gas, calculation of the efficiency of aircraft gear drives, and dynamic accuracy of a controlled manipulator. Papers are also presented on optimal synthesis of mechanical systems with variable properties, synthesis of mechanisms using initial kinematic chains, and using shape memory materials in the design of machines and mechanisms. (For individual items see A93-31202 to A93-31214)
Autoinhibitory mechanisms of ERG studied by molecular dynamics simulations
NASA Astrophysics Data System (ADS)
Lu, Yan; Salsbury, Freddie R.
2015-01-01
ERG, an ETS-family transcription factor, acts as a regulator of differentiation of early hematopoietic cells. It contains an autoinhibitory domain, which negatively regulates DNA-binding. The mechanism of autoinhibitory is still illusive. To understand the mechanism, we study the dynamical properties of ERG protein by molecular dynamics simulations. These simulations suggest that DNA binding autoinhibition associates with the internal dynamics of ERG. Specifically, we find that (1), The N-C terminal correlation in the inhibited ERG is larger than that in uninhibited ERG that contributes to the autoinhibition of DNA-binding. (2), DNA-binding changes the property of the N-C terminal correlation from being anti-correlated to correlated, that is, changing the relative direction of the correlated motions and (3), For the Ets-domain specifically, the inhibited and uninhibited forms exhibit essentially the same dynamics, but the binding of the DNA decreases the fluctuation of the Ets-domain. We also find from PCA analysis that the three systems, even with quite different dynamics, do have highly similar free energy surfaces, indicating that they share similar conformations.
Bondar, Ana-Nicoleta; Smith, Jeremy C.
2017-07-25
Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bondar, Ana-Nicoleta; Smith, Jeremy C.
Channel and pump rhodopsins use energy from light absorbed by a covalently bound retinal chromophore to transport ions across membranes of microbial cells. Ion transfer steps, including proton transfer, can couple to changes in protein conformational dynamics and water positions. Although general principles of how microbial rhodopsins function are largely understood, key issues pertaining to reaction mechanisms remain unclear. Here, we compare the protonation-coupled dynamics of pump and channelrhodopsins, highlighting the roles that water dynamics, protein electrostatics and protein flexibility can have in ion transport mechanisms. We discuss observations supporting important functional roles of inter- and intra-helical carboxylate/hydroxyl hydrogen-bonding motifs.more » Specifically, we use the proton pump bacteriorhodopsin, the sodium pump KR2, channelrhodopsins and Anabaena sensory rhodopsin. We outline the usefulness of theoretic biophysics approaches to the study of retinal proteins, challenges in studying the hydrogen-bond dynamics of rhodopsin active sites, and implications for conformational coupling in membrane transporters.« less
The co-development of looking dynamics and discrimination performance
Perone, Sammy; Spencer, John P.
2015-01-01
The study of looking dynamics and discrimination form the backbone of developmental science and are central processes in theories of infant cognition. Looking dynamics and discrimination change dramatically across the first year of life. Surprisingly, developmental changes in looking and discrimination have not been studied together. Recent simulations of a dynamic neural field (DNF) model of infant looking and memory suggest that looking and discrimination do change together over development and arise from a single neurodevelopmental mechanism. We probe this claim by measuring looking dynamics and discrimination along continuous, metrically organized dimensions in 5-, 7, and 10-month-old infants (N = 119). The results showed that looking dynamics and discrimination changed together over development and are linked within individuals. Quantitative simulations of a DNF model provide insights into the processes that underlie developmental change in looking dynamics and discrimination. Simulation results support the view that these changes might arise from a single neurodevelopmental mechanism. PMID:23957821
NASA Astrophysics Data System (ADS)
Medvigy, D.; Khanna, J.
2016-12-01
The Amazon rainforest has been under deforestation for more than four decades. Recent investigation of the regional hydroclimatic impacts of the past three decades of deforestation has revealed a strong scale-dependence of the atmospheric response to land use change. Contemporary deforestation, affecting spatial scales of a few hundreds of kilometers, has resulted in a spatial redistribution of the local dry season rainfall, with downwind and upwind deforested regions receiving respectively 30% more and 30% less rainfall from the area mean. This phenomenon is attributable to a `dynamical' response of the boundary layer air to a reduction in surface roughness due to deforestation, apparent in both satellite and numerically simulated data. This response is starkly different from a spatially uniform increase in non-precipitating cloudiness triggered by small scale clearings, prevalent in the early phases of deforestation. This study investigates the `generalizability' of the dynamical mechanism to understand its impacts on a continually deforested Amazonia. In particular, we investigate the spatiotemporal variability of the dynamical mechanism. The nature of this investigation demands long time series and large spatial converge datasets of the hydroclimate. As such, satellite imagery of clouds (GridSat) and precipitation (PERSIANN and TRMM) has proven particularly useful in facilitating this analysis. The analysis is further complemented by a reanalysis product (ERA-interim) and numerical simulations (using a variable resolution GCM). Results indicate the presence of the dynamical mechanism during local dry and transition seasons effecting the mean precipitation during this period. Its effect on the transition season precipitation can be important for the local dry season length. The dynamical mechanism also occurs in atmospheric conditions which are otherwise less conducive to thermally triggered convection. Hence, this mechanism, which effects the seasons most important for regional ecology, emerges as a possibly impactful convective triggering mechanism. This study provides context for thinking about the climate of a future, more patchily deforested Amazonia that is more favorable to the dynamical mechanism.
Contact stiffness and damping of liquid films in dynamic atomic force microscope
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Rong-Guang; Leng, Yongsheng, E-mail: leng@gwu.edu
2016-04-21
The mechanical properties and dissipation behaviors of nanometers confined liquid films have been long-standing interests in surface force measurements. The correlation between the contact stiffness and damping of the nanoconfined film is still not well understood. We establish a novel computational framework through molecular dynamics (MD) simulation for the first time to study small-amplitude dynamic atomic force microscopy (dynamic AFM) in a simple nonpolar liquid. Through introducing a tip driven dynamics to mimic the mechanical oscillations of the dynamic AFM tip-cantilever assembly, we find that the contact stiffness and damping of the confined film exhibit distinct oscillations within 6-7 monolayermore » distances, and they are generally out-of-phase. For the solid-like film with integer monolayer thickness, further compression of the film before layering transition leads to higher stiffness and lower damping, while much lower stiffness and higher damping occur at non-integer monolayer distances. These two alternating mechanisms dominate the mechanical properties and dissipation behaviors of simple liquid films under cyclic elastic compression and inelastic squeeze-out. Our MD simulations provide a direct picture of correlations between the structural property, mechanical stiffness, and dissipation behavior of the nanoconfined film.« less
A modified social force model for crowd dynamics
NASA Astrophysics Data System (ADS)
Hassan, Ummi Nurmasyitah; Zainuddin, Zarita; Abu-Sulyman, Ibtesam M.
2017-08-01
The Social Force Model (SFM) is one of the most successful models in microscopic pedestrian studies that is used to study the movement of pedestrians. Many modifications have been done to improvise the SFM by earlier researchers such as the incorporation of a constant respect factor into the self-stopping mechanism. Before the new mechanism is introduced, the researchers found out that a pedestrian will immediately come to a halt if other pedestrians are near to him, which seems to be an unrealistic behavior. Therefore, researchers introduce a self-slowing mechanism to gradually stop a pedestrian when he is approaching other pedestrians. Subsequently, the dynamic respect factor is introduced into the self-slowing mechanism based on the density of the pedestrians to make the model even more realistic. In real life situations, the respect factor of the pedestrians should be dynamic values instead of a constant value. However, when we reproduce the simulation of the dynamic respect factor, we found that the movement of the pedestrians are unrealistic because the pedestrians are lacking perception of the pedestrians in front of him. In this paper, we adopted both dynamic respect factor and dynamic angular parameter, called modified dynamic respect factor, which is dependent on the density of the pedestrians. Simulations are performed in a normal unidirectional walkway to compare the simulated pedestrians' movements produced by both models. The results obtained showed that the modified dynamic respect factor produces more realistic movement of the pedestrians which conform to the real situation. Moreover, we also found that the simulations endow the pedestrian with a self-slowing mechanism and a perception of other pedestrians in front of him.
Dynamic mechanical control of local vacancies in NiO thin films
NASA Astrophysics Data System (ADS)
Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V.; Kim, Yunseok
2018-07-01
The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.
Dynamic mechanical control of local vacancies in NiO thin films.
Seol, Daehee; Yang, Sang Mo; Jesse, Stephen; Choi, Minseok; Hwang, Inrok; Choi, Taekjib; Park, Bae Ho; Kalinin, Sergei V; Kim, Yunseok
2018-07-06
The manipulation of local ionic behavior via external stimuli in oxide systems is of great interest because it can help in directly tuning material properties. Among external stimuli, mechanical force has attracted intriguing attention as novel stimulus for ionic modulation. Even though effectiveness of mechanical force on local ionic modulation has been validated in terms of static effect, its real-time i.e., dynamic, behavior under an application of the force is barely investigated in spite of its crucial impact on device performance such as force or pressure sensors. In this study, we explore dynamic ionic behavior modulated by mechanical force in NiO thin films using electrochemical strain microscopy (ESM). Ionically mediated ESM hysteresis loops were significantly varied under an application of mechanical force. Based on these results, we were able to investigate relative relationship between the force and voltage effects on ionic motion and, further, control effectively ionic behavior through combination of mechanical and electrical stimuli. Our results can provide comprehensive information on the effect of mechanical forces on ionic dynamics in ionic systems.
Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations
NASA Astrophysics Data System (ADS)
Zhang, Yu; Jiang, Jack J.
2008-09-01
Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.
Fluid Mechanics of Wing Adaptation for Separation Control
NASA Technical Reports Server (NTRS)
Chandrasekhara, M. S.; Wilder, M. C.; Carr, L. W.; Davis, Sanford S. (Technical Monitor)
1997-01-01
The unsteady fluid mechanics associated with use of a dynamically deforming leading edge airfoil for achieving compressible flow separation control has been experimentally studied. Changing the leading edge curvature at rapid rates dramatically alters the flow vorticity dynamics which is responsible for the many effects observed in the flow.
Dynamic stability and bifurcation analysis in fractional thermodynamics
NASA Astrophysics Data System (ADS)
Béda, Péter B.
2018-02-01
In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity conditions are presented for constitutive relations under consideration.
Anharmonic quantum mechanical systems do not feature phase space trajectories
NASA Astrophysics Data System (ADS)
Oliva, Maxime; Kakofengitis, Dimitris; Steuernagel, Ole
2018-07-01
Phase space dynamics in classical mechanics is described by transport along trajectories. Anharmonic quantum mechanical systems do not allow for a trajectory-based description of their phase space dynamics. This invalidates some approaches to quantum phase space studies. We first demonstrate the absence of trajectories in general terms. We then give an explicit proof for all quantum phase space distributions with negative values: we show that the generation of coherences in anharmonic quantum mechanical systems is responsible for the occurrence of singularities in their phase space velocity fields, and vice versa. This explains numerical problems repeatedly reported in the literature, and provides deeper insight into the nature of quantum phase space dynamics.
1989-03-31
present several numerical studies designed to reveal the effect that some of the governing parameters have on the behavior of the system and, whenever...Friction and in the Control of Dynamical Systems with Frictional Forces FINAL TECHNICAL REPORT March 31, 1989 _ -- I -.7: .-.- - : AFOSR Contract F49620...SOLID AND STRUCTURAL MECHANICS: Progress in the Theory and Modeling of Friction and in the Control of Dynamical Systems with Frictional Forces I I * FINAL
Potential formulation of sleep dynamics
NASA Astrophysics Data System (ADS)
Phillips, A. J. K.; Robinson, P. A.
2009-02-01
A physiologically based model of the mechanisms that control the human sleep-wake cycle is formulated in terms of an equivalent nonconservative mechanical potential. The potential is analytically simplified and reduced to a quartic two-well potential, matching the bifurcation structure of the original model. This yields a dynamics-based model that is analytically simpler and has fewer parameters than the original model, allowing easier fitting to experimental data. This model is first demonstrated to semiquantitatively match the dynamics of the physiologically based model from which it is derived, and is then fitted directly to a set of experimentally derived criteria. These criteria place rigorous constraints on the parameter values, and within these constraints the model is shown to reproduce normal sleep-wake dynamics and recovery from sleep deprivation. Furthermore, this approach enables insights into the dynamics by direct analogies to phenomena in well studied mechanical systems. These include the relation between friction in the mechanical system and the timecourse of neurotransmitter action, and the possible relation between stochastic resonance and napping behavior. The model derived here also serves as a platform for future investigations of sleep-wake phenomena from a dynamical perspective.
NASA Astrophysics Data System (ADS)
Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.
2016-09-01
The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics.
Zhou, Yu-Ping; Jiang, Jin-Wu
2017-01-01
While most existing theoretical studies on the borophene are based on first-principles calculations, the present work presents molecular dynamics simulations for the lattice dynamical and mechanical properties in borophene. The obtained mechanical quantities are in good agreement with previous first-principles calculations. The key ingredients for these molecular dynamics simulations are the two efficient empirical potentials developed in the present work for the interaction of borophene with low-energy triangular structure. The first one is the valence force field model, which is developed with the assistance of the phonon dispersion of borophene. The valence force field model is a linear potential, so it is rather efficient for the calculation of linear quantities in borophene. The second one is the Stillinger-Weber potential, whose parameters are derived based on the valence force field model. The Stillinger-Weber potential is applicable in molecular dynamics simulations of nonlinear physical or mechanical quantities in borophene. PMID:28349983
Liu, Alan S.; Wang, Hailong; Copeland, Craig R.; Chen, Christopher S.; Shenoy, Vivek B.; Reich, Daniel H.
2016-01-01
The biomechanical behavior of tissues under mechanical stimulation is critically important to physiological function. We report a combined experimental and modeling study of bioengineered 3D smooth muscle microtissues that reveals a previously unappreciated interaction between active cell mechanics and the viscoplastic properties of the extracellular matrix. The microtissues’ response to stretch/unstretch actuations, as probed by microcantilever force sensors, was dominated by cellular actomyosin dynamics. However, cell lysis revealed a viscoplastic response of the underlying model collagen/fibrin matrix. A model coupling Hill-type actomyosin dynamics with a plastic perfectly viscoplastic description of the matrix quantitatively accounts for the microtissue dynamics, including notably the cells’ shielding of the matrix plasticity. Stretch measurements of single cells confirmed the active cell dynamics, and were well described by a single-cell version of our model. These results reveal the need for new focus on matrix plasticity and its interactions with active cell mechanics in describing tissue dynamics. PMID:27671239
Theoretical studies on bimolecular reaction dynamics
Clary, David C.
2008-01-01
This perspective discusses progress in the theory of bimolecular reaction dynamics in the gas phase. The examples selected show that definitive quantum dynamical computations are providing insights into the detailed mechanisms of chemical reactions. PMID:18626015
Analysis of dynamic properties for a composite robotic arm at intermediate strain rate
NASA Astrophysics Data System (ADS)
Lin, Jin-Chein
The dynamic mechanical properties of any structure are governed by the storage moduli representing the stiffness and loss moduli representing the internal damping capacity. The dynamic mechanical behavior of a graphite epoxy composite laminate in flexural vibration has been investigated. This study presents the results of a theoretical and experimental effort to determine the dynamic properties of multilaminate composites. The effects of fiber orientation and vibration frequency for both unidirectional tape and Kevlar fabric were studied both analytically and experimentally. Measurement of storage and loss moduli were presented for laminated double cantilever beams of fiber reinforced composite with frequency range from 8 to 1230 Hz (up to 5th mode).
Shi, Cangji; Lai, Jing; Chen, X.-Grant
2014-01-01
The hot deformation behavior and microstructural evolution of an Al-Zn-Mg-Cu (7150) alloy was studied during hot compression at various temperatures (300 to 450 °C) and strain rates (0.001 to 10 s−1). A decline ratio map of flow stresses was proposed and divided into five deformation domains, in which the flow stress behavior was correlated with different microstructures and dynamic softening mechanisms. The results reveal that the dynamic recovery is the sole softening mechanism at temperatures of 300 to 400 °C with various strain rates and at temperatures of 400 to 450 °C with strain rates between 1 and 10 s−1. The level of dynamic recovery increases with increasing temperature and with decreasing strain rate. At the high deformation temperature of 450 °C with strain rates of 0.001 to 0.1 s−1, a partially recrystallized microstructure was observed, and the dynamic recrystallization (DRX) provided an alternative softening mechanism. Two kinds of DRX might operate at the high temperature, in which discontinuous dynamic recrystallization was involved at higher strain rates and continuous dynamic recrystallization was implied at lower strain rates. PMID:28788454
Live Imaging to Study Microtubule Dynamic Instability in Taxane-resistant Breast Cancers.
Wang, Richard; Wang, Harris; Wang, Zhixiang
2017-02-20
Taxanes such as docetaxel belong to a group of microtubule-targeting agents (MTAs) that are commonly relied upon to treat cancer. However, taxane resistance in cancerous cells drastically reduces the effectiveness of the drugs' long-term usage. Accumulated evidence suggests that the mechanisms underlying taxane resistance include both general mechanisms, such as the development of multidrug resistance due to the overexpression of drug-efflux proteins, and taxane-specific mechanisms, such as those that involve microtubule dynamics. Because taxanes target cell microtubules, measuring microtubule dynamic instability is an important step in determining the mechanisms of taxane resistance and provides insight into how to overcome this resistance. In the experiment, an in vivo method was used to measure microtubule dynamic instability. GFP-tagged α-tubulin was expressed and incorporated into microtubules in MCF-7 cells, allowing for the recording of the microtubule dynamics by time lapse using a sensitive camera. The results showed that, as opposed to the non-resistant parental MCF-7CC cells, the microtubule dynamics of docetaxel-resistant MCF-7TXT cells are insensitive to docetaxel treatment, which causes the resistance to docetaxel-induced mitotic arrest and apoptosis. This paper will outline this in vivo method of measuring microtubule dynamic instability.
Computed Tomography Studies of Lung Mechanics
Simon, Brett A.; Christensen, Gary E.; Low, Daniel A.; Reinhardt, Joseph M.
2005-01-01
The study of lung mechanics has progressed from global descriptions of lung pressure and volume relationships to the high-resolution, three-dimensional, quantitative measurement of dynamic regional mechanical properties and displacements. X-ray computed tomography (CT) imaging is ideally suited to the study of regional lung mechanics in intact subjects because of its high spatial and temporal resolution, correlation of functional data with anatomic detail, increasing volumetric data acquisition, and the unique relationship between CT density and lung air content. This review presents an overview of CT measurement principles and limitations for the study of regional mechanics, reviews some of the early work that set the stage for modern imaging approaches and impacted the understanding and management of patients with acute lung injury, and presents evolving novel approaches for the analysis and application of dynamic volumetric lung image data. PMID:16352757
Charususin, Noppawan; Dacha, Sauwaluk; Gosselink, Rik; Decramer, Marc; Von Leupoldt, Andreas; Reijnders, Thomas; Louvaris, Zafeiris; Langer, Daniel
2018-01-01
Respiratory muscle dysfunction is common and contributes to dyspnea and exercise limitation in patients with chronic obstructive pulmonary disease (COPD). Improving dynamic function of respiratory muscles during exercise might help to reduce symptoms and improve exercise capacity. Areas covered: The aims of this review are to 1) summarize physiological mechanisms linking respiratory muscle dysfunction to dyspnea and exercise limitation; 2) provide an overview of available therapeutic approaches to better maintain load-capacity balance of respiratory muscles during exercise; and 3) to summarize current knowledge on potential mechanisms explaining effects of interventions aimed at optimizing dynamic respiratory muscle function with a special focus on inspiratory muscle training. Expert commentary: Several mechanisms which are potentially linking improvements in dynamic respiratory muscle function to symptomatic and functional benefits have not been studied so far in COPD patients. Examples of underexplored areas include the study of neural processes related to the relief of acute dyspnea and the competition between respiratory and peripheral muscles for limited energy supplies during exercise. Novel methodologies are available to non-invasively study these mechanisms. Better insights into the consequences of dynamic respiratory muscle dysfunction will hopefully contribute to further refine and individualize therapeutic approaches in patients with COPD.
NASA Astrophysics Data System (ADS)
Sushko, Gennady B.; Solov'yov, Ilia A.; Verkhovtsev, Alexey V.; Volkov, Sergey N.; Solov'yov, Andrey V.
2016-01-01
The concept of molecular mechanics force field has been widely accepted nowadays for studying various processes in biomolecular systems. In this paper, we suggest a modification for the standard CHARMM force field that permits simulations of systems with dynamically changing molecular topologies. The implementation of the modified force field was carried out in the popular program MBN Explorer, and, to support the development, we provide several illustrative case studies where dynamical topology is necessary. In particular, it is shown that the modified molecular mechanics force field can be applied for studying processes where rupture of chemical bonds plays an essential role, e.g., in irradiation- or collision-induced damage, and also in transformation and fragmentation processes involving biomolecular systems. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey V. Solov'yov, Nigel Mason, Gustavo Garcia and Eugene Surdutovich.
On the origins of the universal dynamics of endogenous granules in mammalian cells.
Vanapalli, Siva A; Li, Yixuan; Mugele, Frieder; Duits, Michel H G
2009-12-01
Endogenous granules (EGs) that consist of lipid droplets and mitochondria have been commonly used to assess intracellular mechanical properties via multiple particle tracking microrheology (MPTM). Despite their widespread use, the nature of interaction of EGs with the cytoskeletal network and the type of forces driving their dynamics--both of which are crucial for the interpretation of the results from MPTM technique--are yet to be resolved. In this report, we study the dynamics of endogenous granules in mammalian cells using particle tracking methods. We find that the ensemble dynamics of EGs is diffusive in three types of mammalian cells (endothelial cells, smooth muscle cells and fibroblasts), thereby suggesting an apparent universality in their dynamical behavior. Moreover, in a given cell, the amplitude of the mean-squared displacement for EGs is an order of magnitude larger than that of injected particles. This observation along with results from ATP depletion and temperature intervention studies suggests that cytoskeletal active forces drive the dynamics of EGs. To elucidate the dynamical origin of the diffusive-like nonthermal motion, we consider three active force generation mechanisms--molecular motor transport, actomyosin contractility and microtubule polymerization forces. We test these mechanisms using pharmacological interventions. Experimental evidence and model calculations suggest that EGs are intimately linked to microtubules and that microtubule polymerization forces drive their dynamics. Thus, endogenous granules could serve as non-invasive probes for microtubule network dynamics in mammalian cells.
Order reduction, identification and localization studies of dynamical systems
NASA Astrophysics Data System (ADS)
Ma, Xianghong
In this thesis methods are developed for performing order reduction, system identification and induction of nonlinear localization in complex mechanical dynamic systems. General techniques are proposed for constructing low-order models of linear and nonlinear mechanical systems; in addition, novel mechanical designs are considered for inducing nonlinear localization phenomena for the purpose of enhancing their dynamical performance. The thesis is in three major parts. In the first part, the transient dynamics of an impulsively loaded multi-bay truss is numerically computed by employing the Direct Global Matrix (DGM) approach. The approach is applicable to large-scale flexible structures with periodicity. Karhunen-Loeve (K-L) decomposition is used to discretize the dynamics of the truss and to create the low-order models of the truss. The leading order K-L modes are recovered by an experiment, which shows the feasibility of K-L based order reduction technique. In the second part of the thesis, nonlinear localization in dynamical systems is studied through two applications. In the seismic base isolation study, it is shown that the dynamics are sensitive to the presence of nonlinear elements and that passive motion confinement can be induced under proper design. In the coupled rod system, numerical simulation of the transient dynamics shows that a nonlinear backlash spring can induce either nonlinear localization or delocalization in the form of beat phenomena. K-L decomposition and poincare maps are utilized to study the nonlinear effects. The study shows that nonlinear localization can be induced in complex structures through backlash. In the third and final part of the thesis, a new technique based on Green!s function method is proposed to identify the dynamics of practical bolted joints. By modeling the difference between the dynamics of the bolted structure and the corresponding unbolted one, one constructs a nonparametric model for the joint dynamics. Two applications are given with a bolted beam and a truss joint in order to show the applicability of the technique.
[Review of dynamic global vegetation models (DGVMs)].
Che, Ming-Liang; Chen, Bao-Zhang; Wang, Ying; Guo, Xiang-Yun
2014-01-01
Dynamic global vegetation model (DGVM) is an important and efficient tool for study on the terrestrial carbon circle processes and vegetation dynamics. This paper reviewed the development history of DGVMs, introduced the basic structure of DGVMs, and the outlines of several world-widely used DGVMs, including CLM-DGVM, LPJ, IBIS and SEIB. The shortages of the description of dynamic vegetation mechanisms in the current DGVMs were proposed, including plant functional types (PFT) scheme, vegetation competition, disturbance, and phenology. Then the future research directions of DGVMs were pointed out, i. e. improving the PFT scheme, refining the vegetation dynamic mechanism, and implementing a model inter-comparison project.
Lei, Kin-Fong; Hsieh, Yi-Zheng; Chiu, Yi-Yuan; Wu, Min-Hsien
2015-07-31
This study reports a piezoelectric poly(vinylidene fluoride) (PVDF) polymer-based sensor patch for respiration detections in dynamic walking condition. The working mechanism of respiration signal generation is based on the periodical deformations on a human chest wall during the respiratory movements, which in turn mechanically stretch the piezoelectric PVDF film to generate the corresponding electrical signals. In this study, the PVDF sensing film was completely encapsulated within the sensor patch forming a mass-spring-damper mechanical system to prevent the noises generated in a dynamic condition. To verify the design of sensor patch to prevent dynamic noises, experimental investigations were carried out. Results demonstrated the respiration signals generated and the respiratory rates measured by the proposed sensor patch were in line with the same measurements based on a commercial respiratory effort transducer both in a static (e.g., sitting) or dynamic (e.g., walking) condition. As a whole, this study has developed a PVDF-based sensor patch which is capable of monitoring respirations in a dynamic walking condition with high fidelity. Other distinctive features include its small size, light weight, ease of use, low cost, and portability. All these make it a promising sensing device to monitor respirations particularly in home care units.
Zhao, Lijia; Park, Nokeun; Tian, Yanzhong; Shibata, Akinobu; Tsuji, Nobuhiro
2016-01-01
Dynamic recrystallization (DRX) is an important grain refinement mechanism to fabricate steels with high strength and high ductility (toughness). The conventional DRX mechanism has reached the limitation of refining grains to several microns even though employing high-strain deformation. Here we show a DRX phenomenon occurring in the dynamically transformed (DT) ferrite, by which the required strain for the operation of DRX and the formation of ultrafine grains is significantly reduced. The DRX of DT ferrite shows an unconventional temperature dependence, which suggests an optimal condition for grain refinement. We further show that new strategies for ultra grain refinement can be evoked by combining DT and DRX mechanisms, based on which fully ultrafine microstructures having a mean grain size down to 0.35 microns can be obtained without high-strain deformation and exhibit superior mechanical properties. This study will open the door to achieving optimal grain refinement to nanoscale in a variety of steels requiring no high-strain deformation in practical industrial application. PMID:27966603
USDA-ARS?s Scientific Manuscript database
This study investigated the viscoelastic characteristics of tomato skins subjected to conventional hot lye peeling and emerging infrared-dry peeling by using dynamic mechanical analysis (DMA). Three DMA testing modes, including temperature ramp, frequency sweep, and creep behavior test, were conduct...
Measuring Clearance Mechanics Based on Dynamic Leg Length
ERIC Educational Resources Information Center
Khamis, Sam; Danino, Barry; Hayek, Shlomo; Carmeli, Eli
2018-01-01
The aim of this study was to quantify clearance mechanics during gait. Seventeen children diagnosed with hemiplegic cerebral palsy underwent a three-dimensional gait analysis evaluation. Dynamic leg lengths were measured from the hip joint center to the heel, to the ankle joint center and to the forefoot throughout the gait cycle. Significant…
Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms
NASA Technical Reports Server (NTRS)
Lee, Jeh Won
1991-01-01
The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.
Mechanical design of proteins studied by single-molecule force spectroscopy and protein engineering.
Carrion-Vazquez, M; Oberhauser, A F; Fisher, T E; Marszalek, P E; Li, H; Fernandez, J M
2000-01-01
Mechanical unfolding and refolding may regulate the molecular elasticity of modular proteins with mechanical functions. The development of the atomic force microscopy (AFM) has recently enabled the dynamic measurement of these processes at the single-molecule level. Protein engineering techniques allow the construction of homomeric polyproteins for the precise analysis of the mechanical unfolding of single domains. alpha-Helical domains are mechanically compliant, whereas beta-sandwich domains, particularly those that resist unfolding with backbone hydrogen bonds between strands perpendicular to the applied force, are more stable and appear frequently in proteins subject to mechanical forces. The mechanical stability of a domain seems to be determined by its hydrogen bonding pattern and is correlated with its kinetic stability rather than its thermodynamic stability. Force spectroscopy using AFM promises to elucidate the dynamic mechanical properties of a wide variety of proteins at the single molecule level and provide an important complement to other structural and dynamic techniques (e.g., X-ray crystallography, NMR spectroscopy, patch-clamp).
NASA Astrophysics Data System (ADS)
Moosavi, S. Amin; Montakhab, Afshin
2015-11-01
Critical dynamics of cortical neurons have been intensively studied over the past decade. Neuronal avalanches provide the main experimental as well as theoretical tools to consider criticality in such systems. Experimental studies show that critical neuronal avalanches show mean-field behavior. There are structural as well as recently proposed [Phys. Rev. E 89, 052139 (2014), 10.1103/PhysRevE.89.052139] dynamical mechanisms that can lead to mean-field behavior. In this work we consider a simple model of neuronal dynamics based on threshold self-organized critical models with synaptic noise. We investigate the role of high-average connectivity, random long-range connections, as well as synaptic noise in achieving mean-field behavior. We employ finite-size scaling in order to extract critical exponents with good accuracy. We conclude that relevant structural mechanisms responsible for mean-field behavior cannot be justified in realistic models of the cortex. However, strong dynamical noise, which can have realistic justifications, always leads to mean-field behavior regardless of the underlying structure. Our work provides a different (dynamical) origin than the conventionally accepted (structural) mechanisms for mean-field behavior in neuronal avalanches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jun-Cheng; Technology Promotion Center of Nano Composite Material of Biomimetic Sensor and Detecting Technology, Preparation and Application, Anhui Provincial Laboratory West Anhui University, Anhui 237012; Guo, Rui-Li
2016-11-15
A systematic study has been conducted on a novel luminescent metal-organic framework, ([Zn(bpyp)(L-OH)]·DMF·2H{sub 2}O){sub n} (1), to explore its sensing mechanisms to Fe{sup 3+}. Structure analyses show that compound 1 exist pyridine N atoms and -OH groups on the pore surface for specific sensing of metal ions via Lewis acid-base interactions. On this consideration, the quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. This work not only achieves the quantitative evaluation of the luminescence quenching but also provides certain insightsmore » into the quenching process, and the possible mechanisms explored in this work may inspire future research and design of target luminescent metal-organic frameworks (LMOFs) with specific functions. - Graphical abstract: A systematic study has been conducted on a novel luminescent metal-organic framework to explore its sensing mechanisms to Fe{sup 3+}. The quenching mechanisms are studied and the processes are controlled by multiple mechanisms in which dynamic and static mechanisms are calculated, achieving the quantification evaluation of the quenching process. - Highlights: • A novel porous luminescent MOF containing uncoordinated groups in interlayer channels was successfully synthesized. • The compound 1 can exhibit significant luminescent sensitivity to Fe{sup 3+}, which make its good candidate as luminescent sensor. • The corresponding dynamic and static quenching constants are calculated, achieving the quantification evaluation of the quenching process.« less
Li, Hongwei; Yang, Fan; Kang, Xue; Xia, Bin; Jin, Changwen
2008-04-15
Rhodanese catalyzes the sulfur-transfer reaction that transfers sulfur from thiosulfate to cyanide by a double-displacement mechanism, in which an active cysteine residue plays a central role. Previous studies indicated that the phage-shock protein E (PspE) from Escherichia coli is a rhodanese composed of a single active domain and is the only accessible rhodanese among the three single-domain rhodaneses in E. coli. To understand the catalytic mechanism of rhodanese at the molecular level, we determined the solution structures of the sulfur-free and persulfide-intermediate forms of PspE by nuclear magnetic resonance (NMR) spectroscopy and identified the active site by NMR titration experiments. To obtain further insights into the catalytic mechanism, we studied backbone dynamics by NMR relaxation experiments. Our results demonstrated that the overall structures in both sulfur-free and persulfide-intermediate forms are highly similar, suggesting that no significant conformational changes occurred during the catalytic reaction. However, the backbone dynamics revealed that the motional properties of PspE in its sulfur-free form are different from the persulfide-intermediate state. The conformational exchanges are largely enhanced in the persulfide-intermediate form of PspE, especially around the active site. The present structural and biochemical studies in combination with backbone dynamics provide further insights in understanding the catalytic mechanism of rhodanese.
Cerbelaud, Manuella; Videcoq, Arnaud; Alison, Lauriane; Tervoort, Elena; Studart, André R
2017-12-19
Emulsions stabilized by mixtures of particles and amphiphilic molecules are relevant for a wide range of applications, but their dynamics and stabilization mechanisms on the colloidal level are poorly understood. Given the challenges to experimentally probe the early dynamics and mechanisms of droplet stabilization, Brownian dynamics simulations are developed here to study the behavior of oil-in-water emulsions stabilized by colloidal particles modified with short amphiphiles. Simulation parameters are based on an experimental system that consists of emulsions obtained with octane as the oil phase and a suspension of alumina colloidal particles modified with short carboxylic acids as the continuous aqueous medium. The numerical results show that attractive forces between the colloidal particles favor the formation of closely packed clusters on the droplet surface or of a percolating network of particles throughout the continuous phase, depending on the amphiphile concentration. Simulations also reveal the importance of a strong adsorption of particles at the liquid interface to prevent their depletion from the droplet surface when another droplet approaches. Strongly adsorbed particles remain immobile on the droplet surface, generating an effective steric barrier against droplet coalescence. These findings provide new insights into the early dynamics and mechanisms of stabilization of emulsions using particles and amphiphilic molecules.
Spatio-temporal correlations in models of collective motion ruled by different dynamical laws.
Cavagna, Andrea; Conti, Daniele; Giardina, Irene; Grigera, Tomas S; Melillo, Stefania; Viale, Massimiliano
2016-11-15
Information transfer is an essential factor in determining the robustness of biological systems with distributed control. The most direct way to study the mechanisms ruling information transfer is to experimentally observe the propagation across the system of a signal triggered by some perturbation. However, this method may be inefficient for experiments in the field, as the possibilities to perturb the system are limited and empirical observations must rely on natural events. An alternative approach is to use spatio-temporal correlations to probe the information transfer mechanism directly from the spontaneous fluctuations of the system, without the need to have an actual propagating signal on record. Here we test this method on models of collective behaviour in their deeply ordered phase by using ground truth data provided by numerical simulations in three dimensions. We compare two models characterized by very different dynamical equations and information transfer mechanisms: the classic Vicsek model, describing an overdamped noninertial dynamics and the inertial spin model, characterized by an underdamped inertial dynamics. By using dynamic finite-size scaling, we show that spatio-temporal correlations are able to distinguish unambiguously the diffusive information transfer mechanism of the Vicsek model from the linear mechanism of the inertial spin model.
Brain Dynamics of Word Familiarization in 20-Month-Olds: Effects of Productive Vocabulary Size
ERIC Educational Resources Information Center
Torkildsen, Janne von Koss; Hansen, Hanna Friis; Svangstu, Janne Mari; Smith, Lars; Simonsen, Hanne Gram; Moen, Inger; Lindgren, Magnus
2009-01-01
The present study investigated the brain mechanisms involved during young children's receptive familiarization with new words, and whether the dynamics of these mechanisms are related to the child's productive vocabulary size. To this end, we recorded event-related potentials (ERPs) from 20-month-old children in a pseudoword repetition task.…
Tensile strength of Iß crystalline cellulose predicted by molecular dynamics simulation
Xiawa Wu; Robert J. Moon; Ashlie Martini
2014-01-01
The mechanical properties of IÃ crystalline cellulose are studied using molecular dynamics simulation. A model IÃ crystal is deformed in the three orthogonal directions at three different strain rates. The stress-strain behaviors for each case are analyzed and then used to calculate mechanical properties. The results show that the elastic modulus, Poisson's ratio...
Active Vertex Model for cell-resolution description of epithelial tissue mechanics
Barton, Daniel L.; Henkes, Silke
2017-01-01
We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies. PMID:28665934
Active Vertex Model for cell-resolution description of epithelial tissue mechanics.
Barton, Daniel L; Henkes, Silke; Weijer, Cornelis J; Sknepnek, Rastko
2017-06-01
We introduce an Active Vertex Model (AVM) for cell-resolution studies of the mechanics of confluent epithelial tissues consisting of tens of thousands of cells, with a level of detail inaccessible to similar methods. The AVM combines the Vertex Model for confluent epithelial tissues with active matter dynamics. This introduces a natural description of the cell motion and accounts for motion patterns observed on multiple scales. Furthermore, cell contacts are generated dynamically from positions of cell centres. This not only enables efficient numerical implementation, but provides a natural description of the T1 transition events responsible for local tissue rearrangements. The AVM also includes cell alignment, cell-specific mechanical properties, cell growth, division and apoptosis. In addition, the AVM introduces a flexible, dynamically changing boundary of the epithelial sheet allowing for studies of phenomena such as the fingering instability or wound healing. We illustrate these capabilities with a number of case studies.
Molecular dynamics modelling of mechanical properties of polymers for adaptive aerospace structures
NASA Astrophysics Data System (ADS)
Papanikolaou, Michail; Drikakis, Dimitris; Asproulis, Nikolaos
2015-02-01
The features of adaptive structures depend on the properties of the supporting materials. For example, morphing wing structures require wing skin materials, such as rubbers that can withstand the forces imposed by the internal mechanism while maintaining the required aerodynamic properties of the aircraft. In this study, Molecular Dynamics and Minimization simulations are being used to establish well-equilibrated models of Ethylene-Propylene-Diene Monomer (EPDM) elastomer systems and investigate their mechanical properties.
Effects of various conditions in cold-welding of copper nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Zhou, Hongjian; Wu, Wen-ping; Wu, Runni; Hu, Guoming; Xia, Re
2017-11-01
Cold-welding possesses such desirable environment as low temperature and low applied stress, thus becoming the prime candidate for nanojointing and nanoassembly techniques. To explore the welding mechanism of nanoscale structures, here, molecular dynamics was performed on copper nanowires under different welding conditions and various original characteristics to obtain an atomic-level depiction of their cold-welding behavior. By analyzing the mechanical properties of as-welded nanowires, the relations between welding quality and welding variables are revealed and identified. This comparison study will be of great importance to future mechanical processing and structural assembly of metallic nanowires.
Application of the GRC Stirling Convertor System Dynamic Model
NASA Technical Reports Server (NTRS)
Regan, Timothy F.; Lewandowski, Edward J.; Schreiber, Jeffrey G. (Technical Monitor)
2004-01-01
The GRC Stirling Convertor System Dynamic Model (SDM) has been developed to simulate dynamic performance of power systems incorporating free-piston Stirling convertors. This paper discusses its use in evaluating system dynamics and other systems concerns. Detailed examples are provided showing the use of the model in evaluation of off-nominal operating conditions. The many degrees of freedom in both the mechanical and electrical domains inherent in the Stirling convertor and the nonlinear dynamics make simulation an attractive analysis tool in conjunction with classical analysis. Application of SDM in studying the relationship of the size of the resonant circuit quality factor (commonly referred to as Q) in the various resonant mechanical and electrical sub-systems is discussed.
Yildirim, Necmettin; Aktas, Mehmet Emin; Ozcan, Seyma Nur; Akbas, Esra; Ay, Ahmet
2017-01-01
Cells maintain cellular homeostasis employing different regulatory mechanisms to respond external stimuli. We study two groups of signal-dependent transcriptional regulatory mechanisms. In the first group, we assume that repressor and activator proteins compete for binding to the same regulatory site on DNA (competitive mechanisms). In the second group, they can bind to different regulatory regions in a noncompetitive fashion (noncompetitive mechanisms). For both competitive and noncompetitive mechanisms, we studied the gene expression dynamics by increasing the repressor or decreasing the activator abundance (inhibition mechanisms), or by decreasing the repressor or increasing the activator abundance (activation mechanisms). We employed delay differential equation models. Our simulation results show that the competitive and noncompetitive inhibition mechanisms exhibit comparable repression effectiveness. However, response time is fastest in the noncompetitive inhibition mechanism due to increased repressor abundance, and slowest in the competitive inhibition mechanism by increased repressor level. The competitive and noncompetitive inhibition mechanisms through decreased activator abundance show comparable and moderate response times, while the competitive and noncompetitive activation mechanisms by increased activator protein level display more effective and faster response. Our study exemplifies the importance of mathematical modeling and computer simulation in the analysis of gene expression dynamics.
NASA Astrophysics Data System (ADS)
Ramarad, Suganti; Ratnam, Chantara T.; Khalid, Mohammad; Chuah, Abdullah Luqman; Hanson, Svenja
2017-01-01
Dependence on automobiles has led to a huge amount of waste tires produced annually around the globe. In this study, the feasibility of recycling these waste tires by blending reclaimed waste tire rubber (RTR) with poly(ethylene-co-vinyl acetate) (EVA) and electron beam irradiation was studied. The RTR/EVA blends containing 100-0 wt% of RTR were prepared in the internal mixer followed by electron beam (EB) irradiation with doses ranging from 50 to 200 kGy. The processing torques, calorimetric and dynamic mechanical properties of the blends were studied. Blends were found to have lower processing torque indicating easier processability of RTR/EVA blends compared to EVA. RTR domains were found to be dispersed in EVA matrix, whereas, irradiation improved the dispersion of RTR into smaller domains in EVA matrix. Results showed the addition of EVA improves the efficiency of irradiation induced crosslink formation and dynamic mechanical properties of the blends at the expense of the calorimetric properties. Storage and loss modulus of 50 wt% RTR blend was higher than RTR and EVA, suggesting partial miscibility of the blend. Whereas, electron beam irradiation improved the calorimetric properties and dynamic mechanical properties of the blends through redistribution of RTR in smaller domain sizes within EVA.
NASA Astrophysics Data System (ADS)
Li, Yuanyuan; Jin, Suoqin; Lei, Lei; Pan, Zishu; Zou, Xiufen
2015-03-01
The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.
Stoddart, Martin; Lezuo, Patrick; Forkmann, Christoph; Wimmmer, Markus A.; Alini, Mauro; Van Oosterwyck, Hans
2014-01-01
Fibrin–polyurethane composite scaffolds support chondrogenesis of human mesenchymal stem cells (hMSCs) derived from bone marrow and due to their robust mechanical properties allow mechanical loading in dynamic bioreactors, which has been shown to increase the chondrogenic differentiation of MSCs through the transforming growth factor beta pathway. The aim of this study was to use the finite element method, mechanical testing, and dynamic in vitro cell culture experiments on hMSC-enriched fibrin–polyurethane composite scaffolds to quantitatively decipher the mechanoregulation of chondrogenesis within these constructs. The study identified compressive principal strains as the key regulator of chondrogenesis in the constructs. Although dynamic uniaxial compression did not induce chondrogenesis, multiaxial loading by combined application of dynamic compression and interfacial shear induced significant chondrogenesis at locations where all the three principal strains were compressive and had a minimum magnitude of 10%. In contrast, no direct correlation was identified between the level of pore fluid velocity and chondrogenesis. Due to the high permeability of the constructs, the pore fluid pressures could not be increased sufficiently by mechanical loading, and instead, chondrogenesis was induced by triaxial compressive deformations of the matrix with a minimum magnitude of 10%. Thus, it can be concluded that dynamic triaxial compressive deformations of the matrix is sufficient to induce chondrogenesis in a threshold-dependent manner, even where the pore fluid pressure is negligible. PMID:24199606
Kumar, Praveen; Chalise, Nishesh; Yadama, Gautam N
2016-04-26
More than 3 billion of the world's population are affected by household air pollution from relying on unprocessed solid fuels for heating and cooking. Household air pollution is harmful to human health, climate, and environment. Sustained uptake and use of cleaner cooking technologies and fuels are proposed as solutions to this problem. In this paper, we present our study protocol aimed at understanding multiple interacting feedback mechanisms involved in the dynamic behavior between social, ecological, and technological systems driving sustained use or abandonment of cleaner cooking technologies among the rural poor in India. This study uses a comparative case study design to understand the dynamics of sustained use or abandonment of cleaner cooking technologies and fuels in four rural communities of Rajasthan, India. The study adopts a community based system dynamics modeling approach. We describe our approach of using community based system dynamics with rural communities to delineate the feedback mechanisms involved in the uptake and sustainment of clean cooking technologies. We develop a reference mode with communities showing the trend over time of use or abandonment of cleaner cooking technologies and fuels in these communities. Subsequently, the study develops a system dynamics model with communities to understand the complex sub-systems driving the behavior in these communities as reflected in the reference mode. We use group model building techniques to facilitate participation of relevant stakeholders in the four communities and elicit a narrative describing the feedback mechanisms underlying sustained adoption or abandonment of cleaner cooking technologies. In understanding the dynamics of feedback mechanisms in the uptake and exclusive use of cleaner cooking systems, we increase the likelihood of dissemination and implementation of efficacious interventions into everyday settings to improve the health and wellbeing of women and children most affected by household air pollution. The challenge is not confined to developing robust technical solutions to reduce household air pollution and exposure to improve respiratory health, and prevent associated diseases. The bigger challenge is to disseminate and implement cleaner cooking technologies and fuels in the context of various social, behavioral, and economic constraints faced by poor households and communities. The Institutional Review Board of Washington University in St. Louis has exempted community based system dynamics modeling from review.
Research on dynamic routing mechanisms in wireless sensor networks.
Zhao, A Q; Weng, Y N; Lu, Y; Liu, C Y
2014-01-01
WirelessHART is the most widely applied standard in wireless sensor networks nowadays. However, it does not provide any dynamic routing mechanism, which is important for the reliability and robustness of the wireless network applications. In this paper, a collection tree protocol based, dynamic routing mechanism was proposed for WirelessHART network. The dynamic routing mechanism was evaluated through several simulation experiments in three aspects: time for generating the topology, link quality, and stability of network. Besides, the data transmission efficiency of this routing mechanism was analyzed. The simulation and evaluation results show that this mechanism can act as a dynamic routing mechanism for the TDMA-based wireless sensor network.
Stanton, Courtney; Kuo, I-Feng W.; Mundy, Christopher J.; Laino, Teodoro; Houk, K. N.
2011-01-01
Despite decades of study, the mechanism by which orotidine-5'-monophosphate decarboxylase (ODCase) catalyzes the decarboxylation of orotidine monophosphate remains unresolved. A computational investigation of the direct decarboxylation mechanism has been performed using mixed quantum mechanical/molecular mechanical (QM/MM) dynamics simulations. The study was performed with the program CP2K that integrates classical dynamics and ab initio dynamics based on the Born-Oppenheimer approach. Two different QM regions were explored. The free energy barriers for decarboxylation of orotidine-5'-monophosphate (OMP) in solution and in the enzyme (using the larger QM region) were determined with the metadynamics method to be 40 kcal/mol and 33 kcal/mol, respectively. The calculated change in activation free energy (ΔΔG±) on going from solution to the enzyme is therefore −7 kcal/mol, far less than the experimental change of −23 kcal/mol (for kcat/kuncat Radzicka, A.; Wolfenden, R., Science. 1995, 267, 90–92). These results do not support the direct decarboxylation mechanism that has been proposed for the enzyme. However, in the context of QM/MM calculations, it was found that the size of the QM region has a dramatic effect on the calculated reaction barrier. PMID:17927240
Strain Rate and Anisotropic Microstructure Dependent Mechanical Behaviors of Silkworm Cocoon Shells
Xu, Jun; Zhang, Wen; Gao, Xiang; Meng, Wanlin; Guan, Juan
2016-01-01
Silkworm cocoons are multi-layered composite structures comprised of high strength silk fiber and sericin, and their mechanical properties have been naturally selected to protect pupas during metamorphosis from various types of external attacks. The present study attempts to gain a comprehensive understanding of the mechanical properties of cocoon shell materials from wild silkworm species Antheraea pernyi under dynamic loading rates. Five dynamic strain rates from 0.00625 s-1 to 12.5 s-1 are tested to show the strain rate sensitivity of the cocoon shell material. In the meantime, the anisotropy of the cocoon shell is considered and the cocoon shell specimens are cut along 0°, 45° and 90° orientation to the short axis of cocoons. Typical mechanical properties including Young’s modulus, yield strength, ultimate strength and ultimate strain are extracted and analyzed from the stress-strain curves. Furthermore, the fracture morphologies of the cocoon shell specimens are observed under scanning electron microscopy to help understand the relationship between the mechanical properties and the microstructures of the cocoon material. A discussion on the dynamic strain rate effect on the mechanical properties of cocoon shell material is followed by fitting our experimental results to two previous models, and the effect could be well explained. We also compare natural and dried cocoon materials for the dynamic strain rate effect and interestingly the dried cocoon shells show better overall mechanical properties. This study provides a different perspective on the mechanical properties of cocoon material as a composite material, and provides some insight for bio-inspired engineering materials. PMID:26939063
On the dynamical basis of the classification of normal galaxies
Haass, J.; Bertin, G.; Lin, C. C.
1982-01-01
Some realistic galaxy models have been found to support discrete unstable spiral modes. Here, through the study of the relevant physical mechanisms and an extensive numerical investigation of the properties of the dominant modes in a wide class of galactic equilibria, we show how spiral structures are excited with different morphological features, depending on the properties of the equilibrium model. We identify the basic dynamical parameters and mechanisms and compare the resulting morphology of spiral modes with the actual classification of galaxies. The present study suggests a dynamical basis for the transition among various types and subclasses of normal and barred spiral galaxies. Images PMID:16593200
Jiang, Yu; Zhang, Xiaogang; Zhang, Chao; Li, Zhixiong; Sheng, Chenxing
2017-04-01
Numerical modeling has been recognized as the dispensable tools for mechanical fault mechanism analysis. Techniques, ranging from macro to nano levels, include the finite element modeling boundary element modeling, modular dynamic modeling, nano dynamic modeling and so forth. This work firstly reviewed the progress on the fault mechanism analysis for gear transmissions from the tribological and dynamic aspects. Literature review indicates that the tribological and dynamic properties were separately investigated to explore the fault mechanism in gear transmissions. However, very limited work has been done to address the links between the tribological and dynamic properties and scarce researches have been done for coal cutting machines. For this reason, the tribo-dynamic coupled model was introduced to bridge the gap between the tribological and dynamic models in fault mechanism analysis for gear transmissions in coal cutting machines. The modular dynamic modeling and nano dynamic modeling techniques are expected to establish the links between the tribological and dynamic models. Possible future research directions using the tribo dynamic coupled model were summarized to provide potential references for researchers in the field.
Dynamic Information Encoding With Dynamic Synapses in Neural Adaptation
Li, Luozheng; Mi, Yuanyuan; Zhang, Wenhao; Wang, Da-Hui; Wu, Si
2018-01-01
Adaptation refers to the general phenomenon that the neural system dynamically adjusts its response property according to the statistics of external inputs. In response to an invariant stimulation, neuronal firing rates first increase dramatically and then decrease gradually to a low level close to the background activity. This prompts a question: during the adaptation, how does the neural system encode the repeated stimulation with attenuated firing rates? It has been suggested that the neural system may employ a dynamical encoding strategy during the adaptation, the information of stimulus is mainly encoded by the strong independent spiking of neurons at the early stage of the adaptation; while the weak but synchronized activity of neurons encodes the stimulus information at the later stage of the adaptation. The previous study demonstrated that short-term facilitation (STF) of electrical synapses, which increases the synchronization between neurons, can provide a mechanism to realize dynamical encoding. In the present study, we further explore whether short-term plasticity (STP) of chemical synapses, an interaction form more common than electrical synapse in the cortex, can support dynamical encoding. We build a large-size network with chemical synapses between neurons. Notably, facilitation of chemical synapses only enhances pair-wise correlations between neurons mildly, but its effect on increasing synchronization of the network can be significant, and hence it can serve as a mechanism to convey the stimulus information. To read-out the stimulus information, we consider that a downstream neuron receives balanced excitatory and inhibitory inputs from the network, so that the downstream neuron only responds to synchronized firings of the network. Therefore, the response of the downstream neuron indicates the presence of the repeated stimulation. Overall, our study demonstrates that STP of chemical synapse can serve as a mechanism to realize dynamical neural encoding. We believe that our study shed lights on the mechanism underlying the efficient neural information processing via adaptation. PMID:29636675
Dynamics of Implementation and Maintenance of Organizational Health Interventions.
Jalali, Mohammad S; Rahmandad, Hazhir; Bullock, Sally Lawrence; Ammerman, Alice
2017-08-15
In this study, we present case studies to explore the dynamics of implementation and maintenance of health interventions. We analyze how specific interventions are built and eroded, how the building and erosion mechanisms are interconnected, and why we can see significantly different erosion rates across otherwise similar organizations. We use multiple comparative obesity prevention case studies to provide empirical information on the mechanisms of interest, and use qualitative systems modeling to integrate our evolving understanding into an internally consistent and transparent theory of the phenomenon. Our preliminary results identify reinforcing feedback mechanisms, including design of organizational processes, motivation of stakeholders, and communication among stakeholders, which influence implementation and maintenance of intervention components. Over time, these feedback mechanisms may drive a wedge between otherwise similar organizations, leading to distinct configurations of implementation and maintenance processes.
Nonperturbative Dynamical Casimir Effect in Optomechanical Systems: Vacuum Casimir-Rabi Splittings
NASA Astrophysics Data System (ADS)
Macrı, Vincenzo; Ridolfo, Alessandro; Di Stefano, Omar; Kockum, Anton Frisk; Nori, Franco; Savasta, Salvatore
2018-01-01
We study the dynamical Casimir effect using a fully quantum-mechanical description of both the cavity field and the oscillating mirror. We do not linearize the dynamics, nor do we adopt any parametric or perturbative approximation. By numerically diagonalizing the full optomechanical Hamiltonian, we show that the resonant generation of photons from the vacuum is determined by a ladder of mirror-field vacuum Rabi splittings. We find that vacuum emission can originate from the free evolution of an initial pure mechanical excited state, in analogy with the spontaneous emission from excited atoms. By considering a coherent drive of the mirror, using a master-equation approach to take losses into account, we are able to study the dynamical Casimir effect for optomechanical coupling strengths ranging from weak to ultrastrong. We find that a resonant production of photons out of the vacuum can be observed even for mechanical frequencies lower than the cavity-mode frequency. Since high mechanical frequencies, which are hard to achieve experimentally, were thought to be imperative for realizing the dynamical Casimir effect, this result removes one of the major obstacles for the observation of this long-sought effect. We also find that the dynamical Casimir effect can create entanglement between the oscillating mirror and the radiation produced by its motion in the vacuum field, and that vacuum Casimir-Rabi oscillations can occur. Finally, we also show that all these findings apply not only to optomechanical systems, but also to parametric amplifiers operating in the fully quantum regime.
NASA Astrophysics Data System (ADS)
Rouhi, S.; Alizadeh, Y.; Ansari, R.; Aryayi, M.
2015-09-01
Molecular dynamics simulations are used to study the mechanical behavior of single-walled carbon nanotube reinforced composites. Polyethylene and polyketone are selected as the polymer matrices. The effects of nanotube atomic structure and diameter on the mechanical properties of polymer matrix nanocomposites are investigated. It is shown that although adding nanotube to the polymer matrix raises the longitudinal elastic modulus significantly, the transverse tensile and shear moduli do not experience important change. As the previous finite element models could not be used for polymer matrices with the atom types other than carbon, molecular dynamics simulations are used to propose a finite element model which can be used for any polymer matrices. It is shown that this model can predict Young’s modulus with an acceptable accuracy.
Coupling functions: Universal insights into dynamical interaction mechanisms
NASA Astrophysics Data System (ADS)
Stankovski, Tomislav; Pereira, Tiago; McClintock, Peter V. E.; Stefanovska, Aneta
2017-10-01
The dynamical systems found in nature are rarely isolated. Instead they interact and influence each other. The coupling functions that connect them contain detailed information about the functional mechanisms underlying the interactions and prescribe the physical rule specifying how an interaction occurs. A coherent and comprehensive review is presented encompassing the rapid progress made recently in the analysis, understanding, and applications of coupling functions. The basic concepts and characteristics of coupling functions are presented through demonstrative examples of different domains, revealing the mechanisms and emphasizing their multivariate nature. The theory of coupling functions is discussed through gradually increasing complexity from strong and weak interactions to globally coupled systems and networks. A variety of methods that have been developed for the detection and reconstruction of coupling functions from measured data is described. These methods are based on different statistical techniques for dynamical inference. Stemming from physics, such methods are being applied in diverse areas of science and technology, including chemistry, biology, physiology, neuroscience, social sciences, mechanics, and secure communications. This breadth of application illustrates the universality of coupling functions for studying the interaction mechanisms of coupled dynamical systems.
Correlation-induced superconductivity dynamically stabilized and enhanced by laser irradiation.
Ido, Kota; Ohgoe, Takahiro; Imada, Masatoshi
2017-08-01
Studies on out-of-equilibrium dynamics have paved a way to realize a new state of matter. Superconductor-like properties above room temperatures recently suggested to be in copper oxides achieved by selectively exciting vibrational phonon modes by laser have inspired studies on an alternative and general strategy to be pursued for high-temperature superconductivity. We show that the superconductivity can be enhanced by irradiating laser to correlated electron systems owing to two mechanisms: First, the effective attractive interaction of carriers is enhanced by the dynamical localization mechanism, which drives the system into strong coupling regions. Second, the irradiation allows reaching uniform and enhanced superconductivity dynamically stabilized without deteriorating into equilibrium inhomogeneities that suppress superconductivity. The dynamical superconductivity is subject to the Higgs oscillations during and after the irradiation. Our finding sheds light on a way to enhance superconductivity that is inaccessible in equilibrium in strongly correlated electron systems.
Dynamic formation of single-atom catalytic active sites on ceria-supported gold nanoparticles
Wang, Yang-Gang; Mei, Donghai; Glezakou, Vassiliki-Alexandra; Li, Jun; Rousseau, Roger
2015-01-01
Catalysis by gold supported on reducible oxides has been extensively studied, yet issues such as the nature of the catalytic site and the role of the reducible support remain fiercely debated topics. Here we present ab initio molecular dynamics simulations of an unprecedented dynamic single-atom catalytic mechanism for the oxidation of carbon monoxide by ceria-supported gold clusters. The reported dynamic single-atom catalytic mechanism results from the ability of the gold cation to strongly couple with the redox properties of the ceria in a synergistic manner, thereby lowering the energy of redox reactions. The gold cation can break away from the gold nanoparticle to catalyse carbon monoxide oxidation, adjacent to the metal/oxide interface and subsequently reintegrate back into the nanoparticle after the reaction is completed. Our study highlights the importance of the dynamic creation of active sites under reaction conditions and their essential role in catalysis. PMID:25735407
Force-Manipulation Single-Molecule Spectroscopy Studies of Enzymatic Dynamics
NASA Astrophysics Data System (ADS)
Lu, H. Peter; He, Yufan; Lu, Maolin; Cao, Jin; Guo, Qing
2014-03-01
Subtle conformational changes play a crucial role in protein functions, especially in enzymatic reactions involving complex substrate-enzyme interactions and chemical reactions. We applied AFM-enhanced and magnetic tweezers-correlated single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing. Our results support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.
Mariko Ago; Joseph E. Jakes; Orlando J. Rojas
2013-01-01
We produced defect-free electrospun fibers from aqueous dispersions of lignin, poly(vinyl alcohol) (PVA), and cellulose nanocrystals (CNCs), which were used as reinforcing nanoparticles. The thermomechanical performance of the lignin-based electrospun fibers and the spin-coated thin films was improved when they were embedded with CNCs. Isochronal dynamic mechanical...
AMTD - Advanced Mirror Technology Development in Mechanical Stability
NASA Technical Reports Server (NTRS)
Knight, J. Brent
2015-01-01
Analytical tools and processes are being developed at NASA Marshal Space Flight Center in support of the Advanced Mirror Technology Development (AMTD) project. One facet of optical performance is mechanical stability with respect to structural dynamics. Pertinent parameters are: (1) the spacecraft structural design, (2) the mechanical disturbances on-board the spacecraft (sources of vibratory/transient motion such as reaction wheels), (3) the vibration isolation systems (invariably required to meet future science needs), and (4) the dynamic characteristics of the optical system itself. With stability requirements of future large aperture space telescopes being in the lower Pico meter regime, it is paramount that all sources of mechanical excitation be considered in both feasibility studies and detailed analyses. The primary objective of this paper is to lay out a path to perform feasibility studies of future large aperture space telescope projects which require extreme stability. To get to that end, a high level overview of a structural dynamic analysis process to assess an integrated spacecraft and optical system is included.
NASA Astrophysics Data System (ADS)
Timilsina, Rajendra; Termaath, Stephanie
The marine environment is highly aggressive towards most materials. However, aluminium-magnesium alloys (Al-Mg, specifically, 5xxx series) have exceptionally long service life in such aggressive marine environments. For instance, an Al-Mg alloy, AA5083, is extensively used in naval structures because of its good mechanical strength, formability, seawater corrosion resistance and weldability. However, bonding mechanisms of these alloys with epoxies in a rough surface environment are not fully understood yet. It requires a rigorous investigation at molecular or atomic levels. We performed a molecular dynamics simulation to study an adherend surface preparation and surface bonding mechanisms of Al-Mg alloy (AA5083) with different epoxies by developing several computer models. Various distributions of surface roughness are introduced in the models and performed molecular dynamics simulations. Formation of a beta phase (Al3Mg2) , microstructures, bonding energies at the interface, bonding strengths and durability are investigated. Office of Naval Research.
A feasibility study on the design and walking operation of a biped locomotor via dynamic simulation
NASA Astrophysics Data System (ADS)
Wang, Mingfeng; Ceccarelli, Marco; Carbone, Giuseppe
2016-06-01
A feasibility study on the mechanical design and walking operation of a Cassino biped locomotor is presented in this paper. The biped locomotor consists of two identical 3 degrees-of-freedom tripod leg mechanisms with a parallel manipulator architecture. Planning of the biped walking gait is performed by coordinating the motions of the two leg mechanisms and waist. A threedimensional model is elaborated in SolidWorks® environment in order to characterize a feasible mechanical design. Dynamic simulation is carried out in MSC.ADAMS® environment with the aims of characterizing and evaluating the dynamic walking performance of the proposed design. Simulation results show that the proposed biped locomotor with proper input motions of linear actuators performs practical and feasible walking on flat surfaces with limited actuation and reaction forces between its feet and the ground. A preliminary prototype of the biped locomotor is built for the purpose of evaluating the operation performance of the biped walking gait of the proposed locomotor.
Mechanical impact of dynamic phenomena in Francis turbines at off design conditions
NASA Astrophysics Data System (ADS)
Duparchy, F.; Brammer, J.; Thibaud, M.; Favrel, A.; Lowys, P. Y.; Avellan, F.
2017-04-01
At partial load and overload conditions, Francis turbines are subjected to hydraulic instabilities that can potentially result in high dynamic solicitations of the turbine components and significantly reduce their lifetime. This study presents both experimental data and numerical simulations that were used as complementary approaches to study these dynamic solicitations. Measurements performed on a reduced scale physical model, including a special runner instrumented with on-board strain gauges and pressure sensors, were used to investigate the dynamic phenomena experienced by the runner. They were also taken as reference to validate the numerical simulation results. After validation, advantage was taken from the numerical simulations to highlight the mechanical response of the structure to the unsteady hydraulic phenomena, as well as their impact on the fatigue damage of the runner.
Red blood cell dynamics: from cell deformation to ATP release.
Wan, Jiandi; Forsyth, Alison M; Stone, Howard A
2011-10-01
The mechanisms of red blood cell (RBC) deformation under both static and dynamic, i.e., flow, conditions have been studied extensively since the mid 1960s. Deformation-induced biochemical reactions and possible signaling in RBCs, however, were proposed only fifteen years ago. Therefore, the fundamental relationship between RBC deformation and cellular signaling dynamics i.e., mechanotransduction, remains incompletely understood. Quantitative understanding of the mechanotransductive pathways in RBCs requires integrative studies of physical models of RBC deformation and cellular biochemical reactions. In this article we review the physical models of RBC deformation, spanning from continuum membrane mechanics to cellular skeleton dynamics under both static and flow conditions, and elaborate the mechanistic links involved in deformation-induced ATP release. This journal is © The Royal Society of Chemistry 2011
NASA Technical Reports Server (NTRS)
Oluwole, Oluwayemisi O.; Wong, Hsi-Wu; Green, William
2012-01-01
AdapChem software enables high efficiency, low computational cost, and enhanced accuracy on computational fluid dynamics (CFD) numerical simulations used for combustion studies. The software dynamically allocates smaller, reduced chemical models instead of the larger, full chemistry models to evolve the calculation while ensuring the same accuracy to be obtained for steady-state CFD reacting flow simulations. The software enables detailed chemical kinetic modeling in combustion CFD simulations. AdapChem adapts the reaction mechanism used in the CFD to the local reaction conditions. Instead of a single, comprehensive reaction mechanism throughout the computation, a dynamic distribution of smaller, reduced models is used to capture accurately the chemical kinetics at a fraction of the cost of the traditional single-mechanism approach.
Cardiac fluid dynamics meets deformation imaging.
Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni
2018-02-20
Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.
Phase Inversion of EPDM/PP Blends: Effect of Viscosity Ratio
NASA Astrophysics Data System (ADS)
Machado, Ana Vera; Antunes, Carla Filipa; van Duin, Martin
2011-07-01
EPDM/PP blends and TPVs with and without crosslinking, respectively, were prepared, in a batch mixer, using three different EPDM rubbers. EPDM/PP based TPVs were dynamic vulcanised using the resol/SnCl2 system. Samples were collected along the time in order to get information on the morphology evolution and crosslinking density during dynamic vulcanisation. The morphology was studied by SEM and the crosslink density by gel content. In the case of low viscosity EPDMs, crosslinking of the EPDM phase was retarded due to its low crosslinking efficiency. This delay on crosslinking reaction enables the observation of the various stages of the morphological mechanism that takes place during dynamic vulcanisation. It could be observed that phase inversion takes place via lamellar mechanism. More detailed insight on phase inversion mechanism during dynamic vulcanisation was accomplished.
Neurobiologically Inspired Approaches to Nonlinear Process Control and Modeling
1999-12-31
incorporates second messenger reaction kinetics and calcium dynamics to represent the nonlinear dynamics and the crucial role of neuromodulation in local...reflex). The dynamic neuromodulation as a mechanism for the nonlinear attenuation is the novel result of this study. Ear- lier simulations have shown
Volhard, Jakob; Müller, Viktor; Kaulard, Kathrin; Brick, Timothy R.; Wallraven, Christian; Lindenberger, Ulman
2017-01-01
Research on the perception of facial emotional expressions (FEEs) often uses static images that do not capture the dynamic character of social coordination in natural settings. Recent behavioral and neuroimaging studies suggest that dynamic FEEs (videos or morphs) enhance emotion perception. To identify mechanisms associated with the perception of FEEs with natural dynamics, the present EEG (Electroencephalography)study compared (i) ecologically valid stimuli of angry and happy FEEs with natural dynamics to (ii) FEEs with unnatural dynamics, and to (iii) static FEEs. FEEs with unnatural dynamics showed faces moving in a biologically possible but unpredictable and atypical manner, generally resulting in ambivalent emotional content. Participants were asked to explicitly recognize FEEs. Using whole power (WP) and phase synchrony (Phase Locking Index, PLI), we found that brain responses discriminated between natural and unnatural FEEs (both static and dynamic). Differences were primarily observed in the timing and brain topographies of delta and theta PLI and WP, and in alpha and beta WP. Our results support the view that biologically plausible, albeit atypical, FEEs are processed by the brain by different mechanisms than natural FEEs. We conclude that natural movement dynamics are essential for the perception of FEEs and the associated brain processes. PMID:28723957
Perdikis, Dionysios; Volhard, Jakob; Müller, Viktor; Kaulard, Kathrin; Brick, Timothy R; Wallraven, Christian; Lindenberger, Ulman
2017-01-01
Research on the perception of facial emotional expressions (FEEs) often uses static images that do not capture the dynamic character of social coordination in natural settings. Recent behavioral and neuroimaging studies suggest that dynamic FEEs (videos or morphs) enhance emotion perception. To identify mechanisms associated with the perception of FEEs with natural dynamics, the present EEG (Electroencephalography)study compared (i) ecologically valid stimuli of angry and happy FEEs with natural dynamics to (ii) FEEs with unnatural dynamics, and to (iii) static FEEs. FEEs with unnatural dynamics showed faces moving in a biologically possible but unpredictable and atypical manner, generally resulting in ambivalent emotional content. Participants were asked to explicitly recognize FEEs. Using whole power (WP) and phase synchrony (Phase Locking Index, PLI), we found that brain responses discriminated between natural and unnatural FEEs (both static and dynamic). Differences were primarily observed in the timing and brain topographies of delta and theta PLI and WP, and in alpha and beta WP. Our results support the view that biologically plausible, albeit atypical, FEEs are processed by the brain by different mechanisms than natural FEEs. We conclude that natural movement dynamics are essential for the perception of FEEs and the associated brain processes.
2013-01-01
The dynamic impact response of giant buckyball C720 is investigated by using molecular dynamics simulations. The non-recoverable deformation of C720 makes it an ideal candidate for high-performance energy absorption. Firstly, mechanical behaviors under dynamic impact and low-speed crushing are simulated and modeled, which clarifies the buckling-related energy absorption mechanism. One-dimensional C720 arrays (both vertical and horizontal alignments) are studied at various impact speeds, which show that the energy absorption ability is dominated by the impact energy per buckyball and less sensitive to the number and arrangement direction of buckyballs. Three-dimensional stacking of buckyballs in simple cubic, body-centered cubic, hexagonal, and face-centered cubic forms are investigated. Stacking form with higher occupation density yields higher energy absorption. The present study may shed lights on employing C720 assembly as an advanced energy absorption system against low-speed impacts. PMID:23360618
A stability-based mechanism for hysteresis in the walk–trot transition in quadruped locomotion
Aoi, Shinya; Katayama, Daiki; Fujiki, Soichiro; Tomita, Nozomi; Funato, Tetsuro; Yamashita, Tsuyoshi; Senda, Kei; Tsuchiya, Kazuo
2013-01-01
Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely unclear. It has been suggested that gaits correspond to attractors in their dynamics and that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in stability. In the present study, we used a robotic platform to investigate the dynamic stability of gaits and to clarify the hysteresis mechanism in the walk–trot transition of quadrupeds. Specifically, we used a quadruped robot as the body mechanical model and an oscillator network for the nervous system model to emulate dynamic locomotion of a quadruped. Experiments using this robot revealed that dynamic interactions among the robot mechanical system, the oscillator network, and the environment generate walk and trot gaits depending on the locomotion speed. In addition, a walk–trot transition that exhibited hysteresis was observed when the locomotion speed was changed. We evaluated the gait changes of the robot by measuring the locomotion of dogs. Furthermore, we investigated the stability structure during the gait transition of the robot by constructing a potential function from the return map of the relative phase of the legs and clarified the physical characteristics inherent to the gait transition in terms of the dynamics. PMID:23389894
A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion.
Aoi, Shinya; Katayama, Daiki; Fujiki, Soichiro; Tomita, Nozomi; Funato, Tetsuro; Yamashita, Tsuyoshi; Senda, Kei; Tsuchiya, Kazuo
2013-04-06
Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely unclear. It has been suggested that gaits correspond to attractors in their dynamics and that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in stability. In the present study, we used a robotic platform to investigate the dynamic stability of gaits and to clarify the hysteresis mechanism in the walk-trot transition of quadrupeds. Specifically, we used a quadruped robot as the body mechanical model and an oscillator network for the nervous system model to emulate dynamic locomotion of a quadruped. Experiments using this robot revealed that dynamic interactions among the robot mechanical system, the oscillator network, and the environment generate walk and trot gaits depending on the locomotion speed. In addition, a walk-trot transition that exhibited hysteresis was observed when the locomotion speed was changed. We evaluated the gait changes of the robot by measuring the locomotion of dogs. Furthermore, we investigated the stability structure during the gait transition of the robot by constructing a potential function from the return map of the relative phase of the legs and clarified the physical characteristics inherent to the gait transition in terms of the dynamics.
Ortiz, Aurélie U; Boutin, Anne; Fuchs, Alain H; Coudert, François-Xavier
2013-06-06
We provide the first molecular dynamics study of the mechanical instability that is the cause of pressure-induced amorphization of zeolitic imidazolate framework ZIF-8. By measuring the elastic constants of ZIF-8 up to the amorphization pressure, we show that the crystal-to-amorphous transition is triggered by the mechanical instability of ZIF-8 under compression, due to shear mode softening of the material. No similar softening was observed under temperature increase, explaining the absence of temperature-induced amorphization in ZIF-8. We also demonstrate the large impact of the presence of adsorbate in the pores on the mechanical stability and compressibility of the framework, increasing its shear stability. This first molecular dynamics study of ZIF mechanical properties under variations of pressure, temperature, and pore filling opens the way to a more comprehensive understanding of their mechanical stability, structural transitions, and amorphization.
Dynamic analysis of six-bar mechanical press for deep drawing
NASA Astrophysics Data System (ADS)
Mitsi, S.; Tsiafis, I.; Bouzakis, K. D.
2017-02-01
This paper analyzes the dynamical behavior of a six-bar linkage used in mechanical presses for metal forming such as deep drawing. In the under study mechanism, a four-bar linkage is connected to a slider through an articulated binary link. The motion of the six-bar linkage is studied by kinematic analysis developing an analytical method. Furthermore, using an iterative method and d’ Alembert’s principle, the joint forces and drive moment are evaluated considering joint frictions. The simulation results obtained with a MATLAB program are validated by comparing the theoretical values of the input moment with the ones obtained from the conservation of energy law.
Transient Oscilliations in Mechanical Systems of Automatic Control with Random Parameters
NASA Astrophysics Data System (ADS)
Royev, B.; Vinokur, A.; Kulikov, G.
2018-04-01
Transient oscillations in mechanical systems of automatic control with random parameters is a relevant but insufficiently studied issue. In this paper, a modified spectral method was applied to investigate the problem. The nature of dynamic processes and the phase portraits are analyzed depending on the amplitude and frequency of external influence. It is evident from the obtained results, that the dynamic phenomena occurring in the systems with random parameters under external influence are complex, and their study requires further investigation.
Mendieta-Moreno, Jesús I; Trabada, Daniel G; Mendieta, Jesús; Lewis, James P; Gómez-Puertas, Paulino; Ortega, José
2016-11-03
The absorption of ultraviolet radiation by DNA may result in harmful genetic lesions that affect DNA replication and transcription, ultimately causing mutations, cancer, and/or cell death. We analyze the most abundant photochemical reaction in DNA, the cyclobutane thymine dimer, using hybrid quantum mechanics/molecular mechanics (QM/MM) techniques and QM/MM nonadiabatic molecular dynamics. We find that, due to its double helix structure, DNA presents a free energy barrier between nonreactive and reactive conformations leading to the photolesion. Moreover, our nonadiabatic simulations show that most of the photoexcited reactive conformations return to standard B-DNA conformations after an ultrafast nonradiative decay to the ground state. This work highlights the importance of dynamical effects (free energy, excited-state dynamics) for the study of photochemical reactions in biological systems.
NASA Astrophysics Data System (ADS)
Jung, Jiyun; Lee, Jumin; Kim, Jun Soo
2015-03-01
We present a simulation study on the mechanisms of a phase separation in dilute fluids of Lennard-Jones (LJ) particles as a model of self-interacting molecules. Molecular dynamics (MD) and Brownian dynamics (BD) simulations of the LJ fluids are employed to model the condensation of a liquid droplet in the vapor phase and the mesoscopic aggregation in the solution phase, respectively. With emphasis on the cluster growth at late times well beyond the nucleation stage, we find that the growth mechanisms can be qualitatively different: cluster diffusion and coalescence in the MD simulations and Ostwald ripening in the BD simulations. We also show that the rates of the cluster growth have distinct scaling behaviors during cluster growth. This work suggests that in the solution phase the random Brownian nature of the solute dynamics may lead to the Ostwald ripening that is qualitatively different from the cluster coalescence in the vapor phase.
Microfluidic perfusion shows intersarcomere dynamics within single skeletal muscle myofibrils
Minozzo, Fabio C.; Altman, David; Rassier, Dilson E.
2017-01-01
The sarcomere is the smallest functional unit of myofibrils in striated muscles. Sarcomeres are connected in series through a network of elastic and structural proteins. During myofibril activation, sarcomeres develop forces that are regulated through complex dynamics among their structures. The mechanisms that regulate intersarcomere dynamics are unclear, which limits our understanding of fundamental muscle features. Such dynamics are associated with the loss in forces caused by mechanical instability encountered in muscle diseases and cardiomyopathy and may underlie potential target treatments for such conditions. In this study, we developed a microfluidic perfusion system to control one sarcomere within a myofibril, while measuring the individual behavior of all sarcomeres. We found that the force from one sarcomere leads to adjustments of adjacent sarcomeres in a mechanism that is dependent on the sarcomere length and the myofibril stiffness. We concluded that the cooperative work of the contractile and the elastic elements within a myofibril rules the intersarcomere dynamics, with important consequences for muscle contraction. PMID:28765372
Single-Molecule Spectroscopy and Imaging Studies of Protein Dynamics
NASA Astrophysics Data System (ADS)
Lu, H. Peter
2012-04-01
Enzymatic reactions and protein-protein interactions are traditionally studied at the ensemble level, despite significant static and dynamic inhomogeneities. Subtle conformational changes play a crucial role in protein functions, and these protein conformations are highly dynamic rather than being static. We applied AFM-enhanced single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of T4 lysozyme and HPPK enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing, presenting as an extreme dynamic behavior intrinsically related to the time bunching effect that we have reported previously. Our results of HPPK interaction with substrate support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation. Our new approach is applicable to a wide range of single-molecule FRET measurements for protein conformational changes under enzymatic reactions.
NASA Technical Reports Server (NTRS)
Rodriquez, Jose M.; Hu, Wenjie; Ko, Malcolm K.W.
1996-01-01
The global three-dimensional measurement of long- and short-lived species from Upper Atmospheric Research Satellite (UARS) provides a unique opportunity to validate chemistry and dynamics mechanisms in the middle atmosphere. During the past three months, we focused on expanding our study of data-model comparisons to whole time periods when Cryogenic Limb Array Etalon Spectrometer (CLAES) instrument were operating.
Theoretical approaches for dynamical ordering of biomolecular systems.
Okumura, Hisashi; Higashi, Masahiro; Yoshida, Yuichiro; Sato, Hirofumi; Akiyama, Ryo
2018-02-01
Living systems are characterized by the dynamic assembly and disassembly of biomolecules. The dynamical ordering mechanism of these biomolecules has been investigated both experimentally and theoretically. The main theoretical approaches include quantum mechanical (QM) calculation, all-atom (AA) modeling, and coarse-grained (CG) modeling. The selected approach depends on the size of the target system (which differs among electrons, atoms, molecules, and molecular assemblies). These hierarchal approaches can be combined with molecular dynamics (MD) simulation and/or integral equation theories for liquids, which cover all size hierarchies. We review the framework of quantum mechanical/molecular mechanical (QM/MM) calculations, AA MD simulations, CG modeling, and integral equation theories. Applications of these methods to the dynamical ordering of biomolecular systems are also exemplified. The QM/MM calculation enables the study of chemical reactions. The AA MD simulation, which omits the QM calculation, can follow longer time-scale phenomena. By reducing the number of degrees of freedom and the computational cost, CG modeling can follow much longer time-scale phenomena than AA modeling. Integral equation theories for liquids elucidate the liquid structure, for example, whether the liquid follows a radial distribution function. These theoretical approaches can analyze the dynamic behaviors of biomolecular systems. They also provide useful tools for exploring the dynamic ordering systems of biomolecules, such as self-assembly. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cho, H. E.; Horstemeyer, M. F.; Baumgardner, J. R.
2017-12-01
In this study, we present an internal state variable (ISV) constitutive model developed to model static and dynamic recrystallization and grain size progression in a unified manner. This method accurately captures temperature, pressure and strain rate effect on the recrystallization and grain size. Because this ISV approach treats dislocation density, volume fraction of recrystallization and grain size as internal variables, this model can simultaneously track their history during the deformation with unprecedented realism. Based on this deformation history, this method can capture realistic mechanical properties such as stress-strain behavior in the relationship of microstructure-mechanical property. Also, both the transient grain size during the deformation and the steady-state grain size of dynamic recrystallization can be predicted from the history variable of recrystallization volume fraction. Furthermore, because this model has a capability to simultaneously handle plasticity and creep behaviors (unified creep-plasticity), the mechanisms (static recovery (or diffusion creep), dynamic recovery (or dislocation creep) and hardening) related to dislocation dynamics can also be captured. To model these comprehensive mechanical behaviors, the mathematical formulation of this model includes elasticity to evaluate yield stress, work hardening in treating plasticity, creep, as well as the unified recrystallization and grain size progression. Because pressure sensitivity is especially important for the mantle minerals, we developed a yield function combining Drucker-Prager shear failure and von Mises yield surfaces to model the pressure dependent yield stress, while using pressure dependent work hardening and creep terms. Using these formulations, we calibrated against experimental data of the minerals acquired from the literature. Additionally, we also calibrated experimental data for metals to show the general applicability of our model. Understanding of realistic mantle dynamics can only be acquired once the various deformation regimes and mechanisms are comprehensively modeled. The results of this study demonstrate that this ISV model is a good modeling candidate to help reveal the realistic dynamics of the Earth's mantle.
Dynamics of Implementation and Maintenance of Organizational Health Interventions
Rahmandad, Hazhir; Bullock, Sally Lawrence; Ammerman, Alice
2017-01-01
In this study, we present case studies to explore the dynamics of implementation and maintenance of health interventions. We analyze how specific interventions are built and eroded, how the building and erosion mechanisms are interconnected, and why we can see significantly different erosion rates across otherwise similar organizations. We use multiple comparative obesity prevention case studies to provide empirical information on the mechanisms of interest, and use qualitative systems modeling to integrate our evolving understanding into an internally consistent and transparent theory of the phenomenon. Our preliminary results identify reinforcing feedback mechanisms, including design of organizational processes, motivation of stakeholders, and communication among stakeholders, which influence implementation and maintenance of intervention components. Over time, these feedback mechanisms may drive a wedge between otherwise similar organizations, leading to distinct configurations of implementation and maintenance processes. PMID:28809807
RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS
Purcell, Braden A.; Palmeri, Thomas J.
2016-01-01
Accumulator models explain decision-making as an accumulation of evidence to a response threshold. Specific model parameters are associated with specific model mechanisms, such as the time when accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms determine both the within-trial dynamics of evidence accumulation and the predicted behavior. Cognitive modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary when a model is fitted to observed behavior. The recent identification of neural activity with evidence accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics. To understand what kinds of inferences can be made about decision-making mechanisms based on measures of neural dynamics, we measured simulated accumulator model dynamics while systematically varying model parameters. In some cases, decision- making mechanisms can be directly inferred from dynamics, allowing us to distinguish between models that make identical behavioral predictions. In other cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural dynamics provides the most powerful approach to understand decision-making and likely other aspects of cognition and perception. PMID:28392584
Yesudasan, Sumith; Wang, Xianqiao; Averett, Rodney D
2018-05-01
We developed a new mechanical model for determining the compression and shear mechanical behavior of four different hemoglobin structures. Previous studies on hemoglobin structures have focused primarily on overall mechanical behavior; however, this study investigates the mechanical behavior of hemoglobin, a major constituent of red blood cells, using steered molecular dynamics (SMD) simulations to obtain anisotropic mechanical behavior under compression and shear loading conditions. Four different configurations of hemoglobin molecules were considered: deoxyhemoglobin (deoxyHb), oxyhemoglobin (HbO 2 ), carboxyhemoglobin (HbCO), and glycated hemoglobin (HbA 1C ). The SMD simulations were performed on the hemoglobin variants to estimate their unidirectional stiffness and shear stiffness. Although hemoglobin is structurally denoted as a globular protein due to its spherical shape and secondary structure, our simulation results show a significant variation in the mechanical strength in different directions (anisotropy) and also a strength variation among the four different hemoglobin configurations studied. The glycated hemoglobin molecule possesses an overall higher compressive mechanical stiffness and shear stiffness when compared to deoxyhemoglobin, oxyhemoglobin, and carboxyhemoglobin molecules. Further results from the models indicate that the hemoglobin structures studied possess a soft outer shell and a stiff core based on stiffness.
Mechanical Analyses for coupled Vegetation-Flow System
NASA Astrophysics Data System (ADS)
Chen, L.; Acharya, K.; Stone, M.
2010-12-01
Vegetation in riparian areas plays important roles in hydrology, geomorphology and ecology in local environment. Mechanical response of the aquatic vegetation to hydraulic forces and its impact on flow hydraulics have received considerable attention due to implications for flood control, habitat restoration, and water resources management. This study aims to advance understanding of the mechanical properties of in-stream vegetation including drag force, moment and stress. Dynamic changes of these properties under various flow conditions largely determine vegetation affected flow field and dynamic resistance with progressive bending, and hydraulic conditions for vegetation failure (rupture or wash-out) thus are critical for understanding the coupled vegetation-flow system. A new approach combining fluid and material mechanics is developed in this study to examine the behavior of both rigid and flexible vegetation. The major advantage of this approach is its capability to treat large deflection (bending) of plants and associated changes of mechanical properties in both vegetation and flow. Starting from simple emergent vegetation, both static and dynamic formulations of the problem are presented and the solutions are compared. Results show the dynamic behavior of a simplified system mimicking complex and real systems, implying the approach is able to disclose the physical essence of the coupled system. The approach is extended to complex vegetation under both submerged and emergent conditions using more realistic representation of biomechanical properties for vegetation.
Ferroelastic domain switching dynamics under electrical and mechanical excitations.
Gao, Peng; Britson, Jason; Nelson, Christopher T; Jokisaari, Jacob R; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing
2014-05-02
In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.
Ferroelastic domain switching dynamics under electrical and mechanical excitations
NASA Astrophysics Data System (ADS)
Gao, Peng; Britson, Jason; Nelson, Christopher T.; Jokisaari, Jacob R.; Duan, Chen; Trassin, Morgan; Baek, Seung-Hyub; Guo, Hua; Li, Linze; Wang, Yiran; Chu, Ying-Hao; Minor, Andrew M.; Eom, Chang-Beom; Ramesh, Ramamoorthy; Chen, Long-Qing; Pan, Xiaoqing
2014-05-01
In thin film ferroelectric devices, switching of ferroelastic domains can significantly enhance electromechanical response. Previous studies have shown disagreement regarding the mobility or immobility of ferroelastic domain walls, indicating that switching behaviour strongly depends on specific microstructures in ferroelectric systems. Here we study the switching dynamics of individual ferroelastic domains in thin Pb(Zr0.2,Ti0.8)O3 films under electrical and mechanical excitations by using in situ transmission electron microscopy and phase-field modelling. We find that ferroelastic domains can be effectively and permanently stabilized by dislocations at the substrate interface while similar domains at free surfaces without pinning dislocations can be removed by either electric or stress fields. For both electrical and mechanical switching, ferroelastic switching is found to occur most readily at the highly active needle points in ferroelastic domains. Our results provide new insights into the understanding of polarization switching dynamics as well as the engineering of ferroelectric devices.
NASA Astrophysics Data System (ADS)
Zaoutsos, S. P.; Zilidou, M. C.
2017-12-01
In the current study dynamic mechanical analysis (DMA) is performed in CFRPs that have been exposed for certain periods of time to extreme low temperatures. Through experimental data arising from respective DMA tests the influence of low temperature exposure (-40 °C) on the dynamic mechanical properties is studied. DMA tests were conducted in CFRP specimens in three point bending mode at both frequency and thermal scans in order to determine the viscoelastic response of the material in low temperatures. All experimental tests were run both for aged and pristine materials for comparison purposes. The results occurred reveal that there is deterioration both on transition temperature (Tg) and storage modulus values while there is also a moderate increase in the damping ability of the tested material as expressed by the factor tanδ as the period of exposure to low temperature increases.
Decherchi, Sergio; Berteotti, Anna; Bottegoni, Giovanni; Rocchia, Walter; Cavalli, Andrea
2015-01-27
The study of biomolecular interactions between a drug and its biological target is of paramount importance for the design of novel bioactive compounds. In this paper, we report on the use of molecular dynamics (MD) simulations and machine learning to study the binding mechanism of a transition state analogue (DADMe-immucillin-H) to the purine nucleoside phosphorylase (PNP) enzyme. Microsecond-long MD simulations allow us to observe several binding events, following different dynamical routes and reaching diverse binding configurations. These simulations are used to estimate kinetic and thermodynamic quantities, such as kon and binding free energy, obtaining a good agreement with available experimental data. In addition, we advance a hypothesis for the slow-onset inhibition mechanism of DADMe-immucillin-H against PNP. Combining extensive MD simulations with machine learning algorithms could therefore be a fruitful approach for capturing key aspects of drug-target recognition and binding.
Dynamic mechanical analysis of carbon nanotube-reinforced nanocomposites.
Her, Shiuh-Chuan; Lin, Kuan-Yu
2017-06-16
To predict the mechanical properties of multiwalled carbon nanotube (MWCNT)-reinforced polymers, it is necessary to understand the role of the nanotube-polymer interface with regard to load transfer and the formation of the interphase region. The main objective of this study was to explore and attempt to clarify the reinforcement mechanisms of MWCNTs in epoxy matrix. Nanocomposites were fabricated by adding different amounts of MWCNTs to epoxy resin. Tensile test and dynamic mechanical analysis (DMA) were conducted to investigate the effect of MWCNT contents on the mechanical properties and thermal stability of nanocomposites. Compared with the neat epoxy, nanocomposite reinforced with 1 wt% of MWCNTs exhibited an increase of 152% and 54% in Young's modulus and tensile strength, respectively. Dynamic mechanical analysis demonstrates that both the storage modulus and glass transition temperature tend to increase with the addition of MWCNTs. Scanning electron microscopy (SEM) observations reveal that uniform dispersion and strong interfacial adhesion between the MWCNTs and epoxy are achieved, resulting in the improvement of mechanical properties and thermal stability as compared with neat epoxy.
Structural dynamics verification facility study
NASA Technical Reports Server (NTRS)
Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.
1981-01-01
The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.
Yang, Li-Quan; Sang, Peng; Tao, Yan; Fu, Yun-Xin; Zhang, Ke-Qin; Xie, Yue-Hui; Liu, Shu-Qun
2013-01-01
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure–function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca2+ removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca2+ removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein–ligand binding, including the concept of the free energy landscape (FEL) of the protein–solvent system, how the ruggedness and variability of FEL determine protein's dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth. PMID:23527883
Yang, Li-Quan; Sang, Peng; Tao, Yan; Fu, Yun-Xin; Zhang, Ke-Qin; Xie, Yue-Hui; Liu, Shu-Qun
2014-01-01
Proteins are dynamic entities in cellular solution with functions governed essentially by their dynamic personalities. We review several dynamics studies on serine protease proteinase K and HIV-1 gp120 envelope glycoprotein to demonstrate the importance of investigating the dynamic behaviors and molecular motions for a complete understanding of their structure-function relationships. Using computer simulations and essential dynamic (ED) analysis approaches, the dynamics data obtained revealed that: (i) proteinase K has highly flexible substrate-binding site, thus supporting the induced-fit or conformational selection mechanism of substrate binding; (ii) Ca(2+) removal from proteinase K increases the global conformational flexibility, decreases the local flexibility of substrate-binding region, and does not influence the thermal motion of catalytic triad, thus explaining the experimentally determined decreased thermal stability, reduced substrate affinity, and almost unchanged catalytic activity upon Ca(2+) removal; (iii) substrate binding affects the large concerted motions of proteinase K, and the resulting dynamic pocket can be connected to substrate binding, orientation, and product release; (iv) amino acid mutations 375 S/W and 423 I/P of HIV-1 gp120 have distinct effects on molecular motions of gp120, facilitating 375 S/W mutant to assume the CD4-bound conformation, while 423 I/P mutant to prefer for CD4-unliganded state. The mechanisms underlying protein dynamics and protein-ligand binding, including the concept of the free energy landscape (FEL) of the protein-solvent system, how the ruggedness and variability of FEL determine protein's dynamics, and how the three ligand-binding models, the lock-and-key, induced-fit, and conformational selection are rationalized based on the FEL theory are discussed in depth.
Dynamic modelling and experimental study of cantilever beam with clearance
NASA Astrophysics Data System (ADS)
Li, B.; Jin, W.; Han, L.; He, Z.
2012-05-01
Clearances occur in almost all mechanical systems, typically such as the clearance between slide plate of gun barrel and guide. Therefore, to study the clearances of mechanisms can be very important to increase the working performance and lifetime of mechanisms. In this paper, rigid dynamic modelling of cantilever with clearance was done according to the subject investigated. In the rigid dynamic modelling, clearance is equivalent to the spring-dashpot model, the impact of beam and boundary face was also taken into consideration. In ADAMS software, the dynamic simulation was carried out according to the model above. The software simulated the movement of cantilever with clearance under external excitation. Research found: When the clearance is larger, the force of impact will become larger. In order to study how the stiffness of the cantilever's supporting part influences natural frequency of the system, A Euler beam which is restricted by a draught spring and a torsion spring at its end was raised. Through numerical calculation, the relationship between natural frequency and stiffness was found. When the value of the stiffness is close to the limit value, the corresponding boundary condition is illustrated. An ADAMS experiment was carried out to check the theory and the simulation.
NASA Astrophysics Data System (ADS)
Xu, Yuan; Dai, Feng
2018-03-01
A novel method is developed for characterizing the mechanical response and failure mechanism of brittle rocks under dynamic compression-shear loading: an inclined cylinder specimen using a modified split Hopkinson pressure bar (SHPB) system. With the specimen axis inclining to the loading direction of SHPB, a shear component can be introduced into the specimen. Both static and dynamic experiments are conducted on sandstone specimens. Given carefully pulse shaping, the dynamic equilibrium of the inclined specimens can be satisfied, and thus the quasi-static data reduction is employed. The normal and shear stress-strain relationships of specimens are subsequently established. The progressive failure process of the specimen illustrated via high-speed photographs manifests a mixed failure mode accommodating both the shear-dominated failure and the localized tensile damage. The elastic and shear moduli exhibit certain loading-path dependence under quasi-static loading but loading-path insensitivity under high loading rates. Loading rate dependence is evidently demonstrated through the failure characteristics involving fragmentation, compression and shear strength and failure surfaces based on Drucker-Prager criterion. Our proposed method is convenient and reliable to study the dynamic response and failure mechanism of rocks under combined compression-shear loading.
Velazquez, Hector A; Hamelberg, Donald
2015-02-21
Cis-trans isomerization of peptidyl-prolyl bonds of the protein backbone plays an important role in numerous biological processes. Cis-trans isomerization can be the rate-limiting step due its extremely slow dynamics, compared to the millisecond time scale of many processes, and is catalyzed by a widely studied family of peptidyl-prolyl cis-trans isomerase enzymes. Also, mechanical forces along the peptide chain can speed up the rate of isomerization, resulting in "mechanical catalysis," and have been used to study peptidyl-prolyl cis-trans isomerization and other mechanical properties of proteins. Here, we use constant force molecular dynamics simulations to study the dynamical effects of phosphorylation on serine/threonine-proline protein motifs that are involved in the function of many proteins and have been implicated in many aberrant biological processes. We show that the rate of cis-trans isomerization is slowed down by phosphorylation, in excellent agreement with experiments. We use a well-grounded theory to describe the force dependent rate of isomerization. The calculated rates at zero force are also in excellent agreement with experimentally measured rates, providing additional validation of the models and force field parameters. Our results suggest that the slowdown in the rate upon phosphorylation is mainly due to an increase in the friction along the peptidyl-prolyl bond angle during isomerization. Our results provide a microscopic description of the dynamical effects of post-translational phosphorylation on cis-trans isomerization and insights into the properties of proteins under tension.
NASA Astrophysics Data System (ADS)
Velazquez, Hector A.; Hamelberg, Donald
2015-02-01
Cis-trans isomerization of peptidyl-prolyl bonds of the protein backbone plays an important role in numerous biological processes. Cis-trans isomerization can be the rate-limiting step due its extremely slow dynamics, compared to the millisecond time scale of many processes, and is catalyzed by a widely studied family of peptidyl-prolyl cis-trans isomerase enzymes. Also, mechanical forces along the peptide chain can speed up the rate of isomerization, resulting in "mechanical catalysis," and have been used to study peptidyl-prolyl cis-trans isomerization and other mechanical properties of proteins. Here, we use constant force molecular dynamics simulations to study the dynamical effects of phosphorylation on serine/threonine-proline protein motifs that are involved in the function of many proteins and have been implicated in many aberrant biological processes. We show that the rate of cis-trans isomerization is slowed down by phosphorylation, in excellent agreement with experiments. We use a well-grounded theory to describe the force dependent rate of isomerization. The calculated rates at zero force are also in excellent agreement with experimentally measured rates, providing additional validation of the models and force field parameters. Our results suggest that the slowdown in the rate upon phosphorylation is mainly due to an increase in the friction along the peptidyl-prolyl bond angle during isomerization. Our results provide a microscopic description of the dynamical effects of post-translational phosphorylation on cis-trans isomerization and insights into the properties of proteins under tension.
Self-Healing Nanocomposite Hydrogel with Well-Controlled Dynamic Mechanics
NASA Astrophysics Data System (ADS)
Li, Qiaochu; Mishra, Sumeet; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels
Network dynamics is a crucial factor that determines the macroscopic self-healing rate and efficiency in polymeric hydrogel materials, yet its controllability is seldom studied in most reported self-healing hydrogel systems. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we next designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two hierarchical relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its fast self-healing property without the need for external stimuli.
Single-Molecule Probing the Energy Landscape of Enzymatic Reaction and Non-Covalent Interactions
NASA Astrophysics Data System (ADS)
Lu, H. Peter; Hu, Dehong; Chen, Yu; Vorpagel, Erich R.
2002-03-01
We have applied single-molecule spectroscopy under physiological conditions to study the mechanisms and dynamics of T4 lysozyme enzymatic reactions, characterizing mode-specific protein conformational dynamics. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time. The overall reaction rates were found to vary widely from molecule-to-molecule, and the initial non-specific binding of the enzyme to the substrate was seen to dominate this inhomogeneity. The reaction steps subsequent to the initial binding were found to have homogeneous rates. Molecular dynamics simulation has been applied to elucidate the mechanism and intermediate states of the single-molecule enzymatic reaction. Combining the analysis of single-molecule experimental trajectories, MD simulation trajectories, and statistical modeling, we have revealed the nature of multiple intermediate states involved in the active enzyme-substrate complex formation and the associated conformational change mechanism and dynamics.
Gloppe, A; Verlot, P; Dupont-Ferrier, E; Siria, A; Poncharal, P; Bachelier, G; Vincent, P; Arcizet, O
2014-11-01
Optomechanics, which explores the fundamental coupling between light and mechanical motion, has made important advances in manipulating macroscopic mechanical oscillators down to the quantum level. However, dynamical effects related to the vectorial nature of the optomechanical interaction remain to be investigated. Here we study a nanowire with subwavelength dimensions coupled strongly to a tightly focused beam of light, enabling an ultrasensitive readout of the nanoresonator dynamics. We determine experimentally the vectorial structure of the optomechanical interaction and demonstrate that a bidimensional dynamical backaction governs the nanowire dynamics. Moreover, the spatial topology of the optomechanical interaction is responsible for novel canonical signatures of strong coupling between mechanical modes, which leads to a topological instability that underlies the non-conservative nature of the optomechanical interaction. These results have a universal character and illustrate the increased sensitivity of nanomechanical devices towards spatially varying interactions, opening fundamental perspectives in nanomechanics, optomechanics, ultrasensitive scanning force microscopy and nano-optics.
Veprauskas, Amy; Cushing, J M
2017-03-01
We study a discrete time, structured population dynamic model that is motivated by recent field observations concerning certain life history strategies of colonial-nesting gulls, specifically the glaucous-winged gull (Larus glaucescens). The model focuses on mechanisms hypothesized to play key roles in a population's response to degraded environment resources, namely, increased cannibalism and adjustments in reproductive timing. We explore the dynamic consequences of these mechanics using a juvenile-adult structure model. Mathematically, the model is unusual in that it involves a high co-dimension bifurcation at [Formula: see text] which, in turn, leads to a dynamic dichotomy between equilibrium states and synchronized oscillatory states. We give diagnostic criteria that determine which dynamic is stable. We also explore strong Allee effects caused by positive feedback mechanisms in the model and the possible consequence that a cannibalistic population can survive when a non-cannibalistic population cannot.
Spatiotemporal properties of microsaccades: Model predictions and experimental tests
NASA Astrophysics Data System (ADS)
Zhou, Jian-Fang; Yuan, Wu-Jie; Zhou, Zhao
2016-10-01
Microsaccades are involuntary and very small eye movements during fixation. Recently, the microsaccade-related neural dynamics have been extensively investigated both in experiments and by constructing neural network models. Experimentally, microsaccades also exhibit many behavioral properties. It’s well known that the behavior properties imply the underlying neural dynamical mechanisms, and so are determined by neural dynamics. The behavioral properties resulted from neural responses to microsaccades, however, are not yet understood and are rarely studied theoretically. Linking neural dynamics to behavior is one of the central goals of neuroscience. In this paper, we provide behavior predictions on spatiotemporal properties of microsaccades according to microsaccade-induced neural dynamics in a cascading network model, which includes both retinal adaptation and short-term depression (STD) at thalamocortical synapses. We also successfully give experimental tests in the statistical sense. Our results provide the first behavior description of microsaccades based on neural dynamics induced by behaving activity, and so firstly link neural dynamics to behavior of microsaccades. These results indicate strongly that the cascading adaptations play an important role in the study of microsaccades. Our work may be useful for further investigations of the microsaccadic behavioral properties and of the underlying neural dynamical mechanisms responsible for the behavioral properties.
Jing, Da; Baik, Andrew D.; Lu, X. Lucas; Zhou, Bin; Lai, Xiaohan; Wang, Liyun; Luo, Erping; Guo, X. Edward
2014-01-01
Osteocytes have been hypothesized to be the major mechanosensors in bone. How in situ osteocytes respond to mechanical stimuli is still unclear because of technical difficulties. In vitro studies have shown that osteocytes exhibited unique calcium (Ca2+) oscillations to fluid shear. However, whether this mechanotransduction phenomenon holds for in situ osteocytes embedded within a mineralized bone matrix under dynamic loading remains unknown. Using a novel synchronized loading/imaging technique, we successfully visualized in real time and quantified Ca2+ responses in osteocytes and bone surface cells in situ under controlled dynamic loading on intact mouse tibia. The resultant fluid-induced shear stress on the osteocyte in the lacunocanalicular system (LCS) was also quantified. Osteocytes, but not surface cells, displayed repetitive Ca2+ spikes in response to dynamic loading, with spike frequency and magnitude dependent on load magnitude, tissue strain, and shear stress in the LCS. The Ca2+ oscillations were significantly reduced by endoplasmic reticulum (ER) depletion and P2 purinergic receptor (P2R)/phospholipase C (PLC) inhibition. This study provides direct evidence that osteocytes respond to in situ mechanical loading by Ca2+ oscillations, which are dependent on the P2R/PLC/inositol trisphosphate/ER pathway. This study develops a novel approach in skeletal mechanobiology and also advances our fundamental knowledge of bone mechanotransduction.—Jing, D., Baik, A. D., Lu, X. L., Zhou, B., Lai, X., Wang, L., Luo, E., Guo, X. E. In situ intracellular calcium oscillations in osteocytes in intact mouse long bones under dynamic mechanical loading. PMID:24347610
Experimental study on synchronization of three coupled mechanical metronomes
NASA Astrophysics Data System (ADS)
Hu, Qiang; Liu, Weiqing; Yang, Hujiang; Xiao, Jinghua; Qian, Xiaolan
2013-03-01
In this paper, a CCD acquisition system is set up to explore the dynamics of three coupled mechanical metronomes in order to compensate for the defects of visual observation. The facility is efficient to observe rich dynamics in an experiment, such as phase synchronization, partial phase synchronization and quasi-periodical oscillation, by accurately recording the trajectory of three coupled metronomes. The parameters, e.g., pendulum length and rolling friction are deemed to significantly influence the dynamics of three coupled mechanical metronomes judging from the experimental phenomena. The experimental results are confirmed by the numerical simulation based on the model with different intrinsic frequencies between three metronomes. The metronome and CCD acquisition systems are excellent demonstration apparatuses for a class and an undergraduate physics laboratory.
Xu, ZongRong; Matsika, Spiridoula
2006-11-02
A combined quantum mechanics/molecular mechanics method is described here for considering the solvatochromic shift of excited states in solution. The quantum mechanical solute is described using high level multireference configuration interaction methods (MRCI), while molecular dynamics is used for obtaining the structure of the solvent around the solute. The electrostatic effect of the solvent is included in the quantum description of the solute in an averaged way. This method is used to study solvent effects on the n(O) --> pi* electronic transition of formaldehyde in aqueous solution. The effects of solute polarization, basis sets, and dynamical correlation on the solvatochromic shift, and on dipole moments, have been investigated.
Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation
NASA Technical Reports Server (NTRS)
Herring, Helen
2003-01-01
Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.
Dynamic mechanical analysis of waste tyre rubber filled brake friction composite materials
NASA Astrophysics Data System (ADS)
Rathi, Mukesh Kumar; Singh, Tej; Chauhan, Ranchan
2018-05-01
In this research work, the dynamic mechanical properties of waste tyre rubber filled friction composites were studied. Four friction composites with varying amount of waste rubber (0, 4, 8, 12 wt.%) and barium sulphate (38, 42, 46, 50 wt.%) were designed and fabricated as per industrial norms. Dynamic mechanical analysis has been carried out to characterize the storage modulus, loss modulus and damping factor of the fabricated friction composite. Experimental results indicated that storage modulus decreases with increasing waste rubber content up to particular loading (4 wt.%), and after that it increases with further loading. The loss modulus of the composites increases steadily with increasing waste rubber content whereas, damping factor remain maximum for 12 wt.% waste rubber filled friction composites.
NASA Astrophysics Data System (ADS)
Feng, Aixin; Cao, Yupeng; Wang, Heng; Zhang, Zhengang
2018-01-01
In order to reveal the quantitative control of the residual stress on the surface of metal materials, the relevant theoretical and experimental studies were carried out to investigate the dynamic response of metal thin plates and the formation mechanism of residual stress induced by laser shock wave. In this paper, the latest research trends on the surface residual stress of laser shock processing technology were elaborated. The main progress of laser shock wave propagation mechanism and dynamic response, laser shock, and surface residual stress were discussed. It is pointed out that the multi-scale characterization of laser and material, surface residual stress and microstructure change is a new hotspot in laser shock strengthening technology.
Dynamic performance and mechanical model analysis of a shear thickening fluid damper
NASA Astrophysics Data System (ADS)
Zhao, Qian; He, Yonghui; Yao, Hongliang; Wen, Bangchun
2018-07-01
This paper presents an experimental study of the dynamic performance of a self-developed shear thickening fluid (STF) damper and its mechanical model was proposed by nonlinear fitting. First, STF samples with different mass fraction and dispersion medium were fabricated by nano fumed silica and polyethylene glycol, and its rheological properties were investigated by a rheometer. Second, a smart STF damper was developed and manufactured. Its dynamic properties were experimentally investigated by establishing a vibration test bench, and results indicated that the STF damper can output variable damping force by controlling the loading frequency, loading amplitude and fluid gap. Third, the Bouc–Wen model was proposed to address the dynamic properties of STF damper, and mechanical model analysis was carried out by comparing several fitting functions. It verified that the Bouc–Wen hysteresis model can be better used to describe the nonlinear stiffness, nonlinear damping and rate-dependence characteristics of the STF damper. All these investigations can offer an effective guidance for further theoretical and application study of the smart STF damper in energy dissipation fields.
Etienne, Thibaud; Very, Thibaut; Perpète, Eric A; Monari, Antonio; Assfeld, Xavier
2013-05-02
We present a time-dependent density functional theory computation of the absorption spectra of one β-carboline system: the harmane molecule in its neutral and cationic forms. The spectra are computed in aqueous solution. The interaction of cationic harmane with DNA is also studied. In particular, the use of hybrid quantum mechanics/molecular mechanics methods is discussed, together with its coupling to a molecular dynamics strategy to take into account dynamic effects of the environment and the vibrational degrees of freedom of the chromophore. Different levels of treatment of the environment are addressed starting from purely mechanical embedding to electrostatic and polarizable embedding. We show that a static description of the spectrum based on equilibrium geometry only is unable to give a correct agreement with experimental results, and dynamic effects need to be taken into account. The presence of two stable noncovalent interaction modes between harmane and DNA is also presented, as well as the associated absorption spectrum of harmane cation.
Radiant energy absorption studies for laser propulsion. [gas dynamics
NASA Technical Reports Server (NTRS)
Caledonia, G. E.; Wu, P. K. S.; Pirri, A. N.
1975-01-01
A study of the energy absorption mechanisms and fluid dynamic considerations for efficient conversion of high power laser radiation into a high velocity flow is presented. The objectives of the study are: (1) to determine the most effective absorption mechanisms for converting laser radiation into translational energy, and (2) to examine the requirements for transfer of the absorbed energy into a steady flow which is stable to disturbances in the absorption zone. A review of inverse Bremsstrahlung, molecular and particulate absorption mechanisms is considered and the steady flow and stability considerations for conversion of the laser power to a high velocity flow in a nozzle configuration is calculated. A quasi-one-dimensional flow through a nozzle was formulated under the assumptions of perfect gas.
Mechatronics by Analogy and Application to Legged Locomotion
NASA Astrophysics Data System (ADS)
Ragusila, Victor
A new design methodology for mechatronic systems, dubbed as Mechatronics by Analogy (MbA), is introduced and applied to designing a leg mechanism. The new methodology argues that by establishing a similarity relation between a complex system and a number of simpler models it is possible to design the former using the analysis and synthesis means developed for the latter. The methodology provides a framework for concurrent engineering of complex systems while maintaining the transparency of the system behaviour through making formal analogies between the system and those with more tractable dynamics. The application of the MbA methodology to the design of a monopod robot leg, called the Linkage Leg, is also studied. A series of simulations show that the dynamic behaviour of the Linkage Leg is similar to that of a combination of a double pendulum and a spring-loaded inverted pendulum, based on which the system kinematic, dynamic, and control parameters can be designed concurrently. The first stage of Mechatronics by Analogy is a method of extracting significant features of system dynamics through simpler models. The goal is to determine a set of simpler mechanisms with similar dynamic behaviour to that of the original system in various phases of its motion. A modular bond-graph representation of the system is determined, and subsequently simplified using two simplification algorithms. The first algorithm determines the relevant dynamic elements of the system for each phase of motion, and the second algorithm finds the simple mechanism described by the remaining dynamic elements. In addition to greatly simplifying the controller for the system, using simpler mechanisms with similar behaviour provides a greater insight into the dynamics of the system. This is seen in the second stage of the new methodology, which concurrently optimizes the simpler mechanisms together with a control system based on their dynamics. Once the optimal configuration of the simpler system is determined, the original mechanism is optimized such that its dynamic behaviour is analogous. It is shown that, if this analogy is achieved, the control system designed based on the simpler mechanisms can be directly implemented to the more complex system, and their dynamic behaviours are close enough for the system performance to be effectively the same. Finally it is shown that, for the employed objective of fast legged locomotion, the proposed methodology achieves a better design than Reduction-by-Feedback, a competing methodology that uses control layers to simplify the dynamics of the system.
Watanabe, Hiroshi C; Kubillus, Maximilian; Kubař, Tomáš; Stach, Robert; Mizaikoff, Boris; Ishikita, Hiroshi
2017-07-21
In the condensed phase, quantum chemical properties such as many-body effects and intermolecular charge fluctuations are critical determinants of the solvation structure and dynamics. Thus, a quantum mechanical (QM) molecular description is required for both solute and solvent to incorporate these properties. However, it is challenging to conduct molecular dynamics (MD) simulations for condensed systems of sufficient scale when adapting QM potentials. To overcome this problem, we recently developed the size-consistent multi-partitioning (SCMP) quantum mechanics/molecular mechanics (QM/MM) method and realized stable and accurate MD simulations, using the QM potential to a benchmark system. In the present study, as the first application of the SCMP method, we have investigated the structures and dynamics of Na + , K + , and Ca 2+ solutions based on nanosecond-scale sampling, a sampling 100-times longer than that of conventional QM-based samplings. Furthermore, we have evaluated two dynamic properties, the diffusion coefficient and difference spectra, with high statistical certainty. Furthermore the calculation of these properties has not previously been possible within the conventional QM/MM framework. Based on our analysis, we have quantitatively evaluated the quantum chemical solvation effects, which show distinct differences between the cations.
Study on general theory of kinematics and dynamics of wheeled mobile robots
NASA Astrophysics Data System (ADS)
Tsukishima, Takahiro; Sasaki, Ken; Takano, Masaharu; Inoue, Kenji
1992-03-01
This paper proposes a general theory of kinematics and dynamics of wheeled mobile robots (WMRs). Unlike robotic manipulators which are modeled as 3-dimensional serial link mechanism, WMRs will be modeled as planar linkage mechanism with multiple links branching out from the base and/or another link. Since this model resembles a tree with branches, it will be called 'tree-structured-link'. The end of each link corresponds to the wheel which is in contact with the floor. In dynamics of WMR, equation of motion of a WMR is derived from joint input torques incorporating wheel dynamics. The wheel dynamics determines forces and moments acting on wheels as a function of slip velocity. This slippage of wheels is essential in dynamics of WMR. It will also be shown that the dynamics of WMR reduces to kinematics when slippage of wheels is neglected. Furthermore, the equation of dynamics is rewritten in velocity input form, since most of industrial motors are velocity controlled.
Ghasaban, S; Atai, M; Imani, M; Zandi, M; Shokrgozar, M-A
2011-11-01
The study investigates the photo-polymerization shrinkage behavior, dynamic mechanical properties, and biocompatibility of cyanoacrylate bioadhesives containing POSS nanostructures and TMPTMA as crosslinking agents. Adhesives containing 2-octyl cyanoacrylate (2-OCA) and different percentages of POSS nanostructures and TMPTMA as crosslinking agents were prepared. The 1-phenyl-1, 2-propanedione (PPD) was incorporated as photo-initiator into the adhesive in 1.5, 3, and 4 wt %. The shrinkage strain of the specimens was measured using bonded-disk technique. Shrinkage strain, shrinkage strain rate, maximum and time at maximum shrinkage strain rate were measured and compared. Mechanical properties of the adhesives were also studied using dynamic mechanical thermal analysis (DMTA). Biocompatibility of the adhesives was examined by MTT method. The results showed that shrinkage strain increased with increasing the initiator concentration up to 3 wt % in POSS-containing and 1.5 wt % in TMPTMA-containing specimens and plateaued out at higher concentrations. By increasing the crosslinking agent, shrinkage strain, and shrinkage strain rate increased and the time at maximum shrinkage strain rate decreased. The study indicates that the incorporation of crosslinking agents into the cyanoacrylate adhesives resulted in improved mechanical properties. Preliminary MTT studies also revealed better biocompatibility profile for the adhesives containing crosslinking agents comparing to the neat specimens. Copyright © 2011 Wiley Periodicals, Inc.
Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics
NASA Astrophysics Data System (ADS)
Mathiazhagan, S.; Anup, S.
2016-08-01
Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.
Fang, Shaoyin; Zhu, Ruidan; Lai, Tianshu
2017-03-21
Spin relaxation dynamics of holes in intrinsic GaAs quantum wells is studied using time-resolved circular dichromatic absorption spectroscopy at room temperature. It is found that ultrafast dynamics is dominated by the cooperative contributions of band filling and many-body effects. The relative contribution of the two effects is opposite in strength for electrons and holes. As a result, transient circular dichromatic differential transmission (TCD-DT) with co- and cross-circularly polarized pump and probe presents different strength at several picosecond delay time. Ultrafast spin relaxation dynamics of excited holes is sensitively reflected in TCD-DT with cross-circularly polarized pump and probe. A model, including coherent artifact, thermalization of nonthermal carriers and the cooperative contribution of band filling and many-body effects, is developed, and used to fit TCD-DT with cross-circularly polarized pump and probe. Spin relaxation time of holes is achieved as a function of excited hole density for the first time at room temperature, and increases with hole density, which disagrees with a theoretical prediction based on EY spin relaxation mechanism, implying that EY mechanism may be not dominant hole spin relaxation mechanism at room temperature, but DP mechanism is dominant possibly.
NASA Astrophysics Data System (ADS)
Lafourcade, Paul; Denoual, Christophe; Maillet, Jean-Bernard
2017-06-01
TATB crystal structure consists in graphitic-like sheets arranged in the a-b plane where a, b and c define the edge vectors of the unit cell. This type of stacking provides the TATB monocrystal very anisotropic physical, chemical and mechanical properties. In order to explore which mechanisms are involved in TATB plasticity, we use a Molecular Dynamics code in which the overall deformation is prescribed as a function of time, for any deformation path. Furthermore, a computation of the Green-Lagrange strain tensor is proposed, which helps reveal various defects and plasticity mechanisms. Through prescribed large strain of shock-like deformations, a three-dimensional characterization of TATB monocrystal yield stress has been obtained, confirming the very anisotropic behavior of this energetic material. Various plasticity mechanisms are triggered during these simulations, including counter intuitive defects onset such as gliding along transveral planes containing perfect dislocations and twinning. Gliding in the a-b plane occurs systematically and does not lead to significant plastic behavior, in accordance with a previous study on dislocation core structures for this plane, based on a coupling between the Peierls-Nabarro-Galerkin method and Molecular Dynamics simulations.
Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism
NASA Astrophysics Data System (ADS)
Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian
2013-09-01
It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.
Mechanical relaxations of a Cu60Zr40 metallic glass studied by using a dynamic mechanical analysis
NASA Astrophysics Data System (ADS)
Jeong, H. T.; Park, C. O.
2013-03-01
The mechanical relaxation behaviors of a Cu60Zr40 metallic glass were investigated by using isothermal multi-frequency dynamic mechanical measurements. From the spectra of the elastic moduli, master curves were constructed using the time-temperature superposition principle. The temperature dependence of the shift factor was found to follow the Arrhenius relationship in two temperature regions, one below and the other above the glass transition temperature ( T g ), and the activation energies for low-temperature relaxation and viscous flow were 32.7 kJ/mol and 307.1 kJ/mol, respectively. The decoupling of these two relaxations, shown in the temperature dependent plot of the shift factor, manifests the dynamic glass transition temperature region of the Cu60Zr40 metallic glass. From the temperature dependence of the shift factor, the fragility index of this alloy was also estimated.
NASA Astrophysics Data System (ADS)
Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping
2012-10-01
The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.
A Model to Study Articular Cartilage Mechanical and Biological Responses to Sliding Loads.
Schätti, Oliver R; Gallo, Luigi M; Torzilli, Peter A
2016-08-01
In physiological conditions, joint function involves continuously moving contact areas over the tissue surface. Such moving contacts play an important role for the durability of the tissue. It is known that in pathological joints these motion paths and contact mechanics change. Nevertheless, limited information exists on the impact of such physiological and pathophysiological dynamic loads on cartilage mechanics and its subsequent biological response. We designed and validated a mechanical device capable of applying simultaneous compression and sliding forces onto cartilage explants to simulate moving joint contact. Tests with varying axial loads (1-4 kg) and sliding speeds (1-20 mm/s) were performed on mature viable bovine femoral condyles to investigate cartilage mechanobiological responses. High loads and slow sliding speeds resulted in highest cartilage deformations. Contact stress and effective cartilage moduli increased with increasing load and increasing speed. In a pilot study, changes in gene expression of extracellular matrix proteins were correlated with strain, contact stress and dynamic effective modulus. This study describes a mechanical test system to study the cartilage response to reciprocating sliding motion and will be helpful in identifying mechanical and biological mechanisms leading to the initiation and development of cartilage degeneration.
Dynamics and allostery of the ionotropic glutamate receptors and the ligand binding domain.
Tobi, Dror
2016-02-01
The dynamics of the ligand-binding domain (LBD) and the intact ionotropic glutamate receptor (iGluR) were studied using Gaussian Network Model (GNM) analysis. The dynamics of LBDs with various allosteric modulators is compared using a novel method of multiple alignment of GNM modes of motion. The analysis reveals that allosteric effectors change the dynamics of amino acids at the upper lobe interface of the LBD dimer as well as at the hinge region between the upper- and lower- lobes. For the intact glutamate receptor the analysis show that the clamshell-like movement of the LBD upper and lower lobes is coupled to the bending of the trans-membrane domain (TMD) helices which may open the channel pore. The results offer a new insight on the mechanism of action of allosteric modulators on the iGluR and support the notion of TMD helices bending as a possible mechanism for channel opening. In addition, the study validates the methodology of multiple GNM modes alignment as a useful tool to study allosteric effect and its relation to proteins dynamics. © 2015 Wiley Periodicals, Inc.
The curving calculation of a mechanical device attached to a multi-storey car park
NASA Astrophysics Data System (ADS)
Muscalagiu, C. G.; Muscalagiu, I.; Muscalagiu, D. M.
2017-01-01
Study bunk storage systems for motor vehicles developed much lately due to high demand for parking in congested city centers. In this paper we propose to study mechanism drive bunk platforms for dynamic request. This paper aims to improve the response mechanism on a platform behavior self during operation of the system and identify hot spots. In this paper we propose to analyze the deformations of the superposed platform in the points of application of the exterior forces produced by the weight of the vehicle in a dynamic way. This paper aims to automate the necessary computation for the analysis of the deformations of the superposed platform using Netlogo language.
Accurate Sloshing Modes Modeling: A New Analytical Solution and its Consequences on Control
NASA Astrophysics Data System (ADS)
Gonidou, Luc-Olivier; Desmariaux, Jean
2014-06-01
This study addresses the issue of sloshing modes modeling for GNC analyses purposes. On European launchers, equivalent mechanical systems are commonly used for modeling sloshing effects on launcher dynamics. The representativeness of such a methodology is discussed here. First an exact analytical formulation of the launcher dynamics fitted with sloshing modes is proposed and discrepancies with equivalent mechanical system approach are emphasized. Then preliminary comparative GNC analyses are performed using the different models of dynamics in order to evaluate the impact of the aforementioned discrepancies from GNC standpoint. Special attention is paid to system stability.
Memory Dynamics in Cross-linked Actin Networks
NASA Astrophysics Data System (ADS)
Scheff, Danielle; Majumdar, Sayantan; Gardel, Margaret
Cells demonstrate the remarkable ability to adapt to mechanical stimuli through rearrangement of the actin cytoskeleton, a cross-linked network of actin filaments. In addition to its importance in cell biology, understanding this mechanical response provides strategies for creation of novel materials. A recent study has demonstrated that applied stress can encode mechanical memory in these networks through changes in network geometry, which gives rise to anisotropic shear response. Under later shear, the network is stiffer in the direction of the previously applied stress. However, the dynamics behind the encoding of this memory are unknown. To address this question, we explore the effect of varying either the rigidity of the cross-linkers or the length of actin filament on the time scales required for both memory encoding and over which it later decays. While previous experiments saw only a long-lived memory, initial results suggest another mechanism where memories relax relatively quickly. Overall, our study is crucial for understanding the process by which an external stress can impact network arrangement and thus the dynamics of memory formation.
Density-dependent liquid nitromethane decomposition: molecular dynamics simulations based on ReaxFF.
Rom, Naomi; Zybin, Sergey V; van Duin, Adri C T; Goddard, William A; Zeiri, Yehuda; Katz, Gil; Kosloff, Ronnie
2011-09-15
The decomposition mechanism of hot liquid nitromethane at various compressions was studied using reactive force field (ReaxFF) molecular dynamics simulations. A competition between two different initial thermal decomposition schemes is observed, depending on compression. At low densities, unimolecular C-N bond cleavage is the dominant route, producing CH(3) and NO(2) fragments. As density and pressure rise approaching the Chapman-Jouget detonation conditions (∼30% compression, >2500 K) the dominant mechanism switches to the formation of the CH(3)NO fragment via H-transfer and/or N-O bond rupture. The change in the decomposition mechanism of hot liquid NM leads to a different kinetic and energetic behavior, as well as products distribution. The calculated density dependence of the enthalpy change correlates with the change in initial decomposition reaction mechanism. It can be used as a convenient and useful global parameter for the detection of reaction dynamics. Atomic averaged local diffusion coefficients are shown to be sensitive to the reactions dynamics, and can be used to distinguish between time periods where chemical reactions occur and diffusion-dominated, nonreactive time periods. © 2011 American Chemical Society
ERIC Educational Resources Information Center
Steenbeek, Henderien; van Geert, Paul
2008-01-01
Studying short-term dynamic processes and change mechanisms in interaction yields important knowledge that contributes to understanding long-term social development of children. In order to get a grip on this short-term dynamics of interaction processes, the authors made a dynamic systems model of dyadic interaction of children during one play…
An Analytical Dynamics Approach to the Control of Mechanical Systems
NASA Astrophysics Data System (ADS)
Mylapilli, Harshavardhan
A new and novel approach to the control of nonlinear mechanical systems is presented in this study. The approach is inspired by recent results in analytical dynamics that deal with the theory of constrained motion. The control requirements on the dynamical system are viewed from an analytical dynamics perspective and the theory of constrained motion is used to recast these control requirements as constraints on the dynamical system. Explicit closed form expressions for the generalized nonlinear control forces are obtained by using the fundamental equation of mechanics. The control so obtained is optimal at each instant of time and causes the constraints to be exactly satisfied. No linearizations and/or approximations of the nonlinear dynamical system are made, and no a priori structure is imposed on the nature of nonlinear controller. Three examples dealing with highly nonlinear complex dynamical systems that are chosen from diverse areas of discrete and continuum mechanics are presented to demonstrate the control approach. The first example deals with the energy control of underactuated inhomogeneous nonlinear lattices (or chains), the second example deals with the synchronization of the motion of multiple coupled slave gyros with that of a master gyro, and the final example deals with the control of incompressible hyperelastic rubber-like thin cantilever beams. Numerical simulations accompanying these examples show the ease, simplicity and the efficacy with which the control methodology can be applied and the accuracy with which the desired control objectives can be met.
Anderst, William
2016-01-01
Arthrodesis is the standard of care for numerous pathologic conditions of the cervical spine and is performed over 150,000 times annually in the United States. The primary long-term concern after this surgery is adjacent segment disease (ASD), defined as new clinical symptoms adjacent to a previous fusion. The incidence of adjacent segment disease is approximately 3% per year, meaning that within 10 years of the initial surgery, approximately 25% of cervical arthrodesis patients require a second procedure to address symptomatic adjacent segment degeneration. Despite the high incidence of ASD, until recently, there was little data available to characterize in vivo adjacent segment mechanics during dynamic motion. This manuscript reviews recent advances in our knowledge of adjacent segment mechanics after cervical arthrodesis that have been facilitated by the use of dynamic biplane radiography. The primary observations from these studies are that current in vitro test paradigms often fail to replicate in vivo spine mechanics before and after arthrodesis, that intervertebral mechanics vary among cervical motion segments, and that joint arthrokinematics (i.e., the interactions between adjacent vertebrae) are superior to traditional kinematics measurements for identifying altered adjacent segment mechanics after arthrodesis. Future research challenges are identified, including improving the biofidelity of in vitro tests, determining the natural history of in vivo spine mechanics, conducting prospective longitudinal studies on adjacent segment kinematics and arthrokinematics after single and multiple-level arthrodesis, and creating subject-specific computational models to accurately estimate muscle forces and tissue loading in the spine during dynamic activities. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Verkhivker, Gennady M.
2012-01-01
Diversity and complexity of MDM2 mechanisms govern its principal function as the cellular antagonist of the p53 tumor suppressor. Structural and biophysical studies have demonstrated that MDM2 binding could be regulated by the dynamics of a pseudo-substrate lid motif. However, these experiments and subsequent computational studies have produced conflicting mechanistic models of MDM2 function and dynamics. We propose a unifying conformational selection model that can reconcile experimental findings and reveal a fundamental role of the lid as a dynamic regulator of MDM2-mediated binding. In this work, structure, dynamics and energetics of apo-MDM2 are studied as a function of posttranslational modifications and length of the lid. We found that the dynamic equilibrium between “closed” and “semi-closed” lid forms may be a fundamental characteristic of MDM2 regulatory interactions, which can be modulated by phosphorylation, phosphomimetic mutation as well as by the lid size. Our results revealed that these factors may regulate p53-MDM2 binding by fine-tuning the thermodynamic equilibrium between preexisting conformational states of apo-MDM2. In agreement with NMR studies, the effect of phosphorylation on MDM2 interactions was more pronounced with the truncated lid variant that favored the thermodynamically dominant closed form. The phosphomimetic mutation S17D may alter the lid dynamics by shifting the thermodynamic equilibrium towards the ensemble of “semi-closed” conformations. The dominant “semi-closed” lid form and weakened dependence on the phosphorylation seen in simulations with the complete lid can provide a rationale for binding of small p53-based mimetics and inhibitors without a direct competition with the lid dynamics. The results suggested that a conformational selection model of preexisting MDM2 states may provide a robust theoretical framework for understanding MDM2 dynamics. Probing biological functions and mechanisms of MDM2 regulation would require further integration of computational and experimental studies and may help to guide drug design of novel anti-cancer therapeutics. PMID:22815859
NASA Astrophysics Data System (ADS)
Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun
2010-03-01
Molecular dynamics simulations of nanoscratching processes were used to study the atomic-scale removal mechanism of single crystalline silicon in chemical mechanical polishing (CMP) process and particular attention was paid to the effect of scratching depth. The simulation results under a scratching depth of 1 nm showed that a thick layer of silicon material was removed by chip formation and an amorphous layer was formed on the silicon surface after nanoscratching. By contrast, the simulation results with a depth of 0.1 nm indicated that just one monoatomic layer of workpiece was removed and a well ordered crystalline surface was obtained, which is quite consistent with previous CMP experimental results. Therefore, monoatomic layer removal mechanism was presented, by which it is considered that during CMP process the material was removed by one monoatomic layer after another, and the mechanism could provide a reasonable understanding on how the high precision surface was obtained. Also, the effects of the silica particle size and scratching velocity on the removal mechanism were investigated; the wear regimes and interatomic forces between silica particle and workpiece were studied to account for the different removal mechanisms with indentation depths of 0.1 and 1 nm.
Linear-Nonlinear-Poisson Models of Primate Choice Dynamics
ERIC Educational Resources Information Center
Corrado, Greg S.; Sugrue, Leo P.; Seung, H. Sebastian; Newsome, William T.
2005-01-01
The equilibrium phenomenon of matching behavior traditionally has been studied in stationary environments. Here we attempt to uncover the local mechanism of choice that gives rise to matching by studying behavior in a highly dynamic foraging environment. In our experiments, 2 rhesus monkeys ("Macacca mulatta") foraged for juice rewards by making…
Shi, Ze; Castro, Carlos E; Arya, Gaurav
2017-05-23
Structural DNA nanotechnology, the assembly of rigid 3D structures of complex yet precise geometries, has recently been used to design dynamic, mechanically compliant nanostructures with tunable equilibrium conformations and conformational distributions. Here we use coarse-grained molecular dynamics simulations to provide insights into the conformational dynamics of a set of mechanically compliant DNA nanostructures-DNA hinges that use single-stranded DNA "springs" to tune the equilibrium conformation of a layered double-stranded DNA "joint" connecting two stiff "arms" constructed from DNA helix bundles. The simulations reproduce the experimentally measured equilibrium angles between hinge arms for a range of hinge designs. The hinges are found to be structurally stable, except for some fraying of the open ends of the DNA helices comprising the hinge arms and some loss of base-pairing interactions in the joint regions coinciding with the crossover junctions, especially in hinges designed to exhibit a small bending angle that exhibit large local stresses resulting in strong kinks in their joints. Principal component analysis reveals that while the hinge dynamics are dominated by bending motion, some twisting and sliding of hinge arms relative to each other also exists. Forced deformation of the hinges reveals distinct bending mechanisms for hinges with short, inextensible springs versus those with longer, more extensible springs. Lastly, we introduce an approach for rapidly predicting equilibrium hinge angles from individual force-deformation behaviors of its single- and double-stranded DNA components. Taken together, these results demonstrate that coarse-grained modeling is a promising approach for designing, predicting, and studying the dynamics of compliant DNA nanostructures, where conformational fluctuations become important, multiple deformation mechanisms exist, and continuum approaches may not yield accurate properties.
Dynamic Compression of Chondrocyte-Agarose Constructs Reveals New Candidate Mechanosensitive Genes
Bougault, Carole; Aubert-Foucher, Elisabeth; Paumier, Anne; Perrier-Groult, Emeline; Huot, Ludovic; Hot, David; Duterque-Coquillaud, Martine; Mallein-Gerin, Frédéric
2012-01-01
Articular cartilage is physiologically exposed to repeated loads. The mechanical properties of cartilage are due to its extracellular matrix, and homeostasis is maintained by the sole cell type found in cartilage, the chondrocyte. Although mechanical forces clearly control the functions of articular chondrocytes, the biochemical pathways that mediate cellular responses to mechanical stress have not been fully characterised. The aim of our study was to examine early molecular events triggered by dynamic compression in chondrocytes. We used an experimental system consisting of primary mouse chondrocytes embedded within an agarose hydrogel; embedded cells were pre-cultured for one week and subjected to short-term compression experiments. Using Western blots, we demonstrated that chondrocytes maintain a differentiated phenotype in this model system and reproduce typical chondrocyte-cartilage matrix interactions. We investigated the impact of dynamic compression on the phosphorylation state of signalling molecules and genome-wide gene expression. After 15 min of dynamic compression, we observed transient activation of ERK1/2 and p38 (members of the mitogen-activated protein kinase (MAPK) pathways) and Smad2/3 (members of the canonical transforming growth factor (TGF)-β pathways). A microarray analysis performed on chondrocytes compressed for 30 min revealed that only 20 transcripts were modulated more than 2-fold. A less conservative list of 325 modulated genes included genes related to the MAPK and TGF-β pathways and/or known to be mechanosensitive in other biological contexts. Of these candidate mechanosensitive genes, 85% were down-regulated. Down-regulation may therefore represent a general control mechanism for a rapid response to dynamic compression. Furthermore, modulation of transcripts corresponding to different aspects of cellular physiology was observed, such as non-coding RNAs or primary cilium. This study provides new insight into how chondrocytes respond to mechanical forces. PMID:22615857
Kobayashi, Hirokazu; Kanamura, Tomonao; Koshida, Sentaro; Miyashita, Koji; Okado, Tsuruo; Shimizu, Takuya; Yokoe, Kiyoshi
2010-01-01
The mechanisms of anterior cruciate ligament (ACL) injuries are still inconclusive from an epidemiological standpoint. An epidemiological approach in a large sample group over an appropriate period of years will be necessary to enhance the current knowledge of the ACL injury mechanism. The objective of the study was to investigate the ACL injury occurrence in a large sample over twenty years and demonstrate the relationships between the ACL injury occurrence and the dynamic knee alignment at the time of the injury. We investigated the activity, the injury mechanism, and the dynamic knee alignment at the time of the injury in 1,718 patients diagnosed as having the ACL injuries. Regarding the activity at the time of the injury, “competition ”was the most common, accounting for about half of all the injuries. The current result also showed that the noncontact injury was the most common, which was observed especially in many female athletes. Finally, the dynamic alignment of “Knee-in & Toe- out ”(i.e. dynamic knee valgus) was the most common, accounting for about half. These results enhance our understanding of the ACL injury mechanism and may be used to guide future injury prevention strategies. Key points We investigated the situation of ACL injury occurrence, especially dynamic alignments at the time of injury, in 1,718 patients who had visited our institution for surgery and physical therapy for twenty years. Our epidemiological study of the large patient group revealed that “knee-in & toe-out ”alignment was the most frequently seen at the time of the ACL injury. From an epidemiological standpoint, we need to pay much attention to avoiding “Knee-in & Toe-out ”alignment during sports activities. PMID:24149795
van der Vaart, Arjan
2015-05-01
Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.
Gao, Shan; Liao, Quanwen; Liu, Wei; Liu, Zhichun
2017-10-31
Recently, numerous studies focused on the wetting process of droplets on various surfaces at a microscale level. However, there are a limited number of studies about the mechanism of condensation on patterned surfaces. The present study performed the dynamic wetting behavior of water droplets and condensation process of water molecules on substrates with different pillar structure parameters, through molecular dynamic simulation. The dynamic wetting results indicated that droplets exhibit Cassie state, PW state, and Wenzel state successively on textured surfaces with decreasing solid fraction. The droplets possess a higher static contact angle and a smaller spreading exponent on textured surfaces than those on smooth surfaces. The condensation processes, including the formation, growth, and coalescence of a nanodroplet, are simulated and quantitatively recorded, which are difficult to be observed by experiments. In addition, a wetting transition and a dewetting transition were observed and analyzed in condensation on textured surfaces. Combining these simulation results with previous theoretical and experimental studies will guide us to understand the hypostasis and mechanism of the condensation more clearly.
Camouflage during movement in the European cuttlefish (Sepia officinalis).
Josef, Noam; Berenshtein, Igal; Fiorito, Graziano; Sykes, António V; Shashar, Nadav
2015-11-01
A moving object is considered conspicuous because of the movement itself. When moving from one background to another, even dynamic camouflage experts such as cephalopods should sacrifice their extraordinary camouflage. Therefore, minimizing detection at this stage is crucial and highly beneficial. In this study, we describe a background-matching mechanism during movement, which aids the cuttlefish to downplay its presence throughout movement. In situ behavioural experiments using video and image analysis, revealed a delayed, sigmoidal, colour-changing mechanism during movement of Sepia officinalis across uniform black and grey backgrounds. This is a first important step in understanding dynamic camouflage during movement, and this new behavioural mechanism may be incorporated and applied to any dynamic camouflaging animal or man-made system on the move. © 2015. Published by The Company of Biologists Ltd.
An ab-initio study of mechanical, dynamical and electronic properties of MgEu intermetallic
NASA Astrophysics Data System (ADS)
Kumar, S. Ramesh; Jaiganesh, G.; Jayalakshmi, V.
2018-04-01
The theoretical investigation on the mechanical, dynamical and electronic properties of MgEu in CsCl-type structure has been carried out through the ab-initio calculations within the framework of the density functional theory and the density functional perturbation theory. For the purpose, Vienna Ab initio Simulation Package and Phonopy packages were used. Our calculated ground-state properties of MgEu are in good agreement with other available results. Our computed elastic constants and phonon spectrum results suggest that MgEu is mechanically and dynamically stable up to 5 GPa. The thermodynamic quantities as a function of temperatures are also reported and discussed. The band structure, density of states and charge density also calculated to understand the electronic properties of MgEu.
Noise suppression for micromechanical resonator via intrinsic dynamic feedback
NASA Astrophysics Data System (ADS)
Ian, Hou; Gong, Zhi-Rui; Sun, Chang-Pu
2008-09-01
We study a dynamic mechanism to passively suppress the thermal noise of a micromechanical resonator through an intrinsic self-feedback that is genuinely non-Markovian. We use two coupled resonators, one as the target resonator and the other as an ancillary resonator, to illustrate the mechanism and its noise reduction effect. The intrinsic feedback is realized through the dynamics of coupling between the two resonators: the motions of the target resonator and the ancillary resonator mutually inthence each other in a cyclic fashion. Specifically, the states that the target resonator has attained earlier will affect the state it attains later due to the presence of the ancillary resonator. We show that the feedback mechanism will bring forth the effect of noise suppression in the spectrum of displacement, but not in the spectrum of momentum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rich, D.C.; Huo, P.P.; Liu, C.
1993-12-31
The thermal, dynamic mechanical, and dielectric properties of the semicrystalline thermoplastic polyimide LaRC-CPI were studied. Using differential scanning calorimetry to measure heats of fusion and WAXS to measure crystallinity, the heat of fusion of perfect crystalline LaRC-CPI was determined to be 92 {+-} 2 J/g. DMA and dielectric measurements were performed on three LaRC-CPI films (as received, annealed, and amorphous). Crystallinity was found to reinforce the rubbery state resulting in a higher modulus and broader distribution of relaxation times. Broader relaxation for the crystalline LaRC-CPI was also observed in the dielectric tests. Processing strain and the thermal history were foundmore » to have a significant impact in both dynamic mechanical and dielectric relaxation measurements.« less
Dynamic analysis of multirigid-body system based on the Gauss principle
NASA Astrophysics Data System (ADS)
Lilov, L.; Lorer, M.
Two different approaches can be used for solving the basic dynamic problem in the case of a multirigid body system. The first approach is based on the derivation of the nonlinear equations of motion of the mechanical system, while the second approach is concerned with the direct derivation of the unknown accelerations. Using the Gauss principle, the accelerations can be determined by using the condition for the minimum of a functional. The present investigation is concerned with an algorithm for a dynamical study of a multibody system on the basis of the Gauss principle. The system may contain an arbitrary number of closed loops. The main purpose of the proposed algorithm is the investigation of the dynamics of industrial manipulators, robots, and similar mechanisms.
Study on the performance of the articulated mechanism of tracked all-terrain vehicle
NASA Astrophysics Data System (ADS)
Meng, Zhongliang; Zang, Hao
2018-04-01
Tracked all-terrain vehicle consists of two vehicle bodies featured by superior performance, the running system which can meet the all-terrain requirement, the unique steering system, power system and the vehicle body protection system. This paper focuses on the study of the five freely articulated steering system of crawler-type all-terrain engineering vehicle. The study on the dynamic characteristics of the articulated steering system can't do without the dynamic analysis of the whole vehicle. Therefore, it first studies the overall model of the tracked all-terrain vehicle, and then based on the critical states where the overall model is situated under different road conditions, mathematical models of the articulated mechanism are built under different operating conditions and also the load bearing condition of the articulated mechanism is deduced.
Cytoskeletal mechanics: Structure and Dynamics
NASA Astrophysics Data System (ADS)
Bausch, Andreas
2008-03-01
The actin cytoskeleton, a dynamic network of semiflexible filaments and associated regulatory proteins, is responsible for the extraordinary viscoelastic properties of cells. Especially for cellular motility the controlled self assembly to defined structures and the dynamic reorganization on different time scales are of outstanding importance. A prominent example for the controlled self assembly are actin bundles: in many cytoskeletal processes cells rely on the tight control of the structural and mechanical properties of the actin bundles. Using an in vitro model system we show that size control relies on a mismatch between the helical structure of individual actin filaments and the packing symmetry within bundles. While such self assembled structure may evoke the picture of a static network the contrary is the case: the cytoskeleton is highly dynamic and a constant remodeling takes place in vivo. Such dynamic reorganization of the cytoskeleton relies on the non-static nature of single actin/ABP bonds. Here, we study the thermal and forced unbinding events of individual ABP in such in vitro networks. The binding kinetics of the transient crosslinkers determines the mechanical response of such networks -- in the linear as well in the non-linear regime. These effects are important prerequisites for the high adaptability of cells and at the same time might be the molecular mechanism employed by them for mechanosensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanton, Courtney; Kuo, I-F W.; Mundy, Christopher J.
2007-11-01
Despite decades of study, the mechanism of orotidine-5'-monophosphate decarboxylase (ODCase) remains unresolved. A computational investigation of the direct decarboxylation mechanism has been performed using mixed quantum mechanical/molecular mechanical (QM/MM) dynamics simulations. The study was performed with the program CP2K that integrates classical dynamics and ab initio dynamics based on the Born-Oppenheimer approach. Two different QM regions were explored. It was found that the size of the QM region has a dramatic effect on the calculated reaction barrier. The free energy barriers for decarboxylation of orotidine-5'-monophosphate (OMP) in solution and in the enzyme were determined with the metadynamics method to bemore » 40 kcal/mol and 33 kcal/mol, respectively. The calculated change in activation free energy (ΔΔG±) on going from solution to the enzyme is therefore -7 kcal/mol, far less than the experimental change of -23 kcal/mol (for kcat/kuncat Radzicka, A.; Wolfenden, R., Science. 1995, 267, 90-92). These results do not support the direct decarboxylation mechanism in the enzyme. Funding was provided by the University of California Lawrence Livermore National Laboratory (LLNL) and the National Institutes of Health (NIH). Part of this work was performed under the auspices of the U.S. Department of Energy by LLNL under contract No. W-7405-Eng-48. Computer resources were provided by Livermore Computing.« less
Zhukova, A G; Alekhina, D A; Sazontova, T G; Prokop'ev, Yu A; Gorokhova, L G; Stryapko, N V; Mikhailova, N N
2013-12-01
The mechanisms of intracellular defense and activity of free radical oxidation in the myocardium were studied in the dynamics of chronic fluorine intoxication. At the early stages of fluorine intoxication (day 3-week 3), the concentrations of defense proteins HIF-1α, HSC73, and HOx-2 and activity of the main metabolic enzymes increased, which promoted maintenance of cardiomyocyte structure and function at the normal physiological level. At late stages of fluorine intoxication (weeks 6 and 9), metabolic changes in the myocardium attest to high strain of the adaptive mechanisms.
Aoi, Shinya; Tsuchiya, Kazuo; Kokubu, Hiroshi
2016-01-01
Passive dynamic walking is a useful model for investigating the mechanical functions of the body that produce energy-efficient walking. The basin of attraction is very small and thin, and it has a fractal-like shape; this explains the difficulty in producing stable passive dynamic walking. The underlying mechanism that produces these geometric characteristics was not known. In this paper, we consider this from the viewpoint of dynamical systems theory, and we use the simplest walking model to clarify the mechanism that forms the basin of attraction for passive dynamic walking. We show that the intrinsic saddle-type hyperbolicity of the upright equilibrium point in the governing dynamics plays an important role in the geometrical characteristics of the basin of attraction; this contributes to our understanding of the stability mechanism of bipedal walking. PMID:27436971
Almonroeder, Thomas G; Benson, Lauren C; O'Connor, Kristian M
2016-09-01
Study Design Controlled laboratory study, cross-sectional. Background Orthotic prescription is often based on the premise that the mechanical effects will be more prominent in individuals with greater calcaneal eversion. Objective To compare the effects of a prefabricated foot orthosis on lower extremity kinematics and kinetics between recreational athletes with high and low calcaneal eversion during running. Methods Thirty-one recreational athletes were included in this study. Three-dimensional kinematic and kinetic data were collected while running with and without a foot orthosis. Participants were grouped based on the degree of calcaneal eversion during the running trials relative to a standing trial (dynamic foot motion). The effects of the orthosis on the frontal and transverse plane angles and moments of the hip and knee were compared between the 10 participants with the greatest and least amount of dynamic foot motion. Results There were no significant interactions (group by orthotic condition) for any of the kinematic or kinetic variables of interest. Conclusion The effects of an orthosis on the mechanics of the hip and knee do not appear to be dependent on an individual's dynamic foot motion. J Orthop Sports Phys Ther 2016;46(9):749-755. Epub 5 Aug 2016. doi:10.2519/jospt.2016.6253.
NASA Astrophysics Data System (ADS)
Dvorak, R.; Henrard, J.
1996-03-01
The following topics were dealt with: celestial mechanics, dynamical astronomy, planetary systems, resonance scattering, Hamiltonian mechanics non-integrability, irregular periodic orbits, escape, dynamical system mapping, fast Fourier method, precession-nutation, Nekhoroshev theorem, asteroid dynamics, the Trojan problem, planet-crossing orbits, Kirkwood gaps, future research, human comprehension limitations.
Dynamic Analysis of Hammer Mechanism "Twin Hammer" of Impact Wrench
NASA Astrophysics Data System (ADS)
Konečný, M.; Slavík, J.
This paper describes function of the hammer mechanism "Twin hammer" the impact wrench, calculation of dynamic forces exerted on the mechanism and determining the contact pressures between the parts of the mechanism. The modelling of parts was performed in system Pro ENGINEER—standard. The simulation and finding dynamic forces was performed in advanced module Pro ENGINEER—mechanism design and finding contacts pressures in modul Pro ENGENEER—mechanica.
Importance of dynamic topography in Himalaya-Tibetan plateau region
NASA Astrophysics Data System (ADS)
Ghosh, A.; Singh, S.
2017-12-01
Himalaya-Tibetan plateau region has the highest topography in the world. Various studies have been done to understand the mechanisms responsible for sustaining this high topography. However, the existence of dynamic topography in this region is still uncertain, though there have been some studies exploring the role of channel flow in lower crust leading to some topography. We investigated the role of radial mantle flow in this region by studying the relationship between geoid and topography. High geoid-to-topography ratios (GTR) were observed along the Himalayas suggesting deeper compensation mechanisms. However, further north, the geoid and topography relationship became a lot more complex as high as well as low GTR values were observed. The high GTR regions also coincided with area of high filtered free air gravity anomalies, indicating dynamic support. We also looked at the spectral components of gravity, geoid and topography, and calculated response functions to distinguish between different compensation mechanisms. We estimated the average elastic thickness of the whole region to be around 40 km from coherence and admittance studies. The GTR and admittance-coherence studies suggest deeper mass anomalies playing a role in supporting the topography along Himalayas and the area between Altyn Tagh and Kunlun faults.
Xie, Jing; Otto, Rico; Mikosch, Jochen; Zhang, Jiaxu; Wester, Roland; Hase, William L
2014-10-21
For the traditional model of gas-phase X(-) + CH3Y SN2 reactions, C3v ion-dipole pre- and postreaction complexes X(-)---CH3Y and XCH3---Y(-), separated by a central barrier, are formed. Statistical intramolecular dynamics are assumed for these complexes, so that their unimolecular rate constants are given by RRKM theory. Both previous simulations and experiments have shown that the dynamics of these complexes are not statistical and of interest is how these nonstatistical dynamics affect the SN2 rate constant. This work also found there was a transition from an indirect, nonstatistical, complex forming mechanism, to a direct mechanism, as either the vibrational and/or relative translational energy of the reactants was increased. The current Account reviews recent collaborative studies involving molecular beam ion-imaging experiments and direct (on-the-fly) dynamics simulations of the SN2 reactions for which Cl(-), F(-), and OH(-) react with CH3I. Also considered are reactions of the microsolvated anions OH(-)(H2O) and OH(-)(H2O)2 with CH3I. These studies have provided a detailed understanding of the atomistic mechanisms for these SN2 reactions. Overall, the atomistic dynamics for the Cl(-) + CH3I SN2 reaction follows those found in previous studies. The reaction is indirect, complex forming at low reactant collision energies, and then there is a transition to direct reaction between 0.2 and 0.4 eV. The direct reaction may occur by rebound mechanism, in which the ClCH3 product rebounds backward from the I(-) product or a stripping mechanism in which Cl(-) strips CH3 from the I atom and scatters in the forward direction. A similar indirect to direct mechanistic transition was observed in previous work for the Cl(-) + CH3Cl and Cl(-) + CH3Br SN2 reactions. At the high collision energy of 1.9 eV, a new indirect mechanism, called the roundabout, was discovered. For the F(-) + CH3I reaction, there is not a transition from indirect to direct reaction as Erel is increased. The indirect mechanism, with prereaction complex formation, is important at all the Erel investigated, contributing up ∼60% of the reaction. The remaining direct reaction occurs by the rebound and stripping mechanisms. Though the potential energy curve for the OH(-) + CH3I reaction is similar to that for F(-) + CH3I, the two reactions have different dynamics. They are akin, in that for both there is not a transition from an indirect to direct reaction. However, for F(-) + CH3I indirect reaction dominates at all Erel, but it is less important for OH(-) + CH3I and becomes negligible as Erel is increased. Stripping is a minor channel for F(-) + CH3I, but accounts for more than 60% of the OH(-) + CH3I reaction at high Erel. Adding one or two H2O molecules to OH(-) alters the reaction dynamics from that for unsolvated OH(-). Adding one H2O molecule enhances indirect reaction at low Erel, and changes the reaction mechanism from primarily stripping to rebound at high Erel. With two H2O molecules the dynamics is indirect and isotropic at all collision energies.
NASA Astrophysics Data System (ADS)
Zeng, Baoping; Wang, Chao; Zhang, Yu; Gong, Yajun; Hu, Sanbao
2017-12-01
Joint clearances and friction characteristics significantly influence the mechanism vibration characteristics; for example: as for joint clearances, the shaft and bearing of its clearance joint collide to bring about the dynamic normal contact force and tangential coulomb friction force while the mechanism works; thus, the whole system may vibrate; moreover, the mechanism is under contact-impact with impact force constraint from free movement under action of the above dynamic forces; in addition, the mechanism topology structure also changes. The constraint relationship between joints may be established by a repeated complex nonlinear dynamic process (idle stroke - contact-impact - elastic compression - rebound - impact relief - idle stroke movement - contact-impact). Analysis of vibration characteristics of joint parts is still a challenging open task by far. The dynamic equations for any mechanism with clearance is often a set of strong coupling, high-dimensional and complex time-varying nonlinear differential equations which are solved very difficultly. Moreover, complicated chaotic motions very sensitive to initial values in impact and vibration due to clearance let high-precision simulation and prediction of their dynamic behaviors be more difficult; on the other hand, their subsequent wearing necessarily leads to some certain fluctuation of structure clearance parameters, which acts as one primary factor for vibration of the mechanical system. A dynamic model was established to the device for opening the deepwater robot cabin door with joint clearance by utilizing the finite element method and analysis was carried out to its vibration characteristics in this study. Moreover, its response model was carried out by utilizing the DOE method and then the robust optimization design was performed to sizes of the joint clearance and the friction coefficient change range so that the optimization design results may be regarded as reference data for selecting bearings and controlling manufacturing process parameters for the opening mechanism. Several optimization objectives such as x/y/z accelerations for various measuring points and dynamic reaction forces of mounting brackets, and a few constraints including manufacturing process were taken into account in the optimization models, which were solved by utilizing the multi-objective genetic algorithm (NSGA-II). The vibration characteristics of the optimized opening mechanism are superior to those of the original design. In addition, the numerical forecast results are in good agreement with the test results of the prototype.
NASA Astrophysics Data System (ADS)
Adak, Nitai Chandra; Chhetri, Suman; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas
2018-03-01
The Carbon fiber (CF)/epoxy composites are being used in the automotive and aerospace industries owing to their high specific mechanical strength to weight ratio compared to the other conventional metal and alloys. However, the low interfacial adhesion between fiber and polymer matrix results the inter-laminar fracture of the composites. Effects of different carbonaceous nanomaterials i.e., carbon nanotubes (CNT), graphene nanosheets (GNPs), graphene oxide (GO) etc. on the static mechanical properties of the composites were investigated in detail. Only a few works focused on the improvement of the dynamic mechanical of the CF/epoxy composites. Herein, the effect of thermally reduced grapheme oxide (TRGO) on the dynamic mechanical properties of the CF/epoxy composites was investigated. At first, GO was synthesized using modified Hummers method and then reduced the synthesized GO inside a vacuum oven at 800 °C for 5 min. The prepared TRGO was dispersed in the epoxy resin to modify the epoxy matrix. Then, a number of TRGO/CF/epoxy laminates were manufactured incorporating different wt% of TRGO by vacuum assisted resin transfer molding (VARTM) technique. The developed laminates were cured at room temperature for 24 h and then post cured at 120 °C for 2 h. The dynamic mechanical analyzer (DMA 8000 Perkin Elmer) was used to examine the dynamic mechanical properties of the TRGO/CF/epoxy composites according to ASTM D7028. The dimension of the specimen was 44×10×2.4 mm3 for the DMA test. This test was carried out under flexural loading mode (duel cantilever) at a frequency of 1 Hz and amplitude of 50 μm. The temperature was ramped from 30 to 200 °C with a heating rate of 5 °C min-1. The dynamic mechanical analysis of the 0.2 wt% TRGO incorporated CF/epoxy composites showed ~ 96% enhancement in storage modulus and ~ 12 °C increments in glass transition temperature (Tg) compared to the base CF/epoxy composites. The fiber-matrix interaction was studied by Cole-Cole plot analysis. It proved the homogeneous dispersion of the epoxy resin and TRGO. The homogeneous dispersion of the TRGO in the epoxy matrix increased the overall enhancement of the dynamic mechanical properties of the hybrid composites.
2014-01-01
Airway hyperresponsiveness (AHR) in asthma remains poorly understood despite significant research effort to elucidate relevant underlying mechanisms. In particular, a significant body of experimental work has focused on the effect of tidal fluctuations on airway smooth muscle (ASM) cells, tissues, lung slices, and whole airways to understand the bronchodilating effect of tidal breathing and deep inspirations. These studies have motivated conceptual models that involve dynamic reorganization of both cytoskeletal components as well as contractile machinery. In this article, a biophysical model of the whole ASM cell is presented that combines 1) crossbridge cycling between actin and myosin; 2) actin-myosin disconnectivity, under imposed length changes, to allow dynamic reconfiguration of “force transmission pathways”; and 3) dynamic parallel-to-serial transitions of contractile units within these pathways that occur through a length fluctuation. Results of this theoretical model suggest that behavior characteristic of experimentally observed force-length loops of maximally activated ASM strips can be explained by interactions among the three mechanisms. Crucially, both sustained disconnectivity and parallel-to-serial transitions are necessary to explain the nature of hysteresis and strain stiffening observed experimentally. The results provide strong evidence that dynamic rearrangement of contractile machinery is a likely mechanism underlying many of the phenomena observed at timescales associated with tidal breathing. This theoretical cell-level model captures many of the salient features of mechanical behavior observed experimentally and should provide a useful starting block for a bottom-up approach to understanding tissue-level mechanical behavior. PMID:24481961
Internal Fluid Dynamics and Frequency Scaling of Sweeping Jet Fluidic Oscillators
NASA Astrophysics Data System (ADS)
Seo, Jung Hee; Salazar, Erik; Mittal, Rajat
2017-11-01
Sweeping jet fluidic oscillators (SJFOs) are devices that produce a spatially oscillating jet solely based on intrinsic flow instability mechanisms without any moving parts. Recently, SJFOs have emerged as effective actuators for flow control, but the internal fluid dynamics of the device that drives the oscillatory flow mechanism is not yet fully understood. In the current study, the internal fluid dynamics of the fluidic oscillator with feedback channels has been investigated by employing incompressible flow simulations. The study is focused on the oscillation mechanisms and scaling laws that underpin the jet oscillation. Based on the simulation results, simple phenomenological models that connect the jet deflection to the feedback flow are developed. Several geometric modifications are considered in order to explore the characteristic length scales and phase relationships associated with the jet oscillation and to assess the proposed phenomenological model. A scaling law for the jet oscillation frequency is proposed based on the detailed analysis. This research is supported by AFOSR Grant FA9550-14-1-0289 monitored by Dr. Douglas Smith.
Moroni, L; de Wijn, J R; van Blitterswijk, C A
2006-03-01
One of the main issues in tissue engineering is the fabrication of scaffolds that closely mimic the biomechanical properties of the tissues to be regenerated. Conventional fabrication techniques are not sufficiently suitable to control scaffold structure to modulate mechanical properties. Within novel scaffold fabrication processes 3D fiber deposition (3DF) showed great potential for tissue engineering applications because of the precision in making reproducible 3D scaffolds, characterized by 100% interconnected pores with different shapes and sizes. Evidently, these features also affect mechanical properties. Therefore, in this study we considered the influence of different structures on dynamic mechanical properties of 3DF scaffolds. Pores were varied in size and shape, by changing fibre diameter, spacing and orientation, and layer thickness. With increasing porosity, dynamic mechanical analysis (DMA) revealed a decrease in elastic properties such as dynamic stiffness and equilibrium modulus, and an increase of the viscous parameters like damping factor and creep unrecovered strain. Furthermore, the Poisson's ratio was measured, and the shear modulus computed from it. Scaffolds showed an adaptable degree of compressibility between sponges and incompressible materials. As comparison, bovine cartilage was tested and its properties fell in the fabricated scaffolds range. This investigation showed that viscoelastic properties of 3DF scaffolds could be modulated to accomplish mechanical requirements for tailored tissue engineered applications.
NASA Astrophysics Data System (ADS)
Aben, F. M.; Doan, M. L.; Gratier, J. P.; Renard, F.
2015-12-01
Damage zones of active faults control their resistance to rupture and transport properties. Hence, knowing the damage's origin is crucial to shed light on the (paleo)seismic behavior of the fault. Coseismic damage in the damage zone occurs by stress-wave loading of a passing earthquake rupture tip, resulting in dynamic (high strain rate) loading and subsequent dynamic fracturing or pulverization. Recently, interest in this type of damage has increased and several experimental studies were performed on dry rock specimens to search for pulverization-controlling parameters. However, the influence of fluids in during dynamic loading needs to be constrained. Hence, we have performed compressional dynamic loading experiments on water saturated and oven dried Vosges sandstone samples using a Split Hopkinson Pressure Bar apparatus. Due to the high porosity in these rocks, close to 20%, the effect of fluids should be clear. Afterwards, microstructural analyses have been applied on thin sections. Water saturated samples reveal dynamic mechanical behavior that follows linear poro-elasticity for undrained conditions: the peak strength of the sample decreases by 30-50% and the accumulated strain increases relative to the dry samples that were tested under similar conditions. The mechanical behavior of partially saturated samples falls in between. Microstructural studies on thin section show that fractures are restricted to some quartz grains while other quartz grains remain intact, similar to co-seismically damaged sandstones observed in the field. Most deformation is accommodated by inter-granular processes, thereby appointing an important role to the cement matrix in between grains. Intra-granular fracture damage is highest for the saturated samples. The presence of pore fluids in the rocks lower the dynamic peak strength, especially since fast dynamic loading does not allow for time-dependent fluid dissipation. Thus, fluid-saturated rocks would show undrained mechanical behavior, creating local overpressure in the pore that breaks the inter-granular cement. This strength-decreasing effect provides an explanation for the presence of pulverized and coseismically damaged rocks at depth and extends the range of dynamic stress where dynamic damage can occur in fault zones.
Bio-inspired energy-harvesting mechanisms and patterns of dynamic soaring.
Liu, Duo-Neng; Hou, Zhong-Xi; Guo, Zheng; Yang, Xi-Xiang; Gao, Xian-Zhong
2017-01-30
Albatrosses can make use of the dynamic soaring technique extracting energy from the wind field to achieve large-scale movement without a flap, which stimulates interest in effortless flight with small unmanned aerial vehicles (UAVs). However, mechanisms of energy harvesting in terms of the energy transfer from the wind to the flyer (albatross or UAV) are still indeterminate and controversial when using different reference frames in previous studies. In this paper, the classical four-phase Rayleigh cycle, includes sequentially upwind climb, downwind turn, downwind dive and upwind turn, is introduced in analyses of energy gain with the albatross's equation of motions and the simulated trajectory in dynamic soaring. Analytical and numerical results indicate that the energy gain in the air-relative frame mostly originates from large wind gradients at lower part of the climb and dive, while the energy gain in the inertial frame comes from the lift vector inclined to the wind speed direction during the climb, dive and downwind turn at higher altitude. These two energy-gain mechanisms are not equivalent in terms of energy sources and reference frames but have to be simultaneously satisfied in terms of the energy-neutral dynamic soaring cycle. For each reference frame, energy-loss phases are necessary to connect energy-gain ones. Based on these four essential phases in dynamic soaring and the albatrosses' flight trajectory, different dynamic soaring patterns are schematically depicted and corresponding optimal trajectories are computed. The optimal dynamic soaring trajectories are classified into two closed patterns including 'O' shape and '8' shape, and four travelling patterns including 'Ω' shape, 'α' shape, 'C' shape and 'S' shape. The correlation among these patterns are analysed and discussed. The completeness of the classification for different patterns is confirmed by listing and summarising dynamic soaring trajectories shown in studies over the past decades.
Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties
NASA Astrophysics Data System (ADS)
Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.
2014-04-01
Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.
Mechanism synthesis and 2-D control designs of an active three cable crane
NASA Technical Reports Server (NTRS)
Yang, Li-Farn; Mikulas, Martin M., Jr.
1992-01-01
A Lunar Crane with a suspension system based on a three cable mechanism is investigated to provide a stable end-effector for hoisting, positioning, and assembling large components during construction and servicing of a Lunar Base. The three cable suspension mechanism consists of a structural framework of three cables pointing to a common point that closely coincides with the suspended payload's center of gravity. The vibrational characteristics of this three cable suspension system are investigated by comparing a simple 2-D symmetric suspension model and a swinging pendulum in terms of their analytical natural frequency equations. A study is also made of actively controlling the dynamics of the crane using two different actuator concepts. Also, Lyapunov-based control algorithms are developed to determine two regulator-type control laws performing the system vibrational suppression for both system dynamics. Simulations including initial-valued dynamic responses as well as control performances for two different system dynamics are also presented.
Sliogeryte, Kristina; Thorpe, Stephen D; Wang, Zhao; Thompson, Clare L; Gavara, Nuria; Knight, Martin M
2016-01-25
The actin cytoskeleton forms a dynamic structure involved in many fundamental cellular processes including the control of cell morphology, migration and biomechanics. Recently LifeAct-GFP (green fluorescent protein) has been proposed for visualising actin structure and dynamics in live cells as an alternative to actin-GFP which has been shown to affect cell mechanics. Here we compare the two approaches in terms of their effect on cellular mechanical behaviour. Human mesenchymal stem cells (hMSCs) were analysed using micropipette aspiration and the effective cellular equilibrium and instantaneous moduli calculated using the standard linear solid model. We show that LifeAct-GFP provides clearer visualisation of F-actin organisation and dynamics. Furthermore, LifeAct-GFP does not alter effective cellular mechanical properties whereas actin-GFP expression causes an increase in the cell modulus. Interestingly, LifeAct-GFP expression did produce a small (~10%) increase in the percentage of cells exhibiting aspiration-induced membrane bleb formation, whilst actin-GFP expression reduced blebbing. Further studies examined the influence of LifeAct-GFP in other cell types, namely chondrogenically differentiated hMSCs and murine chondrocytes. LifeAct-GFP also had no effect on the moduli of these non-blebbing cells for which mechanical properties are largely dependent on the actin cortex. In conclusion we show that LifeAct-GFP enables clearer visualisation of actin organisation and dynamics without disruption of the biomechanical properties of either the whole cell or the actin cortex. Thus the study provides new evidence supporting the use of LifeAct-GFP rather than actin-GFP for live cell microscopy and the study of cellular mechanobiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Technical Reports Server (NTRS)
Herring, Helen M.
2008-01-01
Various solid polymers, polymer-based composites, and closed-cell polymer foam are being characterized to determine their mechanical properties, using low-load test methods. The residual mechanical properties of these materials after environmental exposure or extreme usage conditions determines their value in aerospace structural applications. In this experimental study, four separate polymers were evaluated to measure their individual mechanical responses after thermal aging and moisture exposure by dynamic mechanical analysis. A ceramic gap filler, used in the gaps between the tiles on the Space Shuttle, was also tested, using dynamic mechanical analysis to determine material property limits during flight. Closed-cell polymer foam, used for the Space Shuttle External Tank insulation, was tested under low load levels to evaluate how the foam's mechanical properties are affected by various loading and unloading scenarios.
A Numerical Study of Vortex Dynamics of Flexible Wing Propulsors
2009-11-23
of validation. Figure 2 shows the streamline plot of the cylinder for Reynolds number of 40. The coefficient of drag and blob length is calculated to...Large amplitude lunate tail theory of fish locomotion. Journal of Fluid Mechanics 74, 161–182. Clough, R. W. & Penzein, J. 1993 Dynamics of...the swimming of slender fish . Journal of Fluid Mechanics 9, 305–317. Lighthill, M. J. 1970 Aquatic animal propulsion of high hydrodynamical efficiency
Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R
2015-10-07
A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
D'Anna, G.; Benoit, W.
1990-12-01
A forced torsional pendulum which permits us to examine anelastic mechanical properties of solids as well as for flux-lattice in type-II superconductors, has been built to explore the low frequency and low temperature range. It works on the principle of dynamic frequency response function measurement and appears to be a powerful instrument for studying structural defect motions as well as flux line dynamics. As an additional quantity, the magnetization or the plastic strain can be statically measured by the same apparatus.
Experimental Trapped-ion Quantum Simulation of the Kibble-Zurek dynamics in momentum space
Cui, Jin-Ming; Huang, Yun-Feng; Wang, Zhao; Cao, Dong-Yang; Wang, Jian; Lv, Wei-Min; Luo, Le; del Campo, Adolfo; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2016-01-01
The Kibble-Zurek mechanism is the paradigm to account for the nonadiabatic dynamics of a system across a continuous phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be probed with high accuracy using a single trapped ion. We test the Kibble-Zurek mechanism in the quantum regime in the momentum space and find the measured scaling of excitations is in accordance with the theoretical prediction. PMID:27633087
Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.
2014-04-01
Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of <100>/{100} and <110>/{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of <100>/{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in <110>/{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in <110>/{111} shows higher strength and elastic modulus than <100>/{100} oriented nanowire.
Zhu, Kongkai; Lu, Junyan; Liang, Zhongjie; Kong, Xiangqian; Ye, Fei; Jin, Lu; Geng, Heji; Chen, Yong; Zheng, Mingyue; Jiang, Hualiang; Li, Jun-Qian; Luo, Cheng
2013-03-01
New Delhi metallo-β-lactamase-1 (NDM-1) has emerged as a major global threat to human health for its rapid rate of dissemination and ability to make pathogenic microbes resistant to almost all known β-lactam antibiotics. In addition, effective NDM-1 inhibitors have not been identified to date. In spite of the plethora of structural and kinetic data available, the accurate molecular characteristics of and details on the enzymatic reaction of NDM-1 hydrolyzing β-lactam antibiotics remain incompletely understood. In this study, a combined computational approach including molecular docking, molecular dynamics simulations and quantum mechanics/molecular mechanics calculations was performed to characterize the catalytic mechanism of meropenem catalyzed by NDM-1. The quantum mechanics/molecular mechanics results indicate that the ionized D124 is beneficial to the cleavage of the C-N bond within the β-lactam ring. Meanwhile, it is energetically favorable to form an intermediate if no water molecule coordinates to Zn2. Moreover, according to the molecular dynamics results, the conserved residue K211 plays a pivotal role in substrate binding and catalysis, which is quite consistent with previous mutagenesis data. Our study provides detailed insights into the catalytic mechanism of NDM-1 hydrolyzing meropenem β-lactam antibiotics and offers clues for the discovery of new antibiotics against NDM-1 positive strains in clinical studies.
Borotikar, Bhushan; Lempereur, Mathieu; Lelievre, Mathieu; Burdin, Valérie; Ben Salem, Douraied; Brochard, Sylvain
2017-01-01
To report evidence for the concurrent validity and reliability of dynamic MRI techniques to evaluate in vivo joint and muscle mechanics, and to propose recommendations for their use in the assessment of normal and impaired musculoskeletal function. The search was conducted on articles published in Web of science, PubMed, Scopus, Academic search Premier, and Cochrane Library between 1990 and August 2017. Studies that reported the concurrent validity and/or reliability of dynamic MRI techniques for in vivo evaluation of joint or muscle mechanics were included after assessment by two independent reviewers. Selected articles were assessed using an adapted quality assessment tool and a data extraction process. Results for concurrent validity and reliability were categorized as poor, moderate, or excellent. Twenty articles fulfilled the inclusion criteria with a mean quality assessment score of 66% (±10.4%). Concurrent validity and/or reliability of eight dynamic MRI techniques were reported, with the knee being the most evaluated joint (seven studies). Moderate to excellent concurrent validity and reliability were reported for seven out of eight dynamic MRI techniques. Cine phase contrast and real-time MRI appeared to be the most valid and reliable techniques to evaluate joint motion, and spin tag for muscle motion. Dynamic MRI techniques are promising for the in vivo evaluation of musculoskeletal mechanics; however results should be evaluated with caution since validity and reliability have not been determined for all joints and muscles, nor for many pathological conditions.
Gordon, J.A.; Freedman, B.R.; Zuskov, A.; Iozzo, R.V.; Birk, D.E.; Soslowsky, L.J.
2015-01-01
Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn−/−) and biglycan-null (Bgn−/−) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. PMID:25888014
Gordon, J A; Freedman, B R; Zuskov, A; Iozzo, R V; Birk, D E; Soslowsky, L J
2015-07-16
Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dynamic near-field optical interaction between oscillating nanomechanical structures
Ahn, Phillip; Chen, Xiang; Zhang, Zhen; ...
2015-05-27
Near-field optical techniques exploit light-matter interactions at small length scales for mechanical sensing and actuation of nanomechanical structures. Here, we study the optical interaction between two mechanical oscillators—a plasmonic nanofocusing probe-tip supported by a low frequency cantilever, and a high frequency nanomechanical resonator—and leverage their interaction for local detection of mechanical vibrations. The plasmonic nanofocusing probe provides a confined optical source to enhance the interaction between the two oscillators. Dynamic perturbation of the optical cavity between the probe-tip and the resonator leads to nonlinear modulation of the scattered light intensity at the sum and difference of their frequencies. This double-frequencymore » demodulation scheme is explored to suppress unwanted background and to detect mechanical vibrations with a minimum detectable displacement sensitivity of 0.45pm/Hz 1/2, which is limited by shot noise and electrical noise. We explore the demodulation scheme for imaging the bending vibration mode shape of the resonator with a lateral spatial resolution of 20nm. We also demonstrate the time-resolved aspect of the local optical interaction by recording the ring-down vibrations of the resonator at frequencies of up to 129MHz. The near-field optical technique is promising for studying dynamic mechanical processes in individual nanostructures.« less
NASA Astrophysics Data System (ADS)
Hai-yang, Zhao; Min-qiang, Xu; Jin-dong, Wang; Yong-bo, Li
2015-05-01
In order to improve the accuracy of dynamics response simulation for mechanism with joint clearance, a parameter optimization method for planar joint clearance contact force model was presented in this paper, and the optimized parameters were applied to the dynamics response simulation for mechanism with oversized joint clearance fault. By studying the effect of increased clearance on the parameters of joint clearance contact force model, the relation of model parameters between different clearances was concluded. Then the dynamic equation of a two-stage reciprocating compressor with four joint clearances was developed using Lagrange method, and a multi-body dynamic model built in ADAMS software was used to solve this equation. To obtain a simulated dynamic response much closer to that of experimental tests, the parameters of joint clearance model, instead of using the designed values, were optimized by genetic algorithms approach. Finally, the optimized parameters were applied to simulate the dynamics response of model with oversized joint clearance fault according to the concluded parameter relation. The dynamics response of experimental test verified the effectiveness of this application.
Stability of Boolean multilevel networks.
Cozzo, Emanuele; Arenas, Alex; Moreno, Yamir
2012-09-01
The study of the interplay between the structure and dynamics of complex multilevel systems is a pressing challenge nowadays. In this paper, we use a semiannealed approximation to study the stability properties of random Boolean networks in multiplex (multilayered) graphs. Our main finding is that the multilevel structure provides a mechanism for the stabilization of the dynamics of the whole system even when individual layers work on the chaotic regime, therefore identifying new ways of feedback between the structure and the dynamics of these systems. Our results point out the need for a conceptual transition from the physics of single-layered networks to the physics of multiplex networks. Finally, the fact that the coupling modifies the phase diagram and the critical conditions of the isolated layers suggests that interdependency can be used as a control mechanism.
Stochastic queueing-theory approach to human dynamics
NASA Astrophysics Data System (ADS)
Walraevens, Joris; Demoor, Thomas; Maertens, Tom; Bruneel, Herwig
2012-02-01
Recently, numerous studies have shown that human dynamics cannot be described accurately by exponential laws. For instance, Barabási [Nature (London)NATUAS0028-083610.1038/nature03459 435, 207 (2005)] demonstrates that waiting times of tasks to be performed by a human are more suitably modeled by power laws. He presumes that these power laws are caused by a priority selection mechanism among the tasks. Priority models are well-developed in queueing theory (e.g., for telecommunication applications), and this paper demonstrates the (quasi-)immediate applicability of such a stochastic priority model to human dynamics. By calculating generating functions and by studying them in their dominant singularity, we prove that nonexponential tails result naturally. Contrary to popular belief, however, these are not necessarily triggered by the priority selection mechanism.
Dynamic postural stability for double-leg drop landing.
Niu, Wenxin; Zhang, Ming; Fan, Yubo; Zhao, Qinping
2013-01-01
Dynamic postural stability has been widely studied for single-leg landing, but seldom considered for double-leg landing. This study aimed to evaluate the dynamic postural stability and the influence mechanism of muscle activities during double-leg drop landing. Eight recreationally active males and eight recreationally active females participated in this study and dropped individually from three heights (0.32 m, 0.52 m, and 0.72 m). Ground reaction force was recorded to calculate the time to stabilisation. Electromyographic activities were recorded for selected lower-extremity muscles. A multivariate analysis of variance was carried out and no significant influence was found in time to stabilisation between genders or limb laterals (P > 0.05). With increasing drop height, time to stabilisation decreased significantly in two horizontal directions and the lower-extremity muscle activities were enhanced. Vertical time to stabilisation was not significantly influenced by drop height. Dynamic postural stability improved by neuromuscular change more than that required due to the increase of drop height. Double-leg landing on level ground is a stable movement, and the body would often be injured before dynamic postural stability is impaired. It is understandable to protect tissues from mechanical injuries by the sacrifice of certain dynamic postural stability in the design of protective devices or athlete training.
NASA Astrophysics Data System (ADS)
Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan
2017-10-01
The optimization designs and dynamic analysis on the driving mechanism of flapping-wing air vehicles on base of flapping trajectory patterns is carried out in this study. Three different driving mechanisms which are spatial double crank-rocker, plane five-bar and gear-double slider, are systematically optimized and analysed by using the Mat lab and Adams software. After a series debugging on the parameter, the comparatively ideal flapping trajectories are obtained by the simulation of Adams. Present results indicate that different drive mechanisms output different flapping trajectories and have their unique characteristic. The spatial double crank-rocker mechanism can only output the arc flapping trajectory and it has the advantages of small volume, high flexibility and efficient space utilization. Both planar five-bar mechanism and gear-double slider mechanism can output the oval, figure of eight and double eight flapping trajectories. Nevertheless, the gear-double slider mechanism has the advantage of convenient parameter setting and better performance in output double eight flapping trajectory. This study can provide theoretical basis and helpful reference for the design of the drive mechanisms of flapping-wing air vehicles with different output flapping trajectories.
Simulation study on dynamics model of two kinds of on-orbit soft-contact mechanism
NASA Astrophysics Data System (ADS)
Ye, X.; Dong, Z. H.; Yang, F.
2018-05-01
Aiming at the problem that the operating conditions of the space manipulator is harsh and the space manipulator could not bear the large collision momentum, this paper presents a new concept and technical method, namely soft contact technology. Based on ADAMS dynamics software, this paper compares and simulates the mechanism model of on-orbit soft-contact mechanism based on the bionic model and the integrated double joint model. The main purpose is to verify the path planning ability and the momentum buffering ability based on the different design concept mechanism. The simulation results show that both the two mechanism models have the path planning function before the space target contact, and also has the momentum buffer and controllability during the space target contact process.
A Numerical Study of Scalable Cardiac Electro-Mechanical Solvers on HPC Architectures
Colli Franzone, Piero; Pavarino, Luca F.; Scacchi, Simone
2018-01-01
We introduce and study some scalable domain decomposition preconditioners for cardiac electro-mechanical 3D simulations on parallel HPC (High Performance Computing) architectures. The electro-mechanical model of the cardiac tissue is composed of four coupled sub-models: (1) the static finite elasticity equations for the transversely isotropic deformation of the cardiac tissue; (2) the active tension model describing the dynamics of the intracellular calcium, cross-bridge binding and myofilament tension; (3) the anisotropic Bidomain model describing the evolution of the intra- and extra-cellular potentials in the deforming cardiac tissue; and (4) the ionic membrane model describing the dynamics of ionic currents, gating variables, ionic concentrations and stretch-activated channels. This strongly coupled electro-mechanical model is discretized in time with a splitting semi-implicit technique and in space with isoparametric finite elements. The resulting scalable parallel solver is based on Multilevel Additive Schwarz preconditioners for the solution of the Bidomain system and on BDDC preconditioned Newton-Krylov solvers for the non-linear finite elasticity system. The results of several 3D parallel simulations show the scalability of both linear and non-linear solvers and their application to the study of both physiological excitation-contraction cardiac dynamics and re-entrant waves in the presence of different mechano-electrical feedbacks. PMID:29674971
A molecular dynamics study of freezing in a confined geometry
NASA Technical Reports Server (NTRS)
Ma, Wen-Jong; Banavar, Jayanth R.; Koplik, Joel
1992-01-01
The dynamics of freezing of a Lennard-Jones liquid in narrow channels bounded by molecular walls is studied by computer simulation. The time development of ordering is quantified and a novel freezing mechanism is observed. The liquid forms layers and subsequent in-plane ordering within a layer is accompanied by a sharpening of the layer in the transverse direction. The effects of channel size, the methods of quench, the liquid-wall interaction and the roughness of walls on the freezing mechanism are elucidated. Comparison with recent experiments on freezing in confined geometries is presented.
Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive
NASA Astrophysics Data System (ADS)
Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.
2012-03-01
High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.
Dynamical mechanism of atrial fibrillation: A topological approach
NASA Astrophysics Data System (ADS)
Marcotte, Christopher D.; Grigoriev, Roman O.
2017-09-01
While spiral wave breakup has been implicated in the emergence of atrial fibrillation, its role in maintaining this complex type of cardiac arrhythmia is less clear. We used the Karma model of cardiac excitation to investigate the dynamical mechanisms that sustain atrial fibrillation once it has been established. The results of our numerical study show that spatiotemporally chaotic dynamics in this regime can be described as a dynamical equilibrium between topologically distinct types of transitions that increase or decrease the number of wavelets, in general agreement with the multiple wavelets' hypothesis. Surprisingly, we found that the process of continuous excitation waves breaking up into discontinuous pieces plays no role whatsoever in maintaining spatiotemporal complexity. Instead, this complexity is maintained as a dynamical balance between wave coalescence—a unique, previously unidentified, topological process that increases the number of wavelets—and wave collapse—a different topological process that decreases their number.
Molecular dynamics simulations of human E3 ubiquitin ligase Parkin
Qiu, Shi; Zhu, Shun; Xu, Shan; Han, Yanyan; Liu, Wen; Zuo, Ji
2017-01-01
Human E3 ubiquitin protein ligase parkin (Parkin) mediates mitophagy to maintain mitochondrial homeostasis. Parkin mutations are common genetic causes of early onset familial Parkinson's disease. The molecular mechanism of Parkin activation has been widely studied with emerging evidence suggesting an essential role of the phosphorylated (phospho)-ubiquitin interaction. However, the underlying mechanism of the phospho-ubiquitin interaction remains elusive. In the present study, replica exchange molecular dynamics simulations were performed to examine the conformational dynamics of Parkin in monomer and phospho-ubiquitin-bound states. In the Parkin monomer state, high structural flexibilities were observed in the majority of regions of Parkin particularly in the loop domain between the ubiquitin-like (UBL) and really interesting new gene (RING)0 domain. Binding of phospho-ubiquitin stabilizes the RING1/RING in between RING interface but destabilizes the RING1-UBL interface. Furthermore, using steered molecular dynamics simulations of Parkin mutations, it was demonstrated that salt bridge interactions contribute significantly to the interdomain interactions between the RING1 and UBL domain. Taken together, the results of the present study revealed the conformational dynamics of human full-length Parkin in monomer and phospho-ubiquitin-bound states, providing insights into designing potential therapeutics against Parkinson's disease. PMID:28765939
Wigner flow reveals topological order in quantum phase space dynamics.
Steuernagel, Ole; Kakofengitis, Dimitris; Ritter, Georg
2013-01-18
The behavior of classical mechanical systems is characterized by their phase portraits, the collections of their trajectories. Heisenberg's uncertainty principle precludes the existence of sharply defined trajectories, which is why traditionally only the time evolution of wave functions is studied in quantum dynamics. These studies are quite insensitive to the underlying structure of quantum phase space dynamics. We identify the flow that is the quantum analog of classical particle flow along phase portrait lines. It reveals hidden features of quantum dynamics and extra complexity. Being constrained by conserved flow winding numbers, it also reveals fundamental topological order in quantum dynamics that has so far gone unnoticed.
Ion-Molecule Reaction Dynamics
NASA Astrophysics Data System (ADS)
Meyer, Jennifer; Wester, Roland
2017-05-01
We review the recent advances in the investigation of the dynamics of ion-molecule reactions. During the past decade, the combination of single-collision experiments in crossed ion and neutral beams with the velocity map ion imaging detection technique has enabled a wealth of studies on ion-molecule reactions. These methods, in combination with chemical dynamics simulations, have uncovered new and unexpected reaction mechanisms, such as the roundabout mechanism and the subtle influence of the leaving group in anion-molecule nucleophilic substitution reactions. For this important class of reactions, as well as for many fundamental cation-molecule reactions, the information obtained with crossed-beam imaging is discussed. The first steps toward understanding micro-solvation of ion-molecule reaction dynamics are presented. We conclude with the presentation of several interesting directions for future research.
Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord
Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.
2014-01-01
Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612
Dynamic phenotypic plasticity in photosynthesis and biomass patterns in Douglas-fir seedlings
A. C. Koehn; G. I. McDonald; D. L. Turner; D. L. Adams
2010-01-01
As climate changes, understanding the mechanisms long-lived conifers use to adapt becomes more important. Light gradients within a forest stand vary constantly with the changes in climate, and the minimum light required for survival plays a major role in plant community dynamics. This study focuses on the dynamic plasticity of Douglas-fir (Pseudotsuga menziesii var....
Kv1 channels control spike threshold dynamics and spike timing in cortical pyramidal neurones
Higgs, Matthew H; Spain, William J
2011-01-01
Abstract Previous studies showed that cortical pyramidal neurones (PNs) have a dynamic spike threshold that functions as a high-pass filter, enhancing spike timing in response to high-frequency input. While it is commonly assumed that Na+ channel inactivation is the primary mechanism of threshold accommodation, the possible role of K+ channel activation in fast threshold changes has not been well characterized. The present study tested the hypothesis that low-voltage activated Kv1 channels affect threshold dynamics in layer 2–3 PNs, using α-dendrotoxin (DTX) or 4-aminopyridine (4-AP) to block these conductances. We found that Kv1 blockade reduced the dynamic changes of spike threshold in response to a variety of stimuli, including stimulus-evoked synaptic input, current steps and ramps of varied duration, and noise. Analysis of the responses to noise showed that Kv1 channels increased the coherence of spike output with high-frequency components of the stimulus. A simple model demonstrates that a dynamic spike threshold can account for this effect. Our results show that the Kv1 conductance is a major mechanism that contributes to the dynamic spike threshold and precise spike timing of cortical PNs. PMID:21911608
NASA Astrophysics Data System (ADS)
Farrell, Brian; Ioannou, Petros; Nikolaidis, Marios-Andreas
2017-11-01
While linear non-normality underlies the mechanism of energy transfer from the externally driven flow to the perturbation field, nonlinearity is also known to play an essential role in sustaining turbulence. We report a study based on the statistical state dynamics of Couette flow turbulence with the goal of better understanding the role of nonlinearity in sustaining turbulence. The statistical state dynamics implementations used are ensemble closures at second order in a cumulant expansion of the Navier-Stokes equations in which the averaging operator is the streamwise mean. Two fundamentally non-normal mechanisms potentially contributing to maintaining the second cumulant are identified. These are essentially parametric perturbation growth arising from interaction of the perturbations with the fluctuating mean flow and transient growth of perturbations arising from nonlinear interaction between components of the perturbation field. By the method of selectively including these mechanisms parametric growth is found to maintain the perturbation field in the turbulent state while the more commonly invoked mechanism associated with transient growth of perturbations arising from scattering by nonlinear interaction is found to suppress perturbation variance. Funded by ERC Coturb Madrid Summer Program and NSF AGS-1246929.
BELOWGROUND NITROGEN UPTAKE AND ALLOCATION BY SPARTINA ALTERNIFLORA AND DISTICHLIS SPICATA
Anthropogenic nitrogen inputs coupled with rising sea level complicate predictions of marsh stability. As marsh stability is a function of its vegetation, it is important to understand the mechanisms that drive community dynamics. Many studies have examined aboveground dynamics a...
Assessment of Clogging Dynamics in Permeable Pavement Systems with Time Domain Reflectometers
Infiltration is a primary functional mechanism in green infrastructure stormwater controls. This study used time domain reflectometers (TDRs) to measure spatial infiltration and assess clogging dynamics of permeable pavement systems in Edison, NJ, and Louisville, KY. In 2009, t...
Dynamic Nature of Alterations in the Endocrine System of Fathead Minnows Exposed to Prochloraz
The vertebrate hypothalamic-pituitary-gonadal (HPG) axis is controlled through various feedback mechanisms, ideally maintaining dynamic homeostasis in the face of changing environmental conditions, including exposure to chemical stressors. These studies assessed the effects of t...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pratihar, Subha; Barnes, George L.; Laskin, Julia
In this Perspective mass spectrometry experiments and chemical dynamics simulations are described which have explored the atomistic dynamics of protonated peptide ions, peptide-H+, colliding with organic surfaces. These studies have investigated surface-induced dissociation (SID) for which peptide-H+ fragments upon collision with the surface, peptide-H+ physisorption on the surface, soft landing (SL), and peptide-H+ reaction with the surface, reactive landing (RL). The simulations include QM+MM and QM/MM direct dynamics. For collisions with self-assembled monolayer (SAM) surfaces there is quite good agreement between experiment and simulation in the efficiency of energy transfer to the peptide-H+ ion’s internal degrees of freedom. Both themore » experiments and simulations show two mechanisms for peptide-H+ fragmentation, i.e. shattering and statistical, RRKM dynamics. Mechanisms for SL are probed in simulations of collisions of protonated dialanine with a perfluorinated SAM surface. RL has been studied experimentally for a number of peptide-H+ + surface systems, and qualitative agreement between simulation and experiment is found for two similar systems.« less
Study on cavitation effect of mechanical seals with laser-textured porous surface
NASA Astrophysics Data System (ADS)
Liu, T.; Chen, H. l.; Liu, Y. H.; Wang, Q.; Liu, Z. B.; Hou, D. H.
2012-11-01
Study on the mechanisms underlying generation of hydrodynamic pressure effect associated with laser-textured porous surface on mechanical seal, is the key to seal and lubricant properties. The theory model of mechanical seals with laser-textured porous surface (LES-MS) based on cavitation model was established. The LST-MS was calculated and analyzed by using Fluent software with full cavitation model and non-cavitation model and film thickness was predicted by the dynamic mesh technique. The results indicate that the effect of hydrodynamic pressure and cavitation are the important reasons to generate liquid film opening force on LST-MS; Cavitation effect can enhance hydrodynamic pressure effect of LST-MS; The thickness of liquid film could be well predicted with the method of dynamic mesh technique on Fluent and it becomes larger as the increasing of shaft speed and the decreasing of pressure.
NASA Astrophysics Data System (ADS)
Karnes, John J.; Benjamin, Ilan
2018-01-01
Molecular dynamics simulations are used to study the dissolution of water into an adjacent, immiscible organic liquid phase. Equilibrium thermodynamic and structural properties are calculated during the transfer of water molecule(s) across the interface using umbrella sampling. The net free energy of transfer agrees reasonably well with experimental solubility values. We find that water molecules "prefer" to transfer into the adjacent phase one-at-a-time, without co-transfer of the hydration shell, as in the case of evaporation. To study the dynamics and mechanism of transfer of water to liquid nitrobenzene, we collected over 400 independent dissolution events. Analysis of these trajectories suggests that the transfer of water is facilitated by interfacial protrusions of the water phase into the organic phase, where one water molecule at the tip of the protrusion enters the organic phase by the breakup of a single hydrogen bond.
Nonnekes, Jorik; de Kam, Digna; Geurts, Alexander C H; Weerdesteyn, Vivian; Bloem, Bastiaan R
2013-12-01
Postural instability, one of the cardinal symptoms of Parkinson's disease (PD), has devastating consequences for affected patients. Better strategies to prevent falls are needed, but this calls for an improved understanding of the complex mechanisms underlying postural instability. We must also improve our ability to timely identify patients at risk of falling. Dynamic posturography is a promising avenue to achieve these goals. The latest moveable platforms can deliver 'real-life' balance perturbations, permitting study of everyday fall circumstances. Dynamic posturography studies have shown that PD patients have fundamental problems in scaling their postural responses in accordance with the need of the actual balance task at hand. On-going studies evaluate the predictive ability of impaired posturography performance for daily life falls. We also review recent work aimed at exploring balance correcting steps in PD, and the presumed interaction between startle pathways and postural responses.
Schmidt, Steven R; Katti, Dinesh R; Ghosh, Pijush; Katti, Kalpana S
2005-08-16
The mechanical response of the interlayer of hydrated montmorillonite was evaluated using steered molecular dynamics. An atomic model of the sodium montmorillonite was previously constructed. In the current study, the interlayer of the model was hydrated with multiple layers of water. Using steered molecular dynamics, external forces were applied to individual atoms of the clay surface, and the response of the model was studied. The displacement versus applied stress and stress versus strain relationships of various parts of the interlayer were studied. The paper describes the construction of the model, the simulation procedure, and results of the simulations. Some results of the previous work are further interpreted in the light of the current research. The simulations provide quantitative stress deformation relationships as well as an insight into the molecular interactions taking place between the clay surface and interlayer water and cations.
Mendieta-Moreno, Jesús I; Marcos-Alcalde, Iñigo; Trabada, Daniel G; Gómez-Puertas, Paulino; Ortega, José; Mendieta, Jesús
2015-01-01
Quantum mechanics/molecular mechanics (QM/MM) methods are excellent tools for the modeling of biomolecular reactions. Recently, we have implemented a new QM/MM method (Fireball/Amber), which combines an efficient density functional theory method (Fireball) and a well-recognized molecular dynamics package (Amber), offering an excellent balance between accuracy and sampling capabilities. Here, we present a detailed explanation of the Fireball method and Fireball/Amber implementation. We also discuss how this tool can be used to analyze reactions in biomolecules using steered molecular dynamics simulations. The potential of this approach is shown by the analysis of a reaction catalyzed by the enzyme triose-phosphate isomerase (TIM). The conformational space and energetic landscape for this reaction are analyzed without a priori assumptions about the protonation states of the different residues during the reaction. The results offer a detailed description of the reaction and reveal some new features of the catalytic mechanism. In particular, we find a new reaction mechanism that is characterized by the intramolecular proton transfer from O1 to O2 and the simultaneous proton transfer from Glu 165 to C2. Copyright © 2015 Elsevier Inc. All rights reserved.
Molecular Dynamics Study of the Opening Mechanism for DNA Polymerase I
Miller, Bill R.; Parish, Carol A.; Wu, Eugene Y.
2014-01-01
During DNA replication, DNA polymerases follow an induced fit mechanism in order to rapidly distinguish between correct and incorrect dNTP substrates. The dynamics of this process are crucial to the overall effectiveness of catalysis. Although X-ray crystal structures of DNA polymerase I with substrate dNTPs have revealed key structural states along the catalytic pathway, solution fluorescence studies indicate that those key states are populated in the absence of substrate. Herein, we report the first atomistic simulations showing the conformational changes between the closed, open, and ajar conformations of DNA polymerase I in the binary (enzyme∶DNA) state to better understand its dynamics. We have applied long time-scale, unbiased molecular dynamics to investigate the opening process of the fingers domain in the absence of substrate for B. stearothermophilis DNA polymerase in silico. These simulations are biologically and/or physiologically relevant as they shed light on the transitions between states in this important enzyme. All closed and ajar simulations successfully transitioned into the fully open conformation, which is known to be the dominant binary enzyme-DNA conformation from solution and crystallographic studies. Furthermore, we have detailed the key stages in the opening process starting from the open and ajar crystal structures, including the observation of a previously unknown key intermediate structure. Four backbone dihedrals were identified as important during the opening process, and their movements provide insight into the recognition of dNTP substrate molecules by the polymerase binary state. In addition to revealing the opening mechanism, this study also demonstrates our ability to study biological events of DNA polymerase using current computational methods without biasing the dynamics. PMID:25474643
NASA Astrophysics Data System (ADS)
Krivoruchko, V. N.
2017-11-01
In spite of the fact that dynamical properties of magnets have been extensively studied over the past years, the longitudinal magnetization dynamics is still much less understood than transverse one even in the equilibrium state of a system. In this paper, we give a review of existing, based on quantum-mechanical approach, theoretical descriptions of the longitudinal magnetization dynamics for ferro-, ferri- and antiferromagnetic dielectrics. The aim is to reveal specific features of this type of magnetization vibrations under description a system within the framework of one of the basic model theory of magnetism—the Heisenberg model. Related experimental investigations as well as open questions are also briefly discussed. We hope that understanding of the longitudinal magnetization dynamics distinctive features in the equilibrium state have to be a reference point for a theory uncovering the physical mechanisms that govern ultrafast spin dynamics after femtosecond laser pulse demagnetization when a system is far beyond an equilibrium state.
Enhanced Molecular Dynamics Methods Applied to Drug Design Projects.
Ziada, Sonia; Braka, Abdennour; Diharce, Julien; Aci-Sèche, Samia; Bonnet, Pascal
2018-01-01
Nobel Laureate Richard P. Feynman stated: "[…] everything that living things do can be understood in terms of jiggling and wiggling of atoms […]." The importance of computer simulations of macromolecules, which use classical mechanics principles to describe atom behavior, is widely acknowledged and nowadays, they are applied in many fields such as material sciences and drug discovery. With the increase of computing power, molecular dynamics simulations can be applied to understand biological mechanisms at realistic timescales. In this chapter, we share our computational experience providing a global view of two of the widely used enhanced molecular dynamics methods to study protein structure and dynamics through the description of their characteristics, limits and we provide some examples of their applications in drug design. We also discuss the appropriate choice of software and hardware. In a detailed practical procedure, we describe how to set up, run, and analyze two main molecular dynamics methods, the umbrella sampling (US) and the accelerated molecular dynamics (aMD) methods.
NASA Astrophysics Data System (ADS)
Roy, Soumyajit; Chakraborty, G.; DasGupta, Anirvan
2018-02-01
The mutual interaction between a number of multi degrees of freedom mechanical systems moving with uniform speed along an infinite taut string supported by a viscoelastic layer has been studied using the substructure synthesis method when base excitations of a common frequency are given to the mechanical systems. The mobility or impedance matrices of the string have been calculated analytically by Fourier transform method as well as wave propagation technique. The above matrices are used to calculate the response of the discrete mechanical systems. Special attention is paid to the contact forces between the discrete and the continuous systems which are estimated by numerical simulation. The effects of phase difference, the distance between the systems and different base excitation amplitudes on the collective behaviour of the mechanical systems are also studied. The present study has relevance to the coupled dynamic problem of more than one railway pantographs and an overhead catenary system where the pantographs are modelled as discrete systems and the catenary is modelled as a taut string supported by continuous viscoelastic layer.
Coherent Two-Mode Dynamics of a Nanowire Force Sensor
NASA Astrophysics Data System (ADS)
Braakman, Floris R.; Rossi, Nicola; Tütüncüoglu, Gözde; Morral, Anna Fontcuberta i.; Poggio, Martino
2018-05-01
Classically coherent dynamics analogous to those of quantum two-level systems are studied in the setting of force sensing. We demonstrate quantitative control over the coupling between two orthogonal mechanical modes of a nanowire cantilever through measurement of avoided crossings as we deterministically position the nanowire inside an electric field. Furthermore, we demonstrate Rabi oscillations between the two mechanical modes in the strong-coupling regime. These results give prospects of implementing coherent two-mode control techniques for force-sensing signal enhancement.
Lattice Strain Due to an Atomic Vacancy
Li, Shidong; Sellers, Michael S.; Basaran, Cemal; Schultz, Andrew J.; Kofke, David A.
2009-01-01
Volumetric strain can be divided into two parts: strain due to bond distance change and strain due to vacancy sources and sinks. In this paper, efforts are focused on studying the atomic lattice strain due to a vacancy in an FCC metal lattice with molecular dynamics simulation (MDS). The result has been compared with that from a continuum mechanics method. It is shown that using a continuum mechanics approach yields constitutive results similar to the ones obtained based purely on molecular dynamics considerations. PMID:19582230
NASA Astrophysics Data System (ADS)
Vianna, S. D. B.; Lin, F. Y.; Plum, M. A.; Duran, H.; Steffen, W.
2017-05-01
Using non-invasive, marker-free resonance enhanced dynamic light scattering, the dynamics of capillary waves on ultrathin polystyrene films' coupling to the viscoelastic and mechanical properties have been studied. The dynamics of ultrathin polymer films is still debated. In particular the question of what influence either the solid substrate and/or the fluid-gas interface has on the dynamics and the mechanical properties of films of glass forming liquids as polymers is in the focus of the present research. As a consequence, e.g., viscosity close to interfaces and thus the average viscosity of very thin films are prone to change. This study is focused on atactic, non-entangled polystyrene thin films on the gold surface. A slow dynamic mode was observed with Vogel-Fulcher-Tammann temperature dependence, slowing down with decreasing film thickness. We tentatively attribute this relaxation mode to overdamped capillary waves because of its temperature dependence and the dispersion with a wave vector which was found. No signs of a more mobile layer at the air/polymer interface or of a "dead layer" at the solid/polymer interface were found. Therefore we investigated the influence of an artificially created dead layer on the capillary wave dynamics by introducing covalently bound polystyrene polymer brushes as anchors. The dynamics was slowed down to a degree more than expected from theoretical work on the increase of density close to the solid liquid interface—instead of a "dead layer" of 2 nm, the interaction seems to extend more than 10 nm into the polymer.
Shokuhfar, Ali; Arab, Behrouz
2013-09-01
Recently, great attention has been focused on using epoxy polymers in different fields such as aerospace, automotive, biotechnology, and electronics, owing to their superior properties. In this study, the classical molecular dynamics (MD) was used to simulate the cross linking of diglycidyl ether of bisphenol-A (DGEBA) with diethylenetriamine (DETA) curing agent, and to study the behavior of resulted epoxy polymer with different conversion rates. The constant-strain (static) approach was then applied to calculate the mechanical properties (Bulk, shear and Young's moduli, elastic stiffness constants, and Poisson's ratio) of the uncured and cross-linked systems. Estimated material properties were found to be in good agreement with experimental observations. Moreover, the dependency of mechanical properties on the cross linking density was investigated and revealed improvements in the mechanical properties with increasing the cross linking density. The radial distribution function (RDF) was also used to study the evolution of local structures of the simulated systems as a function of cross linking density.
Coupled jump rotational dynamics in aqueous nitrate solutions.
Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman
2016-12-21
A nitrate ion (NO 3 - ) with its trigonal planar geometry and charges distributed among nitrogen and oxygen atoms can couple to the extensive hydrogen bond network of water to give rise to unique dynamical characteristics. We carry out detailed atomistic simulations and theoretical analyses to investigate these aspects and report certain interesting findings. We find that the nitrate ions in aqueous potassium nitrate solution exhibit large amplitude rotational jump motions that are coupled to the hydrogen bond rearrangement dynamics of the surrounding water molecules. The jump motion of nitrate ions bears certain similarities to the Laage-Hynes mechanism of rotational jump motions of tagged water molecules in neat liquid water. We perform a detailed atomic-level investigation of hydrogen bond rearrangement dynamics of water in aqueous KNO 3 solution to unearth two distinct mechanisms of hydrogen bond exchange that are instrumental to promote these jump motions of nitrate ions. As observed in an earlier study by Xie et al., in the first mechanism, after breaking a hydrogen bond with nitrate ion, water forms a new hydrogen bond with a water molecule, whereas the second mechanism involves just a switching of hydrogen bond between the two oxygen atoms of the same nitrate ion (W. J. Xie et al., J. Chem. Phys. 143, 224504 (2015)). The magnitude as well as nature of the reorientational jump of nitrate ion for the two mechanisms is different. In the first mechanism, nitrate ion predominantly undergoes out-of-plane rotation, while in the second mechanism, in-plane reorientation of NO 3 - is favourable. These have been deduced by computing the torque on the nitrate ion during the hydrogen bond switching event. We have defined and computed the time correlation function for coupled reorientational jump of nitrate and water and obtained the associated relaxation time which is also different for the two mechanisms. These results provide insight into the relation between the coupled reorientational jump dynamics of solute and solvent molecules.
Closed-form dynamics of a hexarot parallel manipulator by means of the principle of virtual work
NASA Astrophysics Data System (ADS)
Pedrammehr, Siamak; Nahavandi, Saeid; Abdi, Hamid
2018-04-01
In this research, a systematic approach to solving the inverse dynamics of hexarot manipulators is addressed using the methodology of virtual work. For the first time, a closed form of the mathematical formulation of the standard dynamic model is presented for this class of mechanisms. An efficient algorithm for solving this closed-form dynamic model of the mechanism is developed and it is used to simulate the dynamics of the system for different trajectories. Validation of the proposed model is performed using SimMechanics and it is shown that the results of the proposed mathematical model match with the results obtained by the SimMechanics model.
Study on stainless steel electrode based on dynamic aluminum liquid corrosion mechanism.
Hou, Hua; Yang, Ruifeng
2009-01-01
Scanning electrion microscope (SEM) was performed for investigations on the corrosion mechanism of stainless steel electrode in dynamic melting aluminum liquid. Microstructures and composition analysis was made by electron probe analysis (EPA) combined with metallic phase analysis. It can be concluded that the corrosion process is mainly composed of physical corrosion (flowing and scouring corrosion) and chemical corrosion (forming FeAl and Fe2Al5) and the two mechanisms usually exist simultaneously. The corrosion interface thickness is about 10 μm, which is different to usual interface width of hundreds μm in the static melting Al with iron matrix.
NASA Astrophysics Data System (ADS)
Davris, Theodoros; Lyulin, Alexey V.
2016-05-01
The significant drop of the storage modulus under uniaxial deformation (Payne effect) restrains the performance of the elastomer-based composites and the development of possible new applications. In this paper molecular-dynamics (MD) computer simulations using LAMMPS MD package have been performed to study the mechanical properties of a coarse-grained model of this family of nanocomposite materials. Our goal is to provide simulational insights into the viscoelastic properties of filled elastomers, and try to connect the macroscopic mechanics with composite microstructure, the strength of the polymer-filler interactions and the polymer mobility at different scales. To this end we simulate random copolymer films capped between two infinite solid (filler aggregate) walls. We systematically vary the strength of the polymer-substrate adhesion interactions, degree of polymer confinement (film thickness), polymer crosslinking density, and study their influence on the equilibrium and non-equilibrium structure, segmental dynamics, and the mechanical properties of the simulated systems. The glass-transition temperature increases once the mesh size became smaller than the chain radius of gyration; otherwise it remained invariant to mesh-size variations. This increase in the glass-transition temperature was accompanied by a monotonic slowing-down of segmental dynamics on all studied length scales. This observation is attributed to the correspondingly decreased width of the bulk density layer that was obtained in films whose thickness was larger than the end-to-end distance of the bulk polymer chains. To test this hypothesis additional simulations were performed in which the crystalline walls were replaced with amorphous or rough walls.
Is quantum theory a form of statistical mechanics?
NASA Astrophysics Data System (ADS)
Adler, S. L.
2007-05-01
We give a review of the basic themes of my recent book: Adler S L 2004 Quantum Theory as an Emergent Phenomenon (Cambridge: Cambridge University Press). We first give motivations for considering the possibility that quantum mechanics is not exact, but is instead an accurate asymptotic approximation to a deeper level theory. For this deeper level, we propose a non-commutative generalization of classical mechanics, that we call "trace dynamics", and we give a brief survey of how it works, considering for simplicity only the bosonic case. We then discuss the statistical mechanics of trace dynamics and give our argument that with suitable approximations, the Ward identities for trace dynamics imply that ensemble averages in the canonical ensemble correspond to Wightman functions in quantum field theory. Thus, quantum theory emerges as the statistical thermodynamics of trace dynamics. Finally, we argue that Brownian motion corrections to this thermodynamics lead to stochastic corrections to the Schrödinger equation, of the type that have been much studied in the "continuous spontaneous localization" model of objective state vector reduction. In appendices to the talk, we give details of the existence of a conserved operator in trace dynamics that encodes the structure of the canonical algebra, of the derivation of the Ward identities, and of the proof that the stochastically-modified Schrödinger equation leads to state vector reduction with Born rule probabilities.
NASA Astrophysics Data System (ADS)
Cazade, Pierre-André; Tran, Halina; Bereau, Tristan; Das, Akshaya K.; Kläsi, Felix; Hamm, Peter; Meuwly, Markus
2015-06-01
The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF-HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.
Lymperopoulos, Ilias N; Ioannou, George D
2016-10-01
We develop and validate a model of the micro-level dynamics underlying the formation of macro-level information propagation patterns in online social networks. In particular, we address the dynamics at the level of the mechanism regulating a user's participation in an online information propagation process. We demonstrate that this mechanism can be realistically described by the dynamics of noisy spiking neurons driven by endogenous and exogenous, deterministic and stochastic stimuli representing the influence modulating one's intention to be an information spreader. Depending on the dynamically changing influence characteristics, time-varying propagation patterns emerge reflecting the temporal structure, strength, and signal-to-noise ratio characteristics of the stimulation driving the online users' information sharing activity. The proposed model constitutes an overarching, novel, and flexible approach to the modeling of the micro-level mechanisms whereby information propagates in online social networks. As such, it can be used for a comprehensive understanding of the online transmission of information, a process integral to the sociocultural evolution of modern societies. The proposed model is highly adaptable and suitable for the study of the propagation patterns of behavior, opinions, and innovations among others. Copyright © 2016 Elsevier Ltd. All rights reserved.
Range dynamics models now incorporate many of the mechanisms and interactions that drive species distributions. However, connectivity continues to be studied using overly simple distance-based dispersal models with little consideration of how the individual behavior of dispersin...
NASA Astrophysics Data System (ADS)
Linul, E.; Marsavina, L.; Voiconi, T.; Sadowski, T.
2013-07-01
Effect of density, loading rate, material orientation and temperature on dynamic compression behavior of rigid polyurethane foams are investigated in this paper. These parameters have a very important role, taking into account that foams are used as packing materials or dampers which require high energy impact absorption. The experimental study was carried out on closed-cell rigid polyurethane (PUR) foam specimens of different densities (100, 160 respectively 300 kg/m3), having a cubic shape. The specimens were subjected to uniaxial dynamic compression with loading rate in range of 1.37-3.25 m/s, using four different temperatures (20, 60, 90, 110°C) and two loading planes (direction (3) - rise direction and direction (2) - in plane). Experimental results show that Young's modulus, yield stress and plateau stress values increases with increasing density. One of the most significant effects of mechanical properties in dynamic compression of rigid PUR foams is the density, but also the loading speed, material orientation and temperature influences the behavior in compression
Biological role and structural mechanism of twinfilin–capping protein interaction
Falck, Sandra; Paavilainen, Ville O; Wear, Martin A; Grossmann, J Günter; Cooper, John A; Lappalainen, Pekka
2004-01-01
Twinfilin and capping protein (CP) are highly conserved actin-binding proteins that regulate cytoskeletal dynamics in organisms from yeast to mammals. Twinfilin binds actin monomer, while CP binds the barbed end of the actin filament. Remarkably, twinfilin and CP also bind directly to each other, but the mechanism and role of this interaction in actin dynamics are not defined. Here, we found that the binding of twinfilin to CP does not affect the binding of either protein to actin. Furthermore, site-directed mutagenesis studies revealed that the CP-binding site resides in the conserved C-terminal tail region of twinfilin. The solution structure of the twinfilin–CP complex supports these conclusions. In vivo, twinfilin's binding to both CP and actin monomer was found to be necessary for twinfilin's role in actin assembly dynamics, based on genetic studies with mutants that have defined biochemical functions. Our results support a novel model for how sequential interactions between actin monomers, twinfilin, CP, and actin filaments promote cytoskeletal dynamics. PMID:15282541
Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite
NASA Technical Reports Server (NTRS)
Gullahorn, G. E.
1985-01-01
Work performed as part of an investigation of noise affecting instrumentation in a tethered subsatellite, was studied. The following specific topics were addressed during the reporting period: a method for stabilizing the subsatellite against the rotational effects of atmospheric perturbation was developed; a variety of analytic studies of tether dynamics aimed at elucidating dynamic noise processes were performed; a novel mechanism for coupling longitudinal and latitudinal oscillations of the tether was discovered, and random vibration analysis for modeling the tethered subsatellite under atmospheric perturbation were studied.
NASA Astrophysics Data System (ADS)
Wang, Yi-Ming; Chen, Chung-Hsien
2012-10-01
In industry, many applications of planar mechanisms such as slider-crank mechanisms have been found in thousands of devices. Typically due to the effect of inertia, these elastic links are subject to axial and transverse periodic forces. Vibrations of these mechanisms are the main source of noise and fatigue that lead to short useful life and failure. Hence, avoiding the occurrence of large amplitude vibration of such systems is of great importance. Recently, the use of specified materials, which are periodically embedded into structures, to satisfy designing requirement has been the subject of many interests. Therefore, the objective of this paper is to present analytical and numerical methodologies to study the dynamics of a slider-crank mechanism with an axially periodic array non-homogeneous coupler; the proposed passive system is introduced to reduce the region of parametric resonance of the mechanism. The Fourier-series based approach and Newtonian mechanics are employed in the analysis. An attention is given to the influence produced by the in-homogeneity of materials of the periodic array to the primary region of dynamic instability of the system. Result of present study indicates that under the same operational condition, the commensurability between the natural frequency of the mechanism and the excitation frequency can be weakened by varying the material properties of the periodic array. The in-homogeneity of materials of the periodic array can be treated as a tuning parameter of the natural frequency of the slider-crank mechanism. With proper choice of the material properties and thickness of the embedded laminas of the periodic array, the occurrence of parametric resonance can be suppressed such that the growth of small amplitude vibration into large motion regime is attenuated.
Rapid microfluidic mixing and liquid jets for studying biomolecular chemical dynamics
NASA Astrophysics Data System (ADS)
Langley, Daniel; Abbey, Brian
2018-01-01
X-ray Free-Electron Lasers (XFELs) offer a unique opportunity to study the structural dynamics of proteins on a femtosecond time-scale. To realize the full potential of XFEL sources for studying time-resolved biomolecular processes however, requires the optimization and development of devices that can both act as a trigger and a delivery mechanism for the system of interest. Here we present numerical simulations and actual devices exploring the conditions required for the development of successful mixing and injection devices for tracking the molecular dynamics of proteins in solution on micro to nanosecond timescales using XFELs. The mechanism for combining reagents employs a threefold combination of pico-liter volumes, lamination and serpentine mixing. Focusing and delivering the sample in solution is achieved using the Gas Dynamic Virtual Nozzle (GDVN), which was specifically developed to produce a micrometer diameter, in-vacuum liquid jet. We explore the influence of parameters such as flow rate and gas pressure on the mixing time and jet stability, and explore the formation of rapid homogeneously mixed jets for `mix-and-inject' liquid scattering experiments at Synchrotron and XFEL facilities.
Molecular dynamics modeling and simulation of void growth in two dimensions
NASA Astrophysics Data System (ADS)
Chang, H.-J.; Segurado, J.; Rodríguez de la Fuente, O.; Pabón, B. M.; LLorca, J.
2013-10-01
The mechanisms of growth of a circular void by plastic deformation were studied by means of molecular dynamics in two dimensions (2D). While previous molecular dynamics (MD) simulations in three dimensions (3D) have been limited to small voids (up to ≈10 nm in radius), this strategy allows us to study the behavior of voids of up to 100 nm in radius. MD simulations showed that plastic deformation was triggered by the nucleation of dislocations at the atomic steps of the void surface in the whole range of void sizes studied. The yield stress, defined as stress necessary to nucleate stable dislocations, decreased with temperature, but the void growth rate was not very sensitive to this parameter. Simulations under uniaxial tension, uniaxial deformation and biaxial deformation showed that the void growth rate increased very rapidly with multiaxiality but it did not depend on the initial void radius. These results were compared with previous 3D MD and 2D dislocation dynamics simulations to establish a map of mechanisms and size effects for plastic void growth in crystalline solids.
Computational modeling of intrinsic dissipation in nano-structure
NASA Astrophysics Data System (ADS)
Kunal, Kumar
In this work, using computational modeling, we study the different mechanisms of intrinsic dissipation in nano-electro mechanical systems (NEMS). We, first, use molecular dynamics (MD) simulation and gain an understanding of the underlying loss mechanisms. Using insights from the MD simulation, a multi-scale method to model intrinsic damping is developed. The high frequency vibration in NEMS have important applications. A few examples include the sensing of atomic mass, detection of biological molecules and observation of quantum effects in macroscopic objects. For all these potential applications, dissipation plays a limiting role. While a number of experimental and theoretical studies have been performed, the individual role of different mechanisms remains unclear. In this work, we attempt to isolate and understand the surface and size effect on some of the intrinsic mechanisms. We, first, consider the case of the Akhiezer damping. The Akhiezer dynamics is expected to play an important role in nano-resonators with frequencies in the GHz range. Using a judiciously devised MD set-up, we isolate Akhiezer dynamics. We show that the surfaces aid in reducing the dissipation rate through increasing the rate of thermalization of the phonons. We, next, study damping under the flexure mode of operation. A comparative analysis with the stretching mode shows that the flexure mode is less dissipative. A reduced order model is considered to understand this novel behavior. We, also, investigate the role of tension on the Q factor, a measure of the inverse of dissipation rate. From these studies, we conclude that Akhiezer dynamics plays a dominant role in nano-resonators. We, then, develop a quasi-harmonic based multi-scale method to model Akhiezer damping. A stress component, that characterizes the non-equilibrium phonon population, is derived. We obtain constitutive relation that governs the time evolution of the non-equilibrium stress. Different methods to parametrize the constitutive relation are discussed. Using the proposed formulation, we compute the dissipation rate for different cases. The results are compared with those obtained using MD. Next, we use the Boltzmann transport equation and investigate the Q factor due to the thermo-elastic dissipation (TED). The Q factor obtained shows deviations from the classical theory of TED. Correction to the classical formula, for the case of longitudinal modes, is provided. We, then, study damping is low dimensional structure. We first consider the case of two dimensional graphene sheet and under in-plane stretching. We show that the coupling between the in-plane and the out-of-plane motions plays an important role in the loss of mechanical energy. Further, a hysteresis behavior in the out-of-plane dynamics is observed. Next, we investigate the stretching motion of graphene nano-ribbon. A normal mode Langevin dynamics is devised to understand the results from the MD simulation.
Dynamic Properties of Human Tympanic Membrane Based on Frequency-Temperature Superposition
Zhang, Xiangming; Gan, Rong Z.
2012-01-01
The human tympanic membrane (TM) transfers sound in the ear canal into the mechanical vibration of the ossicles in the middle ear. The dynamic properties of TM directly affect the middle ear transfer function. The static or quasi-static mechanical properties of TM were reported in the literature, but the dynamic properties of TM over the auditory frequency range are very limited. In this paper, a new method was developed to measure the dynamic properties of human TM using the Dynamic-Mechanical Analyzer (DMA). The test was conducted at the frequency range of 1 to 40 Hz at three different temperatures: 5°, 25° and 37°C. The frequency-temperature superposition was applied to extend the testing frequency range to a much higher level (at least 3800 Hz). The generalized linear solid model was employed to describe the constitutive relation of the TM. The storage modulus E’ and the loss modulus E” were obtained from 11 specimens. The mean storage modulus was 15.1 MPa at 1 Hz and 27.6 MPa at 3800 Hz. The mean loss modulus was 0.28 MPa at 1 Hz and 4.1 MPa at 3800 Hz. The results show that the frequency-temperature superposition is a feasible approach to study the dynamic properties of the ear soft tissues. The dynamic properties of human TM obtained in this study provide a better description of the damping behavior of ear tissues. The properties can be transferred into the finite element (FE) model of the human ear to replace the Rayleigh type damping. The data reported here contribute to the biomechanics of the middle ear and improve the accuracy of the FE model for the human ear. PMID:22820983
NASA Astrophysics Data System (ADS)
Kral, Q.; Thebault, P.; Charnoz, S.
2014-01-01
The first attempt at developing a fully self-consistent code coupling dynamics and collisions to study debris discs (Kral et al. 2013) is presented. So far, these two crucial mechanisms were studied separately, with N-body and statistical collisional codes respectively, because of stringent computational constraints. We present a new model named LIDT-DD which is able to follow over long timescales the coupled evolution of dynamics (including radiation forces) and collisions in a self-consistent way.
Kohda, Daisuke
2018-04-01
Promiscuous recognition of ligands by proteins is as important as strict recognition in numerous biological processes. In living cells, many short, linear amino acid motifs function as targeting signals in proteins to specify the final destination of the protein transport. In general, the target signal is defined by a consensus sequence containing wild-characters, and hence represented by diverse amino acid sequences. The classical lock-and-key or induced-fit/conformational selection mechanism may not cover all aspects of the promiscuous recognition. On the basis of our crystallographic and NMR studies on the mitochondrial Tom20 protein-presequence interaction, we proposed a new hypothetical mechanism based on "a rapid equilibrium of multiple states with partial recognitions". This dynamic, multiple recognition mode enables the Tom20 receptor to recognize diverse mitochondrial presequences with nearly equal affinities. The plant Tom20 is evolutionally unrelated to the animal Tom20 in our study, but is a functional homolog of the animal/fungal Tom20. NMR studies by another research group revealed that the presequence binding by the plant Tom20 was not fully explained by simple interaction modes, suggesting the presence of a similar dynamic, multiple recognition mode. Circumstantial evidence also suggested that similar dynamic mechanisms may be applicable to other promiscuous recognitions of signal peptides by the SRP54/Ffh and SecA proteins.
NASA Technical Reports Server (NTRS)
Nguyen, Charles C.; Pooran, Farhad J.
1989-01-01
This paper deals with a class of robot manipulators built based on the kinematic chain mechanism (CKCM). This class of CKCM manipulators consists of a fixed and a moving platform coupled together via a number of in-parallel actuators. A closed-form solution is derived for the inverse kinematic problem of a six-degre-of-freedom CKCM manipulator designed to study robotic applications in space. Iterative Newton-Raphson method is employed to solve the forward kinematic problem. Dynamics of the above manipulator is derived using the Lagrangian approach. Computer simulation of the dynamical equations shows that the actuating forces are strongly dependent on the mass and centroid of the robot links.
NASA Technical Reports Server (NTRS)
Teles, Jerome (Editor); Samii, Mina V. (Editor)
1993-01-01
A conference on spaceflight dynamics produced papers in the areas of orbit determination, spacecraft tracking, autonomous navigation, the Deep Space Program Science Experiment Mission (DSPSE), the Global Positioning System, attitude control, geostationary satellites, interplanetary missions and trajectories, applications of estimation theory, flight dynamics systems, low-Earth orbit missions, orbital mechanics, mission experience in attitude dynamics, mission experience in sensor studies, attitude dynamics theory and simulations, and orbit-related experience. These papaers covered NASA, European, Russian, Japanese, Chinese, and Brazilian space programs and hardware.
Michelmann, Sebastian; Bowman, Howard; Hanslmayr, Simon
2016-01-01
Reinstatement of dynamic memories requires the replay of neural patterns that unfold over time in a similar manner as during perception. However, little is known about the mechanisms that guide such a temporally structured replay in humans, because previous studies used either unsuitable methods or paradigms to address this question. Here, we overcome these limitations by developing a new analysis method to detect the replay of temporal patterns in a paradigm that requires participants to mentally replay short sound or video clips. We show that memory reinstatement is accompanied by a decrease of low-frequency (8 Hz) power, which carries a temporal phase signature of the replayed stimulus. These replay effects were evident in the visual as well as in the auditory domain and were localized to sensory-specific regions. These results suggest low-frequency phase to be a domain-general mechanism that orchestrates dynamic memory replay in humans. PMID:27494601
Lempereur, Mathieu; Lelievre, Mathieu; Burdin, Valérie; Ben Salem, Douraied; Brochard, Sylvain
2017-01-01
Purpose To report evidence for the concurrent validity and reliability of dynamic MRI techniques to evaluate in vivo joint and muscle mechanics, and to propose recommendations for their use in the assessment of normal and impaired musculoskeletal function. Materials and methods The search was conducted on articles published in Web of science, PubMed, Scopus, Academic search Premier, and Cochrane Library between 1990 and August 2017. Studies that reported the concurrent validity and/or reliability of dynamic MRI techniques for in vivo evaluation of joint or muscle mechanics were included after assessment by two independent reviewers. Selected articles were assessed using an adapted quality assessment tool and a data extraction process. Results for concurrent validity and reliability were categorized as poor, moderate, or excellent. Results Twenty articles fulfilled the inclusion criteria with a mean quality assessment score of 66% (±10.4%). Concurrent validity and/or reliability of eight dynamic MRI techniques were reported, with the knee being the most evaluated joint (seven studies). Moderate to excellent concurrent validity and reliability were reported for seven out of eight dynamic MRI techniques. Cine phase contrast and real-time MRI appeared to be the most valid and reliable techniques to evaluate joint motion, and spin tag for muscle motion. Conclusion Dynamic MRI techniques are promising for the in vivo evaluation of musculoskeletal mechanics; however results should be evaluated with caution since validity and reliability have not been determined for all joints and muscles, nor for many pathological conditions. PMID:29232401
Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won
2016-01-01
Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration-culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch.
Kim, Joong-Hyun; Kang, Min Sil; Eltohamy, Mohamed; Kim, Tae-Hyun; Kim, Hae-Won
2016-01-01
Complete reconstruction of damaged periodontal pockets, particularly regeneration of periodontal ligament (PDL) has been a significant challenge in dentistry. Tissue engineering approach utilizing PDL stem cells and scaffolding matrices offers great opportunity to this, and applying physical and mechanical cues mimicking native tissue conditions are of special importance. Here we approach to regenerate periodontal tissues by engineering PDL cells supported on a nanofibrous scaffold under a mechanical-stressed condition. PDL stem cells isolated from rats were seeded on an electrospun polycaprolactone/gelatin directionally-oriented nanofiber membrane and dynamic mechanical stress was applied to the cell/nanofiber construct, providing nanotopological and mechanical combined cues. Cells recognized the nanofiber orientation, aligning in parallel, and the mechanical stress increased the cell alignment. Importantly, the cells cultured on the oriented nanofiber combined with the mechanical stress produced significantly stimulated PDL specific markers, including periostin and tenascin with simultaneous down-regulation of osteogenesis, demonstrating the roles of topological and mechanical cues in altering phenotypic change in PDL cells. Tissue compatibility of the tissue-engineered constructs was confirmed in rat subcutaneous sites. Furthermore, in vivo regeneration of PDL and alveolar bone tissues was examined under the rat premaxillary periodontal defect models. The cell/nanofiber constructs engineered under mechanical stress showed sound integration into tissue defects and the regenerated bone volume and area were significantly improved. This study provides an effective tissue engineering approach for periodontal regeneration—culturing PDL stem cells with combinatory cues of oriented nanotopology and dynamic mechanical stretch. PMID:26989897
Bian, Liming; Zhai, David Y; Zhang, Emily C; Mauck, Robert L; Burdick, Jason A
2012-04-01
Mesenchymal stem cells (MSCs) are being recognized as a viable cell source for cartilage repair, and there is growing evidence that mechanical signals play a critical role in the regulation of stem cell chondrogenesis and in cartilage development. In this study we investigated the effect of dynamic compressive loading on chondrogenesis, the production and distribution of cartilage specific matrix, and the hypertrophic differentiation of human MSCs encapsulated in hyaluronic acid (HA) hydrogels during long term culture. After 70 days of culture, dynamic compressive loading increased the mechanical properties, as well as the glycosaminoglycan (GAG) and collagen contents of HA hydrogel constructs in a seeding density dependent manner. The impact of loading on HA hydrogel construct properties was delayed when applied to lower density (20 million MSCs/ml) compared to higher seeding density (60 million MSCs/ml) constructs. Furthermore, loading promoted a more uniform spatial distribution of cartilage matrix in HA hydrogels with both seeding densities, leading to significantly improved mechanical properties as compared to free swelling constructs. Using a previously developed in vitro hypertrophy model, dynamic compressive loading was also shown to significantly reduce the expression of hypertrophic markers by human MSCs and to suppress the degree of calcification in MSC-seeded HA hydrogels. Findings from this study highlight the importance of mechanical loading in stem cell based therapy for cartilage repair in improving neocartilage properties and in potentially maintaining the cartilage phenotype.
Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao
2017-04-26
Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism.
Ge, Chao; Maimaitituersun, Wubuliaisan; Dong, Yongxiang; Tian, Chao
2017-01-01
Polytetrafluoroethylene/aluminum/tungsten (PTFE/Al/W) reactive materials of three different component mass ratios (73.5/26.5/0, 68.8/24.2/7 and 63.6/22.4/14) were studied in this research. Different from the PTFE/Al/W composites published elsewhere, the materials in our research were fabricated under a much lower sintering temperature and for a much shorter duration to achieve a brittle property, which aims to provide more sufficient energy release upon impact. Quasi-static compression tests, dynamic compression tests at room and elevated temperatures, and drop weight tests were conducted to evaluate the mechanical and impact-induced initiation characteristics of the materials. The materials before and after compression tests were observed by a scanning electron microscope to relate the mesoscale structural characteristics to their macro properties. All the three types of materials fail at very low strains during both quasi-static and dynamic compression. The stress-strain curves for quasi-static tests show obvious deviations while that for the dynamic tests consist of only linear-elastic and failure stages typically. The materials were also found to exhibit thermal softening at elevated temperatures and were strain-rate sensitive during dynamic tests, which were compared using dynamic increase factors (DIFs). Drop-weight test results show that the impact-initiation sensitivity increases with the increase of W content due to the brittle mechanical property. The high-speed video sequences and recovered sample residues of the drop-weight tests show that the reaction is initiated at two opposite positions near the edges of the samples, where the shear force concentrates the most intensively, indicating a shear-induced initiation mechanism. PMID:28772812
Facilitating Understanding of Movements in Dynamic Visualizations: An Embodied Perspective
ERIC Educational Resources Information Center
de Koning, Bjorn B.; Tabbers, Huib K.
2011-01-01
Learners studying mechanical or technical processes via dynamic visualizations often fail to build an accurate mental representation of the system's movements. Based on embodied theories of cognition assuming that action, perception, and cognition are closely intertwined, this paper proposes that the learning effectiveness of dynamic…
NASA Astrophysics Data System (ADS)
Nath, S. K. Deb
2017-10-01
Using molecular dynamics simulation, tension and bending tests of a Fe nanopillar are carried out to obtain its Young's modulus and yield strength. Then the comparative study of Young's modulus and yield strength of a Fe nanopillar under bending and tension are carried out varying its diameter in the range of diameter 1-15nm. We find out the reasons why bending Young's modulus and yield strength of a Fe nanopillar are higher than those of tension Young's modulus and yield strength of a Fe nanopillar. Using the mobility parameters of bulk Fe from the experimental study [N. Urabe and J. Weertman, Materials Science and Engineering 18, 41 (1975)], its temperature dependent stress-strain relationship, yield strength and strain hardening modulus are obtained from the dislocation dynamics simulations. Strain rate dependent yield strength and strain hardening modulus of bulk Fe pillars under tension are studied. Temperature dependent creep behaviors of bulk Fe pillars under tension are also studied. To verify the soundness of the present dislocation dynamics studies of the mechanical properties of bulk Fe pillars under tension, the stress vs. strain relationship and dislocation density vs. strain of bulk Fe pillars obtained by us are compared with the published results obtained by S. Queyreau, G. Monnet, and B. Devincre, International Journal of Plasticity 25, 361 (2009).
Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose
Corradini, Dario; Strekalova, Elena G.; Stanley, H. Eugene; Gallo, Paola
2013-01-01
In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling. PMID:23390573
Microscopic mechanism of protein cryopreservation in an aqueous solution with trehalose.
Corradini, Dario; Strekalova, Elena G; Stanley, H Eugene; Gallo, Paola
2013-01-01
In order to investigate the cryoprotective mechanism of trehalose on proteins, we use molecular dynamics computer simulations to study the microscopic dynamics of water upon cooling in an aqueous solution of lysozyme and trehalose. We find that the presence of trehalose causes global retardation of the dynamics of water. Comparing aqueous solutions of lysozyme with/without trehalose, we observe that the dynamics of water in the hydration layers close to the protein is dramatically slower when trehalose is present in the system. We also analyze the structure of water and trehalose around the lysozyme and find that the trehalose molecules form a cage surrounding the protein that contains very slow water molecules. We conclude that the transient cage of trehalose molecules that entraps and slows the water molecules prevents the crystallisation of protein hydration water upon cooling.
Human seizures self-terminate across spatial scales via a critical transition.
Kramer, Mark A; Truccolo, Wilson; Eden, Uri T; Lepage, Kyle Q; Hochberg, Leigh R; Eskandar, Emad N; Madsen, Joseph R; Lee, Jong W; Maheshwari, Atul; Halgren, Eric; Chu, Catherine J; Cash, Sydney S
2012-12-18
Why seizures spontaneously terminate remains an unanswered fundamental question of epileptology. Here we present evidence that seizures self-terminate via a discontinuous critical transition or bifurcation. We show that human brain electrical activity at various spatial scales exhibits common dynamical signatures of an impending critical transition--slowing, increased correlation, and flickering--in the approach to seizure termination. In contrast, prolonged seizures (status epilepticus) repeatedly approach, but do not cross, the critical transition. To support these results, we implement a computational model that demonstrates that alternative stable attractors, representing the ictal and postictal states, emulate the observed dynamics. These results suggest that self-terminating seizures end through a common dynamical mechanism. This description constrains the specific biophysical mechanisms underlying seizure termination, suggests a dynamical understanding of status epilepticus, and demonstrates an accessible system for studying critical transitions in nature.
Exactly Solvable Models in Many-Body Theory
NASA Astrophysics Data System (ADS)
March, N. H.; Angilella, G. G. N.
2016-06-01
This book is an introduction to wave dynamics as they apply to earthquakes, among the scariest, most unpredictable, and deadliest natural phenomena on Earth. Since studying seismic activity is essentially a study of wave dynamics, this text starts with a discussion of types and representations, including wave-generation mechanics, superposition, and spectral analysis. Simple harmonic motion is used to analyze the mechanisms of wave propagation, and driven and damped systems are used to model the decay rates of various modal frequencies in different media. Direct correlation to earthquakes in California, Mexico, and Japan is used to illustrate key issues, and actual data from an event in California is presented and analyzed. Our Earth is a dynamic and changing planet, and seismic activity is the result. Hundreds of waves at different frequencies, modes, and amplitudes travel through a variety of different media, from solid rock to molten metals. Each media responds differently to each mode; consequently the result is an enormously complicated dynamic behavior. Earthquakes should serve well as a complimentary text for an upper-school course covering waves and wave mechanics, including sound and acoustics and basic geology. The mathematical requirement includes trigonometry and series summations, which should be accessible to most upper-school and college students. Animation, sound files, and videos help illustrate major topics.
NASA Astrophysics Data System (ADS)
Wang, Chenxu; Guan, Xiaohong; Qin, Tao; Yang, Tao
2015-06-01
Online social network has become an indispensable communication tool in the information age. The development of microblog also provides us a great opportunity to study human dynamics that play a crucial role in the design of efficient communication systems. In this paper we study the characteristics of the tweeting behavior based on the data collected from Sina Microblog. The user activity level is measured to characterize how often a user posts a tweet. We find that the user activity level follows a bimodal distribution. That is, the microblog users tend to be either active or inactive. The inter-tweeting time distribution is then measured at both the aggregate and individual levels. We find that the inter-tweeting time follows a piecewise power law distribution of two tails. Furthermore, the exponents of the two tails have different correlations with the user activity level. These findings demonstrate that the dynamics of the tweeting behavior are heterogeneous in different time scales. We then develop a dynamic model co-driven by the memory and the interest mechanism to characterize the heterogeneity. The numerical simulations validate the model and verify that the short time interval tweeting behavior is driven by the memory mechanism while the long time interval behavior by the interest mechanism.
A continuum dislocation dynamics framework for plasticity of polycrystalline materials
NASA Astrophysics Data System (ADS)
Askari, Hesam Aldin
The objective of this research is to investigate the mechanical response of polycrystals in different settings to identify the mechanisms that give rise to specific response observed in the deformation process. Particularly the large deformation of magnesium alloys and yield properties of copper in small scales are investigated. We develop a continuum dislocation dynamics framework based on dislocation mechanisms and interaction laws and implement this formulation in a viscoplastic self-consistent scheme to obtain the mechanical response in a polycrystalline system. The versatility of this method allows various applications in the study of problems involving large deformation, study of microstructure and its evolution, superplasticity, study of size effect in polycrystals and stochastic plasticity. The findings from the numerical solution are compared to the experimental results to validate the simulation results. We apply this framework to study the deformation mechanisms in magnesium alloys at moderate to fast strain rates and room temperature to 450 °C. Experiments for the same range of strain rates and temperatures were carried out to obtain the mechanical and material properties, and to compare with the numerical results. The numerical approach for magnesium is divided into four main steps; 1) room temperature unidirectional loading 2) high temperature deformation without grain boundary sliding 3) high temperature with grain boundary sliding mechanism 4) room temperature cyclic loading. We demonstrate the capability of our modeling approach in prediction of mechanical properties and texture evolution and discuss the improvement obtained by using the continuum dislocation dynamics method. The framework was also applied to nano-sized copper polycrystals to study the yield properties at small scales and address the observed yield scatter. By combining our developed method with a Monte Carlo simulation approach, the stochastic plasticity at small length scales was studied and the sources of the uncertainty in the polycrystalline structure are discussed. Our results suggest that the stochastic response is mainly because of a) stochastic plasticity due to dislocation substructure inside crystals and b) the microstructure of the polycrystalline material. The extent of the uncertainty is correlated to the "effective cell length" in the sampling procedure whether using simulations and experimental approach.
Morphology and viscoelastic properties of sealing materials based on EPDM rubber.
Milić, J; Aroguz, A; Budinski-Simendić, J; Radicević, R; Prendzov, S
2008-12-01
In this applicative study, the ratio of active and inactive filler loadings was the prime factor for determining the dynamic-mechanical behaviour of ethylene-propylene-diene monomer rubbers. Scanning electron microscopy was used to study the structure of reinforced dense and microcellular elastomeric materials. The effects of filler and blowing agent content on the morphology of composites were investigated. Microcellular samples cured in salt bath show smaller cells and uniform cell size compared with samples cured in hot air. Dynamic-mechanical thermal analysis showed appreciable changes in the viscoelastic properties by increasing active filler content, which could enable tailoring the material properties to suit sealing applications.
Nonplanar KdV and KP equations for quantum electron-positron-ion plasma
NASA Astrophysics Data System (ADS)
Dutta, Debjit
2015-12-01
Nonlinear quantum ion-acoustic waves with the effects of nonplanar cylindrical geometry, quantum corrections, and transverse perturbations are studied. By using the standard reductive perturbation technique, a cylindrical Kadomtsev-Petviashvili equation for ion-acoustic waves is derived by incorporating quantum-mechanical effects. The quantum-mechanical effects via quantum diffraction and quantum statistics and the role of transverse perturbations in cylindrical geometry on the dynamics of this wave are studied analytically. It is found that the dynamics of ion-acoustic solitary waves (IASWs) is governed by a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE). The results could help in a theoretical analysis of astrophysical and laser produced plasmas.
Impact compaction of a granular material
Fenton, Gregg; Asay, Blaine; Dalton, Devon
2015-05-19
The dynamic behavior of granular materials has importance to a variety of engineering applications. Structural seismic coupling, planetary science, and earth penetration mechanics, are just a few of the application areas. Although the mechanical behavior of granular materials of various types have been studied extensively for several decades, the dynamic behavior of such materials remains poorly understood. High-quality experimental data are needed to improve our general understanding of granular material compaction physics. This study will describe how an instrumented plunger impact system can be used to measure pressure-density relationships for model materials at high and controlled strain rates and subsequentlymore » used for computational modeling.« less
Renal blood flow dynamics in inbred rat strains provides insight into autoregulation.
A Mitrou, Nicholas G; Cupples, William A
2014-01-01
Renal autoregulation maintains stable renal blood flow in the face of constantly fluctuating blood pressure. Autoregulation is also the only mechanism that protects the delicate glomerular capillaries when blood pressure increases. In order to understand autoregulation, the renal blood flow response to changing blood pressure is studied. The steadystate response of blood flow is informative, but limits investigation of the individual mechanisms of autoregulation. The dynamics of autoregulation can be probed with transfer function analysis. The frequency-domain analysis of autoregulation allows investigators to probe the relative activity of each mechanism of autoregulation. We discuss the methodology and interpretation of transfer function analysis. Autoregulation is routinely studied in the rat, of which there are many inbred strains. There are multiple strains of rat that are either selected or inbred as models of human pathology. We discuss relevant characteristics of Brown Norway, Spontaneously hypertensive, Dahl, and Fawn-Hooded hypertensive rats and explore differences among these strains in blood pressure, dynamic autoregulation, and susceptibility to hypertensive renal injury. Finally we show that the use of transfer function analysis in these rat strains has contributed to our understanding of the physiology and pathophysiology of autoregulation and hypertensive renal disease.Interestingly all these strains demonstrate effective tubuloglomerular feedback suggesting that this mechanism is not sufficient for effective autoregulation. In contrast, obligatory or conditional failure of the myogenic mechanism suggests that this component is both necessary and sufficient for autoregulation.
Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J
2016-01-01
The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.
Experimental study on dynamic mechanical behaviors of polycarbonate
NASA Astrophysics Data System (ADS)
Zhang, Wei; Gao, Yubo; Ye, Nan; Huang, Wei; Li, Dacheng
2017-01-01
Polycarbonate (PC) is a widely used engineering material in aerospace field, since it has excellent mechanical and optical property. In present study, both compressive and tensile tests of PC were conducted at high strain rates by using a split Hopkinson pressure bar. The high-speed camera and 2D Digital Image Correlation method (DIC) were used to analyze the dynamic deformation behavior of PC. Meanwhile, the plate impact experiment was carried out to measure the equation of state of PC in a single-stage gas gun, which consists of asymmetric impact technology, manganin gauges, PVDF, electromagnetic particle velocity gauges. The results indicate that the yield stress of PC increased with the strain rates in both dynamic compression and tension tests. The same phenomenon was similar to elasticity modulus at different strain rate. A constitutive model was used to describe the mechanical behaviors of PC accurately in different strain rates by contrast with the results of 2D-DIC. At last, The D-u Hugoniot curve of polycarbonate in high pressure was fitted by the least square method.
Dynamic calibration of a wheelchair dynamometer.
DiGiovine, C P; Cooper, R A; Boninger, M L
2001-01-01
The inertia and resistance of a wheelchair dynamometer must be determined in order to compare the results of one study to another, independent of the type of device used. The purpose of this study was to describe and implement a dynamic calibration test for characterizing the electro-mechanical properties of a dynamometer. The inertia, the viscous friction, the kinetic friction, the motor back-electromotive force constant, and the motor constant were calculated using three different methods. The methodology based on a dynamic calibration test along with a nonlinear regression analysis produced the best results. The coefficient of determination comparing the dynamometer model output to the measured angular velocity and torque was 0.999 for a ramp input and 0.989 for a sinusoidal input. The inertia and resistance were determined for the rollers and the wheelchair wheels. The calculation of the electro-mechanical parameters allows for the complete description of the propulsive torque produced by an individual, given only the angular velocity and acceleration. The measurement of the electro-mechanical properties of the dynamometer as well as the wheelchair/human system provides the information necessary to simulate real-world conditions.
Axon tension regulates fasciculation/defasciculation through the control of axon shaft zippering
Šmít, Daniel; Fouquet, Coralie; Pincet, Frédéric; Zapotocky, Martin; Trembleau, Alain
2017-01-01
While axon fasciculation plays a key role in the development of neural networks, very little is known about its dynamics and the underlying biophysical mechanisms. In a model system composed of neurons grown ex vivo from explants of embryonic mouse olfactory epithelia, we observed that axons dynamically interact with each other through their shafts, leading to zippering and unzippering behavior that regulates their fasciculation. Taking advantage of this new preparation suitable for studying such interactions, we carried out a detailed biophysical analysis of zippering, occurring either spontaneously or induced by micromanipulations and pharmacological treatments. We show that zippering arises from the competition of axon-axon adhesion and mechanical tension in the axons, and provide the first quantification of the force of axon-axon adhesion. Furthermore, we introduce a biophysical model of the zippering dynamics, and we quantitatively relate the individual zipper properties to global characteristics of the developing axon network. Our study uncovers a new role of mechanical tension in neural development: the regulation of axon fasciculation. DOI: http://dx.doi.org/10.7554/eLife.19907.001 PMID:28422009
The failure of earthquake failure models
Gomberg, J.
2001-01-01
In this study I show that simple heuristic models and numerical calculations suggest that an entire class of commonly invoked models of earthquake failure processes cannot explain triggering of seismicity by transient or "dynamic" stress changes, such as stress changes associated with passing seismic waves. The models of this class have the common feature that the physical property characterizing failure increases at an accelerating rate when a fault is loaded (stressed) at a constant rate. Examples include models that invoke rate state friction or subcritical crack growth, in which the properties characterizing failure are slip or crack length, respectively. Failure occurs when the rate at which these grow accelerates to values exceeding some critical threshold. These accelerating failure models do not predict the finite durations of dynamically triggered earthquake sequences (e.g., at aftershock or remote distances). Some of the failure models belonging to this class have been used to explain static stress triggering of aftershocks. This may imply that the physical processes underlying dynamic triggering differs or that currently applied models of static triggering require modification. If the former is the case, we might appeal to physical mechanisms relying on oscillatory deformations such as compaction of saturated fault gouge leading to pore pressure increase, or cyclic fatigue. However, if dynamic and static triggering mechanisms differ, one still needs to ask why static triggering models that neglect these dynamic mechanisms appear to explain many observations. If the static and dynamic triggering mechanisms are the same, perhaps assumptions about accelerating failure and/or that triggering advances the failure times of a population of inevitable earthquakes are incorrect.
Vibration waveform effects on dynamic stabilization of ablative Rayleigh-Taylor instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piriz, A. R.; Lucchio, L. Di; Rodriguez Prieto, G.
2011-08-15
An analysis of dynamic stabilization of Rayleigh-Taylor instability in an ablation front is performed by considering a general square wave for modulating the vertical acceleration of the front. Such a kind of modulation allows for clarifying the role of thermal conduction in the mechanism of dynamic stabilization. In addition, the study of the effect of different modulations by varying the duration and amplitude of the square wave in each half-period provides insight on the optimum performance of dynamic stabilization.
NASA Astrophysics Data System (ADS)
Recheis, Wolfgang A.; Kleinsasser, Axel; Schuster, Antonius H.; Loeckinger, Alexander; Frede, Thomas; Springer, Peter; Hoermann, Christoph; zur Nedden, Dieter
2000-04-01
The purpose was to evaluate differences in dynamic changes of the lung aeration (air-tissue ratio) between augmented modes of ventilation (AMV) and controlled mechanical ventilation (CMV) in normal subjects. 4 volunteers, ventilated with the different respirator protocols via face mask, were scanned using the EBCT in the 50 ms mode. A software analyzed the respirator's digitized pressure and volume signals of two subsequent ventilation phases. Using these values it was possible to calculate the onset of inspiration or expiration of the next respiratory phase. The calculated starting point was then used to trigger the EBCT. The dynamic changes of air- tissue ratios were evaluated in three separate regions: a ventral, an intermediate and a dorsal area. AMV results in increase of air-tissue ratio in the dorsal lung area due to the active contraction of the diaphragm, whereas CMV results in a more pronounced increase in air-tissue ratio of the ventral lung area. This study gives further insight into the dynamic changes of the lung's biomechanics by comparing augmented ventilation and controlled mechanical ventilation in the healthy proband.
Osculating Keplerian Elements for Highly Non-Keplerian Orbits
2017-03-27
1.52133 2 McInnes, C. R., “The Existence and Stability of Families of Displacement Two-Body Orbits”, Celestial Mechanics and Dynamical Astronomy , Vol...j.actaastro.2011.08.012 5 Xu, M. and Xu, S., “Nonlinear dynamical analysis for displaced orbits above a planet”, Celestial Mechanics and Dynamical Astronomy ...Celestial Mechanics and Dynamical Astronomy , Vol. 110, No. 3, 2011, pp. 199-215. doi: 10.1007/s10569-011-9351-5 7 Macdonald, M., McKay, R. J., Vasile, M
Dixit, Anshuman; Verkhivker, Gennady M.
2009-01-01
Structural and functional studies of the ABL and EGFR kinase domains have recently suggested a common mechanism of activation by cancer-causing mutations. However, dynamics and mechanistic aspects of kinase activation by cancer mutations that stimulate conformational transitions and thermodynamic stabilization of the constitutively active kinase form remain elusive. We present a large-scale computational investigation of activation mechanisms in the ABL and EGFR kinase domains by a panel of clinically important cancer mutants ABL-T315I, ABL-L387M, EGFR-T790M, and EGFR-L858R. We have also simulated the activating effect of the gatekeeper mutation on conformational dynamics and allosteric interactions in functional states of the ABL-SH2-SH3 regulatory complexes. A comprehensive analysis was conducted using a hierarchy of computational approaches that included homology modeling, molecular dynamics simulations, protein stability analysis, targeted molecular dynamics, and molecular docking. Collectively, the results of this study have revealed thermodynamic and mechanistic catalysts of kinase activation by major cancer-causing mutations in the ABL and EGFR kinase domains. By using multiple crystallographic states of ABL and EGFR, computer simulations have allowed one to map dynamics of conformational fluctuations and transitions in the normal (wild-type) and oncogenic kinase forms. A proposed multi-stage mechanistic model of activation involves a series of cooperative transitions between different conformational states, including assembly of the hydrophobic spine, the formation of the Src-like intermediate structure, and a cooperative breakage and formation of characteristic salt bridges, which signify transition to the active kinase form. We suggest that molecular mechanisms of activation by cancer mutations could mimic the activation process of the normal kinase, yet exploiting conserved structural catalysts to accelerate a conformational transition and the enhanced stabilization of the active kinase form. The results of this study reconcile current experimental data with insights from theoretical approaches, pointing to general mechanistic aspects of activating transitions in protein kinases. PMID:19714203
Modeling and parameter identification of impulse response matrix of mechanical systems
NASA Astrophysics Data System (ADS)
Bordatchev, Evgueni V.
1998-12-01
A method for studying the problem of modeling, identification and analysis of mechanical system dynamic characteristic in view of the impulse response matrix for the purpose of adaptive control is developed here. Two types of the impulse response matrices are considered: (i) on displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement, which describes the space-coupled relationship between vectors of the force and simulated displacement and (ii) on acceleration, which also describes the space-coupled relationship between the vectors of the force and measured acceleration. The idea of identification consists of: (a) the practical obtaining of the impulse response matrix on acceleration by 'impact-response' technique; (b) the modeling and parameter estimation of the each impulse response function on acceleration through the fundamental representation of the impulse response function on displacement as a sum of the damped sine curves applying linear and non-linear least square methods; (c) simulating the impulse provides the additional possibility to calculate masses, damper and spring constants. The damped natural frequencies are used as a priori information and are found through the standard FFT analysis. The problem of double numerical integration is avoided by taking two derivations of the fundamental dynamic model of a mechanical system as linear combination of the mass-damper-spring subsystems. The identified impulse response matrix on displacement represents the dynamic properties of the mechanical system. From the engineering point of view, this matrix can be also understood as a 'dynamic passport' of the mechanical system and can be used for dynamic certification and analysis of the dynamic quality. In addition, the suggested approach mathematically reproduces amplitude-frequency response matrix in a low-frequency band and on zero frequency. This allows the possibility of determining the matrix of the static stiffness due to dynamic testing over the time of 10- 15 minutes. As a practical example, the dynamic properties in view of the impulse and frequency response matrices of the lathe spindle are obtained, identified and investigated. The developed approach for modeling and parameter identification appears promising for a wide range o industrial applications; for example, rotary systems.
ERIC Educational Resources Information Center
Valencia, Jorge Andrick Parra; Dallos, Adriana Rocío Lizcano; Ballesteros, Eliécer Pineda
2017-01-01
This study presents a mechanism which explains the effect of synchronous communication on students' perception of the training process in virtual learning methodology used in a postgraduate programme at the University of Santander. We use System Dynamics to design a mechanism that integrates motivation, confidence, trust, and autonomy in students.…
NASA Astrophysics Data System (ADS)
Zhang, Qi; Wu, Biao
2018-01-01
We present a theoretical framework for the dynamics of bosonic Bogoliubov quasiparticles. We call it Lorentz quantum mechanics because the dynamics is a continuous complex Lorentz transformation in complex Minkowski space. In contrast, in usual quantum mechanics, the dynamics is the unitary transformation in Hilbert space. In our Lorentz quantum mechanics, three types of state exist: space-like, light-like and time-like. Fundamental aspects are explored in parallel to the usual quantum mechanics, such as a matrix form of a Lorentz transformation, and the construction of Pauli-like matrices for spinors. We also investigate the adiabatic evolution in these mechanics, as well as the associated Berry curvature and Chern number. Three typical physical systems, where bosonic Bogoliubov quasi-particles and their Lorentz quantum dynamics can arise, are presented. They are a one-dimensional fermion gas, Bose-Einstein condensate (or superfluid), and one-dimensional antiferromagnet.
Molecular dynamics simulations of human E3 ubiquitin ligase Parkin.
Qiu, Shi; Zhu, Shun; Xu, Shan; Han, Yanyan; Liu, Wen; Zuo, Ji
2017-10-01
Human E3 ubiquitin protein ligase parkin (Parkin) mediates mitophagy to maintain mitochondrial homeostasis. Parkin mutations are common genetic causes of early onset familial Parkinson's disease. The molecular mechanism of Parkin activation has been widely studied with emerging evidence suggesting an essential role of the phosphorylated (phospho)‑ubiquitin interaction. However, the underlying mecha-nism of the phospho‑ubiquitin interaction remains elusive. In the present study, replica exchange molecular dynamics simulations were performed to examine the conformational dynamics of Parkin in monomer and phospho‑ubiquitin‑bound states. In the Parkin monomer state, high structural flexi-bilities were observed in the majority of regions of Parkin particularly in the loop domain between the ubiquitin‑like (UBL) and really interesting new gene (RING)0 domain. Binding of phospho‑ubiquitin stabilizes the RING1/RING in between RING interface but destabilizes the RING1‑UBL interface. Furthermore, using steered molecular dynamics simulations of Parkin mutations, it was demonstrated that salt bridge interactions contribute significantly to the interdomain interactions between the RING1 and UBL domain. Taken together, the results of the present study revealed the conformational dynamics of human full‑length Parkin in monomer and phospho‑ubiquitin‑bound states, providing insights into designing potential therapeutics against Parkinson's disease.
NASA Astrophysics Data System (ADS)
Yu, Yue; Zhang, Zhengdi; Han, Xiujing
2018-03-01
In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlled Lü system. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.
Linguistic positivity in historical texts reflects dynamic environmental and psychological factors.
Iliev, Rumen; Hoover, Joe; Dehghani, Morteza; Axelrod, Robert
2016-12-06
People use more positive words than negative words. Referred to as "linguistic positivity bias" (LPB), this effect has been found across cultures and languages, prompting the conclusion that it is a panhuman tendency. However, although multiple competing explanations of LPB have been proposed, there is still no consensus on what mechanism(s) generate LPB or even on whether it is driven primarily by universal cognitive features or by environmental factors. In this work we propose that LPB has remained unresolved because previous research has neglected an essential dimension of language: time. In four studies conducted with two independent, time-stamped text corpora (Google books Ngrams and the New York Times), we found that LPB in American English has decreased during the last two centuries. We also observed dynamic fluctuations in LPB that were predicted by changes in objective environment, i.e., war and economic hardships, and by changes in national subjective happiness. In addition to providing evidence that LPB is a dynamic phenomenon, these results suggest that cognitive mechanisms alone cannot account for the observed dynamic fluctuations in LPB. At the least, LPB likely arises from multiple interacting mechanisms involving subjective, objective, and societal factors. In addition to having theoretical significance, our results demonstrate the value of newly available data sources in addressing long-standing scientific questions.
Linguistic positivity in historical texts reflects dynamic environmental and psychological factors
Iliev, Rumen; Hoover, Joe; Dehghani, Morteza
2016-01-01
People use more positive words than negative words. Referred to as “linguistic positivity bias” (LPB), this effect has been found across cultures and languages, prompting the conclusion that it is a panhuman tendency. However, although multiple competing explanations of LPB have been proposed, there is still no consensus on what mechanism(s) generate LPB or even on whether it is driven primarily by universal cognitive features or by environmental factors. In this work we propose that LPB has remained unresolved because previous research has neglected an essential dimension of language: time. In four studies conducted with two independent, time-stamped text corpora (Google books Ngrams and the New York Times), we found that LPB in American English has decreased during the last two centuries. We also observed dynamic fluctuations in LPB that were predicted by changes in objective environment, i.e., war and economic hardships, and by changes in national subjective happiness. In addition to providing evidence that LPB is a dynamic phenomenon, these results suggest that cognitive mechanisms alone cannot account for the observed dynamic fluctuations in LPB. At the least, LPB likely arises from multiple interacting mechanisms involving subjective, objective, and societal factors. In addition to having theoretical significance, our results demonstrate the value of newly available data sources in addressing long-standing scientific questions. PMID:27872286
NASA Technical Reports Server (NTRS)
Roberts, Gary D; Malarik, Diane C.; Robaidek, Jerrold O.
1991-01-01
Viscoelastic properties of the addition cured polyimide, PMR-15, were studied using dynamic mechanical and stress relaxation tests. For temperatures below the glass transition temperature, T sub g, the dynamic mechanical properties measured using a temperature scan rate of 10 C/min were strongly affected by the presence of absorbed moisture in the resin. Dynamic mechanical properties measured as a function of time during an isothermal hold provided an indication of chemical changes occurring in the resin. For temperatures above (T sub g + 20 C), the storage modulus increased continuously as a function of time indicating that additional crosslinking is occurring in the resin. Because of these changes in chemical structures, the stress relaxation modulus could not be measured over any useful time interval for temperatures above T sub g. For temperatures below T sub g, dynamic mechanical properties appeared to be unaffected by chemical changes for times exceeding 1 hr. Since the duration of the stress relaxation tests was less than 1 hr, the stress relaxation modulus could be measured. As long as the moisture content of the resin was less than 2 pct, stress relaxation curves measured at different temperatures could be superimposed using horizontal shifts along the log(time) axis with only small shifts along the vertical axis.
Effects of geometry and cell-matrix interactions on the mechanics of 3D engineered microtissues
NASA Astrophysics Data System (ADS)
Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel
Approaches to measure and control cell-extracellular matrix (ECM) interactions in a dynamic mechanical environment are important both for studies of mechanobiology and for tissue design for bioengineering applications. We have developed a microtissue-based platform capable of controlling the ECM alignment of 3D engineered microtissues while simultaneously permitting measurement of cellular contractile forces and the tissues' mechanical properties. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of flexible elastic pillars. Tissue geometry and ECM alignment are controlled by the pillars' number, shape and location. Optical tracking of the pillars provides readout of the tissues' contractile forces. Magnetic materials bound to selected pillars allow quasi-static or dynamic stretching of the tissue, and together with simultaneous measurements of the tissues' local dynamic strain field, enable characterization of the mechanical properties of the system, including their degree of anisotropy. Results on the effects of symmetry and degree of ECM alignment and organization on the role of cell-ECM interactions in determining tissue mechanical properties will be discussed. This work is supported by NSF CMMI-1463011 and CMMI-1462710.
Fish population dynamics in a seasonally varying wetland
DeAngelis, Donald L.; Trexler, Joel C.; Cosner, Chris; Obaza, Adam; Jopp, Fred
2010-01-01
Small fishes in seasonally flooded environments such as the Everglades are capable of spreading into newly flooded areas and building up substantial biomass. Passive drift cannot account for the rapidity of observed population expansions. To test the reaction-diffusion mechanism for spread of the fish, we estimated their diffusion coefficient and applied a reaction-diffusion model. This mechanism was also too weak to account for the spatial dynamics. Two other hypotheses were tested through modeling. The first--the 'refuge mechanism--hypothesizes that small remnant populations of small fishes survive the dry season in small permanent bodies of water (refugia), sites where the water level is otherwise below the surface. The second mechanism, which we call the 'dynamic ideal free distribution mechanism' is that consumption by the fish creates a prey density gradient and that fish taxis along this gradient can lead to rapid population expansion in space. We examined the two alternatives and concluded that although refugia may play an important role in recolonization by the fish population during reflooding, only the second, taxis in the direction of the flooding front, seems capable of matching empirical observations. This study has important implications for management of wetlands, as fish biomass is an essential support of higher trophic levels.
Effects of Four Different Regulatory Mechanisms on the Dynamics of Gene Regulatory Cascades
NASA Astrophysics Data System (ADS)
Hansen, Sabine; Krishna, Sandeep; Semsey, Szabolcs; Lo Svenningsen, Sine
2015-07-01
Gene regulatory cascades (GRCs) are common motifs in cellular molecular networks. A given logical function in these cascades, such as the repression of the activity of a transcription factor, can be implemented by a number of different regulatory mechanisms. The potential consequences for the dynamic performance of the GRC of choosing one mechanism over another have not been analysed systematically. Here, we report the construction of a synthetic GRC in Escherichia coli, which allows us for the first time to directly compare and contrast the dynamics of four different regulatory mechanisms, affecting the transcription, translation, stability, or activity of a transcriptional repressor. We developed a biologically motivated mathematical model which is sufficient to reproduce the response dynamics determined by experimental measurements. Using the model, we explored the potential response dynamics that the constructed GRC can perform. We conclude that dynamic differences between regulatory mechanisms at an individual step in a GRC are often concealed in the overall performance of the GRC, and suggest that the presence of a given regulatory mechanism in a certain network environment does not necessarily mean that it represents a single optimal evolutionary solution.
Hayes, Adele M.; Yasinski, Carly; Barnes, J. Ben; Bockting, Claudi L. H.
2015-01-01
The science of dynamic systems is the study of pattern formation and system change. Dynamic systems theory can provide a useful framework for understanding the chronicity of depression and its treatment. We propose a working model of therapeutic change with potential to organize findings from psychopathology and treatment research, suggest new ways to study change, facilitate comparisons across studies, and stimulate treatment innovation. We describe a treatment for depression that we developed to apply principles from dynamic systems theory and then present a program of research to examine the utility of this application. Recent methodological and technological developments are also discussed to further advance the search for mechanisms of therapeutic change. PMID:26197726
Use of Network Inference to Unravel the Mechanisms of Action and Specificity of Aromatase Inhibitors
The vertebrate hypothalamus-pituitary-gonadal (HPG) axis is controlled through various feedback mechanisms in order to maintain a dynamic homeostasis during changing environmental conditions, including exposure to chemical stressors. In this study, three aromatase inhibitors, fad...
Interests Vivek's interests broadly span across protein structure and dynamics, reaction mechanisms, and energetics and kinetics from first principles Protein structure prediction and docking Education PhD structure on the fumarate addition mechanism - a gas-phase ab initio study," Physical Chemistry
The Mechanism of Covalent Bonding: Analysis within the Huckel Model of Electronic Structure
ERIC Educational Resources Information Center
Nordholm, Sture; Back, Andreas; Backsay, George B.
2007-01-01
The commonly used Huckel model of electronic structure is employed to study the mechanisms of covalent bonding, a quantum effect related to electron dynamics. The model also explains the conjugation and aromaticity of planar hydrocarbon molecules completely.
Strain rate sensitivity of autoclaved aerated concrete from quasi-static regime to shock loading
NASA Astrophysics Data System (ADS)
Mespoulet, Jérôme; Plassard, Fabien; Hereil, Pierre Louis
2015-09-01
The quasi-static mechanical behavior of autoclaved aerated concrete is well-known and can be expressed as a function of its density. There are however not much studies dealing with its dynamic behavior and its damping ability when subjected to a mechanical shock or a blast. This study presents experimental results obtained at the Shock Physics Laboratory of THIOT INGENIERIE company. The test specimens are made of YTONG(TM ) cellular concrete with porosity in the range of 75 to 80%. Experimental tests cover a large strain rate amplitude (higher than 104 s-1) for specimens up to 250 mm. They were carried out with a small compression press and with two facilities dedicated to dynamic material characterization: JUPITER dynamic large press (2 MN, 3 ms rising time) and TITAN multi-caliber single-stage gas gun. Results in un-confined conditions show an increase of the compressive strength when strain rate increases (45% increase at 5.102 s-1) but dynamic tests induce damage early in the experiment. This competition between dynamic strength raise and specimen fracture makes the complete compaction curve determination not to be done in unconfined dynamic condition. A 25% increase of the compressive strength has been observed between unconfined and confined condition in Q.S. regime.
Collaborative research in cardiovascular dynamics and bone elasticity
NASA Technical Reports Server (NTRS)
1974-01-01
A collaborative research program covering a variety of topics of biomechanics and biomedical engineering within the fields of cardiovascular dynamics, respiration, bone elasticity and vestibular physiology is described. The goals of the research were to promote: (1) a better understanding of the mechanical behavior of the circulatory system and its control mechanisms; (2) development of noninvasive methods of measuring the changes in the mechanical properties of blood vessels and other cardiovascular parameters in man; (3) application of these noninvasive methods to examine in man the physiological effects of environmental changes, including earth-simulated gravitational changes; and (4) development of in-flight methods for studying the events which lead to post-flight postural hypotension.
NASA Astrophysics Data System (ADS)
Mohagheghi, Samira; Şerefoğlu, Melis
2017-07-01
In directionally solidified 2D samples at ternary eutectic compositions, the stable three-phase pattern is established to be lamellar structure with ABAC stacking, where A, B, and C are crystalline phases. Beyond the stability limits of the ABAC pattern, the system uses various spacing adjustment mechanisms to revert to the stable regime. In this study, the dynamics of spacing adjustment and recovery mechanisms of isotropic ABAC patterns were investigated using three-phase In-Bi-Sn alloy. Unidirectional solidification experiments were performed on 23.0 and 62.7 μm-thick samples, where solidification front was monitored in real-time from both sides of the sample using a particular microscopy system. At these thicknesses, the pattern was found to be 2D during steady-state growth, i.e. both top and bottom microstructures were the same. However, during spacing adjustment and recovery mechanisms, 3D features were observed. Dynamics of two major instabilities, lamellae branching and elimination, were quantified. After these instabilities, two key ABAC pattern recovery mechanisms, namely, phase invasion and phase exchange processes, were identified and analyzed. After elimination, ABAC pattern is recovered by either continuous eliminations of all phases or by phase exchange. After branching, the recovery mechanisms are established to be phase invasion and phase exchange.
Modeling and Characterization of Electrical Resistivity of Carbon Composite Laminates
NASA Astrophysics Data System (ADS)
Yasuda, Hiromi
Origami has recently received significant interest from the scientific and engineering communities as a method for designing building blocks of engineered structures to enhance their mechanical properties. However, the primary focus has been placed on their kinematic applications by leveraging the compactness and auxeticity of planar origami platforms. In this thesis, we study two different types of volumetric origami structures, Tachi-Miura Polyhedron (TMP) and Triangulated Cylindrical Origami (TCO), hierarchically from a single unit cell level to an assembly of multi-origami cells. We strategically assemble these origami cells into mechanical metamaterials and demonstrate their unique static/dynamic mechanical responses. In particular, these origami structures exhibit tailorable stiffness and strain softening/hardening behaviors, which leads to rich wave dynamics in origami-based architectures such as tunable frequency bands and new types of nonlinear wave propagations. One of the novel waveforms investigated in this thesis is the rarefaction solitary wave arising from strain-softening nature of origami unit cell. This unique wave dynamic mechanism is analyzed in numerical, analytical, and experimental approaches. By leveraging their tailorable folding mechanisms, the origami-based mechanical metamaterials can be used for designing new types of engineering devices and structures, not only for deployable space and disaster relief applications, but also for vibration filtering, impact mitigation, and energy harvesting.
Wu, Chia-Chou; Chen, Bor-Sen
2016-01-01
Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host–pathogen dynamic interaction networks. The consideration of host–pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host–pathogen molecular interaction networks, and consequent inferences of the host–pathogen relationship could be translated into biomedical applications. PMID:26881892
Wu, Chia-Chou; Chen, Bor-Sen
2016-01-01
Infected zebrafish coordinates defensive and offensive molecular mechanisms in response to Candida albicans infections, and invasive C. albicans coordinates corresponding molecular mechanisms to interact with the host. However, knowledge of the ensuing infection-activated signaling networks in both host and pathogen and their interspecific crosstalk during the innate and adaptive phases of the infection processes remains incomplete. In the present study, dynamic network modeling, protein interaction databases, and dual transcriptome data from zebrafish and C. albicans during infection were used to infer infection-activated host-pathogen dynamic interaction networks. The consideration of host-pathogen dynamic interaction systems as innate and adaptive loops and subsequent comparisons of inferred innate and adaptive networks indicated previously unrecognized crosstalk between known pathways and suggested roles of immunological memory in the coordination of host defensive and offensive molecular mechanisms to achieve specific and powerful defense against pathogens. Moreover, pathogens enhance intraspecific crosstalk and abrogate host apoptosis to accommodate enhanced host defense mechanisms during the adaptive phase. Accordingly, links between physiological phenomena and changes in the coordination of defensive and offensive molecular mechanisms highlight the importance of host-pathogen molecular interaction networks, and consequent inferences of the host-pathogen relationship could be translated into biomedical applications.
The dynamic-stimulus advantage of visual symmetry perception.
Niimi, Ryosuke; Watanabe, Katsumi; Yokosawa, Kazuhiko
2008-09-01
It has been speculated that visual symmetry perception from dynamic stimuli involves mechanisms different from those for static stimuli. However, previous studies found no evidence that dynamic stimuli lead to active temporal processing and improve symmetry detection. In this study, four psychophysical experiments investigated temporal processing in symmetry perception using both dynamic and static stimulus presentations of dot patterns. In Experiment 1, rapid successive presentations of symmetric patterns (e.g., 16 patterns per 853 ms) produced more accurate discrimination of orientations of symmetry axes than static stimuli (single pattern presented through 853 ms). In Experiments 2-4, we confirmed that the dynamic-stimulus advantage depended upon presentation of a large number of unique patterns within a brief period (853 ms) in the dynamic conditions. Evidently, human vision takes advantage of temporal processing for symmetry perception from dynamic stimuli.
Kuzmanic, Antonija; Sutto, Ludovico; Saladino, Giorgio; Nebreda, Angel R; Gervasio, Francesco L; Orozco, Modesto
2017-04-26
p38α is a Ser/Thr protein kinase involved in a variety of cellular processes and pathological conditions, which makes it a promising pharmacological target. Although the activity of the enzyme is highly regulated, its molecular mechanism of activation remains largely unexplained, even after decades of research. By using state-of-the-art molecular dynamics simulations, we decipher the key elements of the complex molecular mechanism refined by evolution to allow for a fine tuning of p38α kinase activity. Our study describes for the first time the molecular effects of different regulators of the enzymatic activity, and provides an integrative picture of the activation mechanism that explains the seemingly contradictory X-ray and NMR data.
Li, Z.; Zhao, S.; Diao, H.; Liaw, P. K.; Meyers, M. A.
2017-01-01
The mechanical behavior of a single phase (fcc) Al0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives rise to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors. PMID:28210000
Optimal control of underactuated mechanical systems: A geometric approach
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela
2010-08-01
In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.
Dynamics versus thermodynamics
NASA Astrophysics Data System (ADS)
Berdichevsky, V. L.
1991-05-01
An effort is made to characterize the ways in which the approaches of statistical mechanics and thermodynamics can be useful in the study of the dynamic behavior of structures. This meditation proceeds through consideration of such wide-ranging and deliberately provocative questions as: 'What are to be considered values in a stress-distribution function?' and 'How many degrees-of-freedom has a beam?'; it then gives attention to the hierarchy of vibrations, the interaction of the mechanism of dissipation with invisible degrees of freedom, and a plausible view of vibrations for the case of small dissipation.
NASA Technical Reports Server (NTRS)
Brown, R. A.
1986-01-01
This research program focuses on analysis of the transport mechanisms in solidification processes, especially one of interest to the Microgravity Sciences and Applications Program of NASA. Research during the last year has focused on analysis of the dynamics of the floating zone process for growth of small-scale crystals, on studies of the effect of applied magnetic fields on convection and solute segregation in directional solidification, and on the dynamics of microscopic cell formation in two-dimensional solidification of binary alloys. Significant findings are given.
Yüksel, Yusuf; Akıncı, Ümit
2016-12-07
Using Monte Carlo simulations, we have investigated the dynamic phase transition properties of magnetic nanoparticles with ferromagnetic core coated by an antiferromagnetic shell structure. Effects of field amplitude and frequency on the thermal dependence of magnetizations, magnetization reversal mechanisms during hysteresis cycles, as well as on the exchange bias and coercive fields have been examined, and the feasibility of applying dynamic magnetic fields on the particle have been discussed for technological and biomedical purposes.
Comparisons of Kinematics and Dynamics Simulation Software Tools
NASA Technical Reports Server (NTRS)
Shiue, Yeu-Sheng Paul
2002-01-01
Kinematic and dynamic analyses for moving bodies are essential to system engineers and designers in the process of design and validations. 3D visualization and motion simulation plus finite element analysis (FEA) give engineers a better way to present ideas and results. Marshall Space Flight Center (MSFC) system engineering researchers are currently using IGRIP from DELMIA Inc. as a kinematic simulation tool for discrete bodies motion simulations. Although IGRIP is an excellent tool for kinematic simulation with some dynamic analysis capabilities in robotic control, explorations of other alternatives with more powerful dynamic analysis and FEA capabilities are necessary. Kinematics analysis will only examine the displacement, velocity, and acceleration of the mechanism without considering effects from masses of components. With dynamic analysis and FEA, effects such as the forces or torques at the joint due to mass and inertia of components can be identified. With keen market competition, ALGOR Mechanical Event Simulation (MES), MSC visualNastran 4D, Unigraphics Motion+, and Pro/MECHANICA were chosen for explorations. In this study, comparisons between software tools were presented in terms of following categories: graphical user interface (GUI), import capability, tutorial availability, ease of use, kinematic simulation capability, dynamic simulation capability, FEA capability, graphical output, technical support, and cost. Propulsion Test Article (PTA) with Fastrac engine model exported from IGRIP and an office chair mechanism were used as examples for simulations.
Nour, Hany F; Islam, Tuhidul; Fernández-Lahore, Marcelo; Kuhnert, Nikolai
2012-12-30
Over the past few decades, bacterial resistance to antibiotics has emerged as a real threat to human health. Accordingly, there is an urgent demand for the development of innovative strategies for discovering new antibiotics. We present the first use of tetra-carbohydrazide cyclophane macrocycles in dynamic combinatorial chemistry (DCC) and molecular recognition as chiral hosts binding oligopeptides, which mimic bacterial cell wall. This study introduces an innovative application of electrospray ionisation time-of-flight mass spectrometry (ESI-TOF MS) to oligopeptides recognition using DCC. A small dynamic library composed of eight functionalised macrocycles has been generated in solution and all members were characterised by ESI-TOF MS. We also probed the dynamic reversibility and mechanism of formation of tetra-carbohydrazide cyclophanes in real-time using ESI-TOF MS. Dynamic reversibility of tetra-carbohydrazide cyclophanes is favored under thermodynamic control. The mechanism of formation of tetra-carbohydrazide cyclophanes involves key dialdehyde intermediates, which have been detected and assigned according to their high-resolution m/z values. Three members of the dynamic library bind efficiently in the gas phase to a selection of oligopeptides, unique to bacteria, allowing observation of host/guest complex ions in the gas phase. We probed the mechanism of the [2+2]-cyclocondensation reaction forming library members, proved dynamic reversibility of tetra-carbohydrazide cyclophanes and showed that complex ions formed between library members and hosts can be observed in the gas phase, allowing the solution of an important problem of biological interest. Copyright © 2012 John Wiley & Sons, Ltd.
Weng, Shayuan; Ning, Huiming; Fu, Tao; Hu, Ning; Zhao, Yinbo; Huang, Cheng; Peng, Xianghe
2018-02-15
Molecular dynamics simulations of nanolaminated graphene/Cu (NGCu) and pure Cu under compression are conducted to investigate the underlying strengthening mechanism of graphene and the effect of lamella thickness. It is found that the stress-strain curves of NGCu undergo 3 regimes i.e. the elastic regime I, plastic strengthening regime II and plastic flow regime III. Incorporating graphene monolayer is proved to simultaneously contribute to the strength and ductility of the composites and the lamella thickness has a great effect on the mechanical properties of NGCu composites. Different strengthening mechanisms play main role in different regimes, the transition of mechanisms is found to be related to the deformation behavior. Graphene affected zone is developed and integrated with rule of mixtures and confined layer slip model to describe the elastic properties of NGCu and the strengthening effect of the incorporated graphene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Bong
1993-09-01
Quantum manifestation of classical chaos has been one of the extensively studied subjects for more than a decade. Yet clear understanding of its nature still remains to be an open question partly due to the lack of a canonical definition of quantum chaos. The classical definition seems to be unsuitable in quantum mechanics partly because of the Heisenberg quantum uncertainty. In this regard, quantum chaos is somewhat misleading and needs to be clarified at the very fundamental level of physics. Since it is well known that quantum mechanics is more fundamental than classical mechanics, the quantum description of classically chaoticmore » nature should be attainable in the limit of large quantum numbers. The focus of my research, therefore, lies on the correspondence principle for classically chaotic systems. The chaotic damped driven pendulum is mainly studied numerically using the split operator method that solves the time-dependent Schroedinger equation. For classically dissipative chaotic systems in which (multi)fractal strange attractors often emerge, several quantum dissipative mechanisms are also considered. For instance, Hoover`s and Kubo-Fox-Keizer`s approaches are studied with some computational analyses. But the notion of complex energy with non-Hermiticity is extensively applied. Moreover, the Wigner and Husimi distribution functions are examined with an equivalent classical distribution in phase-space, and dynamical properties of the wave packet in configuration and momentum spaces are also explored. The results indicate that quantum dynamics embraces classical dynamics although the classicalquantum correspondence fails to be observed in the classically chaotic regime. Even in the semi-classical limits, classically chaotic phenomena would eventually be suppressed by the quantum uncertainty.« less
First-principles quantum dynamical theory for the dissociative chemisorption of H2O on rigid Cu(111)
Zhang, Zhaojun; Liu, Tianhui; Fu, Bina; Yang, Xueming; Zhang, Dong H.
2016-01-01
Despite significant progress made in the past decades, it remains extremely challenging to investigate the dissociative chemisorption dynamics of molecular species on surfaces at a full-dimensional quantum mechanical level, in particular for polyatomic-surface reactions. Here we report, to the best of our knowledge, the first full-dimensional quantum dynamics study for the dissociative chemisorption of H2O on rigid Cu(111) with all the nine molecular degrees of freedom fully coupled, based on an accurate full-dimensional potential energy surface. The full-dimensional quantum mechanical reactivity provides the dynamics features with the highest accuracy, revealing that the excitations in vibrational modes of H2O are more efficacious than increasing the translational energy in promoting the reaction. The enhancement of the excitation in asymmetric stretch is the largest, but that of symmetric stretch becomes comparable at very low energies. The full-dimensional characterization also allows the investigation of the validity of previous reduced-dimensional and approximate dynamical models. PMID:27283908
Deylami, Mohammad N; Jovanov, Emil
2014-01-01
The overlap of transmission ranges between wireless networks as a result of mobility is referred to as dynamic coexistence. The interference caused by coexistence may significantly affect the performance of wireless body area networks (WBANs) where reliability is particularly critical for health monitoring applications. In this paper, we analytically study the effects of dynamic coexistence on the operation of IEEE 802.15.4-based health monitoring WBANs. The current IEEE 802.15.4 standard lacks mechanisms for effectively managing the coexistence of mobile WBANs. Considering the specific characteristics and requirements of health monitoring WBANs, we propose the dynamic coexistence management (DCM) mechanism to make IEEE 802.15.4-based WBANs able to detect and mitigate the harmful effects of coexistence. We assess the effectiveness of this scheme using extensive OPNET simulations. Our results indicate that DCM improves the successful transmission rates of dynamically coexisting WBANs by 20%-25% for typical medical monitoring applications.
Yuan, Daosheng; Chen, Kunling; Xu, Chuanhui; Chen, Zhonghua; Chen, Yukun
2014-11-26
In this study, blends of entirely biosourced polymers, namely polylactide (PLA) and natural rubber (NR), were prepared through dynamic vulcanization using dicumyl peroxide (DCP), sulphur (S) and phenolic resin (2402) as curing agents, respectively. The crosslinked NR phase was found to be a continuous structure in all the prepared blends. The molecular weight changes of PLA were studied by gel permeation chromatography. Interfacial compatibilization between PLA and NR was investigated using Fourier transform infrared spectroscopy and scanning electron microscopy. The thermal properties of blends were evaluated by differential scanning calorimetry and thermogravimetric analysis instrument. It was found that the molecular weight of PLA and interfacial compatibilizaion between PLA and NR showed a significant influence on the mechanical and thermal properties of blends. The PLA/NR blend (60/40 w/w) by DCP-induced dynamic vulcanization owned the finest mechanical properties and thermal stability. Copyright © 2014 Elsevier Ltd. All rights reserved.
Epigenetic and Epitranscriptomic Factors Make a Mark on Hematopoietic Stem Cell Development.
Kasper, Dionna M; Nicoli, Stefania
2018-03-01
Blood specification is a highly dynamic process, whereby committed hemogenic endothelial cells (ECs) progressively transdifferentiate into multipotent, self-renewing hematopoietic stem cells (HSCs). Massive changes in gene expression must occur to switch cell identity, however the factors that mediate such an effect were a mystery until recently. This review summarizes the higher-order mechanisms involved in endothelial to hematopoietic reprogramming identified thus far. Accumulating evidence from mouse and zebrafish studies reveal that numerous chromatin-modifying (epigenetic) and RNA-modifying (epitranscriptomic) factors are required for the formation of HSCs from hemogenic endothelium. These genes function throughout the endothelial-hematopoietic transition, suggesting a dynamic interplay between 'epi'-machineries. Epigenetic and epitranscriptomic regulation are key mechanisms for reshaping global EC gene expression patterns to those that support HSC production. Future studies that capture modification dynamics should bring us closer to a complete understanding of how HSCs transition from hemogenic endothelium at the molecular level.
Neural mechanisms of movement planning: motor cortex and beyond.
Svoboda, Karel; Li, Nuo
2018-04-01
Neurons in motor cortex and connected brain regions fire in anticipation of specific movements, long before movement occurs. This neural activity reflects internal processes by which the brain plans and executes volitional movements. The study of motor planning offers an opportunity to understand how the structure and dynamics of neural circuits support persistent internal states and how these states influence behavior. Recent advances in large-scale neural recordings are beginning to decipher the relationship of the dynamics of populations of neurons during motor planning and movements. New behavioral tasks in rodents, together with quantified perturbations, link dynamics in specific nodes of neural circuits to behavior. These studies reveal a neural network distributed across multiple brain regions that collectively supports motor planning. We review recent advances and highlight areas where further work is needed to achieve a deeper understanding of the mechanisms underlying motor planning and related cognitive processes. Copyright © 2017. Published by Elsevier Ltd.
Dynamic behaviour of coastal sedimentation in the Lions Gulf. [France
NASA Technical Reports Server (NTRS)
Guy, M. (Principal Investigator)
1974-01-01
The author has identified the following significant results. A number of ERTS-1 images covering this geographical zone were studied and compared with cartographic maps, air photographs, and thermal-IR images. Old and recent sediments leave traces in the landscape which are decoded by interpreting the shapes of the clear zones forming a network against the black background representing water and humid zones. Current sedimentation and its mechanism were investigated. It had been hoped that a regular sequence of images would make it possible to follow the dynamics of the Rhone and the coastal rivers in relation to meteorological conditions. In any event only a small number of images spread over a wide period of time were obtained, and a complete study was therefore impossible. However, in comparing some of the ERTS-1 images certain thermal-IR images and information on the flow of the Rhone provided some clarification of mechanisms associated with river dynamics.
Ballistic aggregation in systems of inelastic particles: Cluster growth, structure, and aging
NASA Astrophysics Data System (ADS)
Paul, Subhajit; Das, Subir K.
2017-07-01
We study far-from-equilibrium dynamics in models of freely cooling granular gas and ballistically aggregating compact clusters. For both the cases, from event-driven molecular dynamics simulations, we have presented detailed results on structure and dynamics in space dimensions d =1 and 2. Via appropriate analyses it has been confirmed that the ballistic aggregation mechanism applies in d =1 granular gases as well. Aging phenomena for this mechanism, in both the dimensions, have been studied via the two-time density autocorrelation function. This quantity is demonstrated to exhibit scaling property similar to that in the standard phase transition kinetics. The corresponding functional forms have been quantified and the outcomes have been discussed in connection with the structural properties. Our results on aging establish a more complete equivalence between the granular gas and the ballistic aggregation models in d =1 .
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations
Yoo, Jejoong; Aksimentiev, Aleksei
2013-01-01
The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects. PMID:24277840
In situ structure and dynamics of DNA origami determined through molecular dynamics simulations.
Yoo, Jejoong; Aksimentiev, Aleksei
2013-12-10
The DNA origami method permits folding of long single-stranded DNA into complex 3D structures with subnanometer precision. Transmission electron microscopy, atomic force microscopy, and recently cryo-EM tomography have been used to characterize the properties of such DNA origami objects, however their microscopic structures and dynamics have remained unknown. Here, we report the results of all-atom molecular dynamics simulations that characterized the structural and mechanical properties of DNA origami objects in unprecedented microscopic detail. When simulated in an aqueous environment, the structures of DNA origami objects depart from their idealized targets as a result of steric, electrostatic, and solvent-mediated forces. Whereas the global structural features of such relaxed conformations conform to the target designs, local deformations are abundant and vary in magnitude along the structures. In contrast to their free-solution conformation, the Holliday junctions in the DNA origami structures adopt a left-handed antiparallel conformation. We find the DNA origami structures undergo considerable temporal fluctuations on both local and global scales. Analysis of such structural fluctuations reveals the local mechanical properties of the DNA origami objects. The lattice type of the structures considerably affects global mechanical properties such as bending rigidity. Our study demonstrates the potential of all-atom molecular dynamics simulations to play a considerable role in future development of the DNA origami field by providing accurate, quantitative assessment of local and global structural and mechanical properties of DNA origami objects.
Scaling behavior of sleep-wake transitions across species
NASA Astrophysics Data System (ADS)
Lo, Chung-Chuan; Chou, Thomas; Ivanov, Plamen Ch.; Penzel, Thomas; Mochizuki, Takatoshi; Scammell, Thomas; Saper, Clifford B.; Stanley, H. Eugene
2003-03-01
Uncovering the mechanisms controlling sleep is a fascinating scientific challenge. It can be viewed as transitions of states of a very complex system, the brain. We study the time dynamics of short awakenings during sleep for three species: humans, rats and mice. We find, for all three species, that wake durations follow a power-law distribution, and sleep durations follow exponential distributions. Surprisingly, all three species have the same power-law exponent for the distribution of wake durations, but the exponential time scale of the distributions of sleep durations varies across species. We suggest that the dynamics of short awakenings are related to species-independent fluctuations of the system, while the dynamics of sleep is related to system-dependent mechanisms which change with species.
Dynamics of a movable micromirror in a nonlinear optical cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Tarun; ManMohan; Bhattacherjee, Aranya B.
We consider the dynamics of a movable mirror (cantilever) of a nonlinear optical cavity. We show that a chi{sup (3)} medium with a strong Kerr nonlinearity placed inside a cavity inhibits the normal mode splitting (NMS) due to the photon blockade mechanism. This study demonstrates that the displacement spectrum of the micromirror could be used as a tool to detect the photon blockade effect. Moreover the ability to control the photon number fluctuation by tuning the Kerr nonlinearity emerges as a new handle to coherently control the dynamics of the micromirror, which further could be useful in the realization ofmore » tuneable quantum-mechanical devices. We also found that the temperature of the micromechanical mirror increases with increasing Kerr nonlinearity.« less
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD.
Chauve, T; Montagnat, M; Barou, F; Hidas, K; Tommasi, A; Mainprice, D
2017-02-13
Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=-5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the 'parent' ones suggests the possibility of 'spontaneous' nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).
Investigation of nucleation processes during dynamic recrystallization of ice using cryo-EBSD
Barou, F.; Hidas, K.; Tommasi, A.; Mainprice, D.
2017-01-01
Nucleation mechanisms occurring during dynamic recrystallization play a crucial role in the evolution of microstructures and textures during high temperature deformation. In polycrystalline ice, the strong viscoplastic anisotropy induces high strain heterogeneities between grains which control the recrystallization mechanisms. Here, we study the nucleation mechanisms occurring during creep tests performed on polycrystalline columnar ice at high temperature and stress (T=−5°C;σ=0.5 MPa) by post-mortem analyses of deformation microstructures using cryogenic electron backscatter diffraction. The columnar geometry of the samples enables discrimination of the nuclei from the initial grains. Various nucleation mechanisms are deduced from the analysis of the nuclei relations with the dislocation sub-structures within grains and at grain boundaries. Tilt sub-grain boundaries and kink bands are the main structures responsible for development of polygonization and mosaic sub-structures. Nucleation by bulging at serrated grain boundaries is also an efficient nucleation mechanism near the grain boundaries where strain incompatibilities are high. Observation of nuclei with orientations not related to the ‘parent’ ones suggests the possibility of ‘spontaneous’ nucleation driven by the relaxation of the dislocation-related internal stress field. The complexity of the nucleation mechanisms observed here emphasizes the impact of stress and strain heterogeneities on dynamic recrystallization mechanisms. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025294
Subcritical crack growth in SiNx thin-film barriers studied by electro-mechanical two-point bending
NASA Astrophysics Data System (ADS)
Guan, Qingling; Laven, Jozua; Bouten, Piet C. P.; de With, Gijsbertus
2013-06-01
Mechanical failure resulting from subcritical crack growth in the SiNx inorganic barrier layer applied on a flexible multilayer structure was studied by an electro-mechanical two-point bending method. A 10 nm conducting tin-doped indium oxide layer was sputtered as an electrical probe to monitor the subcritical crack growth in the 150 nm dielectric SiNx layer carried by a polyethylene naphthalate substrate. In the electro-mechanical two-point bending test, dynamic and static loads were applied to investigate the crack propagation in the barrier layer. As consequence of using two loading modes, the characteristic failure strain and failure time could be determined. The failure probability distribution of strain and lifetime under each loading condition was described by Weibull statistics. In this study, results from the tests in dynamic and static loading modes were linked by a power law description to determine the critical failure over a range of conditions. The fatigue parameter n from the power law reduces greatly from 70 to 31 upon correcting for internal strain. The testing method and analysis tool as described in the paper can be used to understand the limit of thin-film barriers in terms of their mechanical properties.
Dynamics and Instabilities of Acoustically Stressed Interfaces
NASA Astrophysics Data System (ADS)
Shi, William Tao
An intense sound field exerts acoustic radiation pressure on a transitional layer between two continuous fluid media, leading to the unconventional dynamical behavior of the interface in the presence of the sound field. An understanding of this behavior has applications in the study of drop dynamics and surface rheology. Acoustic fields have also been utilized in the generation of interfacial instability, which may further encourage the dispersion or coalescence of liquids. Therefore, the study of the dynamics of the acoustically stressed interfaces is essential to infer the mechanism of the various phenomena related to interfacial dynamics and to acquire the properties of liquid surfaces. This thesis studies the dynamics of acoustically stressed interfaces through a theoretical model of surface interactions on both closed and open interfaces. Accordingly, a boundary integral method is developed to simulate the motions of a stressed interface. The method has been employed to determine the deformation, oscillation and instability of acoustically levitated drops. The generalized computations are found to be in good agreement with available experimental results. The linearized theory is also derived to predict the instability threshold of the flat interface, and is then compared with experiments conducted to observe and measure the unstable motions of the horizontal interface. This thesis is devoted to describing and classifying the simplest mechanisms by which acoustic fields provide a surface interaction with a fluid. A physical picture of the competing processes introduced by the evolution of an interface in a sound field is presented. The development of an initial small perturbation into a sharp form is observed on either a drop surface or a horizontal interface, indicating a strong focusing of acoustic energy at certain spots of the interface. Emphasis is placed on understanding the basic coupling mechanisms, rather than on particular applications that may involve this coupling. The dynamical behavior of a stressed drop can be determined in terms of a given form of an incident sound field and three dimensionless quantities. Thus, the behavior of a complex dynamic system has been clarified, permitting the exploration and interpretation of the nature of liquid surface phenomena.
Stetz, Gabrielle; Verkhivker, Gennady M
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.
Stetz, Gabrielle; Verkhivker, Gennady M.
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones. PMID:26619280
Gergs, André; Preuss, Thomas G.; Palmqvist, Annemette
2014-01-01
Population size is often regulated by negative feedback between population density and individual fitness. At high population densities, animals run into double trouble: they might concurrently suffer from overexploitation of resources and also from negative interference among individuals regardless of resource availability, referred to as crowding. Animals are able to adapt to resource shortages by exhibiting a repertoire of life history and physiological plasticities. In addition to resource-related plasticity, crowding might lead to reduced fitness, with consequences for individual life history. We explored how different mechanisms behind resource-related plasticity and crowding-related fitness act independently or together, using the water flea Daphnia magna as a case study. For testing hypotheses related to mechanisms of plasticity and crowding stress across different biological levels, we used an individual-based population model that is based on dynamic energy budget theory. Each of the hypotheses, represented by a sub-model, is based on specific assumptions on how the uptake and allocation of energy are altered under conditions of resource shortage or crowding. For cross-level testing of different hypotheses, we explored how well the sub-models fit individual level data and also how well they predict population dynamics under different conditions of resource availability. Only operating resource-related and crowding-related hypotheses together enabled accurate model predictions of D. magna population dynamics and size structure. Whereas this study showed that various mechanisms might play a role in the negative feedback between population density and individual life history, it also indicated that different density levels might instigate the onset of the different mechanisms. This study provides an example of how the integration of dynamic energy budget theory and individual-based modelling can facilitate the exploration of mechanisms behind the regulation of population size. Such understanding is important for assessment, management and the conservation of populations and thereby biodiversity in ecosystems. PMID:24626228
NONLINEAR SYSTEMS, LINEAR SYSTEMS, SUBROUTINES , SOIL MECHANICS, INTERFACES, DYNAMICS, LOADS(FORCES), FORCE(MECHANICS), DAMPING, ACCELERATION, ELASTIC...PROPERTIES, PLASTIC PROPERTIES, CRACKS , REINFORCING MATERIALS , COMPOSITE MATERIALS , FAILURE(MECHANICS), MECHANICAL PROPERTIES, INSTRUCTION MANUALS, DIGITAL COMPUTERS...STRESSES, *COMPUTER PROGRAMS), (*STRUCTURES, STRESSES), (*DATA PROCESSING, STRUCTURAL PROPERTIES), SOILS , STRAIN(MECHANICS), MATHEMATICAL MODELS
Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai
2015-11-01
Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.
NASA Astrophysics Data System (ADS)
Zou, Guangping; Chang, Zhongliang; Xia, Xingyou; Zhang, Xueyi
2010-03-01
The metal honeycomb material has high strength and high stiffness, as a high-performance sandwich panel, it is an ideal lightweight structural material, and widely used in aviation, aerospace, shipbuilding and other fields. In this paper, the improved SHPB instrument is used for testing the in-plane and out-plane mechanical properties of the steel honeycomb panel three-point bending specimen, and also compare the results with the static in-plane and out-plane three-point bending experiments results which is tested by the INSTRON 4505 electronic universal testing machine, and then study the mechanical properties of the steel honeycomb panel three-point bending specimen under transverse dynamic impact load. From the results it can be see that, for the out-plane three point bending experiment, L direction mechanical properties is better than the W direction, and the honeycomb core play an important role during the specimen deformation, while for the in-plane three point bending experiment, the honeycomb core mechanical role is not distinctness.
Drugs That Target Dynamic Microtubules: A New Molecular Perspective
Stanton, Richard A.; Gernert, Kim M.; Nettles, James H.; Aneja, Ritu
2011-01-01
Microtubules have long been considered an ideal target for anticancer drugs because of the essential role they play in mitosis, forming the dynamic spindle apparatus. As such, there is a wide variety of compounds currently in clinical use and in development that act as antimitotic agents by altering microtubule dynamics. Although these diverse molecules are known to affect microtubule dynamics upon binding to one of the three established drug domains (taxane, vinca alkaloid, or colchicine site), the exact mechanism by which each drug works is still an area of intense speculation and research. In this study, we review the effects of microtubule-binding chemotherapeutic agents from a new perspective, considering how their mode of binding induces conformational changes and alters biological function relative to the molecular vectors of microtubule assembly or disassembly. These “biological vectors” can thus be used as a spatiotemporal context to describe molecular mechanisms by which microtubule-targeting drugs work. PMID:21381049
Controllability of Free-piston Stirling Engine/linear Alternator Driving a Dynamic Load
NASA Technical Reports Server (NTRS)
Kankam, M. David; Rauch, Jeffrey S.
1994-01-01
This paper presents the dynamic behavior of a Free-Piston Stirling Engine/linear alternator (FPSE/LA) driving a single-phase fractional horse-power induction motor. The controllability and dynamic stability of the system are discussed by means of sensitivity effects of variations in system parameters, engine controller, operating conditions, and mechanical loading on the induction motor. The approach used expands on a combined mechanical and thermodynamic formulation employed in a previous paper. The application of state-space technique and frequency domain analysis enhances understanding of the dynamic interactions. Engine-alternator parametric sensitivity studies, similar to those of the previous paper, are summarized. Detailed discussions are provided for parametric variations which relate to the engine controller and system operating conditions. The results suggest that the controllability of a FPSE-based power system is enhanced by proper operating conditions and built-in controls.
Structure and dynamics of the UO(2)(2+) ion in aqueous solution: an ab initio QMCF MD study.
Frick, Robert J; Hofer, Thomas S; Pribil, Andreas B; Randolf, Bernhard R; Rode, Bernd M
2009-11-12
A comprehensive theoretical investigation on the structure and dynamics of the UO(2)(2+) ion in aqueous solution using double-zeta HF level quantum mechanical charge field molecular dynamics is presented. The quantum mechanical region includes two full layers of hydration and is embedded in a large box of explicitly treated water to achieve a realistic environment. A number of different functions, including segmential, radial, and angular distribution functions, are employed together with tilt- and Theta-angle distribution functions to describe the complex structural properties of this ion. These data were compared to recent experimental data obtained from LAXS and EXAFS and results of various theoretical calculations. Some properties were explained with the aid of charge distribution plots for the solute. The solvent dynamics around the ion were investigated using distance plots and mean ligand residence times and the results compared to experimental and theoretical data of related ions.
Dynamics of the blood flow in the curved artery with the rolling massage
NASA Astrophysics Data System (ADS)
Yi, H. H.; Wu, X. H.; Yao, Y. L.
2011-10-01
Arterial wall shear stress and flow velocity are important factors in the development of some arterial diseases. Here, we aim to investigate the dynamic effect of the rolling massage on the property of the blood flow in the curved artery. The distributions of flow velocity and shear stress for the blood flow are computed by the lattice Boltzmann method, and the dynamic factors under different rolling techniques are studied numerically. The study is helpful to understand the mechanism of the massage and develop the massage techniques.
NASA Astrophysics Data System (ADS)
Jia, Shaojin; Zhang, Zhicheng; Du, Zhiwen; Teng, Renrui; Wang, Zhengzhou
2003-04-01
A dynamic flammability study of flame-retardant compound consisting of HDPE, EPDM and silicon elastomer blended with additives, as wire and cable insulation was made before and after irradiation. The data of RHR, EHC, SEC and the concentration of CO and CO 2 from cone colorimeter shown in the burning process were accessed. By blending silicon elastomer, CO release rate was reduced and the thermal endurance was improved. Oxygen index, mechanical property, morphology of the char formed in dynamical flame and thermal stability were also investigated.
Assessment of bruising in fruits using dynamic speckle
NASA Astrophysics Data System (ADS)
Pajuelo, Myriam; Baldwin-Olguin, Guillermo; Rabal, Hector J.; Arizaga, Ricardo A.; Trivi, Marcelo
2001-08-01
When a rough surface changes, its optical properties change also and the scattered light shows intensity fluctuations named dynamic speckle. Fruits, even hard peel ones, shows a speckle activity that can be related to maturity, turgor, damage, aging, and mechanical properties. Many techniques have been sued to study these properties, most of them destructive ones. We present an application of dynamical speckle to the study of impact on apples and the analysis of bruises produced by them. The aim is to correlate physical properties of apples with quality factors.
Dynamic simulation of road vehicle door window regulator mechanism of cross arm type
NASA Astrophysics Data System (ADS)
Miklos, I. Zs; Miklos, C.; Alic, C.
2017-01-01
The paper presents issues related to the dynamic simulation of a motor-drive operating mechanism of cross arm type, for the manipulation of road vehicle door windows, using Autodesk Inventor Professional software. The dynamic simulation of the mechanism involves a 3D modelling, kinematic coupling, drive motion parameters and external loads, as well as the graphically view of the kinematic and kinetostatic results for the various elements and kinematic couplings of the mechanism, under real operating conditions. Also, based on the results, the analysis of the mechanism components has been carried out using the finite element method.
Nanoscale deicing by molecular dynamics simulation.
Xiao, Senbo; He, Jianying; Zhang, Zhiliang
2016-08-14
Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.
Aging and loading rate effects on the mechanical behavior of equine bone
NASA Astrophysics Data System (ADS)
Kulin, Robb M.; Jiang, Fengchun; Vecchio, Kenneth S.
2008-06-01
Whether due to a sporting accident, high-speed impact, fall, or other catastrophic event, the majority of clinical bone fractures occur under dynamic loading conditions. However, although extensive research has been performed on the quasi-static fracture and mechanical behavior of bone to date, few high-quality studies on the fracture behavior of bone at high strain rates have been performed. Therefore, many questions remain regarding the material behavior, including not only the loading-rate-dependent response of bone, but also how this response varies with age. In this study, tests were performed on equine femoral bone taken post-mortem from donors 6 months to 28 years of age. Quasi-static and dynamic tests were performed to determine the fracture toughness and compressive mechanical behavior as a function of age at varying loading rates. Fracture paths were then analyzed using scanning confocal and scanning-electron microscopy techniques to assess the role of various microstructural features on toughening mechanisms.
Instability of a cantilevered flexible plate in viscous channel flow
NASA Astrophysics Data System (ADS)
Balint, T. S.; Lucey, A. D.
2005-10-01
The stability of a flexible cantilevered plate in viscous channel flow is studied as a representation of the dynamics of the human upper airway. The focus is on instability mechanisms of the soft palate (flexible plate) that cause airway blockage during sleep. We solve the Navier Stokes equations for flow with Reynolds numbers up to 1500 fully coupled with the dynamics of the plate motion solved using finite-differences. The study is 2-D and based upon linearized plate mechanics. When both upper and lower airways are open, the plate is found to lose its stability through a flutter mechanism and a critical Reynolds number exists. When one airway is closed, the plate principally loses its stability through a divergence mechanism and a critical flow speed exists. However, below the divergence-onset flow speed, flutter can exist for low levels of structural damping in the flexible plate. Our results serve to extend understanding of flow-induced instability of cantilevered flexible plates and will ultimately improve the diagnosis and treatment of upper-airway disorders.
Mechanics of Sister Chromatids studied with a Polymer Model
NASA Astrophysics Data System (ADS)
Zhang, Yang; Isbaner, Sebastian; Heermann, Dieter
2013-10-01
Sister chromatid cohesion denotes the phenomenon that sister chromatids are initially attached to each other in mitosis to guarantee the error-free distribution into the daughter cells. Cohesion is mediated by binding proteins and only resolved after mitotic chromosome condensation is completed. However, the amount of attachement points required to maintain sister chromatid cohesion while still allowing proper chromosome condensation is not known yet. Additionally the impact of cohesion on the mechanical properties of chromosomes also poses an interesting problem. In this work we study the conformational and mechanical properties of sister chromatids by means of computer simulations. We model both protein-mediated cohesion between sister chromatids and chromosome condensation with a dynamic binding mechanisms. We show in a phase diagram that only specific link concentrations lead to connected and fully condensed chromatids that do not intermingle with each other nor separate due to entropic forces. Furthermore we show that dynamic bonding between chromatids decrease the Young's modulus compared to non-bonded chromatids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
In silico strategies toward enzyme function and dynamics.
Estácio, Sílvia G
2012-01-01
Enzymes are outstanding biocatalysts involved in a plethora of chemical reactions occurring in the cell. Despite their incommensurable importance, a comprehensive understanding of enzyme catalysis is still missing. This task becomes more laborious given the unavoidability of including the inherent dynamic nature of enzymes into that description. As such, it is essential to ascertain the nature and contribution of enzyme conformational changes to catalysis and to evaluate the adequacy of the proposal associating protein internal motions to the rate enhancement achieved. Dynamic events in enzymes span a wide range of time- and length-scales which have led to a surge in multiscale methodologies targeting enzyme function and dynamics. Computational strategies assume a preponderant role in such studies by allowing the atomic detail investigation of the fundamental mechanisms of enzyme catalysis thus surpassing what is achievable through experiments. While high-accuracy quantum mechanical methods are indicated to uncover the details of the chemical reaction occurring at the active site, molecular mechanical force fields and molecular dynamics approaches provide powerful means to access the conformational energy landscape accessible to enzymes. This review outlines some of the most important in silico methodologies in this area, highlighting examples of problems tackled and the insights obtained. Copyright © 2012 Elsevier Inc. All rights reserved.
Rosenthal, William Steven; Tartakovsky, Alex; Huang, Zhenyu
2017-10-31
State and parameter estimation of power transmission networks is important for monitoring power grid operating conditions and analyzing transient stability. Wind power generation depends on fluctuating input power levels, which are correlated in time and contribute to uncertainty in turbine dynamical models. The ensemble Kalman filter (EnKF), a standard state estimation technique, uses a deterministic forecast and does not explicitly model time-correlated noise in parameters such as mechanical input power. However, this uncertainty affects the probability of fault-induced transient instability and increased prediction bias. Here a novel approach is to model input power noise with time-correlated stochastic fluctuations, and integratemore » them with the network dynamics during the forecast. While the EnKF has been used to calibrate constant parameters in turbine dynamical models, the calibration of a statistical model for a time-correlated parameter has not been investigated. In this study, twin experiments on a standard transmission network test case are used to validate our time-correlated noise model framework for state estimation of unsteady operating conditions and transient stability analysis, and a methodology is proposed for the inference of the mechanical input power time-correlation length parameter using time-series data from PMUs monitoring power dynamics at generator buses.« less
Multi-body dynamic coupling mechanism for generating throwing arm velocity during baseball pitching.
Naito, Kozo; Takagi, Tokio; Kubota, Hideaki; Maruyama, Takeo
2017-08-01
The purpose of this study was to identify the detailed mechanism how the maximum throwing arm endpoint velocity is determined by the muscular torques and non-muscular interactive torques from the perspective of the dynamic coupling among the trunk, thorax and throwing and non-throwing arm segments. The pitching movements of ten male collegiate baseball pitchers were measured by a three-dimensional motion capture system. Using the induced-segmental velocity analysis (IVA) developed in this study, the maximum fingertip velocity of the throwing arm (MFV) was decomposed into each contribution of the muscular torques, passive motion-dependent torques due to gyroscopic moment, Coriolis force and centrifugal force, and other interactive torque components. The results showed that MFV (31.6±1.7m/s) was mainly attributed to two different mechanisms. The first is the passive motion-dependent effect on increasing the angular velocities of three joints (thorax rotation, elbow extension and wrist flexion). The second is the muscular torque effect of the shoulder internal rotation (IR) torque on generating IR angular velocity. In particular, the centrifugal force-induced elbow extension motion, which was the greatest contributor among individual joint contributions, was caused primarily by the angular velocity-dependent forces associated with the humerus, thorax, and trunk rotations. Our study also found that a compensatory mechanism was achieved by the negative and positive contributions of the muscular torque components. The current IVA is helpful to understand how the rapid throwing arm movement is determined by the dynamic coupling mechanism. Copyright © 2017 Elsevier B.V. All rights reserved.
Multiphoton microscopy of ECM proteins in baboon aortic leaflet
NASA Astrophysics Data System (ADS)
Gonzalez, Mariacarla; Saytashev, Ilyas; Luna, Camila; Gonzalez, Brittany; Pinero, Alejandro; Perez, Manuel; Ramaswamy, Sharan; Ramella-Roman, Jessica
2018-02-01
The extracellular matrix (ECM) plays crucial role in defining mechanical properties of a heart valve yet the mechanobiological role of the ECM proteins - collagen and elastin - in living heart valve leaflets is still poorly understood. In this study, non-linear microscopy was used to obtain three dimensional images of collagen and elastin arrangement in aortic leaflets under combined steady flow (850 ml/min) and cyclic flexure (1 Hz) mechanical (dynamic) training. A novel bioreactor capable of mimicking the flow conditions in a living heart was used in this study and was optimized for microscopic imagery. A custom made non-linear microscope was used in this study to provide Second Harmonic Generation (SHG) imaging of collagen arrangement and two-photon imaging of elastin. Two control and three trained leaflet samples from static and dynamic tissue culture were imaged to observe protein changes in the tissue for a period of seven days. Dynamic training led to a decrease in alignment index of the protein fibers compared to the static treatment.
Material Phase Causality or a Dynamics-Statistical Interpretation of Quantum Mechanics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koprinkov, I. G.
2010-11-25
The internal phase dynamics of a quantum system interacting with an electromagnetic field is revealed in details. Theoretical and experimental evidences of a causal relation of the phase of the wave function to the dynamics of the quantum system are presented sistematically for the first time. A dynamics-statistical interpretation of the quantum mechanics is introduced.
2006-09-01
compression, including real-time cinematography of failure under dynamic compression, was evaluated. The results (figure 10) clearly show that the failure... art of simulations of dynamic failure and damage mechanisms. An explicit dynamic parallel code has been developed to track damage mechanisms in the
EBSD characterization of low temperature deformation mechanisms in modern alloys
NASA Astrophysics Data System (ADS)
Kozmel, Thomas S., II
For structural applications, grain refinement has been shown to enhance mechanical properties such as strength, fatigue resistance, and fracture toughness. Through control of the thermos-mechanical processing parameters, dynamic recrystallization mechanisms were used to produce microstructures consisting of sub-micron grains in 9310 steel, 4140 steel, and Ti-6Al-4V. In both 9310 and 4140 steel, the distribution of carbides throughout the microstructure affected the ability of the material to dynamically recrystallize and determined the size of the dynamically recrystallized grains. Processing the materials at lower temperatures and higher strain rates resulted in finer dynamically recrystallized grains. Microstructural process models that can be used to estimate the resulting microstructure based on the processing parameters were developed for both 9310 and 4140 steel. Heat treatment studies performed on 9310 steel showed that the sub-micron grain size obtained during deformation could not be retained due to the low equilibrium volume fraction of carbides. Commercially available aluminum alloys were investigated to explain their high strain rate deformation behavior. Alloys such as 2139, 2519, 5083, and 7039 exhibit strain softening after an ultimate strength is reached, followed by a rapid degradation of mechanical properties after a critical strain level has been reached. Microstructural analysis showed that the formation of shear bands typically preceded this rapid degradation in properties. Shear band boundary misorientations increased as a function of equivalent strain in all cases. Precipitation behavior was found to greatly influence the microstructural response of the alloys. Additionally, precipitation strengthened alloys were found to exhibit similar flow stress behavior, whereas solid solution strengthened alloys exhibited lower flow stresses but higher ductility during dynamic loading. Schmid factor maps demonstrated that shear band formation behavior was influenced by texturing in these alloys.
Mechanisms of Zero-Lag Synchronization in Cortical Motifs
Gollo, Leonardo L.; Mirasso, Claudio; Sporns, Olaf; Breakspear, Michael
2014-01-01
Zero-lag synchronization between distant cortical areas has been observed in a diversity of experimental data sets and between many different regions of the brain. Several computational mechanisms have been proposed to account for such isochronous synchronization in the presence of long conduction delays: Of these, the phenomenon of “dynamical relaying” – a mechanism that relies on a specific network motif – has proven to be the most robust with respect to parameter mismatch and system noise. Surprisingly, despite a contrary belief in the community, the common driving motif is an unreliable means of establishing zero-lag synchrony. Although dynamical relaying has been validated in empirical and computational studies, the deeper dynamical mechanisms and comparison to dynamics on other motifs is lacking. By systematically comparing synchronization on a variety of small motifs, we establish that the presence of a single reciprocally connected pair – a “resonance pair” – plays a crucial role in disambiguating those motifs that foster zero-lag synchrony in the presence of conduction delays (such as dynamical relaying) from those that do not (such as the common driving triad). Remarkably, minor structural changes to the common driving motif that incorporate a reciprocal pair recover robust zero-lag synchrony. The findings are observed in computational models of spiking neurons, populations of spiking neurons and neural mass models, and arise whether the oscillatory systems are periodic, chaotic, noise-free or driven by stochastic inputs. The influence of the resonance pair is also robust to parameter mismatch and asymmetrical time delays amongst the elements of the motif. We call this manner of facilitating zero-lag synchrony resonance-induced synchronization, outline the conditions for its occurrence, and propose that it may be a general mechanism to promote zero-lag synchrony in the brain. PMID:24763382
On the relationship between the dynamic behavior and nanoscale staggered structure of the bone
NASA Astrophysics Data System (ADS)
Qwamizadeh, Mahan; Zhang, Zuoqi; Zhou, Kun; Zhang, Yong Wei
2015-05-01
Bone, a typical load-bearing biological material, composed of ordinary base materials such as organic protein and inorganic mineral arranged in a hierarchical architecture, exhibits extraordinary mechanical properties. Up to now, most of previous studies focused on its mechanical properties under static loading. However, failure of the bone occurs often under dynamic loading. An interesting question is: Are the structural sizes and layouts of the bone related or even adapted to the functionalities demanded by its dynamic performance? In the present work, systematic finite element analysis was performed on the dynamic response of nanoscale bone structures under dynamic loading. It was found that for a fixed mineral volume fraction and unit cell area, there exists a nanoscale staggered structure at some specific feature size and layout which exhibits the fastest attenuation of stress waves. Remarkably, these specific feature sizes and layouts are in excellent agreement with those experimentally observed in the bone at the same scale, indicating that the structural size and layout of the bone at the nanoscale are evolutionarily adapted to its dynamic behavior. The present work points out the importance of dynamic effect on the biological evolution of load-bearing biological materials.
Land Use Induced Hydroclimatic Variability Over Large Deforested Areas in Southern Amazon Rainforest
NASA Astrophysics Data System (ADS)
Khanna, J.; Medvigy, D.
2017-12-01
Contemporary Amazonian deforestation, which occurs at scales of a few hundreds of kilometers, has been found to induce systematic changes in the regional dry season precipitation. The replacement of rough forest with smooth pasture induces a low level atmospheric convergence and uplift in the downwind and divergence and subsidence in the upwind deforested areas. The resulting precipitation change is about ±30% of the deforested area mean in the two regions respectively. Compared with the increase in non-precipitating cloudiness triggered by small scale clearings prevalent in the early phases of deforestation, this `dynamical mesoscale circulation' can have regional ecological impacts by altering precipitation seasonality and in turn ecosystem dynamics. However, the seasonality and variability of this phenomenon hasn't been studied. Using observations and numerical simulations this study investigates the relationships between the dynamical mechanism and the local- and continental-scale atmospheric conditions to understand the physical controls on this phenomenon on the inter-annual, inter-seasonal and daily time scales. We find that the strength of the dynamical mechanism is controlled mostly by regional scale thermal and dynamical conditions of the boundary layer and not the continental and global scale atmospheric state. The lifting condensation level (thermodynamic control) and wind speed (dynamic control) within the boundary layer have the largest and positive correlations with the dipole strength, which is true although not always significant across time scales. Due to this dependence it is found to be strongest during parts of the year when the atmosphere is relatively stable. Hence, overall this phenomenon is found to be the prevalent convective triggering mechanism during the dry and parts of transition seasons (especially spring), significantly affecting the hydroclimate during this period.
Hajilar, Shahin; Shafei, Behrouz; Cheng, Tao; Jaramillo-Botero, Andres
2017-06-22
Understanding the structural, thermal, and mechanical properties of thaumasite is of great interest to the cement industry, mainly because it is the phase responsible for the aging and deterioration of civil infrastructures made of cementitious materials attacked by external sources of sulfate. Despite the importance, effects of temperature and strain rate on the mechanical response of thaumasite had remained unexplored prior to the current study, in which the mechanical properties of thaumasite are fully characterized using the reactive molecular dynamics (RMD) method. With employing a first-principles based reactive force field, the RMD simulations enable the description of bond dissociation and formation under realistic conditions. From the stress-strain curves of thaumasite generated in the x, y, and z directions, the tensile strength, Young's modulus, and fracture strain are determined for the three orthogonal directions. During the course of each simulation, the chemical bonds undergoing tensile deformations are monitored to reveal the bonds responsible for the mechanical strength of thaumasite. The temperature increase is found to accelerate the bond breaking rate and consequently the degradation of mechanical properties of thaumasite, while the strain rate only leads to a slight enhancement of them for the ranges considered in this study.
Farnsworth, Nikki L.; Walter, Rachelle L.; Hemmati, Alireza; Westacott, Matthew J.; Benninger, Richard K. P.
2016-01-01
Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. PMID:26668311
Periodic solutions of a spring-pendulum system.
NASA Technical Reports Server (NTRS)
Broucke, R.; Baxa, P. A.
1973-01-01
A study has been made of a dynamical system composed of a pendulum and a harmonic oscillator, in order to show the remarkable resemblance with many classical celestial mechanics problems, in particular, the restricted three-body problem. It is shown that the well-known investigations of periodic orbits can be applied to the present dynamics problem.
DOT National Transportation Integrated Search
2011-10-19
"Highway stakeholders continue to support research studies that address critical issues of the current era, including congestion mitigation and revenue generation. A mechanism that addresses both concerns is congestion pricing which establishes a dir...
Troubleshooting Instruction in Vocational-Technical Education Via Dynamic Simulation. Final Report.
ERIC Educational Resources Information Center
Finch, Curtis R.
This study was designed to examine the feasibility of using simulation as a means of teaching vocational-technical students to detect and identify malfunctions in selected electrical and mechanical systems. A dynamic simulator was employed which features interchangeable panels and logic that permits the simulation of electrical or mechanical…
NASA Astrophysics Data System (ADS)
Frello, T.; Andersen, N. H.; Madsen, J.; Ka¨ll, M.; von Zimmermann, M.; Schmidt, O.; Poulsen, H. F.; Schneider, J. R.; Wolf, Th.
1997-08-01
The dynamics of the ortho-II oxygen structure in a high purity YBa 2Cu 3O 6+ x single crystal with x=0.50 has been studied by neutron and by X-ray diffraction with a photon energy of 100 keV. Our data show that the oxygen order develops on two different time-scales, one of the order of seconds and a much slower of the order of weeks and months. The mechanism dominating the slow time-scale is related to oxygen diffusion, while the fast mechanism may result from a temperature-dependent change in the average oxygen chain length.
NASA Astrophysics Data System (ADS)
Pereira, Manuel S.; Ambrosio, Jorge A. C.
1993-07-01
During the last few years, major scientific progress has been achieved in fields related to computer aided analysis of multibody systems. In view of this progress and recent developments of computer hardware and general purpose software, there is a need to access the current state of art and results from different schools of thought, with the objective of focussing trends in future research. Going back to 1983 when an important NATO-NSF-ARO Advanced Study Institute on Computer Aided Analysis and Optimization of Mechanical Systems was held at the University of Iowa, one may notice that less then 10 years ago the state of art was mainly dwelling on rigid body dynamics. The interest in the dynamic simulation of mechanical systems has steadily increased in recent years coming mainly from the aerospace and automative industries. The development of multibody system analysis formulations have been more recently motivated with the need to include several features such as: real-time simulation capabilities, highly non-linear control devices, work space path planing, active control of machine flexibilities and reliability and accuracy in the analysis results. The need for accurate and efficient analysis tools for design of large and lightweight mechanical systems has driven many research groups in the challenging problem of flexible systems with an increasing interaction with finite element methodologies. Basic approaches to mechanical systems dynamic analysis have recently been presented in several new text books. These publications demonstrate that both recursive and absolute methods still have their proponents to resolve the redundancy encountered in most mechanical systems.
Neuroimaging of Human Balance Control: A Systematic Review
Wittenberg, Ellen; Thompson, Jessica; Nam, Chang S.; Franz, Jason R.
2017-01-01
This review examined 83 articles using neuroimaging modalities to investigate the neural correlates underlying static and dynamic human balance control, with aims to support future mobile neuroimaging research in the balance control domain. Furthermore, this review analyzed the mobility of the neuroimaging hardware and research paradigms as well as the analytical methodology to identify and remove movement artifact in the acquired brain signal. We found that the majority of static balance control tasks utilized mechanical perturbations to invoke feet-in-place responses (27 out of 38 studies), while cognitive dual-task conditions were commonly used to challenge balance in dynamic balance control tasks (20 out of 32 studies). While frequency analysis and event related potential characteristics supported enhanced brain activation during static balance control, that in dynamic balance control studies was supported by spatial and frequency analysis. Twenty-three of the 50 studies utilizing EEG utilized independent component analysis to remove movement artifacts from the acquired brain signals. Lastly, only eight studies used truly mobile neuroimaging hardware systems. This review provides evidence to support an increase in brain activation in balance control tasks, regardless of mechanical, cognitive, or sensory challenges. Furthermore, the current body of literature demonstrates the use of advanced signal processing methodologies to analyze brain activity during movement. However, the static nature of neuroimaging hardware and conventional balance control paradigms prevent full mobility and limit our knowledge of neural mechanisms underlying balance control. PMID:28443007
Determining the mechanism and parameters of hydrate formation and loss in glucose.
Scholl, Sarah K; Schmidt, Shelly J
2014-11-01
Water-solid interactions are known to play a major role in the chemical and physical stability of food materials. Despite its extensive use throughout the food industry, the mechanism and parameters of hydrate formation and loss in glucose are not well characterized. Hydrate formation in alpha-anhydrous glucose (α-AG) and hydrate loss in glucose monohydrate (GM) were studied under equilibrium conditions at various relative humidity (RH) values using saturated salt slurries for 1 y. The mechanism of hydrate formation and hydrate loss were determined through mathematical modeling of Dynamic Vapor Sorption data and Raman spectroscopy was used to confirm the mechanisms. The critical temperature for hydrate loss in GM was determined using thermogravimetric analysis (TGA). The moisture sorption profiles of α-AG and GM were also studied under dynamic conditions using an AquaSorp Isotherm Generator. Hydrate formation was observed at and above 68% RH at 25 °C and the conversion of α-AG to GM can best be described as following a nucleation mechanism, however, diffusion and/or geometric contraction mechanisms were also observed by Raman spectroscopy subsequent to the coalescence of initial nucleation sites. Hydrate loss was observed to occur at and below 11% RH at 25 °C during RH storage and at 70 °C during TGA. The conversion of GM to α-AG follows nucleation and diffusion mechanisms. Hydrate formation was evident under dynamic conditions in α-AG and GM prior to deliquescence. This research is the first to report hydrate formation and loss parameters for crystalline α-AG and GM during extended storage at 25 ˚C. © 2014 Institute of Food Technologists®
Weise, Louis D.; Panfilov, Alexander V.
2013-01-01
We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning. PMID:23527160
Weise, Louis D; Panfilov, Alexander V
2013-01-01
We introduce an electromechanical model for human cardiac tissue which couples a biophysical model of cardiac excitation (Tusscher, Noble, Noble, Panfilov, 2006) and tension development (adjusted Niederer, Hunter, Smith, 2006 model) with a discrete elastic mass-lattice model. The equations for the excitation processes are solved with a finite difference approach, and the equations of the mass-lattice model are solved using Verlet integration. This allows the coupled problem to be solved with high numerical resolution. Passive mechanical properties of the mass-lattice model are described by a generalized Hooke's law for finite deformations (Seth material). Active mechanical contraction is initiated by changes of the intracellular calcium concentration, which is a variable of the electrical model. Mechanical deformation feeds back on the electrophysiology via stretch-activated ion channels whose conductivity is controlled by the local stretch of the medium. We apply the model to study how stretch-activated currents affect the action potential shape, restitution properties, and dynamics of spiral waves, under constant stretch, and dynamic stretch caused by active mechanical contraction. We find that stretch conditions substantially affect these properties via stretch-activated currents. In constantly stretched medium, we observe a substantial decrease in conduction velocity, and an increase of action potential duration; whereas, with dynamic stretch, action potential duration is increased only slightly, and the conduction velocity restitution curve becomes biphasic. Moreover, in constantly stretched medium, we find an increase of the core size and period of a spiral wave, but no change in rotation dynamics; in contrast, in the dynamically stretching medium, we observe spiral drift. Our results may be important to understand how altered stretch conditions affect the heart's functioning.
Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin
2017-01-01
Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials. PMID:29084152
Yao, Bao-Guo; Peng, Yun-Liang; Zhang, De-Pin
2017-10-30
Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations and aesthetic qualities of clothing. A multi-sensory measurement system and a new method were proposed to simultaneously sense the contact and characterize the mechanical and dynamic heat transfer properties of porous polymeric materials, such as textile fabrics in one instrument, with consideration of the interactions between different aspects of contact feels. The multi-sensory measurement system was developed for simulating the dynamic contact and psychological judgment processes during human hand contact with porous polymeric materials, and measuring the surface smoothness, compression resilience, bending and twisting, and dynamic heat transfer signals simultaneously. The contact sensing principle and the evaluation methods were presented. Twelve typical sample materials with different structural parameters were measured. The results of the experiments and the interpretation of the test results were described. An analysis of the variance and a capacity study were investigated to determine the significance of differences among the test materials and to assess the gage repeatability and reproducibility. A correlation analysis was conducted by comparing the test results of this measurement system with the results of Kawabata Evaluation System (KES) in separate instruments. This multi-sensory measurement system provides a new method for simultaneous contact sensing and characterizing of mechanical and dynamic heat transfer properties of porous polymeric materials.
Hybrid blends of poly(amidoamine) PAMAM dendrimers with two linear high polymers, poly(vinyl chloride), PVC, and poly(vinyl acetate), PVAc, are reported. The interaction between the blend components was studied using dynamic mechanical analysis, xenon nuclear magnetic resonacne ...
Terrain Mechanics and Modeling Research Program: Enhanced Vehicle Dynamics Module
2009-05-01
ER D C/ G SL T R- 09 -8 Terrain Mechanics and Modeling Research Program Enhanced Vehicle Dynamics Module Daniel C. Creighton, George...public release; distribution is unlimited. Terrain Mechanics and Modeling Research Program ERDC/GSL TR-09-8 May 2009 Enhanced Vehicle Dynamics...Module Daniel C. Creighton, George B. McKinley, and Randolph A. Jones Geotechnical and Structures Laboratory U.S. Army Engineer Research and
Dynamic design and control of a high-speed pneumatic jet actuator
NASA Astrophysics Data System (ADS)
Misyurin, S. Yu; Ivlev, V. I.; Kreinin, G. V.
2017-12-01
Mathematical model of an actuator, consisting of a pneumatic (gas) high-speed jet engine, transfer mechanism, and a control device used for switching the ball valve is worked out. The specific attention was paid to the transition (normalization) of the dynamic model into the dimensionless form. Its dynamic simulation criteria are determined, and dynamics study of an actuator was carried out. The simple control algorithm of relay action with a velocity feedback enabling the valve plug to be turned with a smooth nonstop and continuous approach to the final position is demonstrated
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition.
Schlundt, Andreas; Tants, Jan-Niklas; Sattler, Michael
2017-04-15
Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Huang, Tao; Browning, Lauren M.; Xu, Xiao-Hong Nancy
2012-04-01
Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions.Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11739h
NASA Astrophysics Data System (ADS)
Frehner, M.; Reif, D.; Grasemann, B.
2012-04-01
Our study compares kinematical and mechanical techniques for the palinspastic reconstruction of folded cross-sections in collision orogens. The studied area and the reconstructed NE-SW-trending, 55.5 km long cross-section is located in the High Folded Zone of the Zagros fold-and-thrust belt in the Kurdistan Region of Iraq. The present-day geometry of the cross-section has been constructed from field, as well as remote sensing data. In a first step, the structures and the stratigraphy are simplified and summarized in eight units trying to identify the main geometric and mechanical parameters. In a second step, the shortening is kinematically estimated using the dip-domain method to 11%-15%. Then the same cross-section is used in a numerical finite-element model to perform dynamical unfolding simulations taking various rheological parameters into account. The main factor allowing for an efficient dynamic unfolding is the presence of interfacial slip conditions between the mechanically strong units. Other factors, such as Newtonian vs. power-law viscous rheology or the presence of a basement affect the numerical simulations much less strongly. If interfacial slip is accounted for, fold amplitudes are reduced efficiently during the dynamical unfolding simulations, while welded layer interfaces lead to unrealistic shortening estimates. It is suggested that interfacial slip and decoupling of the deformation along detachment horizons is an important mechanical parameter that controlled the folding processes in the Zagros High Folded Zone.
Mechanical dynamics in live cells and fluorescence-based force/tension sensors
Yang, Chao; Zhang, Xiaohan; Guo, Yichen; Meng, Fanjie; Sachs, Frederick; Guo, Jun
2016-01-01
Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals. PMID:25958335
NASA Astrophysics Data System (ADS)
Bose, Chandan; Sarkar, Sunetra
2018-04-01
The present study investigates the complex vortex interactions in two-dimensional flow-field behind a symmetric NACA0012 airfoil undergoing a prescribed periodic pitching-plunging motion in low Reynolds number regime. The flow-field transitions from periodic to chaotic through a quasi-periodic route as the plunge amplitude is gradually increased. This study unravels the role of the complex interactions that take place among the main vortex structures in making the unsteady flow-field transition from periodicity to chaos. The leading-edge separation plays a key role in providing the very first trigger for aperiodicity. Subsequent mechanisms like shredding, merging, splitting, and collision of vortices in the near-field that propagate and sustain the disturbance have also been followed and presented. These fundamental mechanisms are seen to give rise to spontaneous and irregular formation of new vortex couples at arbitrary locations, which are the primary agencies for sustaining chaos in the flow-field. The interactions have been studied for each dynamical state to understand the course of transition in the flow-field. The qualitative changes observed in the flow-field are manifestation of changes in the underlying dynamical system. The overall dynamics are established in the present study by means of robust quantitative measures derived from classical and non-classical tools from the dynamical system theory. As the present analysis involves a high fidelity multi-unknown system, non-classical dynamical tools such as recurrence-based time series methods are seen to be very efficient. Moreover, their application is novel in the context of pitch-plunge flapping flight.
Morphological computation of multi-gaited robot locomotion based on free vibration.
Reis, Murat; Yu, Xiaoxiang; Maheshwari, Nandan; Iida, Fumiya
2013-01-01
In recent years, there has been increasing interest in the study of gait patterns in both animals and robots, because it allows us to systematically investigate the underlying mechanisms of energetics, dexterity, and autonomy of adaptive systems. In particular, for morphological computation research, the control of dynamic legged robots and their gait transitions provides additional insights into the guiding principles from a synthetic viewpoint for the emergence of sensible self-organizing behaviors in more-degrees-of-freedom systems. This article presents a novel approach to the study of gait patterns, which makes use of the intrinsic mechanical dynamics of robotic systems. Each of the robots consists of a U-shaped elastic beam and exploits free vibration to generate different locomotion patterns. We developed a simplified physics model of these robots, and through experiments in simulation and real-world robotic platforms, we show three distinctive mechanisms for generating different gait patterns in these robots.
NASA Astrophysics Data System (ADS)
Adak, Nitai Chandra; Chhetri, Suman; Kim, Nam Hoon; Murmu, Naresh Chandra; Samanta, Pranab; Kuila, Tapas
2018-03-01
This study investigates the synergistic effects of graphene oxide (GO) on the woven carbon fiber (CF)-reinforced epoxy composites. The GO nanofiller was incorporated into the epoxy resin with variations in the content, and the CF/epoxy composites were manufactured using a vacuum-assisted resin transfer molding process and then cured at 70 and 120 °C. An analysis of the mechanical properties of the GO (0.2 wt.%)/CF/epoxy composites showed an improvement in the tensile strength, Young's modulus, toughness, flexural strength and flexural modulus by 34, 20, 83, 55 and 31%, respectively, when compared to the CF/epoxy composite. The dynamic mechanical analysis of the composites exhibited an enhancement of 56, 114 and 22% in the storage modulus, loss modulus and damping capacity (tan δ), respectively, at its glass transition temperature. The fiber-matrix interaction was studied using a Cole-Cole plot analysis.
Kuzmanic, Antonija; Sutto, Ludovico; Saladino, Giorgio; Nebreda, Angel R; Gervasio, Francesco L; Orozco, Modesto
2017-01-01
p38α is a Ser/Thr protein kinase involved in a variety of cellular processes and pathological conditions, which makes it a promising pharmacological target. Although the activity of the enzyme is highly regulated, its molecular mechanism of activation remains largely unexplained, even after decades of research. By using state-of-the-art molecular dynamics simulations, we decipher the key elements of the complex molecular mechanism refined by evolution to allow for a fine tuning of p38α kinase activity. Our study describes for the first time the molecular effects of different regulators of the enzymatic activity, and provides an integrative picture of the activation mechanism that explains the seemingly contradictory X-ray and NMR data. DOI: http://dx.doi.org/10.7554/eLife.22175.001 PMID:28445123
Li, Z.; Zhao, S.; Diao, H.; ...
2017-02-17
Here, the mechanical behavior of a single phase (fcc) Al 0.3CoCrFeNi high-entropy alloy (HEA) was studied in the low and high strain-rate regimes. The combination of multiple strengthening mechanisms such as solid solution hardening, forest dislocation hardening, as well as mechanical twinning leads to a high work hardening rate, which is significantly larger than that for Al and is retained in the dynamic regime. The resistance to shear localization was studied by dynamically-loading hat-shaped specimens to induce forced shear localization. However, no adiabatic shear band could be observed. It is therefore proposed that the excellent strain hardening ability gives risemore » to remarkable resistance to shear localization, which makes this material an excellent candidate for penetration protection applications such as armors.« less
NASA Astrophysics Data System (ADS)
Paliwal, Bhasker
The constitutive behaviors and failure processes of brittle materials under far-field compressive loading are studied in this work. Several approaches are used: experiments to study the compressive failure behavior of ceramics, design of experimental techniques by means of finite element simulations, and the development of micro-mechanical damage models to analyze and predict mechanical response of brittle materials under far-field compression. Experiments have been conducted on various ceramics, (primarily on a transparent polycrystalline ceramic, aluminum oxynitride or AlON) under loading rates ranging from quasi-static (˜ 5X10-6) to dynamic (˜ 200 MPa/mus), using a servo-controlled hydraulic test machine and a modified compression Kolsky bar (MKB) technique respectively. High-speed photography has also been used with exposure times as low as 20 ns to observe the dynamic activation, growth and coalescence of cracks and resulting damage zones in the specimen. The photographs were correlated in time with measurements of the stresses in the specimen. Further, by means of 3D finite element simulations, an experimental technique has been developed to impose a controlled, homogeneous, planar confinement in the specimen. The technique can be used in conjunction with a high-speed camera to study the in situ dynamic failure behavior of materials under confinement. AlON specimens are used for the study. The statically pre-compressed specimen is subjected to axial dynamic compressive loading using the MKB. Results suggest that confinement not only increases the load carrying capacity, it also results in a non-linear stress evolution in the material. High-speed photographs also suggest an inelastic deformation mechanism in AlON under confinement which evolves more slowly than the typical brittle-cracking type of damage in the unconfined case. Next, an interacting micro-crack damage model is developed that explicitly accounts for the interaction among the micro-cracks in brittle materials. The model incorporates pre-existing defect distributions and a crack growth law. The damage is defined as a scalar parameter which is a function of the micro-crack density, the evolution of which is a function of the existing defect distribution and the crack growth dynamics. A specific case of a uniaxial compressive loading under constant strain-rate has been studied to predict the effects of the strain-rate, defect distribution and the crack growth dynamics on the constitutive response and failure behavior of brittle materials. Finally, the effects of crack growth dynamics on the strain-rate sensitivity of brittle materials are studied with the help of the micro-mechanical damage model. The results are compared with the experimentally observed damage evolution and the rate-sensitive behavior of the compressive strength of several engineering ceramics. The dynamic failure of armor-grade hot-pressed boron carbide (B 4C) under loading rates of ˜ 5X10-6 to 200 MPa/mus is also discussed.
Stick-slip chaos in a mechanical oscillator with dry friction
NASA Astrophysics Data System (ADS)
Kousaka, Takuji; Asahara, Hiroyuki; Inaba, Naohiko
2018-03-01
This study analyzes a forced mechanical dynamical system with dry friction that can generate chaotic stick-slip vibrations. We find that the dynamics proposed by Yoshitake et al. [Trans. Jpn. Soc. Mech. Eng. C 61, 768 (1995)] can be expressed as a nonautonomous constraint differential equation owing to the static friction force. The object is constrained to the surface of a moving belt by a static friction force from when it sticks to the surface until the force on the object exceeds the maximal static friction force. We derive a 1D Poincaré return map from the constrained mechanical system, and prove numerically that this 1D map has an absolutely continuous invariant measure and a positive Lyapunov exponent, providing strong evidence for chaos.
Population clocks: motor timing with neural dynamics
Buonomano, Dean V.; Laje, Rodrigo
2010-01-01
An understanding of sensory and motor processing will require elucidation of the mechanisms by which the brain tells time. Open questions relate to whether timing relies on dedicated or intrinsic mechanisms and whether distinct mechanisms underlie timing across scales and modalities. Although experimental and theoretical studies support the notion that neural circuits are intrinsically capable of sensory timing on short scales, few general models of motor timing have been proposed. For one class of models, population clocks, it is proposed that time is encoded in the time-varying patterns of activity of a population of neurons. We argue that population clocks emerge from the internal dynamics of recurrently connected networks, are biologically realistic and account for many aspects of motor timing. PMID:20889368
Dynamics of cochlear nonlinearity: Automatic gain control or instantaneous damping?
Altoè, Alessandro; Charaziak, Karolina K; Shera, Christopher A
2017-12-01
Measurements of basilar-membrane (BM) motion show that the compressive nonlinearity of cochlear mechanical responses is not an instantaneous phenomenon. For this reason, the cochlear amplifier has been thought to incorporate an automatic gain control (AGC) mechanism characterized by a finite reaction time. This paper studies the effect of instantaneous nonlinear damping on the responses of oscillatory systems. The principal results are that (i) instantaneous nonlinear damping produces a noninstantaneous gain control that differs markedly from typical AGC strategies; (ii) the kinetics of compressive nonlinearity implied by the finite reaction time of an AGC system appear inconsistent with the nonlinear dynamics measured on the gerbil basilar membrane; and (iii) conversely, those nonlinear dynamics can be reproduced using an harmonic oscillator with instantaneous nonlinear damping. Furthermore, existing cochlear models that include instantaneous gain-control mechanisms capture the principal kinetics of BM nonlinearity. Thus, an AGC system with finite reaction time appears neither necessary nor sufficient to explain nonlinear gain control in the cochlea.
Dynamical traps in Wang-Landau sampling of continuous systems: Mechanism and solution
NASA Astrophysics Data System (ADS)
Koh, Yang Wei; Sim, Adelene Y. L.; Lee, Hwee Kuan
2015-08-01
We study the mechanism behind dynamical trappings experienced during Wang-Landau sampling of continuous systems reported by several authors. Trapping is caused by the random walker coming close to a local energy extremum, although the mechanism is different from that of the critical slowing-down encountered in conventional molecular dynamics or Monte Carlo simulations. When trapped, the random walker misses the entire or even several stages of Wang-Landau modification factor reduction, leading to inadequate sampling of the configuration space and a rough density of states, even though the modification factor has been reduced to very small values. Trapping is dependent on specific systems, the choice of energy bins, and the Monte Carlo step size, making it highly unpredictable. A general, simple, and effective solution is proposed where the configurations of multiple parallel Wang-Landau trajectories are interswapped to prevent trapping. We also explain why swapping frees the random walker from such traps. The efficacy of the proposed algorithm is demonstrated.
Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue.
Brocklehurst, Paul; Ni, Haibo; Zhang, Henggui; Ye, Jianqiao
2017-01-01
We investigate the effect of mechano-electrical feedback and atrial fibrillation induced electrical remodelling (AFER) of cellular ion channel properties on the dynamics of spiral waves in a discrete 2D model of human atrial tissue. The tissue electro-mechanics are modelled using the discrete element method (DEM). Millions of bonded DEM particles form a network of coupled atrial cells representing 2D cardiac tissue, allowing simulations of the dynamic behaviour of electrical excitation waves and mechanical contraction in the tissue. In the tissue model, each cell is modelled by nine particles, accounting for the features of individual cellular geometry; and discrete inter-cellular spatial arrangement of cells is also considered. The electro-mechanical model of a human atrial single-cell was constructed by strongly coupling the electrophysiological model of Colman et al. to the mechanical myofilament model of Rice et al., with parameters modified based on experimental data. A stretch-activated channel was incorporated into the model to simulate the mechano-electrical feedback. In order to investigate the effect of mechano-electrical feedback on the dynamics of spiral waves, simulations of spiral waves were conducted in both the electromechanical model and the electrical-only model in normal and AFER conditions, to allow direct comparison of the results between the models. Dynamics of spiral waves were characterized by tracing their tip trajectories, stability, excitation frequencies and meandering range of tip trajectories. It was shown that the developed DEM method provides a stable and efficient model of human atrial tissue with considerations of the intrinsically discrete and anisotropic properties of the atrial tissue, which are challenges to handle in traditional continuum mechanics models. This study provides mechanistic insights into the complex behaviours of spiral waves and the genesis of atrial fibrillation by showing an important role of the mechano-electrical feedback in facilitating and promoting atrial fibrillation.
Electro-mechanical dynamics of spiral waves in a discrete 2D model of human atrial tissue
Zhang, Henggui
2017-01-01
We investigate the effect of mechano-electrical feedback and atrial fibrillation induced electrical remodelling (AFER) of cellular ion channel properties on the dynamics of spiral waves in a discrete 2D model of human atrial tissue. The tissue electro-mechanics are modelled using the discrete element method (DEM). Millions of bonded DEM particles form a network of coupled atrial cells representing 2D cardiac tissue, allowing simulations of the dynamic behaviour of electrical excitation waves and mechanical contraction in the tissue. In the tissue model, each cell is modelled by nine particles, accounting for the features of individual cellular geometry; and discrete inter-cellular spatial arrangement of cells is also considered. The electro-mechanical model of a human atrial single-cell was constructed by strongly coupling the electrophysiological model of Colman et al. to the mechanical myofilament model of Rice et al., with parameters modified based on experimental data. A stretch-activated channel was incorporated into the model to simulate the mechano-electrical feedback. In order to investigate the effect of mechano-electrical feedback on the dynamics of spiral waves, simulations of spiral waves were conducted in both the electromechanical model and the electrical-only model in normal and AFER conditions, to allow direct comparison of the results between the models. Dynamics of spiral waves were characterized by tracing their tip trajectories, stability, excitation frequencies and meandering range of tip trajectories. It was shown that the developed DEM method provides a stable and efficient model of human atrial tissue with considerations of the intrinsically discrete and anisotropic properties of the atrial tissue, which are challenges to handle in traditional continuum mechanics models. This study provides mechanistic insights into the complex behaviours of spiral waves and the genesis of atrial fibrillation by showing an important role of the mechano-electrical feedback in facilitating and promoting atrial fibrillation. PMID:28510575
Fluctuations and differential contraction during regeneration of Hydra vulgaris tissue toroids
NASA Astrophysics Data System (ADS)
Krahe, Michael; Wenzel, Iris; Lin, Kao-Nung; Fischer, Julia; Goldmann, Joseph; Kästner, Markus; Fütterer, Claus
2013-03-01
We studied regenerating bilayered tissue toroids dissected from Hydra vulgaris polyps and relate our macroscopic observations to the dynamics of force-generating mesoscopic cytoskeletal structures. Tissue fragments undergo a specific toroid-spheroid folding process leading to complete regeneration towards a new organism. The time scale of folding is too fast for biochemical signalling or morphogenetic gradients, which forced us to assume purely mechanical self-organization. The initial pattern selection dynamics was studied by embedding toroids into hydro-gels, allowing us to observe the deformation modes over longer periods of time. We found increasing mechanical fluctuations which break the toroidal symmetry, and discuss the evolution of their power spectra for various gel stiffnesses. Our observations are related to single-cell studies which explain the mechanical feasibility of the folding process. In addition, we observed switching of cells from a tissue bound to a migrating state after folding failure as well as in tissue injury. We found a supra-cellular actin ring assembled along the toroid's inner edge. Its contraction can lead to the observed folding dynamics as we could confirm by finite element simulations. This actin ring in the inner cell layer is assembled by myosin-driven length fluctuations of supra-cellular F-actin bundles (myonemes) in the outer cell layer. This paper is dedicated to Malcolm Steinberg.
Lewis Structures Technology, 1988. Volume 2: Structural Mechanics
NASA Technical Reports Server (NTRS)
1988-01-01
Lewis Structures Div. performs and disseminates results of research conducted in support of aerospace engine structures. These results have a wide range of applicability to practitioners of structural engineering mechanics beyond the aerospace arena. The engineering community was familiarized with the depth and range of research performed by the division and its academic and industrial partners. Sessions covered vibration control, fracture mechanics, ceramic component reliability, parallel computing, nondestructive evaluation, constitutive models and experimental capabilities, dynamic systems, fatigue and damage, wind turbines, hot section technology (HOST), aeroelasticity, structural mechanics codes, computational methods for dynamics, structural optimization, and applications of structural dynamics, and structural mechanics computer codes.
Application of wave mechanics theory to fluid dynamics problems: Fundamentals
NASA Technical Reports Server (NTRS)
Krzywoblocki, M. Z. V.
1974-01-01
The application of the basic formalistic elements of wave mechanics theory is discussed. The theory is used to describe the physical phenomena on the microscopic level, the fluid dynamics of gases and liquids, and the analysis of physical phenomena on the macroscopic (visually observable) level. The practical advantages of relating the two fields of wave mechanics and fluid mechanics through the use of the Schroedinger equation constitute the approach to this relationship. Some of the subjects include: (1) fundamental aspects of wave mechanics theory, (2) laminarity of flow, (3) velocity potential, (4) disturbances in fluids, (5) introductory elements of the bifurcation theory, and (6) physiological aspects in fluid dynamics.
Effects of age and loading rate on equine cortical bone failure.
Kulin, Robb M; Jiang, Fengchun; Vecchio, Kenneth S
2011-01-01
Although clinical bone fractures occur predominantly under impact loading (as occurs during sporting accidents, falls, high-speed impacts or other catastrophic events), experimentally validated studies on the dynamic fracture behavior of bone, at the loading rates associated with such events, remain limited. In this study, a series of tests were performed on femoral specimens obtained post-mortem from equine donors ranging in age from 6 months to 28 years. Fracture toughness and compressive tests were performed under both quasi-static and dynamic loading conditions in order to determine the effects of loading rate and age on the mechanical behavior of the cortical bone. Fracture toughness experiments were performed using a four-point bending geometry on single and double-notch specimens in order to measure fracture toughness, as well as observe differences in crack initiation between dynamic and quasi-static experiments. Compressive properties were measured on bone loaded parallel and transverse to the osteonal growth direction. Fracture propagation was then analyzed using scanning electron and scanning confocal microscopy to observe the effects of microstructural toughening mechanisms at different strain rates. Specimens from each horse were also analyzed for dry, wet and mineral densities, as well as weight percent mineral, in order to investigate possible influences of composition on mechanical behavior. Results indicate that bone has a higher compressive strength, but lower fracture toughness when tested dynamically as compared to quasi-static experiments. Fracture toughness also tends to decrease with age when measured quasi-statically, but shows little change with age under dynamic loading conditions, where brittle "cleavage-like" fracture behavior dominates. Copyright © 2010 Elsevier Ltd. All rights reserved.
Viñuelas, José; Kaneko, Gaël; Coulon, Antoine; Vallin, Elodie; Morin, Valérie; Mejia-Pous, Camila; Kupiec, Jean-Jacques; Beslon, Guillaume; Gandrillon, Olivier
2013-02-25
A number of studies have established that stochasticity in gene expression may play an important role in many biological phenomena. This therefore calls for further investigations to identify the molecular mechanisms at stake, in order to understand and manipulate cell-to-cell variability. In this work, we explored the role played by chromatin dynamics in the regulation of stochastic gene expression in higher eukaryotic cells. For this purpose, we generated isogenic chicken-cell populations expressing a fluorescent reporter integrated in one copy per clone. Although the clones differed only in the genetic locus at which the reporter was inserted, they showed markedly different fluorescence distributions, revealing different levels of stochastic gene expression. Use of chromatin-modifying agents showed that direct manipulation of chromatin dynamics had a marked effect on the extent of stochastic gene expression. To better understand the molecular mechanism involved in these phenomena, we fitted these data to a two-state model describing the opening/closing process of the chromatin. We found that the differences between clones seemed to be due mainly to the duration of the closed state, and that the agents we used mainly seem to act on the opening probability. In this study, we report biological experiments combined with computational modeling, highlighting the importance of chromatin dynamics in stochastic gene expression. This work sheds a new light on the mechanisms of gene expression in higher eukaryotic cells, and argues in favor of relatively slow dynamics with long (hours to days) periods of quiet state.
Borotikar, Bhushan S.; Sheehan, Frances T.
2017-01-01
Objectives To establish an in vivo, normative patellofemoral cartilage contact mechanics database acquired during voluntary muscle control using a novel dynamic magnetic resonance (MR) imaging-based computational methodology and validate the contact mechanics sensitivity to the known sub-millimeter methodological inaccuracies. Design Dynamic cine phase-contrast and multi-plane cine images were acquired while female subjects (n=20, sample of convenience) performed an open kinetic chain (knee flexion-extension) exercise inside a 3-Tesla MR scanner. Static cartilage models were created from high resolution three-dimensional static MR data and accurately placed in their dynamic pose at each time frame based on the cine-PC data. Cartilage contact parameters were calculated based on the surface overlap. Statistical analysis was performed using paired t-test and a one-sample repeated measures ANOVA. The sensitivity of the contact parameters to the known errors in the patellofemoral kinematics was determined. Results Peak mean patellofemoral contact area was 228.7±173.6mm2 at 40° knee angle. During extension, contact centroid and peak strain locations tracked medially on the femoral and patellar cartilage and were not significantly different from each other. At 30°, 35°, and 40° of knee extension, contact area was significantly different. Contact area and centroid locations were insensitive to rotational and translational perturbations. Conclusion This study is a first step towards unfolding the biomechanical pathways to anterior patellofemoral pain and OA using dynamic, in vivo, and accurate methodologies. The database provides crucial data for future studies and for validation of, or as an input to, computational models. PMID:24012620
Yang, Zhongyue; Houk, K N
2018-03-15
Jacobus Henricus van 't Hoff was the first Nobel Laureate in Chemistry. He pioneered in the study of chemical dynamics, which referred at that time to chemical kinetics and thermodynamics. The term has evolved in modern times to refer to the exploration of chemical transformations in a time-resolved fashion. Chemical dynamics has been driven by the development of molecular dynamics trajectory simulations, which provide atomic visualization of chemical processes and illuminate how dynamic effects influence chemical reactivity and selectivity. In homage to the legend of van 't Hoff, we review the development of the chemical dynamics of organic reactions, our area of research. We then discuss our trajectory simulations of pericyclic reactions, and our development of dynamic criteria for concerted and stepwise reaction mechanisms. We also describe a method that we call environment-perturbed transition state sampling, which enables trajectory simulations in condensed-media using quantum mechanics and molecular mechanics (QM/MM). We apply the method to reactions in solvent and in enzyme. Jacobus Henricus van 't Hoff (1852, Rotterdam-1911, Berlin) received the Nobel Prize for Chemistry in 1901 "in recognition of the extraordinary services he has rendered by the discovery of the laws of chemical dynamics and osmotic pressure in solutions". van 't Hoff was born the Netherlands, and earned his doctorate in Utrecht in 1874. In 1896 he moved to Berlin, where he was offered a position with more research and less teaching. van 't Hoff is considered one of the founders of physical chemistry. A key step in establishing this new field was the start of Zeitschrift für Physikalische Chemie in 1887. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tirler, Andreas O; Hofer, Thomas S
2015-07-09
Structure and dynamics of [MgEDTA](2-) and [CaEDTA](2-) complexes in aqueous solution have been investigated via quantum mechanical/molecular mechanical (QM/MM) simulations. While for the first a 6-fold octahedral complex has been observed, the presence of an additional coordinating water ligand has been observed in the latter case. Because of rapidly exchanging water molecules, this 7-fold coordination complex was found to form pentagonal bipyramidal as well as capped trigonal prismatic configurations along the simulation interchanging on the picosecond time scale. Also in the case of [MgEDTA](2-) a trigonal prismatic configuration has been observed for a very short time period of approximately 1 ps. This work reports for the first time the presence of trigonal prismatic structures observed in the coordination sphere of [MgEDTA](2-) and [CaEDTA](2-) complexes in aqueous solution. In addition to the detailed characterization of structure and dynamics of the systems, the prediction of the associated infrared spectra indicates that the ion-water vibrational mode found at approximately 250 cm(-1) provides a distinctive measure to experimentally detect the presence of the coordinating water molecule via low-frequency IR setups.
Coexistence in streams: Do source-sink dynamics allow salamanders to persist with fish predators?
Sepulveda, A.J.; Lowe, W.H.
2011-01-01
Theory suggests that source-sink dynamics can allow coexistence of intraguild predators and prey, but empirical evidence for this coexistence mechanism is limited. We used capture-mark-recapture, genetic methods, and stable isotopes to test whether source-sink dynamics promote coexistence between stream fishes, the intraguild predator, and stream salamanders (Dicamptodon aterrimus), the intraguild prey. Salamander populations from upstream reaches without fish were predicted to maintain or supplement sink populations in downstream reaches with fish. We found instead that downstream reaches with fish were not sinks even though fish consumed salamander larvae-apparent survival, recruitment, and population growth rate did not differ between upstream and downstream reaches. There was also no difference between upstream and downstream reaches in net emigration. We did find that D. aterrimus moved frequently along streams, but believe that this is a response to seasonal habitat changes rather than intraguild predation. Our study provides empirical evidence that local-scale mechanisms are more important than dispersal dynamics to coexistence of streams salamanders and fish. More broadly, it shows the value of empirical data on dispersal and gene flow for distinguishing between local and spatial mechanisms of coexistence. ?? 2011 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Pierre, Sadrach; Duke, Jessica R.; Hele, Timothy J. H.; Ananth, Nandini
2017-12-01
We investigate the mechanisms of condensed phase proton-coupled electron transfer (PCET) using Mapping-Variable Ring Polymer Molecular Dynamics (MV-RPMD), a recently developed method that employs an ensemble of classical trajectories to simulate nonadiabatic excited state dynamics. Here, we construct a series of system-bath model Hamiltonians for the PCET, where four localized electron-proton states are coupled to a thermal bath via a single solvent mode, and we employ MV-RPMD to simulate state population dynamics. Specifically, for each model, we identify the dominant PCET mechanism, and by comparing against rate theory calculations, we verify that our simulations correctly distinguish between concerted PCET, where the electron and proton transfer together, and sequential PCET, where either the electron or the proton transfers first. This work represents a first application of MV-RPMD to multi-level condensed phase systems; we introduce a modified MV-RPMD expression that is derived using a symmetric rather than asymmetric Trotter discretization scheme and an initialization protocol that uses a recently derived population estimator to constrain trajectories to a dividing surface. We also demonstrate that, as expected, the PCET mechanisms predicted by our simulations are robust to an arbitrary choice of the initial dividing surface.
NASA Astrophysics Data System (ADS)
Matthews, Megan; Sponberg, Simon
2017-11-01
Birds, insects, and many animals use unsteady aerodynamic mechanisms to achieve stable hovering flight. Natural environments are often characterized by unsteady flows causing animals to dynamically respond to perturbations while performing complex tasks, such as foraging. Little is known about how unsteady flow around an animal interacts with already unsteady flow in the environment or how this impacts performance. We study how the environment impacts maneuverability to reveal any coupling between body dynamics and aerodynamics for hawkmoths, Manduca sexta,tracking a 3D-printed robotic flower in a wind tunnel. We also observe the leading-edge vortex (LEV), a known lift-generating mechanism for insect flight with smoke visualization. Moths in still and unsteady air exhibit near perfect tracking at low frequencies, but tracking in the flower wake results in larger overshoot at mid-range. Smoke visualization of the flower wake shows that the dominant vortex shedding corresponds to the same frequency band as the increased overshoot. Despite the large effect on flight dynamics, the LEV remains bound to the wing and thorax throughout the wingstroke. In general, unsteady wind seems to decrease maneuverability, but LEV stability seems decoupled from changes in flight dynamics.
Ayers, Lisa; Nieuwland, Rienk; Kohler, Malcolm; Kraenkel, Nicolle; Ferry, Berne; Leeson, Paul
2015-12-01
Interest in cell-derived microvesicles (or microparticles) within cardiovascular diagnostics and therapeutics is rapidly growing. Microvesicles are often measured in the circulation at a single time point. However, it is becoming clear that microvesicle levels both increase and decrease rapidly in response to certain stimuli such as hypoxia, acute cardiac stress, shear stress, hypertriglyceridaemia and inflammation. Consequently, the levels of circulating microvesicles will reflect the balance between dynamic mechanisms for release and clearance. The present review describes the range of triggers currently known to lead to microvesicle release from different cellular origins into the circulation. Specifically, the published data are used to summarize the dynamic impact of these triggers on the degree and rate of microvesicle release. Secondly, a summary of the current understanding of microvesicle clearance via different cellular systems, including the endothelial cell and macrophage, is presented, based on reported studies of clearance in experimental models and clinical scenarios, such as transfusion or cardiac stress. Together, this information can be used to provide insights into potential underlying biological mechanisms that might explain the increases or decreases in circulating microvesicle levels that have been reported and help to design future clinical studies. © 2015 Authors; published by Portland Press Limited.
Advances in the study of mechanical properties and constitutive law in the field of wood research
NASA Astrophysics Data System (ADS)
Zhao, S.; Zhao, J. X.; Han, G. Z.
2016-07-01
This paper presents an overview of mechanical properties and constitutive law for wood. Current research on the mechanical properties of wood have mostly focused on density, grain, moisture, and other natural factors. It has been established that high density, dense grain, and high moisture lead to higher strength. In most literature, wood has been regarded as an anisotropic material because of its fiber. A microscopic view is used in research of wood today, in this way, which has allowed for clear observation of anisotropy. In general, wood has higher strength under a dynamic load, and no densification. The constitutive model is the basis of numerical analysis. An anisotropic model of porous and composite materials has been used for wood, but results were poor, and new constitutions have been introduced. According to the literature, there is no single theory that is widely accepted for the dynamic load. Research has shown that grain and moisture are key factors in wood strength, but there has not been enough study on dynamic loads so far. Hill law has been the most common method of simulation. Models that consider high strain rate are attracting more and more attention.
Focal Adhesion Induction at the Tip of a Functionalized Nanoelectrode
Fuentes, Daniela E.; Bae, Chilman; Butler, Peter J.
2012-01-01
Cells dynamically interact with their physical micro-environment through the assembly of nascent focal contacts and focal adhesions. The dynamics and mechanics of these contact points are controlled by transmembrane integrins and an array of intracellular adaptor proteins. In order to study the mechanics and dynamics of focal adhesion assembly, we have developed a technique for the timed induction of a nascent focal adhesion. Bovine aortic endothelial cells were approached at the apical surface by a nanoelectrode whose position was controlled with a resolution of 10s of nanometers using changes in electrode current to monitor distance from the cell surface. Since this probe was functionalized with fibronectin, a focal contact formed at the contact location. Nascent focal adhesion assembly was confirmed using time-lapse confocal fluorescent images of red fluorescent protein (RFP) – tagged talin, an adapter protein that binds to activated integrins. Binding to the cell was verified by noting a lack of change of electrode current upon retraction of the electrode. This study demonstrates that functionalized nanoelectrodes can enable precisely-timed induction and 3-D mechanical manipulation of focal adhesions and the assay of the detailed molecular kinetics of their assembly. PMID:22247742
Structural Mechanics and Dynamics Branch
NASA Technical Reports Server (NTRS)
Stefko, George
2003-01-01
The 2002 annual report of the Structural Mechanics and Dynamics Branch reflects the majority of the work performed by the branch staff during the 2002 calendar year. Its purpose is to give a brief review of the branch s technical accomplishments. The Structural Mechanics and Dynamics Branch develops innovative computational tools, benchmark experimental data, and solutions to long-term barrier problems in the areas of propulsion aeroelasticity, active and passive damping, engine vibration control, rotor dynamics, magnetic suspension, structural mechanics, probabilistics, smart structures, engine system dynamics, and engine containment. Furthermore, the branch is developing a compact, nonpolluting, bearingless electric machine with electric power supplied by fuel cells for future "more electric" aircraft. An ultra-high-power-density machine that can generate projected power densities of 50 hp/lb or more, in comparison to conventional electric machines, which generate usually 0.2 hp/lb, is under development for application to electric drives for propulsive fans or propellers. In the future, propulsion and power systems will need to be lighter, to operate at higher temperatures, and to be more reliable in order to achieve higher performance and economic viability. The Structural Mechanics and Dynamics Branch is working to achieve these complex, challenging goals.
Ye, Rui; Hao, Jin; Song, Jinlin; Zhao, Zhihe; Fang, Shanbao; Wang, Yating; Li, Juan
2014-06-01
Chondrocytes integrate numerous microenvironmental cues to mount physiologically relevant differentiation responses, and the regulation of mechanical signaling in chondrogenic differentiation is now coming into intensive focus. To facilitate tissue-engineered chondrogenesis by mechanical strategy, a thorough understanding about the interactional roles of chemical factors under mechanical stimuli in regulating chondrogenesis is in great need. Therefore, this study attempts to investigate the interaction of rat MSCs with their microenvironment by imposing dynamic and static hydrostatic pressure through modulating gaseous tension above the culture medium. Under dynamic pressure, chemical parameters (pH, pO2, and pCO2) were kept in homeostasis. In contrast, pH was remarkably reduced due to increased pCO2 under static pressure. MSCs under the dynamically pressured microenvironment exhibited a strong accumulation of GAG within and outside the alginate beads, while cells under the statically pressured environment lost newly synthesized GAG into the medium with a speed higher than its production. In addition, the synergic influence on expression of chondrogenic genes was more persistent under dynamic pressure than that under static pressure. This temporal contrast was similar to that of activation of endogenous TGF-β1. Taken altogether, it indicates that a loading strategy which can keep a homeostatic chemical microenvironment is preferred, since it might sustain the stimulatory effects of mechanical stimuli on chondrogenesis via activation of endogenous TGF-β1. © 2013 Wiley Periodicals, Inc.
Jiang, Shangyuan; Gan, Rong Z
2018-04-01
The incudostapedial joint (ISJ) is a synovial joint connecting the incus and stapes in the middle ear. Mechanical properties of the ISJ directly affect sound transmission from the tympanic membrane to the cochlea. However, how ISJ properties change with frequency has not been investigated. In this paper, we report the dynamic properties of the human ISJ measured in eight samples using a dynamic mechanical analyzer (DMA) for frequencies from 1 to 80 Hz at three temperatures of 5, 25 and 37 °C. The frequency-temperature superposition (FTS) principle was used to extrapolate the results to 8 kHz. The complex modulus of ISJ was measured with a mean storage modulus of 1.14 MPa at 1 Hz that increased to 3.01 MPa at 8 kHz, and a loss modulus that increased from 0.07 to 0.47 MPa. A 3-dimensional finite element (FE) model consisting of the articular cartilage, joint capsule and synovial fluid was then constructed to derive mechanical properties of ISJ components by matching the model results to experimental data. Modeling results showed that mechanical properties of the joint capsule and synovial fluid affected the dynamic behavior of the joint. This study contributes to a better understanding of the structure-function relationship of the ISJ for sound transmission. Copyright © 2018. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Lazutkin, G. V.; Davydov, D. P.; Boyarov, K. V.; Volkova, T. V.
2018-01-01
The results of the mechanical characteristic experimental studies are presented for the shock absorbers of DKU type with the elastic elements of the bell shape made of MR material and obtained by the cold pressing of mutually crossing wire spirals with their inclusion in the array of reinforcing wire harnesses. The design analysis and the technology of MR production based on the methods of similarity theory and dimensional analysis revealed the dimensionless determined and determining parameters of elastic frictional, dynamic and strength characteristics under the static and dynamic loading of vibration isolators. The main similarity criteria of mechanical characteristics for vibration isolators and their graphical and analytical representation are determined, taking into account the coefficients of these (affine) transformations of the hysteresis loop family field.
Fluid mechanics of spinner-flask bioreactors
NASA Astrophysics Data System (ADS)
Sucosky, Philippe; Neitzel, G. Paul
2000-11-01
The dynamic environment within bioreactors used for in vitro tissue growth has been observed to affect the development of mammalian cells. Many studies have shown that moderate mechanical stress enhances growth of some tissues whereas high shear levels and turbulence seem to damage cells. In order to optimize the design and the operating conditions of bioreactors, it is important to understand the fluid-dynamic characteristics and to control the stress levels within these devices. The present research focuses on the characterization of the flow field within a spinner-flask bioreactor. The dynamic properties of the flow are investigated experimentally using particle-image velocimetry with a refractive-index-matched model. Phase-locked ensemble-averaging is employed to provide some information on the turbulence characteristics of the model culture medium in the vicinity of a model tissue construct.
Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding
NASA Astrophysics Data System (ADS)
Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling
2018-03-01
In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.
Dynamics in the Decompositions Approach to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Harding, John
2017-12-01
In Harding (Trans. Amer. Math. Soc. 348(5), 1839-1862 1996) it was shown that the direct product decompositions of any non-empty set, group, vector space, and topological space X form an orthomodular poset Fact X. This is the basis for a line of study in foundational quantum mechanics replacing Hilbert spaces with other types of structures. Here we develop dynamics and an abstract version of a time independent Schrödinger's equation in the setting of decompositions by considering representations of the group of real numbers in the automorphism group of the orthomodular poset Fact X of decompositions.
Evaporation kinetics of Mg2SiO4 crystals and melts from molecular dynamics simulations
NASA Technical Reports Server (NTRS)
Kubicki, J. D.; Stolper, E. M.
1993-01-01
Computer simulations based on the molecular dynamics (MD) technique were used to study the mechanisms and kinetics of free evaporation from crystalline and molten forsterite (i.e., Mg2SiO4) on an atomic level. The interatomic potential employed for these simulations reproduces the energetics of bonding in forsterite and in gas-phase MgO and SiO2 reasonably accurately. Results of the simulation include predicted evaporation rates, diffusion rates, and reaction mechanisms for Mg2SiO4(s or l) yields 2Mg(g) + 20(g) + SiO2(g).
Studies on thermal decomposition behaviors of polypropylene using molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Huang, Jinbao; He, Chao; Tong, Hong; Pan, Guiying
2017-11-01
Polypropylene (PP) is one of the main components of waste plastics. In order to understand the mechanism of PP thermal decomposition, the pyrolysis behaviour of PP has been simulated from 300 to 1000 K in periodic boundary conditions by molecular dynamic method, based on AMBER force field. The simulation results show that the pyrolysis process of PP can mostly be divided into three stages: low temperature pyrolysis stage, intermediate temperature stage and high temperature pyrolysis stage. PP pyrolysis is typical of random main-chain scission, and the possible formation mechanism of major pyrolysis products was analyzed.
NASA Astrophysics Data System (ADS)
Liu, Hui; Fogarty, Michael J.; Hare, Jonathan A.; Hsieh, Chih-hao; Glaser, Sarah M.; Ye, Hao; Deyle, Ethan; Sugihara, George
2014-03-01
The dynamics of marine fishes are closely related to lower trophic levels and the environment. Quantitatively understanding ecosystem dynamics linking environmental variability and prey resources to exploited fishes is crucial for ecosystem-based management of marine living resources. However, standard statistical models typically grounded in the concept of linear system may fail to capture the complexity of ecological processes. We have attempted to model ecosystem dynamics using a flexible, nonparametric class of nonlinear forecasting models. We analyzed annual time series of four environmental indices, 22 marine copepod taxa, and four ecologically and commercially important fish species during 1977 to 2009 on Georges Bank, a highly productive and intensively studied area of the northeast U.S. continental shelf ecosystem. We examined the underlying dynamic features of environmental indices and copepods, quantified the dynamic interactions and coherence with fishes, and explored the potential control mechanisms of ecosystem dynamics from a nonlinear perspective. We found: (1) the dynamics of marine copepods and environmental indices exhibiting clear nonlinearity; (2) little evidence of complex dynamics across taxonomic levels of copepods; (3) strong dynamic interactions and coherence between copepods and fishes; and (4) the bottom-up forcing of fishes and top-down control of copepods coexisting as target trophic levels vary. These findings highlight the nonlinear interactions among ecosystem components and the importance of marine zooplankton to fish populations which point to two forcing mechanisms likely interactively regulating the ecosystem dynamics on Georges Bank under a changing environment.
Dynamic mechanical characterization of aluminum: analysis of strain-rate-dependent behavior
NASA Astrophysics Data System (ADS)
Rahmat, Meysam
2018-05-01
A significant number of materials show different mechanical behavior under dynamic loads compared to quasi-static (Salvado et al. in Prog. Mater. Sci. 88:186-231, 2017). Therefore, a comprehensive study of material dynamic behavior is essential for applications in which dynamic loads are dominant (Li et al. in J. Mater. Process. Technol. 255:373-386, 2018). In this work, aluminum 6061-T6, as an example of ductile alloys with numerous applications including in the aerospace industry, has been studied under quasi-static and dynamic tensile tests with strain rates of up to 156 s^{-1}. Dogbone specimens were designed, instrumented and tested with a high speed servo-hydraulic load frame, and the results were validated with the literature. It was observed that at a strain rate of 156 s^{-1} the yield and ultimate strength increased by 31% and 33% from their quasi-static values, respectively. Moreover, the failure elongation and fracture energy per unit volume also increased by 18% and 52%, respectively. A Johnson-Cook model was used to capture the behavior of the material at different strain rates, and a modified version of this model was presented to enhance the capabilities of the original model, especially in predicting material properties close to the failure point. Finally, the fracture surfaces of specimens tested under quasi-static and dynamic loads were compared and conclusions about the differences were drawn.
NASA Technical Reports Server (NTRS)
1980-01-01
Detailed computer models of the engine were developed to predict both the steady state and transient operation of the engine system. Mechanical design layout drawings were prepared for the following components: thrust chamber and nozzle; extendible nozzle actuating mechanism and seal; LOX turbopump and boost pump; hydrogen turbopump and boost pump; and the propellant control valves. The necessary heat transfer, stress, fluid flow, dynamic, and performance analyses were performed to support the mechanical design.
Modeling and stochastic analysis of dynamic mechanisms of the perception
NASA Astrophysics Data System (ADS)
Pisarchik, A.; Bashkirtseva, I.; Ryashko, L.
2017-10-01
Modern studies in physiology and cognitive neuroscience consider a noise as an important constructive factor of the brain functionality. Under the adequate noise, the brain can rapidly access different ordered states, and provide decision-making by preventing deadlocks. Bistable dynamic models are often used for the study of the underlying mechanisms of the visual perception. In the present paper, we consider a bistable energy model subject to both additive and parametric noise. Using the catastrophe theory formalism and stochastic sensitivity functions technique, we analyze a response of the equilibria to noise, and study noise-induced transitions between equilibria. We demonstrate and analyse the effect of hysteresis squeezing when the intensity of noise is increased. Stochastic bifurcations connected with the suppression of oscillations by parametric noises are discussed.
2017-06-27
Distribution Unlimited UU UU UU UU 27-06-2017 1-May-2016 30-Apr-2017 Final Report: Acquisition of Dynamic Mechanical Analyzer and Stress -ControlledRheometer...and Stress -Controlled Rheometer for the Mechanical Characterization of Advanced Materials ARO Grant # W911NF-16-1-0205 K. Wagener (PI) Chemistry
Solutions for Dynamic Variants of Eshelby's Inclusion Problem
NASA Astrophysics Data System (ADS)
Michelitsch, Thomas M.; Askes, Harm; Wang, Jizeng; Levin, Valery M.
The dynamic variant of Eshelby's inclusion problem plays a crucial role in many areas of mechanics and theoretical physics. Because of its mathematical complexity, dynamic variants of the inclusion problems so far are only little touched. In this paper we derive solutions for dynamic variants of the Eshelby inclusion problem for arbitrary scalar source densities of the eigenstrain. We study a series of examples of Eshelby problems which are of interest for applications in materials sciences, such as for instance cubic and prismatic inclusions. The method which covers both the time and frequency domain is especially useful for dynamically transforming inclusions of any shape.
Meza, José Antonio Morán; Lubin, Christophe; Thoyer, François; Cousty, Jacques
2015-01-26
The structural and mechanical properties of an epitaxial graphene (EG) monolayer thermally grown on top of a 6H-SiC(0001) surface were studied by combined dynamic scanning tunneling microscopy (STM) and frequency modulation atomic force microscopy (FM-AFM). Experimental STM, dynamic STM and AFM images of EG on 6H-SiC(0001) show a lattice with a 1.9 nm period corresponding to the (6 × 6) quasi-cell of the SiC surface. The corrugation amplitude of this (6 × 6) quasi-cell, measured from AFM topographies, increases with the setpoint value of the frequency shift Δf (15-20 Hz, repulsive interaction). Excitation variations map obtained simultaneously with the AFM topography shows that larger dissipation values are measured in between the topographical bumps of the (6 × 6) quasi-cell. These results demonstrate that the AFM tip deforms the graphene monolayer. During recording in dynamic STM mode, a frequency shift (Δf) map is obtained in which Δf values range from 41 to 47 Hz (repulsive interaction). As a result, we deduced that the STM tip, also, provokes local mechanical distortions of the graphene monolayer. The origin of these tip-induced distortions is discussed in terms of electronic and mechanical properties of EG on 6H-SiC(0001).
Effect of Heliox on Respiratory Outcomes during Rigid Bronchoscopy in Term Lambs.
Sowder, Justin C; Dahl, Mar Janna; Zuspan, Kaitlin R; Albertine, Kurt H; Null, Donald M; Barneck, Mitchell D; Grimmer, J Fredrik
2018-03-01
Objective To (1) compare physiologic changes during rigid bronchoscopy during spontaneous and mechanical ventilation and (2) evaluate the efficacy of a helium-oxygen (heliox) gas mixture as compared with room air during rigid bronchoscopy. Study Design Crossover animal study evaluating physiologic parameters during rigid bronchoscopy. Outcomes were compared with predicted computational fluid analysis. Setting Simulated ventilation via computational fluid dynamics analysis and term lambs undergoing rigid bronchoscopy. Methods Respiratory and physiologic outcomes were analyzed in a lamb model simulating bronchoscopy during foreign body aspiration to compare heliox with room air. The main outcome measures were blood oxygen saturation, heart rate, blood pressure, partial pressure of oxygen, and partial pressure of carbon dioxide. Computational fluid dynamics analysis was performed with SOLIDWORKS within a rigid pediatric bronchoscope during simulated ventilation comparing heliox with room air. Results For room air, lambs desaturated within 3 minutes during mechanical ventilation versus normal oxygen saturation during spontaneous ventilation ( P = .01). No improvement in respiratory outcomes was seen between heliox and room air during mechanical ventilation. Computational fluid dynamics analysis demonstrates increased turbulence within size 3.5 bronchoscopes when comparing heliox and room air. Meaningful comparisons could not be made due to the intolerance of the lambs to heliox in vivo. Conclusion During mechanical ventilation on room air, lambs desaturate more quickly during rigid bronchoscopy on settings that should be adequate. Heliox does not improve ventilation during rigid bronchoscopy.
Modulation of motor control in saccadic behaviors by TMS over the posterior parietal cortex.
Liang, Wei-Kuang; Juan, Chi-Hung
2012-08-01
The right posterior parietal cortex (rPPC) has been found to be critical in shaping visual selection and distractor-induced saccade curvature in the context of predictive as well as nonpredictive visual cues by means of transcranial magnetic stimulation (TMS) interference. However, the dynamic details of how distractor-induced saccade curvatures are affected by rPPC TMS have not yet been investigated. This study aimed to elucidate the key dynamic properties that cause saccades to curve away from distractors with different degrees of curvature in various TMS and target predictability conditions. Stochastic optimal feedback control theory was used to model the dynamics of the TMS saccade data. This allowed estimation of torques, which was used to identify the critical dynamic mechanisms producing saccade curvature. The critical mechanisms of distractor-induced saccade curvatures were found to be the motor commands and torques in the transverse direction. When an unpredictable saccade target occurred with rPPC TMS, there was an initial period of greater distractor-induced torque toward the side opposite the distractor in the transverse direction, immediately followed by a relatively long period of recovery torque that brought the deviated trace back toward the target. The results imply that the mechanisms of distractor-induced saccade curvature may be comprised of two mechanisms: the first causing the initial deviation and the second bringing the deviated trace back toward the target. The pattern of the initial torque in the transverse direction revealed the former mechanism. Conversely, the later mechanism could be well explained as a consequence of the control policy in this model. To summarize, rPPC TMS increased the initial torque away from the distractor as well as the recovery torque toward the target.
Nieman, Gary F; Satalin, Josh; Kollisch-Singule, Michaela; Andrews, Penny; Aiash, Hani; Habashi, Nader M; Gatto, Louis A
2017-06-01
Acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the main treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword: if set improperly, it can exacerbate the tissue damage caused by ARDS; this is known as ventilator-induced lung injury (VILI). To minimize VILI, we must understand the pathophysiologic mechanisms of tissue damage at the alveolar level. In this Physiology in Medicine paper, the dynamic physiology of alveolar inflation and deflation during mechanical ventilation will be reviewed. In addition, the pathophysiologic mechanisms of VILI will be reviewed, and this knowledge will be used to suggest an optimal mechanical breath profile (MB P : all airway pressures, volumes, flows, rates, and the duration that they are applied at both inspiration and expiration) necessary to minimize VILI. Our review suggests that the current protective ventilation strategy, known as the "open lung strategy," would be the optimal lung-protective approach. However, the viscoelastic behavior of dynamic alveolar inflation and deflation has not yet been incorporated into protective mechanical ventilation strategies. Using our knowledge of dynamic alveolar mechanics (i.e., the dynamic change in alveolar and alveolar duct size and shape during tidal ventilation) to modify the MB P so as to minimize VILI will reduce the morbidity and mortality associated with ARDS. Copyright © 2017 the American Physiological Society.
Richard C. Cobb; Maggie N. Chan; Ross K. Meentemeyer; David M. Rizzo
2011-01-01
Disease ecology has made important steps in describing how epidemiological processes control the impact of pathogens on populations and communities but fewer field or theoretical studies address disease effects at the ecosystem level. We demonstrate that the same epidemiological mechanisms drive disease intensity and coarse woody debris (CWD) dynamics...
Dynamic Fatigue of a Titanium Silicate Glass
NASA Technical Reports Server (NTRS)
Tucker, Dennis S.; Nettles, Alan T.; Cagle, Holly A.; Smith, W. Scott (Technical Monitor)
2002-01-01
A dynamic fatigue study was performed on a Titanium Silicate Glass in order to assess its susceptibility to delayed failure. Fracture mechanics techniques were used to analyze the results for the purpose of making lifetime predictions for optical elements made from this material. The material has reasonably good resistance (N=23 to stress corrosion in ambient conditions).
USDA-ARS?s Scientific Manuscript database
In the crystal structure of cellulose Ibeta, disordered hydrogen (H) bonding can be represented by the average of two mutually exclusive H bonding schemes that have been designated A and B. An unanswered question is whether A and B interconvert dynamically, or whether they are static but present in ...
Soft tissue deformation modelling through neural dynamics-based reaction-diffusion mechanics.
Zhang, Jinao; Zhong, Yongmin; Gu, Chengfan
2018-05-30
Soft tissue deformation modelling forms the basis of development of surgical simulation, surgical planning and robotic-assisted minimally invasive surgery. This paper presents a new methodology for modelling of soft tissue deformation based on reaction-diffusion mechanics via neural dynamics. The potential energy stored in soft tissues due to a mechanical load to deform tissues away from their rest state is treated as the equivalent transmembrane potential energy, and it is distributed in the tissue masses in the manner of reaction-diffusion propagation of nonlinear electrical waves. The reaction-diffusion propagation of mechanical potential energy and nonrigid mechanics of motion are combined to model soft tissue deformation and its dynamics, both of which are further formulated as the dynamics of cellular neural networks to achieve real-time computational performance. The proposed methodology is implemented with a haptic device for interactive soft tissue deformation with force feedback. Experimental results demonstrate that the proposed methodology exhibits nonlinear force-displacement relationship for nonlinear soft tissue deformation. Homogeneous, anisotropic and heterogeneous soft tissue material properties can be modelled through the inherent physical properties of mass points. Graphical abstract Soft tissue deformation modelling with haptic feedback via neural dynamics-based reaction-diffusion mechanics.
Crystal Growth and Fluid Mechanics Problems in Directional Solidification
NASA Technical Reports Server (NTRS)
Tanveer, Saleh A.; Baker, Gregory R.; Foster, Michael R.
2001-01-01
Our work in directional solidification has been in the following areas: (1) Dynamics of dendrites including rigorous mathematical analysis of the resulting equations; (2) Examination of the near-structurally unstable features of the mathematically related Hele-Shaw dynamics; (3) Numerical studies of steady temperature distribution in a vertical Bridgman device; (4) Numerical study of transient effects in a vertical Bridgman device; (5) Asymptotic treatment of quasi-steady operation of a vertical Bridgman furnace for large Rayleigh numbers and small Biot number in 3D; and (6) Understanding of Mullins-Sererka transition in a Bridgman device with fluid dynamics is accounted for.
Relaxation Dynamics in the Merging of N Independent Condensates
NASA Astrophysics Data System (ADS)
Aidelsburger, M.; Ville, J. L.; Saint-Jalm, R.; Nascimbène, S.; Dalibard, J.; Beugnon, J.
2017-11-01
Controlled quantum systems such as ultracold atoms can provide powerful platforms to study nonequilibrium dynamics of closed many-body quantum systems, especially since a complete theoretical description is generally challenging. In this Letter, we present a detailed study of the rich out-of-equilibrium dynamics of an adjustable number N of uncorrelated condensates after connecting them in a ring-shaped optical trap. We observe the formation of long-lived supercurrents and confirm the scaling of their winding number with N in agreement with the geodesic rule. Moreover, we provide insight into the microscopic mechanism that underlies the smoothening of the phase profile.
Forest dynamics and its driving forces of sub-tropical forest in South China.
Ma, Lei; Lian, Juyu; Lin, Guojun; Cao, Honglin; Huang, Zhongliang; Guan, Dongsheng
2016-03-04
Tree mortality and recruitment are key factors influencing forest dynamics, but the driving mechanisms of these processes remain unclear. To better understand these driving mechanisms, we studied forest dynamics over a 5-year period in a 20-ha sub-tropical forest in the Dinghushan Nature Reserve, South China. The goal was to identify determinants of tree mortality/recruitment at the local scale using neighborhood analyses on some locally dominant tree species. Results show that the study plot was more dynamic than some temperate and tropical forests in a comparison to large, long-term forest dynamics plots. Over the 5-year period, mortality rates ranged from 1.67 to 12.33% per year while recruitment rates ranged from 0 to 20.26% per year. Tree size had the most consistent effect on mortality across species. Recruitment into the ≥1-cm size class consistently occurred where local con-specific density was high. This suggests that recruitment may be limited by seed dispersal. Hetero-specific individuals also influenced recruitment significantly for some species. Canopy species had low recruitment into the ≥1-cm size class over the 5-year period. In conclusion, tree mortality and recruitment for sixteen species in this plot was likely limited by seed dispersal and density-dependence.
Lyapounov variable: Entropy and measurement in quantum mechanics
Misra, B.; Prigogine, I.; Courbage, M.
1979-01-01
We discuss the question of the dynamical meaning of the second law of thermodynamics in the framework of quantum mechanics. Previous discussion of the problem in the framework of classical dynamics has shown that the second law can be given a dynamical meaning in terms of the existence of so-called Lyapounov variables—i.e., dynamical variables varying monotonically in time without becoming contradictory. It has been found that such variables can exist in an extended framework of classical dynamics, provided that the dynamical motion is suitably unstable. In this paper we begin to extend these results to quantum mechanics. It is found that no dynamical variable with the characteristic properties of nonequilibrium entropy can be defined in the standard formulation of quantum mechanics. However, if the Hamiltonian has certain well-defined spectral properties, such variables can be defined but only as a nonfactorizable superoperator. Necessary nonfactorizability of such entropy operators M has the consequence that they cannot preserve the class of pure states. Physically, this means that the distinguishability between pure states and corresponding mixtures must be lost in the case of a quantal system for which the algebra of observables can be extended to include a new dynamical variable representing nonequilibrium entropy. We discuss how this result leads to a solution of the quantum measurement problem. It is also found that the question of existence of entropy of superoperators M is closely linked to the problem of defining an operator of time in quantum mechanics. PMID:16578757
Acoustic emission: A useful tool for damage evaluation in composite materials
NASA Astrophysics Data System (ADS)
Mouzakis, Dionysios E.; Dimogianopoulos, Dimitrios G.
2018-02-01
High performance composites for aviation-related structures are prone to constant aging by environmental agents. Previous data from our work reported on the stiffening behaviour of glass fibre polyester composites used in the manufacturing of wind turbine blades. Airplanes from such composites are already on service nowadays. This justifies the detailed study of the exposure of high performance materials to environmental conditions such as varying temperature, humidity, ultraviolet radiation, in order to assess the impact of these important aging factors on their mechanical behaviour. The dramatic changes in the dynamic mechanical response of polymer matrix carbon fibre composites upon exposure to acceleration aging has been assessed in the present study. In order to assess the synergistic effect action of temperature and humidity on composites subjected to changes of temperature from -35 to +40 °C and humidity variations from <10% to 95% RH (non-condensing) specimens were stored in a climatic chamber for 60 days. Conditions were cycled, as if actual flight cycles of 3-4 hours per flight, were to be simulated. Dynamic mechanical analysis tests were performed in three point bending mode. Scanning of frequency and temperature were performed in order to determine both the viscoelastic response as well as the time-dependent behaviour of the aged materials. All tests were run both for aged and pristine materials for comparison purposes. Three point bending testing was performed in both static as well as in Dynamic mechanical analysis, for a range of temperatures and frequencies. Acoustic Emission damage detection was also performed during the three point bending test both in static and dynamic mode. The aged materials had gained in dynamic stiffness. In addition, that, the gain in the storage moduli, was accompanied by a decrease in the material damping ability, as determined by the tanδ parameter. In the final stages of the study, impact testing was performed on both pristine and aged specimens. The experimentally recorded force/time signals were utilized for concluding on the specimens' condition, by means of signal based damage detection methodologies. Effort was invested in utilizing signal analysis in order to get comparative aging-related information on the tested specimens in order to ultimately validate results of mechanical testing.
Development of Ultrasound to Measure In-Vivo Dynamic Cervical Spine Intervertebral Disc Mechanics
2016-01-01
Award Number: W81XWH-13-1-0050 TITLE: Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics PRINCIPAL...CONTRACT NUMBER W81XWH-13-1-0050 Development of Ultrasound to Measure In-vivo Dynamic Cervical Spine Intervertebral Disc Mechanics 5b. GRANT NUMBER 5c...elasticity during compression or tension. As a portable, low cost imaging modality, the dual ultrasound system quantified cervical spine IVD displacement and
Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette
2015-04-01
The effects of polymerization kinetics and chemical miscibility on the crosslinking structure and mechanical properties of polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization are determined. A three-component initiator system is used and the monomer system contains methacrylates and epoxides. The photopolymerization kinetics is monitored in situ by Fourier transform infrared-attenuated total reflectance. The crosslinking structure is studied by modulated differential scanning calorimetry and dynamic mechanical analysis. X-ray microcomputed tomography is used to evaluate microphase separation. The mechanical properties of polymers formed by hybrid formed by free-radical polymerization. These investigations mark the first time that the benefits of the chain transfer reaction between epoxy and hydroxyl groups of methacrylate, on the crosslinking network and microphase separation during hybrid visible-light initiated photopolymerization, have been determined.
NASA Astrophysics Data System (ADS)
Rida, A.; Makke, A.; Rouhaud, E.; Micoulaut, M.
2017-10-01
We use molecular dynamics simulations to study the mechanical properties of a columnar nanocrystalline copper with a mean grain size between 8.91 nm and 24 nm. The used samples were generated by using a melting cooling method. These samples were submitted to uniaxial tensile test. The results reveal the presence of a critical mean grain size between 16 and 20 nm, where there is an inversion in the conventional Hall-Petch tendency. This inversion is illustrated by the increase of flow stress with the increase of the mean grain size. This transition is caused by shifting of the deformation mechanism from dislocations to a combination of grain boundaries sliding and dislocations. Moreover, the effect of temperature on the mechanical properties of nanocrystalline copper has been investigated. The results show a decrease of the flow stress and Young's modulus when the temperature increases.
Wu, Jingheng; Shen, Lin; Yang, Weitao
2017-10-28
Ab initio quantum mechanics/molecular mechanics (QM/MM) molecular dynamics simulation is a useful tool to calculate thermodynamic properties such as potential of mean force for chemical reactions but intensely time consuming. In this paper, we developed a new method using the internal force correction for low-level semiempirical QM/MM molecular dynamics samplings with a predefined reaction coordinate. As a correction term, the internal force was predicted with a machine learning scheme, which provides a sophisticated force field, and added to the atomic forces on the reaction coordinate related atoms at each integration step. We applied this method to two reactions in aqueous solution and reproduced potentials of mean force at the ab initio QM/MM level. The saving in computational cost is about 2 orders of magnitude. The present work reveals great potentials for machine learning in QM/MM simulations to study complex chemical processes.
Formation mechanism and mechanics of dip-pen nanolithography using molecular dynamics.
Wu, Cheng-Da; Fang, Te-Hua; Lin, Jen-Fin
2010-03-02
Molecular dynamics simulations are used to investigate the mechanisms of molecular transference, pattern formation, and mechanical behavior in the dip-pen nanolithography (DPN) process. The effects of deposition temperature were studied using molecular trajectories, the meniscus characteristic, surface absorbed energy, and pattern formation analysis. At the first transferred stage (at the initial indentation depth), the conformation of SAM molecules lies almost on the substrate surface. The molecules start to stand on the substrate due to the pull and drag forces at the second transferred stage (after the tip is pulled up). According to the absorbed energy behavior, the second transferred stage has larger transferred amounts and the transfer rate is strongly related to temperature. When molecules were deposited at low temperature (e.g., room temperature), the pattern shape was more highly concentrated. The pattern shape at high temperatures expanded and the area increased because of good molecular diffusion.
Fractal avalanche ruptures in biological membranes
NASA Astrophysics Data System (ADS)
Gözen, Irep; Dommersnes, Paul; Czolkos, Ilja; Jesorka, Aldo; Lobovkina, Tatsiana; Orwar, Owe
2010-11-01
Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity. Pore formation in cell membranes is also at the heart of many biomedical applications such as in drug, gene and short interfering RNA delivery. Membrane rupture dynamics has been studied in bilayer vesicles under tensile stress, which consistently produce circular pores. We observed very different rupture mechanics in bilayer membranes spreading on solid supports: in one instance fingering instabilities were seen resulting in floral-like pores and in another, the rupture proceeded in a series of rapid avalanches causing fractal membrane fragmentation. The intermittent character of rupture evolution and the broad distribution in avalanche sizes is consistent with crackling-noise dynamics. Such noisy dynamics appear in fracture of solid disordered materials, in dislocation avalanches in plastic deformations and domain wall magnetization avalanches. We also observed similar fractal rupture mechanics in spreading cell membranes.
Tabor, Whitney; Cho, Pyeong W; Dankowicz, Harry
2013-01-01
Human participants and recurrent ("connectionist") neural networks were both trained on a categorization system abstractly similar to natural language systems involving irregular ("strong") classes and a default class. Both the humans and the networks exhibited staged learning and a generalization pattern reminiscent of the Elsewhere Condition (Kiparsky, 1973). Previous connectionist accounts of related phenomena have often been vague about the nature of the networks' encoding systems. We analyzed our network using dynamical systems theory, revealing topological and geometric properties that can be directly compared with the mechanisms of non-connectionist, rule-based accounts. The results reveal that the networks "contain" structures related to mechanisms posited by rule-based models, partly vindicating the insights of these models. On the other hand, they support the one mechanism (OM), as opposed to the more than one mechanism (MOM), view of symbolic abstraction by showing how the appearance of MOM behavior can arise emergently from one underlying set of principles. The key new contribution of this study is to show that dynamical systems theory can allow us to explicitly characterize the relationship between the two perspectives in implemented models. © 2013 Cognitive Science Society, Inc.
NASA Astrophysics Data System (ADS)
Lin, Kai-Peng; Fang, Te-Hua; Lin, Ying-Jhin
2018-02-01
In this study, we investigate the mechanical properties of single-crystal copper (Cu) nanopillars. Critical deformation variations of Cu-nanopillared structures are estimated using in situ transmission electron microscopy compression tests and molecular dynamics simulations. The Young’s moduli of Cu nanopillars with diameters of 2-6 nm were 90.20-124.47 GPa. The contact stiffnesses of the Cu nanopillars with diameters of 400 and 500 nm were 1.33 and 3.86 N m-1, respectively; the Poisson’s ratios for these nanopillars were 0.32 and 0.33. The yield strength of the nanopillars varied from 0.25 GPa at 500 nm to 0.42 GPa at 400 nm; the yield strength of single-crystal Cu nanopillars decreased with increasing diameter. The values of the indented hardness of the Cu block were 0.27 and 1.06 GPa, respectively. Through experimental work and molecular dynamics simulations, we demonstrate that Cu nanopillars exhibit internal stress transmission during compression. When compression reaches the maximum strain, it can be observed that Cu slips. Our results are useful for understanding the mechanical properties, contact, and local deformation of Cu nanopillars.
Extreme Mechanical Behavior of Nacre-Mimetic Graphene-Oxide and Silk Nanocomposites.
Xie, Wanting; Tadepalli, Sirimuvva; Park, Sang Hyun; Kazemi-Moridani, Amir; Jiang, Qisheng; Singamaneni, Srikanth; Lee, Jae-Hwang
2018-02-14
Biological materials have the ability to withstand extreme mechanical forces due to their unique multilevel hierarchical structure. Here, we fabricated a nacre-mimetic nanocomposite comprised of silk fibroin and graphene oxide that exhibits hybridized dynamic responses arising from alternating high-contrast mechanical properties of the components at the nanoscale. Dynamic mechanical behavior of these nanocomposites is assessed through a microscale ballistic characterization using a 7.6 μm diameter silica sphere moving at a speed of approximately 400 m/s. The volume fraction of graphene oxide in these composites is systematically varied from 0 to 32 vol % to quantify the dynamic effects correlating with the structural morphologies of the graphene oxide flakes. Specific penetration energy of the films rapidly increases as the distribution of graphene oxide flakes evolves from noninteracting, isolated sheets to a partially overlapping continuous sheet. The specific penetration energy of the nanocomposite at the highest graphene oxide content tested here is found to be significantly higher than that of Kevlar fabrics and close to that of pure multilayer graphene. This study evidently demonstrates that the morphologies of nanoscale constituents and their interactions are critical to realize scalable high-performance nanocomposites using typical nanomaterial constituents having finite dimensions.
Iman, Maryam; Khansefid, Zeynab; Davood, Asghar
2016-01-01
Ribonucleotide Reductase (RNR) is an important anticancer chemotherapy target. It has main key role in DNA synthesis and cell growth. Therefore several RNR inhibitors, such as hydroxyurea, have entered the clinical trials. Based on our proposed mechanism, radical site of RNR protein reacts with hydroxyurea in which hydroxyurea is converted into its oxidized form compound III, and whereby the tyrosyl radical is converted into a normal tyrosine residue. In this study, docking and molecular dynamics simulations were used for proposed molecular mechanism of hydroxyurea in RNR inhibition as anticancer agent. The binding affinity of hydroxyurea and compound III to RNR was studied by docking method. The docking study was performed for the crystal structure of human RNR with the radical scavenger Hydroxyurea and its oxidized form to inhibit the human RNR. hydroxyurea and compound III bind at the active site with Tyr-176, which are essential for free radical formation. This helps to understand the functional aspects and also aids in the development of novel inhibitors for the human RNR2. To confirm the binding mode of inhibitors, the molecular dynamics (MD) simulations were performed using GROMACS 4.5.5, based upon the docked conformation of inhibitors. Both of the studied compounds stayed in the active site. The results of MD simulations confirmed the binding mode of ligands, accuracy of docking and the reliability of active conformations which were obtained by AutoDock. MD studies confirm our proposed mechanism in which compound III reacts with the active site residues specially Tyr-176, and inhibits the radical generation and subsequently inhibits the RNR enzyme.
Special Features of Galactic Dynamics
NASA Astrophysics Data System (ADS)
Efthymiopoulos, Christos; Voglis, Nikos; Kalapotharakos, Constantinos
This is an introductory article to some basic notions and currently open problems of galactic dynamics. The focus is on topics mostly relevant to the so-called `new methods' of celestial mechanics or Hamiltonian dynamics, as applied to the ellipsoidal components of galaxies, i.e., to the elliptical galaxies and to the dark halos and bulges of disk galaxies. Traditional topics such as Jeans theorem, the role of a `third integral' of motion, Nekhoroshev theory, violent relaxation, and the statistical mechanics of collisionless stellar systems are first discussed. The emphasis is on modern extrapolations of these old topics. Recent results from orbital and global dynamical studies of galaxies are then shortly reviewed. The role of various families of orbits in supporting self-consistency, as well as the role of chaos in galaxies, are stressed. A description is then given of the main numerical techniques of integration of the N-body problem in the framework of stellar dynamics and of the results obtained via N-Body experiments. A final topic is the secular evolution and self-organization of galactic systems.
NASA Astrophysics Data System (ADS)
Nandipati, K. R.; Kanakati, Arun Kumar; Singh, H.; Lan, Z.; Mahapatra, S.
2017-09-01
Optimal initiation of quantum dynamics of N-H photodissociation of pyrrole on the S0-1πσ∗(1A2) coupled electronic states by UV-laser pulses in an effort to guide the subsequent dynamics to dissociation limits is studied theoretically. Specifically, the task of designing optimal laser pulses that act on initial vibrational states of the system for an effective UV-photodissociation is considered by employing optimal control theory. The associated control mechanism(s) for the initial state dependent photodissociation dynamics of pyrrole in the presence of control pulses is examined and discussed in detail. The initial conditions determine implicitly the variation in the dissociation probabilities for the two channels, upon interaction with the field. The optimal pulse corresponds to the objective fixed as maximization of overall reactive flux subject to constraints of reasonable fluence and quantum dynamics. The simple optimal pulses obtained by the use of genetic algorithm based optimization are worth an experimental implementation given the experimental relevance of πσ∗-photochemistry in recent times.
Modeling capillary bridge dynamics and crack healing between surfaces of nanoscale roughness
NASA Astrophysics Data System (ADS)
Soylemez, Emrecan; de Boer, Maarten P.
2017-12-01
Capillary bridge formation between adjacent surfaces in humid environments is a ubiquitous phenomenon. It strongly influences tribological performance with respect to adhesion, friction and wear. Only a few studies, however, assess effects due to capillary dynamics. Here we focus on how capillary bridge evolution influences crack healing rates. Experimental results indicated a logarithmic decrease in average crack healing velocity as the energy release rate increases. Our objective is to model that trend. We assume that capillary dynamics involve two mechanisms: capillary bridge growth and subsequently nucleation followed by growth. We show that by incorporating interface roughness details and the presence of an adsorbed water layer, the behavior of capillary force dynamics can be understood quantitatively. We identify three important regimes that control the healing process, namely bridge growth, combined bridge growth and nucleation, and finally bridge nucleation. To fully capture the results, however, the theoretical model for nucleation time required an empirical modification. Our model enables significant insight into capillary bridge dynamics, with a goal of attaining a predictive capability for this important microelectromechanical systems (MEMS) reliability failure mechanism.
Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, N.; Yang, L.; Gao, F.
2017-02-27
A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly differentmore » time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.« less
Effect of brace design on patients with ACL-ruptures.
Strutzenberger, G; Braig, M; Sell, S; Boes, K; Schwameder, H
2012-11-01
Different designs of functional knee braces for ACL-injury rehabilitation exist. In addition to the mechanical stabilization provided by rigid shell braces, sleeve braces also address proprioceptive mechanisms, but little is known if this leads to benefits for ACL-deficient subjects. Therefore the aim of this study was to investigate the effect of 2 different functional brace designs (shell and sleeve brace) on functional achievements in ACL-deficient patients. 28 subjects with ACL-ruptured knees performed tests for knee joint laxity, joint position sense, static and dynamic balance and isometric and dynamic lower limb extension strength in non-braced, sleeve braced and shell braced condition. The results showed a significant decrease in knee joint laxity for sleeve (33%; p<0.001) and rigid shell bracing (14%, p=0.039). The sleeve brace revealed a significant increase in dynamic balance after perturbation (20%; p=0.024) and a significant increase in dynamic lower limb peak rate of force development (17%; p=0.015) compared to the non-braced condition. The effects might be caused by the flexible area of support and the incorporated mechanisms to address proprioceptive aspects. Braces might not be needed in simple daily life tasks, but could provide beneficial support in more dynamic settings when patients return to sporting activities after an ACL-injury. © Georg Thieme Verlag KG Stuttgart · New York.
NMR Study of Ion Dynamics and Charge Storage in Ionic Liquid Supercapacitors
2015-01-01
Ionic liquids are emerging as promising new electrolytes for supercapacitors. While their higher operating voltages allow the storage of more energy than organic electrolytes, they cannot currently compete in terms of power performance. More fundamental studies of the mechanism and dynamics of charge storage are required to facilitate the development and application of these materials. Here we demonstrate the application of nuclear magnetic resonance spectroscopy to study the structure and dynamics of ionic liquids confined in porous carbon electrodes. The measurements reveal that ionic liquids spontaneously wet the carbon micropores in the absence of any applied potential and that on application of a potential supercapacitor charging takes place by adsorption of counterions and desorption of co-ions from the pores. We find that adsorption and desorption of anions surprisingly plays a more dominant role than that of the cations. Having elucidated the charging mechanism, we go on to study the factors that affect the rate of ionic diffusion in the carbon micropores in an effort to understand supercapacitor charging dynamics. We show that the line shape of the resonance arising from adsorbed ions is a sensitive probe of their effective diffusion rate, which is found to depend on the ionic liquid studied, as well as the presence of any solvent additives. Taken as whole, our NMR measurements allow us to rationalize the power performances of different electrolytes in supercapacitors. PMID:25973552
A Summary of the Naval Postgraduate School Research Program.
1979-09-30
Research (M. G. Sovereign) 116 Review of COMWTH II Model (M. G. Sovereign and J. K. Arima ) 117 Optimization of Combat Dynamics (J. G. Taylor) 118...Studies (R. L. Elsberry) 291 4 Numerical Models of Ocean Circulation and Climate Interaction--A Review (R. L. Haney) 292 Numerical Studies of the Dynamics... climatic numerical models to investigate the various mechan- isms pertinent to the large-scale interaction between tropi- cal atmosphere and oceans. Among
(Anti-)strangeness in heavy-ion collisions
NASA Astrophysics Data System (ADS)
Moreau, P.; Cassing, W.; Palmese, A.; Bratkovskaya, E. L.
2016-08-01
We study the production of hadrons in nucleus-nucleus collisions within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD before. The essential impact of CSR is found in the Schwinger mechanism (for string decay) which fixes the ratio of strange to light quark production in the hadronic medium. Our studies suggest a microscopic explanation for the maximum in the K + /π + and (Ʌ + Σ0)/π - ratios at about 30 A GeV which only shows up if in addition to CSR a deconfinement transition to partonic degrees-of-freedom is incorporated in the reaction dynamics.
NASA Astrophysics Data System (ADS)
Sugawara, Shuichi; Yoshikawa, Takehiro; Takayanagi, Toshiyuki; Tachikawa, Masanori
2011-01-01
The structural rearrangement process for the HCl(H2O)4 cluster has been studied by path-integral molecular dynamics simulations, where 'on-the-fly' calculation of the potential energy surface is done with the PM3-MAIS semiempirical level. The mechanisms of the rearrangement were analyzed using appropriate collective coordinates as well as detailed potential energy diagrams derived from low-lying stationary points. It was found that the vibrational entropy mainly determines the stability of the cluster structure especially at high temperatures. We have also found that the acidity of HCl in the cluster correlates with the coordination number of chlorine with respect water molecules.
Connizzo, Brianne K; Grodzinsky, Alan J
2017-03-21
Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Proteomics and its application to determine mechanism of action of traditional Chinese medicine].
Xin, Ping; Kuang, Hai-Xue; Li, Xiao-Liang; Wang, Yu; Zhang, Ben-Mei; Bu, He; Wang, Zhi-Bin; Meng, Yong-Hai; Wang, Yan-Hong; Wang, Qiu-Hong
2018-03-01
There is no doubt that the traditional Chinese medicine(TCM) is effective, practical and scientific after it was used for thousands of years. However, the mechanisms of action of many TCM are still unclear because of their multi-component, multi-target and multi-level features, which hinder the modernization and internationalization of the TCM. Proteomics is to analyze the composition and activity of intracellular proteins which are changing dynamically from a holistic perspective. It is consistent with the holistic and dynamic views of the TCM and brings about the hope of clarifying the mechanism of action of the TCM. In recent years, great progress has been made in the application of proteomics to determine the mechanism of the TCM. This article introduced the core technologies of proteomics and systematically summarized the applications of proteomics in the study of the mechanism of the Chinese medicinal formulae, single Chinese medicine and monomeric compounds from the TCM to provide innovative ideas and methods for reference. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Fang, Yuqiang; Iu, Catherine Y. Y.; Lui, Cathy N. P.; Zou, Yukai; Fung, Carmen K. M.; Li, Hung Wing; Xi, Ning; Yung, Ken K. L.; Lai, King W. C.
2014-11-01
Glutamate-mediated neurodegeneration resulting from excessive activation of glutamate receptors is recognized as one of the major causes of various neurological disorders such as Alzheimer's and Huntington's diseases. However, the underlying mechanisms in the neurodegenerative process remain unidentified. Here, we investigate the real-time dynamic structural and mechanical changes associated with the neurodegeneration induced by the activation of N-methyl-D-aspartate (NMDA) receptors (a subtype of glutamate receptors) at the nanoscale. Atomic force microscopy (AFM) is employed to measure the three-dimensional (3-D) topography and mechanical properties of live SH-SY5Y cells under stimulus of NMDA receptors. A significant increase in surface roughness and stiffness of the cell is observed after NMDA treatment, which indicates the time-dependent neuronal cell behavior under NMDA-mediated neurodegeneration. The present AFM based study further advance our understanding of the neurodegenerative process to elucidate the pathways and mechanisms that govern NMDA induced neurodegeneration, so as to facilitate the development of novel therapeutic strategies for neurodegenerative diseases.
Gregorova, Adriana; Saha, Nabanita; Kitano, Takeshi; Saha, Petr
2015-03-06
The PVP-CMC hydrogel film is biodegradable, transparent, flexible, hygroscopic and breathable material which can be used as a food packaging material. The hygroscopic character of CMC and PVP plays a big role in the changing of their mechanical properties where load carrying capacity is one of important criteria for packaging materials. This paper reports about the hydrothermal effect on the mechanical and viscoelastic properties of neat CMC, and PVP-CMC (20:80) hydrogel films under the conditions of combined multiple stress factors such as temperature, time, load, frequency and humidity. The dry films were studied by transient and dynamic oscillatory experiments using dynamic mechanical analyser combined with relative humidity chamber (DMA-RH). The mechanical properties of PVP-CMC hydrogel film at room temperature (25 °C), in the range of 0-30%RH remain steady. The 20 wt% of PVP in PVP-CMC hydrogel increases the stiffness of CMC from 2940 to 3260 MPa at 25 °C and 10%RH. Copyright © 2014 Elsevier Ltd. All rights reserved.
Park, Jaeyeong; Jo, Min Cheol; Jeong, Hyeok Jae; Sohn, Seok Su; Kwak, Jai-Hyun; Kim, Hyoung Seop; Lee, Sunghak
2017-11-16
Phenomena occurring in duplex lightweight steels under dynamic loading are hardly investigated, although its understanding is essentially needed in applications of automotive steels. In this study, quasi-static and dynamic tensile properties of duplex lightweight steels were investigated by focusing on how TRIP and TWIP mechanisms were varied under the quasi-static and dynamic loading conditions. As the annealing temperature increased, the grain size and volume fraction of austenite increased, thereby gradually decreasing austenite stability. The strain-hardening rate curves displayed a multiple-stage strain-hardening behavior, which was closely related with deformation mechanisms. Under the dynamic loading, the temperature rise due to adiabatic heating raised the austenite stability, which resulted in the reduction in the TRIP amount. Though the 950 °C-annealed specimen having the lowest austenite stability showed the very low ductility and strength under the quasi-static loading, it exhibited the tensile elongation up to 54% as well as high strain-hardening rate and tensile strength (1038 MPa) due to appropriate austenite stability under dynamic loading. Since dynamic properties of the present duplex lightweight steels show the excellent strength-ductility combination as well as continuously high strain hardening, they can be sufficiently applied to automotive steel sheets demanded for stronger vehicle bodies and safety enhancement.
Farnsworth, Nikki L; Walter, Rachelle L; Hemmati, Alireza; Westacott, Matthew J; Benninger, Richard K P
2016-02-12
Pro-inflammatory cytokines contribute to the decline in islet function during the development of diabetes. Cytokines can disrupt insulin secretion and calcium dynamics; however, the mechanisms underlying this are poorly understood. Connexin36 gap junctions coordinate glucose-induced calcium oscillations and pulsatile insulin secretion across the islet. Loss of gap junction coupling disrupts these dynamics, similar to that observed during the development of diabetes. This study investigates the mechanisms by which pro-inflammatory cytokines mediate gap junction coupling. Specifically, as cytokine-induced NO can activate PKCδ, we aimed to understand the role of PKCδ in modulating cytokine-induced changes in gap junction coupling. Isolated mouse and human islets were treated with varying levels of a cytokine mixture containing TNF-α, IL-1β, and IFN-γ. Islet dysfunction was measured by insulin secretion, calcium dynamics, and gap junction coupling. Modulators of PKCδ and NO were applied to determine their respective roles in modulating gap junction coupling. High levels of cytokines caused cell death and decreased insulin secretion. Low levels of cytokine treatment disrupted calcium dynamics and decreased gap junction coupling, in the absence of disruptions to insulin secretion. Decreases in gap junction coupling were dependent on NO-regulated PKCδ, and altered membrane organization of connexin36. This study defines several mechanisms underlying the disruption to gap junction coupling under conditions associated with the development of diabetes. These mechanisms will allow for greater understanding of islet dysfunction and suggest ways to ameliorate this dysfunction during the development of diabetes. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Astrophysics Data System (ADS)
Liu, D.; Wei, X.; Li, H. Y.; Lin, M.; Tian, F.; Huang, Q.
2017-12-01
In the socio-hydrological system, the ecological functions and environmental services, which are chosen to maintain, are determined by the preference of the society, which is making the trade-off among the values of riparian vegetation, fish, river landscape, water supply, hydropower, navigation and so on. As the society develops, the preference of the value will change and the ecological functions and environmental services which are chosen to maintain will change. The aim of the study is to focus on revealing the feedback relationship of water supply, hydropower and environment and the dynamical feedback mechanism at macro-scale, and to establish socio-hydrological evolution model of the watershed based on the modeling of multiple socio-natural processes. The study will aim at the Han River in China, analyze the impact of the water supply and hydropower on the ecology, hydrology and other environment elements, and study the effect on the water supply and hydropower to ensure the ecological and environmental water of the different level. Water supply and ecology are usually competitive. In some reservoirs, hydropower and ecology are synergic relationship while they are competitive in some reservoirs. The study will analyze the multiple mechanisms to implement the dynamical feedbacks of environment to hydropower, set up the quantitative relationship description of the feedback mechanisms, recognize the dominant processes in the feedback relationships of hydropower and environment and then analyze the positive and negative feedbacks in the feedback networks. The socio-hydrological evolution model at the watershed scale will be built and applied to simulate the long-term evolution processes of the watershed of the current situation. Dynamical nexus of water supply, hydropower and environment will be investigated.
Mitra, Sarmistha; Dash, Raju
2018-05-04
The Proteins involved in the chemical modification of lysine residues in histone, is currently being excessively focused as the therapeutic target for the treatment of cell related diseases like cancer. Among these proteins, the epigenetic reader, CREB-binding protein (CREBBP) bromodomain is one of the most prominent targets for effective anticancer drug design, which is responsible for the reorganization of acetylated histone lysine residues. Therefore, this study employed an integrative approach of structure based drug design, in combination with Molecular Dynamics (MD) and QM/MM study to identify as well as to describe the binding mechanism of two shikonin derivatives, acetylshikonin and propionylshikonin as inhibitors of CREBBP bromodomain. Here induced fit docking strategy was employed to explore the important intrinsic interactions of ligands with CREBBP bromodomain, consistently molecular dynamics simulation with two different methods and binding energy calculations by MM-GBSA and MM-PBSA were adopted to determine the stability of intermolecular interactions between protein and ligands. The results showed that both these derivatives made direct contacts with the important conserved residues of the active site, where propionylshikonin demonstrated stronger binding and stability than acetylshikonin, according to molecular dynamics simulation and binding free energy calculations. Further, QM/MM energy calculation was employed to study the chemical reactivity of the propionylshikonin and also to describe the mechanism of non bonded interactions between the propionylshikonin and CREBBP bromodomain. Though this study demands in vitro and in vivo experiments to evaluate the efficiency of the compound, these insights would assist to design more potent CREBBP bromodomain inhibitor, guiding the site of modification of propionylshikonin moiety for designing selective inhibitors. Copyright © 2018 Elsevier Inc. All rights reserved.
Sun, Haoyu; Calabrese, Edward J; Zheng, Min; Wang, Dali; Pan, Yongzheng; Lin, Zhifen; Liu, Ying
2018-08-01
Hormesis occurs frequently in broadly ranging biological areas (e.g. plant biology, microbiology, biogerontology), toxicology, pharmacology and medicine. While numerous mechanisms (e.g. receptor and pathway mediated pathway responses) account for stimulatory and inhibitory features of hormetic dose responses, the vast majority emphasizes the inclusion of many doses but only one timepoint or use of a single optimized dose that is assessed over a broad range of timepoints. In this paper, a toxicity study was designed using a large number of properly spaced doses with responses determined over a large number of timepoints, which could help us reveal the underlying mechanism of hormesis. We present the results of a dose-time-response study on hormesis using five antibacterial chemicals on the bioluminescence of Aliivibrio fischeri, measuring expression of protein mRNA based on quorum sensing, simulating bioluminescent reaction and analyzing toxic actions of test chemicals. The findings show dose-time-dependent responses conforming to the hormetic dose-response model, while revealing unique response dynamics between agent induced stimulatory and inhibitory effects within bacterial growth phase dynamics. These dynamic dose-time features reveal a type of biological seesaw model that integrates stimulatory and inhibitory responses within unique growth phase, dose and time features, which has faultlessly explained the time-dependent hormetic phenomenon induced by five antibacterial chemicals (characterized by low-dose stimulation and high-dose inhibition). This study offers advances in understanding cellular dynamics, the biological integration of diverse and opposing responses and their role in evolutionary adaptive strategies to chemicals, which can provide new insight into the mechanistic investigation of hormesis. Copyright © 2018 Elsevier Ltd. All rights reserved.
McGowan, Lauren C.; Hamelberg, Donald
2013-01-01
Enzyme catalysis is central to almost all biochemical processes, speeding up rates of reactions to biological relevant timescales. Enzymes make use of a large ensemble of conformations in recognizing their substrates and stabilizing the transition states, due to the inherent dynamical nature of biomolecules. The exact role of these diverse enzyme conformations and the interplay between enzyme conformational dynamics and catalysis is, according to the literature, not well understood. Here, we use molecular dynamics simulations to study human cyclophilin A (CypA), in order to understand the role of enzyme motions in the catalytic mechanism and recognition. Cyclophilin A is a tractable model system to study using classical simulation methods, because catalysis does not involve bond formation or breakage. We show that the conformational dynamics of active site residues of substrate-bound CypA is inherent in the substrate-free enzyme. CypA interacts with its substrate via conformational selection as the configurations of the substrate changes during catalysis. We also show that, in addition to tight intermolecular hydrophobic interactions between CypA and the substrate, an intricate enzyme-substrate intermolecular hydrogen-bonding network is extremely sensitive to the configuration of the substrate. These enzyme-substrate intermolecular interactions are loosely formed when the substrate is in the reactant and product states and become well formed and reluctant to break when the substrate is in the transition state. Our results clearly suggest coupling among enzyme-substrate intermolecular interactions, the dynamics of the enzyme, and the chemical step. This study provides further insights into the mechanism of peptidyl-prolyl cis/trans isomerases and the general interplay between enzyme conformational dynamics and catalysis. PMID:23332074
McGowan, Lauren C; Hamelberg, Donald
2013-01-08
Enzyme catalysis is central to almost all biochemical processes, speeding up rates of reactions to biological relevant timescales. Enzymes make use of a large ensemble of conformations in recognizing their substrates and stabilizing the transition states, due to the inherent dynamical nature of biomolecules. The exact role of these diverse enzyme conformations and the interplay between enzyme conformational dynamics and catalysis is, according to the literature, not well understood. Here, we use molecular dynamics simulations to study human cyclophilin A (CypA), in order to understand the role of enzyme motions in the catalytic mechanism and recognition. Cyclophilin A is a tractable model system to study using classical simulation methods, because catalysis does not involve bond formation or breakage. We show that the conformational dynamics of active site residues of substrate-bound CypA is inherent in the substrate-free enzyme. CypA interacts with its substrate via conformational selection as the configurations of the substrate changes during catalysis. We also show that, in addition to tight intermolecular hydrophobic interactions between CypA and the substrate, an intricate enzyme-substrate intermolecular hydrogen-bonding network is extremely sensitive to the configuration of the substrate. These enzyme-substrate intermolecular interactions are loosely formed when the substrate is in the reactant and product states and become well formed and reluctant to break when the substrate is in the transition state. Our results clearly suggest coupling among enzyme-substrate intermolecular interactions, the dynamics of the enzyme, and the chemical step. This study provides further insights into the mechanism of peptidyl-prolyl cis/trans isomerases and the general interplay between enzyme conformational dynamics and catalysis. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Schweighofer, Karl J.; Pohorille, Andrew; DeVincenzi, D. (Technical Monitor)
1999-01-01
The 25 amino acids long, transmembrane fragment of the Influenza virus M2 protein forms a homotetrameric channel that transports protons across lipid bilayers. It has been postulated that high efficiency and selectivity of this process is due to gating by four histidine residues that occlude the channel lumen in the closed state. Two mechanisms of gating have been postulated. In one mechanism, the proton is "shuttled" through the gate by attaching to the delta nitrogen atom on the extracellular side of the imidazole ring, followed by the release of the proton attached to the epsilon nitrogen atom on the opposite side. In the second mechanism, the four histidines move away from each other due to electrostatic repulsion upon protonation, thus opening the gate sufficiently that a wire of water molecules can penetrate the gate. Then, protons are transported by "hopping" along the wire. In this paper, both mechanisms are evaluated in a series of molecular dynamics simulations by investigating stability of different protonation states of the channel that are involved in these mechanisms. For the shuttle mechanism, these are states with all epsilon protonated histidines, one biprotonated residue or one histidine protonated in the delta position. For the gate opening mechanism, this is the state in which all four histidines are biprotonated. In addition, a state with two biprotonated histidines is considered. For each system, composed of the protein channel embedded in phospholipid bilayer located between two water lamellae, a molecular dynamics trajectory of approximately 1.3 ns (after equilibration) was obtained. It is found that the states involved in the shuttle mechanism are stable during the simulations. Furthermore, the orientations and dynamics of water molecules near the gate are conducive to proton transfers involved in the shuttle. In contract, the fully biprotonated state, implicated in the gate opening mechanism, is not stable and the channel looses its structural integrity. If only two histidines are biprotonated the channel deforms but remains intact with the gate mostly closed. In summary, the results of this study lend support to the shuttle mechanism but not to the gate opening mechanism of proton gating in M2.
Zou, Yi; Wang, Fang; Wang, Yan; Guo, Wenjie; Zhang, Yihua; Xu, Qiang; Lai, Yisheng
2017-05-05
Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as an attractive target for cancer immunotherapy. To rationalize the detailed interactions between IDO1 and its inhibitors at the atomic level, an integrated computational approach by combining molecular mechanics and quantum mechanics methods was employed in this report. Specifically, the binding modes of 20 inhibitors was initially investigated using the induced fit docking (IFD) protocol, which outperformed other two docking protocols in terms of correctly predicting ligand conformations. Secondly, molecular dynamics (MD) simulations and MM/PBSA free energy calculations were employed to determine the dynamic binding process and crucial residues were confirmed through close contact analysis, hydrogen-bond analysis and binding free energy decomposition calculations. Subsequent quantum mechanics and nonbonding interaction analysis were carried out to provide in-depth explanations on the critical role of those key residues, and Arg231 and 7-propionate of the heme group were major contributors to ligand binding, which lowed a great amount of interaction energy. We anticipate that these findings will be valuable for enzymatic studies and rational drug design. Copyright © 2017. Published by Elsevier Masson SAS.
Organization of the cytokeratin network in an epithelial cell.
Portet, Stéphanie; Arino, Ovide; Vassy, Jany; Schoëvaërt, Damien
2003-08-07
The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters.
Mechanisms and dynamics of protonation and lithiation of ferrocene.
Sharma, Nishant; Ajay, Jayanth K; Venkatasubbaiah, Krishnan; Lourderaj, Upakarasamy
2015-09-14
By elucidating the mechanism of the simplest electrophilic substitution reaction of ferrocene, it was found that the verification of the protonation reaction has been a difficulty. In the work reported here, ab initio chemical dynamics simulations were performed at B3LYP/DZVP level of theory to understand the atomic level mechanisms of protonation and lithiation of ferrocene. Protonation of ferrocene resulted in the agostic and metal-protonated forms. Trajectory calculations revealed that protonation of ferrocene occurs by exo and endo mechanisms, with exo being the major path. H(+) was found to be mobile and hopped from the Cp ring to the metal center and vice versa after the initial attack on ferrocene, with the metal-complex having a shorter lifetime. These results remove the ambiguity surrounding the mechanism, as proposed in earlier experimental and computational studies. Lithiation of ferrocene resulted in the formation of cation-π and metal-lithiated complexes. Similar to protonation, trajectory results revealed that both exo and endo paths were followed, with the exo path being the major one. In addition, lithiated-ferrocene exhibited planetary motion. The major path (exo) followed in the protonation and lithiation of ferrocene is consistent with the observations in earlier experimental studies for other hard electrophiles.
A new ODE tumor growth modeling based on tumor population dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oroji, Amin; Omar, Mohd bin; Yarahmadian, Shantia
2015-10-22
In this paper a new mathematical model for the population of tumor growth treated by radiation is proposed. The cells dynamics population in each state and the dynamics of whole tumor population are studied. Furthermore, a new definition of tumor lifespan is presented. Finally, the effects of two main parameters, treatment parameter (q), and repair mechanism parameter (r) on tumor lifespan are probed, and it is showed that the change in treatment parameter (q) highly affects the tumor lifespan.
Computational fluid mechanics utilizing the variational principle of modeling damping seals
NASA Technical Reports Server (NTRS)
Abernathy, J. M.
1986-01-01
A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.
Aging effects on airflow dynamics and lung function in human bronchioles.
Kim, JongWon; Heise, Rebecca L; Reynolds, Angela M; Pidaparti, Ramana M
2017-01-01
The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies.
Aging effects on airflow dynamics and lung function in human bronchioles
Kim, JongWon; Heise, Rebecca L.; Reynolds, Angela M.; Pidaparti, Ramana M.
2017-01-01
Background and objective The mortality rate for patients requiring mechanical ventilation is about 35% and this rate increases to about 53% for the elderly. In general, with increasing age, the dynamic lung function and respiratory mechanics are compromised, and several experiments are being conducted to estimate these changes and understand the underlying mechanisms to better treat elderly patients. Materials and methods Human tracheobronchial (G1 ~ G9), bronchioles (G10 ~ G22) and alveolar sacs (G23) geometric models were developed based on reported anatomical dimensions for a 50 and an 80-year-old subject. The aged model was developed by altering the geometry and material properties of the model developed for the 50-year-old. Computational simulations using coupled fluid-solid analysis were performed for geometric models of bronchioles and alveolar sacs under mechanical ventilation to estimate the airflow and lung function characteristics. Findings The airway mechanical characteristics decreased with aging, specifically a 38% pressure drop was observed for the 80-year-old as compared to the 50-year-old. The shear stress on airway walls increased with aging and the highest shear stress was observed in the 80-year-old during inhalation. A 50% increase in peak strain was observed for the 80-year-old as compared to the 50-year-old during exhalation. The simulation results indicate that there is a 41% increase in lung compliance and a 35%-50% change in airway mechanical characteristics for the 80-year-old in comparison to the 50-year-old. Overall, the airway mechanical characteristics as well as lung function are compromised due to aging. Conclusion Our study demonstrates and quantifies the effects of aging on the airflow dynamics and lung capacity. These changes in the aging lung are important considerations for mechanical ventilation parameters in elderly patients. Realistic geometry and material properties need to be included in the computational models in future studies. PMID:28846719
Polarization-dependent exciton dynamics in tetracene single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bo; Zhang, Chunfeng, E-mail: cfzhang@nju.edu.cn; Xu, Yanqing
2014-12-28
We conduct polarization-dependent ultrafast spectroscopy to study the dynamics of singlet fission (SF) in tetracene single crystals. The spectrotemporal species for singlet and triplet excitons in transient absorption spectra are found to be strongly dependent on probe polarization. By carefully analyzing the polarization dependence, the signals contributed by different transitions related to singlet excitons have been disentangled, which is further applied to construct the correlation between dynamics of singlet and triplet excitons. The anisotropy of exciton dynamics provides an alternative approach to tackle the long-standing challenge in understanding the mechanism of singlet fission in organic semiconductors.
Molecular Dynamics of Dense Fluids: Simulation-Theory Symbiosis
NASA Astrophysics Data System (ADS)
Yip, Sidney
35 years ago Berni J. Alder showed the Boltzmann-Enskog kinetic theory failed to adequately account for the viscosity of fluids near solid density as determined by molecular dynamics simulation. This work, along with other notable simulation findings, provided great stimulus to the statistical mechanical studies of transport phenomena, particularly in dealing with collective effects in the time correlation functions of liquids. An extended theoretical challenge that remains partially resolved at best is the shear viscosity of supercooled liquids. How can one give a unified explanation of the so-called fragile and strong characteristic temperature behavior, with implications for the dynamics of glass transition? In this tribute on the occasion of his 90th birthday symposium, we recount a recent study where simulation, combined with heuristic (transition-state) and first principles (linear response) theories, identifies the molecular mechanisms governing glassy-state relaxation. Such an interplay between simulation and theory is progress from the early days; instead of simulation challenging theory, now simulation and theory complement each other.
Hysteresis, nucleation and growth phenomena in spin-crossover solids
NASA Astrophysics Data System (ADS)
Ridier, Karl; Molnár, Gábor; Salmon, Lionel; Nicolazzi, William; Bousseksou, Azzedine
2017-12-01
The observation and the study of first-order phase transitions in cooperative spin-crossover (SCO) solids exhibiting hysteresis behaviours are of particular interest and currently constitute a burgeoning area in the field of bistable molecular materials. The understanding and the control of the transition mechanisms (nucleation and growth processes) and their dynamics within the hysteresis region appear to be a general and appealing problem from a fundamental point of view and for technological applications as well. This review reports on the recent progresses and most important findings made on the spatiotemporal dynamics of the spin transition in SCO solids, particularly through the universal nucleation and growth process. Both thermally induced and light-induced spin transitions are discussed. We open up this review to the central question of the evolution of the transition mechanisms and dynamics in SCO nano-objects, which constitute promising systems to reach ultra-fast switching, and the experimental issues inherent to such studies at the micro- and nanometric scale.
NASA Astrophysics Data System (ADS)
Xue, Peng; Fu, Guicui
2017-03-01
The dynamic avalanche has a huge impact on the switching robustness of carrier stored trench bipolar transistor (CSTBT). The purpose of this work is to investigate the CSTBT's dynamic avalanche mechanism during clamped inductive turn-off transient. At first, with a Mitsubishi 600 V/150 A CSTBT and a Infineon 600 V/200 A field stop insulated gate bipolar transistor (FS-IGBT) utilized, the clamped inductive turn-off characteristics are obtained by double pulse test. The unclamped inductive switching (UIS) test is also utilized to identify the CSTBT's clamping voltage under dynamic avalanche condition. After the test data analysis, it is found that the CSTBT's dynamic avalanche is abnormal and can be triggered under much looser condition than the conventional buffer layer IGBT. The comparison between the FS-IGBT and CSTBT's experimental results implies that the CSTBT's abnormal dynamic avalanche phenomenon may be induced by the carrier storage (CS) layer. Based on the semiconductor physics, the electric field distribution and dynamic avalanche generation in the depletion region are analyzed. The analysis confirms that the CS layer is the root cause of the CSTBT's abnormal dynamic avalanche mechanism. Moreover, the CSTBT's negative gate capacitance effect is also investigated to clarify the underlying mechanism of the gate voltage bump observed in the test. In the end, the mixed-mode numerical simulation is utilized to reproduce the CSTBT's dynamic avalanche behavior. The simulation results validate the proposed dynamic avalanche mechanisms.
Mechanism by which DHA inhibits the aggregation of KLVFFA peptides: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Zhou, Hong; Liu, Shengtang; Shao, Qiwen; Ma, Dongfang; Yang, Zaixing; Zhou, Ruhong
2018-03-01
Docosahexaenoic acid (DHA) is one of the omega-3 polyunsaturated fatty acids, which has shown promising applications in lowering Aβ peptide neurotoxicity in vitro by preventing aggregation of Aβ peptides and relieving accumulation of Aβ fibrils. Unfortunately, the underlying molecular mechanisms of how DHA interferes with the aggregation of Aβ peptides remain largely enigmatic. Herein, aggregation behaviors of amyloid-β(Aβ)16-21 peptides (KLVFFA) with or without the presence of a DHA molecule were comparatively studied using extensive all-atom molecular dynamics simulations. We found that DHA could effectively suppress the aggregation of KLVFFA peptides by redirecting peptides to unstructured oligomers. The highly hydrophobic and flexible nature of DHA made it randomly but tightly entangled with Leu-17, Phe-19, and Phe-20 residues to form unstructured but stable complexes. These lower-ordered unstructured oligomers could eventually pass through energy barriers to form ordered β-sheet structures through large conformational fluctuations. This study depicts a microscopic picture for understanding the role and mechanism of DHA in inhibition of aggregation of Aβ peptides, which is generally believed as one of the important pathogenic mechanisms of Alzheimer's disease.
Suppression of friction by mechanical vibrations.
Capozza, Rosario; Vanossi, Andrea; Vezzani, Alessandro; Zapperi, Stefano
2009-08-21
Mechanical vibrations are known to affect frictional sliding and the associated stick-slip patterns causing sometimes a drastic reduction of the friction force. This issue is relevant for applications in nanotribology and to understand earthquake triggering by small dynamic perturbations. We study the dynamics of repulsive particles confined between a horizontally driven top plate and a vertically oscillating bottom plate. Our numerical results show a suppression of the high dissipative stick-slip regime in a well-defined range of frequencies that depends on the vibrating amplitude, the normal applied load, the system inertia and the damping constant. We propose a theoretical explanation of the numerical results and derive a phase diagram indicating the region of parameter space where friction is suppressed. Our results allow to define better strategies for the mechanical control of friction.
Unique and Common Mechanisms of Change across Cognitive and Dynamic Psychotherapies
ERIC Educational Resources Information Center
Gibbons, Mary Beth Connolly; Crits-Christoph, Paul; Barber, Jacques P.; Stirman, Shannon Wiltsey; Gallop, Robert; Goldstein, Lizabeth A.; Temes, Christina M.; Ring-Kurtz, Sarah
2009-01-01
The goal of this article was to examine theoretically important mechanisms of change in psychotherapy outcome across different types of treatment. Specifically, the role of gains in self-understanding, acquisition of compensatory skills, and improvements in views of the self were examined. A pooled study database collected at the University of…
Novel developments and applications of the classical adiabatic dynamics technique
NASA Astrophysics Data System (ADS)
Rosso, Lula
The present work aims to apply and develop modern molecular dynamics techniques based on a novel analysis of the classical adiabatic dynamics approach. In the first part of this thesis, Car-Parrinello ab-initio molecular dynamics, a successful technique based on adiabatic dynamics, is used to study the charge transport mechanism in solid ammonium perchlorate (AP) crystal exposed to an ammonia-rich environment. AP is a solid-state proton conductor composed of NH+4 and ClO-4 units that can undergo a decomposition process at high temperature, leading to its use such as rocket fuel. After computing IR spectra and carefully analysing the dynamics at different temperatures, we found that the charge transport mechanism in the pure crystal is dominated by diffusion of the ammonium ions and that the translational diffusion is strongly coupled to rotational diffusion of the two types of ions present. When the pure ammonium-perchlorate crystal is doped with neutral ammonia, another mechanism comes into play, namely, the Grotthuss proton hopping mechanism via short-lived N2H+7 complexes. In the second part of this thesis, adiabatic dynamics will be used to develop an alternative approach to the calculation of free energy profiles along reaction paths. The new method (AFED) is based on the creation of an adiabatic separation between the reaction coordinate subspace and the remaining degrees of freedom within a molecular dynamics run. This is achieved by associating with the reaction coordinate(s) a high temperature and large mass. These conditions allow the activated process to occur while permitting the remaining degrees of freedom to respond adiabatically. In this limit, by applying a formal multiple time scale Liouville operator factorization, it can be rigorously shown that the free energy profile is obtained directly from the probability distribution of the reaction coordinate subspace and, therefore, no postprocessing of the output data is required. The new method is applied to a variety of model problems and extended to calculate conformational surfaces of small peptides and the chemical potential of a Lennard-Jones liquid. The comparison with established methods shows that the new approach calculates free energy profiles with greater ease and efficiency.
Dynamic Behavior and Optimization of Advanced Armor Ceramics: January-December 2011 Annual Report
2015-03-01
however, under conventional methods of processing. To develop plasticity in ceramic like SiC, new fracture mechanisms and interesting behaviors need...and new fracture mechanisms . These improvements, in turn, could offer the potential for improved ballistic performance. Co-precipitation has been...experiments, the following deformed fragments were recovered for extensive SEM and TEM study. A fracture mechanism map has been constructed in
Dynamics of tunneling ionization using Bohmian mechanics
NASA Astrophysics Data System (ADS)
Douguet, Nicolas; Bartschat, Klaus
2018-01-01
Recent attoclock experiments and theoretical studies regarding the strong-field ionization of atoms by few-cycle infrared pulses revealed features that have attracted much attention. Here we investigate tunneling ionization and the dynamics of the electron probability using Bohmian mechanics. We consider a one-dimensional problem to illustrate the underlying mechanisms of the ionization process. It is revealed that in the major part of the below-the-barrier ionization regime, in an intense and short infrared pulse, the electron does not tunnel through the entire barrier, but rather starts already from the classically forbidden region. Moreover, we highlight the correspondence between the probability of locating the electron at a particular initial position and its asymptotic momentum. Bohmian mechanics also provides a natural definition of mean tunneling time and exit position, taking account of the time dependence of the barrier. Finally, we find that the electron can exit the barrier with significant kinetic energy, thereby corroborating the results of a recent study [N. Camus et al., Phys. Rev. Lett. 119, 023201 (2017), 10.1103/PhysRevLett.119.023201].