Sample records for dynamic mlc leaf

  1. An experimental comparison of conventional two-bank and novel four-bank dynamic MLC tracking.

    PubMed

    Davies, G A; Clowes, P; McQuaid, D; Evans, P M; Webb, S; Poludniowski, G

    2013-03-07

    The AccuLeaf mMLC featuring four multileaf-collimator (MLC) banks has been used for the first time for an experimental comparison of conventional two-bank with novel four-bank dynamic MLC tracking of a two-dimensional sinusoidal respiratory motion. This comparison was performed for a square aperture, and for three conformal treatment apertures from clinical radiotherapy lung cancer patients. The system latency of this prototype tracking system was evaluated and found to be 1.0 s and the frequency at which MLC positions could be updated, 1 Hz, and therefore accurate MLC tracking of irregular patient motion would be difficult with the system in its current form. The MLC leaf velocity required for two-bank-MLC and four-bank-MLC tracking was evaluated for the apertures studied and a substantial decrease was found in the maximum MLC velocity required when four-banks were used for tracking rather than two. A dosimetric comparison of the two techniques was also performed and minimal difference was found between two-bank-MLC and four-bank-MLC tracking. The use of four MLC banks for dynamic MLC tracking is shown to be potentially advantageous for increasing the delivery efficiency compared with two-bank-MLC tracking where difficulties are encountered if large leaf shifts are required to track motion perpendicular to the direction of leaf travel.

  2. SU-E-T-430: Modeling MLC Leaf End in 2D for Sliding Window IMRT and Arc Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, X; Zhu, T

    2014-06-01

    Purpose: To develop a 2D geometric model for MLC accounting for leaf end dose leakage for dynamic IMRT and Rapidarc therapy. Methods: Leaf-end dose leakage is one of the problems for MLC dose calculation and modeling. Dosimetric leaf gap used to model the MLC and to count for leakage in dose calculation, but may not be accurate for smaller leaf gaps. We propose another geometric modeling method to compensate for the MLC round-shape leaf ends dose leakage, and improve the accuracy of dose calculation and dose verification. A triangular function is used to geometrically model the MLC leaf end leakagemore » in the leaf motion direction, and a step function is used in the perpendicular direction. Dose measurements with different leaf gap, different window width, and different window height were conducted, and the results were used to fit the analytical model to get the model parameters. Results: Analytical models have been obtained for stop-and-shoot and dynamic modes for MLC motion. Parameters a=0.4, lw'=5.0 mm for 6X and a=0.54, lw'=4.1 mm for 15x were obtained from the fitting process. The proposed MLC leaf end model improves the dose profile at the two ends of the sliding window opening. This improvement is especially significant for smaller sliding window openings, which are commonly used for highly modulated IMRT plans and arc therapy plans. Conclusion: This work models the MLC round leaf end shape and movement pattern for IMRT dose calculation. The theory, as well as the results in this work provides a useful tool for photon beam IMRT dose calculation and verification.« less

  3. Spatial variation of dosimetric leaf gap and its impact on dose delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaraswamy, Lalith K., E-mail: Lalith.Kumaraswamy@roswellpark.org; Schmitt, Jonathan D.; Bailey, Daniel W.

    Purpose: During dose calculation, the Eclipse treatment planning system (TPS) retracts the multileaf collimator (MLC) leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. Methods: 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicularmore » to MLC motion) to 13.0 cm off axis distance at dmax. The measurements were performed on two Varian linear accelerators, both employing the Millennium 120-leaf MLCs. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. Results: The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3–0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs are 0.32 and 0.65 mm, respectively. Conclusions: The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need to correct the TPS plans, especially those with high modulation (narrow dynamic MLC gap), with 2D variation of DLG.« less

  4. Dynamic tumor tracking using the Elekta Agility MLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, Martin F., E-mail: martin.fast@icr.ac.uk; Nill, Simeon, E-mail: simeon.nill@icr.ac.uk; Bedford, James L.

    2014-11-01

    Purpose: To evaluate the performance of the Elekta Agility multileaf collimator (MLC) for dynamic real-time tumor tracking. Methods: The authors have developed a new control software which interfaces to the Agility MLC to dynamically program the movement of individual leaves, the dynamic leaf guides (DLGs), and the Y collimators (“jaws”) based on the actual target trajectory. A motion platform was used to perform dynamic tracking experiments with sinusoidal trajectories. The actual target positions reported by the motion platform at 20, 30, or 40 Hz were used as shift vectors for the MLC in beams-eye-view. The system latency of the MLCmore » (i.e., the average latency comprising target device reporting latencies and MLC adjustment latency) and the geometric tracking accuracy were extracted from a sequence of MV portal images acquired during irradiation for the following treatment scenarios: leaf-only motion, jaw + leaf motion, and DLG + leaf motion. Results: The portal imager measurements indicated a clear dependence of the system latency on the target position reporting frequency. Deducting the effect of the target frequency, the leaf adjustment latency was measured to be 38 ± 3 ms for a maximum target speed v of 13 mm/s. The jaw + leaf adjustment latency was 53 ± 3 at a similar speed. The system latency at a target position frequency of 30 Hz was in the range of 56–61 ms for the leaves (v ≤ 31 mm/s), 71–78 ms for the jaw + leaf motion (v ≤ 25 mm/s), and 58–72 ms for the DLG + leaf motion (v ≤ 59 mm/s). The tracking accuracy showed a similar dependency on the target position frequency and the maximum target speed. For the leaves, the root-mean-squared error (RMSE) was between 0.6–1.5 mm depending on the maximum target speed. For the jaw + leaf (DLG + leaf) motion, the RMSE was between 0.7–1.5 mm (1.9–3.4 mm). Conclusions: The authors have measured the latency and geometric accuracy of the Agility MLC, facilitating its future use for clinical tracking applications.« less

  5. A quantitative method to the analysis of MLC leaf position and speed based on EPID and EBT3 film for dynamic IMRT treatment with different types of MLC.

    PubMed

    Li, Yinghui; Chen, Lixin; Zhu, Jinhan; Wang, Bin; Liu, Xiaowei

    2017-07-01

    A quantitative method based on the electronic portal imaging system (EPID) and film was developed for MLC position and speed testing; this method was used for three MLC types (Millennium, MLCi, and Agility MLC). To determine the leaf position, a picket fence designed by the dynamic (DMLC) model was used. The full-width half-maximum (FWHM) values of each gap measured by EPID and EBT3 were converted to the gap width using the FWHM versus nominal gap width relationship. The algorithm developed for the picket fence analysis was able to quantify the gap width, the distance between gaps, and each individual leaf position. To determine the leaf speed, a 0.5 × 20 cm 2 MLC-defined sliding gap was applied across a 14 × 20 cm 2 symmetry field. The linacs ran at a fixed-dose rate. The use of different monitor units (MUs) for this test led to different leaf speeds. The effect of leaf transmission was considered in a speed accuracy analysis. The difference between the EPID and film results for the MLC position is less than 0.1 mm. For the three MLC types, twice the standard deviation (2 SD) is provided; 0.2, 0.4, and 0.4 mm for gap widths of three MLC types, and 0.1, 0.2, and 0.2 mm for distances between gaps. The individual leaf positions deviate from the preset positions within 0.1 mm. The variations in the speed profiles for the EPID and EBT3 results are consistent, but the EPID results are slightly better than the film results. Different speeds were measured for each MLC type. For all three MLC types, speed errors increase with increasing speed. The analysis speeds deviate from the preset speeds within approximately 0.01 cm s -1 . This quantitative analysis of MLC position and speed provides an intuitive evaluation for MLC quality assurance (QA). © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. SU-F-T-527: A Novel Dynamic Multileaf Collimator Leaf-Sequencing Algorithm in Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, J; Lin, H; Chow, J

    Purpose: A novel leaf-sequencing algorithm is developed for generating arbitrary beam intensity profiles in discrete levels using dynamic multileaf collimator (MLC). The efficiency of this dynamic MLC leaf-sequencing method was evaluated using external beam treatment plans delivered by intensity modulated radiation therapy technique. Methods: To qualify and validate this algorithm, integral test for the beam segment of MLC generated by the CORVUS treatment planning system was performed with clinical intensity map experiments. The treatment plans were optimized and the fluence maps for all photon beams were determined. This algorithm started with the algebraic expression for the area under the beammore » profile. The coefficients in the expression can be transformed into the specifications for the leaf-setting sequence. The leaf optimization procedure was then applied and analyzed for clinical relevant intensity profiles in cancer treatment. Results: The macrophysical effect of this method can be described by volumetric plan evaluation tools such as dose-volume histograms (DVHs). The DVH results are in good agreement compared to those from the CORVUS treatment planning system. Conclusion: We developed a dynamic MLC method to examine the stability of leaf speed including effects of acceleration and deceleration of leaf motion in order to make sure the stability of leaf speed did not affect the intensity profile generated. It was found that the mechanical requirements were better satisfied using this method. The Project is sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.« less

  7. SU-E-T-646: Quality Assurance of Truebeam Multi-Leaf Collimator Using a MLC QA Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Lu, J; Hong, D

    2015-06-15

    Purpose: To perform a routine quality assurance procedure for Truebeam multi-leaf collimator (MLC) using MLC QA phantom, verify the stability and reliability of MLC during the treatment. Methods: MLC QA phantom is a specialized phantom for MLC quality assurance (QA), and contains five radio-opaque spheres that are embedded in an “L” shape. The phantom was placed isocentrically on the Truebeam treatment couch for the tests. A quality assurance plan was setted up in the Eclipse v10.0, the fields that need to be delivered in order to acquire the necessary images, the MLC shapes can then be obtained by the images.more » The images acquired by the electronic portal imaging device (EPID), and imported into the PIPSpro software for the analysis. The tests were delivered twelve weeks (once a week) to verify consistency of the delivery, and the images are acquired in the same manner each time. Results: For the Leaf position test, the average position error was 0.23mm±0.02mm (range: 0.18mm∼0.25mm). The Leaf width was measured at the isocenter, the average error was 0.06mm±0.02mm (range: 0.02mm∼0.08mm) for the Leaf width test. Multi-Port test showed the dynamic leaf shift error, the average error was 0.28mm±0.03mm (range: 0.2mm∼0.35mm). For the leaf transmission test, the average inter-leaf leakage value was 1.0%±0.17% (range: 0.8%∼1.3%) and the average inter-bank leakage value was 32.6%±2.1% (range: 30.2%∼36.1%). Conclusion: By the test of 12 weeks, the MLC system of the Truebeam is running in a good condition and the MLC system can be steadily and reliably carried out during the treatment. The MLC QA phantom is a useful test tool for the MLC QA.« less

  8. A method for photon beam Monte Carlo multileaf collimator particle transport

    NASA Astrophysics Data System (ADS)

    Siebers, Jeffrey V.; Keall, Paul J.; Kim, Jong Oh; Mohan, Radhe

    2002-09-01

    Monte Carlo (MC) algorithms are recognized as the most accurate methodology for patient dose assessment. For intensity-modulated radiation therapy (IMRT) delivered with dynamic multileaf collimators (DMLCs), accurate dose calculation, even with MC, is challenging. Accurate IMRT MC dose calculations require inclusion of the moving MLC in the MC simulation. Due to its complex geometry, full transport through the MLC can be time consuming. The aim of this work was to develop an MLC model for photon beam MC IMRT dose computations. The basis of the MC MLC model is that the complex MLC geometry can be separated into simple geometric regions, each of which readily lends itself to simplified radiation transport. For photons, only attenuation and first Compton scatter interactions are considered. The amount of attenuation material an individual particle encounters while traversing the entire MLC is determined by adding the individual amounts from each of the simplified geometric regions. Compton scatter is sampled based upon the total thickness traversed. Pair production and electron interactions (scattering and bremsstrahlung) within the MLC are ignored. The MLC model was tested for 6 MV and 18 MV photon beams by comparing it with measurements and MC simulations that incorporate the full physics and geometry for fields blocked by the MLC and with measurements for fields with the maximum possible tongue-and-groove and tongue-or-groove effects, for static test cases and for sliding windows of various widths. The MLC model predicts the field size dependence of the MLC leakage radiation within 0.1% of the open-field dose. The entrance dose and beam hardening behind a closed MLC are predicted within +/-1% or 1 mm. Dose undulations due to differences in inter- and intra-leaf leakage are also correctly predicted. The MC MLC model predicts leaf-edge tongue-and-groove dose effect within +/-1% or 1 mm for 95% of the points compared at 6 MV and 88% of the points compared at 18 MV. The dose through a static leaf tip is also predicted generally within +/-1% or 1 mm. Tests with sliding windows of various widths confirm the accuracy of the MLC model for dynamic delivery and indicate that accounting for a slight leaf position error (0.008 cm for our MLC) will improve the accuracy of the model. The MLC model developed is applicable to both dynamic MLC and segmental MLC IMRT beam delivery and will be useful for patient IMRT dose calculations, pre-treatment verification of IMRT delivery and IMRT portal dose transmission dosimetry.

  9. Dynamic-MLC leaf control utilizing on-flight intensity calculations: a robust method for real-time IMRT delivery over moving rigid targets.

    PubMed

    McMahon, Ryan; Papiez, Lech; Rangaraj, Dharanipathy

    2007-08-01

    An algorithm is presented that allows for the control of multileaf collimation (MLC) leaves based entirely on real-time calculations of the intensity delivered over the target. The algorithm is capable of efficiently correcting generalized delivery errors without requiring the interruption of delivery (self-correcting trajectories), where a generalized delivery error represents anything that causes a discrepancy between the delivered and intended intensity profiles. The intensity actually delivered over the target is continually compared to its intended value. For each pair of leaves, these comparisons are used to guide the control of the following leaf and keep this discrepancy below a user-specified value. To demonstrate the basic principles of the algorithm, results of corrected delivery are shown for a leading leaf positional error during dynamic-MLC (DMLC) IMRT delivery over a rigid moving target. It is then shown that, with slight modifications, the algorithm can be used to track moving targets in real time. The primary results of this article indicate that the algorithm is capable of accurately delivering DMLC IMRT over a rigid moving target whose motion is (1) completely unknown prior to delivery and (2) not faster than the maximum MLC leaf velocity over extended periods of time. These capabilities are demonstrated for clinically derived intensity profiles and actual tumor motion data, including situations when the target moves in some instances faster than the maximum admissible MLC leaf velocity. The results show that using the algorithm while calculating the delivered intensity every 50 ms will provide a good level of accuracy when delivering IMRT over a rigid moving target translating along the direction of MLC leaf travel. When the maximum velocities of the MLC leaves and target were 4 and 4.2 cm/s, respectively, the resulting error in the two intensity profiles used was 0.1 +/- 3.1% and -0.5 +/- 2.8% relative to the maximum of the intensity profiles. For the same target motion, the error was shown to increase rapidly as (1) the maximum MLC leaf velocity was reduced below 75% of the maximum target velocity and (2) the system response time was increased.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, J

    Purpose: The aim of this work is to study the dosimetric impact of leaf interdigitation in prostate cancer dynamic IMRT treatment planning. Methods: Fifteen previously treated prostate cancer patients were replanned for dynamic IMRT (dMLC) with and without leaf interdigitation using Monaco 3.3 TPS on the Elekta Synergy linear accelerator. The prescription dose of PTV was 70Gy/35 fractions. Various dosimetric variables, such as PTV coverage, OAR sparing, delivery efficiency and optimization time, were evaluated for each plan. Results: Interdigitation did not improve the coverage, HI and CI for PTV. Regarding OARs, sparing was equivalent with and without interdigitation. Interdigitation shownmore » an increase in MUs and segments. It was worth noting that leaf interdigitation saved the optimization time. Conclusion: This study shows that leaf interdigitation does not improve plan quality when performing dMLC treatment plan for prostate cancer. However, it influences delivery efficiency and optimization time. Interdigitation may gain efficiency for dosimetrist when designing the prostate cancer dMLC plans.« less

  11. Quantitative measurement of MLC leaf displacements using an electronic portal image device

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Xing, Lei

    2004-04-01

    The success of an IMRT treatment relies on the positioning accuracy of the MLC (multileaf collimator) leaves for both step-and-shoot and dynamic deliveries. In practice, however, there exists no effective and quantitative means for routine MLC QA and this has become one of the bottleneck problems in IMRT implementation. In this work we present an electronic portal image device (EPID) based method for fast and accurate measurement of MLC leaf positions at arbitrary locations within the 40 cm × 40 cm radiation field. The new technique utilizes the fact that the integral signal in a small region of interest (ROI) is a sensitive and reliable indicator of the leaf displacement. In this approach, the integral signal at a ROI was expressed as a weighted sum of the contributions from the displacements of the leaf above the point and the adjacent leaves. The weighting factors or linear coefficients of the system equations were determined by fitting the integral signal data for a group of pre-designed MLC leaf sequences to the known leaf displacements that were intentionally introduced during the creation of the leaf sequences. Once the calibration is done, the system can be used for routine MLC leaf positioning QA to detect possible leaf errors. A series of tests was carried out to examine the functionality and accuracy of the technique. Our results show that the proposed technique is potentially superior to the conventional edge-detecting approach in two aspects: (i) it deals with the problem in a systematic approach and allows us to take into account the influence of the adjacent MLC leaves effectively; and (ii) it may improve the signal-to-noise ratio and is thus capable of quantitatively measuring extremely small leaf positional displacements. Our results indicate that the technique can detect a leaf positional error as small as 0.1 mm at an arbitrary point within the field in the absence of EPID set-up error and 0.3 mm when the uncertainty is considered. Given its simplicity, efficiency and accuracy, we believe that the technique is ideally suitable for routine MLC leaf positioning QA. This work was presented at the 45th Annual Meeting of American Society of Therapeutic Radiology and Oncology (ASTRO), Salt Lake City, UT, 2003. A US Patent is pending (application no. 10/197,232).

  12. SU-E-T-01: 2-D Characterization of DLG Among All MLC Leaf Pairs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaraswamy, L; Xu, Z; Podgorsak, M

    Purpose: The aim of this study is to evaluate the variation of dosimetric leaf-gap (DLG) along the travel path of each MLC leaf pair. This study evaluates whether the spatial variations in DLG could cause dose differences between TPS-calculated and measured dose. Methods: The 6MV DLG values were measured for all leaf pairs in the direction of leaf motion using a 2-D diode array and 0.6cc ion chamber. These measurements were performed on two Varian Linacs, employing the Millennium 120-leaf MLC and a 2-D-DLG variation map was created via in-house software. Several test plans were created with sweeping MLC fieldsmore » using constant gaps from 2mm to 10mm and corrected for 2-D variation utilizing in-house software. Measurements were performed utilizing the MapCHECK at 5.0cm depth for plans with and without the 2-D DLG correction and compared to the TPS calculated dose via gamma analysis (3%/3mm). Results: The measured DLGs for the middle 40 MLC leaf pairs (0.5cm width) were very similar along the central superior-inferior axis, with maximum variation of 0.2mm. The outer 20 MLC leaf pairs (1.0cm width) have DLG values from 0.32mm (mean) to 0.65mm (maximum) lower than the central leaf-pair, depending on off-axis distance. Gamma pass rates for the 2mm, 4mm, and 6mm sweep plans increased by 23.2%, 28.7%, and 26.0% respectively using the 2-D-DLG correction. The most improved dose points occur in areas modulated by the 1.0cm leaf-pairs. The gamma pass rate for the 10mm sweep plan increased by only 7.7%, indicating that the 2D variation becomes less significant for dynamic plans with larger MLC gaps. Conclusion: Fluences residing significantly off-axis with narrow sweeping gaps may exhibit significant variations from planned dose due to large differences between the true DLG exhibited by the 1.0cm leaf-pairs versus the constant DLG value utilized by the TPS for dose calculation.« less

  13. Monte Carlo modeling and simulations of the High Definition (HD120) micro MLC and validation against measurements for a 6 MV beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borges, C.; Zarza-Moreno, M.; Heath, E.

    2012-01-15

    Purpose: The most recent Varian micro multileaf collimator (MLC), the High Definition (HD120) MLC, was modeled using the BEAMNRC Monte Carlo code. This model was incorporated into a Varian medical linear accelerator, for a 6 MV beam, in static and dynamic mode. The model was validated by comparing simulated profiles with measurements. Methods: The Varian Trilogy (2300C/D) accelerator model was accurately implemented using the state-of-the-art Monte Carlo simulation program BEAMNRC and validated against off-axis and depth dose profiles measured using ionization chambers, by adjusting the energy and the full width at half maximum (FWHM) of the initial electron beam. Themore » HD120 MLC was modeled by developing a new BEAMNRC component module (CM), designated HDMLC, adapting the available DYNVMLC CM and incorporating the specific characteristics of this new micro MLC. The leaf dimensions were provided by the manufacturer. The geometry was visualized by tracing particles through the CM and recording their position when a leaf boundary is crossed. The leaf material density and abutting air gap between leaves were adjusted in order to obtain a good agreement between the simulated leakage profiles and EBT2 film measurements performed in a solid water phantom. To validate the HDMLC implementation, additional MLC static patterns were also simulated and compared to additional measurements. Furthermore, the ability to simulate dynamic MLC fields was implemented in the HDMLC CM. The simulation results of these fields were compared with EBT2 film measurements performed in a solid water phantom. Results: Overall, the discrepancies, with and without MLC, between the opened field simulations and the measurements using ionization chambers in a water phantom, for the off-axis profiles are below 2% and in depth-dose profiles are below 2% after the maximum dose depth and below 4% in the build-up region. On the conditions of these simulations, this tungsten-based MLC has a density of 18.7 g cm{sup -3} and an overall leakage of about 1.1 {+-} 0.03%. The discrepancies between the film measured and simulated closed and blocked fields are below 2% and 8%, respectively. Other measurements were performed for alternated leaf patterns and the agreement is satisfactory (to within 4%). The dynamic mode for this MLC was implemented and the discrepancies between film measurements and simulations are within 4%. Conclusions: The Varian Trilogy (2300 C/D) linear accelerator including the HD120 MLC was successfully modeled and simulated using the Monte Carlo BEAMNRC code by developing an independent CM, the HDMLC CM, either in static and dynamic modes.« less

  14. Experimental investigation of a moving averaging algorithm for motion perpendicular to the leaf travel direction in dynamic MLC target tracking.

    PubMed

    Yoon, Jai-Woong; Sawant, Amit; Suh, Yelin; Cho, Byung-Chul; Suh, Tae-Suk; Keall, Paul

    2011-07-01

    In dynamic multileaf collimator (MLC) motion tracking with complex intensity-modulated radiation therapy (IMRT) fields, target motion perpendicular to the MLC leaf travel direction can cause beam holds, which increase beam delivery time by up to a factor of 4. As a means to balance delivery efficiency and accuracy, a moving average algorithm was incorporated into a dynamic MLC motion tracking system (i.e., moving average tracking) to account for target motion perpendicular to the MLC leaf travel direction. The experimental investigation of the moving average algorithm compared with real-time tracking and no compensation beam delivery is described. The properties of the moving average algorithm were measured and compared with those of real-time tracking (dynamic MLC motion tracking accounting for both target motion parallel and perpendicular to the leaf travel direction) and no compensation beam delivery. The algorithm was investigated using a synthetic motion trace with a baseline drift and four patient-measured 3D tumor motion traces representing regular and irregular motions with varying baseline drifts. Each motion trace was reproduced by a moving platform. The delivery efficiency, geometric accuracy, and dosimetric accuracy were evaluated for conformal, step-and-shoot IMRT, and dynamic sliding window IMRT treatment plans using the synthetic and patient motion traces. The dosimetric accuracy was quantified via a tgamma-test with a 3%/3 mm criterion. The delivery efficiency ranged from 89 to 100% for moving average tracking, 26%-100% for real-time tracking, and 100% (by definition) for no compensation. The root-mean-square geometric error ranged from 3.2 to 4.0 mm for moving average tracking, 0.7-1.1 mm for real-time tracking, and 3.7-7.2 mm for no compensation. The percentage of dosimetric points failing the gamma-test ranged from 4 to 30% for moving average tracking, 0%-23% for real-time tracking, and 10%-47% for no compensation. The delivery efficiency of moving average tracking was up to four times higher than that of real-time tracking and approached the efficiency of no compensation for all cases. The geometric accuracy and dosimetric accuracy of the moving average algorithm was between real-time tracking and no compensation, approximately half the percentage of dosimetric points failing the gamma-test compared with no compensation.

  15. Poster — Thur Eve — 19: Performance assessment of a 160-leaf beam collimation system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, E. S. M.; La Russa, D. J.; Vandervoort, E.

    2014-08-15

    In this study, the performance of the new beam collimation system with 160 leaves, each with a 5 mm leaf width projected at isocenter, is evaluated in terms of positional accuracy and plan/delivery quality. Positional accuracy was evaluated using a set of static and dynamic MLC/jaw delivery patterns at different gantry angles, dose rates, and MLC/jaw speeds. The impact on IMRT plan quality was assessed by comparing against a previous generation collimation system using the same optimization parameters, while delivery quality was quantified using a combination of patient-specific QA measurements with ion chambers, film, and a bi-planar diode array. Positionalmore » accuracy for four separate units was comparable. The field size accuracy, junction width, and total displacement over 16 cm leaf travel are 0.3 ± 0.2 mm, 0.4 ± 0.3 mm, and 0.5 ± 0.2 mm, respectively. The typical leaf minor offset is 0.05 ± 0.04 mm, and MLC hysteresis effects are 0.2 ± 0.1 mm over 16 cm travel. The dynamic output is linear with MU and MLC/jaw speed, and is within 0.7 ± 0.3 % of the planning system value. Plan quality is significantly improved both in terms of target coverage and OAR sparing due, in part, to the larger allowable MLC and jaw speeds. γ-index pass rates for the patient-specific QA measurements exceeded 97% using criteria of 2%/2 mm. In conclusion, the performance of the Agility system is consistent among four separate installations, and is superior to its previous generations of collimation systems.« less

  16. Commissioning of the tongue-and-groove modelling in treatment planning systems: from static fields to VMAT treatments

    NASA Astrophysics Data System (ADS)

    Hernandez, Victor; Vera-Sánchez, Juan Antonio; Vieillevigne, Laure; Saez, Jordi

    2017-08-01

    Adequate modelling of the multi-leaf collimator (MLC) by treatment planning systems (TPS) is essential for accurate dose calculations in intensity-modulated radiation-therapy. For this reason modern TPSs incorporate MLC characteristics such as the leaf end curvature, MLC transmission and the tongue-and-groove. However, the modelling of the tongue-and-groove is often neglected during TPS commissioning and it is not known how accurate it is. This study evaluates the dosimetric consequences of the tongue-and-groove effect for two different MLC models using both film dosimetry and ionisation chambers. A set of comprehensive tests are presented that evaluate the ability of TPSs to accurately model this effect in (a) static fields, (b) sliding window beams and (c) VMAT arcs. The tests proposed are useful for the commissioning of TPSs and for the validation of major upgrades. With the ECLIPSE TPS, relevant differences were found between calculations and measurements for beams with dynamic MLCs in the presence of the TG effect, especially for the High Definition MLC, small gap sizes and the 1 mm calculation grid. For this combination, dose differences as high as 10% and 7% were obtained for dynamic MLC gaps of 5 mm and 10 mm, respectively. These differences indicate inadequate modelling of the tongue-and-groove effect, which might not be identified without the proposed tests. In particular, the TPS tended to underestimate the calculated dose, which may require tuning of other configuration parameters in the TPS (such as the dosimetric leaf gap) in order to maximise the agreement between calculations and measurements in clinical plans. In conclusion, a need for better modelling of the MLC by TPSs is demonstrated, one of the relevant aspects being the tongue-and-groove effect. This would improve the accuracy of TPS calculations, especially for plans using small MLC gaps, such as plans with small target volumes or high complexities. Improved modelling of the MLC would also reduce the need for tuning parameters in the TPS, facilitating a more comprehensive configuration and commissioning of TPSs.

  17. Validation of Dosimetric Leaf Gap (DLG) prior to its implementation in Treatment Planning System (TPS): TrueBeam™ millennium 120 leaf MLC.

    PubMed

    Shende, Ravindra; Patel, Ganesh

    2017-01-01

    Objective of present study is to determine optimum value of DLG and its validation prior to being incorporated in TPS for Varian TrueBeam™ millennium 120 leaves MLC. Partial transmission through the rounded leaf ends of the Multi Leaf Collimator (MLC) causes a conflict between the edges of the light field and radiation field. Parameter account for this partial transmission is called Dosimetric Leaf Gap (DLG). The complex high precession technique, such as Intensity Modulated Radiation Therapy (IMRT), entails the modeling of optimum value of DLG inside Eclipse Treatment Planning System (TPS) for precise dose calculation. Distinct synchronized uniformed extension of sweeping dynamic MLC leaf gap fields created by Varian MLC shaper software were use to determine DLG. DLG measurements performed with both 0.13 cc semi-flex ionization chamber and 2D-Array I-Matrix were used to validate the DLG; similarly, values of DLG from TPS were estimated from predicted dose. Similar mathematical approaches were employed to determine DLG from delivered and TPS predicted dose. DLG determined from delivered dose measured with both ionization chamber (DLG Ion ) and I-Matrix (DLG I-Matrix ) compared with DLG estimate from TPS predicted dose (DLG TPS ). Measurements were carried out for all available 6MV, 10MV, 15MV, 6MVFFF and 10MVFFF beam energies. Maximum and minimum DLG deviation between measured and TPS calculated DLG was found to be 0.2 mm and 0.1 mm, respectively. Both of the measured DLGs (DLG Ion and DLG I-Matrix ) were found to be in a very good agreement with estimated DLG from TPS (DLG TPS ). Proposed method proved to be helpful in verifying and validating the DLG value prior to its clinical implementation in TPS.

  18. TH-AB-BRA-01: A Novel Doubly-Focused Multileaf Collimator Design for MR-Guided Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, H; Mutic, S; Green, O

    2016-06-15

    Purpose: To describe the physical and dosimetric properties of a novel double-stack multileaf collimator (MLC). Methods: One of the compromises made in the MLC design has been to employ linear-motion singly-divergent shapes. Because the MLC leading edge moves linearly, it is rounded to provide a consistent, albeit compromised penumbra. The MLC employed in the new linac-based MR-IGRT unit is designed to be doubly focused in that each leaf moves in an arc centered at the source, and the sides of the leaves are machined such that they lie parallel to a line between the leaf edge and the source. Themore » curvature of the MLC keeps motors and encoders in lower magnetic field. However, high spatial-resolution leaves are difficult to manufacture to sufficiently tight tolerances and difficult to move due to restricted space on the gantry. Wider leaves alleviate this problem with less moving parts but the coarse resolution disallows treating very small lesions. This compromise has been overcome by splitting the MLC leaf bank into two sets, stacked one upon the other and offset half of a leaf width. The dosimetry has been simulated using Monte-Carlo and a 6 MV linac in a 0.35 T magnetic field. Results: The combined MLC leaf set has a spatial resolution of effectively half of the leaf width, 4mm here. The dosimetry resolution and conformality are consistent with 4mm wide MLC assisted by inverse fluence modulation. Also, because each leaf junction is backed up by the stacked leaf that lies over the junction, the problem of tongue-and-groove dosimetry has been greatly reduced. The novel MLC design allows the use of more powerful leaf motors than would be otherwise possible if a single MLC bank is employed. Conclusions: The stacked MLC will provide highly conformal dose distributions suitable for stereotactic radiation therapy of small lesions. The research was funded by ViewRay, Inc.« less

  19. SU-F-T-313: Clinical Results of a New Customer Acceptance Test for Elekta VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rusk, B; Fontenot, J

    Purpose: To report the results of a customer acceptance test (CAT) for VMAT treatments for two matched Elekta linear accelerators. Methods: The CAT tests were performed on two clinically matched Elekta linear accelerators equipped with a 160-leaf MLC. Functional tests included performance checks of the control system during dynamic movements of the diaphragms, MLC, and gantry. Dosimetric tests included MLC picket fence tests at static and variable dose rates and a diaphragm alignment test, all performed using the on-board EPID. Additionally, beam symmetry during arc delivery was measured at the four cardinal angles for high and low dose rate modesmore » using a 2D detector array. Results of the dosimetric tests were analyzed using the VMAT CAT analysis tool. Results: Linear accelerator 1 (LN1) met all stated CAT tolerances. Linear accelerator 2 (LN2) passed the geometric, beam symmetry, and MLC position error tests but failed the relative dose average test for the diaphragm abutment and all three picket fence fields. Though peak doses in the abutment regions were consistent, the average dose was below the stated tolerance corresponding to a leaf junction that was too narrow. Despite this, no significant differences in patient specific VMAT quality assurance measured were observed between the accelerators and both passed monthly MLC quality assurance performed with the Hancock test. Conclusion: Results from the CAT showed LN2 with relative dose averages in the abutment regions of the diaphragm and MLC tests outside the tolerances resulting from differences in leaf gap distances. Tolerances of the dose average tests from the CAT may be small enough to detect MLC errors which do not significantly affect patient QA or the routine MLC tests.« less

  20. The dosimetric impact of inversely optimized arc radiotherapy plan modulation for real-time dynamic MLC tracking delivery.

    PubMed

    Falk, Marianne; Larsson, Tobias; Keall, Paul; Chul Cho, Byung; Aznar, Marianne; Korreman, Stine; Poulsen, Per; Munck Af Rosenschold, Per

    2012-03-01

    Real-time dynamic multileaf collimator (MLC) tracking for management of intrafraction tumor motion can be challenging for highly modulated beams, as the leaves need to travel far to adjust for target motion perpendicular to the leaf travel direction. The plan modulation can be reduced by using a leaf position constraint (LPC) that reduces the difference in the position of adjacent MLC leaves in the plan. The purpose of this study was to investigate the impact of the LPC on the quality of inversely optimized arc radiotherapy plans and the effect of the MLC motion pattern on the dosimetric accuracy of MLC tracking delivery. Specifically, the possibility of predicting the accuracy of MLC tracking delivery based on the plan modulation was investigated. Inversely optimized arc radiotherapy plans were created on CT-data of three lung cancer patients. For each case, five plans with a single 358° arc were generated with LPC priorities of 0 (no LPC), 0.25, 0.5, 0.75, and 1 (highest possible LPC), respectively. All the plans had a prescribed dose of 2 Gy × 30, used 6 MV, a maximum dose rate of 600 MU/min and a collimator angle of 45° or 315°. To quantify the plan modulation, an average adjacent leaf distance (ALD) was calculated by averaging the mean adjacent leaf distance for each control point. The linear relationship between the plan quality [i.e., the calculated dose distributions and the number of monitor units (MU)] and the LPC was investigated, and the linear regression coefficient as well as a two tailed confidence level of 95% was used in the evaluation. The effect of the plan modulation on the performance of MLC tracking was tested by delivering the plans to a cylindrical diode array phantom moving with sinusoidal motion in the superior-inferior direction with a peak-to-peak displacement of 2 cm and a cycle time of 6 s. The delivery was adjusted to the target motion using MLC tracking, guided in real-time by an infrared optical system. The dosimetric results were evaluated using gamma index evaluation with static target measurements as reference. The plan quality parameters did not depend significantly on the LPC (p ≥ 0.066), whereas the ALD depended significantly on the LPC (p < 0.001). The gamma index failure rate depended significantly on the ALD, weighted to the percentage of the beam delivered in each control point of the plan (ALD(w)) when MLC tracking was used (p < 0.001), but not for delivery without MLC tracking (p ≥ 0.342). The gamma index failure rate with the criteria of 2% and 2 mm was decreased from > 33.9% without MLC tracking to <31.4% (LPC 0) and <2.2% (LPC 1) with MLC tracking. The results indicate that the dosimetric robustness of MLC tracking delivery of an inversely optimized arc radiotherapy plan can be improved by incorporating leaf position constraints in the objective function without otherwise affecting the plan quality. The dosimetric robustness may be estimated prior to delivery by evaluating the ALD(w) of the plan.

  1. Real-time tracking of tumor motions and deformations along the leaf travel direction with the aid of a synchronized dynamic MLC leaf sequencer.

    PubMed

    Tacke, Martin; Nill, Simeon; Oelfke, Uwe

    2007-11-21

    Advanced radiotherapeutical techniques like intensity-modulated radiation therapy (IMRT) are based on an accurate knowledge of the location of the radiation target. An accurate dose delivery, therefore, requires a method to account for the inter- and intrafractional target motion and the target deformation occurring during the course of treatment. A method to compensate in real time for changes in the position and shape of the target is the use of a dynamic multileaf collimator (MLC) technique which can be devised to automatically arrange the treatment field according to real-time image information. So far, various approaches proposed for leaf sequencers have had to rely on a priori known target motion data and have aimed to optimize the overall treatment time. Since for a real-time dose delivery the target motion is not known a priori, the velocity range of the leading leaves is restricted by a safety margin to c x v(max) while the following leaves can travel with an additional maximum speed to compensate for the respective target movements. Another aspect to be considered is the tongue and groove effect. A uniform radiation field can only be achieved if the leaf movements are synchronized. The method presented in this note is the first to combine a synchronizing sequencer and real-time tracking with a dynamic MLC. The newly developed algorithm is capable of online optimizing the leaf velocities by minimizing the overall treatment time while at the same time it synchronizes the leaf trajectories in order to avoid the tongue and groove effect. The simultaneous synchronization is performed with the help of an online-calculated mid-time leaf trajectory which is common for all leaf pairs and which takes into account the real-time target motion and deformation information.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tien, C; Brewer, M; Studenski, M

    Purpose: Dynamic-jaw tracking maximizes the area blocked by both jaw and MLC in RapidArc. We developed a method to quantify jaw tracking. Methods: An Eclipse Scripting API (ESAPI) was used to export beam parameters for each arc’s control points. The specific beam parameters extracted were: gantry angle, control point number, meterset, x-jaw positions, y-jaw positions, MLC bank-number, MLC leaf-number, and MLC leaf-position. Each arc contained 178 control points with 120 MLC positions. MATLAB routines were written to process these parameters in order to calculate both the beam aperture (unblocked) size for each control point. An average aperture size was weightedmore » by meterset. Jaw factor was defined as the ratio between dynamic-jaw to static-jaw aperture size. Jaw factor was determined for forty retrospectively replanned patients treated with static-jaw delivery sites including lung, brain, prostate, H&N, rectum, and bladder. Results: Most patients had multiple arcs and reduced-field boosts, resulting in 151 fields. Of these, the lowest (0.4722) and highest (0.9622) jaw factor was observed in prostate and rectal cases, respectively. The median jaw factor was 0.7917 meaning there is the potential unincreased blocking by 20%. Clinically, the dynamic-jaw tracking represents an area surrounding the target which would receive MLC-only leakage transmission of 1.68% versus 0.1% with jaws. Jaw-tracking was more pronounced at areas farther from the target. In prostate patients, the rectum and bladder had 5.5% and 6.3% lower mean dose, respectively; the structures closer to the prostate such as the rectum and bladder both had 1.4% lower mean dose. Conclusion: A custom ESAPI script was coupled with a MATLAB routine in order to extract beam parameters from static-jaw plans and their replanned dynamic-jaw deliveries. The effects were quantified using jaw factor which is the ratio between the meterset weighted aperture size for dynamic-jaw fields versus static-jaw fields.« less

  3. Poster - Thur Eve - 10: Long term stability of VMAT quality assurance parameters using an EPID.

    PubMed

    Pekar, J; Diamond, K R

    2012-07-01

    The rapidly growing use of volumetric modulated arc therapy (VMAT) treatments in radiation therapy calls for a quantitative, automated, and reliable quality assurance (QA) procedure that can be used routinely in the clinical setting. In this work, we present a series VMAT QA procedures used to assess dynamic multi-leaf collimator (MLC) positional accuracy, variable dose-rate accuracy, and MLC leaf speed accuracy. The QA procedures were performed using amorphous silicon electronic portal imaging devices (EPID) to determine the long term stability of the measured parameters on two Varian linear accelerators. The measurements were repeated weekly on both linear accelerators for a period of three months and the EPID images were analyzed using custom Matlab software. The results of the picket fence tests indicate that MLC leaf positions can be identified to within 0.11 mm and 0.15 mm for static gantry delivery and VMAT delivery respectively. In addition, the dose-rate, gantry speed and MLC leaf speed tests both show very good stability over the measurement period. The measurements thus far, suggest that a number of the dosimetry tests may be suitable for quarterly QA for Varian iX and Trilogy linacs. However, additional measurements are required to confirm the frequency with which each test is required for safe and reliable VMAT delivery at our centre. © 2012 American Association of Physicists in Medicine.

  4. SU-G-TeP4-07: Automatic EPID-Based 2D Measurement of MLC Leaf Offset as a Quality Control Tool

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ritter, T; Moran, J; Schultz, B

    Purpose: The MLC dosimetric leaf gap (DLG) and transmission are measured parameters which impact the dosimetric accuracy of IMRT and VMAT plans. This investigation aims to develop an efficient and accurate routine constancy check of the physical DLG in two dimensions. Methods: The manufacturer’s recommended DLG measurement method was modified by using 5 fields instead of 11 and by utilizing the Electronic Portal Imaging Device (EPID). Validations were accomplished using an ion chamber (IC) in solid water and a 2D IC array. EPID data was collected for 6 months on multiple TrueBeam linacs using both Millennium and HD MLCs atmore » 5 different clinics in an international consortium. Matlab code was written to automatically analyze the images and calculate the 2D results. Sensitivity was investigated by introducing deliberate leaf position errors. MLC calibration and initialization history was recorded to allow quantification of their impact. Results were analyzed using statistical process control (SPC). Results: The EPID method took approximately 5 minutes. Due to detector response, the EPID measured DLG and transmission differed from the IC values but were reproducible and consistent with changes measured using the ICs. For the Millennium MLC, the EPID measured DLG and transmission were both consistently lower than IC results. The EPID method was implemented as leaf offset and transmission constancy tests (LOC and TC). Based on 6 months of measurements, the initial leaf-specific action thresholds for changes from baseline were set to 0.1 mm. Upper and lower control limits for variation were developed for each machine. Conclusion: Leaf offset and transmission constancy tests were implemented on Varian HD and Millennium MLCs using an EPID and found to be efficient and accurate. The test is effective for monitoring MLC performance using dynamic delivery and performing process control on the DLG in 2D, thus enhancing dosimetric accuracy. This work was supported by a grant from Varian Medical Systems.« less

  5. [Investigation of Elekta linac characteristics for VMAT].

    PubMed

    Luo, Guangwen; Zhang, Kunyi

    2012-01-01

    The aim of this study is to investigate the characteristics of Elekta delivery system for volumetric modulated arc therapy (VMAT). Five VMAT plans were delivered in service mode and dose rates, and speed of gantry and MLC leaves were analyzed by log files. Results showed that dose rates varied between 6 dose rates. Gantry and MLC leaf speed dynamically varied during delivery. The technique of VMAT requires linac to dynamically control more parameters, and these key dynamic variables during VMAT delivery can be checked by log files. Quality assurance procedure should be carried out for VMAT related parameter.

  6. SU-E-T-425: Spherical Dose Distributions for Radiosurgery Using a Standardized MLC Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popple, R; Brezovich, I; Wu, X

    2014-06-01

    Purpose: To investigate a standardized MLC treatment plan to generate small spherical dose distributions. Methods: The static virtual cone plan comprised six table positions with clockwise and counterclockwise arcs having collimator angles 45 and 135 degrees, respectively, at each position. The central two leaves of a 2.5 mm leaf width MLC were set to a constant gap. Control points were weighted proportional to the sine of the gantry angle. Plans were created for the 10 MV flattening-filter-free beam of a TrueBeam STx (Varian Medical Systems) with gaps of 1, 1.5, 2, and 3 mm and were delivered to a phantommore » containing radiochromic film. Dose was calculated using the Eclipse AAA (Varian Medical Systems). A dynamic plan in which the table and gantry moved simultaneously with 1.5 mm gap was also created and delivered using the TrueBeam developer mode. Results: The full-width-half-max (FWHM) varied with leaf gap, ranging from 5.2 to 6.2 mm. Calculated FWHM was smaller than measured by 0.7 mm for the 1 mm gap and ≤ 0.4 mm for the larger gaps. The measured-to-calculated dose ratio was 0.93, 0.96, 1.01, and 0.99 for 1 mm, 1.5 mm, 2 mm, and 3 mm gaps, respectively. The dynamic results were the same as the static. The position deviations between the phantom target position and the center of the dose distribution were < 0.4 mm. Conclusion: The virtual cone can deliver spherical dose distributions suitable for radio surgery of small targets such as the trigeminal nerve. The Eclipse AAA accurately calculates the expected dose, particularly for leaf gap ≥ 1.5 mm. The measured dose distribution is slightly larger than the calculation, which is likely due to systematic leaf position error, isocenter variation due to gantry sag and table eccentricity, and inaccuracy in MLC leaf end modeling.« less

  7. SU-E-T-444: Gravity Effect On Maximum Leaf Speed in Dynamic IMRT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olasolo, J; Pellejero, S; Gracia, M

    Purpose: A leaf sequencing algorithm has been recently developed in our department. Our purpose is to utilize this algorithm to reduce treatment time by studying the feasibility of using several maximum leaf speeds depending on gantry angle and leaf thickness (0.5 or 1 cm at isocenter). To do so, the gravity effect on MLC performance has been examined by means of analysing the dynalog files. Methods: Leaf position errors has been ascertained according to gantry angle and leaf speed in MLC Millenium120 (Varian). In order to do this, the following test has been designed: all leaves move in synchrony, withmore » same speed and 1 cm gap between opposite leaves. This test is implemented for 18 different speeds: 0.25-0.5-0.75-1-1.25-1.5-1.75-2-2.1-2.2-2.3-2.4-2.5-2.6-2.7-2.8-2.9-3.0 cm/s and 8 gantry angles: 0-45-90-135-180-225-270-315. Collimator angle is 2 degrees in all cases since it is the most usual one in IMRT treatments in our department. Dynamic tolerance is 2 mm. Dynalogs files of 10 repetitions of the test are analysed with a Mathlab in-house developed software and RMS error and 95th percentiles are calculated. Varian recommends 2.5 cm/s as the maximum leaf speed for its segmentation algorithm. In our case, we accept this speed in the most restrictive situation: gantry angle 270 and 1 cm leaf thickness. Maximum speeds for the rest of the cases are calculated by keeping the difference between 95th percentile and dynamic tolerance. In this way, beam hold-off probability does not increase. Results: Maximum speeds every 45 degrees of gantry rotation have been calculated for both leaf thickness. These results are 2.9-2.9-2.9-2.9-2.7-2.6-2.6-2.7 cm/s for 0.5 cm leaf thickness and 2.7-2.7-2.7-2.7-2.6-2.5-2.5-2.6 cm/s for 1 cm leaf thickness. Conclusion: Gravity effect on MLC positioning has been studied. Maximum leaf speed according to leaf thickness and gantry angle have been calculated which reduces treatment time.« less

  8. A clinically observed discrepancy between image-based and log-based MLC positions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, Brian, E-mail: bpn2p@virginia.edu; Ahmed, Mahmoud; Kathuria, Kunal

    2016-06-15

    Purpose: To present a clinical case in which real-time intratreatment imaging identified an multileaf collimator (MLC) leaf to be consistently deviating from its programmed and logged position by >1 mm. Methods: An EPID-based exit-fluence dosimetry system designed to prevent gross delivery errors was used to capture cine during treatment images. The author serendipitously visually identified a suspected MLC leaf displacement that was not otherwise detected. The leaf position as recorded on the EPID images was measured and log-files were analyzed for the treatment in question, the prior day’s treatment, and for daily MLC test patterns acquired on those treatment days.more » Additional standard test patterns were used to quantify the leaf position. Results: Whereas the log-file reported no difference between planned and recorded positions, image-based measurements showed the leaf to be 1.3 ± 0.1 mm medial from the planned position. This offset was confirmed with the test pattern irradiations. Conclusions: It has been clinically observed that log-file derived leaf positions can differ from their actual position by >1 mm, and therefore cannot be considered to be the actual leaf positions. This cautions the use of log-based methods for MLC or patient quality assurance without independent confirmation of log integrity. Frequent verification of MLC positions through independent means is a necessary precondition to trust log-file records. Intratreatment EPID imaging provides a method to capture departures from MLC planned positions.« less

  9. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Sen; Li, Guangjun; Wang, Maojie

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors weremore » 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.« less

  10. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT.

    PubMed

    Visser, R; Godart, J; Wauben, D J L; Langendijk, J A; Van't Veld, A A; Korevaar, E W

    2016-05-21

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a detector model and an optimizer. Expected detector response was calculated using a radiotherapy treatment plan in combination with the fluence model and detector model. MLC leaf positions were reconstructed by minimizing differences between expected and measured detector response. The iterative reconstruction method was evaluated for an Elekta SLi with 10.0 mm MLC leafs in combination with the COMPASS system and the MatriXX Evolution (IBA Dosimetry) detector with a spacing of 7.62 mm. The detector was positioned in such a way that each leaf pair of the MLC was aligned with one row of ionization chambers. Known leaf displacements were introduced in various field geometries ranging from  -10.0 mm to 10.0 mm. Error detection performance was tested for MLC leaf position dependency relative to the detector position, gantry angle dependency, monitor unit dependency, and for ten clinical intensity modulated radiotherapy (IMRT) treatment beams. For one clinical head and neck IMRT treatment beam, influence of the iterative reconstruction method on existing 3D dose reconstruction artifacts was evaluated. The described iterative reconstruction method was capable of individual MLC leaf position reconstruction with millimeter accuracy, independent of the relative detector position within the range of clinically applied MU's for IMRT. Dose reconstruction artifacts in a clinical IMRT treatment beam were considerably reduced as compared to the current dose verification procedure. The iterative reconstruction method allows high accuracy 3D dose verification by including actual MLC leaf positions reconstructed from low resolution 2D measurements.

  11. Multileaf collimator characteristics and reliability requirements for IMRT Elekta system.

    PubMed

    Liu, Chihray; Simon, Thomas A; Fox, Christopher; Li, Jonathan; Palta, Jatinder R

    2008-01-01

    Understanding the characteristics of a multileaf collimator (MLC) system, modeling MLC in a treatment planning system, and maintaining the mechanical accuracy of the linear accelerator gantry head system are important factors in the safe implementation of an intensity-modulated radiotherapy program. We review the characteristics of an Elekta MLC system, discuss the necessary MLC modeling parameters for a treatment planning system, and provide a novel method to establish an MLC leaf position quality assurance program. To perform quality assurance on 40 pairs of individual MLC leaves is a time-consuming and difficult task. In this report, an effective routine MLC quality assurance method based on the field edge of a backup jaw as referenced in conjunction with a diode array as a radiation detector system is discussed. The sensitivity of this test for determining the relative leaf positions was observed to be better than 0.1 mm. The Elekta MLC leaf position accuracy measured with this system has been better than 0.3 mm.

  12. Rounded leaf end modeling in Pinnacle VMAT treatment planning for fixed jaw linacs

    PubMed Central

    Yang, Fei; Cao, Ning; Meyer, Juergen

    2016-01-01

    During volume‐modulated arc therapies (VMAT), dosimetric errors are introduced by multiple open dynamic leaf gaps that are present in fixed diaphragm linear accelerators. The purpose of this work was to develop a methodology for adjusting the rounded leaf end modeling parameters to improve out‐of‐field dose agreement in SmartArc VMAT treatment plans delivered by fixed jaw linacs where leaf gap dose is not negligible. Leaf gap doses were measured for an Elekta beam modulator linac with 0.4 cm micro‐multileaf collimators (MLC) using an A16 micro‐ionization chamber, a MatriXX ion chamber detector array, and Kodak EDR2 film dosimetry in a solid water phantom. The MLC offset and rounded end tip radius were adjusted in the Pinnacle treatment planning system (TPS) to iteratively arrive at the optimal configuration for 6 MV and 10 MV photon energies. Improvements in gamma index with a 3%/3 mm acceptance criteria and an inclusion threshold of 5% of maximum dose were measured, analyzed, and validated using an ArcCHECK diode detector array for field sizes ranging from 1.6 to 14 cm square field arcs and Task Group (TG) 119 VMAT test cases. The best results were achieved for a rounded leaf tip radius of 13 cm with a 0.1 cm MLC offset. With the optimized MLC model, measured gamma indices ranged between 99.9% and 91.7% for square field arcs with sizes between 3.6 cm and 1.6 cm, with a maximum improvement of 42.7% for the 1.6 cm square field size. Gamma indices improved up to 2.8% in TG‐119 VMAT treatment plans. Imaging and Radiation Oncology Core (IROC) credentialing of a VMAT plan with the head and neck phantom passed with a gamma index of 100%. Fine‐tune adjustments to MLC rounded leaf ends may improve patient‐specific QA pass rates and provide more accurate predictions of dose deposition to avoidance structures. PACS number(s): 87.55.D‐, 87.55.kd, 87.55.kh PMID:27929490

  13. The influence of plan modulation on the interplay effect in VMAT liver SBRT treatments.

    PubMed

    Hubley, Emily; Pierce, Greg

    2017-08-01

    Volumetric modulated arc therapy (VMAT) uses multileaf collimator (MLC) leaves, gantry speed, and dose rate to modulate beam fluence, producing the highly conformal doses required for liver radiotherapy. When targets that move with respiration are treated with a dynamic fluence, there exists the possibility for interplay between the target and leaf motions. This study employs a novel motion simulation technique to determine if VMAT liver SBRT plans with an increase in MLC leaf modulation are more susceptible to dosimetric differences in the GTV due to interplay effects. For ten liver SBRT patients, two VMAT plans with different amounts of MLC leaf modulation were created. Motion was simulated using a random starting point in the respiratory cycle for each fraction. To isolate the interplay effect, motion was also simulated using four specific starting points in the respiratory cycle. The dosimetric differences caused by different starting points were examined by subtracting resultant dose distributions from each other. When motion was simulated using random starting points for each fraction, or with specific starting points, there were significantly more dose differences in the GTV (maximum 100cGy) for more highly modulated plans, but the overall plan quality was not adversely affected. Plans with more MLC leaf modulation are more susceptible to interplay effects, but dose differences in the GTV are clinically negligible in magnitude. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy.

    PubMed

    Low, D A; Sohn, J W; Klein, E E; Markman, J; Mutic, S; Dempsey, J F

    2001-05-01

    The characteristics of a commercial multileaf collimator (MLC) to deliver static and dynamic multileaf collimation (SMLC and DMLC, respectively) were investigated to determine their influence on intensity modulated radiation therapy (IMRT) treatment planning and quality assurance. The influence of MLC leaf positioning accuracy on sequentially abutted SMLC fields was measured by creating abutting fields with selected gaps and overlaps. These data were also used to measure static leaf positioning precision. The characteristics of high leaf-velocity DMLC delivery were measured with constant velocity leaf sequences starting with an open field and closing a single leaf bank. A range of 1-72 monitor units (MU) was used providing a range of leaf velocities. The field abutment measurements yielded dose errors (as a percentage of the open field max dose) of 16.7+/-0.7% mm(-1) and 12.8+/-0.7% mm(-1) for 6 MV and 18 MV photon beams, respectively. The MLC leaf positioning precision was 0.080+/-0.018 mm (single standard deviation) highlighting the excellent delivery hardware tolerances for the tested beam delivery geometry. The high leaf-velocity DMLC measurements showed delivery artifacts when the leaf sequence and selected monitor units caused the linear accelerator to move the leaves at their maximum velocity while modulating the accelerator dose rate to deliver the desired leaf and MU sequence (termed leaf-velocity limited delivery). According to the vendor, a unique feature to their linear accelerator and MLC is that the dose rate is reduced to provide the correct cm MU(-1) leaf velocity when the delivery is leaf-velocity limited. However, it was found that the system delivered roughly 1 MU per pulse when the delivery was leaf-velocity limited causing dose profiles to exhibit discrete steps rather than a smooth dose gradient. The root mean square difference between the steps and desired linear gradient was less than 3% when more than 4 MU were used. The average dose per MU was greater and less than desired for closing and opening leaf patterns, respectively, when the delivery was leaf-velocity limited. The results indicated that the dose delivery artifacts should be minor for most clinical cases, but limit the assumption of dose linearity when significantly reducing the delivered dose for dosimeter characterization studies or QA measurements.

  15. SU-F-T-469: A Clinically Observed Discrepancy Between Image-Based and Log- Based MLC Position

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neal, B; Ahmed, M; Siebers, J

    2016-06-15

    Purpose: To present a clinical case which challenges the base assumption of log-file based QA, by showing that the actual position of a MLC leaf can suddenly deviate from its programmed and logged position by >1 mm as observed with real-time imaging. Methods: An EPID-based exit-fluence dosimetry system designed to prevent gross delivery errors was used in cine mode to capture portal images during treatment. Visual monitoring identified an anomalous MLC leaf pair gap not otherwise detected by the automatic position verification. The position of the erred leaf was measured on EPID images and log files were analyzed for themore » treatment in question, the prior day’s treatment, and for daily MLC test patterns acquired on those treatment days. Additional standard test patterns were used to quantify the leaf position. Results: Whereas the log file reported no difference between planned and recorded positions, image-based measurements showed the leaf to be 1.3±0.1 mm medial from the planned position. This offset was confirmed with the test pattern irradiations. Conclusion: It has been clinically observed that log-file derived leaf positions can differ from their actual positions by >1 mm, and therefore cannot be considered to be the actual leaf positions. This cautions the use of log-based methods for MLC or patient quality assurance without independent confirmation of log integrity. Frequent verification of MLC positions through independent means is a necessary precondition to trusting log file records. Intra-treatment EPID imaging provides a method to capture departures from MLC planned positions. Work was supported in part by Varian Medical Systems.« less

  16. SU-F-T-366: Dosimetric Parameters Enhancement of 120-Leaf Millennium MLC Using EGSnrc and IAEA Phase-Space Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haddad, K; Alopoor, H

    Purpose: Recently, the multileaf collimators (MLC) have become an important part of any LINAC collimation systems because they reduce the treatment planning time and improves the conformity. Important factors that affects the MLCs collimation performance are leaves material composition and their thickness. In this study, we investigate the main dosimetric parameters of 120-leaf Millennium MLC including dose in the buildup point, physical penumbra as well as average and end leaf leakages. Effects of the leaves geometry and density on these parameters are evaluated Methods: From EGSnrc Monte Carlo code, BEAMnrc and DOSXYZnrc modules are used to evaluate the dosimetric parametersmore » of a water phantom exposed to a Varian xi for 100cm SSD. Using IAEA phasespace data just above MLC (Z=46cm) and BEAMnrc, for the modified 120-leaf Millennium MLC a new phase space data at Z=52cm is produces. The MLC is modified both in leaf thickness and material composition. EGSgui code generates 521ICRU library for tungsten alloys. DOSXYZnrc with the new phase space evaluates the dose distribution in a water phantom of 60×60×20 cm3 with voxel size of 4×4×2 mm3. Using DOSXYZnrc dose distributions for open beam and closed beam as well as the leakages definition, end leakage, average leakage and physical penumbra are evaluated. Results: A new MLC with improved dosimetric parameters is proposed. The physical penumbra for proposed MLC is 4.7mm compared to 5.16 mm for Millennium. Average leakage in our design is reduced to 1.16% compared to 1.73% for Millennium, the end leaf leakage suggested design is also reduced to 4.86% compared to 7.26% of Millennium. Conclusion: The results show that the proposed MLC with enhanced dosimetric parameters could improve the conformity of treatment planning.« less

  17. SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, S; Hong, C; Kim, M

    Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed withoutmore » the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.« less

  18. Evaluation of dosimetric effect caused by slowing with multi-leaf collimator (MLC) leaves for volumetric modulated arc therapy (VMAT)

    PubMed Central

    Wang, Iris Z.; Kumaraswamy, Lalith K.; Podgorsak, Matthew B.

    2016-01-01

    Background This study is to report 1) the sensitivity of intensity modulated radiation therapy (IMRT) QA method for clinical volumetric modulated arc therapy (VMAT) plans with multi-leaf collimator (MLC) leaf errors that will not trigger MLC interlock during beam delivery; 2) the effect of non-beam-hold MLC leaf errors on the quality of VMAT plan dose delivery. Materials and methods. Eleven VMAT plans were selected and modified using an in-house developed software. For each control point of a VMAT arc, MLC leaves with the highest speed (1.87-1.95 cm/s) were set to move at the maximal allowable speed (2.3 cm/s), which resulted in a leaf position difference of less than 2 mm. The modified plans were considered as ‘standard’ plans, and the original plans were treated as the ‘slowing MLC’ plans for simulating ‘standard’ plans with leaves moving at relatively lower speed. The measurement of each ‘slowing MLC’ plan using MapCHECK®2 was compared with calculated planar dose of the ‘standard’ plan with respect to absolute dose Van Dyk distance-to-agreement (DTA) comparisons using 3%/3 mm and 2%/2 mm criteria. Results All ‘slowing MLC’ plans passed the 90% pass rate threshold using 3%/3 mm criteria while one brain and three anal VMAT cases were below 90% with 2%/2 mm criteria. For ten out of eleven cases, DVH comparisons between ‘standard’ and ‘slowing MLC’ plans demonstrated minimal dosimetric changes in targets and organs-at-risk. Conclusions For highly modulated VMAT plans, pass rate threshold (90%) using 3%/3mm criteria is not sensitive in detecting MLC leaf errors that will not trigger the MLC leaf interlock. However, the consequential effects of non-beam hold MLC errors on target and OAR doses are negligible, which supports the reliability of current patient-specific IMRT quality assurance (QA) method for VMAT plans. PMID:27069458

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stathakis, S; Defoor, D; Linden, P

    Purpose: To study the frequency of Multi-Leaf Collimator (MLC) leaf failures, investigate methods to predict them and reduce linac downtime. Methods: A Varian HD120 MLC was used in our study. The hyperterminal MLC errors logged from 06/2012 to 12/2014 were collected. Along with the hyperterminal errors, the MLC motor changes and all other MLC interventions by the linear accelerator engineer were recorded. The MLC dynalog files were also recorded on a daily basis for each treatment and during linac QA. The dynalog files were analyzed to calculate root mean square errors (RMS) and cumulative MLC travel distance per motor. Anmore » in-house MatLab code was used to analyze all dynalog files, record RMS errors and calculate the distance each MLC traveled per day. Results: A total of 269 interventions were recorded over a period of 18 months. Of these, 146 included MLC motor leaf change, 39 T-nut replacements, and 84 MLC cleaning sessions. Leaves close to the middle of each side required the most maintenance. In the A bank, leaves A27 to A40 recorded 73% of all interventions, while the same leaves in the B bank counted for 52% of the interventions. On average, leaves in the middle of the bank had their motors changed approximately every 1500m of travel. Finally, it was found that the number of RMS errors increased prior to an MLC motor change. Conclusion: An MLC dynalog file analysis software was developed that can be used to log daily MLC usage. Our eighteen-month data analysis showed that there is a correlation between the distance an MLC travels, the RMS and the life of the MLC motor. We plan to use this tool to predict MLC motor failures and with proper and timely intervention, reduce the downtime of the linac during clinical hours.« less

  20. SU-F-T-481: Physics Evaluation of a Newly Released InCise™ Multileaf Collimator for CyberKnife M6™ System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, L; Chin, E; Lo, A

    2016-06-15

    Purpose: This work reports the results of the physics evaluation of a newly released InCise™2 Multileaf Collimator (MLC) installed in our institution. Methods: Beam property data was measured with unshielded diode and EBT2 films. The measurements included MLC leaf transmission, beam profiles, output factors and tissue-phantom ratios. MLC performance was evaluated for one month after commissioning. Weekly Garden Fence tests were performed for leaf / bank positioning in standard (A/P) and clinically relevant non-standard positions, before and after MLC driving exercises of 10+ minutes. Daily Picket Fence test and AQA test, End-to-End tests and dosimetric quality assurance were performed tomore » evaluate the overall system performance. Results: All measurements including beam energy, flatness and symmetry, were within manufacture specifications. Leaf transmission was 0.4% <0.5% specification. The values of output factors ranged from 0.825 (7.6 mm × 7.5 mm) to 1.026 (115.0 mm × 100.1 mm). Average beam penumbra at 10 cm depth ranged from 2.7mm/2.7mm(7.6 mm × 7.5 mm) to 6.0 mm/6.2mm(84.6 mm × 84.7 mm). Slight penumbra difference (<10% from average penumbra for fields >20 mm) was observed in the direction perpendicular to leaf motion due to the tilting of the leaf housing. Mean leaf position offsets was −0.08±0.07mm and −0.13 ± 0.08 for X1 and X2 leaf banks in 13 Garden Fence tests. No significant difference on average leaf positioning offsets was observed between different leaf orientations and before/after MLC driving exercises. Six End-to-End tests showed 0.43±0.23mm overall targeting accuracy. Picket-Fence and AQA showed stable performance of MLC during the test period. Dosimetric point dose measurements for test cases agreed with calculation within 3%. All film measurements on relative dose had Gamma (2%, 2mm) passing rate of >95%. Conclusion: The Incise™2 MLC for CyberKnife M6™ was proven to be accurate and reliable, and it is currently in clinical use. Stanford was one of the physics evaluation sites for the newly released InCise 2 MLC for Accuray Inc.« less

  1. A real-time dynamic-MLC control algorithm for delivering IMRT to targets undergoing 2D rigid motion in the beam's eye view.

    PubMed

    McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech

    2008-09-01

    An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (ID) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated. However, the algorithm presented is robust in the sense that it does not rely on a high level of agreement between the target motion measured during treatment planning and delivery.

  2. Quality assurance for online adapted treatment plans: Benchmarking and delivery monitoring simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Taoran, E-mail: taoran.li.duke@gmail.com; Wu, Qiuwen; Yang, Yun

    Purpose: An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. Methods: The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system wasmore » designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system’s performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Results: Online adapted plans were found to have similar delivery accuracy in comparison to clinical IMRT plans when validated with portal dosimetry IMRT QA. FEMs for the simulated deliveries with intentional MLC errors exhibited distinct patterns for different MLC error magnitudes and directions, indicating that the proposed delivery monitoring system is highly specific in detecting the source of errors. Implementing the proposed QA system for online adapted plans revealed excellent delivery accuracy: over 99% of leaf position differences were within 0.5 mm, and >99% of pixels in the FEMs had fluence errors within 0.5 MU. Patterns present in the FEMs and MLC control point analysis for actual patient cases agreed with the error pattern analysis results, further validating the system’s ability to reveal and differentiate MLC deviations. Calculation of the fluence map based on the DMI was performed within 2 ms after receiving each DMI input. Conclusions: The proposed online delivery monitoring system requires minimal additional resources and time commitment to the current clinical workflow while still maintaining high sensitivity to leaf position errors and specificity to error types. The presented online delivery monitoring system therefore represents a promising QA system candidate for online adaptive radiation therapy.« less

  3. Quality assurance for online adapted treatment plans: benchmarking and delivery monitoring simulation.

    PubMed

    Li, Taoran; Wu, Qiuwen; Yang, Yun; Rodrigues, Anna; Yin, Fang-Fang; Jackie Wu, Q

    2015-01-01

    An important challenge facing online adaptive radiation therapy is the development of feasible and efficient quality assurance (QA). This project aimed to validate the deliverability of online adapted plans and develop a proof-of-concept online delivery monitoring system for online adaptive radiation therapy QA. The first part of this project benchmarked automatically online adapted prostate treatment plans using traditional portal dosimetry IMRT QA. The portal dosimetry QA results of online adapted plans were compared to original (unadapted) plans as well as randomly selected prostate IMRT plans from our clinic. In the second part, an online delivery monitoring system was designed and validated via a simulated treatment with intentional multileaf collimator (MLC) errors. This system was based on inputs from the dynamic machine information (DMI), which continuously reports actual MLC positions and machine monitor units (MUs) at intervals of 50 ms or less during delivery. Based on the DMI, the system performed two levels of monitoring/verification during the delivery: (1) dynamic monitoring of cumulative fluence errors resulting from leaf position deviations and visualization using fluence error maps (FEMs); and (2) verification of MLC positions against the treatment plan for potential errors in MLC motion and data transfer at each control point. Validation of the online delivery monitoring system was performed by introducing intentional systematic MLC errors (ranging from 0.5 to 2 mm) to the DMI files for both leaf banks. These DMI files were analyzed by the proposed system to evaluate the system's performance in quantifying errors and revealing the source of errors, as well as to understand patterns in the FEMs. In addition, FEMs from 210 actual prostate IMRT beams were analyzed using the proposed system to further validate its ability to catch and identify errors, as well as establish error magnitude baselines for prostate IMRT delivery. Online adapted plans were found to have similar delivery accuracy in comparison to clinical IMRT plans when validated with portal dosimetry IMRT QA. FEMs for the simulated deliveries with intentional MLC errors exhibited distinct patterns for different MLC error magnitudes and directions, indicating that the proposed delivery monitoring system is highly specific in detecting the source of errors. Implementing the proposed QA system for online adapted plans revealed excellent delivery accuracy: over 99% of leaf position differences were within 0.5 mm, and >99% of pixels in the FEMs had fluence errors within 0.5 MU. Patterns present in the FEMs and MLC control point analysis for actual patient cases agreed with the error pattern analysis results, further validating the system's ability to reveal and differentiate MLC deviations. Calculation of the fluence map based on the DMI was performed within 2 ms after receiving each DMI input. The proposed online delivery monitoring system requires minimal additional resources and time commitment to the current clinical workflow while still maintaining high sensitivity to leaf position errors and specificity to error types. The presented online delivery monitoring system therefore represents a promising QA system candidate for online adaptive radiation therapy.

  4. A novel method for routine quality assurance of volumetric-modulated arc therapy.

    PubMed

    Wang, Qingxin; Dai, Jianrong; Zhang, Ke

    2013-10-01

    Volumetric-modulated arc therapy (VMAT) is delivered through synchronized variation of gantry angle, dose rate, and multileaf collimator (MLC) leaf positions. The delivery dynamic nature challenges the parameter setting accuracy of linac control system. The purpose of this study was to develop a novel method for routine quality assurance (QA) of VMAT linacs. ArcCheck is a detector array with diodes distributing in spiral pattern on cylindrical surface. Utilizing its features, a QA plan was designed to strictly test all varying parameters during VMAT delivery on an Elekta Synergy linac. In this plan, there are 24 control points. The gantry rotates clockwise from 181° to 179°. The dose rate, gantry speed, and MLC positions cover their ranges commonly used in clinic. The two borders of MLC-shaped field seat over two columns of diodes of ArcCheck when the gantry rotates to the angle specified by each control point. The ratio of dose rate between each of these diodes and the diode closest to the field center is a certain value and sensitive to the MLC positioning error of the leaf crossing the diode. Consequently, the positioning error can be determined by the ratio with the help of a relationship curve. The time when the gantry reaches the angle specified by each control point can be acquired from the virtual inclinometer that is a feature of ArcCheck. The gantry speed between two consecutive control points is then calculated. The aforementioned dose rate is calculated from an acm file that is generated during ArcCheck measurements. This file stores the data measured by each detector in 50 ms updates with each update in a separate row. A computer program was written in MATLAB language to process the data. The program output included MLC positioning errors and the dose rate at each control point as well as the gantry speed between control points. To evaluate this method, this plan was delivered for four consecutive weeks. The actual dose rate and gantry speed were compared with the QA plan specified. Additionally, leaf positioning errors were intentionally introduced to investigate the sensitivity of this method. The relationship curves were established for detecting MLC positioning errors during VMAT delivery. For four consecutive weeks measured, 98.4%, 94.9%, 89.2%, and 91.0% of the leaf positioning errors were within ± 0.5 mm, respectively. For the intentionally introduced leaf positioning systematic errors of -0.5 and +1 mm, the detected leaf positioning errors of 20 Y1 leaf were -0.48 ± 0.14 and 1.02 ± 0.26 mm, respectively. The actual gantry speed and dose rate closely followed the values specified in the VMAT QA plan. This method can assess the accuracy of MLC positions and the dose rate at each control point as well as the gantry speed between control points at the same time. It is efficient and suitable for routine quality assurance of VMAT.

  5. SU-D-201-04: Evaluation of Elekta Agility MLC Performance Using Statistical Process Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyers, SM; Balderson, MJ; Letourneau, D

    2016-06-15

    Purpose: to evaluate the performance and stability of the Elekta Agility MLC model using an automated quality control (QC) test in combination with statistical process control tools. Methods: Leaf positions were collected daily for 11 Elekta units over 5–19 months using the automated QC test, which analyzes 23 MV images to determine the location of MLC leaves relative to the radiation isocenter. The leaf positions are measured at 5 nominal positions, and images are acquired at collimator 0° and 180° to capture all MLC leaves in the field-of-view. Leaf positioning accuracy was assessed using individual and moving range control charts.more » Control limits were recomputed following MLC recalibration (occurred 1–2 times for 4 units). Specification levels of ±0.5, ±1 and ±1.5mm were tested. The mean and range of duration between out-of-control and out-of-specification events were determined. Results: Leaf position varied little over time, as confirmed by very tight individual control limits (mean ±0.19mm, range 0.09–0.44). Mean leaf position error was −0.03mm (range −0.89–0.83). Due to sporadic out-of-control events, the mean in-control duration was 3.3 days (range 1–23). Data stayed within ±1mm specification for 205 days on average (range 3–372) and within ±1.5mm for the entire date range. Measurements stayed within ±0.5mm for 1 day on average (range 0–17); however, our MLC leaves were not calibrated to this level of accuracy. Conclusion: The Elekta Agility MLC model was found to perform with high stability, as evidenced by the tight control limits. The in-specification durations support the current recommendation of monthly MLC QC tests with a ±1mm tolerance. Future work is on-going to determine if Agility performance can be optimized further using high-frequency QC test results to drive recalibration frequency. Factors that can affect leaf positioning accuracy, including beam spot motion, leaf gain calibration, drifting leaves, and image artifacts, are under investigation.« less

  6. Dosimetric performance of the new high-definition multileaf collimator for intracranial stereotactic radiosurgery.

    PubMed

    Dhabaan, Anees; Elder, Eric; Schreibmann, Eduard; Crocker, Ian; Curran, Walter J; Oyesiku, Nelson M; Shu, Hui-Kuo; Fox, Tim

    2010-06-21

    The objective was to evaluate the performance of a high-definition multileaf collimator (MLC) of 2.5 mm leaf width (MLC2.5) and compare to standard 5 mm leaf width MLC (MLC5) for the treatment of intracranial lesions using dynamic conformal arcs (DCA) technique with a dedicated radiosurgery linear accelerator. Simulated cases of spherical targets were created to study solely the effect of target volume size on the performance of the two MLC systems independent of target shape complexity. In addition, 43 patients previously treated for intracranial lesions in our institution were retrospectively planned using DCA technique with MLC2.5 and MLC5 systems. The gross tumor volume ranged from 0.07 to 40.57 cm3 with an average volume of 5.9 cm3. All treatment parameters were kept the same for both MLC-based plans. The plan evaluation was performed using figures of merits (FOM) for a rapid and objective assessment on the quality of the two treatment plans for MLC2.5 and MLC5. The prescription isodose surface was selected as the greatest isodose surface covering >or= 95% of the target volume and delivering 95% of the prescription dose to 99% of target volume. A Conformity Index (CI) and conformity distance index (CDI) were used to quantifying the dose conformity to a target volume. To assess normal tissue sparing, a normal tissue difference (NTD) was defined as the difference between the volume of normal tissue receiving a certain dose utilizing MLC5 and the volume receiving the same dose using MLC2.5. The CI and normal tissue sparing for the simulated spherical targets were better with the MLC2.5 as compared to MLC5. For the clinical patients, the CI and CDI results indicated that the MLC2.5 provides better treatment conformity than MLC5 even at large target volumes. The CI's range was 1.15 to 2.44 with a median of 1.59 for MLC2.5 compared to 1.60-2.85 with a median of 1.71 for MLC5. Improved normal tissue sparing was also observed for MLC2.5 over MLC5, with the NTD always positive, indicating improvement, and ranging from 0.1 to 8.3 for normal tissue receiving 50% (NTV50), 70% (NTV70) and 90% (NTV90) of the prescription dose. The MLC2.5 has a dosimetric advantage over the MLC5 in Linac-based radiosurgery using DCA method for intracranial lesions, both in treatment conformity and normal tissue sparing when target shape complexity increases.

  7. Radio frequency noise from an MLC: a feasibility study of the use of an MLC for linac-MR systems.

    PubMed

    Lamey, M; Yun, J; Burke, B; Rathee, S; Fallone, B G

    2010-02-21

    Currently several groups are actively researching the integration of a megavoltage teletherapy unit with magnetic resonance (MR) imaging for real-time image-guided radiotherapy. The use of a multileaf collimator (MLC) for intensity-modulated radiotherapy for linac-MR units must be investigated. The MLC itself will likely reside in the fringe field of the MR and the motors will produce radio frequency (RF) noise. The RF noise power spectral density from a Varian 52-leaf MLC motor, a Varian Millennium MLC motor and a brushless fan motor has been measured as a function of the applied magnetic field using a near field probe set. For the Varian 52-leaf MLC system, the RF noise produced by 13 of 52 motors is studied as a function of distance from the MLC. Data are reported in the frequency range suitable for 0.2-1.5 T linac-MR systems. Below 40 MHz the Millennium MLC motor tested showed more noise than the Varian 52-leaf motor or the brushless fan motor. The brushless motor showed a small dependence on the applied magnetic field. Images of a phantom were taken by the prototype linac-MR system with the MLC placed in close proximity to the magnet. Several orientations of the MLC in both shielded and non-shielded configurations were studied. For the case of a non-shielded MLC and associated cables, the signal-to-noise ratio (SNR) was reduced when 13 of 52 MLC leaves were moved during imaging. When the MLC and associated cables were shielded, the measured SNR of the images with 13 MLC leaves moving was experimentally the same as the SNR of the stationary MLC image. When the MLC and cables are shielded, subtraction images acquired with and without MLC motion contains no systematic signal. This study illustrates that the small RF noise produced by functioning MLC motors can be effectively shielded to avoid SNR degradation. A functioning MLC can be incorporated into a linac-MR unit.

  8. Radio frequency noise from an MLC: a feasibility study of the use of an MLC for linac-MR systems

    PubMed Central

    Lamey, M; Yun, J; Burke, B; Rathee, S; Fallone, B G

    2010-01-01

    Currently several groups are actively researching the integration of a megavoltage teletherapy unit with magnetic resonance (MR) imaging for real-time image-guided radiotherapy. The use of a multileaf collimator (MLC) for intensity-modulated radiotherapy for linac-MR units must be investigated. The MLC itself will likely reside in the fringe field of the MR and the motors will produce radio frequency (RF) noise. The RF noise power spectral density from a Varian 52-leaf MLC motor, a Varian Millennium MLC motor and a brushless fan motor has been measured as a function of the applied magnetic field using a near field probe set. For the Varian 52-leaf MLC system, the RF noise produced by 13 of 52 motors is studied as a function of distance from the MLC. Data are reported in the frequency range suitable for 0.2–1.5 T linac-MR systems. Below 40 MHz the Millennium MLC motor tested showed more noise than the Varian 52-leaf motor or the brushless fan motor. The brushless motor showed a small dependence on the applied magnetic field. Images of a phantom were taken by the prototype linac-MR system with the MLC placed in close proximity to the magnet. Several orientations of the MLC in both shielded and non-shielded configurations were studied. For the case of a non-shielded MLC and associated cables, the signal-to-noise ratio (SNR) was reduced when 13 of 52 MLC leaves were moved during imaging. When the MLC and associated cables were shielded, the measured SNR of the images with 13 MLC leaves moving was experimentally the same as the SNR of the stationary MLC image. When the MLC and cables are shielded, subtraction images acquired with and without MLC motion contains no systematic signal. This study illustrates that the small RF noise produced by functioning MLC motors can be effectively shielded to avoid SNR degradation. A functioning MLC can be incorporated into a linac-MR unit. PMID:20090187

  9. Verification of dosimetric accuracy on the TrueBeam STx: rounded leaf effect of the high definition MLC.

    PubMed

    Kielar, Kayla N; Mok, Ed; Hsu, Annie; Wang, Lei; Luxton, Gary

    2012-10-01

    The dosimetric leaf gap (DLG) in the Varian Eclipse treatment planning system is determined during commissioning and is used to model the effect of the rounded leaf-end of the multileaf collimator (MLC). This parameter attempts to model the physical difference between the radiation and light field and account for inherent leakage between leaf tips. With the increased use of single fraction high dose treatments requiring larger monitor units comes an enhanced concern in the accuracy of leakage calculations, as it accounts for much of the patient dose. This study serves to verify the dosimetric accuracy of the algorithm used to model the rounded leaf effect for the TrueBeam STx, and describes a methodology for determining best-practice parameter values, given the novel capabilities of the linear accelerator such as flattening filter free (FFF) treatments and a high definition MLC (HDMLC). During commissioning, the nominal MLC position was verified and the DLG parameter was determined using MLC-defined field sizes and moving gap tests, as is common in clinical testing. Treatment plans were created, and the DLG was optimized to achieve less than 1% difference between measured and calculated dose. The DLG value found was tested on treatment plans for all energies (6 MV, 10 MV, 15 MV, 6 MV FFF, 10 MV FFF) and modalities (3D conventional, IMRT, conformal arc, VMAT) available on the TrueBeam STx. The DLG parameter found during the initial MLC testing did not match the leaf gap modeling parameter that provided the most accurate dose delivery in clinical treatment plans. Using the physical leaf gap size as the DLG for the HDMLC can lead to 5% differences in measured and calculated doses. Separate optimization of the DLG parameter using end-to-end tests must be performed to ensure dosimetric accuracy in the modeling of the rounded leaf ends for the Eclipse treatment planning system. The difference in leaf gap modeling versus physical leaf gap dimensions is more pronounced in the more recent versions of Eclipse for both the HDMLC and the Millennium MLC. Once properly commissioned and tested using a methodology based on treatment plan verification, Eclipse is able to accurately model radiation dose delivered for SBRT treatments using the TrueBeam STx.

  10. Brushed permanent magnet DC MLC motor operation in an external magnetic field.

    PubMed

    Yun, J; St Aubin, J; Rathee, S; Fallone, B G

    2010-05-01

    Linac-MR systems for real-time image-guided radiotherapy will utilize the multileaf collimators (MLCs) to perform conformal radiotherapy and tumor tracking. The MLCs would be exposed to the external fringe magnetic fields of the linac-MR hybrid systems. Therefore, an experimental investigation of the effect of an external magnetic field on the brushed permanent magnet DC motors used in some MLC systems was performed. The changes in motor speed and current were measured for varying external magnetic field strengths up to 2000 G generated by an EEV electromagnet. These changes in motor characteristics were measured for three orientations of the motor in the external magnetic field, mimicking changes in motor orientations due to installation and/or collimator rotations. In addition, the functionality of the associated magnetic motor encoder was tested. The tested motors are used with the Varian 120 leaf Millennium MLC (Maxon Motor half leaf and full leaf motors) and the Varian 52 leaf MKII MLC (MicroMo Electronics leaf motor) including a carriage motor (MicroMo Electronics). In most cases, the magnetic encoder of the motors failed prior to any damage to the gearbox or the permanent magnet motor itself. This sets an upper limit of the external magnetic field strength on the motor function. The measured limits of the external magnetic fields were found to vary by the motor type. The leaf motor used with a Varian 52 leaf MKII MLC system tolerated up to 450 +/- 10 G. The carriage motor tolerated up to 2000 +/- 10 G field. The motors used with the Varian 120 leaf Millennium MLC system were found to tolerate a maximum of 600 +/- 10 G. The current Varian MLC system motors can be used for real-time image-guided radiotherapy coupled to a linac-MR system, provided the fringe magnetic fields at their locations are below the determined tolerance levels. With the fringe magnetic fields of linac-MR systems expected to be larger than the tolerance levels determined, some form of magnetic shielding would be required.

  11. Effect of MLC leaf width on treatment adaptation and accuracy for concurrent irradiation of prostate and pelvic lymph nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang Qingyang; Qi Peng; Ferjani, Samah

    2013-06-15

    Purpose: The aim of the study was to evaluate the impact of multileaf collimator (MLC) leaf width on treatment adaptation and delivery accuracy for concurrent treatment of the prostate and pelvic lymph nodes with intensity modulated radiation therapy (IMRT). Methods: Seventy-five kilovoltage cone beam CTs (KV-CBCT) from six patients were included for this retrospective study. For each patient, three different IMRT plans were created based on a planning CT using three different MLC leaf widths of 2.5, 5, and 10 mm, respectively. For each CBCT, the prostate displacement was determined by a dual image registration. Adaptive plans were created bymore » shifting selected MLC leaf pairs to compensate for daily prostate movements. To evaluate the impact of MLC leaf width on the adaptive plan for each daily CBCT, three MLC shifted plans were created using three different leaf widths of MLCs (a total of 225 adaptive treatment plans). Selective dosimetric endpoints for the tumor volumes and organs at risk (OARs) were evaluated for these adaptive plans. Using the planning CT from a selected patient, MLC shifted plans for three hypothetical longitudinal shifts of 2, 4, and 8 mm were delivered on the three linear accelerators to test the deliverability of the shifted plans and to compare the dose accuracy of the shifted plans with the original IMRT plans. Results: Adaptive plans from 2.5 and 5 mm MLCs had inadequate dose coverage to the prostate (D99 < 97%, or D{sub mean} < 99% of the planned dose) in 6%-8% of the fractions, while adaptive plans from 10 mm MLC led to inadequate dose coverage to the prostate in 25.3% of the fractions. The average V{sub 56Gy} of the prostate over the six patients was improved by 6.4% (1.6%-32.7%) and 5.8% (1.5%-35.7%) with adaptive plans from 2.5 and 5 mm MLCs, respectively, when compared with adaptive plans from 10 mm MLC. Pelvic lymph nodes were well covered for all MLC adaptive plans, as small differences were observed for D99, D{sub mean}, and V{sub 50.4Gy}. Similar OAR sparing could be achieved for the bladder and rectum with all three MLCs for treatment adaptation. The MLC shifted plans can be accurately delivered on all three linear accelerators with accuracy similar to their original IMRT plans, where gamma (3%/3 mm) passing rates were 99.6%, 93.0%, and 92.1% for 2.5, 5, and 10 mm MLCs, respectively. The percentages of pixels with dose differences between the measurement and calculation being less than 3% of the maximum dose were 85.9%, 82.5%, and 70.5% for the original IMRT plans from the three MLCs, respectively. Conclusions: Dosimetric advantages associated with smaller MLC leaves were observed in terms of the coverage to the prostate, when the treatment was adapted to account for daily prostate movement for concurrent irradiation of the prostate and pelvic lymph nodes. The benefit of switching the MLC from 10 to 5 mm was significant (p Much-Less-Than 0.01); however, switching the MLC from 5 to 2.5 mm would not gain significant (p= 0.15) improvement. IMRT plans with smaller MLC leaf widths achieved more accurate dose delivery.« less

  12. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control.

    PubMed

    Létourneau, Daniel; Wang, An; Amin, Md Nurul; Pearce, Jim; McNiven, Andrea; Keller, Harald; Norrlinger, Bernhard; Jaffray, David A

    2014-12-01

    High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3-4 times/week over a period of 10-11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ± 0.5 and ± 1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. The precision of the MLC performance monitoring QC test and the MLC itself was within ± 0.22 mm for most MLC leaves and the majority of the apparent leaf motion was attributed to beam spot displacements between irradiations. The MLC QC test was performed 193 and 162 times over the monitoring period for the studied units and recalibration had to be repeated up to three times on one of these units. For both units, rate of MLC interlocks was moderately associated with MLC servicing events. The strongest association with the MLC performance was observed between the MLC servicing events and the total number of out-of-control leaves. The average elapsed time for which the number of out-of-specification or out-of-control leaves was within a given performance threshold was computed and used to assess adequacy of MLC test frequency. A MLC performance monitoring system has been developed and implemented to acquire high-quality QC data at high frequency. This is enabled by the relatively short acquisition time for the images and automatic image analysis. The monitoring system was also used to record and track the rate of MLC-related interlocks and servicing events. MLC performances for two commercially available MLC models have been assessed and the results support monthly test frequency for widely accepted ± 1 mm specifications. Higher QC test frequency is however required to maintain tighter specification and in-control behavior.

  13. SU-F-BRE-16: VMAT Commissioning and Quality Assurance (QA) of An Elekta Synergy-STM Linac Using ICOM Test HarnessTM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, A; Ironwood CRC, Phoenix, AZ; Rajaguru, P

    2014-06-15

    Purpose: To establish a set of tests based on the iCOM software that can be used to commission and perform periodic QA of VMAT delivery on the Elekta Synergy-S, commonly known as the Beam Modulator (BM). Methods: iCOM is used to create and deliver customized treatment fields to characterize the system in terms of 1) MLC positioning accuracy under static and dynamic delivery with full gantry rotation, 2) MLC positioning with known errors, 3) Maximum dose rate, 4) Maximum MLC speed, 5) Maximum gantry speed, 6) Synchronization: gantry speed versus dose rate, and 7) Synchronization: MLC speed versus dose rate.more » The resulting images were captured on the iView GT and exported in DICOM format to Dosimetry Check™ system for visual and quantitative analysis. For the initial commissioning phase, the system tests described should be supplemented with extensive patient QAs covering all clinically relevant treatment sites. Results: The system performance test suite showed that on our Synergy-S, MLC positioning was accurate under both static and dynamic deliveries. Intentional errors of 1 mm were also easily identified on both static and dynamic picket fence tests. Maximum dose rate was verified with stop watch to be consistently between 475-480 MU/min. Maximum gantry speed and MLC speed were 5.5 degree/s and 2.5 cm/s respectively. After accounting for beam flatness, both synchronization tests, gantry versus dose rate and MLC speed versus dose rate, were successful as the fields were uniform across the strips and there were no obvious cold/hot spots. Conclusion: VMAT commissioning and quality assurance should include machine characterization tests in addition to patient QAs. Elekta iCOM is a valuable tool for the design of customized VMAT field with specific MU, MLC leaf positions, dose rate, and indirect control of MLC and gantry speed at each of its control points.« less

  14. SU-E-T-331: Dosimetric Impact of Multileaf Collimator Leaf Width On Stereotactic Radiosurgery (SRS) RapidArc Treatment Plans for Single and Multiple Brain Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, S; Keeling, V; Ahmad, S

    Purpose: To determine the effects of multileaf collimator (MLC) leaf width on normal-brain-tissue doses and dose conformity of SRS RapidArc treatment plans for brain tumors. Methods: Ten patients with 24 intracranial tumors (seven with 1–2 and three with 4–6 lesions) were planned using RapidArc for both Varian Millennium 120 MLC (5 mm leaf width) and high definition (HD) MLC (2.5 mm leaf width). Between 2 and 8 arcs were used with two full coplanar arcs and the rest non-coplanar half arcs. 6 MV beams were used and plans were optimized with a high priority to the Normal Tissue Objective (tomore » achieve dose conformity and sharp dose fall-off) and normal brain tissue. Calculation was done using AAA on a 1 mm grid size. The prescription dose ranged from 14–22 Gy. Plans were normalized such that 99% of the target received the prescription dose. Identical beam geometries, optimizations, calculations, and normalizations were used for both plans. Paddick Conformity Index (PCI), V4, V8 and V12 Gy for normal brain tissue and Integral Dose were used for analysis. Results: In all cases, HD MLC plans performed better in sparing normal brain tissue, achieving a higher PCI with a lower Integral Dose. The average PCI for all 24 targets was 0.75±0.23 and 0.70±0.23 (p ≤0.0015) for HD MLC and Millennium MLC plans, respectively. The average ratio of normal brain doses for Millennium MLC to HD MLC plans was 1.30±0.16, 1.27±0.15, and 1.31±0.18 for the V4, V8, and V12, respectively. The differences in normal brain dose for all criteria were statistically significant with p-value < 0.02. On average Millennium MLC plans had a 16% higher integral dose than HD MLC plans. Conclusion: Significantly better dose conformity with reduced volume of normal brain tissue and integral dose was achieved with HD MLC plans compared to Millennium MLC plans.« less

  15. SU-G-JeP2-03: Automatic Quantification of MLC Positional Accuracy in An MRI Guided Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Studenski, M; Yang, F

    Purpose: MRI-guided-radiotherapy (MRIGRT) systems lack many features of traditional Linac based RT systems and specialized tests need to be developed to evaluate MLC performance. This work describes automatic tools for the analysis of positional accuracy of an MLC equipped MRIGRT system. Methods: This MLC analysis tool was developed for the MRIdian™ RT system which has three Co-60 equipped treatment heads each with a double focused MLC containing 30 leaf pairs, leaf thickness is 1.05cm defined at isocenter (SAD 105 cm). For MLC positional analysis a picket fence test was performed using a 25.4cm × 25.4cm Gafchromic™ RTQA2 film placed betweenmore » 5cm solidwater and a 30cm × 30cm × 1cm jigwire phantom with seven embedded parallel metal strips 4cm apart. A plan was generated to deliver 2Gy per field and seven 23.1cm × 2cm fields centered over each wire in the phantom. For each leaf pair the center of the radiation profile was determined by fitting the horizontal profile with a Gaussian model and determining the center of the FWHM. This was compared with the metal strip location to determine any deviation. The following metrics were used to evaluate the deviations per gantry angle including maximum, minimum, mean, Kurtosis, and skewness. Results: The identified maximum/mean leaf deviations are, 1.32/0.55 mm for gantry 0°, 1.59/0.76 mm for gantry 90°, and 1.19/0.39 mm for gantry 270°. The percentage of leaf deviation less than 1mm are 90.0% at 0°, 74.6% at 90°, and 97.0% at 270°. Kurtosis/skewness of the leaf deviation are 2.41/0.14 at 0°, 2.53/0.23 at 90°, 3.33/0.83 at 270°, respectively. Conclusion: This work presents an automatic tool for evaluation of the MLC position accuracy of the MRIdian™ radiotherapy system which can be used to benchmark the performance of the MLC system for each treatment head and track the results longitudinally.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, X; Yang, F

    Purpose: Knowing MLC leaf positioning error over the course of treatment would be valuable for treatment planning, QA design, and patient safety. The objective of the current study was to quantify the MLC positioning accuracy for VMAT delivery of head and neck treatment plans. Methods: A total of 837 MLC log files were collected from 14 head and neck cancer patients undergoing full arc VMAT treatment on one Varian Trilogy machine. The actual and planned leaf gaps were extracted from the retrieved MLC log files. For a given patient, the leaf gap error percentage (LGEP), defined as the ratio ofmore » the actual leaf gap over the planned, was evaluated for each leaf pair at all the gantry angles recorded over the course of the treatment. Statistics describing the distribution of the largest LGEP (LLGEP) of the 60 leaf pairs including the maximum, minimum, mean, Kurtosis, and skewness were evaluated. Results: For the 14 studied patients, their PTV located at tonsil, base of tongue, larynx, supraglottis, nasal cavity, and thyroid gland with volume ranging from 72.0 cm{sup 3} to 602.0 cm{sup 3}. The identified LLGEP differed between patients. It ranged from 183.9% to 457.7% with a mean of 368.6%. For the majority of the patients, the LLGEP distributions peaked at non-zero positions and showed no obvious dependence on gantry rotations. Kurtosis and skewness, with minimum/maximum of 66.6/217.9 and 6.5/12.6, respectively, suggested relatively more peaked while right-skewed leaf error distribution pattern. Conclusion: The results indicate pattern of MLC leaf gap error differs between patients of lesion located at similar anatomic site. Understanding the systemic mechanisms underlying these observed error patterns necessitates examining more patient-specific plan parameters in a large patient cohort setting.« less

  17. SU-E-T-178: Clinical Feasibility of Multi-Leaf Collimator Based Dynamic Wedge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, C; Kwak, J; Ahn, S

    2015-06-15

    Purpose: A multi-leaf collimator (MLC) based dynamic wedge (MDW), which provide similar dose profile of physical wedge (PW) along x-jaw direction while significant monitor unit (MU) reduction, was developed and investigated for clinical use. Methods: A novel technique was used to create the wedge profile using MLC. A modification was applied to the DICOM-RT format file of the plan made with the PW to replace PW with MDW. The Varian enhanced dynamic wedge profile was used to produce MLC sequence, while the MU of the wedged field was recalculated using PW factor and fluence map. The profiles for all possiblemore » MDWs to substitute PWs were verified in 6/15 MV x-ray irradiations. New plans with MDWs were compared with the original plans in 5 rectal, 5 RT breast and 5 liver cases. Results: The wedge profile of the MDW fields were well matched with those of PWs inside the fields while less scatter than PW out of the fields. For plan comparisons of the clinical cases no significant dose discrepancy was observed between MDW plan and PW’s with the dose volume histograms. The maximum and mean doses in PTVs are agreed within 1.0%. The Result of OARs of MDW plans are slightly improved in the maximum doses (3.22 ∼ 150.4 cGy) and the mean doses (17.18 ∼ 85.52 cGy) on average for all cases while the prescribed doses are 45 Gy for rectal cases, 40 or 45 Gy for liver cases and 50 Gy for breast cases. The MUs of the fields which replace PW with MDW are reduced to 68% of those of PW. Conclusion: We developed a novel dynamic wedge technique with MLC that shows clinical advantage compared to PW.« less

  18. Multileaf collimator performance monitoring and improvement using semiautomated quality control testing and statistical process control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Létourneau, Daniel, E-mail: daniel.letourneau@rmp.uh.on.ca; McNiven, Andrea; Keller, Harald

    2014-12-15

    Purpose: High-quality radiation therapy using highly conformal dose distributions and image-guided techniques requires optimum machine delivery performance. In this work, a monitoring system for multileaf collimator (MLC) performance, integrating semiautomated MLC quality control (QC) tests and statistical process control tools, was developed. The MLC performance monitoring system was used for almost a year on two commercially available MLC models. Control charts were used to establish MLC performance and assess test frequency required to achieve a given level of performance. MLC-related interlocks and servicing events were recorded during the monitoring period and were investigated as indicators of MLC performance variations. Methods:more » The QC test developed as part of the MLC performance monitoring system uses 2D megavoltage images (acquired using an electronic portal imaging device) of 23 fields to determine the location of the leaves with respect to the radiation isocenter. The precision of the MLC performance monitoring QC test and the MLC itself was assessed by detecting the MLC leaf positions on 127 megavoltage images of a static field. After initial calibration, the MLC performance monitoring QC test was performed 3–4 times/week over a period of 10–11 months to monitor positional accuracy of individual leaves for two different MLC models. Analysis of test results was performed using individuals control charts per leaf with control limits computed based on the measurements as well as two sets of specifications of ±0.5 and ±1 mm. Out-of-specification and out-of-control leaves were automatically flagged by the monitoring system and reviewed monthly by physicists. MLC-related interlocks reported by the linear accelerator and servicing events were recorded to help identify potential causes of nonrandom MLC leaf positioning variations. Results: The precision of the MLC performance monitoring QC test and the MLC itself was within ±0.22 mm for most MLC leaves and the majority of the apparent leaf motion was attributed to beam spot displacements between irradiations. The MLC QC test was performed 193 and 162 times over the monitoring period for the studied units and recalibration had to be repeated up to three times on one of these units. For both units, rate of MLC interlocks was moderately associated with MLC servicing events. The strongest association with the MLC performance was observed between the MLC servicing events and the total number of out-of-control leaves. The average elapsed time for which the number of out-of-specification or out-of-control leaves was within a given performance threshold was computed and used to assess adequacy of MLC test frequency. Conclusions: A MLC performance monitoring system has been developed and implemented to acquire high-quality QC data at high frequency. This is enabled by the relatively short acquisition time for the images and automatic image analysis. The monitoring system was also used to record and track the rate of MLC-related interlocks and servicing events. MLC performances for two commercially available MLC models have been assessed and the results support monthly test frequency for widely accepted ±1 mm specifications. Higher QC test frequency is however required to maintain tighter specification and in-control behavior.« less

  19. Potential of discrete Gaussian edge feathering method for improving abutment dosimetry in eMLC-delivered segmented-field electron conformal therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eley, John G.; Hogstrom, Kenneth R.; Matthews, Kenneth L.

    2011-12-15

    Purpose: The purpose of this work was to investigate the potential of discrete Gaussian edge feathering of the higher energy electron fields for improving abutment dosimetry in the planning volume when using an electron multileaf collimator (eMLC) to deliver segmented-field electron conformal therapy (ECT). Methods: A discrete (five-step) Gaussian edge spread function was used to match dose penumbras of differing beam energies (6-20 MeV) at a specified depth in a water phantom. Software was developed to define the leaf eMLC positions of an eMLC that most closely fit each electron field shape. The effect of 1D edge feathering of themore » higher energy field on dose homogeneity was computed and measured for segmented-field ECT treatment plans for three 2D PTVs in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of the x-axis (parallel to leaf motion) and remained constant along the y-axis (perpendicular to leaf motion). Additionally, the effect of 2D edge feathering was computed and measured for one radially symmetric, 3D PTV in a water phantom, i.e., depth from the water surface to the distal PTV surface varied as a function of both axes. For the 3D PTV, the feathering scheme was evaluated for 0.1-1.0-cm leaf widths. Dose calculations were performed using the pencil beam dose algorithm in the Pinnacle{sup 3} treatment planning system. Dose verification measurements were made using a prototype eMLC (1-cm leaf width). Results: 1D discrete Gaussian edge feathering reduced the standard deviation of dose in the 2D PTVs by 34, 34, and 39%. In the 3D PTV, the broad leaf width (1 cm) of the eMLC hindered the 2D application of the feathering solution to the 3D PTV, and the standard deviation of dose increased by 10%. However, 2D discrete Gaussian edge feathering with simulated eMLC leaf widths of 0.1-0.5 cm reduced the standard deviation of dose in the 3D PTV by 33-28%, respectively. Conclusions: A five-step discrete Gaussian edge spread function applied in 2D improves the abutment dosimetry but requires an eMLC leaf resolution better than 1 cm.« less

  20. SU-E-T-467: Implementation of Monte Carlo Dose Calculation for a Multileaf Collimator Equipped Robotic Radiotherapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, JS; Fan, J; Ma, C-M

    Purpose: To improve the treatment efficiency and capabilities for full-body treatment, a robotic radiosurgery system has equipped with a multileaf collimator (MLC) to extend its accuracy and precision to radiation therapy. To model the MLC and include it in the Monte Carlo patient dose calculation is the goal of this work. Methods: The radiation source and the MLC were carefully modeled to consider the effects of the source size, collimator scattering, leaf transmission and leaf end shape. A source model was built based on the output factors, percentage depth dose curves and lateral dose profiles measured in a water phantom.more » MLC leaf shape, leaf end design and leaf tilt for minimizing the interleaf leakage and their effects on beam fluence and energy spectrum were all considered in the calculation. Transmission/leakage was added to the fluence based on the transmission factors of the leaf and the leaf end. The transmitted photon energy was tuned to consider the beam hardening effects. The calculated results with the Monte Carlo implementation was compared with measurements in homogeneous water phantom and inhomogeneous phantoms with slab lung or bone material for 4 square fields and 9 irregularly shaped fields. Results: The calculated output factors are compared with the measured ones and the difference is within 1% for different field sizes. The calculated dose distributions in the phantoms show good agreement with measurements using diode detector and films. The dose difference is within 2% inside the field and the distance to agreement is within 2mm in the penumbra region. The gamma passing rate is more than 95% with 2%/2mm criteria for all the test cases. Conclusion: Implementation of Monte Carlo dose calculation for a MLC equipped robotic radiosurgery system is completed successfully. The accuracy of Monte Carlo dose calculation with MLC is clinically acceptable. This work was supported by Accuray Inc.« less

  1. SU-E-T-312: Dosimetric Consideration for the Agility MLC When Planning Rotational SRT/SBRT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kong, X; Harris, J; Spitznagel, D

    2015-06-15

    Purpose: To analyze the radiation transmission of the Agility MLC and make recommendation based on the MLC dosimetric characteristics for SRT, SBRT and VMAT planning Method and Materials: Agility MLC is the newest model from Elekta and has no back up diaphragm behind leaves for this generation. Leaves are single focused with rounded end; composed of leafs each 0.5cm wide, 9cm thick, constructed from tungsten alloy and provide low transmission <0.5%. Total radiation transmission from leaves and diaphragm is <0.13%. A 360degree arc was generated using iCom tools; leaves were programmed closed while keeping the diaphragm fully open to maximizemore » the MLC transmission effect. Gafchromic EBT films were sandwiched between 4cm of solid water and situated at midplane to take dose measurement. 5000MU was delivered using 6MV VersaHD, various collimator angles, and a 5cm central axis offset was tested also. Films were scanned with Epson 10000XL scanner and analyzed using DoseLab Pro. Results: Due to the rounded leaf end and nature of rotation therapy, dose accumulation through the leaf gap is significant. By offsetting the leaf gap from central axis, this accumulation can be greatly reduced. There are dark bands showing accumulation of interleaf transmission which is improved by increasing collimator angle from 0 to 45dgree. However for 45 degree, in most cases, there are larger volumes sweeping under MLC alone, which needs considered planning. Conclusions: While inter-leaf leakage is minimized by using collimator angles greater than 0 degrees, the location of the leaf gap must also be managed. The leaf gap position becomes critically important when the treatment area is off axis such is the case when more than one PTV is being treated. With VMAT for SRT, SBRT becoming a more popular planning technique, special attention needs to be paid when initially setting up the field geometry.« less

  2. SU-E-T-347: Effect of MLC Leaf Position Inaccuracy On Dose Distribution for Spinal SBRT with Different Energies and Dose Rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, T; Dang, J; Dai, C

    2015-06-15

    Purpose: To evaluate dosimetric impact of spinal SBRT when MLC leaf positions deviate from planning positions for different energies and doserates. Methods and Materials: 18 localized spinal metastases patients were selected for SBRT using IMRT planning with 9 posterior beams delivered at gantry angles ranging between 100°–260°. A modern linear accelerator(Varian Turebeam STX with HDMLC 2.5 mm thick leaf at isocenter) IMRT plans were generated using both 6X and 6X-FFF(Flattening filter free) beams with a nominal prescription dose of 6 Gy/fraction to PTV. Doserates ranging from 200–600 MU/min for 6X and 400–1400 MU/min for 6X-FFF, with 200 increments were examined.more » A fixed amount(0.3, 0.5, 1, and 2 mm) of MLC-leaf position deviation was simulated to each plan under following conditions: 1)only along X1 collimator; 2)with increments at both X1 and X2 collimator directions;3)with reductions at both X1 and X2 collimator directions. Dose was recalculated for each modified plans. Both original and modified plans were delivered using Turebeam STX machine and measured using both portal dosimetry and a 3D dosimeter(Delta4 of ScandiDos). Each field’s Result were compared using following three parameters: the 95% iso-dose level Conformal Index(95%CI), the spinal cord maximum dose(SCDmax), and the planned target volume(PTV) mean dose. Results: Dosimetric impacts on the 95%CI, SCDmax and the PTV mean dose are: 1)negligible if MLC-leaf position deviation only along a single collimator direction ≥1.0 mm,2)substantial if MLC-leaf position increment along both collimator directions ≥0.3 mm(95% CI decreases while SCDmax and PTV mean-dose increase), 3)substantial if MLC-leaf position reduction along both collimator directions ≥0.3 mm(95% CI first increases and then decreases while SCDmax and PTV mean-dose decrease). Different energies and doserates demonstrated comparable dosimetric impacts. Conclusion: Substantial dose deviations could happen for spinal SBRT using IMRT plan with HD-MLC if leaf position deviation ≥0.3 mm. The effects of different energy and doserate are negligible.« less

  3. TU-FG-201-04: Computer Vision in Autonomous Quality Assurance of Linear Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H; Jenkins, C; Yu, S

    Purpose: Routine quality assurance (QA) of linear accelerators represents a critical and costly element of a radiation oncology center. Recently, a system was developed to autonomously perform routine quality assurance on linear accelerators. The purpose of this work is to extend this system and contribute computer vision techniques for obtaining quantitative measurements for a monthly multi-leaf collimator (MLC) QA test specified by TG-142, namely leaf position accuracy, and demonstrate extensibility for additional routines. Methods: Grayscale images of a picket fence delivery on a radioluminescent phosphor coated phantom are captured using a CMOS camera. Collected images are processed to correct formore » camera distortions, rotation and alignment, reduce noise, and enhance contrast. The location of each MLC leaf is determined through logistic fitting and a priori modeling based on knowledge of the delivered beams. Using the data collected and the criteria from TG-142, a decision is made on whether or not the leaf position accuracy of the MLC passes or fails. Results: The locations of all MLC leaf edges are found for three different picket fence images in a picket fence routine to 0.1mm/1pixel precision. The program to correct for image alignment and determination of leaf positions requires a runtime of 21– 25 seconds for a single picket, and 44 – 46 seconds for a group of three pickets on a standard workstation CPU, 2.2 GHz Intel Core i7. Conclusion: MLC leaf edges were successfully found using techniques in computer vision. With the addition of computer vision techniques to the previously described autonomous QA system, the system is able to quickly perform complete QA routines with minimal human contribution.« less

  4. TH-AB-202-03: A Novel Tool for Computing Deliverable Doses in Dynamic MLC Tracking Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fast, M; Kamerling, C; Menten, M

    2016-06-15

    Purpose: In tracked dynamic multi-leaf collimator (MLC) treatments, segments are continuously adapted to the target centroid motion in beams-eye-view. On-the-fly segment adaptation, however, potentially induces dosimetric errors due to the finite MLC leaf width and non-rigid target motion. In this study, we outline a novel tool for computing the 4d dose of lung SBRT plans delivered with MLC tracking. Methods: The following automated workflow was developed: A) centroid tracking, where the initial segments are morphed to each 4dCT phase based on the beams-eye-view GTV shift (followed by a dose calculation on each phase); B) re-optimized tracking, in which all morphedmore » initial plans from (A) are further optimised (“warm-started”) in each 4dCT phase using the initial optimisation parameters but phase-specific volume definitions. Finally, both dose sets are accumulated to the reference phase using deformable image registration. Initial plans were generated according to the RTOG-1021 guideline (54Gy, 3-Fx, equidistant 9-beam IMRT) on the peak-exhale (reference) phase of a phase-binned 4dCT. Treatment planning and delivery simulations were performed in RayStation (research v4.6) using our in-house segment-morphing algorithm, which directly links to RayStation through a native C++ interface. Results: Computing the tracking plans and 4d dose distributions via the in-house interface takes 5 and 8 minutes respectively for centroid and re-optimized tracking. For a sample lung SBRT patient with 14mm peak-to-peak motion in sup-inf direction, mainly perpendicular leaf motion (0-collimator) resulted in small dose changes for PTV-D95 (−13cGy) and GTV-D98 (+18cGy) for the centroid tracking case compared to the initial plan. Modest reductions of OAR doses (e.g. spinal cord D2: −11cGy) were achieved in the idealized tracking case. Conclusion: This study presents an automated “1-click” workflow for computing deliverable MLC tracking doses in RayStation. Adding a non-deliverable re-optimized tracking scenario is expected to help quantify plan robustness for more challenging patients with anatomy deformations. We acknowledge support of the MLC tracking research from Elekta AB. MFF is supported by Cancer Research UK under Programme C33589/A19908. Research at ICR is also supported by Cancer Research UK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR.« less

  5. SU-F-T-530: Characterization of a 60-Leaf Motorized MLC Designed for Cobalt-60 Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, L; Smith, L; Ciresianu, A

    2016-06-15

    Purpose: In a continuing effort to improve conformal radiation therapy with Cobalt-60 units, a 60-leaf MLC was designed, manufactured, and released to market. This work describes the physics measurements taken to characterize the clinical performance of this MLC. Methods: A 60 leaf MLC was custom designed with tungsten leaves of 4.5 cm height, single focused, achieving field size of 30×30 cm^2 when mounted on a 100cm SAD Cobalt-60 unit. Leakage and output factor measurements were performed using a single ion chamber in a solid water phantom. Penumbra and surface dose were measured using scanning chambers and diodes in a watermore » phantom. Radiation-light coincidence measurements were performed using radiographic films. Results: With MLC mounted, measured penumbras at all depths are smaller than with jaws only. Surface doses were not significantly affected by the presence of MLC, and remained below values recommended by regulatory bodies. Light-radiation coincidences were found to be better than 3 mm for all field sizes. Leakage through the MLC was found to be strongly dependent on field size, increasing from 1.0 % for a 10×10 cm field to 2.0% for a 30×30 cm field. Such results meet the requirements of IEC 60601-2-11. The MLC was found to have significant influence on the output factor, when field size defined by MLC is significantly smaller than field size defined by jaws. Such effect is also observed on linear accelerators, but it is more pronounced on Cobalt-60 units. A 10×10 “diamond” MLC shape inside a 14×14 cm jaw showed output factor that is 5.7% higher than 10×10 cm field defined by matching MLC and jaws. Conclusion: The MLC offers clinically acceptable performance in penumbra, surface dose, and light-radiation coincidence. Several units of this MLC have recently been installed and used clinically. Validation of Cobalt-60 based IMRT with this MLC is ongoing. The authors are employees of Best Theratrnics Ltd.« less

  6. TU-AB-BRC-04: Commissioning of a New MLC Model for the GEPTS Monte Carlo System: A Model Based On the Leaf and Interleaf Effective Density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chibani, O; Tahanout, F; Ma, C

    2016-06-15

    Purpose: To commission a new MLC model for the GEPTS Monte Carlo system. The model is based on the concept of leaves and interleaves effective densities Methods: GEPTS is a Monte Carlo system to be used for external beam planning verification. GEPTS incorporates detailed photon and electron transport algorithms (Med.Phys. 29, 2002, 835). A new GEPTS model for the Varian Millennium MLC is presented. The model accounts for: 1) thick (1 cm) and thin (0.5 cm) leaves, 2) tongue-and-groove design, 3) High-Transmission (HT) and Low-Transmission (LT) interleaves, and 4) rounded leaf end. Leaf (and interleaf) height is set equal tomore » 6 cm. Instead of modeling air gaps, screw holes, and complex leaf heads, “effective densities” are assigned to: 1) thin leaves, 2) thick leaves, 3) HT-, and 4) LT-interleaves. Results: The new MLC model is used to calculate dose profiles for Closed-MLC and Tongue-and-Groove fields at 5 cm depth for 6, 10 and 15 MV Varian beams. Calculations are compared with 1) Pin-point ionization chamber transmission ratios and 2) EBT3 Radiochromic films. Pinpoint readings were acquired beneath thick and thin leaves, and HT and LT interleaves. The best fit of measured dose profiles was obtained for the following parameters: Thick-leaf density = 16.1 g/cc, Thin-leaf density = 17.2 g/cc; HT Interleaf density = 12.4 g/cc, LT Interleaf density = 14.3 g/cc; Interleaf thickness = 1.1 mm. Attached figures show comparison of calculated and measured transmission ratios for the 3 energies. Note this is the only study where transmission profiles are compared with measurements for 3 different energies. Conclusion: The new MLC model reproduces transmission measurements within 0.1%. The next step is to implement the MLC model for real plans and quantify the improvement in dose calculation accuracy gained using this model for IMRT plans with high modulation factors.« less

  7. A high-speed scintillation-based electronic portal imaging device to quantitatively characterize IMRT delivery.

    PubMed

    Ranade, Manisha K; Lynch, Bart D; Li, Jonathan G; Dempsey, James F

    2006-01-01

    We have developed an electronic portal imaging device (EPID) employing a fast scintillator and a high-speed camera. The device is designed to accurately and independently characterize the fluence delivered by a linear accelerator during intensity modulated radiation therapy (IMRT) with either step-and-shoot or dynamic multileaf collimator (MLC) delivery. Our aim is to accurately obtain the beam shape and fluence of all segments delivered during IMRT, in order to study the nature of discrepancies between the plan and the delivered doses. A commercial high-speed camera was combined with a terbium-doped gadolinium-oxy-sulfide (Gd2O2S:Tb) scintillator to form an EPID for the unaliased capture of two-dimensional fluence distributions of each beam in an IMRT delivery. The high speed EPID was synchronized to the accelerator pulse-forming network and gated to capture every possible pulse emitted from the accelerator, with an approximate frame rate of 360 frames-per-second (fps). A 62-segment beam from a head-and-neck IMRT treatment plan requiring 68 s to deliver was recorded with our high speed EPID producing approximately 6 Gbytes of imaging data. The EPID data were compared with the MLC instruction files and the MLC controller log files. The frames were binned to provide a frame rate of 72 fps with a signal-to-noise ratio that was sufficient to resolve leaf positions and segment fluence. The fractional fluence from the log files and EPID data agreed well. An ambiguity in the motion of the MLC during beam on was resolved. The log files reported leaf motions at the end of 33 of the 42 segments, while the EPID observed leaf motions in only 7 of the 42 segments. The static IMRT segment shapes observed by the high speed EPID were in good agreement with the shapes reported in the log files. The leaf motions observed during beam-on for step-and-shoot delivery were not temporally resolved by the log files.

  8. SU-G-BRA-14: Dose in a Rigidly Moving Phantom with Jaw and MLC Compensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chao, E; Lucas, D

    Purpose: To validate dose calculation for a rigidly moving object with jaw motion and MLC shifts to compensate for the motion in a TomoTherapy™ treatment delivery. Methods: An off-line version of the TomoTherapy dose calculator was extended to perform dose calculations for rigidly moving objects. A variety of motion traces were added to treatment delivery plans, along with corresponding jaw compensation and MLC shift compensation profiles. Jaw compensation profiles were calculated by shifting the jaws such that the center of the treatment beam moved by an amount equal to the motion in the longitudinal direction. Similarly, MLC compensation profiles weremore » calculated by shifting the MLC leaves by an amount that most closely matched the motion in the transverse direction. The same jaw and MLC compensation profiles were used during simulated treatment deliveries on a TomoTherapy system, and film measurements were obtained in a rigidly moving phantom. Results: The off-line TomoTherapy dose calculator accurately predicted dose profiles for a rigidly moving phantom along with jaw motion and MLC shifts to compensate for the motion. Calculations matched film measurements to within 2%/1 mm. Jaw and MLC compensation substantially reduced the discrepancy between the delivered dose distribution and the calculated dose with no motion. For axial motion, the compensated dose matched the no-motion dose within 2%/1mm. For transverse motion, the dose matched within 2%/3mm (approximately half the width of an MLC leaf). Conclusion: The off-line TomoTherapy dose calculator accurately computes dose delivered to a rigidly moving object, and accurately models the impact of moving the jaws and shifting the MLC leaf patterns to compensate for the motion. Jaw tracking and MLC leaf shifting can effectively compensate for the dosimetric impact of motion during a TomoTherapy treatment delivery.« less

  9. Investigation of the feasibility of a simple method for verifying the motion of a binary multileaf collimator synchronized with the rotation of the gantry for helical tomotherapy

    PubMed Central

    Uematsu, Masahiro; Ito, Makiko; Hama, Yukihiro; Inomata, Takayuki; Fujii, Masahiro; Nishio, Teiji; Nakamura, Naoki; Nakagawa, Keiichi

    2012-01-01

    In this paper, we suggest a new method for verifying the motion of a binary multileaf collimator (MLC) in helical tomotherapy. For this we used a combination of a cylindrical scintillator and a general‐purpose camcorder. The camcorder records the light from the scintillator following photon irradiation, which we use to track the motion of the binary MLC. The purpose of this study is to demonstrate the feasibility of this method as a binary MLC quality assurance (QA) tool. First, the verification was performed using a simple binary MLC pattern with a constant leaf open time; secondly, verification using the binary MLC pattern used in a clinical setting was also performed. Sinograms of simple binary MLC patterns, in which leaves that were open were detected as “open” from the measured light, define the sensitivity which, in this case, was 1.000. On the other hand, the specificity, which gives the fraction of closed leaves detected as “closed”, was 0.919. The leaf open error identified by our method was −1.3±7.5%. The 68.6% of observed leaves were performed within ± 3% relative error. The leaf open error was expressed by the relative errors calculated on the sinogram. In the clinical binary MLC pattern, the sensitivity and specificity were 0.994 and 0.997, respectively. The measurement could be performed with −3.4±8.0% leaf open error. The 77.5% of observed leaves were performed within ± 3% relative error. With this method, we can easily verify the motion of the binary MLC, and the measurement unit developed was found to be an effective QA tool. PACS numbers: 87.56.Fc, 87.56.nk PMID:22231222

  10. TomoTherapy MLC verification using exit detector data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Quan; Westerly, David; Fang Zhenyu

    2012-01-15

    Purpose: Treatment delivery verification (DV) is important in the field of intensity modulated radiation therapy (IMRT). While IMRT and image guided radiation therapy (IGRT), allow us to create more conformal plans and enables the use of tighter margins, an erroneously executed plan can have detrimental effects on the treatment outcome. The purpose of this study is to develop a DV technique to verify TomoTherapy's multileaf collimator (MLC) using the onboard mega-voltage CT detectors. Methods: The proposed DV method uses temporal changes in the MVCT detector signal to predict actual leaf open times delivered on the treatment machine. Penumbra and scatteredmore » radiation effects may produce confounding results when determining leaf open times from the raw detector data. To reduce the impact of the effects, an iterative, Richardson-Lucy (R-L) deconvolution algorithm is applied. Optical sensors installed on each MLC leaf are used to verify the accuracy of the DV technique. The robustness of the DV technique is examined by introducing different attenuation materials in the beam. Additionally, the DV technique has been used to investigate several clinical plans which failed to pass delivery quality assurance (DQA) and was successful in identifying MLC timing discrepancies as the root cause. Results: The leaf open time extracted from the exit detector showed good agreement with the optical sensors under a variety of conditions. Detector-measured leaf open times agreed with optical sensor data to within 0.2 ms, and 99% of the results agreed within 8.5 ms. These results changed little when attenuation was added in the beam. For the clinical plans failing DQA, the dose calculated from reconstructed leaf open times played an instrumental role in discovering the root-cause of the problem. Throughout the retrospective study, it is found that the reconstructed dose always agrees with measured doses to within 1%. Conclusions: The exit detectors in the TomoTherapy treatment systems can provide valuable information about MLC behavior during delivery. A technique to estimate the TomoTherapy binary MLC leaf open time from exit detector signals is described. This technique is shown to be both robust and accurate for delivery verification.« less

  11. Commissioning and quality assurance for VMAT delivery systems: An efficient time-resolved system using real-time EPID imaging.

    PubMed

    Zwan, Benjamin J; Barnes, Michael P; Hindmarsh, Jonathan; Lim, Seng B; Lovelock, Dale M; Fuangrod, Todsaporn; O'Connor, Daryl J; Keall, Paul J; Greer, Peter B

    2017-08-01

    An ideal commissioning and quality assurance (QA) program for Volumetric Modulated Arc Therapy (VMAT) delivery systems should assess the performance of each individual dynamic component as a function of gantry angle. Procedures within such a program should also be time-efficient, independent of the delivery system and be sensitive to all types of errors. The purpose of this work is to develop a system for automated time-resolved commissioning and QA of VMAT control systems which meets these criteria. The procedures developed within this work rely solely on images obtained, using an electronic portal imaging device (EPID) without the presence of a phantom. During the delivery of specially designed VMAT test plans, EPID frames were acquired at 9.5 Hz, using a frame grabber. The set of test plans was developed to individually assess the performance of the dose delivery and multileaf collimator (MLC) control systems under varying levels of delivery complexities. An in-house software tool was developed to automatically extract features from the EPID images and evaluate the following characteristics as a function of gantry angle: dose delivery accuracy, dose rate constancy, beam profile constancy, gantry speed constancy, dynamic MLC positioning accuracy, MLC speed and acceleration constancy, and synchronization between gantry angle, MLC positioning and dose rate. Machine log files were also acquired during each delivery and subsequently compared to information extracted from EPID image frames. The largest difference between measured and planned dose at any gantry angle was 0.8% which correlated with rapid changes in dose rate and gantry speed. For all other test plans, the dose delivered was within 0.25% of the planned dose for all gantry angles. Profile constancy was not found to vary with gantry angle for tests where gantry speed and dose rate were constant, however, for tests with varying dose rate and gantry speed, segments with lower dose rate and higher gantry speed exhibited less profile stability. MLC positional accuracy was not observed to be dependent on the degree of interdigitation. MLC speed was measured for each individual leaf and slower leaf speeds were shown to be compensated for by lower dose rates. The test procedures were found to be sensitive to 1 mm systematic MLC errors, 1 mm random MLC errors, 0.4 mm MLC gap errors and synchronization errors between the MLC, dose rate and gantry angle controls systems of 1°. In general, parameters measured by both EPID and log files agreed with the plan, however, a greater average departure from the plan was evidenced by the EPID measurements. QA test plans and analysis methods have been developed to assess the performance of each dynamic component of VMAT deliveries individually and as a function of gantry angle. This methodology relies solely on time-resolved EPID imaging without the presence of a phantom and has been shown to be sensitive to a range of delivery errors. The procedures developed in this work are both comprehensive and time-efficient and can be used for streamlined commissioning and QA of VMAT delivery systems. © 2017 American Association of Physicists in Medicine.

  12. Performance of a multi leaf collimator system for MR-guided radiation therapy.

    PubMed

    Cai, Bin; Li, Harold; Yang, Deshan; Rodriguez, Vivian; Curcuru, Austen; Wang, Yuhe; Wen, Jie; Kashani, Rojano; Mutic, Sasa; Green, Olga

    2017-12-01

    The purpose of this study was to investigate and characterize the performance of a Multi Leaf Collimator (MLC) designed for Cobalt-60 based MR-guided radiation therapy system in a 0.35 T magnetic field. The MLC design and unique assembly features in the ViewRay MRIdian system were first reviewed. The RF cage shielding of MLC motor and cables were evaluated using ACR phantoms with real-time imaging and quantified by signal-to-noise ratio. The dosimetric characterizations, including the leaf transmission, leaf penumbra, tongue-and-groove effect, were investigated using radiosensitive films. The output factor of MLC-defined fields was measured with ionization chambers for both symmetric fields from 2.1 × 2.1 cm 2 to 27.3 × 27.3 cm 2 and asymmetric fields from 10.5 × 10.5 cm 2 to 10.5 × 2.0 cm 2 . Multi leaf collimator (MLC) positional accuracy was assessed by delivering either a picket fence (PF) style pattern on radiochromic films with wire-jig phantom or double and triple-rectangular patterns on ArcCheck-MR (Sun Nuclear, Melbourne, FL, USA) with gamma analysis as the pass/fail indicator. Leaf speed tests were performed to assess the capability of full range leaf travel within manufacture's specifications. Multi leaf collimator plan delivery reproducibility was tested by repeatedly delivering both open fields and fields with irregular shaped segments over 1-month period. Comparable SNRs within 4% were observed for MLC moving and stationary plans on vendor-reconstructed images, and the direct k-space reconstructed images showed that the three SNRs are within 1%. The maximum leaf transmission for all three MLCs was less than 0.35% and the average leakage was 0.153 ± 0.006%, 0.151 ± 0.008%, and 0.159 ± 0.015% for head 1, 2, and 3, respectively. Both the leaf edge and leaf end penumbra showed comparable values within 0.05 cm, and the measured values are within 0.1 cm with TPS values. The leaf edge TG effect indicated 10% underdose and the leaf end TG showed a shifted dose distribution with 0.3 cm offset. The leaf positioning test showed a 0.2 cm accuracy in the PF style test, and a gamma passing rate above 96% was observed with a 3%/2 mm criteria when comparing the measured double/triple-rectangular pattern fluence with TPS calculated fluence. The average leaf speed when executing the test plan fell in a range from 1.86 to 1.95 cm/s. The measured and TPS calculated output factors were within 2% for squared fields and within 3% for rectangular fields. The reproducibility test showed the deviation of output factors were well within 2% for square fields and the gamma passing rate within 1.5% for fields with irregular segments. The Monte Carlo predicted output factors were within 2% compared to TPS values. 15 out of the 16 IMRT plans have gamma passing rate more than 98% compared to the TPS fluence with an average passing rate of 99.1 ± 0.6%. The MRIdian MLC has a good RF noise shielding design, low radiation leakage, good positioning accuracy, comparable TG effect, and can be modeled by an independent Monte Carlo calculation platform. © 2017 American Association of Physicists in Medicine.

  13. SU-G-TeP4-03: A Multileaf Collimator Calibration and Quality Assurance Technique Using An Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lebron, S; Yan, G; Li, J

    2016-06-15

    Purpose: To develop an accurate and quick multileaf collimator (MLC) calibration and quality assurance technique using an electronic portal imaging device (EPID) Methods: The MLC models used include the MLCi and Agility (Elekta Ltd). This technique consists of two 22(L)x10(W) cm{sup 2} fields with 0{sup 0} and 180{sup 0} collimator angles centered to an offset EPID. The MLC opening is estimated by calculating the profile at the image’s center in the image’s horizontal direction. Scans in the image’s vertical direction were calculated every 20 pixels in the inner 70% of estimated MLC opening. The profiles’ edges were fitted with linearmore » equations to determine the image’s rotation angle. Then, crossline profiles were scanned at the center of each leaf taking into account the leaf’s width at isocenter and the rotation angle. The profiles’ edges determine the location of the leaves’ edges and these were subtracted from the reference leaf’s position in order to determine the relative leaf offsets. The edge location of all profiles was determined by using the parameterized gradient of the penumbra region. The technique was tested against an established diode array-based method, and for different MLC systems, patterns, gantry angles, days, energies, beam modalities and MLC openings. Results: The differences between the proposed and established methods were 0.26±0.19mm. The leaf offsets’ deviation was <0.3mm (5 months period). For pattern fields, the differences between predetermined and calculated offsets were 0.18±0.18mm. The leaf offset deviation of measurements with different energies and MLC openings were <0.1mm and <0.3mm, respectively. The differences between offsets of FF and FFF beams were 0.01±0.02mm (<0.07mm). The differences between the offsets at different gantry angles were 0.08±0.15mm. Conclusion: The proposed method proved to be accurate and efficient in calculating the relative leaf offsets. Parameterized field edge is essential to obtain accurate result by eliminating the noise from EPID.« less

  14. Automatic detection of MLC relative position errors for VMAT using the EPID-based picket fence test

    NASA Astrophysics Data System (ADS)

    Christophides, Damianos; Davies, Alex; Fleckney, Mark

    2016-12-01

    Multi-leaf collimators (MLCs) ensure the accurate delivery of treatments requiring complex beam fluences like intensity modulated radiotherapy and volumetric modulated arc therapy. The purpose of this work is to automate the detection of MLC relative position errors  ⩾0.5 mm using electronic portal imaging device-based picket fence tests and compare the results to the qualitative assessment currently in use. Picket fence tests with and without intentional MLC errors were measured weekly on three Varian linacs. The picket fence images analysed covered a time period ranging between 14-20 months depending on the linac. An algorithm was developed that calculated the MLC error for each leaf-pair present in the picket fence images. The baseline error distributions of each linac were characterised for an initial period of 6 months and compared with the intentional MLC errors using statistical metrics. The distributions of median and one-sample Kolmogorov-Smirnov test p-value exhibited no overlap between baseline and intentional errors and were used retrospectively to automatically detect MLC errors in routine clinical practice. Agreement was found between the MLC errors detected by the automatic method and the fault reports during clinical use, as well as interventions for MLC repair and calibration. In conclusion the method presented provides for full automation of MLC quality assurance, based on individual linac performance characteristics. The use of the automatic method has been shown to provide early warning for MLC errors that resulted in clinical downtime.

  15. Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fürweger, Christoph, E-mail: christoph.fuerweger@cyber-knife.net; Prins, Paulette; Coskan, Harun

    Purpose: The “InCise™ multileaf-collimator (MLC)” is the first commercial MLC to be mounted on a robotic SRS/SBRT platform (CyberKnife). The authors assessed characteristics and performance of this novel device in a preclinical five months test period. Methods: Commissioning beam data were acquired with unshielded diodes. EBT3 radiochromic films were employed for measurement of transmission, leaf/bank position accuracy (garden fence) before and after exercising the MLC, for end-to-end testing and further characterization of the beam. The robot workspace with MLC was assessed analytically by transformation to an Euler geometry (“plane,” “gantry,” and “collimator” angles) and by measuring pointing accuracy at eachmore » node. Stability over time was evaluated in picket fence and adapted Winston–Lutz tests (AQA). Results: Beam penumbrae (80%–20%, with 100% = 2 × dose at inflection point for field sizes ≥ 50 × 50 mm{sup 2}) were 2.2–3.7 mm for square fields in reference condition (source-axis-distance 800 mm, depth 15 mm) and depended on field size and off-axis position. Transmission and leakage did not exceed 0.5%. Accessible clinical workspace with MLC covered non-coplanar gantry angles of [−113°; +112°] and collimator angles of [−100°; +107°], with an average robot pointing accuracy of 0.12 ± 0.09 mm. For vertical beams, garden fence tests exhibited an average leaf positioning error of ≤0.2 mm, which increased by 0.25 and 0.30 mm (banks X1 and X2) with leaves traveling parallel to gravity. After execution of a leaf motion stress routine, garden fence tests showed slightly increased jaggedness and allowed to identify one malfunctioning leaf motor. Total system accuracy with MLC was 0.38 ± 0.05 mm in nine end-to-end tests. Picket fence and AQA tests displayed stable results over the test period. Conclusions: The InCise™ MLC for CyberKnife showed high accuracy and adequate characteristics for SRS/SBRT applications. MLC performance after exercise demands specific quality assurance measures.« less

  16. Characteristics and performance of the first commercial multileaf collimator for a robotic radiosurgery system.

    PubMed

    Fürweger, Christoph; Prins, Paulette; Coskan, Harun; Heijmen, Ben J M

    2016-05-01

    The "InCise™ multileaf-collimator (MLC)" is the first commercial MLC to be mounted on a robotic SRS/SBRT platform (CyberKnife). The authors assessed characteristics and performance of this novel device in a preclinical five months test period. Commissioning beam data were acquired with unshielded diodes. EBT3 radiochromic films were employed for measurement of transmission, leaf/bank position accuracy (garden fence) before and after exercising the MLC, for end-to-end testing and further characterization of the beam. The robot workspace with MLC was assessed analytically by transformation to an Euler geometry ("plane," "gantry," and "collimator" angles) and by measuring pointing accuracy at each node. Stability over time was evaluated in picket fence and adapted Winston-Lutz tests (AQA). Beam penumbrae (80%-20%, with 100% = 2 × dose at inflection point for field sizes ≥ 50 × 50 mm(2)) were 2.2-3.7 mm for square fields in reference condition (source-axis-distance 800 mm, depth 15 mm) and depended on field size and off-axis position. Transmission and leakage did not exceed 0.5%. Accessible clinical workspace with MLC covered non-coplanar gantry angles of [-113°; +112°] and collimator angles of [-100°; +107°], with an average robot pointing accuracy of 0.12 ± 0.09 mm. For vertical beams, garden fence tests exhibited an average leaf positioning error of ≤0.2 mm, which increased by 0.25 and 0.30 mm (banks X1 and X2) with leaves traveling parallel to gravity. After execution of a leaf motion stress routine, garden fence tests showed slightly increased jaggedness and allowed to identify one malfunctioning leaf motor. Total system accuracy with MLC was 0.38 ± 0.05 mm in nine end-to-end tests. Picket fence and AQA tests displayed stable results over the test period. The InCise™ MLC for CyberKnife showed high accuracy and adequate characteristics for SRS/SBRT applications. MLC performance after exercise demands specific quality assurance measures.

  17. Technology assessment of multileaf collimation: a North American users survey.

    PubMed

    Klein, E E; Tepper, J; Sontag, M; Franklin, M; Ling, C; Kubo, D

    1999-06-01

    The American Association of Physicists in Medicine (AAPM) initiated an Assessment of Technology Subcommittee (ATS) to help the radiotherapy community evaluate emerging technologies. The ATS decided to first address multileaf collimation (MLC) by means of a North American users survey. The survey attempted to address issues such as MLC utility, efficacy, cost-effectiveness, and customer satisfaction. The survey was designed with 38 questions, with cross-tabulation set up to decipher a particular clinic's perception of MLC. The surveys were coded according to MLC types, which were narrowed to four: Elekta, Siemens, Varian 52-leaf, and Varian 80-leaf. A 40% return rate was desired. A 44% (108 of 250) return was achieved. On an MLC machine, 76.5% of photon patients are being treated with MLC. The main reasons for not using MLC were stair stepping, field size limitation, and physician objection. The most common sites in which MLC is being used are lung, pelvis, and prostate. The least used sites are head & neck and mantle fields. Of the facilities, 31% claimed an increase in number of patients being treated since MLC was installed, and 44% claimed an increase in the number of fields. Though the staffing for block cutting has decreased, therapist staffing has not. However, 91% of the facilities claimed a decreased workload for the therapists, despite the increase in daily treated patients and fields. Of the facilities that justified MLC purchase for more daily patients, 63% are actually treating more patients. Only 26% of the facilities that justified an MLC purchase for intensity-modulated radiotherapy (IMRT) are currently using it for that purpose. The satisfaction rating (1 = low to 5 = high) for department groups averaged 4.0. Therapists ranked MLC as 4.6. Our survey shows that most users have successfully introduced MLC into the clinic as a block replacement. Most have found MLC to be cost-effective and efficient. The use of MLC for IMRT has progressed slower, but users anticipate escalated use.

  18. Development and validation of a BEAMnrc component module for a miniature multileaf collimator.

    PubMed

    Doerner, E; Hartmann, G H

    2012-05-21

    A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM.

  19. Development and validation of a BEAMnrc component module for a miniature multileaf collimator

    NASA Astrophysics Data System (ADS)

    Doerner, E.; Hartmann, G. H.

    2012-05-01

    A new component module (CM) named mini multileaf collimator (mMLC) was developed for the Monte Carlo code BEAMnrc. It models the geometry of the add-on miniature multileaf collimator ModuLeaf (MRC Systems GmbH, Heidelberg, Germany, now part of Siemens, Erlangen, Germany). The new CM is partly based on the existing CM called DYNVMLC. The development was performed using a modified EGSnrc platform which enables us to work in the Microsoft Visual Studio environment. In order to validate the new CM, the PRIMUS linac with 6 MV x-rays (Siemens OCS, Concord, CA, USA) equipped with the ModuLeaf mMLC was modelled. Validation was performed by two methods: (a) a ray-tracing method to check the correct geometry of the multileaf collimator (MLC) and (b) a comparison of calculated and measured results of the following dosimetrical parameters: output factors, dose profiles, field edge position penumbra, MLC interleaf leakage and transmission values. Excellent agreement was found for all parameters. It was, in particular, found that the relationship between leaf position and field edge depending on the shape of the leaf ends can be investigated with a higher accuracy by this new CM than by measurements demonstrating the usefulness of the new CM.

  20. SU-E-T-627: Precision Modelling of the Leaf-Bank Rotation in Elekta’s Agility MLC: Is It Necessary?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vujicic, M; Belec, J; Heath, E

    Purpose: To demonstrate the method used to determine the leaf bank rotation angle (LBROT) as a parameter for modeling the Elekta Agility multi-leaf collimator (MLC) for Monte Carlo simulations and to evaluate the clinical impact of LBROT. Methods: A detailed model of an Elekta Infinity linac including an Agility MLC was built using the EGSnrc/BEAMnrc Monte Carlo code. The Agility 160-leaf MLC is modelled using the MLCE component module which allows for leaf bank rotation using the parameter LBROT. A precise value of LBROT is obtained by comparing measured and simulated profiles of a specific field, which has leaves arrangedmore » in a repeated pattern such that one leaf is opened and the adjacent one is closed. Profile measurements from an Agility linac are taken with gafchromic film, and an ion chamber is used to set the absolute dose. The measurements are compared to Monte Carlo (MC) simulations and the LBROT is adjusted until a match is found. The clinical impact of LBROT is evaluated by observing how an MC dose calculation changes with LBROT. A clinical Stereotactic Body Radiation Treatment (SBRT) plan is calculated using BEAMnrc/DOSXYZnrc simulations with different input values for LBROT. Results: Using the method outlined above, the LBROT is determined to be 9±1 mrad. Differences as high as 4% are observed in a clinical SBRT plan between the extreme case (LBROT not modeled) and the nominal case. Conclusion: In small-field radiation therapy treatment planning, it is important to properly account for LBROT as an input parameter for MC dose calculations with the Agility MLC. More work is ongoing to elucidate the observed differences by determining the contributions from transmission dose, change in field size, and source occlusion, which are all dependent on LBROT. This work was supported by OCAIRO (Ontario Consortium of Adaptive Interventions in Radiation Oncology), funded by the Ontario Research Fund.« less

  1. The sensitivity of patient specific IMRT QC to systematic MLC leaf bank offset errors.

    PubMed

    Rangel, Alejandra; Palte, Gesa; Dunscombe, Peter

    2010-07-01

    Patient specific IMRT QC is performed routinely in many clinics as a safeguard against errors and inaccuracies which may be introduced during the complex planning, data transfer, and delivery phases of this type of treatment. The purpose of this work is to evaluate the feasibility of detecting systematic errors in MLC leaf bank position with patient specific checks. 9 head and neck (H&N) and 14 prostate IMRT beams were delivered using MLC files containing systematic offsets (+/- 1 mm in two banks, +/- 0.5 mm in two banks, and 1 mm in one bank of leaves). The beams were measured using both MAPCHECK (Sun Nuclear Corp., Melbourne, FL) and the aS1000 electronic portal imaging device (Varian Medical Systems, Palo Alto, CA). Comparisons with calculated fields, without offsets, were made using commonly adopted criteria including absolute dose (AD) difference, relative dose difference, distance to agreement (DTA), and the gamma index. The criteria most sensitive to systematic leaf bank offsets were the 3% AD, 3 mm DTA for MAPCHECK and the gamma index with 2% AD and 2 mm DTA for the EPID. The criterion based on the relative dose measurements was the least sensitive to MLC offsets. More highly modulated fields, i.e., H&N, showed greater changes in the percentage of passing points due to systematic MLC inaccuracy than prostate fields. None of the techniques or criteria tested is sufficiently sensitive, with the population of IMRT fields, to detect a systematic MLC offset at a clinically significant level on an individual field. Patient specific QC cannot, therefore, substitute for routine QC of the MLC itself.

  2. SU-C-BRB-04: Characteristics and Performance Evaluation of the First Commercial MLC for a Robotic Delivery System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuerweger, C; European Cyberknife Center Munich, Munich, DE; Prins, P

    Purpose: To assess characteristics and performance of the “Incise™” MLC (41 leaf pairs, 2.5mm width, FFF linac) mounted on the robotic SRS/SBRT platform “CyberKnife M6™” in a pre-clinical 5 months (11/2014–03/2015) test period. Methods: Beam properties were measured with unshielded diodes and EBT3 film. The CyberKnife workspace for MLC was analyzed by transforming robot node coordinates (cranial / body paths) into Euler geometry. Bayouth tests for leaf / bank position accuracy were performed in standard (A/P) and clinically relevant non-standard positions, before and after exercising the MLC for 10+ minutes. Total system and delivery accuracy were assessed in End-to-End testsmore » and dosimetric verification of exemplary plans. Stability over time was evaluated in Picket-Fence-and adapted Winston-Lutz-tests (AQA) for different collimator angles. Results: Penumbrae (80–20%, with 100%=2*dose at inflection point; SAD 80cm; 10cm depth) parallel / perpendicular to leaf motion were 2.87/2.64mm for the smallest (0×76×0.75cm{sup 2}) and 5.34/4.94mm for the largest (9.76×9.75cm{sup 2}) square field. MLC circular field penumbrae exceeded fixed cones by 10–20% (e.g. 60mm: 4.0 vs. 3.6mm; 20mm: 3.6 vs. 2.9mm). Interleaf leakage was <0.5%. Clinically accessible workspace with MLC covered (non-coplanar) gantry angles of [-113°;+112°] (cranial) and [-108°;+102°] (body), and collimator angles of [-100°;+107°] (cranial) and [-91°;+100°] (body). Average leaf position offsets were ≤0.2mm in 14 standard A/P Bayouth tests and ≤0.6mm in 8 non-standard direction tests. Pre-test MLC exercise increased jaggedness (range ±0.3mm vs. ±0.5mm) and allowed to identify one malfunctioning leaf motor. Total system accuracy with MLC was 0.39±0.06mm in 6 End-to-End tests. Picket-Fence and AQA showed no adverse trends during the test period. Conclusion: The Incise™ MLC for CyberKnife M6™ displayed high accuracy and mechanical stability over the test period. The specific CyberKnife geometry and performance after exercise demand dedicated QA measures. This work is in part funded by a research grant from Accuray Inc, Sunnyvale, USA. Erasmus MC Cancer Institute also has research collaborations with Elekta AB, Stockholm, Sweden. C Fuerweger has previously received speaker honoraria from Accuray Inc, Sunnyvale, USA.« less

  3. SU-E-T-479: IMRT Plan Recalculation in Patient Based On Dynalog Data and the Effect of a Single Failing MLC Motor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morcos, M; Mitrou, E

    2015-06-15

    Purpose: Using Linac dynamic logs (Dynalogs) we evaluate the impact of a single failing MLC motor on the deliverability of an IMRT plan by assessing the recalculated dose volume histograms (DVHs) taking the delivered MLC positions and beam hold-offs into consideration. Methods: This is a retrospective study based on a deteriorating MLC motor (leaf 36B) which was observed to be failing via Dynalog analysis. To investigate further, Eclipse-importable MLC files were generated from Dynalogs to recalculate the actual delivered dose and to assess the clinical impact through DVHs. All deliveries were performed on a Varian 21EX linear accelerator equipped withmore » Millennium-120 MLC. The analysis of Dynalog files and subsequent conversion to Eclipse-importable MLC files were all performed by in-house programming in Python. Effects on plan DVH are presented in the following section on a particular brain-IMRT plan which was delivered with a failing MLC motor which was then replaced. Results: Global max dose increased by 13.5%, max dose to the brainstem PRV increased by 8.2%, max dose to the optic chiasm increased by 7.6%, max dose to optic nerve increased by 8.8% and the mean dose to the PTV increased by 7.9% when comparing the original plan to the fraction with the failing MLC motor. The reason the dose increased was due to the failure being on the B-bank which is the lagging side on a sliding window delivery, therefore any failures on this side will cause an over-irradiation as the B-bank leaves struggles to keep the window from growing. Conclusion: Our findings suggest that a single failing MLC motor may jeopardize the entire delivery. This may be due to the bad MLC motor drawing too much current causing all MLCs on the same bank to underperform. This hypothesis will be investigated in a future study.« less

  4. Quality assurance of dynamic parameters in volumetric modulated arc therapy.

    PubMed

    Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N

    2012-07-01

    The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Three tests (for gantry position-dose delivery synchronisation, gantry speed-dose delivery synchronisation and MLC leaf speed and positions) were performed. The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the "beginning" and "end" errors. For MLC position verification, the maximum error was -2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. This experiment demonstrates that the variables and parameters of the Synergy S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC.

  5. Fast leaf-fitting with generalized underdose/overdose constraints for real-time MLC tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Douglas, E-mail: douglas.moore@utsouthwestern.edu; Sawant, Amit; Ruan, Dan

    2016-01-15

    Purpose: Real-time multileaf collimator (MLC) tracking is a promising approach to the management of intrafractional tumor motion during thoracic and abdominal radiotherapy. MLC tracking is typically performed in two steps: transforming a planned MLC aperture in response to patient motion and refitting the leaves to the newly generated aperture. One of the challenges of this approach is the inability to faithfully reproduce the desired motion-adapted aperture. This work presents an optimization-based framework with which to solve this leaf-fitting problem in real-time. Methods: This optimization framework is designed to facilitate the determination of leaf positions in real-time while accounting for themore » trade-off between coverage of the PTV and avoidance of organs at risk (OARs). Derived within this framework, an algorithm is presented that can account for general linear transformations of the planned MLC aperture, particularly 3D translations and in-plane rotations. This algorithm, together with algorithms presented in Sawant et al. [“Management of three-dimensional intrafraction motion through real-time DMLC tracking,” Med. Phys. 35, 2050–2061 (2008)] and Ruan and Keall [Presented at the 2011 IEEE Power Engineering and Automation Conference (PEAM) (2011) (unpublished)], was applied to apertures derived from eight lung intensity modulated radiotherapy plans subjected to six-degree-of-freedom motion traces acquired from lung cancer patients using the kilovoltage intrafraction monitoring system developed at the University of Sydney. A quality-of-fit metric was defined, and each algorithm was evaluated in terms of quality-of-fit and computation time. Results: This algorithm is shown to perform leaf-fittings of apertures, each with 80 leaf pairs, in 0.226 ms on average as compared to 0.082 and 64.2 ms for the algorithms of Sawant et al., Ruan, and Keall, respectively. The algorithm shows approximately 12% improvement in quality-of-fit over the Sawant et al. approach, while performing comparably to Ruan and Keall. Conclusions: This work improves upon the quality of the Sawant et al. approach, but does so without sacrificing run-time performance. In addition, using this framework allows for complex leaf-fitting strategies that can be used to account for PTV/OAR trade-off during real-time MLC tracking.« less

  6. SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, L; Yang, F

    2014-06-01

    Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber andmore » EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.« less

  7. SU-E-T-261: Plan Quality Assurance of VMAT Using Fluence Images Reconstituted From Log-Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, Y; Shimizu, E; Matsunaga, K

    2014-06-01

    Purpose: A successful VMAT plan delivery includes precise modulations of dose rate, gantry rotational and multi-leaf collimator (MLC) shapes. One of the main problem in the plan quality assurance is dosimetric errors associated with leaf-positional errors are difficult to analyze because they vary with MU delivered and leaf number. In this study, we calculated integrated fluence error image (IFEI) from log-files and evaluated plan quality in the area of all and individual MLC leaves scanned. Methods: The log-file reported the expected and actual position for inner 20 MLC leaves and the dose fraction every 0.25 seconds during prostate VMAT onmore » Elekta Synergy. These data were imported to in-house software that developed to calculate expected and actual fluence images from the difference of opposing leaf trajectories and dose fraction at each time. The IFEI was obtained by adding all of the absolute value of the difference between expected and actual fluence images corresponding. Results: In the area all MLC leaves scanned in the IFEI, the average and root mean square (rms) were 2.5 and 3.6 MU, the area of errors below 10, 5 and 3 MU were 98.5, 86.7 and 68.1 %, the 95 % of area was covered with less than error of 7.1 MU. In the area individual MLC leaves scanned in the IFEI, the average and rms value were 2.1 – 3.0 and 3.1 – 4.0 MU, the area of errors below 10, 5 and 3 MU were 97.6 – 99.5, 81.7 – 89.5 and 51.2 – 72.8 %, the 95 % of area was covered with less than error of 6.6 – 8.2 MU. Conclusion: The analysis of the IFEI reconstituted from log-file was provided detailed information about the delivery in the area of all and individual MLC leaves scanned.« less

  8. SU-E-T-610: Comparison of Treatment Times Between the MLCi and Agility Multileaf Collimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramsey, C; Bowling, J

    2014-06-01

    Purpose: The Agility is a new 160-leaf MLC developed by Elekta for use in their Infinity and Versa HD linacs. As compared to the MLCi, the Agility increased the maximum leaf speed from 2 cm/s to 3.5 cm/s, and the maximum primary collimator speed from 1.5 cm/s to 9.0 cm/s. The purpose of this study was to determine if the Agility MLC resulted in improved plan quality and/or shorter treatment times. Methods: An Elekta Infinity that was originally equipped with a 80 leaf MLCi was upgraded to an 160 leaf Agility. Treatment plan quality was evaluated using the Pinnacle planningmore » system with SmartArc. Optimization was performed once for the MLCi and once for the Agility beam models using the same optimization parameters and the same number of iterations. Patient treatment times were measured for all IMRT, VMAT, and SBRT patients treated on the Infinity with the MLCi and Agility MLCs. Treatment times were extracted from the EMR and measured from when the patient first walked into the treatment room until exiting the treatment room. Results: 11,380 delivery times were measured for patients treated with the MLCi, and 1,827 measurements have been made for the Agility MLC. The average treatment times were 19.1 minutes for the MLCi and 20.8 minutes for the Agility. Using a t-test analysis, there was no difference between the two groups (t = 0.22). The dose differences between patients planned with the MLCi and the Agility MLC were minimal. For example, the dose difference for the PTV, GTV, and cord for a head and neck patient planned using Pinnacle were effectively equivalent. However, the dose to the parotid glands was slightly worse with the Agility MLC. Conclusion: There was no statistical difference in treatment time, or any significant dosimetric difference between the Agility MLC and the MLCi.« less

  9. Management of three-dimensional intrafraction motion through real-time DMLC tracking.

    PubMed

    Sawant, Amit; Venkat, Raghu; Srivastava, Vikram; Carlson, David; Povzner, Sergey; Cattell, Herb; Keall, Paul

    2008-05-01

    Tumor tracking using a dynamic multileaf collimator (DMLC) represents a promising approach for intrafraction motion management in thoracic and abdominal cancer radiotherapy. In this work, we develop, empirically demonstrate, and characterize a novel 3D tracking algorithm for real-time, conformal, intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT)-based radiation delivery to targets moving in three dimensions. The algorithm obtains real-time information of target location from an independent position monitoring system and dynamically calculates MLC leaf positions to account for changes in target position. Initial studies were performed to evaluate the geometric accuracy of DMLC tracking of 3D target motion. In addition, dosimetric studies were performed on a clinical linac to evaluate the impact of real-time DMLC tracking for conformal, step-and-shoot (S-IMRT), dynamic (D-IMRT), and VMAT deliveries to a moving target. The efficiency of conformal and IMRT delivery in the presence of tracking was determined. Results show that submillimeter geometric accuracy in all three dimensions is achievable with DMLC tracking. Significant dosimetric improvements were observed in the presence of tracking for conformal and IMRT deliveries to moving targets. A gamma index evaluation with a 3%-3 mm criterion showed that deliveries without DMLC tracking exhibit between 1.7 (S-IMRT) and 4.8 (D-IMRT) times more dose points that fail the evaluation compared to corresponding deliveries with tracking. The efficiency of IMRT delivery, as measured in the lab, was observed to be significantly lower in case of tracking target motion perpendicular to MLC leaf travel compared to motion parallel to leaf travel. Nevertheless, these early results indicate that accurate, real-time DMLC tracking of 3D tumor motion is feasible and can potentially result in significant geometric and dosimetric advantages leading to more effective management of intrafraction motion.

  10. Quality assurance of dynamic parameters in volumetric modulated arc therapy

    PubMed Central

    Manikandan, A; Sarkar, B; Holla, R; Vivek, T R; Sujatha, N

    2012-01-01

    Objectives The purpose of this study was to demonstrate quality assurance checks for accuracy of gantry speed and position, dose rate and multileaf collimator (MLC) speed and position for a volumetric modulated arc treatment (VMAT) modality (Synergy® S; Elekta, Stockholm, Sweden), and to check that all the necessary variables and parameters were synchronous. Methods Three tests (for gantry position–dose delivery synchronisation, gantry speed–dose delivery synchronisation and MLC leaf speed and positions) were performed. Results The average error in gantry position was 0.5° and the average difference was 3 MU for a linear and a parabolic relationship between gantry position and delivered dose. In the third part of this test (sawtooth variation), the maximum difference was 9.3 MU, with a gantry position difference of 1.2°. In the sweeping field method test, a linear relationship was observed between recorded doses and distance from the central axis, as expected. In the open field method, errors were encountered at the beginning and at the end of the delivery arc, termed the “beginning” and “end” errors. For MLC position verification, the maximum error was −2.46 mm and the mean error was 0.0153 ±0.4668 mm, and 3.4% of leaves analysed showed errors of >±1 mm. Conclusion This experiment demonstrates that the variables and parameters of the Synergy® S are synchronous and that the system is suitable for delivering VMAT using a dynamic MLC. PMID:22745206

  11. SU-E-P-32: Adapting An MMLC to a Conventional Linac to Perform Stereotactic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emam, I; Hosini, M

    2015-06-15

    Purpose: Micro-MLCs minimizes beam scalloping effects caused by conventional-MLCs and facilitates conformal dynamic treatment delivery. But their effect on dosimetric parameters require careful investigations. Physical and dosimetric parameters and Linac mechanical stability with mMLC (net weight 30 Kg) attached to the gantry are to be investigated. Moreover, output study along with recommended jaws offsets are studied. Adaptation of an mMLC to our 16-years old conventional Linac is investigated in this work Methods: BrainLab mMLC (m3) mounted in a detachable chassis to the Philips SL-15 Linac (30kg). Gantry and collimator spoke shots measurements are made using a calibrated film in amore » solid phantom and compared with pin-point measurements. Leaf penumbra, transmission, leakage between the leaves, percentage depth dose (PDD) are measured using IBA pin-point ion chamber at 6 and 10 MV. For output measurements (using brass build-up cap), jaws are modified continuously regarding to m3-fields while output factor are compared with fixed jaws situation, while the mMLC leaf configuration is modified for different m3-fields Results: Mean transmission through leaves is 1.9±0.1% and mean leakage between leaves is 2.8±0.15%. Between opposing leaves abutting along the central beam-axis mean transmission is 15±3%, but it is reduced to 4.5±0.6% by moving the abutment position 4.5cm off-axis. The penumbra was sharper for m3 -fields than jaws-fields (maximum difference is 1.51±0.2%). m3-fields PDD show ∼3% variation from those of jaws-fields. m3-fields output factors show large variations (<4%) from Jaws defined fields. Output for m3-rectangular fields show slight variation in case of leaf-end&leaf-side as well as X-jaw&Y-jaw exchange. Circular m3-fields output factors shows close agreement with their corresponding square jaws-defined fields using 2mm Jaws offsets, If jaws are retracted to m3 limits, differences become <5%. Conclusion: BrainLab m3 is successfully adapted to our 16 old Philips-SL-15 Linac. Dosimetric properties should be taken into account for treatment planning considerations.« less

  12. Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions

    NASA Astrophysics Data System (ADS)

    Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B.

    2009-08-01

    Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.

  13. Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions.

    PubMed

    Xu, Jun; Papanikolaou, Nikos; Shi, Chengyu; Jiang, Steve B

    2009-08-21

    Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.

  14. SU-F-T-629: Effect of Multi-Leaf Collimator (MLC) Width On Plan Quality of Single-Isocenter VMAT Intracranial Stereotactic Radiosurgery for Multiple Metastases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kraus, J; Thomas, E; Wu, X

    2016-06-15

    Purpose: Single-isocenter VMAT has been shown able to create high quality plans for complex intracranial multiple metastasis SRS cases. Linacs capable of the technique are typically outfitted with an MLC that consists of a combination of 5 mm and 10 mm leaves (standard) or 2.5 mm and 5 mm leaves (high-definition). In this study, we test the hypothesis that thinner collimator leaves are associated with improved plan quality. Methods: Ten multiple metastasis cases were identified and planned for VMAT SRS using a 10 MV flattening filter free beam. Plans were created for a standard (std) and a high-definition (HD) MLC.more » Published values for leaf transmission factor and dosimetric leaf gap were utilized. All other parameters were invariant. Conformity (plan and individual target), moderate isodose spill (V50%), and low isodose spill (mean brain dose) were selected for analysis. Results: Compared to standard MLC, HD-MLC improved overall plan conformity (median: Paddick CI-HD = 0.83, Paddick CI-std = 0.79; p = 0.004 and median: RTOG CI-HD =1.18, RTOG CI-std =1.24; p = 0.01 ), improved individual lesion conformity (median: Paddick CI-HD,i =0.77, Paddick CI-std,i =0.72; p < 0.001 and median: RTOG CI-HD,i = 1.28, RTOG CI-std,i =1.35; p < 0.001), improved moderate isodose spill (median: V50%-HD = 37.0 cc, V50%-std = 45.7 cc; p = 0.002), and improved low dose spill (median: dmean-HD = 2.90 Gy, dmean-std = 3.19 Gy; p = 0.002). Conclusion: For the single-isocenter VMAT SRS of multiple metastasis plans examined, use of HD-MLC modestly improved conformity, moderate isodose, and low isodose spill compared to standard MLC. However, in all cases we were able to generate clinically acceptable plans with the standard MLC. More work is need to further quantify the difference in cases with higher numbers of small targets and to better understand any potential clinical significance. This research was supported in part by Varian Medical Systems.« less

  15. Evaluation of MLC leaf transmission on IMRT treatment plan quality of patients with advanced lung cancer.

    PubMed

    Chen, Jiayun; Fu, Guishan; Li, Minghui; Song, Yixin; Dai, Jianrong; Miao, Junjie; Liu, Zhiqiang; Li, Yexiong

    2017-12-14

    The purpose of this paper was to evaluate the impact of leaf treatment of multileaf collimator (MLC) in plan quality of intensity-modulated radiotherapy (IMRT) of patients with advanced lung cancer. Five MLCs with different leaf transmissions (0.01%, 0.5%, 1.2%, 1.8%, and 3%) were configured for an accelerator in a treatment planning system. Correspondingly, 5 treatment plans with the same optimization setting were created and evaluated quantitatively for each patient (11 patients total) who was diagnosed with advanced lung cancer. All of the 5 plans for each patient met the dose requirement for the planning treatment volumes (PTVs) and had similar target dose homogeneity and conformity. On average, the doses to selected organs were as follows: (1) V 5 , V 20 , and the mean dose of total lung; (2) the maximum and mean dose to spinal cord planning organ-at-risk volume (PRV); and (3) V 30 and V 40 of heart, decreased slightly when MLC transmission was decreased, but with no statistical differences. There is a clear grouping of plans having total quality score (S D ) value, which is used to evaluate plan quality: (1) more than 1 (patient nos. 1 to 3, 5, and 8), and more than 2.5 (patient no. 6); (2) less than 1 (patient nos. 7 and 10); (3) around 1 (patient nos. 4, 9, and 11). As MLC transmission increased, overall S D values increased as well and plan dose requirement was harder to meet. The clinical requirements were violated increasingly as MLC transmission became large. Total S D with and without normal tissue (NT) showed similar results, with no statistically significant differences. Therefore, decrease of MLC transmission did have minimum impact on plan, and it improved target coverage and reduced normal tissue radiation slightly, with no statistical significance. Plan quality could not be significantly improved by MLC transmission reduction. However, lower MLC transmission may have advantages on lung sparing to low- and intermediate-dose exposure. Besides conventional fraction, hyperfraction, or stereotactic body radiotherapy (SBRT), the reduction on lung sparing is still essential because it is highly relevant to radiation pneumonitis (RP). It has potential to diminish incidence of RP and improve patient's quality of life after irradiation with lowered MLC transmission. Copyright © 2017 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  16. SU-F-T-230: A Simple Method to Assess Accuracy of Dynamic Wave Arc Irradiation Using An Electronic Portal Imaging Device and Log Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirashima, H; Miyabe, Y; Yokota, K

    2016-06-15

    Purpose: The Dynamic Wave Arc (DWA) technique, where the multi-leaf collimator (MLC) and gantry/ring move simultaneously in a predefined non-coplanar trajectory, has been developed on the Vero4DRT. The aim of this study is to develop a simple method for quality assurance of DWA delivery using an electronic portal imaging device (EPID) measurements and log files analysis. Methods: The Vero4DRT has an EPID on the beam axis, the resolution of which is 0.18 mm/pixel at the isocenter plane. EPID images were acquired automatically. To verify the detection accuracy of the MLC position by EPID images, the MLC position with intentional errorsmore » was assessed. Tests were designed considering three factors: (1) accuracy of the MLC position (2) dose output consistency with variable dose rate (160–400 MU/min), gantry speed (2.4–6°/s), ring speed (0.5–2.5°/s), and (3) MLC speed (1.6–4.2 cm/s). All the patterns were delivered to the EPID and compared with those obtained with a stationary radiation beam with a 0° gantry angle. The irradiation log, including the MLC position and gantry/ring angle, were recorded simultaneously. To perform independent checks of the machine accuracy, the MLC position and gantry/ring angle position were assessed using log files. Results: 0.1 mm intentional error can be detected by the EPID, which is smaller than the EPID pixel size. The dose outputs with different conditions of the dose rate and gantry/ring speed and MLC speed showed good agreement, with a root mean square (RMS) error of 0.76%. The RMS error between the detected and recorded data were 0.1 mm for the MLC position, 0.12° for the gantry angle, and 0.07° for the ring angle. Conclusion: The MLC position and dose outputs in variable conditions during DWA irradiation can be easily detected using EPID measurements and log file analysis. The proposed method is useful for routine verification. This research is (partially) supported by the Practical Research for Innovative Cancer Control (15Ack0106151h0001) from Japan Agency for Medical Research and development, AMED. Authors Takashi Mizowaki and Masahiro Hiraoka have consultancy agreement with Mitsubishi Heavy Industries, Ltd., Japan.« less

  17. SU-E-T-613: Dosimetric Consequences of Systematic MLC Leaf Positioning Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kathuria, K; Siebers, J

    2014-06-01

    Purpose: The purpose of this study is to determine the dosimetric consequences of systematic MLC leaf positioning errors for clinical IMRT patient plans so as to establish detection tolerances for quality assurance programs. Materials and Methods: Dosimetric consequences were simulated by extracting mlc delivery instructions from the TPS, altering the file by the specified error, reloading the delivery instructions into the TPS, recomputing dose, and extracting dose-volume metrics for one head-andneck and one prostate patient. Machine error was simulated by offsetting MLC leaves in Pinnacle in a systematic way. Three different algorithms were followed for these systematic offsets, and aremore » as follows: a systematic sequential one-leaf offset (one leaf offset in one segment per beam), a systematic uniform one-leaf offset (same one leaf offset per segment per beam) and a systematic offset of a given number of leaves picked uniformly at random from a given number of segments (5 out of 10 total). Dose to the PTV and normal tissue was simulated. Results: A systematic 5 mm offset of 1 leaf for all delivery segments of all beams resulted in a maximum PTV D98 deviation of 1%. Results showed very low dose error in all reasonably possible machine configurations, rare or otherwise, which could be simulated. Very low error in dose to PTV and OARs was shown in all possible cases of one leaf per beam per segment being offset (<1%), or that of only one leaf per beam being offset (<.2%). The errors resulting from a high number of adjacent leaves (maximum of 5 out of 60 total leaf-pairs) being simultaneously offset in many (5) of the control points (total 10–18 in all beams) per beam, in both the PTV and the OARs analyzed, were similarly low (<2–3%). Conclusions: The above results show that patient shifts and anatomical changes are the main source of errors in dose delivered, not machine delivery. These two sources of error are “visually complementary” and uncorrelated (albeit not additive in the final error) and one can easily incorporate error resulting from machine delivery in an error model based purely on tumor motion.« less

  18. SU-F-T-540: Comprehensive Fluence Delivery Optimization with Multileaf Collimation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weppler, S; Villarreal-Barajas, J; Department of Medical Physics, Tom Baker Cancer Center, Calgary, Alberta

    2016-06-15

    Purpose: Multileaf collimator (MLC) leaf sequencing is performed via commercial black-box implementations, on which a user has limited to no access. We have developed an explicit, generic MLC sequencing model to serve as a tool for future investigations of fluence map optimization, fluence delivery optimization, and rotational collimator delivery methods. Methods: We have developed a novel, comprehensive model to effectively account for a variety of transmission and penumbra effects previously treated on an ad hoc basis in the literature. As the model is capable of quantifying a variety of effects, we utilize the asymmetric leakage intensity across each leaf tomore » deliver fluence maps with pixel size smaller than the narrowest leaf width. Developed using linear programming and mixed integer programming formulations, the model is implemented using state of the art open-source solvers. To demonstrate the versatility of the algorithm, a graphical user interface (GUI) was developed in MATLAB capable of accepting custom leaf specifications and transmission parameters. As a preliminary proof-ofconcept, we have sequenced the leaves of a Varian 120 Leaf Millennium MLC for five prostate cancer patient fields and one head and neck field. Predetermined fluence maps have been processed by data smoothing methods to obtain pixel sizes of 2.5 cm{sup 2}. The quality of output was analyzed using computer simulations. Results: For the prostate fields, an average root mean squared error (RMSE) of 0.82 and gamma (0.5mm/0.5%) of 91.4% were observed compared to RMSE and gamma (0.5mm/0.5%) values of 7.04 and 34.0% when the leakage considerations were omitted. Similar results were observed for the head and neck case. Conclusion: A model to sequence MLC leaves to optimality has been proposed. Future work will involve extensive testing and evaluation of the method on clinical MLCs and comparison with black-box leaf sequencing algorithms currently used by commercial treatment planning systems.« less

  19. SU-E-T-598: Clinical Experience of Configuration, Commission and Implementation for SmartArc with MOSAIQ R&V System.

    PubMed

    Kong, X; Clausen, C; Wang, S

    2012-06-01

    Clinical experience for configuration, commission and implementation of SmartArc with MOSAIQ R&V system. SmartArc is Pinnacle's solution for VMAT. On July 2011 we updated to Pinnacle 9.0 and purchased SmartArc. A standalone Eclipse workstation has been used 3 years for VMAT planning. Our clinical setting: Mosaiq 2.2; Varian Trilogy driven by 4DiTC and Varian 21ex driven by sequencer. Some key physics parameters have been studied: machine dose rate; MLC leaf speed; Leaf motion per gantry rotation. Tabletop was created by user to improve the dose accuracy for planning. In-house sandwich phantom was used with MapCheck for planner dose verification. A PTW 0.6cc ion chamber was included for absolute dose comparison. A copy of current machine data with default highest dose rate is recommended. It is due to after 10th iteration of optimization, the default dose rate will kick in. 2.5cm/s is the constraint for Varian Millennium 120 MLC; a buffer zone of 10% is suggested to reduce the MLC error on treatment. 2.25cm/s is used in our configuration. This results in MLC interlock if not configured correct. Maximum leaf motion per gantry rotation of 0.46cm/degree has to be checked for planning with Mosaiq R&V. Otherwise, undeliverable plan will show up sometimes on 4DiTC.Tabletop was exported as a DICOM structure from Eclipse to Pinnacle; we created a ROI template based on the matched tabletop.QA using in-house phantom for different sites were tested. Results for both planner dose and absolute chamber measurement are satisfactory. Special attentions need to be paid for dose rate, MLC leaf speed, leaf motion per gantry rotation when configuring SmartArc. Varian 21ex is supported but is slow for clinical delivery. Users need to create your own tabletop to improve planning accuracy. Conventional commission procedures for RapidArc also apply for SmartArc. © 2012 American Association of Physicists in Medicine.

  20. Incorporating geometric ray tracing to generate initial conditions for intensity modulated arc therapy optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oliver, Mike; Gladwish, Adam; Craig, Jeff

    2008-07-15

    Purpose and background: Intensity modulated arc therapy (IMAT) is a rotational variant of Intensity modulated radiation therapy (IMRT) that is achieved by allowing the multileaf collimator (MLC) positions to vary as the gantry rotates around the patient. This work describes a method to generate an IMAT plan through the use of a fast ray tracing technique based on dosimetric and geometric information for setting initial MLC leaf positions prior to final IMAT optimization. Methods and materials: Three steps were used to generate an IMAT plan. The first step was to generate arcs based on anatomical contours. The second step wasmore » to generate ray importance factor (RIF) maps by ray tracing the dose distribution inside the planning target volume (PTV) to modify the MLC leaf positions of the anatomical arcs to reduce the maximum dose inside the PTV. The RIF maps were also segmented to create a new set of arcs to improve the dose to low dose voxels within the PTV. In the third step, the MLC leaf positions from all arcs were put through a leaf position optimization (LPO) algorithm and brought into a fast Monte Carlo dose calculation engine for a final dose calculation. The method was applied to two phantom cases, a clinical prostate case and the Radiological Physics Center (RPC)'s head and neck phantom. The authors assessed the plan improvements achieved by each step and compared plans with and without using RIF. They also compared the IMAT plan with an IMRT plan for the RPC phantom. Results: All plans that incorporated RIF and LPO had lower objective function values than those that incorporated LPO only. The objective function value was reduced by about 15% after the generation of RIF arcs and 52% after generation of RIF arcs and leaf position optimization. The IMAT plan for the RPC phantom had similar dose coverage for PTV1 and PTV2 (the same dose volume histogram curves), however, slightly lower dose to the normal tissues compared to a six-field IMRT plan. Conclusion: The use of a ray importance factor can generate initial IMAT arcs efficiently for further MLC leaf position optimization to obtain more favorable IMAT plan.« less

  1. SU-G-JeP1-12: Head-To-Head Performance Characterization of Two Multileaf Collimator Tracking Algorithms for Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillet, V; Colvill, E; Royal North Shore Hospital, St Leonards, Sydney

    2016-06-15

    Purpose: Multi-leaf collimator (MLC) tracking is being clinically pioneered to continuously compensate for thoracic and abdominal motion during radiotherapy. The purpose of this work is to characterize the performance of two MLC tracking algorithms for cancer radiotherapy, based on a direct optimization and a piecewise leaf fitting approach respectively. Methods: To test the algorithms, both physical and in silico experiments were performed. Previously published high and low modulation VMAT plans for lung and prostate cancer cases were used along with eight patient-measured organ-specific trajectories. For both MLC tracking algorithm, the plans were run with their corresponding patient trajectories. The physicalmore » experiments were performed on a Trilogy Varian linac and a programmable phantom (HexaMotion platform). For each MLC tracking algorithm, plan and patient trajectory, the tracking accuracy was quantified as the difference in aperture area between ideal and fitted MLC. To compare algorithms, the average cumulative tracking error area for each experiment was calculated. The two-sample Kolmogorov-Smirnov (KS) test was used to evaluate the cumulative tracking errors between algorithms. Results: Comparison of tracking errors for the physical and in silico experiments showed minor differences between the two algorithms. The KS D-statistics for the physical experiments were below 0.05 denoting no significant differences between the two distributions pattern and the average error area (direct optimization/piecewise leaf-fitting) were comparable (66.64 cm2/65.65 cm2). For the in silico experiments, the KS D-statistics were below 0.05 and the average errors area were also equivalent (49.38 cm2/48.98 cm2). Conclusion: The comparison between the two leaf fittings algorithms demonstrated no significant differences in tracking errors, neither in a clinically realistic environment nor in silico. The similarities in the two independent algorithms give confidence in the use of either algorithm for clinical implementation.« less

  2. Modulation indices for volumetric modulated arc therapy.

    PubMed

    Park, Jong Min; Park, So-Yeon; Kim, Hyoungnyoun; Kim, Jin Ho; Carlson, Joel; Ye, Sung-Joon

    2014-12-07

    The aim of this study is to present a modulation index (MI) for volumetric modulated arc therapy (VMAT) based on the speed and acceleration analysis of modulating-parameters such as multi-leaf collimator (MLC) movements, gantry rotation and dose-rate, comprehensively. The performance of the presented MI (MIt) was evaluated with correlation analyses to the pre-treatment quality assurance (QA) results, differences in modulating-parameters between VMAT plans versus dynamic log files, and differences in dose-volumetric parameters between VMAT plans versus reconstructed plans using dynamic log files. For comparison, the same correlation analyses were performed for the previously suggested modulation complexity score (MCS(v)), leaf travel modulation complexity score (LTMCS) and MI by Li and Xing (MI Li&Xing). In the two-tailed unpaired parameter condition, p values were acquired. The Spearman's rho (r(s)) values of MIt, MCSv, LTMCS and MI Li&Xing to the local gamma passing rate with 2%/2 mm criterion were -0.658 (p < 0.001), 0.186 (p = 0.251), 0.312 (p = 0.05) and -0.455 (p = 0.003), respectively. The values of rs to the modulating-parameter (MLC positions) differences were 0.917, -0.635, -0.857 and 0.795, respectively (p < 0.001). For dose-volumetric parameters, MIt showed higher statistically significant correlations than the conventional MIs. The MIt showed good performance for the evaluation of the modulation-degree of VMAT plans.

  3. Poster - 53: Improving inter-linac DMLC IMRT dose precision by fine tuning of MLC leaf calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakonechny, Keith; Tran, Muoi; Sasaki, David

    Purpose: To develop a method to improve the inter-linac precision of DMLC IMRT dosimetry. Methods: The distance between opposing MLC leaf banks (“gap size”) can be finely tuned on Varian linacs. The dosimetric effect due to small deviations from the nominal gap size (“gap error”) was studied by introducing known errors for several DMLC sliding gap sizes, and for clinical plans based on the TG119 test cases. The plans were delivered on a single Varian linac and the relationship between gap error and the corresponding change in dose was measured. The plans were also delivered on eight Varian 2100 seriesmore » linacs (at two institutions) in order to quantify the inter-linac variation in dose before and after fine tuning the MLC calibration. Results: The measured dose differences for each field agreed well with the predictions of LoSasso et al. Using the default MLC calibration, the variation in the physical MLC gap size was determined to be less than 0.4 mm between all linacs studied. The dose difference between the linacs with the largest and smallest physical gap was up to 5.4% (spinal cord region of the head and neck TG119 test case). This difference was reduced to 2.5% after fine tuning the MLC gap calibration. Conclusions: The inter-linac dose precision for DMLC IMRT on Varian linacs can be improved using a simple modification of the MLC calibration procedure that involves fine adjustment of the nominal gap size.« less

  4. SU-F-T-604: Dosimetric Evaluation of Intracranial Stereotactic Radiotherapy Plans On a LINAC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheth, N; Tabibian, A; Rose, J

    2016-06-15

    Purpose: To evaluate the dosimetry of cranial stereotactic radiotherapy (SRT) plans of varying techniques on linac that meets appropriate TG-142 tolerances using 1 cm leaf width multileaf collimator (MLC). Methods: Seventeen spherical targets were generated in the center of a head phantom with diameters ranging 8 mm to 40 mm. SRT plans used 100° non-coplanar arcs and 5 couch angles with 35° spacing. The field size was target plus 1 mm margin. Four plans were created for each target: symmetrical jaws blocking for 5 arcs with 0° collimator (J1C), symmetrical jaws blocking with 5 clockwise arcs with 0° collimator andmore » 5 counter-clockwise arcs with 45° collimator (J2C), MLC blocking for 5 dynamic conformal arcs with 0° collimator (M1C), and MLC blocking for 5 clockwise dynamic conformal arcs with 0° collimators and 5 counter-clockwise dynamic conformal arcs with 45° collimator (M2C).Conformity was evaluated using a ratio of Rx to target volume (PITV). Heterogeneity was determined using a ratio of maximum dose to Rx dose. Falloff was scored using CGIg: difference of effective radii of spheres equal to half and full Rx volumes. Results: All plans met RTOG SRS criteria for conformity and heterogeneity. The mean PITV was 1.52±0.07, 1.49±0.08, 1.39±0.05, and 1.37±0.04 for J1C, J2C, M1C, and M2C plans respectively. The mean CGIg was 75.35±15.79, 74.19±16.66, 77.14±15.12, and 76.28±15.78 for J1C, J2C, M1C, and M2C plans respectively. The mean MDPD was 1.25±0.00 for all techniques. Conclusion: Clinically acceptable SRT plans for spherical targets were created on a linac with 1 cm MLC. Adding two collimator angles and MLC to arcs each improved conformity. The MLC improved the dose falloff while two collimator angles degraded it. This technique can expand the availability of SRT to patients especially to those who cannot travel to a facility with a dedicated stereotactic radiosurgery machine.« less

  5. Planning and delivery of four-dimensional radiation therapy with multileaf collimators

    NASA Astrophysics Data System (ADS)

    McMahon, Ryan L.

    This study is an investigation of the application of multileaf collimators (MLCs) to the treatment of moving anatomy with external beam radiation therapy. First, a method for delivering intensity modulated radiation therapy (IMRT) to moving tumors is presented. This method uses an MLC control algorithm that calculates appropriate MLC leaf speeds in response to feedback from real-time imaging. The algorithm does not require a priori knowledge of a tumor's motion, and is based on the concept of self-correcting DMLC leaf trajectories . This gives the algorithm the distinct advantage of allowing for correction of DMLC delivery errors without interrupting delivery. The algorithm is first tested for the case of one-dimensional (1D) rigid tumor motion in the beam's eye view (BEV). For this type of motion, it is shown that the real-time tracking algorithm results in more accurate deliveries, with respect to delivered intensity, than those which ignore motion altogether. This is followed by an appropriate extension of the algorithm to two-dimensional (2D) rigid motion in the BEV. For this type of motion, it is shown that the 2D real-time tracking algorithm results in improved accuracy (in the delivered intensity) in comparison to deliveries which ignore tumor motion or only account for tumor motion which is aligned with MLC leaf travel. Finally, a method is presented for designing DMLC leaf trajectories which deliver a specified intensity over a moving tumor without overexposing critical structures which exhibit motion patterns that differ from that of the tumor. In addition to avoiding overexposure of critical organs, the method can, in the case shown, produce deliveries that are superior to anything achievable using stationary anatomy. In this regard, the method represents a systematic way to include anatomical motion as a degree of freedom in the optimization of IMRT while producing treatment plans that are deliverable with currently available technology. These results, combined with those related to the real-time MLC tracking algorithm, show that an MLC is a promising tool to investigate for the delivery of four-dimensional radiation therapy.

  6. IMRT sequencing for a six-bank multi-leaf system.

    PubMed

    Topolnjak, R; van der Heide, U A; Lagendijk, J J W

    2005-05-07

    In this study, we present a sequencer for delivering step-and-shoot IMRT using a six-bank multi-leaf system. Such a system was proposed earlier and combines a high-resolution field-shaping ability with a large field size. It consists of three layers of two opposing leaf banks with 1 cm leaves. The layers are rotated relative to each other at 60 degrees . A low-resolution mode of sequencing is achieved by using one layer of leaves as primary MLC, while the other two are used to improve back-up collimation. For high-resolution sequencing, an algorithm is presented that creates segments shaped by all six banks. Compared to a hypothetical mini-MLC with 0.4 cm leaves, a similar performance can be achieved, but a trade-off has to be made between accuracy and the number of segments.

  7. Dose calculation of dynamic trajectory radiotherapy using Monte Carlo.

    PubMed

    Manser, P; Frauchiger, D; Frei, D; Volken, W; Terribilini, D; Fix, M K

    2018-04-06

    Using volumetric modulated arc therapy (VMAT) delivery technique gantry position, multi-leaf collimator (MLC) as well as dose rate change dynamically during the application. However, additional components can be dynamically altered throughout the dose delivery such as the collimator or the couch. Thus, the degrees of freedom increase allowing almost arbitrary dynamic trajectories for the beam. While the dose delivery of such dynamic trajectories for linear accelerators is technically possible, there is currently no dose calculation and validation tool available. Thus, the aim of this work is to develop a dose calculation and verification tool for dynamic trajectories using Monte Carlo (MC) methods. The dose calculation for dynamic trajectories is implemented in the previously developed Swiss Monte Carlo Plan (SMCP). SMCP interfaces the treatment planning system Eclipse with a MC dose calculation algorithm and is already able to handle dynamic MLC and gantry rotations. Hence, the additional dynamic components, namely the collimator and the couch, are described similarly to the dynamic MLC by defining data pairs of positions of the dynamic component and the corresponding MU-fractions. For validation purposes, measurements are performed with the Delta4 phantom and film measurements using the developer mode on a TrueBeam linear accelerator. These measured dose distributions are then compared with the corresponding calculations using SMCP. First, simple academic cases applying one-dimensional movements are investigated and second, more complex dynamic trajectories with several simultaneously moving components are compared considering academic cases as well as a clinically motivated prostate case. The dose calculation for dynamic trajectories is successfully implemented into SMCP. The comparisons between the measured and calculated dose distributions for the simple as well as for the more complex situations show an agreement which is generally within 3% of the maximum dose or 3mm. The required computation time for the dose calculation remains the same when the additional dynamic moving components are included. The results obtained for the dose comparisons for simple and complex situations suggest that the extended SMCP is an accurate dose calculation and efficient verification tool for dynamic trajectory radiotherapy. This work was supported by Varian Medical Systems. Copyright © 2018. Published by Elsevier GmbH.

  8. Dosimetric effect of Elekta Beam Modulator micromultileaf in three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for prostate cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carosi, Alessandra, E-mail: alessandra.carosi@katamail.com; Ingrosso, Gianluca; Ponti, Elisabetta

    2014-07-01

    The purpose of this study is to analyze the dosimetric effect of Elekta Beam Modulator in 3-dimensional conformal radiation therapy (3DCRT) and in intensity-modulated radiation therapy (IMRT) for localized prostate cancer. We compared treatment plans developed with 2 different Elekta multileaf collimators (MLC): Beam Modulator micro-MLC (mMLC) (4-mm leaf width at the isocenter) and standard MLC (10-mm leaf width at the isocenter). The comparison was performed for 15 patients with localized prostate cancer in 3DCRT and IMRT delivery; a total of 60 treatment plans were processed. The dose-volume histograms were used to provide the quantitative comparison between plans. In particular,more » we analyzed differences between rectum and bladder sparing in terms of a set of appropriate Vx (percentage of organ at risk [OAR] volume receiving the x dose) and differences between target conformity and coverage in terms of coverage factor and conformation number. Our analysis demonstrates that in 3DCRT there is an advantage in the use of Elekta Beam Modulator mMLC in terms of organ sparing; in particular, a significant decrease in rectal V{sub 60} and V{sub 50} (p = 0.001) and in bladder V{sub 70} and V{sub 65} (p = 0.007 and 0.002, respectively) was found. Moreover, a better target dose conformity was obtained (p = 0.002). IMRT plans comparison demonstrated no significant differences between the use of the 4 or 10-mm MLCs. Our analysis shows that in 3DCRT the use of the Elekta Beam Modulator mMLC gives a gain in target conformity and in OARs dose sparing whereas in IMRT plans there is no advantage.« less

  9. A dosimetric evaluation of the Eclipse AAA algorithm and Millennium 120 MLC for cranial intensity-modulated radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calvo Ortega, Juan Francisco, E-mail: jfcdrr@yahoo.es; Moragues, Sandra; Pozo, Miquel

    2014-07-01

    The aim of this study is to assess the accuracy of a convolution-based algorithm (anisotropic analytical algorithm [AAA]) implemented in the Eclipse planning system for intensity-modulated radiosurgery (IMRS) planning of small cranial targets by using a 5-mm leaf-width multileaf collimator (MLC). Overall, 24 patient-based IMRS plans for cranial lesions of variable size (0.3 to 15.1 cc) were planned (Eclipse, AAA, version 10.0.28) using fixed field-based IMRS produced by a Varian linear accelerator equipped with a 120 MLC (5-mm width on central leaves). Plan accuracy was evaluated according to phantom-based measurements performed with radiochromic film (EBT2, ISP, Wayne, NJ). Film 2Dmore » dose distributions were performed with the FilmQA Pro software (version 2011, Ashland, OH) by using the triple-channel dosimetry method. Comparison between computed and measured 2D dose distributions was performed using the gamma method (3%/1 mm). Performance of the MLC was checked by inspection of the DynaLog files created by the linear accelerator during the delivery of each dynamic field. The absolute difference between the calculated and measured isocenter doses for all the IMRS plans was 2.5% ± 2.1%. The gamma evaluation method resulted in high average passing rates of 98.9% ± 1.4% (red channel) and 98.9% ± 1.5% (blue and green channels). DynaLog file analysis revealed a maximum root mean square error of 0.46 mm. According to our results, we conclude that the Eclipse/AAA algorithm provides accurate cranial IMRS dose distributions that may be accurately delivered by a Varian linac equipped with a Millennium 120 MLC.« less

  10. Technical Note: A novel leaf sequencing optimization algorithm which considers previous underdose and overdose events for MLC tracking radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisotzky, Eric, E-mail: eric.wisotzky@charite.de, E-mail: eric.wisotzky@ipk.fraunhofer.de; O’Brien, Ricky; Keall, Paul J., E-mail: paul.keall@sydney.edu.au

    2016-01-15

    Purpose: Multileaf collimator (MLC) tracking radiotherapy is complex as the beam pattern needs to be modified due to the planned intensity modulation as well as the real-time target motion. The target motion cannot be planned; therefore, the modified beam pattern differs from the original plan and the MLC sequence needs to be recomputed online. Current MLC tracking algorithms use a greedy heuristic in that they optimize for a given time, but ignore past errors. To overcome this problem, the authors have developed and improved an algorithm that minimizes large underdose and overdose regions. Additionally, previous underdose and overdose events aremore » taken into account to avoid regions with high quantity of dose events. Methods: The authors improved the existing MLC motion control algorithm by introducing a cumulative underdose/overdose map. This map represents the actual projection of the planned tumor shape and logs occurring dose events at each specific regions. These events have an impact on the dose cost calculation and reduce recurrence of dose events at each region. The authors studied the improvement of the new temporal optimization algorithm in terms of the L1-norm minimization of the sum of overdose and underdose compared to not accounting for previous dose events. For evaluation, the authors simulated the delivery of 5 conformal and 14 intensity-modulated radiotherapy (IMRT)-plans with 7 3D patient measured tumor motion traces. Results: Simulations with conformal shapes showed an improvement of L1-norm up to 8.5% after 100 MLC modification steps. Experiments showed comparable improvements with the same type of treatment plans. Conclusions: A novel leaf sequencing optimization algorithm which considers previous dose events for MLC tracking radiotherapy has been developed and investigated. Reductions in underdose/overdose are observed for conformal and IMRT delivery.« less

  11. SWIMRT: A graphical user interface using the sliding window algorithm to construct a fluence map machine file

    PubMed Central

    Chow, James C.L.; Grigorov, Grigor N.; Yazdani, Nuri

    2006-01-01

    A custom‐made computer program, SWIMRT, to construct “multileaf collimator (MLC) machine” file for intensity‐modulated radiotherapy (IMRT) fluence maps was developed using MATLAB® and the sliding window algorithm. The user can either import a fluence map with a graphical file format created by an external treatment‐planning system such as Pinnacle3 or create his or her own fluence map using the matrix editor in the program. Through comprehensive calibrations of the dose and the dimension of the imported fluence field, the user can use associated image‐processing tools such as field resizing and edge trimming to modify the imported map. When the processed fluence map is suitable, a “MLC machine” file is generated for our Varian 21 EX linear accelerator with a 120‐leaf Millennium MLC. This machine file is transferred to the MLC console of the LINAC to control the continuous motions of the leaves during beam irradiation. An IMRT field is then irradiated with the 2D intensity profiles, and the irradiated profiles are compared to the imported or modified fluence map. This program was verified and tested using film dosimetry to address the following uncertainties: (1) the mechanical limitation due to the leaf width and maximum traveling speed, and (2) the dosimetric limitation due to the leaf leakage/transmission and penumbra effect. Because the fluence map can be edited, resized, and processed according to the requirement of a study, SWIMRT is essential in studying and investigating the IMRT technique using the sliding window algorithm. Using this program, future work on the algorithm may include redistributing the time space between segmental fields to enhance the fluence resolution, and readjusting the timing of each leaf during delivery to avoid small fields. Possible clinical utilities and examples for SWIMRT are given in this paper. PACS numbers: 87.53.Kn, 87.53.St, 87.53.Uv PMID:17533330

  12. Delivery time comparison for intensity-modulated radiation therapy with/without flattening filter: a planning study

    NASA Astrophysics Data System (ADS)

    Fu, Weihua; Dai, Jianrong; Hu, Yimin; Han, Dongsheng; Song, Yixin

    2004-04-01

    The treatment delivery time of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) is generally longer than that of conventional radiotherapy. In theory, removing the flattening filter from the treatment head may reduce the beam-on time by enhancing the output dose rate, and then reduce the treatment delivery time. And in practice, there is a possibility of delivering the required fluence distribution by modulating the unflattened non-uniform fluence distribution. However, the reduction of beam-on time may be discounted by the increase of leaf-travel time and (or) verification-and-recording (V&R) time. Here we investigate the overall effect of flattening filter on the treatment delivery time of IMRT with MLCs implemented in the step and shoot method, as well as with compensators on six hybrid machines. We compared the treatment delivery time with/without flattening filter for ten nasopharynx cases and ten prostate cases by observing the variations of the ratio of the beam-on time, segment number, leaf-travel time and the treatment delivery time with dose rate, leaf speed and V&R time. The results show that, without the flattening filter, the beam-on time reduces for both static MLC and compensator-based techniques; the number of segments and the leaf-travel time increase slightly for the static MLC technique; the relative IMRT treatment delivery time decreases more with lower dose rate, higher leaf speed and shorter V&R overhead time. The absolute treatment delivery time reduction depends on the fraction dose. It is not clinically significant at a fraction dose of 2 Gy for the technique of removing the flattening filter, but becomes significant when the fraction dose is as high as that for radiosurgery.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, S; Ji, Y; Kim, K

    Purpose: A diagnostics Multileaf Collimator (MLC) was designed for diagnostic radiography dose reduction. Monte Carlo simulation was used to evaluate efficiency of shielding material for producing leaves of Multileaf collimator. Material & Methods: The general radiography unit (Rex-650R, Listem, Korea) was modeling with Monte Carlo simulation (MCNPX, LANL, USA) and we used SRS-78 program to calculate the energy spectrum of tube voltage (80, 100, 120 kVp). The shielding materials was SKD 11 alloy tool steel that is composed of 1.6% carbon(C), 0.4% silicon (Si), 0.6% manganese (Mn), 5% chromium (Cr), 1% molybdenum (Mo), and vanadium (V). The density of itmore » was 7.89 g/m3. We simulated leafs diagnostic MLC using SKD 11 with general radiography unit. We calculated efficiency of diagnostic MLC using tally6 card of MCNPX depending on energy. Results: The diagnostic MLC consisted of 25 individual metal shielding leaves on both sides, with dimensions of 10 × 0.5 × 0.5 cm3. The leaves of MLC were controlled by motors positioned on both sides of the MLC. According to energy (tube voltage), the shielding efficiency of MLC in Monte Carlo simulation was 99% (80 kVp), 96% (100 kVp) and 93% (120 kVp). Conclusion: We certified efficiency of diagnostic MLC fabricated from SKD11 alloy tool steel. Based on the results, the diagnostic MLC was designed. We will make the diagnostic MLC for dose reduction of diagnostic radiography.« less

  14. Measurement and Monte Carlo simulation for energy- and intensity-modulated electron radiotherapy delivered by a computer-controlled electron multileaf collimator.

    PubMed

    Jin, Lihui; Eldib, Ahmed; Li, Jinsheng; Emam, Ismail; Fan, Jiajin; Wang, Lu; Ma, C-M

    2014-01-06

    The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer-controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC-shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10 × 10 cm2, 3.4 × 3.4 cm2, and 2 × 2 cm2) with respect to a water phantom at source-to-surface distance (SSD) = 94 cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in-phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1 mm based on percentage depth doses (PDDs) and off-axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in-house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC-shaped field sizes with appropriate jaw settings. In the next stage, patient-specific verification with a full MERT plan should be performed.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chengqiang, L; Yin, Y; Chen, L

    Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans.more » Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.« less

  16. TH-AB-202-02: Real-Time Verification and Error Detection for MLC Tracking Deliveries Using An Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Zwan, B; Central Coast Cancer Centre, Gosford, NSW; Colvill, E

    2016-06-15

    Purpose: The added complexity of the real-time adaptive multi-leaf collimator (MLC) tracking increases the likelihood of undetected MLC delivery errors. In this work we develop and test a system for real-time delivery verification and error detection for MLC tracking radiotherapy using an electronic portal imaging device (EPID). Methods: The delivery verification system relies on acquisition and real-time analysis of transit EPID image frames acquired at 8.41 fps. In-house software was developed to extract the MLC positions from each image frame. Three comparison metrics were used to verify the MLC positions in real-time: (1) field size, (2) field location and, (3)more » field shape. The delivery verification system was tested for 8 VMAT MLC tracking deliveries (4 prostate and 4 lung) where real patient target motion was reproduced using a Hexamotion motion stage and a Calypso system. Sensitivity and detection delay was quantified for various types of MLC and system errors. Results: For both the prostate and lung test deliveries the MLC-defined field size was measured with an accuracy of 1.25 cm{sup 2} (1 SD). The field location was measured with an accuracy of 0.6 mm and 0.8 mm (1 SD) for lung and prostate respectively. Field location errors (i.e. tracking in wrong direction) with a magnitude of 3 mm were detected within 0.4 s of occurrence in the X direction and 0.8 s in the Y direction. Systematic MLC gap errors were detected as small as 3 mm. The method was not found to be sensitive to random MLC errors and individual MLC calibration errors up to 5 mm. Conclusion: EPID imaging may be used for independent real-time verification of MLC trajectories during MLC tracking deliveries. Thresholds have been determined for error detection and the system has been shown to be sensitive to a range of delivery errors.« less

  17. Dynamic simulation of motion effects in IMAT lung SBRT.

    PubMed

    Zou, Wei; Yin, Lingshu; Shen, Jiajian; Corradetti, Michael N; Kirk, Maura; Munbodh, Reshma; Fang, Penny; Jabbour, Salma K; Simone, Charles B; Yue, Ning J; Rengan, Ramesh; Teo, Boon-Keng Kevin

    2014-11-01

    Intensity modulated arc therapy (IMAT) has been widely adopted for Stereotactic Body Radiotherapy (SBRT) for lung cancer. While treatment dose is optimized and calculated on a static Computed Tomography (CT) image, the effect of the interplay between the target and linac multi-leaf collimator (MLC) motion is not well described and may result in deviations between delivered and planned dose. In this study, we investigated the dosimetric consequences of the inter-play effect on target and organs at risk (OAR) by simulating dynamic dose delivery using dynamic CT datasets. Fifteen stage I non-small cell lung cancer (NSCLC) patients with greater than 10 mm tumor motion treated with SBRT in 4 fractions to a dose of 50 Gy were retrospectively analyzed for this study. Each IMAT plan was initially optimized using two arcs. Simulated dynamic delivery was performed by associating the MLC leaf position, gantry angle and delivered beam monitor units (MUs) for each control point with different respiratory phases of the 4D-CT using machine delivery log files containing time stamps of the control points. Dose maps associated with each phase of the 4D-CT dose were calculated in the treatment planning system and accumulated using deformable image registration onto the exhale phase of the 4D-CT. The original IMAT plans were recalculated on the exhale phase of the CT for comparison with the dynamic simulation. The dose coverage of the PTV showed negligible variation between the static and dynamic simulation. There was less than 1.5% difference in PTV V95% and V90%. The average inter-fraction and cumulative dosimetric effects among all the patients were less than 0.5% for PTV V95% and V90% coverage and 0.8 Gy for the OARs. However, in patients where target is close to the organs, large variations were observed on great vessels and bronchus for as much as 4.9 Gy and 7.8 Gy. Limited variation in target dose coverage and OAR constraints were seen for each SBRT fraction as well as over all four fractions. Large dose variations were observed on critical organs in patients where these organs were closer to the target.

  18. Seizures and disturbed brain potassium dynamics in the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts

    PubMed Central

    Dubey, Mohit; Brouwers, Eelke; Hamilton, Eline M.C.; Stiedl, Oliver; Bugiani, Marianna; Koch, Henner; Kole, Maarten H.P.; Boschert, Ursula; Wykes, Robert C.; Mansvelder, Huibert D.; van der Knaap, Marjo S.

    2018-01-01

    Objective Loss of function of the astrocyte‐specific protein MLC1 leads to the childhood‐onset leukodystrophy “megalencephalic leukoencephalopathy with subcortical cysts” (MLC). Studies on isolated cells show a role for MLC1 in astrocyte volume regulation and suggest that disturbed brain ion and water homeostasis is central to the disease. Excitability of neuronal networks is particularly sensitive to ion and water homeostasis. In line with this, reports of seizures and epilepsy in MLC patients exist. However, systematic assessment and mechanistic understanding of seizures in MLC are lacking. Methods We analyzed an MLC patient inventory to study occurrence of seizures in MLC. We used two distinct genetic mouse models of MLC to further study epileptiform activity and seizure threshold through wireless extracellular field potential recordings. Whole‐cell patch‐clamp recordings and K+‐sensitive electrode recordings in mouse brain slices were used to explore the underlying mechanisms of epilepsy in MLC. Results An early onset of seizures is common in MLC. Similarly, in MLC mice, we uncovered spontaneous epileptiform brain activity and a lowered threshold for induced seizures. At the cellular level, we found that although passive and active properties of individual pyramidal neurons are unchanged, extracellular K+ dynamics and neuronal network activity are abnormal in MLC mice. Interpretation Disturbed astrocyte regulation of ion and water homeostasis in MLC causes hyperexcitability of neuronal networks and seizures. These findings suggest a role for defective astrocyte volume regulation in epilepsy. Ann Neurol 2018;83:636–649 PMID:29466841

  19. A novel method for dose distribution registration using fiducial marks made by a megavoltage beam in film dosimetry for intensity-modulated radiation therapy quality assurance.

    PubMed

    Nakayama, Shinichi; Monzen, Hajime; Oonishi, Yuuichi; Mizote, Rika; Iramina, Hiraku; Kaneshige, Souichirou; Mizowaki, Takashi

    2015-06-01

    Photographic film is widely used for the dose distribution verification of intensity-modulated radiation therapy (IMRT). However, analysis for verification of the results is subjective. We present a novel method for marking the isocenter using irradiation from a megavoltage (MV) beam transmitted through slits in a multi-leaf collimator (MLC). We evaluated the effect of the marking irradiation at 500 monitor units (MU) on the total transmission through the MLC using an ionization chamber and Radiochromic Film. Film dosimetry was performed for quality assurance (QA) of IMRT plans. Three methods of registration were used for each film: marking by irradiating with an MV beam through slits in the MLC (MLC-IC); marking with a fabricated phantom (Phantom-IC); and a subjective method based on isodose lines (Manual). Each method was subjected to local γ-analysis. The effect of the marking irradiation on the total transmission was 0.16%, as measured by a ionization chamber at a 10-cm depth in a solid phantom, while the inter-leaf transmission was 0.3%, determined from the film. The mean pass rates for each registration method agreed within ± 1% when the criteria used were a distance-to-agreement (DTA) of 3 mm and a dose difference (DD) of 3%. For DTA/DD criteria of 2mm/3%, the pass rates in the sagittal plane were 96.09 ± 0.631% (MLC-IC), 96.27 ± 0.399% (Phantom-IC), and 95.62 ± 0.988% (Manual). The present method is a versatile and useful method of improving the objectivity of film dosimetry for IMRT QA. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  20. Development, physical properties and clinical applicability of a mechanical Multileaf Collimator for the use in Cobalt-60 radiotherapy

    NASA Astrophysics Data System (ADS)

    Langhans, Marco; Echner, Gernot; Runz, Armin; Baumann, Martin; Xu, Mark; Ueltzhöffer, Stefan; Häring, Peter; Schlegel, Wolfgang

    2015-04-01

    According to the Directory of Radiotherapy Centres (DIRAC) there are 2348 Cobalt-60 (Co-60) teletherapy units worldwide, most of them in low and middle income countries, compared to 11046 clinical accelerators. To improve teletherapy with Co-60, a mechanical Multi-Leaf Collimator (MLC) was developed, working with pneumatic pressure and thus independent of electricity supply. Instead of tungsten, brass was used as leaf material to make the mechanical MLC more affordable. The physical properties and clinical applicability of this mechanical MLC are presented here. The leakage strongly depends on the fieldsize of the therapy unit due to scatter effects. The maximum transmission through the leaves measured 2.5 cm from the end-to-end gap, within a field size of 20 cm × 30 cm defined by jaws of the therapy unit at 80 cm SAD, amounts 4.2%, normalized to an open 10 cm × 10 cm field, created by the mechanical MLC. Within a precollimated field size of 12.5 cm × 12.5 cm, the end-to-end leakage is 6.5% normalized to an open 10 cm × 10 cm field as well. This characteristic is clinically acceptable considering the criteria for non-IMRT MLCs of the International Electrotechnical Commission (IEC 60601-2-1). The penumbra for a 10 cm × 10 cm field was measured to be 9.14 mm in plane and 8.38 mm cross plane. The clinical applicability of the designed mechanical MLC was affirmed by measurements relating to all relevant clinical properties such as penumbra, leakage, output factors and field widths. Hence this novel device presents an apt way forward to make radiotherapy with conformal fields possible in low-infrastructure environments, using gantry based Co-60 therapy units.

  1. Incorrect dosimetric leaf separation in IMRT and VMAT treatment planning: Clinical impact and correlation with pretreatment quality assurance.

    PubMed

    Sjölin, Maria; Edmund, Jens Morgenthaler

    2016-07-01

    Dynamic treatment planning algorithms use a dosimetric leaf separation (DLS) parameter to model the multi-leaf collimator (MLC) characteristics. Here, we quantify the dosimetric impact of an incorrect DLS parameter and investigate whether common pretreatment quality assurance (QA) methods can detect this effect. 16 treatment plans with intensity modulated radiation therapy (IMRT) or volumetric modulated arc therapy (VMAT) technique for multiple treatment sites were calculated with a correct and incorrect setting of the DLS, corresponding to a MLC gap difference of 0.5mm. Pretreatment verification QA was performed with a bi-planar diode array phantom and the electronic portal imaging device (EPID). Measurements were compared to the correct and incorrect planned doses using gamma evaluation with both global (G) and local (L) normalization. Correlation, specificity and sensitivity between the dose volume histogram (DVH) points for the planning target volume (PTV) and the gamma passing rates were calculated. The change in PTV and organs at risk DVH parameters were 0.4-4.1%. Good correlation (>0.83) between the PTVmean dose deviation and measured gamma passing rates was observed. Optimal gamma settings with 3%L/3mm (per beam and composite plan) and 3%G/2mm (composite plan) for the diode array phantom and 2%G/2mm (composite plan) for the EPID system were found. Global normalization and per beam ROC analysis of the diode array phantom showed an area under the curve <0.6. A DLS error can worsen pretreatment QA using gamma analysis with reasonable credibility for the composite plan. A low detectability was demonstrated for a 3%G/3mm per beam gamma setting. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  2. SU-E-T-501: Initial Orthovoltage Beam Profile Analysis of a Small Brass MLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loughery, B; Snyder, M

    2015-06-15

    Purpose To create brass leaves for an orthovoltage MLC and take initial beam profile measurements. Methods The low-energy MLC was designed in previous work. Brass was chosen for its self-lubrication and low cost. Stock brass rectangles (30cm × 1.0cm × 0.5cm) were ordered with pre-cut gear rack along the topmost long edges. Leaf designs were translated into G-code, then cut with a Tormach CNC-1100 mill. Intense bowing was observed in the beam direction, which required straightening via an in-house jig. Straightened leaves were placed into MLC assembly and mounted to a 320 kVp orthovoltage tube. EDR2 film was irradiated inmore » four situations: MLC open so one edge was isocentric, and MLC open more than isocentric, completely closed MLC, and an open field shot with the MLC removed. The first two scans tested penumbra for our rectangular edges due to unfocused design. The final two scans tested transmission and interleaf leakage. All four experiments were set to 120 kVp and 10 mA for two minutes. Results Transmission and interleaf leakage were found to be zero. Interleaf leakage is faintly visible on film, but undetected by our film scanner despite high spatial resolution. Penumbra at isocenter was found to be 0.72mm, which matched the penumbras of true field edges. Penumbra off-isocenter was 1.1mm. Mechanically, leaves are moving smoothly once straightened. Conclusion Beam profiles through our brass MLC are acceptable. Leaves attenuate and move as designed. Looking forward, we intend to animate our MLC to deliver more complicated treatment plans.« less

  3. MO-FG-202-04: Gantry-Resolved Linac QA for VMAT: A Comprehensive and Efficient System Using An Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwan, B J; University of Newcastle, Newcastle, NSW; Barnes, M

    2016-06-15

    Purpose: To automate gantry-resolved linear accelerator (linac) quality assurance (QA) for volumetric modulated arc therapy (VMAT) using an electronic portal imaging device (EPID). Methods: A QA system for VMAT was developed that uses an EPID, frame-grabber assembly and in-house developed image processing software. The system relies solely on the analysis of EPID image frames acquired without the presence of a phantom. Images were acquired at 8.41 frames per second using a frame grabber and ancillary acquisition computer. Each image frame was tagged with a gantry angle from the linac’s on-board gantry angle encoder. Arc-dynamic QA plans were designed to assessmore » the performance of each individual linac component during VMAT. By analysing each image frame acquired during the QA deliveries the following eight machine performance characteristics were measured as a function of gantry angle: MLC positional accuracy, MLC speed constancy, MLC acceleration constancy, MLC-gantry synchronisation, beam profile constancy, dose rate constancy, gantry speed constancy, dose-gantry angle synchronisation and mechanical sag. All tests were performed on a Varian iX linear accelerator equipped with a 120 leaf Millennium MLC and an aS1000 EPID (Varian Medical Systems, Palo Alto, CA, USA). Results: Machine performance parameters were measured as a function of gantry angle using EPID imaging and compared to machine log files and the treatment plan. Data acquisition is currently underway at 3 centres, incorporating 7 treatment units, at 2 weekly measurement intervals. Conclusion: The proposed system can be applied for streamlined linac QA and commissioning for VMAT. The set of test plans developed can be used to assess the performance of each individual components of the treatment machine during VMAT deliveries as a function of gantry angle. The methodology does not require the setup of any additional phantom or measurement equipment and the analysis is fully automated to allow for regular routine testing.« less

  4. Measurement and Monte Carlo simulation for energy‐ and intensity‐modulated electron radiotherapy delivered by a computer‐controlled electron multileaf collimator

    PubMed Central

    Eldib, Ahmed; Li, Jinsheng; Emam, Ismail; Fan, Jiajin; Wang, Lu; Ma, C‐M

    2014-01-01

    The dosimetric advantage of modulated electron radiotherapy (MERT) has been explored by many investigators and is considered to be an advanced radiation therapy technique in the utilization of electrons. A computer‐controlled electron multileaf collimator (MLC) prototype, newly designed to be added onto a Varian linac to deliver MERT, was investigated both experimentally and by Monte Carlo simulations. Four different electron energies, 6, 9, 12, and 15 MeV, were employed for this investigation. To ensure that this device was capable of delivering the electron beams properly, measurements were performed to examine the electron MLC (eMLC) leaf leakage and to determine the appropriate jaw positioning for an eMLC‐shaped field in order to eliminate a secondary radiation peak that could otherwise appear outside of an intended radiation field in the case of inappropriate jaw positioning due to insufficient radiation blockage from the jaws. Phase space data were obtained by Monte Carlo (MC) simulation and recorded at the plane just above the jaws for each of the energies (6, 9, 12, and 15 MeV). As an input source, phase space data were used in MC dose calculations for various sizes of the eMLC shaped field (10×10 cm2, 3.4×3.4 cm2, and 2×2 cm2) with respect to a water phantom at source‐to‐surface distance (SSD)=94cm, while the jaws, eMLC leaves, and some accessories associated with the eMLC assembly as well were modeled as modifiers in the calculations. The calculated results were then compared with measurements from a water scanning system. The results showed that jaw settings with 5 mm margins beyond the field shaped by the eMLC were appropriate to eliminate the secondary radiation peak while not widening the beam penumbra; the eMLC leaf leakage measurements ranged from 0.3% to 1.8% for different energies based on in‐phantom measurements, which should be quite acceptable for MERT. Comparisons between MC dose calculations and measurements showed agreement within 1%/1mm based on percentage depth doses (PDDs) and off‐axis dose profiles for a range of field sizes for each of the electron energies. Our current work has demonstrated that the eMLC and other relevant components in the linac were correctly modeled and simulated via our in‐house MC codes, and the eMLC is capable of accurately delivering electron beams for various eMLC‐shaped field sizes with appropriate jaw settings. In the next stage, patient‐specific verification with a full MERT plan should be performed. PACS number: 87.55.ne PMID:24423848

  5. SU-E-T-88: Comprehensive Automated Daily QA for Hypo- Fractionated Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuinness, C; Morin, O

    2014-06-01

    Purpose: The trend towards more SBRT treatments with fewer high dose fractions places increased importance on daily QA. Patient plan specific QA with 3%/3mm gamma analysis and daily output constancy checks may not be enough to guarantee the level of accuracy required for SBRT treatments. But increasing the already extensive amount of QA procedures that are required is a daunting proposition. We performed a feasibility study for more comprehensive automated daily QA that could improve the diagnostic capabilities of QA without increasing workload. Methods: We performed the study on a Siemens Artiste linear accelerator using the integrated flat panel EPID.more » We included square fields, a picket fence, overlap and representative IMRT fields to measure output, flatness, symmetry, beam center, and percent difference from the standard. We also imposed a set of machine errors: MLC leaf position, machine output, and beam steering to compare with the standard. Results: Daily output was consistent within +/− 1%. Change in steering current by 1.4% and 2.4% resulted in a 3.2% and 6.3% change in flatness. 1 and 2mm MLC leaf offset errors were visibly obvious in difference plots, but passed a 3%/3mm gamma analysis. A simple test of transmission in a picket fence can catch a leaf offset error of a single leaf by 1mm. The entire morning QA sequence is performed in less than 30 minutes and images are automatically analyzed. Conclusion: Automated QA procedures could be used to provide more comprehensive information about the machine with less time and human involvement. We have also shown that other simple tests are better able to catch MLC leaf position errors than a 3%/3mm gamma analysis commonly used for IMRT and modulated arc treatments. Finally, this information could be used to watch trends of the machine and predict problems before they lead to costly machine downtime.« less

  6. SU-E-T-32: A Feasibility Study of Independent Dose Verification for IMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamima, T; Takahashi, R; Sato, Y

    2015-06-15

    Purpose: To assess the feasibility of the independent dose verification (Indp) for intensity modulated arc therapy (IMAT). Methods: An independent dose calculation software program (Simple MU Analysis, Triangle Products, JP) was used in this study, which can compute the radiological path length from the surface to the reference point for each control point using patient’s CT image dataset and the MLC aperture shape was simultaneously modeled in reference to the information of MLC from DICOM-RT plan. Dose calculation was performed using a modified Clarkson method considering MLC transmission and dosimetric leaf gap. In this study, a retrospective analysis was conductedmore » in which IMAT plans from 120 patients of the two sites (prostate / head and neck) from four institutes were retrospectively analyzed to compare the Indp to the TPS using patient CT images. In addition, an ion-chamber measurement was performed to verify the accuracy of the TPS and the Indp in water-equivalent phantom. Results: The agreements between the Indp and the TPS (mean±1SD) were −0.8±2.4% and −1.3±3.8% for the regions of prostate and head and neck, respectively. The measurement comparison showed similar results (−0.8±1.6% and 0.1±4.6% for prostate and head and neck). The variation was larger in the head and neck because the number of the segments was increased that the reference point was under the MLC and the modified Clarkson method cannot consider the smooth falloff of the leaf penumbra. Conclusion: The independent verification program would be practical and effective for secondary check for IMAT with the sufficient accuracy in the measurement and CT-based calculation. The accuracy would be improved if considering the falloff of the leaf penumbra.« less

  7. SU-E-T-473: A Patient-Specific QC Paradigm Based On Trajectory Log Files and DICOM Plan Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMarco, J; McCloskey, S; Low, D

    Purpose: To evaluate a remote QC tool for monitoring treatment machine parameters and treatment workflow. Methods: The Varian TrueBeamTM linear accelerator is a digital machine that records machine axis parameters and MLC leaf positions as a function of delivered monitor unit or control point. This information is saved to a binary trajectory log file for every treatment or imaging field in the patient treatment session. A MATLAB analysis routine was developed to parse the trajectory log files for a given patient, compare the expected versus actual machine and MLC positions as well as perform a cross-comparison with the DICOM-RT planmore » file exported from the treatment planning system. The parsing routine sorts the trajectory log files based on the time and date stamp and generates a sequential report file listing treatment parameters and provides a match relative to the DICOM-RT plan file. Results: The trajectory log parsing-routine was compared against a standard record and verify listing for patients undergoing initial IMRT dosimetry verification and weekly and final chart QC. The complete treatment course was independently verified for 10 patients of varying treatment site and a total of 1267 treatment fields were evaluated including pre-treatment imaging fields where applicable. In the context of IMRT plan verification, eight prostate SBRT plans with 4-arcs per plan were evaluated based on expected versus actual machine axis parameters. The average value for the maximum RMS MLC error was 0.067±0.001mm and 0.066±0.002mm for leaf bank A and B respectively. Conclusion: A real-time QC analysis program was tested using trajectory log files and DICOM-RT plan files. The parsing routine is efficient and able to evaluate all relevant machine axis parameters during a patient treatment course including MLC leaf positions and table positions at time of image acquisition and during treatment.« less

  8. The first clinical implementation of electromagnetic transponder-guided MLC tracking.

    PubMed

    Keall, Paul J; Colvill, Emma; O'Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T

    2014-02-01

    We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy.

  9. The first clinical implementation of electromagnetic transponder-guided MLC tracking

    PubMed Central

    Keall, Paul J.; Colvill, Emma; O’Brien, Ricky; Ng, Jin Aun; Poulsen, Per Rugaard; Eade, Thomas; Kneebone, Andrew; Booth, Jeremy T.

    2014-01-01

    Purpose: We report on the clinical process, quality assurance, and geometric and dosimetric results of the first clinical implementation of electromagnetic transponder-guided MLC tracking which occurred on 28 November 2013 at the Northern Sydney Cancer Centre. Methods: An electromagnetic transponder-based positioning system (Calypso) was modified to send the target position output to in-house-developed MLC tracking code, which adjusts the leaf positions to optimally align the treatment beam with the real-time target position. Clinical process and quality assurance procedures were developed and performed. The first clinical implementation of electromagnetic transponder-guided MLC tracking was for a prostate cancer patient being treated with dual-arc VMAT (RapidArc). For the first fraction of the first patient treatment of electromagnetic transponder-guided MLC tracking we recorded the in-room time and transponder positions, and performed dose reconstruction to estimate the delivered dose and also the dose received had MLC tracking not been used. Results: The total in-room time was 21 min with 2 min of beam delivery. No additional time was needed for MLC tracking and there were no beam holds. The average prostate position from the initial setup was 1.2 mm, mostly an anterior shift. Dose reconstruction analysis of the delivered dose with MLC tracking showed similar isodose and target dose volume histograms to the planned treatment and a 4.6% increase in the fractional rectal V60. Dose reconstruction without motion compensation showed a 30% increase in the fractional rectal V60 from that planned, even for the small motion. Conclusions: The real-time beam-target correction method, electromagnetic transponder-guided MLC tracking, has been translated to the clinic. This achievement represents a milestone in improving geometric and dosimetric accuracy, and by inference treatment outcomes, in cancer radiotherapy. PMID:24506591

  10. Linking log files with dosimetric accuracy--A multi-institutional study on quality assurance of volumetric modulated arc therapy.

    PubMed

    Pasler, Marlies; Kaas, Jochem; Perik, Thijs; Geuze, Job; Dreindl, Ralf; Künzler, Thomas; Wittkamper, Frits; Georg, Dietmar

    2015-12-01

    To systematically evaluate machine specific quality assurance (QA) for volumetric modulated arc therapy (VMAT) based on log files by applying a dynamic benchmark plan. A VMAT benchmark plan was created and tested on 18 Elekta linacs (13 MLCi or MLCi2, 5 Agility) at 4 different institutions. Linac log files were analyzed and a delivery robustness index was introduced. For dosimetric measurements an ionization chamber array was used. Relative dose deviations were assessed by mean gamma for each control point and compared to the log file evaluation. Fourteen linacs delivered the VMAT benchmark plan, while 4 linacs failed by consistently terminating the delivery. The mean leaf error (±1SD) was 0.3±0.2 mm for all linacs. Large MLC maximum errors up to 6.5 mm were observed at reversal positions. Delivery robustness index accounting for MLC position correction (0.8-1.0) correlated with delivery time (80-128 s) and depended on dose rate performance. Dosimetric evaluation indicated in general accurate plan reproducibility with γ(mean)(±1 SD)=0.4±0.2 for 1 mm/1%. However single control point analysis revealed larger deviations and attributed well to log file analysis. The designed benchmark plan helped identify linac related malfunctions in dynamic mode for VMAT. Log files serve as an important additional QA measure to understand and visualize dynamic linac parameters. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Fast regional readout CMOS Image Sensor for dynamic MLC tracking

    NASA Astrophysics Data System (ADS)

    Zin, H.; Harris, E.; Osmond, J.; Evans, P.

    2014-03-01

    Advanced radiotherapy techniques such as volumetric modulated arc therapy (VMAT) require verification of the complex beam delivery including tracking of multileaf collimators (MLC) and monitoring the dose rate. This work explores the feasibility of a prototype Complementary metal-oxide semiconductor Image Sensor (CIS) for tracking these complex treatments by utilising fast, region of interest (ROI) read out functionality. An automatic edge tracking algorithm was used to locate the MLC leaves edges moving at various speeds (from a moving triangle field shape) and imaged with various sensor frame rates. The CIS demonstrates successful edge detection of the dynamic MLC motion within accuracy of 1.0 mm. This demonstrates the feasibility of the sensor to verify treatment delivery involving dynamic MLC up to ~400 frames per second (equivalent to the linac pulse rate), which is superior to any current techniques such as using electronic portal imaging devices (EPID). CIS provides the basis to an essential real-time verification tool, useful in accessing accurate delivery of complex high energy radiation to the tumour and ultimately to achieve better cure rates for cancer patients.

  12. SU-F-T-402: The Effect of Extremely Narrow MLC Leaf Width On the Plan Quality of VMAT for Prostate Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J; Park, S; Kim, J

    2016-06-15

    Purpose: To investigate the effect of multi-leaf collimators (MLCs) with leaf width of 1.25 mm on the plan quality of volumetric modulated arc therapy (VMAT) for prostate cancer. Methods: A total of 20 patients with prostate cancer were retrospectively selected. Using a high definition MLC (HD MLC), primary and boost VMAT plans with two full arcs were generated for each patient (original plan). After that, by shifting patient CT images by 1.25 mm in the cranio-caudal direction between the 1st and the 2nd arc, we simulated fluences made with MLCs with leaf width of 1.25 mm. After shifting, primary andmore » boost plans were generated for each patient (shifted plan). A sum plan was generated by summation of the primary and boost plan for each patient. Dose-volumetric parameters were calculated and compared. Results: Both homogeneity index (HI) and conformity index (CI) of the shifted plans were better than those of the original plans in primary plans (HI = 0.044 vs. 0.040 with p < 0.001 and CI = 1.056 vs. 1.044 with p = 0.006). Similarly, the shifted plans for boost target volume showed better homogeneity and conformity than did the original plans (HI = 0.042 vs. 0.037 with p = 0.006 and CI = 1.015 vs. 1.009 with p < 0.001). The total body volumes of the original plans irradiated by the prescription dose were larger than those of the shifted plans in sum plans (60.9 cc vs. 49.0 cc with p = 0.007). Conclusion: Use of extremely narrow MLCs could increase dose homogeneity and conformity of the target volume for prostate VMAT. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1C1A1A02036331).« less

  13. Improvement of VMAT plan quality for head and neck cancer with high resolution fluences generated by couch shift between arcs.

    PubMed

    Park, Jong Min; Park, So-Yeon; Wu, Hong-Gyun; Kim, Jung-In

    2018-02-01

    To investigate the changes in quality of the volumetric modulated arc therapy (VMAT) plans with couch-shift between arcs by half of a multi-leaf collimator (MLC) leaf width. A total of 22 patients with head-and-neck cancer were retrospectively selected. Since the smallest MLC leaf width was 5 mm in this study, the couch was shifted by 2.5 mm in the longitudinal-direction between arcs to increase the resolution of fluence map. A total of three types of VMAT plans were generated for each patient; the three types of plans were a two-full-arc plan without couch-shift (NS plan), a two-half-arc-pair plan with couch-shift (HAS plan), and a two-full-arc pair plan with couch-shift (FAS plan). Changes in the dose-volumetric parameters were investigated. The FAS plan showed the best plan quality for the target volumes and organs at risk compared to the NS and HAS plans. However, the magnitudes of differences among the three types of plans were minimal, and every plan was clinically acceptable. The average integral doses of the NS, HAS, and FAS plans were 160,549 ± 37,600 Gy-cc, 147,828 ± 33,343 Gy-cc, and 156,030 ± 36,263 Gy-cc, respectively. The average monitor unit of the NS, HAS, and FAS plans were 717 ± 120 MU, 648 ± 100 MU, and 763 ± 158 MU, respectively. The HAS plan was better than the others in terms of normal tissue sparing and plan efficiency. By shifting the couch by half of the MLC leaf width in the longitudinal direction between arcs, the VMAT plan quality could be improved. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. Experimental verification of a Monte Carlo-based MLC simulation model for IMRT dose calculations in heterogeneous media

    NASA Astrophysics Data System (ADS)

    Tyagi, N.; Curran, B. H.; Roberson, P. L.; Moran, J. M.; Acosta, E.; Fraass, B. A.

    2008-02-01

    IMRT often requires delivering small fields which may suffer from electronic disequilibrium effects. The presence of heterogeneities, particularly low-density tissues in patients, complicates such situations. In this study, we report on verification of the DPM MC code for IMRT treatment planning in heterogeneous media, using a previously developed model of the Varian 120-leaf MLC. The purpose of this study is twofold: (a) design a comprehensive list of experiments in heterogeneous media for verification of any dose calculation algorithm and (b) verify our MLC model in these heterogeneous type geometries that mimic an actual patient geometry for IMRT treatment. The measurements have been done using an IMRT head and neck phantom (CIRS phantom) and slab phantom geometries. Verification of the MLC model has been carried out using point doses measured with an A14 slim line (SL) ion chamber inside a tissue-equivalent and a bone-equivalent material using the CIRS phantom. Planar doses using lung and bone equivalent slabs have been measured and compared using EDR films (Kodak, Rochester, NY).

  15. SU-F-T-429: Craniospinal Irradiation by VMAT Technique: Impact of FFF Beam and High Resolution MLC On Plan Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganesh, T; Sarkar, B; Munshi, A

    2016-06-15

    Purpose: Objective of this study was to evaluate the impact of using flattening filter free (FFF) beam with 0.5 cm multileaf collimator (MLC) leaves over conventional flattened beam with 1 cm leaf width MLC on the treatment plan quality in cranio-spinal irradiation (CSI). Methods: For five medulloblastoma cases (3 males and 2 females), who were previously treated by volumetric modulated arc therapy (VMAT) technique using conventional flattened beam shaped by 1 cm width MLC leaves, four test plans were generated and compared against the delivered plan. These retrospective plans consisted of four different combinations of flattened and FFF beams frommore » Elekta’s Agility treatment head with 0.5 cm width MLC leaves. Sparing of organs at risks (OAR) in terms of dose to 5%, 50%, 75% and 90% volumes, mean and maximum dose were evaluated. Results: All plans satisfied the planning objective of covering 95% of PTV by at least 95% of prescription dose. Marginal variation of dose spillage was observed between different VMAT plans at very low dose range (1–5 Gy). Variation in dose statistics for PTVs and OARs were within 1% or 1 Gy. Amongst the five plans, the plan with flattened beam with 1 cm MLC had the highest number of MUs, 2.13 times higher than the plan with Agility MLC with FFF beam that had the least number of MUs. No statistically significant difference (p≥0.05) was observed between the reference plan and the retrospectively generated plans in terms of PTV coverage, cold spot, hot spot and organ at risk doses. Conclusion: In the treatment of CSI cases by VMAT technique, FFF beams and/or finer width MLC did not exhibit advantage over the flattened beams or wider MLC in terms of plan quality except for reduction in MUs.« less

  16. SU-G-BRA-17: Tracking Multiple Targets with Independent Motion in Real-Time Using a Multi-Leaf Collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; Keall, P; Poulsen, P

    Purpose: Multiple targets with large intrafraction independent motion are often involved in advanced prostate, lung, abdominal, and head and neck cancer radiotherapy. Current standard of care treats these with the originally planned fields, jeopardizing the treatment outcomes. A real-time multi-leaf collimator (MLC) tracking method has been developed to address this problem for the first time. This study evaluates the geometric uncertainty of the multi-target tracking method. Methods: Four treatment scenarios are simulated based on a prostate IMAT plan to treat a moving prostate target and static pelvic node target: 1) real-time multi-target MLC tracking; 2) real-time prostate-only MLC tracking; 3)more » correcting for prostate interfraction motion at setup only; and 4) no motion correction. The geometric uncertainty of the treatment is assessed by the sum of the erroneously underexposed target area and overexposed healthy tissue areas for each individual target. Two patient-measured prostate trajectories of average 2 and 5 mm motion magnitude are used for simulations. Results: Real-time multi-target tracking accumulates the least uncertainty overall. As expected, it covers the static nodes similarly well as no motion correction treatment and covers the moving prostate similarly well as the real-time prostate-only tracking. Multi-target tracking reduces >90% of uncertainty for the static nodal target compared to the real-time prostate-only tracking or interfraction motion correction. For prostate target, depending on the motion trajectory which affects the uncertainty due to leaf-fitting, multi-target tracking may or may not perform better than correcting for interfraction prostate motion by shifting patient at setup, but it reduces ∼50% of uncertainty compared to no motion correction. Conclusion: The developed real-time multi-target MLC tracking can adapt for the independently moving targets better than other available treatment adaptations. This will enable PTV margin reduction to minimize health tissue toxicity while remain tumor coverage when treating advanced disease with independently moving targets involved. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less

  17. SU-F-T-271: Comparing IMRT QA Pass Rates Before and After MLC Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazza, A; Perrin, D; Fontenot, J

    Purpose: To compare IMRT QA pass rates before and after an in-house MLC leaf calibration procedure. Methods: The MLC leaves and backup jaws on four Elekta linear accelerators with MLCi2 heads were calibrated using the EPID-based RIT Hancock Test as the means for evaluation. The MLCs were considered to be successfully calibrated when they could pass the Hancock Test with criteria of 1 mm jaw position tolerance, and 1 mm leaf position tolerance. IMRT QA results were collected pre- and postcalibration and analyzed using gamma analysis with 3%/3mm DTA criteria. AAPM TG-119 test plans were also compared pre- and post-calibration,more » at both 2%/2mm DTA and 3%/3mm DTA. Results: A weighted average was performed on the results for all four linear accelerators. The pre-calibration IMRT QA pass rate was 98.3 ± 0.1%, compared with the post-calibration pass rate of 98.5 ± 0.1%. The TG-119 test plan results showed more of an improvement, particularly at the 2%/2mm criteria. The averaged results were 89.1% pre and 96.1% post for the C-shape plan, 94.8% pre and 97.1% post for the multi-target plan, 98.6% pre and 99.7% post for the prostate plan, 94.7% pre and 94.8% post for the head/neck plan. Conclusion: The patient QA results did not show statistically significant improvement at the 3%/3mm DTA criteria after the MLC calibration procedure. However, the TG-119 test cases did show significant improvement at the 2%/2mm level.« less

  18. VMAT optimization with dynamic collimator rotation.

    PubMed

    Lyu, Qihui; O'Connor, Daniel; Ruan, Dan; Yu, Victoria; Nguyen, Dan; Sheng, Ke

    2018-04-16

    Although collimator rotation is an optimization variable that can be exploited for dosimetric advantages, existing Volumetric Modulated Arc Therapy (VMAT) optimization uses a fixed collimator angle in each arc and only rotates the collimator between arcs. In this study, we develop a novel integrated optimization method for VMAT, accounting for dynamic collimator angles during the arc motion. Direct Aperture Optimization (DAO) for Dynamic Collimator in VMAT (DC-VMAT) was achieved by adding to the existing dose fidelity objective an anisotropic total variation term for regulating the fluence smoothness, a binary variable for forming simple apertures, and a group sparsity term for controlling collimator rotation. The optimal collimator angle for each beam angle was selected using the Dijkstra's algorithm, where the node costs depend on the estimated fluence map at the current iteration and the edge costs account for the mechanical constraints of multi-leaf collimator (MLC). An alternating optimization strategy was implemented to solve the DAO and collimator angle selection (CAS). Feasibility of DC-VMAT using one full-arc with dynamic collimator rotation was tested on a phantom with two small spherical targets, a brain, a lung and a prostate cancer patient. The plan was compared against a static collimator VMAT (SC-VMAT) plan using three full arcs with 60 degrees of collimator angle separation in patient studies. With the same target coverage, DC-VMAT achieved 20.3% reduction of R50 in the phantom study, and reduced the average max and mean OAR dose by 4.49% and 2.53% of the prescription dose in patient studies, as compared with SC-VMAT. The collimator rotation co-ordinated with the gantry rotation in DC-VMAT plans for deliverability. There were 13 beam angles in the single-arc DC-VMAT plan in patient studies that requires slower gantry rotation to accommodate multiple collimator angles. The novel DC-VMAT approach utilizes the dynamic collimator rotation during arc delivery. In doing so, DC-VMAT affords more sophisticated intensity modulation, alleviating the limitation previously imposed by the square beamlet from the MLC leaf thickness and achieves higher effective modulation resolution. Consequently, DC-VMAT with a single arc manages to achieve superior dosimetry than SC-VMAT with three full arcs. © 2018 American Association of Physicists in Medicine.

  19. SU-C-BRB-02: Symmetric and Asymmetric MLC Based Lung Shielding and Dose Optimization During Translating Bed TBI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S; Kakakhel, MB; Ahmed, SBS

    2015-06-15

    Purpose: The primary aim was to introduce a dose optimization method for translating bed total body irradiation technique that ensures lung shielding dynamically. Symmetric and asymmetric dynamic MLC apertures were employed for this purpose. Methods: The MLC aperture sizes were defined based on the radiological depth values along the divergent ray lines passing through the individual CT slices. Based on these RD values, asymmetrically shaped MLC apertures were defined every 9 mm of the phantom in superior-inferior direction. Individual MLC files were created with MATLAB™ and were imported into Eclipse™ treatment planning system for dose calculations. Lungs can be shieldedmore » to an optimum level by reducing the MLC aperture width over the lungs. The process was repeated with symmetrically shaped apertures. Results: Dose-volume histogram (DVH) analysis shows that the asymmetric MLC based technique provides better dose coverage to the body and optimum shielding of the lungs compared to symmetrically shaped beam apertures. Midline dose homogeneity is within ±3% with asymmetric MLC apertures whereas it remains within ±4.5% with symmetric ones (except head region where it drops down to −7%). The substantial over and under dosage of ±5% at tissue interfaces has been reduced to ±2% with asymmetric MLC technique. Lungs dose can be reduced to any desired limit. In this experiment lungs dose was reduced to 80% of the prescribed dose, as was desired. Conclusion: The novel asymmetric MLC based technique assures optimum shielding of OARs (e.g. lungs) and better 3-D dose homogeneity and body-dose coverage in comparison with the symmetric MLC aperture optimization. The authors acknowledge the financial and infrastructural support provided by Pakistan Institute of Engineering & Applied Sciences (PIEAS), Islamabad and Aga Khan University Hospital (AKUH), Karachi during the course of this research project. Authors have no conflict of interest with any national / international body for the presented work.« less

  20. Quantification of residual dose estimation error on log file-based patient dose calculation.

    PubMed

    Katsuta, Yoshiyuki; Kadoya, Noriyuki; Fujita, Yukio; Shimizu, Eiji; Matsunaga, Kenichi; Matsushita, Haruo; Majima, Kazuhiro; Jingu, Keiichi

    2016-05-01

    The log file-based patient dose estimation includes a residual dose estimation error caused by leaf miscalibration, which cannot be reflected on the estimated dose. The purpose of this study is to determine this residual dose estimation error. Modified log files for seven head-and-neck and prostate volumetric modulated arc therapy (VMAT) plans simulating leaf miscalibration were generated by shifting both leaf banks (systematic leaf gap errors: ±2.0, ±1.0, and ±0.5mm in opposite directions and systematic leaf shifts: ±1.0mm in the same direction) using MATLAB-based (MathWorks, Natick, MA) in-house software. The generated modified and non-modified log files were imported back into the treatment planning system and recalculated. Subsequently, the generalized equivalent uniform dose (gEUD) was quantified for the definition of the planning target volume (PTV) and organs at risks. For MLC leaves calibrated within ±0.5mm, the quantified residual dose estimation errors that obtained from the slope of the linear regression of gEUD changes between non- and modified log file doses per leaf gap are in head-and-neck plans 1.32±0.27% and 0.82±0.17Gy for PTV and spinal cord, respectively, and in prostate plans 1.22±0.36%, 0.95±0.14Gy, and 0.45±0.08Gy for PTV, rectum, and bladder, respectively. In this work, we determine the residual dose estimation errors for VMAT delivery using the log file-based patient dose calculation according to the MLC calibration accuracy. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otageri, P; Grant, E; Maricle, S

    Purpose: To evaluate the effects of MLC modeling after commissioning the Varian TrueBeam LINAC in Pinnacle version 9.2. Methods: Stepand-shoot IMRT QAs were investigated when we observed our measured absolute dose results using ion chamber (Capintec PR-05P) were uncharacteristically low; about 4–5% compared to doses calculated by Pinnacle{sup 3} (Phillips, Madison, WI). This problem was predominant for large and highly modulated head and neck (HN) treatments. Intuitively we knew this had to be related to shortcomings in the MLC modeling in Pinnacle. Using film QA we were able to iteratively adjust the MLC parameters. We confirmed results by re-testing fivemore » failed IMRT QA patients; and ion chamber measurements were verified in Quasar anthropomorphic phantom. Results: After commissioning the LINAC in Pinnacle version 9.2, the MLC transmission for 6X, 10X and 15X were 2.0%, 1.7% and 2.0%, respectively, and additional Interleaf leakage for all three energies was 0.5%. These parameters were obtained from profiles scanned with an Edge detector (Sun Nuclear, Melbourne, FL) during machine commissioning. A Verification testing with radiographic EDR2 film (Kodak, Rochester, NY) measurement was performed by creating a closed MLC leaf pattern and analyzing using RIT software (RIT, Colorado Springs, CO). This reduced MLC transmission for 6X, 10X and 15X to 0.7%, 0.9% and 0.9%, respectively; while increasing additional Interleaf leakage for all three energies to 1.0%. Conclusion: Radiographic film measurements were used to correct MLC transmission values for step and shoot IMRT fields used in Pinnacle version 9.2. After adjusting the MLC parameters to correlate with the film QA, there was still very good agreement between the Pinnacle model and commissioning data. Using the same QA methodology, we were also able to improve the beam models for the Varian C-series linacs, Novalis-Tx, and TrueBeam M-120 linacs.« less

  2. On the suitability of Elekta’s Agility 160 MLC for tracked radiation delivery: closed-loop machine performance

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; Crijns, S. P. M.; de Senneville, B. Denis; Lagendijk, J. J. W.; Raaymakers, B. W.

    2015-03-01

    For motion adaptive radiotherapy, dynamic multileaf collimator tracking can be employed to reduce treatment margins by steering the beam according to the organ motion. The Elekta Agility 160 MLC has hitherto not been evaluated for its tracking suitability. Both dosimetric performance and latency are key figures and need to be assessed generically, independent of the used motion sensor. In this paper, we propose the use of harmonic functions directly fed to the MLC to determine its latency during continuous motion. Furthermore, a control variable is extracted from a camera system and fed to the MLC. Using this setup, film dosimetry and subsequent γ statistics are performed, evaluating the response when tracking (MRI)-based physiologic motion in a closed-loop. The delay attributed to the MLC itself was shown to be a minor contributor to the overall feedback chain as compared to the impact of imaging components such as MRI sequences. Delay showed a linear phase behaviour of the MLC employed in continuously dynamic applications, which enables a general MLC-characterization. Using the exemplary feedback chain, dosimetry showed a vast increase in pass rate employing γ statistics. In this early stage, the tracking performance of the Agility using the test bench yielded promising results, making the technique eligible for translation to tracking using clinical imaging modalities.

  3. Leaf-level to Canopy Exchange of NOx and Ozone in a Forest at the University of Michigan Biological Station

    NASA Astrophysics Data System (ADS)

    Wang, W.; Ganzeveld, L.; Helmig, D.; Hueber, J.; Rossabi, S.; Vogel, C. S.

    2017-12-01

    During the month-long PROPHET-AMOS campaign in July, 2016 we investigated NOx and ozone dynamics at the University of Michigan AmeriFlux Tower (US-UMB tower) and the PROPHET Tower research sites at the University of Michigan Biological Station (UMBS), using a multi-pronged experimental approach. The two sites are within 100 m of each other, located in a mixed forest on the northern lower peninsula of Michigan, USA. In a previous study, it was found that invoking a leaf-level compensation point for NOx uptake and emission provided better agreement between observed and model-simulated in- and above-canopy NOx concentrations in this forest. To further examine the role of foliar exchange relative to other in-canopy sources and sinks of NOx, we conducted detailed vertical gradient measurements of NOx and ozone at ten heights from the forest floor to above the canopy, along with micrometeorological conditions at the AmeriFlux Tower. In parallel, to investigate the leaf-level exchanges of NOx and ozone, we carried out branch enclosure experiments near the PROPHET tower on the dominant tree species of this forest. We combine these observations with micrometeorological data from the AmeriFlux Tower to constrain simulations with the Multi-Layer Canopy Chemical Exchange Model (MLC-CHEM) for investigation of sources, sinks, and dynamics that determine NOx concentrations, vertical gradients, and fluxes in this forest. We will compare our results with previous studies and other observations during the PHOPHET-AMOS campaign.

  4. SU-E-T-605: Performance Evaluation of MLC Leaf-Sequencing Algorithms in Head-And-Neck IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, J; Lin, H; Chow, J

    2015-06-15

    Purpose: To investigate the efficiency of three multileaf collimator (MLC) leaf-sequencing algorithms proposed by Galvin et al, Chen et al and Siochi et al using external beam treatment plans for head-and-neck intensity modulated radiation therapy (IMRT). Methods: IMRT plans for head-and-neck were created using the CORVUS treatment planning system. The plans were optimized and the fluence maps for all photon beams determined. Three different MLC leaf-sequencing algorithms based on Galvin et al, Chen et al and Siochi et al were used to calculate the final photon segmental fields and their monitor units in delivery. For comparison purpose, the maximum intensitymore » of fluence map was kept constant in different plans. The number of beam segments and total number of monitor units were calculated for the three algorithms. Results: From results of number of beam segments and total number of monitor units, we found that algorithm of Galvin et al had the largest number of monitor unit which was about 70% larger than the other two algorithms. Moreover, both algorithms of Galvin et al and Siochi et al have relatively lower number of beam segment compared to Chen et al. Although values of number of beam segment and total number of monitor unit calculated by different algorithms varied with the head-and-neck plans, it can be seen that algorithms of Galvin et al and Siochi et al performed well with a lower number of beam segment, though algorithm of Galvin et al had a larger total number of monitor units than Siochi et al. Conclusion: Although performance of the leaf-sequencing algorithm varied with different IMRT plans having different fluence maps, an evaluation is possible based on the calculated number of beam segment and monitor unit. In this study, algorithm by Siochi et al was found to be more efficient in the head-and-neck IMRT. The Project Sponsored by the Fundamental Research Funds for the Central Universities (J2014HGXJ0094) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.« less

  5. SU-E-T-214: Intensity Modulated Proton Therapy (IMPT) Based On Passively Scattered Protons and Multi-Leaf Collimation: Prototype TPS and Dosimetry Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez-Parcerisa, D; Carabe-Fernandez, A

    2014-06-01

    Purpose. Intensity-modulated proton therapy is usually implemented with multi-field optimization of pencil-beam scanning (PBS) proton fields. However, at the view of the experience with photon-IMRT, proton facilities equipped with double-scattering (DS) delivery and multi-leaf collimation (MLC) could produce highly conformal dose distributions (and possibly eliminate the need for patient-specific compensators) with a clever use of their MLC field shaping, provided that an optimal inverse TPS is developed. Methods. A prototype TPS was developed in MATLAB. The dose calculation process was based on a fluence-dose algorithm on an adaptive divergent grid. A database of dose kernels was precalculated in order tomore » allow for fast variations of the field range and modulation during optimization. The inverse planning process was based on the adaptive simulated annealing approach, with direct aperture optimization of the MLC leaves. A dosimetry study was performed on a phantom formed by three concentrical semicylinders separated by 5 mm, of which the inner-most and outer-most were regarded as organs at risk (OARs), and the middle one as the PTV. We chose a concave target (which is not treatable with conventional DS fields) to show the potential of our technique. The optimizer was configured to minimize the mean dose to the OARs while keeping a good coverage of the target. Results. The plan produced by the prototype TPS achieved a conformity index of 1.34, with the mean doses to the OARs below 78% of the prescribed dose. This Result is hardly achievable with traditional conformal DS technique with compensators, and it compares to what can be obtained with PBS. Conclusion. It is certainly feasible to produce IMPT fields with MLC passive scattering fields. With a fully developed treatment planning system, the produced plans can be superior to traditional DS plans in terms of plan conformity and dose to organs at risk.« less

  6. A Dosimetric Evaluation of The Eclipse and Pinnacle Treatment Planning Systems in Treatment of Vertebral Bodies Using IMRT and VMAT with Modeled and Commissioned Flattening Filter Free (FFF) Fields

    NASA Astrophysics Data System (ADS)

    Ajo, Ramzi, Jr.

    Modern treatment planning systems (TPS's) utilize different algorithms in computing dose within the patient medium. The algorithms rely on properly modeled clinical setups in order to perform optimally. Aside from various parameters of the beam, modifiers, such as multileaf collimators (MLC's), must also be modeled properly. That could not be more true today, where dynamic delivery such as intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) are being increasingly utilized due to their ability to deliver higher dose precisely to the target while sparing more surrounding normal tissue. Two of the most popular TPS's, Pinnacle (Philips) and Eclipse (Varian), were compared, with special emphasis placed on parameterization of the dosimetric leaf gap (DLG) in Eclipse. The DLG is a parameter that accounts for Varian's rounded MLC leaf ends. While Pinnacle accounts for the rounded leaf end by modeling the MLC's, Eclipse uses a measured parameter. This study investigated whether a single value measured DLG is sufficient for dynamic delivery. Using five planning volumes for vertebral body SBRT treatments, each prescribed for 3000 cGy in 5 fractions, an array of 20 treatment plans was generated using varying energies of 6MV-FFF and 10MV-FFF. Treatment techniques consisted of 9-field Step-and-shoot IMRT, and dual-arc VMAT using patient specific optimization criteria in the Pinnacle TPS v9.8. Each plan was normalized to ensure coverage of 3000cGy to 95% of the target volume. The dose was computed in Pinnacle v9.8, with the Collapsed Cone Convolution Superposition algorithm and Eclipse v11, with the Acuros XB algorithm, using a dose grid resolution of 2 mm in both systems. Dose volume histograms (DVH's) were generated for a comparison of max and mean dose to the targets and spinal cord, as well as 95% coverage of the targets and the volume of the spinal cord receiving 14.5 Gy (V14.5). Patient specific quality assurance (PSQA) fields were generated and then delivered, using a Varian Edge linear accelerator, to a 4D QA phantom for a gamma analysis and distance to agreement (DTA) comparison. All Eclipse calculations were made for both measured and optimized DLG parameters. Calculated vs. measured point dose for the Pinnacle TPS had an average difference of 2.79 +/- 2.00%. Gamma analysis using a 3% and 3 mm DTA had 99/100 fields passing at > 95%. Using measured values of the DLG in Eclipse, calculated vs. measured point dose was -4.44 +/- 1.97%, and DTA had 33/110 fields passing at > 95%. After an optimization of the DLG in Eclipse, calculated vs. measured point dose had an average difference of 2.20 +/- 2.23%, and DTA with 95/110 fields passing at > 95%. This study looked at the performance of the Pinnacle and Eclipse TPS's, with special consideration given to the DLG parameterization used by Eclipse. The results support the idea that a single valued DLG is not sufficient for dynamic delivery. An optimization of the parameter is necessary to account for the high modulation of IMRT and VMAT techniques.

  7. SU-E-T-325: The New Evaluation Method of the VMAT Plan Delivery Using Varian DynaLog Files and Modulation Complexity Score (MCS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tateoka, K; Graduate School of Medicine, Sapporo Medical University, Sapporo, JP; Fujimomo, K

    2014-06-01

    Purpose: The aim of the study is to evaluate the use of Varian DynaLog files to verify VMAT plans delivery and modulation complexity score (MCS) of VMAT. Methods: Delivery accuracy of machine performance was quantified by multileaf collimator (MLC) position errors, gantry angle errors and fluence delivery accuracy for volumetric modulated arc therapy (VMAT). The relationship between machine performance and plan complexity were also investigated using the modulation complexity score (MCS). Plan and Actual MLC positions, gantry angles and delivered fraction of monitor units were extracted from Varian DynaLog files. These factors were taken from the record and verify systemmore » of MLC control file. Planned and delivered beam data were compared to determine leaf position errors and gantry angle errors. Analysis was also performed on planned and actual fluence maps reconstructed from those of the DynaLog files. This analysis was performed for all treatment fractions of 5 prostate VMAT plans. The analysis of DynaLog files have been carried out by in-house programming in Visual C++. Results: The root mean square of leaf position and gantry angle errors were about 0.12 and 0.15, respectively. The Gamma of planned and actual fluence maps at 3%/3 mm criterion was about 99.21. The gamma of the leaf position errors were not directly related to plan complexity as determined by the MCS. Therefore, the gamma of the gantry angle errors were directly related to plan complexity as determined by the MCS. Conclusion: This study shows Varian dynalog files for VMAT plan can be diagnosed delivery errors not possible with phantom based quality assurance. Furthermore, the MCS of VMAT plan can evaluate delivery accuracy for patients receiving of VMAT. Machine performance was found to be directly related to plan complexity but this is not the dominant determinant of delivery accuracy.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hussain, A

    Purpose: Novel linac machines, TrueBeam (TB) and Elekta Versa have updated head designing and software control system, include flattening-filter-free (FFF) photon and electron beams. Later on FFF beams were also introduced on C-Series machines. In this work FFF beams for same energy 6MV but from different machine versions were studied with reference to beam data parameters. Methods: The 6MV-FFF percent depth doses, profile symmetry and flatness, dose rate tables, and multi-leaf collimator (MLC) transmission factors were measured during commissioning process of both C-series and Truebeam machines. The scanning and dosimetric data for 6MV-FFF beam from Truebeam and C-Series linacs wasmore » compared. A correlation of 6MV-FFF beam from Elekta Versa with that of Varian linacs was also found. Results: The scanning files were plotted for both qualitative and quantitative analysis. The dosimetric leaf gap (DLG) for C-Series 6MV-FFF beam is 1.1 mm. Published values for Truebeam dosimetric leaf gap is 1.16 mm. 6MV MLC transmission factor varies between 1.3 % and 1.4 % in two separate measurements and measured DLG values vary between 1.32 mm and 1.33 mm on C-Series machine. MLC transmission factor from C-Series machine varies between 1.5 % and 1.6 %. Some of the measured data values from C-Series FFF beam are compared with Truebeam representative data. 6MV-FFF beam parameter values like dmax, OP factors, beam symmetry and flatness and additional parameters for C-Series and Truebeam liancs will be presented and compared in graphical form and tabular data form if selected. Conclusion: The 6MV flattening filter (FF) beam data from C-Series & Truebeam and 6MV-FFF beam data from Truebeam has already presented. This particular analysis to compare 6MV-FFF beam from C-Series and Truebeam provides opportunity to better elaborate FFF mode on novel machines. It was found that C-Series and Truebeam 6MV-FFF dosimetric and beam data was quite similar.« less

  9. SU-E-T-784: Using MLC Log Files for Daily IMRT Delivery Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stathakis, S; Defoor, D; Linden, P

    2015-06-15

    Purpose: To verify daily intensity modulated radiation therapy (IMRT) treatments using multi-leaf collimator (MLC) log files. Methods: The MLC log files from a NovalisTX Varian linear accelerator were used in this study. The MLC files were recorded daily for all patients undergoing IMRT or volumetric modulated arc therapy (VMAT). The first record of each patient was used as reference and all records for subsequent days were compared against the reference. An in house MATLAB software code was used for the comparisons. Each MLC log file was converted to a fluence map (FM) and a gamma index (γ) analysis was usedmore » for the evaluation of each daily delivery for every patient. The tolerance for the gamma index was set to 2% dose difference and 2mm distance to agreement while points with signal of 10% or lower of the maximum value were excluded from the comparisons. Results: The γ between each of the reference FMs and the consecutive daily fraction FMs had an average value of 99.1% (ranged from 98.2 to 100.0%). The FM images were reconstructed at various resolutions in order to study the effect of the resolution on the γ and at the same time reduce the time for processing the images. We found that the comparison of images with the highest resolution (768×1024) yielded on average a lower γ (99.1%) than the ones with low resolution (192×256) (γ 99.5%). Conclusion: We developed an in-house software that allows us to monitor the quality of daily IMRT and VMAT treatment deliveries using information from the MLC log files of the linear accelerator. The information can be analyzed and evaluated as early as after the completion of each daily treatment. Such tool can be valuable to assess the effect of MLC positioning on plan quality, especially in the context of adaptive radiotherapy.« less

  10. Real-time tracking of respiratory-induced tumor motion by dose-rate regulation

    NASA Astrophysics Data System (ADS)

    Han-Oh, Yeonju Sarah

    We have developed a novel real-time tumor-tracking technology, called Dose-Rate-Regulated Tracking (DRRT), to compensate for tumor motion caused by breathing. Unlike other previously proposed tumor-tracking methods, this new method uses a preprogrammed dynamic multileaf collimator (MLC) sequence in combination with real-time dose-rate control. This new scheme circumvents the technical challenge in MLC-based tumor tracking, that is to control the MLC motion in real time, based on real-time detected tumor motion. The preprogrammed MLC sequence describes the movement of the tumor, as a function of breathing phase, amplitude, or tidal volume. The irregularity of tumor motion during treatment is handled by real-time regulation of the dose rate, which effectively speeds up or slows down the delivery of radiation as needed. This method is based on the fact that all of the parameters in dynamic radiation delivery, including MLC motion, are enslaved to the cumulative dose, which, in turn, can be accelerated or decelerated by varying the dose rate. Because commercially available MLC systems do not allow the MLC delivery sequence to be modified in real time based on the patient's breathing signal, previously proposed tumor-tracking techniques using a MLC cannot be readily implemented in the clinic today. By using a preprogrammed MLC sequence to handle the required motion, the task for real-time control is greatly simplified. We have developed and tested the pre- programmed MLC sequence and the dose-rate regulation algorithm using lung-cancer patients breathing signals. It has been shown that DRRT can track the tumor with an accuracy of less than 2 mm for a latency of the DRRT system of less than 0.35 s. We also have evaluated the usefulness of guided breathing for DRRT. Since DRRT by its very nature can compensate for breathing-period changes, guided breathing was shown to be unnecessary for real-time tracking when using DRRT. Finally, DRRT uses the existing dose-rate control system that is provided for current linear accelerators. Therefore, DRRT can be achieved with minimal modification of existing technology, and this can shorten substantially the time necessary to establish DRRT in clinical practice.

  11. Impact of Multileaf Collimator Configuration Parameters on the Dosimetric Accuracy of 6-MV Intensity-Modulated Radiation Therapy Treatment Plans.

    PubMed

    Petersen, Nick; Perrin, David; Newhauser, Wayne; Zhang, Rui

    2017-01-01

    The purpose of this study was to evaluate the impact of selected configuration parameters that govern multileaf collimator (MLC) transmission and rounded leaf offset in a commercial treatment planning system (TPS) (Pinnacle 3 , Philips Medical Systems, Andover, MA, USA) on the accuracy of intensity-modulated radiation therapy (IMRT) dose calculation. The MLC leaf transmission factor was modified based on measurements made with ionization chambers. The table of parameters containing rounded-leaf-end offset values was modified by measuring the radiation field edge as a function of leaf bank position with an ionization chamber in a scanning water-tank dosimetry system and comparing the locations to those predicted by the TPS. The modified parameter values were validated by performing IMRT quality assurance (QA) measurements on 19 gantry-static IMRT plans. Planar dose measurements were performed with radiographic film and a diode array (MapCHECK2) and compared to TPS calculated dose distributions using default and modified configuration parameters. Based on measurements, the leaf transmission factor was changed from a default value of 0.001 to 0.005. Surprisingly, this modification resulted in a small but statistically significant worsening of IMRT QA gamma-index passing rate, which revealed that the overall dosimetric accuracy of the TPS depends on multiple configuration parameters in a manner that is coupled and not intuitive because of the commissioning protocol used in our clinic. The rounded leaf offset table had little room for improvement, with the average difference between the default and modified offset values being -0.2 ± 0.7 mm. While our results depend on the current clinical protocols, treatment unit and TPS used, the methodology used in this study is generally applicable. Different clinics could potentially obtain different results and improve their dosimetric accuracy using our approach.

  12. TH-E-BRE-05: Analysis of Dosimetric Characteristics in Two Leaf Motion Calculator Algorithms for Sliding Window IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, L; Huang, B; Rowedder, B

    Purpose: The Smart leaf motion calculator (SLMC) in Eclipse treatment planning system is an advanced fluence delivery modeling algorithm as it takes into account fine MLC features including inter-leaf leakage, rounded leaf tips, non-uniform leaf thickness, and the spindle cavity etc. In this study, SLMC and traditional Varian LMC (VLMC) algorithms were investigated, for the first time, in dosimetric characteristics and delivery accuracy of sliding window (SW) IMRT. Methods: The SW IMRT plans of 51 cancer cases were included to evaluate dosimetric characteristics and dose delivery accuracy from leaf motion calculated by SLMC and VLMC, respectively. All plans were deliveredmore » using a Varian TrueBeam Linac. The DVH and MUs of the plans were analyzed. Three patient specific QA tools - independent dose calculation software IMSure, Delta4 phantom, and EPID portal dosimetry were also used to measure the delivered dose distribution. Results: Significant differences in the MUs were observed between the two LMCs (p≤0.001).Gamma analysis shows an excellent agreement between the planned dose distribution calculated by both LMC algorithms and delivered dose distribution measured by three QA tools in all plans at 3%/3 mm, leading to a mean pass rate exceeding 97%. The mean fraction of pixels with gamma < 1 of SLMC is slightly lower than that of VLMC in the IMSure and Delta4 results, but higher in portal dosimetry (the highest spatial resolution), especially in complex cases such as nasopharynx. Conclusion: The study suggests that the two LMCs generates the similar target coverage and sparing patterns of critical structures. However, SLMC is modestly more accurate than VLMC in modeling advanced MLC features, which may lead to a more accurate dose delivery in SW IMRT. Current clinical QA tools might not be specific enough to differentiate the dosimetric discrepancies at the millimeter level calculated by these two LMC algorithms. NIH/NIGMS grant U54 GM104944, Lincy Endowed Assistant Professorship.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, B; Wong, R; Lam, W

    Purpose: To develop a practical method for routine QA of the MLC of a Tomotherapy unit using ArcCheck. Methods: Two standard test plans were used in this study. One was a helical test, in which the central leaves No. 32 and 33 opened simultaneously for 277.8ms at projections centered at 0°, 120° and 240° gantry angles. The other test plan was a static test with the gantry angle set at 0°, 45°, 90° and 135° respectively and leaves No. 32 and 33 opened sequentially for total 20s which was further divided into eleven or ten segments at each beam angle.more » The ArcCheck was isocentrically set up and adjusted for couch sag. Movie files which took a snapshot exposure every 50ms were recorded. The start/stop time of leaf open was decided by the ramp-up/ramp-down of the detectors. Results: The percentage differences between measured and planned leaf open time were calculated to be within 0.5% in all the tests. In static test, if leaves are synchronized perfectly, the sum of the two detectors’ signals after normalization should equal one when the leaves are in transition. Our results showed mean values of 0.982, 0.983, 0.978 and 0.995 at static gantry angle 0°, 45°, 90° and 135° respectively. Conclusion: A method for estimating the Tomotherapy binary MLC leaf open time using ArcCheck is proposed and proved to be precise enough to verify the planned leaf open time as small as 277.8ms. This method also makes the observation and quantification of the synchronization of leaves possible.« less

  14. SU-E-T-179: Clinical Impact of IMRT Failure Modes at Or Near TG-142 Tolerance Criteria Levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faught, J Tonigan; Balter, P; Johnson, J

    2015-06-15

    Purpose: Quantitatively assess the clinical impact of 11 critical IMRT dose delivery failure modes. Methods: Eleven step-and-shoot IMRT failure modes (FMs) were introduced into twelve Pinnacle v9.8 treatment plans. One standard and one highly modulated plan on the IROC IMRT phantom and ten previous H&N patient treatment plans were used. FMs included physics components covered by basic QA near tolerance criteria levels (TG-142) such as beam energy, MLC positioning, and MLC modeling. Resultant DVHs were compared to those of failure-free plans and the severity of plan degradation was assessed considering PTV coverage and OAR and normal tissue tolerances and usedmore » for FMEA severity scoring. Six of these FMs were physically simulated and phantom irradiations performed. TLD and radiochromic film results are used for comparison to treatment planning studies. Results: Based on treatment planning studies, the largest clinical impact from the phantom cases was induced by 2 mm systematic MLC shift in one bank with the combination of a D95% target under dose near 16% and OAR overdose near 8%. Cord overdoses of 5%–11% occurred with gantry angle, collimator angle, couch angle, MLC leaf end modeling, and MLC transmission and leakage modeling FMs. PTV coverage and/or OAR sparing was compromised in all FMs introduced in phantom plans with the exception of CT number to electron density tables, MU linearity, and MLC tongue-and-groove modeling. Physical measurements did not entirely agree with treatment planning results. For example, symmetry errors resulted in the largest physically measured discrepancies of up to 3% in the PTVs while a maximum of 0.5% deviation was seen in the treatment planning studies. Patient treatment plan study results are under analysis. Conclusion: Even in the simplistic anatomy of the IROC phantom, some basic physics FMs, just outside of TG-142 tolerance criteria, appear to have the potential for large clinical implications.« less

  15. The effect of MLC speed and acceleration on the plan delivery accuracy of VMAT

    PubMed Central

    Park, J M; Wu, H-G; Kim, J H; Carlson, J N K

    2015-01-01

    Objective: To determine a new metric utilizing multileaf collimator (MLC) speeds and accelerations to predict plan delivery accuracy of volumetric modulated arc therapy (VMAT). Methods: To verify VMAT delivery accuracy, gamma evaluations, analysis of mechanical parameter difference between plans and log files, and analysis of changes in dose–volumetric parameters between plans and plans reconstructed with log files were performed with 40 VMAT plans. The average proportion of leaf speeds ranging from l to h cm s−1 (Sl–h and l–h = 0–0.4, 0.4–0.8, 0.8–1.2, 1.2–1.6 and 1.6–2.0), mean and standard deviation of MLC speeds were calculated for each VMAT plan. The same was carried out for accelerations in centimetre per second squared (Al–h and l–h = 0–4, 4–8, 8–12, 12–16 and 16–20). The correlations of those indicators to plan delivery accuracy were analysed with Spearman's correlation coefficient (rs). Results: The S1.2–1.6 and mean acceleration of MLCs showed generally higher correlations to plan delivery accuracy than did others. The highest rs values were observed between S1.2–1.6 and global 1%/2 mm (rs = −0.698 with p < 0.001) as well as mean acceleration and global 1%/2 mm (rs = −0.650 with p < 0.001). As the proportion of MLC speeds and accelerations >0.4 and 4 cm s−2 increased, the plan delivery accuracy of VMAT decreased. Conclusion: The variations in MLC speeds and accelerations showed considerable correlations to VMAT delivery accuracy. Advances in knowledge: As the MLC speeds and accelerations increased, VMAT delivery accuracy reduced. PMID:25734490

  16. Design considerations for a computer controlled multileaf collimator for the Harper Hospital fast neutron therapy facility.

    PubMed

    Maughan, Richard L; Yudelev, Mark; Aref, Amr; Chuba, Paul J; Forman, Jeffrey; Blosser, Emanuel J; Horste, Timothy

    2002-04-01

    The d(48.5) + Be neutron beam from the Harper Hospital superconducting cyclotron is collimated using a unique multirod collimator (MRC). A computer controlled multileaf collimator (MLC) is being designed to improve efficiency and allow for the future development of intensity modulated radiation therapy with neutrons. For the current study the use of focused or unfocused collimator leaves has been studied. Since the engineering effort associated with the leaf design and materials choice impacts significantly on cost, it was desirable to determine the clinical impact of using unfocused leaves in the MLC design. The MRC is a useful tool for studying the effects of using focused versus unfocused beams on beam penumbra. The effects of the penumbra for the different leaf designs on tumor and normal tissue DVHs in two selected sites (prostate and head and neck) was investigated. The increase in the penumbra resulting from using unfocused beams was small (approximately 1.5 mm for a 5 x 5 cm2 field and approximately 7.6 mm for a 25 x 25 cm2 field at 10 cm depth) compared to the contribution of phantom scatter to the penumbra width (5.4 and 20 mm for the small and large fields at 10 cm depth, respectively). Comparison of DVHs for tumor and critical normal tissue in a prostate and head and neck case showed that the dosimetric disadvantages of using an unfocused rather than focused beam were minimal and only significant at shallow depths. For the rare cases, where optimum penumbra conditions are required, a MLC incorporating tapered leaves and, thus, providing focused collimation in one plane is necessary.

  17. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 05: A novel respiratory motion simulation program for VMAT treatment plans: a phantom validation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hubley, Emily; Pierce, Greg; Ploquin, Nicolas

    Purpose: To develop and validate a computational method to simulate craniocaudal respiratory motion in a VMAT treatment plan. Methods: Three 4DCTs of the QUASAR respiratory motion phantom were acquired with a 2cm water-density spherical tumour embedded in cedar to simulate lung. The phantom was oscillating sinusoidally with an amplitude of 2cm and periods of 3, 4, and 5 seconds. An ITV was contoured and 5mm PTV margin was added. High and a low modulation factor VMAT plans were created for each scan. An in-house program was developed to simulate respiratory motion in the treatment plans by shifting the MLC leafmore » positions relative to the phantom. Each plan was delivered to the phantom and the dose was measured using Gafchromic film. The measured and calculated plans were compared using an absolute dose gamma analysis (3%/3mm). Results: The average gamma pass rate for the low modulation plan and high modulation plans were 91.1% and 51.4% respectively. The difference between the high and low modulation plans gamma pass rates is likely related to the different sampling frequency of the respiratory curve and the higher MLC leaf speeds in the high modulation plan. A high modulation plan has a slower gantry speed and therefore samples the breathing cycle at a coarser frequency leading to inaccuracies between the measured and planned doses. Conclusion: A simple program, including a novel method for increasing sampling frequency beyond the control point frequency, has been developed to simulate respiratory motion in VMAT plans by shifting the MLC leaf positions.« less

  18. SU-E-T-629: Prediction of the ViewRay Radiotherapy Treatment Time for Clinical Logistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, S; Wooten, H; Wu, Y

    Purpose: An algorithm is developed in our clinic, given a new treatment plan, to predict treatment delivery time for radiation therapy (RT) treatments of patients on ViewRay magnetic resonance-image guided radiation therapy (MR-IGRT) delivery system. This algorithm is necessary for managing patient treatment appointments, and is useful as an indicator to assess the treatment plan complexity. Methods: A patient’s total treatment delivery time, not including time required for localization, may be described as the sum of four components: (1) the treatment initialization time; (2) the total beam-on time; (3) the gantry rotation time; and (4) the multileaf collimator (MLC) motionmore » time. Each of the four components is predicted separately. The total beam-on time can be calculated using both the planned beam-on time and the decay-corrected delivery dose rate. To predict the remaining components, we quantitatively analyze the patient treatment delivery record files. The initialization time is demonstrated to be random since it depends on the final gantry angle and MLC leaf positions of the previous treatment. Based on modeling the relationships between the gantry rotation angles and the corresponding rotation time, and between the furthest MLC leaf moving distance and the corresponding MLC motion time, the total delivery time is predicted using linear regression. Results: The proposed algorithm has demonstrated the feasibility of predicting the ViewRay treatment delivery time for any treatment plan of any patient. The average prediction error is 0.89 minutes or 5.34%, and the maximal prediction error is 2.09 minutes or 13.87%. Conclusion: We have developed a treatment delivery time prediction algorithm based on the analysis of previous patients’ treatment delivery records. The accuracy of our prediction is sufficient for guiding and arranging patient treatment appointments on a daily basis. The predicted delivery time could also be used as an indicator to assess the treatment plan complexity. This work was supported by a research grant from Viewray Inc.« less

  19. Poster — Thur Eve — 56: Design of Quality Assurance Methodology for VMAT system on Agility System equipped with CVDR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thind, K; Tolakanahalli, R

    2014-08-15

    The aim of this study was to analyze the feasibility of designing comprehensive QA plans using iComCAT for Elekta machines equipped with Agility multileaf collimator and continuously variable dose rate. Test plans with varying MLC speed, gantry speed, and dose rate were created and delivered in a controlled manner. A strip test was designed with three 1 cm MLC positions and delivered using dynamic, StepNShoot and VMAT techniques. Plans were also designed to test error in MLC position with various gantry speeds and various MLC speeds. The delivery fluence was captured using the electronic portal-imaging device. Gantry speed was foundmore » to be within tolerance as per the Canadian standards. MLC positioning errors at higher MLC speed with gravity effects does add more than 2 mm discrepancy. More tests need to be performed to evaluate MLC performance using independent measurement systems. The treatment planning system with end-to-end testing necessary for commissioning was also investigated and found to have >95% passing rates within 3%/3mm gamma criteria. Future studies involve performing off-axis gantry starshot pattern and repeating the tests on three matched Elekta linear accelerators.« less

  20. SU-F-BRB-12: A Novel Haar Wavelet Based Approach to Deliver Non-Coplanar Intensity Modulated Radiotherapy Using Sparse Orthogonal Collimators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, D; Ruan, D; Low, D

    2015-06-15

    Purpose: Existing efforts to replace complex multileaf collimator (MLC) by simple jaws for intensity modulated radiation therapy (IMRT) resulted in unacceptable compromise in plan quality and delivery efficiency. We introduce a novel fluence map segmentation method based on compressed sensing for plan delivery using a simplified sparse orthogonal collimator (SOC) on the 4π non-coplanar radiotherapy platform. Methods: 4π plans with varying prescription doses were first created by automatically selecting and optimizing 20 non-coplanar beams for 2 GBM, 2 head & neck, and 2 lung patients. To create deliverable 4π plans using SOC, which are two pairs of orthogonal collimators withmore » 1 to 4 leaves in each collimator bank, a Haar Fluence Optimization (HFO) method was used to regulate the number of Haar wavelet coefficients while maximizing the dose fidelity to the ideal prescription. The plans were directly stratified utilizing the optimized Haar wavelet rectangular basis. A matching number of deliverable segments were stratified for the MLC-based plans. Results: Compared to the MLC-based 4π plans, the SOC-based 4π plans increased the average PTV dose homogeneity from 0.811 to 0.913. PTV D98 and D99 were improved by 3.53% and 5.60% of the corresponding prescription doses. The average mean and maximal OAR doses slightly increased by 0.57% and 2.57% of the prescription doses. The average number of segments ranged between 5 and 30 per beam. The collimator travel time to create the segments decreased with increasing leaf numbers in the SOC. The two and four leaf designs were 1.71 and 1.93 times more efficient, on average, than the single leaf design. Conclusion: The innovative dose domain optimization based on compressed sensing enables uncompromised 4π non-coplanar IMRT dose delivery using simple rectangular segments that are deliverable using a sparse orthogonal collimator, which only requires 8 to 16 leaves yet is unlimited in modulation resolution. This work is supported in part by Varian Medical Systems, Inc. and NIH R43 CA18339.« less

  1. MLC-based penumbra softener of EDW borders to reduce junction inhomogeneities.

    PubMed

    Szpala, Stanislaw; Kohli, Kirpal

    2017-05-01

    Junctions of fields are known to be susceptible to developing cold or hot spots in the presence of even small geometrical misalignments. Reduction of these dose inhomogeneities can be accomplished through decreasing the dose gradients in the penumbra, but currently it cannot be done for enhanced dynamic wedges (EDW). An MLC-based penumbra softener was developed in the developer mode of TrueBeam linacs to reduce dose gradients across the side border of EDWs. The movement of each leaf was individually synchronized with the movement of the dynamic Y jaw to soften the penumbra in the same manner along the entire field border, in spite of the presence of the dose gradient of the EDW. Junction homogeneity upon field misalignment for side-matched EDWs was examined with the MV imager. The fluence inhomogeneities were reduced from about 30% per mm of shift of the field borders for the conventional EDW to about 2% per mm for the softened-penumbra plan. The junction in a four-field monoisocentric breast plan delivered to the Rando phantom was assessed with film. The dose inhomogeneities across the junction in the superior-inferior direction were reduced from about 20% to 25% per mm for the conventional fields to about 5% per mm. The dose near the softened junction of the breast plan with no shifts did not deviate from the conventional plan by more than about 4%. The newly-developed softened-penumbra junction of EDW (and/or open) fields was shown to reduce sensitivity to misalignments without increasing complexity of the planning or delivery. This methodology needs to be adopted by the manufacturers for clinical use. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Dynamic temperature response of electrocaloric multilayer capacitors

    NASA Astrophysics Data System (ADS)

    Kwon, Beomjin; Roh, Im-Jun; Baek, Seung-Hyub; Keun Kim, Seong; Kim, Jin-Sang; Kang, Chong-Yun

    2014-05-01

    We measure and model the dynamic temperature response of electrocaloric (EC) multilayer capacitors (MLCs) which have been recently highlighted as novel solid-state refrigerators. The MLC temperature responses depend on the operation voltage waveform, thus we consider three types of voltage waveforms, which include square, triangular, and trapezoidal. Further, to implement an effective refrigeration cycle, the waveform frequency and duty cycle should be carefully chosen. First, our model is fitted to the measurements to evaluate an effective EC power and thermal properties, and calculates an effective cooling power for an EC MLC. The prediction shows that for a MLC with a thermal relaxation time for cooling, trc, a square voltage waveform with a duty cycle of 0 < d ≤ 0.3 and a period of trc < P ≤ 1.4trc provides the maximum cooling power. This work will help to improve the implementing methods for EC refrigeration cycles.

  3. Treatment planning systems for external whole brain radiation therapy: With and without MLC (multi leaf collimator) optimization

    NASA Astrophysics Data System (ADS)

    Budiyono, T.; Budi, W. S.; Hidayanto, E.

    2016-03-01

    Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).

  4. Electromagnetic guided couch and multileaf collimator tracking on a TrueBeam accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Rune; Ravkilde, Thomas; Worm, Esben Schjødt

    2016-05-15

    Purpose: Couch and MLC tracking are two promising methods for real-time motion compensation during radiation therapy. So far, couch and MLC tracking experiments have mainly been performed by different research groups, and no direct comparison of couch and MLC tracking of volumetric modulated arc therapy (VMAT) plans has been published. The Varian TrueBeam 2.0 accelerator includes a prototype tracking system with selectable couch or MLC compensation. This study provides a direct comparison of the two tracking types with an otherwise identical setup. Methods: Several experiments were performed to characterize the geometric and dosimetric performance of electromagnetic guided couch and MLCmore » tracking on a TrueBeam accelerator equipped with a Millennium MLC. The tracking system latency was determined without motion prediction as the time lag between sinusoidal target motion and the compensating motion of the couch or MLC as recorded by continuous MV portal imaging. The geometric and dosimetric tracking accuracies were measured in tracking experiments with motion phantoms that reproduced four prostate and four lung tumor trajectories. The geometric tracking error in beam’s eye view was determined as the distance between an embedded gold marker and a circular MLC aperture in continuous MV images. The dosimetric tracking error was quantified as the measured 2%/2 mm gamma failure rate of a low and a high modulation VMAT plan delivered with the eight motion trajectories using a static dose distribution as reference. Results: The MLC tracking latency was approximately 146 ms for all sinusoidal period lengths while the couch tracking latency increased from 187 to 246 ms with decreasing period length due to limitations in the couch acceleration. The mean root-mean-square geometric error was 0.80 mm (couch tracking), 0.52 mm (MLC tracking), and 2.75 mm (no tracking) parallel to the MLC leaves and 0.66 mm (couch), 1.14 mm (MLC), and 2.41 mm (no tracking) perpendicular to the leaves. The motion-induced gamma failure rate was in mean 0.1% (couch tracking), 8.1% (MLC tracking), and 30.4% (no tracking) for prostate motion and 2.9% (couch), 2.4% (MLC), and 41.2% (no tracking) for lung tumor motion. The residual tracking errors were mainly caused by inadequate adaptation to fast lung tumor motion for couch tracking and to prostate motion perpendicular to the MLC leaves for MLC tracking. Conclusions: Couch and MLC tracking markedly improved the geometric and dosimetric accuracies of VMAT delivery. However, the two tracking types have different strengths and weaknesses. While couch tracking can correct perfectly for slowly moving targets such as the prostate, MLC tracking may have considerably larger dose errors for persistent target shift perpendicular to the MLC leaves. Advantages of MLC tracking include faster dynamics with better adaptation to fast moving targets, the avoidance of moving the patient, and the potential to track target rotations and deformations.« less

  5. Automatic online adaptive radiation therapy techniques for targets with significant shape change: a feasibility study.

    PubMed

    Court, Laurence E; Tishler, Roy B; Petit, Joshua; Cormack, Robert; Chin, Lee

    2006-05-21

    This work looks at the feasibility of an online adaptive radiation therapy concept that would detect the daily position and shape of the patient, and would then correct the daily treatment to account for any changes compared with planning position. In particular, it looks at the possibility of developing algorithms to correct for large complicated shape change. For co-planar beams, the dose in an axial plane is approximately associated with the positions of a single multi-leaf collimator (MLC) pair. We start with a primary plan, and automatically generate several secondary plans with gantry angles offset by regular increments. MLC sequences for each plan are calculated keeping monitor units (MUs) and number of segments constant for a given beam (fluences are different). Bulk registration (3D) of planning and daily CT images gives global shifts. Slice-by-slice (2D) registration gives local shifts and rotations about the longitudinal axis for each axial slice. The daily MLC sequence is then created for each axial slice/MLC leaf pair combination, by taking the MLC positions from the pre-calculated plan with the nearest rotation, and shifting using a beam's-eye-view calculation to account for local linear shifts. A planning study was carried out using two head and neck region MR images of a healthy volunteer which were contoured to simulate a base-of-tongue treatment: one with the head straight (used to simulate the planning image) and the other with the head tilted to the left (the daily image). Head and neck treatment was chosen to evaluate this technique because of its challenging nature, with varying internal and external contours, and multiple degrees of freedom. Shape change was significant: on a slice-by-slice basis, local rotations in the daily image varied from 2 to 31 degrees, and local shifts ranged from -0.2 to 0.5 cm and -0.4 to 0.0 cm in right-left and posterior-anterior directions, respectively. The adapted treatment gave reasonable target coverage (100%, 90% and 80% of the base-of-tongue, left nodes and right nodes, respectively, receiving the daily prescription dose), and kept the daily cord dose below the limit used in the original plan (65%, equivalent to 46 Gy over 35 fractions). Most of the loss of coverage was due to one shoulder being raised more superior relative to the other shoulder compared with the plan. This type of skew-like motion is not accounted for by the proposed ART technique. In conclusion, this technique has potential to correct for fairly extreme daily changes in patient setup, but some control of the daily position would still be necessary. Importantly, it was possible to combine treatments from different plans (MLC sequences) to correct for position and shape change.

  6. Complexity metric based on fraction of penumbra dose - initial study

    NASA Astrophysics Data System (ADS)

    Bäck, A.; Nordström, F.; Gustafsson, M.; Götstedt, J.; Karlsson Hauer, A.

    2017-05-01

    Volumetric modulated arc therapy improve radiotherapy outcome for many patients compared to conventional three dimensional conformal radiotherapy but require a more extensive, most often measurement based, quality assurance. Multi leaf collimator (MLC) aperture-based complexity metrics have been suggested to be used to distinguish complex treatment plans unsuitable for treatment without time consuming measurements. This study introduce a spatially resolved complexity score that correlate to the fraction of penumbra dose and will give information on the spatial distribution and the clinical relevance of the calculated complexity. The complexity metric is described and an initial study on the correlation between the complexity score and the difference between measured and calculated dose for 30 MLC openings is presented. The result of an analysis of the complexity scores were found to correlate to differences between measurements and calculations with a Pearson’s r-value of 0.97.

  7. Simultaneous minimization of leaf travel distance and tongue-and-groove effect for segmental intensity-modulated radiation therapy.

    PubMed

    Dai, Jianrong; Que, William

    2004-12-07

    This paper introduces a method to simultaneously minimize the leaf travel distance and the tongue-and-groove effect for IMRT leaf sequences to be delivered in segmental mode. The basic idea is to add a large enough number of openings through cutting or splitting existing openings for those leaf pairs with openings fewer than the number of segments so that all leaf pairs have the same number of openings. The cutting positions are optimally determined with a simulated annealing technique called adaptive simulated annealing. The optimization goal is set to minimize the weighted summation of the leaf travel distance and tongue-and-groove effect. Its performance was evaluated with 19 beams from three clinical cases; one brain, one head-and-neck and one prostate case. The results show that it can reduce the leaf travel distance and (or) tongue-and-groove effect; the reduction of the leaf travel distance reaches its maximum of about 50% when minimized alone; the reduction of the tongue-and-groove reaches its maximum of about 70% when minimized alone. The maximum reduction in the leaf travel distance translates to a 1 to 2 min reduction in treatment delivery time per fraction, depending on leaf speed. If the method is implemented clinically, it could result in significant savings in treatment delivery time, and also result in significant reduction in the wear-and-tear of MLC mechanics.

  8. SU-F-T-463: Light-Field Based Dynalog Verification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atwal, P; Ramaseshan, R

    2016-06-15

    Purpose: To independently verify leaf positions in so-called dynalog files for a Varian iX linac with a Millennium 120 MLC. This verification provides a measure of confidence that the files can be used directly as part of a more extensive intensity modulated radiation therapy / volumetric modulated arc therapy QA program. Methods: Initial testing used white paper placed at the collimator plane and a standard hand-held digital camera to image the light and shadow of a static MLC field through the paper. Known markings on the paper allow for image calibration. Noise reduction was attempted with removal of ‘inherent noise’more » from an open-field light image through the paper, but the method was found to be inconsequential. This is likely because the environment could not be controlled to the precision required for the sort of reproducible characterization of the quantum noise needed in order to meaningfully characterize and account for it. A multi-scale iterative edge detection algorithm was used for localizing the leaf ends. These were compared with the planned locations from the treatment console. Results: With a very basic setup, the image of the central bank A leaves 15–45, which are arguably the most important for beam modulation, differed from the planned location by [0.38±0.28] mm. Similarly, for bank B leaves 15–45 had a difference of [0.42±0.28] mm Conclusion: It should be possible to determine leaf position accurately with not much more than a modern hand-held camera and some software. This means we can have a periodic and independent verification of the dynalog file information. This is indicated by the precision already achieved using a basic setup and analysis methodology. Currently, work is being done to reduce imaging and setup errors, which will bring the leaf position error down further, and allow meaningful analysis over the full range of leaves.« less

  9. TU-C-17A-05: Dose Domain Optimization of MLC Leaf Patterns for Highly Complicated 4Ï€ IMRT Plans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, D; Yu, V; Ruan, D

    Purpose: Highly conformal non-coplanar 4π radiotherapy plans typically require more than 20 intensity-modulated fields to deliver. A novel method to calculate multileaf collimator (MLC) leaf patterns is introduced to maximize delivery efficiency, accuracy and plan quality. Methods: 4 GBM patients, with a prescription dose of 59.4 Gy or 60 Gy, were evaluated using the 4π algorithm using 20 beams. The MLC calculation utilized a least square minimization of the dose distribution, with an anisotropic total variation regularization term to encourage piecewise continuity in the fluence maps. Transforming the fluence to the dose domain required multiplying the fluence with a sparsemore » matrix. Exploiting this property made it feasible to solve the problem using CVX, a MATLAB-based convex modeling framework. The fluence was stratified into even step sizes, and the MLC segments, limited to 300, were calculated. The patients studied were replanned using Eclipse with the same beam angles. Results: Compared to the original 4π plan, the stratified 4π plan increased the maximum/mean dose for, in Gy, by 1.0/0.0 (brainstem), 0.5/0.2 (chiasm), 0.0/0.0 (spinal cord), 1.9/0.3 (L eye), 0.7/0.2 (R eye), 0.4/0.4 (L lens), 0.3/0.3 (R lens), 1.0/0.8 (L Optical Nerve), 0.5/0.3 (R Optical Nerve), 0.3/0.2 (L Cochlea), 0.1/0.1 (R Cochlea), 4.6/0.2 (brain), 2.4/0.1 (brain-PTV), 5.1/0.9 (PTV). Compared to Eclipse, which generated an average of 607 segments, the stratified plan reduced (−) or increased (+) the maximum/mean dose, in Gy, by −10.2/−4.1 (brainstem), −10.5/−8.9 (chiasm), +0.0/−0.1 (spinal cord), −4.9/−3.4 (L eye), −4.1/−2.5 (R eye), −2.8/−2.7 (L lens), −2.1/−1.9 (R lens), −7.6/−6.5 (L Optical Nerve), −8.9/−6.1 (R Optical Nerve), −1.3/−1.9 (L Cochlea), −1.8/−1.8 (R Cochlea), +1.7/−2.1 (brain), +3.2/−2.6 (brain-PTV), +1.8/+0.3 Gy (PTV. The stratified plan was also more homogeneous in the PTV. Conclusion: This novel solver can transform complicated fluence maps into significantly fewer deliverable MLC segments than the commercial system while achieving superior dosimetry. Funding support partially contributed by Varian.« less

  10. SU-E-T-515: Field-In-Field Compensation Technique Using Multi-Leaf Collimator to Deliver Total Body Irradiation (TBI) Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakeman, T; Wang, IZ; Roswell Park Cancer Institute, Buffalo, NY

    Purpose: Total body irradiation (TBI) uses large parallel-opposed radiation fields to suppress the patient's immune system and eradicate the residual cancer cells in preparation of recipient for bone marrow transplant. The manual placement of lead compensators has been used conventionally to compensate for the varying thickness through the entire body in large-field TBI. The goal of this study is to pursue utilizing the modern field-in-field (FIF) technique with the multi-leaf collimator (MLC) to more accurately and efficiently deliver dose to patients in need of TBI. Method: Treatment plans utilizing the FIF technique to deliver a total body dose were createdmore » retrospectively for patients for whom CT data had been previously acquired. Treatment fields include one pair of opposed open large fields (collimator=45°) with a specific weighting and a succession of smaller fields (collimator=90°) each with their own weighting. The smaller fields are shaped by moving MLC to block the sections of the patient which have already received close to 100% of the prescribed dose. The weighting factors for each of these fields were calculated using the attenuation coefficient of the initial lead compensators and the separation of the patient in different positions in the axial plane. Results: Dose-volume histograms (DVH) were calculated for evaluating the FIF compensation technique. The maximum body doses calculated from the DVH were reduced from the non-compensated 179.3% to 148.2% in the FIF plans, indicating a more uniform dose with the FIF compensation. All calculated monitor units were well within clinically acceptable limits and exceeded those of the original lead compensation plan by less than 50 MU (only ~1.1% increase). Conclusion: MLC FIF technique for TBI will not significantly increase the beam on time while it can substantially reduce the compensator setup time and the potential risk of errors in manually placing lead compensators.« less

  11. MO-G-BRE-04: Automatic Verification of Daily Treatment Deliveries and Generation of Daily Treatment Reports for a MR Image-Guided Treatment Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, D; Li, X; Li, H

    2014-06-15

    Purpose: Two aims of this work were to develop a method to automatically verify treatment delivery accuracy immediately after patient treatment and to develop a comprehensive daily treatment report to provide all required information for daily MR-IGRT review. Methods: After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a novel MR-IGRT treatment machine, we designed a method to use 1) treatment plan files, 2) delivery log files, and 3) dosimetric calibration information to verify the accuracy and completeness of daily treatment deliveries. The method verifies the correctness of delivered treatment plans and beams, beammore » segments, and for each segment, the beam-on time and MLC leaf positions. Composite primary fluence maps are calculated from the MLC leaf positions and the beam-on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. We also designed the daily treatment delivery report by including all required information for MR-IGRT and physics weekly review - the plan and treatment fraction information, dose verification information, daily patient setup screen captures, and the treatment delivery verification results. Results: The parameters in the log files (e.g. MLC positions) were independently verified and deemed accurate and trustable. A computer program was developed to implement the automatic delivery verification and daily report generation. The program was tested and clinically commissioned with sufficient IMRT and 3D treatment delivery data. The final version has been integrated into a commercial MR-IGRT treatment delivery system. Conclusion: A method was developed to automatically verify MR-IGRT treatment deliveries and generate daily treatment reports. Already in clinical use since December 2013, the system is able to facilitate delivery error detection, and expedite physician daily IGRT review and physicist weekly chart review.« less

  12. Detector system dose verification comparisons for arc therapy: couch vs. gantry mount

    PubMed Central

    Manikandan, Arjunan; Nandy, Maitreyee; Sureka, Chandra Sekaran; Gossman, Michael S.; Sujatha, Nadendla; Rajendran, Vivek Thirupathur

    2014-01-01

    The aim of this study was to assess the performance of a gantry‐mounted detector system and a couch set detector system using a systematic multileaf collimator positional error manually introduced for volumetric‐modulated arc therapy. Four head and neck and esophagus VMAT plans were evaluated by measurement using an electronic portal imaging device and an ion chamber array. Each plan was copied and duplicated with a 1 mm systematic MLC positional error in the left leaf bank. Direct comparison of measurements for plans with and without the error permitted observational characteristics for quality assurance performance between detectors. A total of 48 different plans were evaluated for this testing. The mean percentage planar dose differences required to satisfy a 95% match between plans with and without the MLCPE were 5.2% ± 0.5% for the chamber array with gantry motion, 8.12% ± 1.04% for the chamber array with a static gantry at 0°, and 10.9% ± 1.4% for the EPID with gantry motion. It was observed that the EPID was less accurate due to overresponse of the MLCPE in the left leaf bank. The EPID always images bank‐A on the ipsilateral side of the detector, whereas for a chamber array or for a patient, that bank changes as it crosses the ‐90° or +90° position. A couch set detector system can reproduce the TPS calculated values most consistently. We recommend it as the most reliable patient specific QA system for MLC position error testing. This research is highlighted by the finding of up to 12.7% dose variation for H/N and esophagus cases for VMAT delivery, where the mere source of error was the stated clinically acceptability of 1 mm MLC position deviation of TG‐142. PACS numbers: 87.56.‐v, 87.55.‐x, 07.57.KP, 29.40.‐n, 85.25.Pb PMID:24892330

  13. Clinical implementation of an exit detector-based dose reconstruction tool for helical tomotherapy delivery quality assurance.

    PubMed

    Deshpande, Shrikant; Xing, Aitang; Metcalfe, Peter; Holloway, Lois; Vial, Philip; Geurts, Mark

    2017-10-01

    The aim of this study was to validate the accuracy of an exit detector-based dose reconstruction tool for helical tomotherapy (HT) delivery quality assurance (DQA). Exit detector-based DQA tool was developed for patient-specific HT treatment verification. The tool performs a dose reconstruction on the planning image using the sinogram measured by the HT exit detector with no objects in the beam (i.e., static couch), and compares the reconstructed dose to the planned dose. Vendor supplied (three "TomoPhant") plans with a cylindrical solid water ("cheese") phantom were used for validation. Each "TomoPhant" plan was modified with intentional multileaf collimator leaf open time (MLC LOT) errors to assess the sensitivity and robustness of this tool. Four scenarios were tested; leaf 32 was "stuck open," leaf 42 was "stuck open," random leaf LOT was closed first by mean values of 2% and then 4%. A static couch DQA procedure was then run five times (once with the unmodified sinogram and four times with modified sinograms) for each of the three "TomoPhant" treatment plans. First, the original optimized delivery plan was compared with the original machine agnostic delivery plan, then the original optimized plans with a known modification applied (intentional MLC LOT error) were compared to the corresponding error plan exit detector measurements. An absolute dose comparison between calculated and ion chamber (A1SL, Standard Imaging, Inc., WI, USA) measured dose was performed for the unmodified "TomoPhant" plans. A 3D gamma evaluation (2%/2 mm global) was performed by comparing the planned dose ("original planned dose" for unmodified plans and "adjusted planned dose" for each intentional error) to exit detector-reconstructed dose for all three "Tomophant" plans. Finally, DQA for 119 clinical (treatment length <25 cm) and three cranio-spinal irradiation (CSI) plans were measured with both the ArcCHECK phantom (Sun Nuclear Corp., Melbourne, FL, USA) and the exit detector DQA tool to assess the time required for DQA and similarity between two methods. The measured ion chamber dose agreed to within 1.5% of the reconstructed dose computed by the exit detector DQA tool on a cheese phantom for all unmodified "Tomophant" plans. Excellent agreement in gamma pass rate (>95%) was observed between the planned and reconstructed dose for all "Tomophant" plans considered using the tool. The gamma pass rate from 119 clinical plan DQA measurements was 94.9% ± 1.5% and 91.9% ± 4.37% for the exit detector DQA tool and ArcCHECK phantom measurements (P = 0.81), respectively. For the clinical plans (treatment length <25 cm), the average time required to perform DQA was 24.7 ± 3.5 and 39.5 ± 4.5 min using the exit detector QA tool and ArcCHECK phantom, respectively, whereas the average time required for the 3 CSI treatments was 35 ± 3.5 and 90 ± 5.2 min, respectively. The exit detector tool has been demonstrated to be faster for performing the DQA with equivalent sensitivity for detecting MLC LOT errors relative to a conventional phantom-based QA method. In addition, comprehensive MLC performance evaluation and features of reconstructed dose provide additional insight into understanding DQA failures and the clinical relevance of DQA results. © 2017 American Association of Physicists in Medicine.

  14. Poster — Thur Eve — 28: Enabling trajectory-based radiotherapy on a TrueBeam accelerator with the Eclipse treatment planning system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, J; Asiev, K; DeBlois, F

    2014-08-15

    The TrueBeam linear accelerator platform has a developer's mode which permits the user dynamic control over many of the machine's mechanical and radiation systems. Using this research tool, synchronous couch and gantry motion can be programmed to simulate isocentric treatment with a shortened SAD, with benefits such as smaller projected MLC leaf widths and an increased dose rate. In this work, water tank measurements were used to commission a virtual linear accelerator with an 85 cm SAD in Eclipse, from which several arc-based radiotherapy treatments were generated, including an inverse optimized VMAT delivery. For each plan, the pertinent treatment deliverymore » information was extracted from control points specified in the Eclipse-exported DICOM files using the pydicom package in Python, allowing construction of an XML control file. The dimensions of the jaws and MLC positions, defined for an 85 cm SAD in Eclipse, were scaled for delivery on a conventional SAD linear accelerator, and translational couch motion was added as a function of gantry angle to simulate delivery at 85 cm SAD. Ionization chamber and Gafchromic film measurements were used to compare the radiation delivery to dose calculations in Eclipse. With the exception of the VMAT delivery, ionization chamber measurements agreed within 3.3% of the Eclipse calculations. For the VMAT delivery, the ionization chamber was located in an inhomogeneous region, but gamma evaluation of the Gafchromic film plane resulted in a 94.5% passing rate using criteria of 3 mm/3%. The results indicate that Eclipse calculation infrastructure can be used.« less

  15. SU-F-T-459: ArcCHECK Machine QA : Highly Efficient Quality Assurance Tool for VMAT, SRS & SBRT Linear Accelerator Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhatre, V; Patwe, P; Dandekar, P

    Purpose: Quality assurance (QA) of complex linear accelerators is critical and highly time consuming. ArcCHECK Machine QA tool is used to test geometric and delivery aspects of linear accelerator. In this study we evaluated the performance of this tool. Methods: Machine QA feature allows user to perform quality assurance tests using ArcCHECK phantom. Following tests were performed 1) Gantry Speed 2) Gantry Rotation 3) Gantry Angle 4)MLC/Collimator QA 5)Beam Profile Flatness & Symmetry. Data was collected on trueBEAM stX machine for 6 MV for a period of one year. The Gantry QA test allows to view errors in gantry angle,more » rotation & assess how accurately the gantry moves around the isocentre. The MLC/Collimator QA tool is used to analyze & locate the differences between leaf bank & jaw position of linac. The flatness & Symmetry test quantifies beam flatness & symmetry in IEC-y & x direction. The Gantry & Flatness/Symmetry test can be performed for static & dynamic delivery. Results: The Gantry speed was 3.9 deg/sec with speed maximum deviation around 0.3 deg/sec. The Gantry Isocentre for arc delivery was 0.9mm & static delivery was 0.4mm. The maximum percent positive & negative difference was found to be 1.9 % & – 0.25 % & maximum distance positive & negative diff was 0.4mm & – 0.3 mm for MLC/Collimator QA. The Flatness for Arc delivery was 1.8 % & Symmetry for Y was 0.8 % & X was 1.8 %. The Flatness for gantry 0°,270°,90° & 180° was 1.75,1.9,1.8 & 1.6% respectively & Symmetry for X & Y was 0.8,0.6% for 0°, 0.6,0.7% for 270°, 0.6,1% for 90° & 0.6,0.7% for 180°. Conclusion: ArcCHECK Machine QA is an useful tool for QA of Modern linear accelerators as it tests both geometric & delivery aspects. This is very important for VMAT, SRS & SBRT treatments.« less

  16. SU-G-TeP4-15: The Roucoulette: A Set of Quality Control Tests for Dynamic Trajectory (4Pi) Treatment Delivery Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teke, T

    Purpose: To present and validate a set of quality control tests for trajectory treatment delivery using synchronized dynamic couch (translation and rotation), MLC and collimator motion. Methods: The quality control tests are based on the Picket fence test, which consist of 5 narrow band 2mm width spaced at 2.5cm intervals, and adds progressively synchronized dynamic motions. The tests were exposed on GafChromic EBT3 films. The first test is a regular (no motion and MLC static while beam is on) Picket Fence test used as baseline. The second test includes simultaneous collimator and couch rotation, each stripe corresponding to a differentmore » rotation speed. Errors in these tests were introduced (0.5 degree and 1 degree error in rotation synchronization) to assess the error sensitivity of this test. The second test is similar to the regular Picket Fence but now including dynamic MLC motion and couch translation (including acceleration during delivery) while the beam is on. Finally in the third test, which is a combination of the first and second test, the Picket Fence pattern is delivered using synchronized collimator and couch rotation and synchronized dynamic MLC and couch translation including acceleration. Films were analyzed with FilmQA Pro. Results: The distance between the peaks in the dose profile where measured (18.5cm away from the isocentre in the inplane direction where non synchronized rotation would have the largest effect) and compared to the regular Picket Fence tests. For well synchronized motions distances between peaks where between 24.9–25.4 mm identical to the regular Picket Fence test. This range increased to 24.4–26.4mm and 23.4–26.4mm for 0.5 degree and 1 degree error respectively. The amplitude also decreased up to 15% when errors are introduced. Conclusion: We demonstrated that the Roucoulette tests can be used as a quality control tests for trajectory treatment delivery using synchronized dynamic motion.« less

  17. Dosimetric evaluation of the clinical implementation of the first commercial IMRT Monte Carlo treatment planning system at 6 MV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heath, Emily; Seuntjens, Jan; Sheikh-Bagheri, Daryoush

    2004-10-01

    In this work we dosimetrically evaluated the clinical implementation of a commercial Monte Carlo treatment planning software (PEREGRINE, North American Scientific, Cranberry Township, PA) intended for quality assurance (QA) of intensity modulated radiation therapy treatment plans. Dose profiles calculated in homogeneous and heterogeneous phantoms using this system were compared to both measurements and simulations using the EGSnrc Monte Carlo code for the 6 MV beam of a Varian CL21EX linear accelerator. For simple jaw-defined fields, calculations agree within 2% of the dose at d{sub max} with measurements in homogeneous phantoms with the exception of the buildup region where the calculationsmore » overestimate the dose by up to 8%. In heterogeneous lung and bone phantoms the agreement is within 3%, on average, up to 5% for a 1x1 cm{sup 2} field. We tested two consecutive implementations of the MLC model. After matching the calculated and measured MLC leakage, simulations of static and dynamic MLC-defined fields using the most recent MLC model agreed to within 2% with measurements.« less

  18. SU-E-T-534: Dosimetric Effect of Multileaf Collimator Leaf Width On Volumetric Modulated Arc Stereotactic Radiotherapy for Spine Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoush, A; Djemil, T; Subedi, L

    2014-06-01

    Purpose: To study the dosimetric impact of MLC leaf width in patients treated with Volumetric Modulated Arc Therapy (VMAT) for spine Stereotactic Body radiation Therapy (SBRT). Methods: Twelve spine SBRT patients were retrospectively selected for this study. The patients were treated with IMRT following the RTOG-0631 of spine metastasis. The prescription dose was 16 Gy in one fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the cord receiving < 10 Gy (V10) were set as dose constraints. For purpose of this study, three dual arc VMAT plansmore » were created for each patient using three different MLC leaf widths: 2.5 mm, 4mm, and 5mm. The compliance to RTOG 0631, conformal index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. Results: The average V16 of the target was 91.91±1.36%, 93.73±2.38%, and 92.25±2.49% for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively (p=0.39). Accordingly, the average CI was 1.36±0.39, 1.36±0.34, and 1.41±0.3 (0.96), respectively. The average DGI was 0.24 ± 0.05, 0.22 ± 0.05, and 0.23 ± 0.04, respectively (p=0.86). The average spinal cord maximum dose was 12.10 ± 0.88 Gy, 12.52 ± 1.15 Gy, and 12.05 ± 1.12 (p=0.75) and V10 was 2.69 ± 1.71 cc, 5.43 ± 2.16 cc, and 3.71 ± 2.34 cc (p=0.15) for 2.5 mm, 4 mm, and 5 mm leaf widths, respectively. According, the average number of MUs was 4255 ± 431 MU, 5049 ± 1036 MU, and 4231 ± 580 MU respectively (p=0.17). Conclusion: The use of 2.5 mm, 4 mm, and 5 mm MLCs achieved similar VMAT plan quality as recommended by RTOG-0631. The dosimetric parameters were also comparable for the three MLCs.« less

  19. Multileaf collimator tracking integrated with a novel x-ray imaging system and external surrogate monitoring

    NASA Astrophysics Data System (ADS)

    Krauss, Andreas; Fast, Martin F.; Nill, Simeon; Oelfke, Uwe

    2012-04-01

    We have previously developed a tumour tracking system, which adapts the aperture of a Siemens 160 MLC to electromagnetically monitored target motion. In this study, we exploit the use of a novel linac-mounted kilovoltage x-ray imaging system for MLC tracking. The unique in-line geometry of the imaging system allows the detection of target motion perpendicular to the treatment beam (i.e. the directions usually featuring steep dose gradients). We utilized the imaging system either alone or in combination with an external surrogate monitoring system. We equipped a Siemens ARTISTE linac with two flat panel detectors, one directly underneath the linac head for motion monitoring and the other underneath the patient couch for geometric tracking accuracy assessments. A programmable phantom with an embedded metal marker reproduced three patient breathing traces. For MLC tracking based on x-ray imaging alone, marker position was detected at a frame rate of 7.1 Hz. For the combined external and internal motion monitoring system, a total of only 85 x-ray images were acquired prior to or in between the delivery of ten segments of an IMRT beam. External motion was monitored with a potentiometer. A correlation model between external and internal motion was established. The real-time component of the MLC tracking procedure then relied solely on the correlation model estimations of internal motion based on the external signal. Geometric tracking accuracies were 0.6 mm (1.1 mm) and 1.8 mm (1.6 mm) in directions perpendicular and parallel to the leaf travel direction for the x-ray-only (the combined external and internal) motion monitoring system in spite of a total system latency of ˜0.62 s (˜0.51 s). Dosimetric accuracy for a highly modulated IMRT beam-assessed through radiographic film dosimetry-improved substantially when tracking was applied, but depended strongly on the respective geometric tracking accuracy. In conclusion, we have for the first time integrated MLC tracking with x-ray imaging in the in-line geometry and demonstrated highly accurate respiratory motion tracking.

  20. WE-AB-BRB-10: Filmless QA of CyberKnife MLC-Collimated and Iris-Collimated Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gersh, J; Spectrum Medical Physics, LLC, Greenville, SC

    Purpose: Current methods of CK field shape QA is based on the use of radiochromic film. Though accurate results can be attained, these methods are prone to error, time consuming, and expensive. The techniques described herein perform similar QA using the FOIL Detector (Field, Output, and Image Localization). A key feature of this in-house QA solution, and central to this study, is an aSi flat-panel detector which provides the user with the means to perform accurate, immediate, and quantitative field analysis. Methods: The FOIL detector is automatically aligned in the CK beam using fiducial markers implanted within the detector case.more » Once the system is aligned, a treatment plan is delivered which irradiates the flat-panel imager using the field being tested. The current study tests each of the clinically-used fields shaped using the Iris variable-aperture collimation system using a plan which takes 6 minutes to deliver. The user is immediately provided with field diameter and beam profile, as well as a comparison to baseline values. Additionally, the detector is used to acquire and analyze leaf positions of the InCise multi-leaf collimation system. Results: Using a 6-minute plan consisting of 11 beams of 25MU-per-beam, the FOIL detector provided the user with a quantitative analysis of all clinically-used field shapes. The FOIL detector was also able to clearly resolve field edge junctions in a picket fence test, including slight over-travel of individual leaves as well as inter-leaf leakage. Conclusion: The FOIL system provided comparable field diameter and profile data when compared to methods using film; providing results much faster and with 5% of the MU used for film. When used with the MLC system, the FOIL detector provided the means for immediate quantification of the performance of the system through analysis of leaf positions in a picket fence test field. Author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts with Siemens Healthcare and Standard Imaging, Inc.« less

  1. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Price, A; Chang, S; Matney, J

    2016-06-15

    Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate).more » The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.« less

  2. SU-E-T-344: Dynamic Electron Beam Therapy Using Multiple Apertures in a Single Cut-Out

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, A; Yin, F; Wu, Q

    2015-06-15

    Purpose: Few leaf electron collimators (FLEC) or electron MLCs (eMLC) are highly desirable for dynamic electron beam therapies as they produce multiple apertures within a single delivery to achieve conformal dose distributions. However, their clinical implementation has been challenging. Alternatively, multiple small apertures in a single cut-out with variable jaw sizes could be utilized in a single dynamic delivery. In this study, we investigate dosimetric characteristics of such arrangement. Methods: Monte Carlo (EGSnrc/BEAMnrc/DOSXYnrc) simulations utilized validated Varian TrueBeam phase spaces. Investigated quantities included: Energy (6 MeV), jaw size (1×1 to 22×22 cm {sup 2}; centered to aperture), applicator/cut-out (15×15 cm{supmore » 2}), aperture (1×1, 2×2, 3×3, 4×4 cm{sup 2}), and aperture placement (on/off central axis). Three configurations were assessed: (1) single aperture on-axis, (2) single aperture off-axis, and (3) multiple apertures. Reference was configuration (1) with standard jaw size. Aperture placement and jaw size were optimized to maintain reference dosimetry and minimize leakage through unused apertures to <5%. Comparison metrics included depth dose and orthogonal profiles. Results: Configuration (1) and (2): Jaw openings were reduced to 10×10 cm{sup 2} without affecting dosimetry (gamma 2%/1mm) regardless of on- or off-axis placement. For smaller jaw sizes, reduced surface (<2%, 5% for 1×1 cm{sup 2} aperture) and increased Bremsstrahlung (<2%, 10% for 1×1 cm{sup 2} aperture) dose was observed. Configuration (3): Optimal aperture placement was in the corners (order: 1×1, 4×4, 2×2, 3×3 cm{sup 2}) and jaw sizes were 4×4, 4×4, 7×7, and 5×5 cm{sup 2} (apertures: 1×1, 2×2, 3×3, 4×4 cm{sup 2} ). Asymmetric leakage was found from upper and lower jaws. Leakage was generally within 5% with a maximum of 10% observed for the 1×1 cm{sup 2} aperture irradiation. Conclusion: Multiple apertures in a single cut-out with variable jaw size can be used in a single dynamic delivery, providing a practical alternative to FLEC or eMLC. Future simulations will expand on all variables.« less

  3. SU-F-T-295: MLCs Performance and Patient-Specific IMRT QA Using Log File Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osman, A; American University of Biuret Medical Center, Biuret; Maalej, N

    2016-06-15

    Purpose: To analyze the performance of the multi-leaf collimators (MLCs) from the log files recorded during the intensity modulated radiotherapy (IMRT) treatment and to construct the relative fluence maps and do the gamma analysis to compare the planned and executed MLCs movement. Methods: We developed a program to extract and analyze the data from dynamic log files (dynalog files) generated from sliding window IMRT delivery treatments. The program extracts the planned and executed (actual or delivered) MLCs movement, calculates and compares the relative planned and executed fluences. The fluence maps were used to perform the gamma analysis (with 3% dosemore » difference and 3 mm distance to agreement) for 3 IMR patients. We compared our gamma analysis results with those obtained from portal dose image prediction (PDIP) algorithm performed using the EPID. Results: For 3 different IMRT patient treatments, the maximum difference between the planned and the executed MCLs positions was 1.2 mm. The gamma analysis results of the planned and delivered fluences were in good agreement with the gamma analysis from portal dosimetry. The maximum difference for number of pixels passing the gamma criteria (3%/3mm) was 0.19% with respect to portal dosimetry results. Conclusion: MLC log files can be used to verify the performance of the MLCs. Patientspecific IMRT QA based on MLC movement log files gives similar results to EPID dosimetry results. This promising method for patient-specific IMRT QA is fast, does not require dose measurements in a phantom, can be done before the treatment and for every fraction, and significantly reduces the IMRT workload. The author would like to thank King Fahd University of petroleum and Minerals for the support.« less

  4. SU-E-T-478: Sliding Window Multi-Criteria IMRT Optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, D; Papp, D; Unkelbach, J

    2014-06-01

    Purpose: To demonstrate a method for what-you-see-is-what-you-get multi-criteria Pareto surface navigation for step and shoot IMRT treatment planning. Methods: We show mathematically how multiple sliding window treatment plans can be averaged to yield a single plan whose dose distribution is the dosimetric average of the averaged plans. This is incorporated into the Pareto surface navigation based approach to treatment planning in such a way that as the user navigates the surface, the plans he/she is viewing are ready to be delivered (i.e. there is no extra ‘segment the plans’ step that often leads to unacceptable plan degradation in step andmore » shoot Pareto surface navigation). We also describe how the technique can be applied to VMAT. Briefly, sliding window VMAT plans are created such that MLC leaves paint out fluence maps every 15 degrees or so. These fluence map leaf trajectories are averaged in the same way the static beam IMRT ones are. Results: We show mathematically that fluence maps are exactly averaged using our leaf sweep averaging algorithm. Leaf transmission and output factor corrections effects, which are ignored in this work, can lead to small errors in terms of the dose distributions not being exactly averaged even though the fluence maps are. However, our demonstrations show that the dose distributions are almost exactly averaged as well. We demonstrate the technique both for IMRT and VMAT. Conclusions: By turning to sliding window delivery, we show that the problem of losing plan fidelity during the conversion of an idealized fluence map plan into a deliverable plan is remedied. This will allow for multicriteria optimization that avoids the pitfall that the planning has to be redone after the conversion into MLC segments due to plan quality decline. David Craft partially funded by RaySearch Laboratories.« less

  5. SU-F-T-330: Characterization of the Clinically Released ScandiDos Discover Diode Array for In-Vivo Dose Monitoring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saenz, D; Gutierrez, A

    Purpose: The ScandiDos Discover has obtained FDA clearance and is now clinically released. We studied the essential attenuation and beam hardening components as well as tested the diode array’s ability to detect changes in absolute dose and MLC leaf positions. Methods: The ScandiDos Discover was mounted on the heads of an Elekta VersaHD and a Varian 23EX. Beam attenuation measurements were made at 10 cm depth for 6 MV and 18 MV beam energies. The PDD(10) was measured as a metric for the effect on beam quality. Next, a plan consisting of two orthogonal 10 × 10 cm2 fields wasmore » used to adjust the dose per fraction by scaling monitor units to test the absolute dose detection sensitivity of the Discover. A second plan (conformal arc) was then delivered several times independently on the Elekta VersaHD. Artificially introduced MLC position errors in the four central leaves were then added. The errors were incrementally increased from 1 mm to 4 mm and back across seven control points. Results: The absolute dose measured at 10 cm depth decreased by 1.2% and 0.7% for 6 MV and 18 MV beam with the Discover, respectively. Attenuation depended slightly on the field size but only changed the attenuation by 0.1% across 5 × 5 cm{sup 2} and 20 − 20 cm{sup 2} fields. The change in PDD(10) for a 10 − 10 cm{sup 2} field was +0.1% and +0.6% for 6 MV and 18 MV, respectively. Changes in monitor units from −5.0% to 5.0% were faithfully detected. Detected leaf errors were within 1.0 mm of intended errors. Conclusion: A novel in-vivo dosimeter monitoring the radiation beam during treatment was examined through its attenuation and beam hardening characteristics. The device tracked with changes in absolute dose as well as introduced leaf position deviations.« less

  6. Dependence of cross-bridge kinetics on myosin light chain isoforms in rabbit and rat skeletal muscle fibres.

    PubMed

    Andruchov, Oleg; Andruchova, Olena; Wang, Yishu; Galler, Stefan

    2006-02-15

    Cross-bridge kinetics underlying stretch-induced force transients was studied in fibres with different myosin light chain (MLC) isoforms from skeletal muscles of rabbit and rat. The force transients were induced by stepwise stretches (< 0.3% of fibre length) applied on maximally Ca2+-activated skinned fibres. Fast fibre types IIB, IID (or IIX) and IIA and the slow fibre type I containing the myosin heavy chain isoforms MHC-IIb, MHC-IId (or MHC-IIx), MHC-IIa and MHC-I, respectively, were investigated. The MLC isoform content varied within fibre types. Fast fibre types contained the fast regulatory MLC isoform MLC2f and different proportions of the fast alkali MLC isoforms MLC1f and MLC3f. Type I fibres contained the slow regulatory MLC isoform MLC2s and the slow alkali MLC isoform MLC1s. Slow MLC isoforms were also present in several type IIA fibres. The kinetics of force transients differed by a factor of about 30 between fibre types (order from fastest to slowest kinetics: IIB > IID > IIA > I). The kinetics of the force transients was not dependent on the relative content of MLC1f and MLC3f. Type IIA fibres containing fast and slow MLC isoforms were about 1.2 times slower than type IIA fibres containing only fast MLC isoforms. We conclude that while the cross-bridge kinetics is mainly determined by the MHC isoforms present, it is affected by fast and slow MLC isoforms but not by the relative content of MLC1f and MLC3f. Thus, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the cross-bridge kinetics.

  7. SU-F-T-233: Evaluation of Treatment Delivery Parameters Using High Resolution ELEKTA Log Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabat, C; Defoor, D; Alexandrian, A

    2016-06-15

    Purpose: As modern linacs have become more technologically advanced with the implementation of IGRT and IMRT with HDMLCs, a requirement for more elaborate tracking techniques to monitor components’ integrity is paramount. ElektaLog files are generated every 40 milliseconds, which can be analyzed to track subtle changes and provide another aspect of quality assurance. This allows for constant monitoring of fraction consistency in addition to machine reliability. With this in mind, it was the aim of the study to evaluate if ElektaLog files can be utilized for linac consistency QA. Methods: ElektaLogs were reviewed for 16 IMRT patient plans with >16more » fractions. Logs were analyzed by creating fluence maps from recorded values of MLC locations, jaw locations, and dose per unit time. Fluence maps were then utilized to calculate a 2D gamma index with a 2%–2mm criteria for each fraction. ElektaLogs were also used to analyze positional errors for MLC leaves and jaws, which were used to compute an overall error for the MLC banks, Y-jaws, and X-jaws by taking the root-meansquare value of the individual recorded errors during treatment. Additionally, beam on time was calculated using the number of ElektaLog file entries within the file. Results: The average 2D gamma for all 16 patient plans was found to be 98.0±2.0%. Recorded gamma index values showed an acceptable correlation between fractions. Average RMS values for MLC leaves and the jaws resulted in a leaf variation of roughly 0.3±0.08 mm and jaw variation of about 0.15±0.04 mm, both of which fall within clinical tolerances. Conclusion: The use of ElektaLog files for day-to-day evaluation of linac integrity and patient QA can be utilized to allow for reliable analysis of system accuracy and performance.« less

  8. SU-F-T-465: Two Years of Radiotherapy Treatments Analyzed Through MLC Log Files

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Defoor, D; Kabat, C; Papanikolaou, N

    Purpose: To present treatment statistics of a Varian Novalis Tx using more than 90,000 Varian Dynalog files collected over the past 2 years. Methods: Varian Dynalog files are recorded for every patient treated on our Varian Novalis Tx. The files are collected and analyzed daily to check interfraction agreement of treatment deliveries. This is accomplished by creating fluence maps from the data contained in the Dynalog files. From the Dynalog files we have also compiled statistics for treatment delivery times, MLC errors, gantry errors and collimator errors. Results: The mean treatment time for VMAT patients was 153 ± 86 secondsmore » while the mean treatment time for step & shoot was 256 ± 149 seconds. Patient’s treatment times showed a variation of 0.4% over there treatment course for VMAT and 0.5% for step & shoot. The average field sizes were 40 cm2 and 26 cm2 for VMAT and step & shoot respectively. VMAT beams contained and average overall leaf travel of 34.17 meters and step & shoot beams averaged less than half of that at 15.93 meters. When comparing planned and delivered fluence maps generated using the Dynalog files VMAT plans showed an average gamma passing percentage of 99.85 ± 0.47. Step & shoot plans showed an average gamma passing percentage of 97.04 ± 0.04. 5.3% of beams contained an MLC error greater than 1 mm and 2.4% had an error greater than 2mm. The mean gantry speed for VMAT plans was 1.01 degrees/s with a maximum of 6.5 degrees/s. Conclusion: Varian Dynalog files are useful for monitoring machine performance treatment parameters. The Dynalog files have shown that the performance of the Novalis Tx is consistent over the course of a patients treatment with only slight variations in patient treatment times and a low rate of MLC errors.« less

  9. Monte Carlo based, patient-specific RapidArc QA using Linac log files.

    PubMed

    Teke, Tony; Bergman, Alanah M; Kwa, William; Gill, Bradford; Duzenli, Cheryl; Popescu, I Antoniu

    2010-01-01

    A Monte Carlo (MC) based QA process to validate the dynamic beam delivery accuracy for Varian RapidArc (Varian Medical Systems, Palo Alto, CA) using Linac delivery log files (DynaLog) is presented. Using DynaLog file analysis and MC simulations, the goal of this article is to (a) confirm that adequate sampling is used in the RapidArc optimization algorithm (177 static gantry angles) and (b) to assess the physical machine performance [gantry angle and monitor unit (MU) delivery accuracy]. Ten clinically acceptable RapidArc treatment plans were generated for various tumor sites and delivered to a water-equivalent cylindrical phantom on the treatment unit. Three Monte Carlo simulations were performed to calculate dose to the CT phantom image set: (a) One using a series of static gantry angles defined by 177 control points with treatment planning system (TPS) MLC control files (planning files), (b) one using continuous gantry rotation with TPS generated MLC control files, and (c) one using continuous gantry rotation with actual Linac delivery log files. Monte Carlo simulated dose distributions are compared to both ionization chamber point measurements and with RapidArc TPS calculated doses. The 3D dose distributions were compared using a 3D gamma-factor analysis, employing a 3%/3 mm distance-to-agreement criterion. The dose difference between MC simulations, TPS, and ionization chamber point measurements was less than 2.1%. For all plans, the MC calculated 3D dose distributions agreed well with the TPS calculated doses (gamma-factor values were less than 1 for more than 95% of the points considered). Machine performance QA was supplemented with an extensive DynaLog file analysis. A DynaLog file analysis showed that leaf position errors were less than 1 mm for 94% of the time and there were no leaf errors greater than 2.5 mm. The mean standard deviation in MU and gantry angle were 0.052 MU and 0.355 degrees, respectively, for the ten cases analyzed. The accuracy and flexibility of the Monte Carlo based RapidArc QA system were demonstrated. Good machine performance and accurate dose distribution delivery of RapidArc plans were observed. The sampling used in the TPS optimization algorithm was found to be adequate.

  10. Megalencephalic leukoencephalopathy with subcortical cysts: Characterization of disease variants.

    PubMed

    Hamilton, Eline M C; Tekturk, Pinar; Cialdella, Fia; van Rappard, Diane F; Wolf, Nicole I; Yalcinkaya, Cengiz; Çetinçelik, Ümran; Rajaee, Ahmad; Kariminejad, Ariana; Paprocka, Justyna; Yapici, Zuhal; Bošnjak, Vlatka Mejaški; van der Knaap, Marjo S

    2018-04-17

    To provide an overview of clinical and MRI characteristics of the different variants of the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC) and identify possible differentiating features. We performed an international multi-institutional, cross-sectional observational study of the clinical and MRI characteristics in patients with genetically confirmed MLC. Clinical information was obtained by questionnaires for physicians and retrospective chart review. We included 204 patients with classic MLC, 187 of whom had recessive mutations in MLC1 (MLC1 variant) and 17 in GLIALCAM (MLC2A variant) and 38 patients with remitting MLC caused by dominant GLIALCAM mutations (MLC2B variant). We observed a relatively wide variability in neurologic disability among patients with classic MLC. No clinical differences could be identified between patients with MLC1 and MLC2A. Patients with MLC2B invariably had a milder phenotype with preservation of motor function, while intellectual disability and autism were relatively frequent. Systematic MRI review revealed no MRI features that distinguish between MLC1 and MLC2A. Radiologic improvement was observed in all patients with MLC2B and also in 2 patients with MLC1. In MRIs obtained in the early disease stage, absence of signal abnormalities of the posterior limb of the internal capsule and cerebellar white matter and presence of only rarefied subcortical white matter instead of true subcortical cysts were suggestive of MLC2B. Clinical and MRI features did not distinguish between classic MLC with MLC1 or GLIALCAM mutations. Absence of signal abnormalities of the internal capsule and cerebellar white matter are MRI findings that point to the remitting phenotype. Copyright © 2018 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  11. Strange non-chaotic attractors in a state controlled-cellular neural network-based quasiperiodically forced MLC circuit

    NASA Astrophysics Data System (ADS)

    Ezhilarasu, P. Megavarna; Inbavalli, M.; Murali, K.; Thamilmaran, K.

    2018-07-01

    In this paper, we report the dynamical transitions to strange non-chaotic attractors in a quasiperiodically forced state controlled-cellular neural network (SC-CNN)-based MLC circuit via two different mechanisms, namely the Heagy-Hammel route and the gradual fractalisation route. These transitions were observed through numerical simulations and hardware experiments and confirmed using statistical tools, such as maximal Lyapunov exponent spectrum and its variance and singular continuous spectral analysis. We find that there is a remarkable agreement of the results from both numerical simulations as well as from hardware experiments.

  12. Evaluation of the dose calculation accuracy for small fields defined by jaw or MLC for AAA and Acuros XB algorithms.

    PubMed

    Fogliata, Antonella; Lobefalo, Francesca; Reggiori, Giacomo; Stravato, Antonella; Tomatis, Stefano; Scorsetti, Marta; Cozzi, Luca

    2016-10-01

    Small field measurements are challenging, due to the physical characteristics coming from the lack of charged particle equilibrium, the partial occlusion of the finite radiation source, and to the detector response. These characteristics can be modeled in the dose calculations in the treatment planning systems. Aim of the present work is to evaluate the MU calculation accuracy for small fields, defined by jaw or MLC, for anisotropic analytical algorithm (AAA) and Acuros XB algorithms, relative to output measurements on the beam central axis. Single point output factor measurement was acquired with a PTW microDiamond detector for 6 MV, 6 and 10 MV unflattened beams generated by a Varian TrueBeam STx equipped with high definition-MLC. Fields defined by jaw or MLC apertures were set; jaw-defined: 0.6 × 0.6, 0.8 × 0.8, 1 × 1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, and 10 × 10 cm 2 ; MLC-defined: 0.5 × 0.5 cm 2 to the maximum field defined by the jaw, with 0.5 cm stepping, and jaws set to: 2 × 2, 3 × 3, 4 × 4, 5 × 5, and 10 × 10 cm 2 . MU calculation was obtained with 1 mm grid in a virtual water phantom for the same fields, for AAA and Acuros algorithms implemented in the Varian eclipse treatment planning system (version 13.6). Configuration parameters as the effective spot size (ESS) and the dosimetric leaf gap (DLG) were varied to find the best parameter setting. Differences between calculated and measured doses were analyzed. Agreement better than 0.5% was found for field sizes equal to or larger than 2 × 2 cm 2 for both algorithms. A dose overestimation was present for smaller jaw-defined fields, with the best agreement, averaged over all the energies, of 1.6% and 4.6% for a 1 × 1 cm 2 field calculated by AAA and Acuros, respectively, for a configuration with ESS = 1 mm for both X and Y directions for AAA, and ESS = 1.5 and 0 mm for X and Y directions for Acuros. Conversely, a calculated dose underestimation was found for small MLC-defined fields, with the best agreement averaged over all the energies, of -3.9% and 0.2% for a 1 × 1 cm 2 field calculated by AAA and Acuros, respectively, for a configuration with ESS = 0 mm for both directions and both algorithms. For optimal setting applied in the algorithm configuration phase, the agreement of Acuros calculations with measurements could achieve the 3% for MLC-defined fields as small as 0.5 × 0.5 cm 2 . Similar agreement was found for AAA for fields as small as 1 × 1 cm 2 .

  13. SU-E-T-804: Verification of the BJR-25 Method of KQ Determination for CyberKnife Absolute Dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gersh, J; Spectrum Medical Physics, LLC - Greenville, SC; Willett, B

    2015-06-15

    Purpose: Absolute calibration of the CyberKnife is performed using a 6cm-diameter cone defined at 80cm SAD. Since kQ is defined using PDD values determined using 10×10 cm fields at 100cm SSD, the PDD must be corrected in order to correctly apply the quality conversion factor. The accepted method is based on equivalent field-size conversions of PDD values using BJR25. Using the new InCise MLC system, the CK is capable of generating a rectangular field equivalent to 10×10 cm square field. In this study, a comparison is made between kQ values determined using the traditional BJR25 method and the MLC methodmore » introduced herein. Methods: First, kQ(BJR) is determined: a PDD is acquired using a 6cm circular field at 100cm SSD, its field size converted to an equivalent square, and PDD converted to a 10×10cm field using the appropriate BJR25 table. Maintaining a consistent setup, the collimator is changed, and the MLC method is used. Finally, kQ is determined using PDDs acquired with a 9.71×10.31cm at 100cm SSD. This field is produced by setting the field to a size of 7.77×8.25cm (since it is defined at 80cm SAD). An exact 10×10cm field since field size is relegated to increments of its leaf width (0.25cm). This comparison is made using an Exradin A1SL, IBA CC08, IBA CC13, and an Exradin A19. For each detector and collimator type, the beam injector was adjusted to give 5 different beam qualities; representing a range of clinical systems. Results: Averaging across all beam qualities, kQ(MLC) differed from kQ(BJR) by less than 0.15%. The difference between the values increased with detector volume. Conclusion: For CK users with standard cone collimators, the BJR25 method has been verified. For CK users the MLC system, a technique is described to determine kQ. Primary author is the President/Owner of Spectrum Medical Physics, LLC, a company which maintains contracts with Siemens Healthcare and Standard Imaging, Inc.« less

  14. Dosimetric effect of multileaf collimator leaf width on volumetric modulated arc stereotactic radiotherapy for spine tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amoush, Ahmad, E-mail: aamoush@augusta.edu; Cleveland Clinic, 9500 Euclid Ave., Cleveland, OH 44195; Long, Huang

    This work aimed to study the dosimetric effect of multileaf collimator (MLC) leaf widths in treatment plans for patients receiving volumetric modulated arc therapy (VMAT) for spine stereotactic body radiation therapy (SBRT). Thirteen patients treated with spine SBRT were retrospectively selected for this study. The patients were treated following the protocol of the Radiation Therapy Oncology Group 0631 (RTOG 0631) for spine metastasis. The prescription dose was 16 Gy in 1 fraction to 90% of the target volume (V16 > 90%). The maximum spinal cord dose of 14 Gy and 10% of the spinal cord receiving < 10 Gy (V10) were the acceptable tolerance doses. For themore » purpose of this study, 2 dual-arc VMAT plans were created for each patient using 3 different MLC leaf widths: 2.5 mm, 4 mm, and 5 mm. The compliance with the RTOG 0631 protocol, conformity index (CI), dose gradient index (DGI), and number of monitor units (MUs) were compared. The average V16Gy of the targets was 91.8 ± 1.2%, 92.2 ± 2.1%, and 91.7 ± 2.3% for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively (p = 0.78). Accordingly, the average CI was 1.45 ± 0.4, 1.47 ± 0.29, and 1.47 ± 0.31 (p = 0.98), respectively. The average DGI was 0.22 ± 0.04, 0.20 ± 0.06, and 0.22 ± 0.05, respectively (p = 0.77). The average maximum dose to the spinal cord was 12.45 ± 1.0 Gy, 12.80 ± 1.0 Gy, and 12.48 ± 1.1 (p = 0.62) and V10% of the spinal cord was 3.6 ± 2.1%, 5.6 ± 2.8%, and 5.5 ± 3.0% (p = 0.11) for 2.5-mm, 4-mm, and 5-mm leaf widths, respectively. Accordingly, the average number of MUs was 4341 ± 500 MU, 5019 ± 834 MU, and 4606 ± 691 MU, respectively (p = 0.053). The use of 2.5-mm, 4-mm, and 5-mm MLCs achieved similar VMAT plan quality as recommended by the RTOG 0631. The dosimetric parameters were also comparable for the 3 MLCs. In general, any of these leaf widths can be used for spine SBRT using VMAT.« less

  15. A virtual source model for Monte Carlo simulation of helical tomotherapy.

    PubMed

    Yuan, Jiankui; Rong, Yi; Chen, Quan

    2015-01-08

    The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase-space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS-generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of < 1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of < 2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM-based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose-volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM-based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media.

  16. A virtual source model for Monte Carlo simulation of helical tomotherapy

    PubMed Central

    Yuan, Jiankui; Rong, Yi

    2015-01-01

    The purpose of this study was to present a Monte Carlo (MC) simulation method based on a virtual source, jaw, and MLC model to calculate dose in patient for helical tomotherapy without the need of calculating phase‐space files (PSFs). Current studies on the tomotherapy MC simulation adopt a full MC model, which includes extensive modeling of radiation source, primary and secondary jaws, and multileaf collimator (MLC). In the full MC model, PSFs need to be created at different scoring planes to facilitate the patient dose calculations. In the present work, the virtual source model (VSM) we established was based on the gold standard beam data of a tomotherapy unit, which can be exported from the treatment planning station (TPS). The TPS‐generated sinograms were extracted from the archived patient XML (eXtensible Markup Language) files. The fluence map for the MC sampling was created by incorporating the percentage leaf open time (LOT) with leaf filter, jaw penumbra, and leaf latency contained from sinogram files. The VSM was validated for various geometry setups and clinical situations involving heterogeneous media and delivery quality assurance (DQA) cases. An agreement of <1% was obtained between the measured and simulated results for percent depth doses (PDDs) and open beam profiles for all three jaw settings in the VSM commissioning. The accuracy of the VSM leaf filter model was verified in comparing the measured and simulated results for a Picket Fence pattern. An agreement of <2% was achieved between the presented VSM and a published full MC model for heterogeneous phantoms. For complex clinical head and neck (HN) cases, the VSM‐based MC simulation of DQA plans agreed with the film measurement with 98% of planar dose pixels passing on the 2%/2 mm gamma criteria. For patient treatment plans, results showed comparable dose‐volume histograms (DVHs) for planning target volumes (PTVs) and organs at risk (OARs). Deviations observed in this study were consistent with literature. The VSM‐based MC simulation approach can be feasibly built from the gold standard beam model of a tomotherapy unit. The accuracy of the VSM was validated against measurements in homogeneous media, as well as published full MC model in heterogeneous media. PACS numbers: 87.53.‐j, 87.55.K‐ PMID:25679157

  17. Forskolin induces myosin light chain dephosphorylation in bovine trabecular meshwork cells.

    PubMed

    Ramachandran, Charanya; Satpathy, Minati; Mehta, Dolly; Srinivas, Sangly P

    2008-02-01

    Enhanced contractility of the actin cytoskeleton in trabecular meshwork (TM) cells is implicated in increased resistance to aqueous humor outflow. In this study, we have investigated effects of forskolin, which is known to elevate cAMP and also enhance aqueous humor outflow, on myosin light chain (MLC) phosphorylation, a biochemical marker of actin contractility. Experiments were performed using cultured bovine TM cells. Phosphorylated MLC (pMLC), expressed as the % of untreated cells, was assessed by urea-glycerol gel electrophoresis and Western blotting. RhoA activity was determined by affinity precipitation of RhoA-GTP to RhoA binding domain of an effector of RhoA. Intracellular cAMP levels were measured by ELISA. Exposure to LPA (lysophosphatidic acid) led to increased MLC phosphorylation (LPA: pMLC=133%) and activation of RhoA. These responses of LPA were suppressed by co-treatment with forskolin (LPA+forskolin: pMLC=88%). Similarly, ET-1 and nocodazole-induced MLC phosphorylation (ET-1: pMLC=145%; nocodazole: pMLC=145%) as well as RhoA activation were suppressed by co-treatment with forskolin (ET-1+forskolin: pMLC=99%; nocodazole+forskolin: pMLC=107%). Exposure to forskolin alone led to MLC dephosphorylation (pMLC=68%). Forskolin alone led to a 4-fold increase in cAMP levels. This increase was not affected when co-treated with LPA or ET-1. Forskolin prevents MLC phosphorylation induced by LPA, ET-1, and nocodazole through inhibition of RhoA-Rho kinase axis. MLC dephosphorylation and consequent relaxation of actin cytoskeleton in TM cells presumably underlies the increased outflow facility reported in response to forskolin.

  18. TU-AB-BRC-11: Moving a GPU-OpenCL-Based Monte Carlo (MC) Dose Engine Towards Routine Clinical Use: Automatic Beam Commissioning and Efficient Source Sampling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Z; Folkerts, M; Jiang, S

    Purpose: We have previously developed a GPU-OpenCL-based MC dose engine named goMC with built-in analytical linac beam model. To move goMC towards routine clinical use, we have developed an automatic beam-commissioning method, and an efficient source sampling strategy to facilitate dose calculations for real treatment plans. Methods: Our commissioning method is to automatically adjust the relative weights among the sub-sources, through an optimization process minimizing the discrepancies between calculated dose and measurements. Six models built for Varian Truebeam linac photon beams (6MV, 10MV, 15MV, 18MV, 6MVFFF, 10MVFFF) were commissioned using measurement data acquired at our institution. To facilitate dose calculationsmore » for real treatment plans, we employed inverse sampling method to efficiently incorporate MLC leaf-sequencing into source sampling. Specifically, instead of sampling source particles control-point by control-point and rejecting the particles blocked by MLC, we assigned a control-point index to each sampled source particle, according to MLC leaf-open duration of each control-point at the pixel where the particle intersects the iso-center plane. Results: Our auto-commissioning method decreased distance-to-agreement (DTA) of depth dose at build-up regions by 36.2% averagely, making it within 1mm. Lateral profiles were better matched for all beams, with biggest improvement found at 15MV for which root-mean-square difference was reduced from 1.44% to 0.50%. Maximum differences of output factors were reduced to less than 0.7% for all beams, with largest decrease being from1.70% to 0.37% found at 10FFF. Our new sampling strategy was tested on a Head&Neck VMAT patient case. Achieving clinically acceptable accuracy, the new strategy could reduce the required history number by a factor of ∼2.8 given a statistical uncertainty level and hence achieve a similar speed-up factor. Conclusion: Our studies have demonstrated the feasibility and effectiveness of our auto-commissioning approach and new efficient source sampling strategy, implying the potential of our GPU-based MC dose engine goMC for routine clinical use.« less

  19. Diode‐based transmission detector for IMRT delivery monitoring: a validation study

    PubMed Central

    Li, Taoran; Wu, Q. Jackie; Matzen, Thomas; Yin, Fang‐Fang

    2016-01-01

    The purpose of this work was to evaluate the potential of a new transmission detector for real‐time quality assurance of dynamic‐MLC‐based radiotherapy. The accuracy of detecting dose variation and static/dynamic MLC position deviations was measured, as well as the impact of the device on the radiation field (surface dose, transmission). Measured dose variations agreed with the known variations within 0.3%. The measurement of static and dynamic MLC position deviations matched the known deviations with high accuracy (0.7–1.2 mm). The absorption of the device was minimal (∼ 1%). The increased surface dose was small (1%–9%) but, when added to existing collimator scatter effects could become significant at large field sizes (≥30×30 cm2). Overall the accuracy and speed of the device show good potential for real‐time quality assurance. PACS number(s): 87.55.Qr PMID:27685115

  20. SU-G-BRA-16: Target Dose Comparison for Dynamic MLC Tracking and Mid- Ventilation Planning in Lung Radiotherapy Subject to Intrafractional Baseline Drifts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menten, MJ; Fast, MF; Nill, S

    Purpose: Lung tumor motion during radiotherapy can be accounted for by expanded treatment margins, for example using a mid-ventilation planning approach, or by localizing the tumor in real-time and adapting the treatment beam with multileaf collimator (MLC) tracking. This study evaluates the effect of intrafractional changes in the average tumor position (baseline drifts) on these two treatment techniques. Methods: Lung stereotactic treatment plans (9-beam IMRT, 54Gy/3 fractions, mean treatment time: 9.63min) were generated for three patients: either for delivery with MLC tracking (isotropic GTV-to-PTV margin: 2.6mm) or planned with a mid-ventilation approach and delivered without online motion compensation (GTV-to-PTV margin:more » 4.4-6.3mm). Delivery to a breathing patient was simulated using DynaTrack, our in-house tracking and delivery software. Baseline drifts in cranial and posterior direction were simulated at a rate of 0.5, 1.0 or 1.5mm/min. For dose reconstruction, the corresponding 4DCT phase was selected for each time point of the delivery. Baseline drifts were accounted for by rigidly shifting the CT to ensure correct relative beam-to-target positioning. Afterwards, the doses delivered to each 4DCT phase were accumulated deformably on the mid-ventilation phase using research RayStation v4.6 and dose coverage of the GTV was evaluated. Results: When using the mid-ventilation planning approach, dose coverage of the tumor deteriorated substantially in the presence of baseline drifts. The reduction in D98% coverage of the GTV in a single fraction ranged from 0.4-1.2, 0.6-3.3 and 4.5-6.2Gy, respectively, for the different drift rates. With MLC tracking the GTV D98% coverage remained unchanged (+/− 0.1Gy) regardless of drift. Conclusion: Intrafractional baseline drifts reduce the tumor dose in treatments based on mid-ventilation planning. In rare, large target baseline drifts tumor dose coverage may drop below the prescription, potentially affecting clinical outcome in hypofractionated treatment protocols. Dynamic MLC tracking preserves tumor dose coverage even in the presence of extreme baseline drifts. We acknowledge financial and technical support of the MLC tracking research from Elekta AB. Research at ICR is supported by CRUK under Programme C33589/A19727 and NHS funding to the NIHR Biomedical Research Centre at RMH and ICR. MFF is supported by CRUK under Programme C33589/A19908.« less

  1. Quality control procedures for dynamic treatment delivery techniques involving couch motion.

    PubMed

    Yu, Victoria Y; Fahimian, Benjamin P; Xing, Lei; Hristov, Dimitre H

    2014-08-01

    In this study, the authors introduce and demonstrate quality control procedures for evaluating the geometric and dosimetric fidelity of dynamic treatment delivery techniques involving treatment couch motion synchronous with gantry and multileaf collimator (MLC). Tests were designed to evaluate positional accuracy, velocity constancy and accuracy for dynamic couch motion under a realistic weight load. A test evaluating the geometric accuracy of the system in delivering treatments over complex dynamic trajectories was also devised. Custom XML scripts that control the Varian TrueBeam™ STx (Serial #3) axes in Developer Mode were written to implement the delivery sequences for the tests. Delivered dose patterns were captured with radiographic film or the electronic portal imaging device. The couch translational accuracy in dynamic treatment mode was 0.01 cm. Rotational accuracy was within 0.3°, with 0.04 cm displacement of the rotational axis. Dose intensity profiles capturing the velocity constancy and accuracy for translations and rotation exhibited standard deviation and maximum deviations below 3%. For complex delivery involving MLC and couch motions, the overall translational accuracy for reproducing programmed patterns was within 0.06 cm. The authors conclude that in Developer Mode, TrueBeam™ is capable of delivering dynamic treatment delivery techniques involving couch motion with good geometric and dosimetric fidelity.

  2. The β1 subunit of the Na,K-ATPase pump interacts with megalencephalic leucoencephalopathy with subcortical cysts protein 1 (MLC1) in brain astrocytes: new insights into MLC pathogenesis

    PubMed Central

    Brignone, Maria S.; Lanciotti, Angela; Macioce, Pompeo; Macchia, Gianfranco; Gaetani, Matteo; Aloisi, Francesca; Petrucci, Tamara C.; Ambrosini, Elena

    2011-01-01

    Megalencephalic leucoencephalopathy with subcortical cysts (MLC) is a rare congenital leucodystrophy caused by mutations in MLC1, a membrane protein of unknown function. MLC1 expression in astrocyte end-feet contacting blood vessels and meninges, along with brain swelling, fluid cysts and myelin vacuolation observed in MLC patients, suggests a possible role for MLC1 in the regulation of fluid and ion homeostasis and cellular volume changes. To identify MLC1 direct interactors and dissect the molecular pathways in which MLC1 is involved, we used NH2-MLC1 domain as a bait to screen a human brain library in a yeast two-hybrid assay. We identified the β1 subunit of the Na,K-ATPase pump as one of the interacting clones and confirmed it by pull-downs, co-fractionation assays and immunofluorescence stainings in human and rat astrocytes in vitro and in brain tissue. By performing ouabain-affinity chromatography on astrocyte and brain extracts, we isolated MLC1 and the whole Na,K-ATPase enzyme in a multiprotein complex that included Kir4.1, syntrophin and dystrobrevin. Because Na,K-ATPase is involved in intracellular osmotic control and volume regulation, we investigated the effect of hypo-osmotic stress on MLC1/Na,K-ATPase relationship in astrocytes. We found that hypo-osmotic conditions increased MLC1 membrane expression and favoured MLC1/Na,K-ATPase-β1 association. Moreover, hypo-osmosis induced astrocyte swelling and the reversible formation of endosome-derived vacuoles, where the two proteins co-localized. These data suggest that through its interaction with Na,K-ATPase, MLC1 is involved in the control of intracellular osmotic conditions and volume regulation in astrocytes, opening new perspectives for understanding the pathological mechanisms of MLC disease. PMID:20926452

  3. Dosimetric comparison using different multileaf collimeters in intensity-modulated radiotherapy for upper thoracic esophageal cancer.

    PubMed

    Gong, Youling; Wang, Shichao; Zhou, Lin; Liu, Yongmei; Xu, Yong; Lu, You; Bai, Sen; Fu, Yuchuan; Xu, Qingfeng; Jiang, Qingfeng

    2010-07-15

    To study the impacts of multileaf collimators (MLC) width [standard MLC width of 10 mm (sMLC) and micro-MLC width of 4 mm (mMLC)] in the intensity-modulated radiotherapy (IMRT) planning for the upper thoracic esophageal cancer (UTEC). 10 patients with UTEC were retrospectively planned with the sMLC and the mMLC. The monitor unites (MUs) and dose volume histogram-based parameters [conformity index (CI) and homogeneous index (HI)] were compared between the IMRT plans with sMLC and with mMLC. The IMRT plans with the mMLC were more efficient (average MUs: 703.1 +/- 68.3) than plans with the sMLC (average MUs: 833.4 +/- 73.8) (p < 0.05). Also, compared to plans with the sMLC, the plans with the mMLC showed advantages in dose coverage of the planning gross tumor volume (Pgtv) (CI 0.706 +/- 0.056/HI 1.093 +/- 0.021) and the planning target volume (PTV) (CI 0.707 +/- 0.029/HI 1.315 +/- 0.013) (p < 0.05). In addition, the significant dose sparing in the D5 (3260.3 +/- 374.0 vs 3404.5 +/- 374.4)/gEUD (1815.1 +/- 281.7 vs 1849.2 +/- 297.6) of the spinal cord, the V10 (33.2 +/- 6.5 vs 34.0 +/- 6.7), V20 (16.0 +/- 4.6 vs 16.6 +/- 4.7), MLD (866.2 +/- 174.1 vs 887.9 +/- 172.1) and gEUD (938.6 +/- 175.2 vs 956.8 +/- 171.0) of the lungs were observed in the plans with the mMLC, respectively (p < 0.05). Comparing to the sMLC, the mMLC not only demonstrated higher efficiencies and more optimal target coverage, but also considerably improved the dose sparing of OARs in the IMRT planning for UTEC.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, K; Yu, Z; Chen, H

    Purpose: To implement VMAT in RayStation with the Elekta Synergy linac with the new Agility MLC, and to utilize the same vendor softwares to determine the optimum Elekta VMAT machine parameters in RayStation for accurate modeling and robust delivery. Methods: iCOMCat is utilized to create various beam patterns with user defined dose rate, gantry, MLC and jaw speed for each control point. The accuracy and stability of the output and beam profile are qualified for each isolated functional component of VMAT delivery using ion chamber and Profiler2 with isocentric mounting fixture. Service graphing on linac console is used to verifymore » the mechanical motion accuracy. The determined optimum Elekta VMAT machine parameters were configured in RayStation v4.5.1. To evaluate the system overall performance, TG-119 test cases and nine retrospective VMAT patients were planned on RayStation, and validated using both ArcCHECK (with plug and ion chamber) and MapCHECK2. Results: Machine output and profile varies <0.3% when only variable is dose rate (35MU/min-600MU/min). <0.9% output and <0.3% profile variation are observed with additional gantry motion (0.53deg/s–5.8deg/s both directions). The output and profile variation are still <1% with additional slow leaf motion (<1.5cm/s both direction). However, the profile becomes less symmetric, and >1.5% output and 7% profile deviation is seen with >2.5cm/s leaf motion. All clinical cases achieved comparable plan quality as treated IMRT plans. The gamma passing rate is 99.5±0.5% on ArcCheck (<3% iso center dose deviation) and 99.1±0.8% on MapCheck2 using 3%/3mm gamma (10% lower threshold). Mechanical motion accuracy in all VMAT deliveries is <1°/1mm. Conclusion: Accurate RayStation modeling and robust VMAT delivery is achievable on Elekta Agility for <2.5cm/s leaf motion and full range of dose rate and gantry speed determined by the same vendor softwares. Our TG-119 and patient results have provided us with the confidence to use VMAT clinically.« less

  5. SU-E-J-57: First Development of Adapting to Intrafraction Relative Motion Between Prostate and Pelvic Lymph Nodes Targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; Colvill, E; O’Brien, R

    2015-06-15

    Purpose Large intrafraction relative motion of multiple targets is common in advanced head and neck, lung, abdominal, gynaecological and urological cancer, jeopardizing the treatment outcomes. The objective of this study is to develop a real-time adaptation strategy, for the first time, to accurately correct for the relative motion of multiple targets by reshaping the treatment field using the multi-leaf collimator (MLC). Methods The principle of tracking the simultaneously treated but differentially moving tumor targets is to determine the new aperture shape that conforms to the shifted targets. Three dimensional volumes representing the individual targets are projected to the beam’s eyemore » view. The leaf openings falling inside each 2D projection will be shifted according to the measured motion of each target to form the new aperture shape. Based on the updated beam shape, new leaf positions will be determined with optimized trade-off between the target underdose and healthy tissue overdose, and considerations of the physical constraints of the MLC. Taking a prostate cancer patient with pelvic lymph node involvement as an example, a preliminary dosimetric study was conducted to demonstrate the potential treatment improvement compared to the state-of- art adaptation technique which shifts the whole beam to track only one target. Results The world-first intrafraction adaptation system capable of reshaping the beam to correct for the relative motion of multiple targets has been developed. The dose in the static nodes and small bowel are closer to the planned distribution and the V45 of small bowel is decreased from 110cc to 75cc, corresponding to a 30% reduction by this technique compared to the state-of-art adaptation technique. Conclusion The developed adaptation system to correct for intrafraction relative motion of multiple targets will guarantee the tumour coverage and thus enable PTV margin reduction to minimize the high target dose to the adjacent organs-at-risk. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship and NHMRC Project Grant No. APP1042375.« less

  6. The transcription factor Mlc promotes Vibrio cholerae biofilm formation through repression of phosphotransferase system components.

    PubMed

    Pickering, Bradley S; Lopilato, Jane E; Smith, Daniel R; Watnick, Paula I

    2014-07-01

    The phosphoenol phosphotransferase system (PTS) is a multicomponent signal transduction cascade that regulates diverse aspects of bacterial cellular physiology in response to the availability of high-energy sugars in the environment. Many PTS components are repressed at the transcriptional level when the substrates they transport are not available. In Escherichia coli, the transcription factor Mlc (for makes large colonies) represses transcription of the genes encoding enzyme I (EI), histidine protein (HPr), and the glucose-specific enzyme IIBC (EIIBC(Glc)) in defined media that lack PTS substrates. When glucose is present, the unphosphorylated form of EIIBC(Glc) sequesters Mlc to the cell membrane, preventing its interaction with DNA. Very little is known about Vibrio cholerae Mlc. We found that V. cholerae Mlc activates biofilm formation in LB broth but not in defined medium supplemented with either pyruvate or glucose. Therefore, we questioned whether V. cholerae Mlc functions differently than E. coli Mlc. Here we have shown that, like E. coli Mlc, V. cholerae Mlc represses transcription of PTS components in both defined medium and LB broth and that E. coli Mlc is able to rescue the biofilm defect of a V. cholerae Δmlc mutant. Furthermore, we provide evidence that Mlc indirectly activates transcription of the vps genes by repressing expression of EI. Because activation of the vps genes by Mlc occurs under only a subset of the conditions in which repression of PTS components is observed, we conclude that additional inputs present in LB broth are required for activation of vps gene transcription by Mlc. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caillet, V; Colvill, E; Royal North Shore Hospital, Sydney, NSW

    Purpose: The objective of this study was to investigate the dosimetric benefits of multi-leaf collimator (MLC) tracking for lung SABR treatments in end-to-end clinically realistic planning and delivery scenarios. Methods: The clinical benefits of MLC tracking were assessed using previously delivered treatment plans and physical experiments. The 10 most recent single lesion lung SABR patients were re-planned following a 4D-GTV-based real-time adaptive protocol (PTV defined as the end-of-exhalation GTV plus 5.0 mm margins). The plans were delivered on a Trilogy Varian linac. Electromagnetic transponders (Calypso, Varian Medical Systems, USA) were embedded into a programmable moving phantom (HexaMotion platform) tracked withmore » the Varian Calypso system. For each physical experiment, the MLC positions were collected and used as input for dose reconstruction. For both planned and physical experiments, the OAR dose metrics from the conventional and real-time adaptive SABR plans (Mean Lung Dose (MLD), V20 for lung, and near-maximum dose (D2%) for spine and heart) were statistically compared. The Wilcoxon test was used to compare plan and physical experiment dose metrics. Results: While maintaining target coverage, percentage reductions in dose metrics to the OARs were observed for both planned and physical experiments. Comparing the two plans showed MLD percentage reduction (MLDr) of 25.4% (absolute differences of 1.41 Gy) and 28.9% (1.29%) for the V20r. D2% percentage reduction for spine and heart were respectively 27.9% (0.3 Gy) and 20.2% (0.3 Gy). For the physical experiments, MLDr was 23.9% (1.3 Gy), and V20r 37.4% (1.6%). D2% reduction for spine and heart were respectively 27.3% (0.3 Gy) and 19.6% (0.3 Gy). For both plans and physical experiments, significant OAR dose differences (p<0.05) were found between the conventional SABR and real-time adaptive plans. Conclusion: Application of MLC tracking for lung SABR patients has the potential to reduce the dose to OARs during radiation therapy.« less

  8. TU-G-BRD-08: In-Vivo EPID Dosimetry: Quantifying the Detectability of Four Classes of Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, E; Phillips, M; Bojechko, C

    Purpose: EPID dosimetry is an emerging method for treatment verification and QA. Given that the in-vivo EPID technique is in clinical use at some centers, we investigate the sensitivity and specificity for detecting different classes of errors. We assess the impact of these errors using dose volume histogram endpoints. Though data exist for EPID dosimetry performed pre-treatment, this is the first study quantifying its effectiveness when used during patient treatment (in-vivo). Methods: We analyzed 17 patients; EPID images of the exit dose were acquired and used to reconstruct the planar dose at isocenter. This dose was compared to the TPSmore » dose using a 3%/3mm gamma criteria. To simulate errors, modifications were made to treatment plans using four possible classes of error: 1) patient misalignment, 2) changes in patient body habitus, 3) machine output changes and 4) MLC misalignments. Each error was applied with varying magnitudes. To assess the detectability of the error, the area under a ROC curve (AUC) was analyzed. The AUC was compared to changes in D99 of the PTV introduced by the simulated error. Results: For systematic changes in the MLC leaves, changes in the machine output and patient habitus, the AUC varied from 0.78–0.97 scaling with the magnitude of the error. The optimal gamma threshold as determined by the ROC curve varied between 84–92%. There was little diagnostic power in detecting random MLC leaf errors and patient shifts (AUC 0.52–0.74). Some errors with weak detectability had large changes in D99. Conclusion: These data demonstrate the ability of EPID-based in-vivo dosimetry in detecting variations in patient habitus and errors related to machine parameters such as systematic MLC misalignments and machine output changes. There was no correlation found between the detectability of the error using the gamma pass rate, ROC analysis and the impact on the dose volume histogram. Funded by grant R18HS022244 from AHRQ.« less

  9. TH-AB-202-04: Auto-Adaptive Margin Generation for MLC-Tracked Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glitzner, M; Lagendijk, J; Raaymakers, B

    Purpose: To develop an auto-adaptive margin generator for MLC tracking. The generator is able to estimate errors arising in image guided radiotherapy, particularly on an MR-Linac, which depend on the latencies of machine and image processing, as well as on patient motion characteristics. From the estimated error distribution, a segment margin is generated, able to compensate errors up to a user-defined confidence. Method: In every tracking control cycle (TCC, 40ms), the desired aperture D(t) is compared to the actual aperture A(t), a delayed and imperfect representation of D(t). Thus an error e(t)=A(T)-D(T) is measured every TCC. Applying kernel-density-estimation (KDE), themore » cumulative distribution (CDF) of e(t) is estimated. With CDF-confidence limits, upper and lower error limits are extracted for motion axes along and perpendicular leaf-travel direction and applied as margins. To test the dosimetric impact, two representative motion traces were extracted from fast liver-MRI (10Hz). The traces were applied onto a 4D-motion platform and continuously tracked by an Elekta Agility 160 MLC using an artificially imposed tracking delay. Gafchromic film was used to detect dose exposition for static, tracked, and error-compensated tracking cases. The margin generator was parameterized to cover 90% of all tracking errors. Dosimetric impact was rated by calculating the ratio between underexposed points (>5% underdosage) to the total number of points inside FWHM of static exposure. Results: Without imposing adaptive margins, tracking experiments showed a ratio of underexposed points of 17.5% and 14.3% for two motion cases with imaging delays of 200ms and 300ms, respectively. Activating the margin generated yielded total suppression (<1%) of underdosed points. Conclusion: We showed that auto-adaptive error compensation using machine error statistics is possible for MLC tracking. The error compensation margins are calculated on-line, without the need of assuming motion or machine models. Further strategies to reduce consequential overdosages are currently under investigation. This work was funded by the SoRTS consortium, which includes the industry partners Elekta, Philips and Technolution.« less

  10. Methods to model and predict the ViewRay treatment deliveries to aid patient scheduling and treatment planning.

    PubMed

    Liu, Shi; Wu, Yu; Wooten, H Omar; Green, Olga; Archer, Brent; Li, Harold; Yang, Deshan

    2016-03-08

    A software tool is developed, given a new treatment plan, to predict treatment delivery time for radiation therapy (RT) treatments of patients on ViewRay magnetic resonance image-guided radiation therapy (MR-IGRT) delivery system. This tool is necessary for managing patient treatment scheduling in our clinic. The predicted treatment delivery time and the assessment of plan complexities could also be useful to aid treatment planning. A patient's total treatment delivery time, not including time required for localization, is modeled as the sum of four components: 1) the treatment initialization time; 2) the total beam-on time; 3) the gantry rotation time; and 4) the multileaf collimator (MLC) motion time. Each of the four components is predicted separately. The total beam-on time can be calculated using both the planned beam-on time and the decay-corrected dose rate. To predict the remain-ing components, we retrospectively analyzed the patient treatment delivery record files. The initialization time is demonstrated to be random since it depends on the final gantry angle of the previous treatment. Based on modeling the relationships between the gantry rotation angles and the corresponding rotation time, linear regression is applied to predict the gantry rotation time. The MLC motion time is calculated using the leaves delay modeling method and the leaf motion speed. A quantitative analysis was performed to understand the correlation between the total treatment time and the plan complexity. The proposed algorithm is able to predict the ViewRay treatment delivery time with the average prediction error 0.22min or 1.82%, and the maximal prediction error 0.89 min or 7.88%. The analysis has shown the correlation between the plan modulation (PM) factor and the total treatment delivery time, as well as the treatment delivery duty cycle. A possibility has been identified to significantly reduce MLC motion time by optimizing the positions of closed MLC pairs. The accuracy of the proposed prediction algorithm is sufficient to support patient treatment appointment scheduling. This developed software tool is currently applied in use on a daily basis in our clinic, and could also be used as an important indicator for treatment plan complexity.

  11. The potential impact of multidimesional geriatric assessment in the social security system.

    PubMed

    Corbi, Graziamaria; Ambrosino, Immacolata; Massari, Marco; De Lucia, Onofrio; Simplicio, Sirio; Dragone, Michele; Paolisso, Giuseppe; Piccioni, Massimo; Ferrara, Nicola; Campobasso, Carlo Pietro

    2018-01-12

    To evaluate the efficacy of multidimensional geriatric assessment (MGA/CGA) in patients over 65 years old in predicting the release of the accompaniment allowance (AA) indemnity by a Local Medico-Legal Committee (MLC-NHS) and by the National Institute of Social Security Committee (MLC-INPS). In a longitudinal observational study, 200 Italian elder citizens requesting AA were first evaluated by MLC-NHS and later by MLC-INPS. Only MLC-INPS performed a MGA/CGA (including SPMSQ, Barthel Index, GDS-SF, and CIRS). This report was written according to the STROBE guidelines. The data analysis was performed on January 2016. The evaluation by the MLC-NHS and by the MLC-INPS was in agreement in 66% of cases. In the 28%, the AA benefit was recognized by the MLC-NHS, but not by the MLC-INPS. By the multivariate analysis, the best predictors of the AA release, by the MLC-NHS, were represented by gender and the Barthel Index score. The presence of carcinoma, the Barthel Index score, and the SPMQ score were the best predictors for the AA release by MLC-INPS. MGA/CGA could be useful in saving financial resources reducing the risk of incorrect indemnity release. It can improve the accuracy of the impairment assessment in social security system.

  12. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    PubMed

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-07-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. WE-AB-209-10: Optimizing the Delivery of Sequential Fluence Maps for Efficient VMAT Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craft, D; Balvert, M

    2016-06-15

    Purpose: To develop an optimization model and solution approach for computing MLC leaf trajectories and dose rates for high quality matching of a set of optimized fluence maps to be delivered sequentially around a patient in a VMAT treatment. Methods: We formulate the fluence map matching problem as a nonlinear optimization problem where time is discretized but dose rates and leaf positions are continuous variables. For a given allotted time, which is allocated across the fluence maps based on the complexity of each fluence map, the optimization problem searches for the best leaf trajectories and dose rates such that themore » original fluence maps are closely recreated. Constraints include maximum leaf speed, maximum dose rate, and leaf collision avoidance, as well as the constraint that the ending leaf positions for one map are the starting leaf positions for the next map. The resulting model is non-convex but smooth, and therefore we solve it by local searches from a variety of starting positions. We improve solution time by a custom decomposition approach which allows us to decouple the rows of the fluence maps and solve each leaf pair individually. This decomposition also makes the problem easily parallelized. Results: We demonstrate method on a prostate case and a head-and-neck case and show that one can recreate fluence maps to high degree of fidelity in modest total delivery time (minutes). Conclusion: We present a VMAT sequencing method that reproduces optimal fluence maps by searching over a vast number of possible leaf trajectories. By varying the total allotted time given, this approach is the first of its kind to allow users to produce VMAT solutions that span the range of wide-field coarse VMAT deliveries to narrow-field high-MU sliding window-like approaches.« less

  14. A quantitative study of IMRT delivery effects in commercial planning systems for the case of oesophagus and prostate tumours.

    PubMed

    Seco, J; Clark, C H; Evans, P M; Webb, S

    2006-05-01

    This study focuses on understanding the impact of intensity-modulated radiotherapy (IMRT) delivery effects when applied to plans generated by commercial treatment-planning systems such as Pinnacle (ADAC Laboratories Inc.) and CadPlan/Helios (Varian Medical Systems). These commercial planning systems have had several version upgrades (with improvements in the optimization algorithm), but the IMRT delivery effects have not been incorporated into the optimization process. IMRT delivery effects include head-scatter fluence from IMRT fields, transmission through leaves and the effect of the rounded shape of the leaf ends. They are usually accounted for after optimization when leaf sequencing the "optimal" fluence profiles, to derive the delivered fluence profile. The study was divided into two main parts: (a) analysing the dose distribution within the planning-target volume (PTV), produced by each of the commercial treatment-planning systems, after the delivered fluence had been renormalized to deliver the correct dose to the PTV; and (b) studying the impact of the IMRT delivery technique on the surrounding critical organs such as the spinal cord, lungs, rectum, bladder etc. The study was performed for tumours of (i) the oesophagus and (ii) the prostate and pelvic nodes. An oesophagus case was planned with the Pinnacle planning system for IMRT delivery, via multiple-static fields (MSF) and compensators, using the Elekta SL25 with a multileaf collimator (MLC) component. A prostate and pelvic nodes IMRT plan was performed with the Cadplan/Helios system for a dynamic delivery (DMLC) using the Varian 120-leaf Millennium MLC. In these commercial planning systems, since IMRT delivery effects are not included into the optimization process, fluence renormalization is required such that the median delivered PTV dose equals the initial prescribed PTV dose. In preparing the optimum fluence profile for delivery, the PTV dose has been "smeared" by the IMRT delivery techniques. In the case of the oesophagus, the critical organ, spinal cord, received a greater dose than initially planned, due to the delivery effects. The increase in the spinal cord dose is of the order of 2-3 Gy. In the case of the prostate and pelvic nodes, the IMRT delivery effects led to an increase of approximately 2 Gy in the dose delivered to the secondary PTV, the pelvic nodes. In addition to this, the small bowel, rectum and bladder received an increased dose of the order of 2-3 Gy to 50% of their total volume. IMRT delivery techniques strongly influence the delivered dose distributions for the oesophagus and prostate/pelvic nodes tumour sites and these effects are not yet accounted for in the Pinnacle and the CadPlan/Helios planning systems. Currently, they must be taken into account during the optimization stage by altering the dose limits accepted during optimization so that the final (sequenced) dose is within the constraints.

  15. Impact of the MLC on the MRI field distortion of a prototype MRI-linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolling, Stefan; Keall, Paul; Oborn, Brad

    2013-12-15

    Purpose: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality.Methods: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0 T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps ofmore » the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30 cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300 μT. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200 cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20 cm{sup 2}, to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B{sub 0} of 0.5, 1.0, and 1.5 T, to estimate how the MLC impact changes with B{sub 0}.Results: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was generally smaller in the perpendicular beam orientation. The peak-to-peak DSV distortion was below 300 μT at SID≥130 cm (perpendicular) and SID≥140 cm (inline) for the 1.0 T design. (4) The simulation of different treatment fields was identified to cause dynamic changes in the field distribution. However, the estimated residual distortion was below 1.2 mm geometric distortion at SID≥120 cm (perpendicular) and SID≥130 cm (inline) for a 10 mT/m frequency-encoding gradient. (5) Due to magnetic saturation of the MLC materials, the field distortion remained constant at B{sub 0}>1.0 T.Conclusions: This work shows that the MRI field distortions caused by the MLC cannot be ignored and must be thoroughly investigated for any MRI-linac system. The numeric distortion values obtained for our 1.0 T magnet may vary for other magnet designs with substantially different fringe fields, however the concept of modest increases in the SID to reduce the distortion to a shimmable level is generally applicable.« less

  16. Micellar liquid chromatography

    NASA Astrophysics Data System (ADS)

    Basova, Elena M.; Ivanov, Vadim M.; Shpigun, Oleg A.

    1999-12-01

    Background and possibilities of practical applications of micellar liquid chromatography (MLC) are considered. Various retention models in MLC, the effects of the nature and concentration of surfactants and organic modifiers, pH, temperature and ionic strength on the MLC efficiency and selectivity are discussed. The advantages and limitations of MLC are demonstrated. The performance of MLC is critically evaluated in relationship to the reversed-phase HPLC and ion-pair chromatography. The potential of application of MLC for the analysis of pharmaceuticals including that in biological fluids and separation of inorganic anions, transition metal cations, metal chelates and heteropoly compounds is described. The bibliography includes 146 references.

  17. Is mini-laparoscopic cholecystectomy any better than the gold standard?: A comparative study.

    PubMed

    Shaikh, Haris R; Abbas, Asad; Aleem, Salik; Lakhani, Miqdad R

    2017-01-01

    Mini-laparoscopic cholecystectomy (MLC) has widened the horizons of modern laparoscopic surgery. Standard four port laparoscopic cholecystectomy (SLC), which has long been established as the "Gold Standard" for gall bladder diseases, is under reconsideration following the advent of further minimally-invasive procedures including MLC. Our study aims to provide a comparison between MLC and SLC and assesses whether MLC has any added benefits. Patients with symptomatic gall bladder disease undergoing MLC or SLC during the 2.5-month period were included in the study. Thirty-two patients underwent MLC while SLC was performed on 40 patients by the same surgeon. Data was collected prospectively and analysed retrospectively using a predesigned questionnaire. In our study, both the groups had similar age, body mass index (BMI) and gender distribution. No cases of MLC required insertion of additional ports. The mean operative time for MLC was 38.2 min (33-61 min), which is longer than SLC; but it was not statistically significant. There was no significant difference in mean operative blood loss, postoperative pain, analgesia requirement and mobilization. Patients who underwent MLC were able to return to normal activity earlier than patients undergoing SLC (P < 0.01). Our experience suggests that MLC can safely be used as an alternative to SLC. Compared to SLC, it has the added benefit of an early return to work along with excellent cosmetic results. Further large scale trials are required to prove any additional benefit of MLC.

  18. Is mini-laparoscopic cholecystectomy any better than the gold standard?: A comparative study

    PubMed Central

    Shaikh, Haris R.; Abbas, Asad; Aleem, Salik; Lakhani, Miqdad R.

    2017-01-01

    BACKGROUND: Mini-laparoscopic cholecystectomy (MLC) has widened the horizons of modern laparoscopic surgery. Standard four port laparoscopic cholecystectomy (SLC), which has long been established as the “Gold Standard” for gall bladder diseases, is under reconsideration following the advent of further minimally-invasive procedures including MLC. Our study aims to provide a comparison between MLC and SLC and assesses whether MLC has any added benefits. MATERIALS AND METHODS: Patients with symptomatic gall bladder disease undergoing MLC or SLC during the 2.5-month period were included in the study. Thirty-two patients underwent MLC while SLC was performed on 40 patients by the same surgeon. Data was collected prospectively and analysed retrospectively using a predesigned questionnaire. RESULTS: In our study, both the groups had similar age, body mass index (BMI) and gender distribution. No cases of MLC required insertion of additional ports. The mean operative time for MLC was 38.2 min (33-61 min), which is longer than SLC; but it was not statistically significant. There was no significant difference in mean operative blood loss, postoperative pain, analgesia requirement and mobilization. Patients who underwent MLC were able to return to normal activity earlier than patients undergoing SLC (P < 0.01). CONCLUSION: Our experience suggests that MLC can safely be used as an alternative to SLC. Compared to SLC, it has the added benefit of an early return to work along with excellent cosmetic results. Further large scale trials are required to prove any additional benefit of MLC. PMID:27251827

  19. Dosimetric comparison between cone/Iris-based and InCise MLC-based CyberKnife plans for single and multiple brain metastases.

    PubMed

    Jang, Si Young; Lalonde, Ron; Ozhasoglu, Cihat; Burton, Steven; Heron, Dwight; Huq, M Saiful

    2016-09-08

    We performed an evaluation of the CyberKnife InCise MLC by comparing plan qualities for single and multiple brain lesions generated using the first version of InCise MLC, fixed cone, and Iris collimators. We also investigated differences in delivery efficiency among the three collimators. Twenty-four patients with single or multiple brain mets treated previously in our clinic on a CyberKnife M6 using cone/Iris collimators were selected for this study. Treatment plans were generated for all lesions using the InCise MLC. Number of monitor units, delivery time, target coverage, conformity index, and dose falloff were compared between MLC- and clinical cone/Iris-based plans. Statistical analysis was performed using the non-parametric Wilcoxon-Mann-Whitney signed-rank test. The planning accuracy of the MLC-based plans was validated using chamber and film measurements. The InCise MLC-based plans achieved mean dose and target coverage comparable to the cone/Iris-based plans. Although the conformity indices of the MLC-based plans were slightly higher than those of the cone/Iris-based plans, beam delivery time for the MLC-based plans was shorter by 30% ~ 40%. For smaller targets or cases with OARs located close to or abutting target volumes, MLC-based plans provided inferior dose conformity compared to cone/Iris-based plans. The QA results of MLC-based plans were within 5% absolute dose difference with over 90% gamma passing rate using 2%/2 mm gamma criteria. The first version of InCise MLC could be a useful delivery modality, especially for clinical situations for which delivery time is a limiting factor or for multitarget cases. © 2016 The Authors.

  20. Role of Cyclic Nucleotide-Dependent Actin Cytoskeletal Dynamics: [Ca2+]i and Force Suppression in Forskolin-Pretreated Porcine Coronary Arteries

    PubMed Central

    Hocking, Kyle M.; Baudenbacher, Franz J.; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M.; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca2+]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca2+]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm. PMID:23593369

  1. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries.

    PubMed

    Hocking, Kyle M; Baudenbacher, Franz J; Putumbaka, Gowthami; Venkatraman, Sneha; Cheung-Flynn, Joyce; Brophy, Colleen M; Komalavilas, Padmini

    2013-01-01

    Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+)]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.

  2. Disrupting MLC1 and GlialCAM and ClC-2 interactions in leukodystrophy entails glial chloride channel dysfunction

    NASA Astrophysics Data System (ADS)

    Hoegg-Beiler, Maja B.; Sirisi, Sònia; Orozco, Ian J.; Ferrer, Isidre; Hohensee, Svea; Auberson, Muriel; Gödde, Kathrin; Vilches, Clara; de Heredia, Miguel López; Nunes, Virginia; Estévez, Raúl; Jentsch, Thomas J.

    2014-03-01

    Defects in the astrocytic membrane protein MLC1, the adhesion molecule GlialCAM or the chloride channel ClC-2 underlie human leukoencephalopathies. Whereas GlialCAM binds ClC-2 and MLC1, and modifies ClC-2 currents in vitro, no functional connections between MLC1 and ClC-2 are known. Here we investigate this by generating loss-of-function Glialcam and Mlc1 mouse models manifesting myelin vacuolization. We find that ClC-2 is unnecessary for MLC1 and GlialCAM localization in brain, whereas GlialCAM is important for targeting MLC1 and ClC-2 to specialized glial domains in vivo and for modifying ClC-2’s biophysical properties specifically in oligodendrocytes (OLs), the cells chiefly affected by vacuolization. Unexpectedly, MLC1 is crucial for proper localization of GlialCAM and ClC-2, and for changing ClC-2 currents. Our data unmask an unforeseen functional relationship between MLC1 and ClC-2 in vivo, which is probably mediated by GlialCAM, and suggest that ClC-2 participates in the pathogenesis of megalencephalic leukoencephalopathy with subcortical cysts.

  3. Antifungal activity of Juniperus essential oils against dermatophyte, Aspergillus and Candida strains.

    PubMed

    Cavaleiro, C; Pinto, E; Gonçalves, M J; Salgueiro, L

    2006-06-01

    The increasing resistance to antifungal compounds and the reduced number of available drugs led us to search therapeutic alternatives among aromatic plants and their essential oils, empirically used by antifungal proprieties. In this work the authors report on the antifungal activity of Juniperus essential oils (Juniperus communis ssp. alpina, J. oxycedrus ssp. oxycedrus and J. turbinata). Antifungal activity was evaluated by determination of MIC and MLC values, using a macrodilution method (NCCLS protocols), on clinical and type strains of Candida, Aspergillus and dermatophytes. The composition of the oils was ascertained by GC and GC/MS analysis. All essential oils inhibited test dermatophyte strains. The oil from leaves of J. oxycedrus ssp. oxycedrus is the most active, with MIC and MLC values ranging from 0.08-0.16 microl ml(-1) to 0.08-0.32 microl ml(-1), respectively. This oil is mainly composed of alpha-pinene (65.5%) and delta-3-carene (5.7%). J. oxycedrus ssp. oxycedrus leaf oil proved to be an emergent alternative as antifungal agent against dermatophyte strains. delta-3-Carene, was shown to be a fundamental compound for this activity. Results support that essential oils or some of their constituents may be useful in the clinical management of fungal infections, justifying future clinical trials to validate their use as therapeutic alternatives for dermatophytosis.

  4. Feasibility of using Geant4 Monte Carlo simulation for IMRT dose calculations for the Novalis Tx with a HD-120 multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Jung, Hyunuk; Shin, Jungsuk; Chung, Kwangzoo; Han, Youngyih; Kim, Jinsung; Choi, Doo Ho

    2015-05-01

    The aim of this study was to develop an independent dose verification system by using a Monte Carlo (MC) calculation method for intensity modulated radiation therapy (IMRT) conducted by using a Varian Novalis Tx (Varian Medical Systems, Palo Alto, CA, USA) equipped with a highdefinition multi-leaf collimator (HD-120 MLC). The Geant4 framework was used to implement a dose calculation system that accurately predicted the delivered dose. For this purpose, the Novalis Tx Linac head was modeled according to the specifications acquired from the manufacturer. Subsequently, MC simulations were performed by varying the mean energy, energy spread, and electron spot radius to determine optimum values of irradiation with 6-MV X-ray beams by using the Novalis Tx system. Computed percentage depth dose curves (PDDs) and lateral profiles were compared to the measurements obtained by using an ionization chamber (CC13). To validate the IMRT simulation by using the MC model we developed, we calculated a simple IMRT field and compared the result with the EBT3 film measurements in a water-equivalent solid phantom. Clinical cases, such as prostate cancer treatment plans, were then selected, and MC simulations were performed. The accuracy of the simulation was assessed against the EBT3 film measurements by using a gamma-index criterion. The optimal MC model parameters to specify the beam characteristics were a 6.8-MeV mean energy, a 0.5-MeV energy spread, and a 3-mm electron radius. The accuracy of these parameters was determined by comparison of MC simulations with measurements. The PDDs and the lateral profiles of the MC simulation deviated from the measurements by 1% and 2%, respectively, on average. The computed simple MLC fields agreed with the EBT3 measurements with a 95% passing rate with 3%/3-mm gamma-index criterion. Additionally, in applying our model to clinical IMRT plans, we found that the MC calculations and the EBT3 measurements agreed well with a passing rate of greater than 95% on average with a 3%/3-mm gamma-index criterion. In summary, the Novalis Tx Linac head equipped with a HD-120 MLC was successfully modeled by using a Geant4 platform, and the accuracy of the Geant4 platform was successfully validated by comparisons with measurements. The MC model we have developed can be a useful tool for pretreatment quality assurance of IMRT plans and for commissioning of radiotherapy treatment planning.

  5. Treatment plan comparison between helical tomotherapy and MLC-based IMRT using radiobiological measures

    NASA Astrophysics Data System (ADS)

    Mavroidis, Panayiotis; Costa Ferreira, Brigida; Shi, Chengyu; Lind, Bengt K.; Papanikolaou, Nikos

    2007-07-01

    The rapid implementation of advanced treatment planning and delivery technologies for radiation therapy has brought new challenges in evaluating the most effective treatment modality. Intensity-modulated radiotherapy (IMRT) using multi-leaf collimators (MLC) and helical tomotherapy (HT) are becoming popular modes of treatment delivery and their application and effectiveness continues to be investigated. Presently, there are several treatment planning systems (TPS) that can generate and optimize IMRT plans based on user-defined objective functions for the internal target volume (ITV) and organs at risk (OAR). However, the radiobiological parameters of the different tumours and normal tissues are typically not taken into account during dose prescription and optimization of a treatment plan or during plan evaluation. The suitability of a treatment plan is typically decided based on dosimetric criteria such as dose-volume histograms (DVH), maximum, minimum, mean and standard deviation of the dose distribution. For a more comprehensive treatment plan evaluation, the biologically effective uniform dose ({\\bar{\\bar{D}}}) is applied together with the complication-free tumour control probability (P+). Its utilization is demonstrated using three clinical cases that were planned with two different forms of IMRT. In this study, three different cancer types at different anatomical sites were investigated: head and neck, lung and prostate cancers. For each cancer type, a linac MLC-based step-and-shoot IMRT plan and a HT plan were developed. The MLC-based IMRT treatment plans were developed on the Philips treatment-planning platform, using the Pinnacle 7.6 software release. For the tomotherapy HiArt plans, the dedicated tomotherapy treatment planning station was used, running version 2.1.2. By using {\\bar{\\bar{D}}} as the common prescription point of the treatment plans and plotting the tissue response probabilities versus {\\bar{\\bar{D}}} for a range of prescription doses, a number of plan trials can be compared based on radiobiological measures. The applied plan evaluation method shows that in the head and neck cancer case the HT treatment gives better results than MLC-based IMRT in terms of expected clinical outcome (P+ of 62.2% and 46.0%, {\\bar{\\bar{D}}} to the ITV of 72.3 Gy and 70.7 Gy, respectively). In the lung cancer and prostate cancer cases, the MLC-based IMRT plans are better over the clinically useful dose prescription range. For the lung cancer case, the HT and MLC-based IMRT plans give a P+ of 66.9% and 72.9%, {\\bar{\\bar{D}}} to the ITV of 64.0 Gy and 66.9 Gy, respectively. Similarly, for the prostate cancer case, the two radiation modalities give a P+ of 68.7% and 72.2%, {\\bar{\\bar{D}}} to the ITV of 86.0 Gy and 85.9 Gy, respectively. If a higher risk of complications (higher than 5%) could be allowed, the complication-free tumour control could increase by over 40%, 2% and 30% compared to the initial dose prescription for the three cancer cases, respectively. Both MLC-based IMRT and HT can encompass the often-large ITV required while they minimize the volume of the organs at risk receiving high doses. Radiobiological evaluation of treatment plans may provide an improved correlation of the delivered treatment with the clinical outcome by taking into account the dose-response characteristics of the irradiated targets and normal tissues. There may exist clinical cases, which may look dosimetrically similar but in radiobiological terms may be quite different. In such situations, traditional dose-based evaluation tools can be complemented by the use of P_ +{-}{\\bar{\\bar{D}}} diagrams to effectively evaluate and compare treatment plans.

  6. Inhibiting Myosin Light Chain Kinase Induces Apoptosis In Vitro and In Vivo

    PubMed Central

    Fazal, Fabeha; Gu, Lianzhi; Ihnatovych, Ivanna; Han, YooJeong; Hu, WenYang; Antic, Nenad; Carreira, Fernando; Blomquist, James F.; Hope, Thomas J.; Ucker, David S.; de Lanerolle, Primal

    2005-01-01

    Previous short-term studies have correlated an increase in the phosphorylation of the 20-kDa light chain of myosin II (MLC20) with blebbing in apoptotic cells. We have found that this increase in MLC20 phosphorylation is rapidly followed by MLC20 dephosphorylation when cells are stimulated with various apoptotic agents. MLC20 dephosphorylation is not a consequence of apoptosis because MLC20 dephosphorylation precedes caspase activation when cells are stimulated with a proapoptotic agent or when myosin light chain kinase (MLCK) is inhibited pharmacologically or by microinjecting an inhibitory antibody to MLCK. Moreover, blocking caspase activation increased cell survival when MLCK is inhibited or when cells are treated with tumor necrosis factor alpha. Depolymerizing actin filaments or detaching cells, processes that destabilize the cytoskeleton, or inhibiting myosin ATPase activity also resulted in MLC20 dephosphorylation and cell death. In vivo experiments showed that inhibiting MLCK increased the number of apoptotic cells and retarded the growth of mammary cancer cells in mice. Thus, MLC20 dephosphorylation occurs during physiological cell death and prolonged MLC20 dephosphorylation can trigger apoptosis. PMID:15988034

  7. Myosin‑II heavy chain and formin mediate the targeting of myosin essential light chain to the division site before and during cytokinesis

    PubMed Central

    Feng, Zhonghui; Okada, Satoshi; Cai, Guoping; Zhou, Bing; Bi, Erfei

    2015-01-01

    MLC1 is a haploinsufficient gene encoding the essential light chain for Myo1, the sole myosin‑II heavy chain in the budding yeast Saccharomyces cerevisiae. Mlc1 defines an essential hub that coordinates actomyosin ring function, membrane trafficking, and septum formation during cytokinesis by binding to IQGAP, myosin‑II, and myosin‑V. However, the mechanism of how Mlc1 is targeted to the division site during the cell cycle remains unsolved. By constructing a GFP‑tagged MLC1 under its own promoter control and using quantitative live‑cell imaging coupled with yeast mutants, we found that septin ring and actin filaments mediate the targeting of Mlc1 to the division site before and during cytokinesis, respectively. Both mechanisms contribute to and are collectively required for the accumulation of Mlc1 at the division site during cytokinesis. We also found that Myo1 plays a major role in the septin‑dependent Mlc1 localization before cytokinesis, whereas the formin Bni1 plays a major role in the actin filament–dependent Mlc1 localization during cytokinesis. Such a two‑tiered mechanism for Mlc1 localization is presumably required for the ordered assembly and robustness of cytokinesis machinery and is likely conserved across species. PMID:25631819

  8. Embryonic essential myosin light chain regulates fetal lung development in rats.

    PubMed

    Santos, Marta; Moura, Rute S; Gonzaga, Sílvia; Nogueira-Silva, Cristina; Ohlmeier, Steffen; Correia-Pinto, Jorge

    2007-09-01

    Congenital diaphragmatic hernia (CDH) is currently the most life-threatening congenital anomaly the major finding of which is lung hypoplasia. Lung hypoplasia pathophysiology involves early developmental molecular insult in branching morphogenesis and a late mechanical insult by abdominal herniation in maturation and differentiation processes. Since early determinants of lung hypoplasia might appear as promising targets for prenatal therapy, proteomics analysis of normal and nitrofen-induced hypoplastic lungs was performed at 17.5 days after conception. The major differentially expressed protein was identified by mass spectrometry as myosin light chain 1a (MLC1a). Embryonic essential MLC1a and regulatory myosin light chain 2 (MLC2) were characterized throughout normal and abnormal lung development by immunohistochemistry and Western blot. Disruption of MLC1a expression was assessed in normal lung explant cultures by antisense oligodeoxynucleotides. Since early stages of normal lung development, MLC1a was expressed in vascular smooth muscle (VSM) cells of pulmonary artery, and MLC2 was present in parabronchial smooth muscle and VSM cells of pulmonary vessels. In addition, early smooth muscle differentiation delay was observed by immunohistochemistry of alpha-smooth muscle actin and transforming growth factor-beta1. Disruption of MLC1a expression during normal pulmonary development led to significant growth and branching impairment, suggesting a role in branching morphogenesis. Both MLC1a and MLC2 were absent from hypoplastic fetal lungs during pseudoglandular stage of lung development, whereas their expression partially recovered by prenatal treatment with vitamin A. Thus, a deficiency in contractile proteins MLC1a and MLC2 might have a role among the early molecular determinants of lung hypoplasia in the rat model of nitrofen-induced CDH.

  9. Ca2+-dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle.

    PubMed

    Dimopoulos, George J; Semba, Shingo; Kitazawa, Kazuyo; Eto, Masumi; Kitazawa, Toshio

    2007-01-05

    Ca(2+) ion is a universal intracellular messenger that regulates numerous biological functions. In smooth muscle, Ca(2+) with calmodulin activates myosin light chain (MLC) kinase to initiate a rapid MLC phosphorylation and contraction. To test the hypothesis that regulation of MLC phosphatase is involved in the rapid development of MLC phosphorylation and contraction during Ca(2+) transient, we compared Ca(2+) signal, MLC phosphorylation, and 2 modes of inhibition of MLC phosphatase, phosphorylation of CPI-17 Thr38 and MYPT1 Thr853, during alpha(1) agonist-induced contraction with/without various inhibitors in intact rabbit femoral artery. Phenylephrine rapidly induced CPI-17 phosphorylation from a negligible amount to a peak value of 0.38+/-0.04 mol of Pi/mol within 7 seconds following stimulation, similar to the rapid time course of Ca(2+) rise and MLC phosphorylation. This rapid CPI-17 phosphorylation was dramatically inhibited by either blocking Ca(2+) release from the sarcoplasmic reticulum or by pretreatment with protein kinase C inhibitors, suggesting an involvement of Ca(2+)-dependent protein kinase C. This was followed by a slow Ca(2+)-independent and Rho-kinase/protein kinase C-dependent phosphorylation of CPI-17. In contrast, MYPT1 phosphorylation had only a slow component that increased from 0.29+/-0.09 at rest to the peak of 0.68+/-0.14 mol of Pi/mol at 1 minute, similar to the time course of contraction. Thus, there are 2 components of the Ca(2+) sensitization through inhibition of MLC phosphatase. Our results support the hypothesis that the initial rapid Ca(2+) rise induces a rapid inhibition of MLC phosphatase coincident with the Ca(2+)-induced MLC kinase activation to synergistically initiate a rapid MLC phosphorylation and contraction in arteries with abundant CPI-17 content.

  10. SU-E-T-418: Explore the Sensitive of the Planar Quality Assurance to the MLC Error with Different Beam Complexity in Intensity-Modulate Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J; Peng, J; Xie, J

    2015-06-15

    Purpose: The purpose of this study is to investigate the sensitivity of the planar quality assurance to MLC errors with different beam complexities in intensity-modulate radiation therapy. Methods: sixteen patients’ planar quality assurance (QA) plans in our institution were enrolled in this study, including 10 dynamic MLC (DMLC) IMRT plans measured by Portal Dosimetry and 6 static MLC (SMLC) IMRT plans measured by Mapcheck. The gamma pass rate was calculated using vender’s software. The field numbers were 74 and 40 for DMLC and SMLC, respectively. A random error was generated and introduced to these fields. The modified gamma pass ratemore » was calculated by comparing the original measured fluence and modified fields’ fluence. A decreasing gamma pass rate was acquired using the original gamma pass rate minus the modified gamma pass rate. Eight complexity scores were calculated in MATLAB based on the fluence and MLC sequence of these fields. The complexity scores include fractal dimension, monitor unit of field, modulation index, fluence map complexity, weighted average of field area, weighted average of field perimeter, and small aperture ratio ( <5cm{sup 2} and <50cm{sup 2}). The Spearman’s rank correlation coefficient was implemented to analyze the correlation between these scores and decreasing gamma rate. Results: The relation between the decreasing gamma pass rate and field complexity was insignificant for most complexity scores. The most significant complexity score was fluence map complexity for SMLC, which have ρ =0.4274 (p-value=0.0063). For DMLC, the most significant complex score was fractal dimension, which have ρ=−0.3068 (p-value=0.0081). Conclusions: According to the primarily Result of this study, the sensitivity gamma pass rate was not strongly relate to the field complexity.« less

  11. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation

    NASA Astrophysics Data System (ADS)

    Wang, Sujuan; Peng, Xixi; Cui, Liangliang; Li, Tongtong; Yu, Bei; Ma, Gang; Ba, Xinwu

    2018-02-01

    The potential application of curcumin was heavily limited in biomedicine because of its poor solubility in pure water. To circumvent the detracting feature, two novel water-soluble amino acid modified curcumin derivatives (MLC and DLC) have been synthesized through the condensation reaction between curcumin and Nα-Fmoc-Nε-Boc-L-lysine. Benefiting from the enhanced solubility of 3.32 × 10- 2 g/mL for MLC and 4.66 × 10- 2 g/mL for DLC, the inhibition effects of the as-prepared derivatives on the amyloid fibrillation of lysozyme (HEWL) were investigated detaily in water solution. The obtained results showed that the amyloid fibrillation of HEWL was inhibited to a great extent when the concentrations of MLC and DLC reach to 20.139 mM and 49.622 mM, respectively. The fluorescence quenching upon the addition of curcumin to HEWL provide a support for static and dynamic recombination quenching process. The binding driving force was assigned to classical hydrophobic interaction between curcumin derivatives and HEWL. In addition, UV-Vis absorption and circular dichroism (CD) spectra confirmed the change of the conformation of HEWL.

  12. SU-E-T-145: Beam Characteristics of Flattening Filter Free Beams Including Low Dose Rate Setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uehara, K; Ogata, T; Nakayama, M

    2015-06-15

    Purpose: In commissioning of volumetric modulated arc therapy (VMAT), it is necessary to evaluate the beam characteristics of various dose rate settings with potential to use. The aim of this study is to evaluate the beam characteristics of flattened and flattening filter free (FFF) including low dose rate setting. Methods: We used a Varian TrueBeam with Millennium 120 MLC. Both 6 and 10 MV beams with or without flattening filter were used for this study. To evaluate low-dose rate FFF beams, specially-designed leaf sequence files control out-of-field MLC leaf pair at constant dose rate ranging from 80 to 400 MU/min.more » For dose rate from 80 MU/min to the maximum usable value of all energies, beam output were measured using ionization chamber (CC04, IBA). The ionization chamber was inserted into water equivalent phantom (RT3000-New, R-tech), and the phantom was set with SAD of 100cm. The beam profiles were performed using the 2D diode array (Profiler2, Sun Nuclear). The SSD was set to 90cm and a combined 30cmx30cmx9cm phantom which consisted of solid water slabs was put on the device. All measurement were made using 100MU irradiation for 10cmx10cm jaw-defined field size with a gantry angle of 0°. Results: In all energies, the dose rate dependences with beam output and variation coefficient were within 0.2% and 0.07%, respectively. The flatness and symmetry exhibited small variations (flatness ≤0.1 point and symmetry≤0.3 point at absolute difference). Conclusion: We had studied the characteristics of flattened and FFF beam over the 80 MU/min. Our results indicated that the beam output and profiles of FFF of TrueBeam linac were highly stable at low dose rate setting.« less

  13. MO-F-CAMPUS-T-01: Radiosurgery of Multiple Brain Metastases with Single-Isocenter VMAT: Optimizing Treatment Geometry to Reduce Normal Brain Dose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Q; Snyder, K; Liu, C

    Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas weremore » the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API.« less

  14. A software tool to automatically assure and report daily treatment deliveries by a cobalt‐60 radiation therapy device

    PubMed Central

    Wooten, H. Omar; Green, Olga; Li, Harold H.; Liu, Shi; Li, Xiaoling; Rodriguez, Vivian; Mutic, Sasa; Kashani, Rojano

    2016-01-01

    The aims of this study were to develop a method for automatic and immediate verification of treatment delivery after each treatment fraction in order to detect and correct errors, and to develop a comprehensive daily report which includes delivery verification results, daily image‐guided radiation therapy (IGRT) review, and information for weekly physics reviews. After systematically analyzing the requirements for treatment delivery verification and understanding the available information from a commercial MRI‐guided radiotherapy treatment machine, we designed a procedure to use 1) treatment plan files, 2) delivery log files, and 3) beam output information to verify the accuracy and completeness of each daily treatment delivery. The procedure verifies the correctness of delivered treatment plan parameters including beams, beam segments and, for each segment, the beam‐on time and MLC leaf positions. For each beam, composite primary fluence maps are calculated from the MLC leaf positions and segment beam‐on time. Error statistics are calculated on the fluence difference maps between the plan and the delivery. A daily treatment delivery report is designed to include all required information for IGRT and weekly physics reviews including the plan and treatment fraction information, daily beam output information, and the treatment delivery verification results. A computer program was developed to implement the proposed procedure of the automatic delivery verification and daily report generation for an MRI guided radiation therapy system. The program was clinically commissioned. Sensitivity was measured with simulated errors. The final version has been integrated into the commercial version of the treatment delivery system. The method automatically verifies the EBRT treatment deliveries and generates the daily treatment reports. Already in clinical use for over one year, it is useful to facilitate delivery error detection, and to expedite physician daily IGRT review and physicist weekly chart review. PACS number(s): 87.55.km PMID:27167269

  15. TH-A-9A-10: Prostate SBRT Delivery with Flattening-Filter-Free Mode: Benefit and Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T; Yuan, L; Sheng, Y

    Purpose: Flattening-filter-free (FFF) beam mode offered on TrueBeam™ linac enables delivering IMRT at 2400 MU/min dose rate. This study investigates the benefit and delivery accuracy of using high dose rate in the context of prostate SBRT. Methods: 8 prostate SBRT patients were retrospectively studied. In 5 cases treated with 600-MU/min dose rate, continuous prostate motion data acquired during radiation-beam-on was used to analyze motion range. In addition, the initial 1/3 of prostate motion trajectories during each radiation-beam-on was separated to simulate motion range if 2400-MU/min were used. To analyze delivery accuracy in FFF mode, MLC trajectory log files from anmore » additional 3 cases treated at 2400-MU/min were acquired. These log files record MLC expected and actual positions every 20ms, and therefore can be used to reveal delivery accuracy. Results: (1) Benefit. On average treatment at 600-MU/min takes 30s per beam; whereas 2400-MU/min requires only 11s. When shortening delivery time to ~1/3, the prostate motion range was significantly smaller (p<0.001). Largest motion reduction occurred in Sup-Inf direction, from [−3.3mm, 2.1mm] to [−1.7mm, 1.7mm], followed by reduction from [−2.1mm, 2.4mm] to [−1.0mm, 2.4mm] in Ant-Pos direction. No change observed in LR direction [−0.8mm, 0.6mm]. The combined motion amplitude (vector norm) confirms that average motion and ranges are significantly smaller when beam-on was limited to the 1st 1/3 of actual delivery time. (2) Accuracy. Trajectory log file analysis showed excellent delivery accuracy with at 2400 MU/min. Most leaf deviations during beam-on were within 0.07mm (99-percentile). Maximum leaf-opening deviations during each beam-on were all under 0.1mm for all leaves. Dose-rate was maintained at 2400-MU/min during beam-on without dipping. Conclusion: Delivery prostate SBRT with 2400 MU/min is both beneficial and accurate. High dose rates significantly reduced both treatment time and intra-beam prostate motion range. Excellent delivery accuracy was confirmed with very small leaf motion deviation.« less

  16. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    PubMed Central

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien; Booth, Jeremy T.; Keall, Paul J.

    2014-01-01

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real time tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the Au+Ao was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the Au+Ao reductions were all above 75% and the total Au+Ao improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time. PMID:24877798

  17. Toward the development of intrafraction tumor deformation tracking using a dynamic multi-leaf collimator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Yuanyuan; O’Brien, Ricky T.; Shieh, Chun-Chien

    Purpose: Intrafraction deformation limits targeting accuracy in radiotherapy. Studies show tumor deformation of over 10 mm for both single tumor deformation and system deformation (due to differential motion between primary tumors and involved lymph nodes). Such deformation cannot be adapted to with current radiotherapy methods. The objective of this study was to develop and experimentally investigate the ability of a dynamic multi-leaf collimator (DMLC) tracking system to account for tumor deformation. Methods: To compensate for tumor deformation, the DMLC tracking strategy is to warp the planned beam aperture directly to conform to the new tumor shape based on real timemore » tumor deformation input. Two deformable phantoms that correspond to a single tumor and a tumor system were developed. The planar deformations derived from the phantom images in beam's eye view were used to guide the aperture warping. An in-house deformable image registration software was developed to automatically trigger the registration once new target image was acquired and send the computed deformation to the DMLC tracking software. Because the registration speed is not fast enough to implement the experiment in real-time manner, the phantom deformation only proceeded to the next position until registration of the current deformation position was completed. The deformation tracking accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the ideal aperture. The individual contributions from the deformable registration algorithm and the finite leaf width to the tracking uncertainty were analyzed. Clinical proof-of-principle experiment of deformation tracking using previously acquired MR images of a lung cancer patient was implemented to represent the MRI-Linac environment. Intensity-modulated radiation therapy (IMRT) treatment delivered with enabled deformation tracking was simulated and demonstrated. Results: The first experimental investigation of adapting to tumor deformation has been performed using simple deformable phantoms. For the single tumor deformation, the A{sub u}+A{sub o} was reduced over 56% when deformation was larger than 2 mm. Overall, the total improvement was 82%. For the tumor system deformation, the A{sub u}+A{sub o} reductions were all above 75% and the total A{sub u}+A{sub o} improvement was 86%. Similar coverage improvement was also found in simulating deformation tracking during IMRT delivery. The deformable image registration algorithm was identified as the dominant contributor to the tracking error rather than the finite leaf width. The discrepancy between the warped beam shape and the ideal beam shape due to the deformable registration was observed to be partially compensated during leaf fitting due to the finite leaf width. The clinical proof-of-principle experiment demonstrated the feasibility of intrafraction deformable tracking for clinical scenarios. Conclusions: For the first time, we developed and demonstrated an experimental system that is capable of adapting the MLC aperture to account for tumor deformation. This work provides a potentially widely available management method to effectively account for intrafractional tumor deformation. This proof-of-principle study is the first experimental step toward the development of an image-guided radiotherapy system to treat deforming tumors in real-time.« less

  18. Methods to model and predict the ViewRay treatment deliveries to aid patient scheduling and treatment planning

    PubMed Central

    Liu, Shi; Wu, Yu; Wooten, H. Omar; Green, Olga; Archer, Brent; Li, Harold

    2016-01-01

    A software tool is developed, given a new treatment plan, to predict treatment delivery time for radiation therapy (RT) treatments of patients on ViewRay magnetic resonance image‐guided radiation therapy (MR‐IGRT) delivery system. This tool is necessary for managing patient treatment scheduling in our clinic. The predicted treatment delivery time and the assessment of plan complexities could also be useful to aid treatment planning. A patient's total treatment delivery time, not including time required for localization, is modeled as the sum of four components: 1) the treatment initialization time; 2) the total beam‐on time; 3) the gantry rotation time; and 4) the multileaf collimator (MLC) motion time. Each of the four components is predicted separately. The total beam‐on time can be calculated using both the planned beam‐on time and the decay‐corrected dose rate. To predict the remain‐ing components, we retrospectively analyzed the patient treatment delivery record files. The initialization time is demonstrated to be random since it depends on the final gantry angle of the previous treatment. Based on modeling the relationships between the gantry rotation angles and the corresponding rotation time, linear regression is applied to predict the gantry rotation time. The MLC motion time is calculated using the leaves delay modeling method and the leaf motion speed. A quantitative analysis was performed to understand the correlation between the total treatment time and the plan complexity. The proposed algorithm is able to predict the ViewRay treatment delivery time with the average prediction error 0.22 min or 1.82%, and the maximal prediction error 0.89 min or 7.88%. The analysis has shown the correlation between the plan modulation (PM) factor and the total treatment delivery time, as well as the treatment delivery duty cycle. A possibility has been identified to significantly reduce MLC motion time by optimizing the positions of closed MLC pairs. The accuracy of the proposed prediction algorithm is sufficient to support patient treatment appointment scheduling. This developed software tool is currently applied in use on a daily basis in our clinic, and could also be used as an important indicator for treatment plan complexity. PACS number(s): 87.55.N PMID:27074472

  19. Reduction of structural loads using maneuver load control on the Advanced Fighter Technology Integration (AFTI)/F-111 mission adaptive wing

    NASA Technical Reports Server (NTRS)

    Thornton, Stephen V.

    1993-01-01

    A transonic fighter-bomber aircraft, having a swept supercritical wing with smooth variable-camber flaps was fitted with a maneuver load control (MLC) system that implements a technique to reduce the inboard bending moments in the wing by shifting the spanwise load distribution inboard as load factor increases. The technique modifies the spanwise camber distribution by automatically commanding flap position as a function of flap position, true airspeed, Mach number, dynamic pressure, normal acceleration, and wing sweep position. Flight test structural loads data were obtained for loads in both the wing box and the wing root. Data from uniformly deflected flaps were compared with data from flaps in the MLC configuration where the outboard segment of three flap segments was deflected downward less than the two inboard segments. The changes in the shear loads in the forward wing spar and at the roots of the stabilators also are presented. The camber control system automatically reconfigures the flaps through varied flight conditions. Configurations having both moderate and full trailing-edge flap deflection were tested. Flight test data were collected at Mach numbers of 0.6, 0.7, 0.8, and 0.9 and dynamic pressures of 300, 450, 600, and 800 lb/sq ft. The Reynolds numbers for these flight conditions ranged from 26 x 10(exp 6) to 54 x 10(exp 6) at the mean aerodynamic chord. Load factor increases of up to 1.0 g achieved with no increase in wing root bending moment with the MLC flap configuration.

  20. SU-F-T-650: The Comparison of Robotic Partial Breast Stereotactic Irradiation Using MLC Vs. Iris Cone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Timmerman, R; Jiang, S

    Purpose: To evaluate the dosimetric impact on treatment planning for partial breast stereotactic irradiation using Cyberknife with MLC versus Iris Cone. Methods: Ten patients whom underwent lumpectomy for DCIS or stage I invasive non-lobular epithelial breast cancer were included in this study. All patients were previously treated on the Cyberknife using Iris cone with the prescription dose of 37.5Gy in 5 fractions covering at least 95% of PTV on our phase I SBRT 5 fraction partial breast irradiation trial. Retrospectively, treatment planning was performed and compared using the new Cyberknife M6 MLC system for each patient. Using the same contoursmore » and critical organ constraints for both MLC and Iris cone plans, the dose on target and critical organs were analyzed accordingly. Results: Dose to critical organs such as ipsilateral lung, contralateral lung, heart, skin, ipsilateral breast, and rib were analyzed, as well as conformity index and high dose spillage of the target area. In 9 of 10 patients, the MLC plans had less total ipsilateral breast volume encompassing the 50% prescription isodose (mean:22.3±8.2% MLC vs. 31.6±8.0 Iris, p=0.00014) .The MLC plans mean estimated treatment delivery time was significantly less than the Iris plans (51±3.9min vs. 56.2±9min, p=0.03) Both MLC and Iris cone plans were able to meet all dose constraints and there was no statistical difference between those dose constraints. Conclusion: Both MLC and Iris Cone can deliver conformal dose to a partial breast target and satisfy the dose constraints of critical organs. The new Cyberknife with MLC can deliver a more conformal dose in the lower dose region and spare more ipsilateral breast tissue to the 50% prescription isodose. The treatment time for partial breast SBRT plans was also reduced using MLC. Project receives research support from Accuray Inc.« less

  1. Comparison of MLC error sensitivity of various commercial devices for VMAT pre-treatment quality assurance.

    PubMed

    Saito, Masahide; Sano, Naoki; Shibata, Yuki; Kuriyama, Kengo; Komiyama, Takafumi; Marino, Kan; Aoki, Shinichi; Ashizawa, Kazunari; Yoshizawa, Kazuya; Onishi, Hiroshi

    2018-05-01

    The purpose of this study was to compare the MLC error sensitivity of various measurement devices for VMAT pre-treatment quality assurance (QA). This study used four QA devices (Scandidos Delta4, PTW 2D-array, iRT systems IQM, and PTW Farmer chamber). Nine retrospective VMAT plans were used and nine MLC error plans were generated for all nine original VMAT plans. The IQM and Farmer chamber were evaluated using the cumulative signal difference between the baseline and error-induced measurements. In addition, to investigate the sensitivity of the Delta4 device and the 2D-array, global gamma analysis (1%/1, 2%/2, and 3%/3 mm), dose difference (1%, 2%, and 3%) were used between the baseline and error-induced measurements. Some deviations of the MLC error sensitivity for the evaluation metrics and MLC error ranges were observed. For the two ionization devices, the sensitivity of the IQM was significantly better than that of the Farmer chamber (P < 0.01) while both devices had good linearly correlation between the cumulative signal difference and the magnitude of MLC errors. The pass rates decreased as the magnitude of the MLC error increased for both Delta4 and 2D-array. However, the small MLC error for small aperture sizes, such as for lung SBRT, could not be detected using the loosest gamma criteria (3%/3 mm). Our results indicate that DD could be more useful than gamma analysis for daily MLC QA, and that a large-area ionization chamber has a greater advantage for detecting systematic MLC error because of the large sensitive volume, while the other devices could not detect this error for some cases with a small range of MLC error. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Mlc Is a Transcriptional Activator with a Key Role in Integrating Cyclic AMP Receptor Protein and Integration Host Factor Regulation of Leukotoxin RNA Synthesis in Aggregatibacter actinomycetemcomitans

    PubMed Central

    Childress, Catherine; Feuerbacher, Leigh A.; Phillips, Linda; Burgum, Alex

    2013-01-01

    Aggregatibacter actinomycetemcomitans, a periodontal pathogen, synthesizes leukotoxin (LtxA), a protein that helps the bacterium evade the host immune response. Transcription of the ltxA operon is induced during anaerobic growth. The cyclic AMP (cAMP) receptor protein (CRP) indirectly increases ltxA expression, but the intermediary regulator is unknown. Integration host factor (IHF) binds to and represses the leukotoxin promoter, but neither CRP nor IHF is responsible for the anaerobic induction of ltxA RNA synthesis. Thus, we have undertaken studies to identify other regulators of leukotoxin transcription and to demonstrate how these proteins work together to modulate leukotoxin synthesis. First, analyses of ltxA RNA expression from defined leukotoxin promoter mutations in the chromosome identify positions −69 to −35 as the key control region and indicate that an activator protein modulates leukotoxin transcription. We show that Mlc, which is a repressor in Escherichia coli, functions as a direct transcriptional activator in A. actinomycetemcomitans; an mlc deletion mutant reduces leukotoxin RNA synthesis, and recombinant Mlc protein binds specifically at the −68 to −40 region of the leukotoxin promoter. Furthermore, we show that CRP activates ltxA expression indirectly by increasing the levels of Mlc. Analyses of Δmlc, Δihf, and Δihf Δmlc strains demonstrate that Mlc can increase RNA polymerase (RNAP) activity directly and that IHF represses ltxA RNA synthesis mainly by blocking Mlc binding. Finally, a Δihf Δmlc mutant still induces ltxA during anaerobic growth, indicating that there are additional factors involved in leukotoxin transcriptional regulation. A model for the coordinated regulation of leukotoxin transcription is presented. PMID:23475968

  3. Gender differences in the regulation of MLC20 phosphorylation and smooth muscle contraction in rat stomach

    PubMed Central

    Al-Shboul, Othman A.; Al-Dwairi, Ahmed N.; Alqudah, Mohammad A.; Mustafa, Ayman G.

    2018-01-01

    Evidence of sex-related differences in gastrointestinal (GI) functions has been reported in the literature. In addition, various GI disorders have disproportionate prevalence between the sexes. An essential step in the initiation of smooth muscle contraction is the phosphorylation of the 20-kDa regulatory myosin light chain (MLC20) by the Ca2+/calmodulin-dependent myosin light chain kinase (MLCK). However, whether male stomach smooth muscle inherits different contractile signaling mechanisms for the regulation of MLC20 phosphorylation from that in females has not been established. The present study was designed to investigate sex-associated differences in the regulation of MLC20 phosphorylation and thus muscle contraction in gastric smooth muscle cells (GSMCs). Experiments were performed on GSMCs freshly isolated from male and female rats. Contraction of the GSMCs in response to acetylcholine (ACh), a muscarinic agonist, was measured via scanning micrometry in the presence or absence of the MLCK inhibitor, ML-7. Additionally, the protein levels of MLC20, MLCK and phosphorylated MLC20 were measured by ELISA. The protein levels of MLC20 and MLCK were indifferent between the sexes. ACh induced greater contraction (P<0.05) as well as greater MLC20 phosphorylation (P<0.05) in male GSMCs compared with female. Pretreatment of GSMCs with ML-7 significantly reduced the ACh-induced contraction (P<0.05) and MLC20 phosphorylation (P<0.05) in the male and female cells, and notably, abolished the contractile differences between the sexes. In conclusion, MLC20 phosphorylation and thus muscle contraction may be activated to a greater extent in male rat stomach compared with that in females. PMID:29599980

  4. Influence of fast and slow alkali myosin light chain isoforms on the kinetics of stretch-induced force transients of fast-twitch type IIA fibres of rat.

    PubMed

    Andruchov, Oleg; Galler, Stefan

    2008-03-01

    This study contributes to understand the physiological role of slow myosin light chain isoforms in fast-twitch type IIA fibres of skeletal muscle. These isoforms are often attached to the myosin necks of rat type IIA fibres, whereby the slow alkali myosin light chain isoform MLC1s is much more frequent and abundant than the slow regulatory myosin light chain isoform MLC2s. In the present study, single-skinned rat type IIA fibres were maximally Ca(2+) activated and subjected to stepwise stretches for causing a perturbation of myosin head pulling cycles. From the time course of the resulting force transients, myosin head kinetics was deduced. Fibres containing MLC1s exhibited slower kinetics independently of the presence or absence of MLC2s. At the maximal MLC1s concentration of about 75%, the slowing was about 40%. The slowing effect of MLC1s is possibly due to differences in the myosin heavy chain binding sites of the fast and slow alkali MLC isoforms, which changes the rigidity of the myosin neck. Compared with the impact of myosin heavy chain isoforms in various fast-twitch fibre types, the influence of MLC1s on myosin head kinetics of type IIA fibres is much smaller. In conclusion, the physiological role of fast and slow MLC isoforms in type IIA fibres is a fine-tuning of the myosin head kinetics.

  5. SU-F-T-549: Validation of a Method for in Vivo 3D Dose Reconstruction for SBRT Using a New Transmission Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakaguchi, Y; Shimohigashi, Y; Onizuka, R

    Purpose: Recently, there has been increased clinical use of stereotactic body radiation therapy (SBRT). SBRT treatments will strongly benefit from in vivo patient dose verification, as any errors in delivery can be more detrimental to the radiobiology of the patient as compared to conventional therapy. In vivo dose measurements, a commercially available quality assurance platform which is able to correlate the delivered dose to the patient’s anatomy and take into account tissue inhomogeneity, is the COMPASS system (IBA Dosimetry, Germany) using a new transmission detector (Dolphin, IBA Dosimetry). In this work, we evaluate a method for in vivo 3D dosemore » reconstruction for SBRT using a new transmission detector, which was developed for in vivo dose verification for intensity-modulated radiation therapy (IMRT). Methods: We evaluated the accuracy of measurement for SBRT using simple small fields (2×2−10×10 cm2), a multileaf collimator (MLC) test pattern, and clinical cases. The dose distributions from the COMPASS were compared with those of EDR2 films (Kodak, USA) and the Monte Carlo simulations (MC). For clinical cases, we compared MC using dose-volume-histograms (DVHs) and dose profiles. Results: The dose profiles from the COMPASS for small fields and the complicated MLC test pattern agreed with those of EDR2 films, and MC within 3%. This showed the COMPASS with Dolphin system showed good spatial resolution and can measure small fields which are required for SBRT. Those results also suggest that COMPASS with Dolphin is able to detect MLC leaf position errors for SBRT. In clinical cases, the COMPASS with Dolphin agreed well with MC. The Dolphin detector, which consists of ionization chambers, provided stable measurement. Conclusion: COMPASS with Dolphin detector showed a useful in vivo 3D dose reconstruction for SBRT. The accuracy of the results indicates that this approach is suitable for clinical implementation.« less

  6. Independent Monte-Carlo dose calculation for MLC based CyberKnife radiotherapy

    NASA Astrophysics Data System (ADS)

    Mackeprang, P.-H.; Vuong, D.; Volken, W.; Henzen, D.; Schmidhalter, D.; Malthaner, M.; Mueller, S.; Frei, D.; Stampanoni, M. F. M.; Dal Pra, A.; Aebersold, D. M.; Fix, M. K.; Manser, P.

    2018-01-01

    This work aims to develop, implement and validate a Monte Carlo (MC)-based independent dose calculation (IDC) framework to perform patient-specific quality assurance (QA) for multi-leaf collimator (MLC)-based CyberKnife® (Accuray Inc., Sunnyvale, CA) treatment plans. The IDC framework uses an XML-format treatment plan as exported from the treatment planning system (TPS) and DICOM format patient CT data, an MC beam model using phase spaces, CyberKnife MLC beam modifier transport using the EGS++ class library, a beam sampling and coordinate transformation engine and dose scoring using DOSXYZnrc. The framework is validated against dose profiles and depth dose curves of single beams with varying field sizes in a water tank in units of cGy/Monitor Unit and against a 2D dose distribution of a full prostate treatment plan measured with Gafchromic EBT3 (Ashland Advanced Materials, Bridgewater, NJ) film in a homogeneous water-equivalent slab phantom. The film measurement is compared to IDC results by gamma analysis using 2% (global)/2 mm criteria. Further, the dose distribution of the clinical treatment plan in the patient CT is compared to TPS calculation by gamma analysis using the same criteria. Dose profiles from IDC calculation in a homogeneous water phantom agree within 2.3% of the global max dose or 1 mm distance to agreement to measurements for all except the smallest field size. Comparing the film measurement to calculated dose, 99.9% of all voxels pass gamma analysis, comparing dose calculated by the IDC framework to TPS calculated dose for the clinical prostate plan shows 99.0% passing rate. IDC calculated dose is found to be up to 5.6% lower than dose calculated by the TPS in this case near metal fiducial markers. An MC-based modular IDC framework was successfully developed, implemented and validated against measurements and is now available to perform patient-specific QA by IDC.

  7. Towards real-time VMAT verification using a prototype, high-speed CMOS active pixel sensor.

    PubMed

    Zin, Hafiz M; Harris, Emma J; Osmond, John P F; Allinson, Nigel M; Evans, Philip M

    2013-05-21

    This work investigates the feasibility of using a prototype complementary metal oxide semiconductor active pixel sensor (CMOS APS) for real-time verification of volumetric modulated arc therapy (VMAT) treatment. The prototype CMOS APS used region of interest read out on the chip to allow fast imaging of up to 403.6 frames per second (f/s). The sensor was made larger (5.4 cm × 5.4 cm) using recent advances in photolithographic technique but retains fast imaging speed with the sensor's regional read out. There is a paradigm shift in radiotherapy treatment verification with the advent of advanced treatment techniques such as VMAT. This work has demonstrated that the APS can track multi leaf collimator (MLC) leaves moving at 18 mm s(-1) with an automatic edge tracking algorithm at accuracy better than 1.0 mm even at the fastest imaging speed. Evaluation of the measured fluence distribution for an example VMAT delivery sampled at 50.4 f/s was shown to agree well with the planned fluence distribution, with an average gamma pass rate of 96% at 3%/3 mm. The MLC leaves motion and linac pulse rate variation delivered throughout the VMAT treatment can also be measured. The results demonstrate the potential of CMOS APS technology as a real-time radiotherapy dosimeter for delivery of complex treatments such as VMAT.

  8. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations

    PubMed Central

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions. PMID:26089862

  9. Combining MLC and SVM Classifiers for Learning Based Decision Making: Analysis and Evaluations.

    PubMed

    Zhang, Yi; Ren, Jinchang; Jiang, Jianmin

    2015-01-01

    Maximum likelihood classifier (MLC) and support vector machines (SVM) are two commonly used approaches in machine learning. MLC is based on Bayesian theory in estimating parameters of a probabilistic model, whilst SVM is an optimization based nonparametric method in this context. Recently, it is found that SVM in some cases is equivalent to MLC in probabilistically modeling the learning process. In this paper, MLC and SVM are combined in learning and classification, which helps to yield probabilistic output for SVM and facilitate soft decision making. In total four groups of data are used for evaluations, covering sonar, vehicle, breast cancer, and DNA sequences. The data samples are characterized in terms of Gaussian/non-Gaussian distributed and balanced/unbalanced samples which are then further used for performance assessment in comparing the SVM and the combined SVM-MLC classifier. Interesting results are reported to indicate how the combined classifier may work under various conditions.

  10. SU-G-BRC-16: Theory and Clinical Implications of the Constant Dosimetric Leaf Gap (DLG) Approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaraswamy, L; Xu, Z; Podgorsak, M

    Purpose: Commercial dose calculation algorithms incorporate a single DLG value for a given beam energy that is applied across an entire treatment field. However, the physical processes associated with beam generation and dose delivery suggest that the DLG is not constant. The aim of this study is to evaluate the variation of DLG among all leaf pairs, to quantify how this variation impacts delivered dose, and to establish a novel method to correct dose distributions calculated using the approximation of constant DLG. Methods: A 2D diode array was used to measure the DLG for all 60 leaf pairs at severalmore » points along each leaf pair travel direction. This approach was validated by comparison to DLG values measured at select points using a 0.6 cc ion chamber with the standard formalism. In-house software was developed to enable incorporation of position dependent DLG values into dose distribution optimization and calculation. The accuracy of beam delivery of both the corrected and uncorrected treatment plans was studied through gamma pass rate evaluation. A comparison of DVH statistics in corrected and uncorrected treatment plans was made. Results: The outer 20 MLC leaf pairs (1.0 cm width) have DLG values that are 0.32 mm (mean) to 0.65 mm (maximum) lower than the central leaf-pair. VMAT plans using a large number of 1 cm wide leaves were more accurately delivered (gamma pass rate increased by 5%) and dose coverage was higher (D100 increased by 3%) when the 2D DLG was modeled. Conclusion: Using a constant DLG value for a given beam energy will result in dose optimization, dose calculation and treatment delivery inaccuracies that become significant for treatment plans with high modulation complexity scores delivered with 1 cm wide leaves.« less

  11. Leaf area dynamics of conifer forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolis, H.; Oren, R.; Whitehead, D.

    1995-07-01

    Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which canmore » have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.« less

  12. SU-E-T-604: Penumbra Characteristics of a New InCiseâ„¢ Multileaf Collimator of CyberKnife M6â„¢ System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, M; Jang, S; Ozhasoglu, C

    2015-06-15

    Purpose: The InCise™ Multileaf Collimator (MLC) of CyberKnife M6™ System has been released recently. The purpose of this study was to explore the dosimetric characteristics of the new MLC. In particular, the penumbra characteristics of MLC fields at varying locations are evaluated. Methods: EBT3-based film measurements were performed with varying MLC fields ranging from 7.5 mm to 27.5 mm. Seventeen regions of interests (ROIs) were identified for irradiation. These are regions located at the central area (denoted as reference field), at the left/right edge areas of reference open field, at an intermediate location between central and edge area. Single beammore » treatment plans were designed by using the MultiPlan and was delivered using the Blue Phantom. Gafchromic films were irradiated at 1.5 cm depth in the Blue Phantom and analyzed using the Film Pro software. Variation of maximum dose, penumbra of MLC-defined fields, and symmetry/flatness were calculated as a function of locations of MLC fields. Results: The InCise™ MLC System showed relatively consistent dose distribution and penumbra size with varying locations of MLC fields. The measured maximum dose varied within 5 % at different locations compared to that at the central location and agreed with the calculated data well within 2%. The measured penumbrae were in the range of 2.9 mm and 3.7 mm and were relatively consistent regardless of locations. However, dose profiles in the out-of-field and in-field regions varied with locations and field sizes. Strong variation was seen for all fields located at 55 mm away from the central field. The MLC leakage map showed that the leakage is dependent on position. Conclusion: The size of penumbra and normalized maximum dose for MLC-defined fields were consistent in different regions of MLC. However, dose profiles in the out-field region varied with locations and field sizes.« less

  13. Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex.

    PubMed

    Powell, Cameron J; Jenkins, Meredith L; Parker, Michelle L; Ramaswamy, Raghavendran; Kelsen, Anne; Warshaw, David M; Ward, Gary E; Burke, John E; Boulanger, Martin J

    2017-11-24

    Apicomplexan parasites such as Toxoplasma gondii rely on a unique form of locomotion known as gliding motility. Generating the mechanical forces to support motility are divergent class XIV myosins (MyoA) coordinated by accessory proteins known as light chains. Although the importance of the MyoA-light chain complex is well-established, the detailed mechanisms governing its assembly and regulation are relatively unknown. To establish a molecular blueprint of this dynamic complex, we first mapped the adjacent binding sites of light chains MLC1 and ELC1 on the MyoA neck (residues 775-818) using a combination of hydrogen-deuterium exchange mass spectrometry and isothermal titration calorimetry. We then determined the 1.85 Å resolution crystal structure of MLC1 in complex with its cognate MyoA peptide. Structural analysis revealed a bilobed architecture with MLC1 clamping tightly around the helical MyoA peptide, consistent with the stable 10 nm K d measured by isothermal titration calorimetry. We next showed that coordination of calcium by an EF-hand in ELC1 and prebinding of MLC1 to the MyoA neck enhanced the affinity of ELC1 for the MyoA neck 7- and 8-fold, respectively. When combined, these factors enhanced ELC1 binding 49-fold (to a K d of 12 nm). Using the full-length MyoA motor (residues 1-831), we then showed that, in addition to coordinating the neck region, ELC1 appears to engage the MyoA converter subdomain, which couples the motor domain to the neck. These data support an assembly model where staged binding events cooperate to yield high-affinity complexes that are able to maximize force transduction. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Determination of the optimal tolerance for MLC positioning in sliding window and VMAT techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hernandez, V., E-mail: vhernandezmasgrau@gmail.com; Abella, R.; Calvo, J. F.

    2015-04-15

    Purpose: Several authors have recommended a 2 mm tolerance for multileaf collimator (MLC) positioning in sliding window treatments. In volumetric modulated arc therapy (VMAT) treatments, however, the optimal tolerance for MLC positioning remains unknown. In this paper, the authors present the results of a multicenter study to determine the optimal tolerance for both techniques. Methods: The procedure used is based on dynalog file analysis. The study was carried out using seven Varian linear accelerators from five different centers. Dynalogs were collected from over 100 000 clinical treatments and in-house software was used to compute the number of tolerance faults as amore » function of the user-defined tolerance. Thus, the optimal value for this tolerance, defined as the lowest achievable value, was investigated. Results: Dynalog files accurately predict the number of tolerance faults as a function of the tolerance value, especially for low fault incidences. All MLCs behaved similarly and the Millennium120 and the HD120 models yielded comparable results. In sliding window techniques, the number of beams with an incidence of hold-offs >1% rapidly decreases for a tolerance of 1.5 mm. In VMAT techniques, the number of tolerance faults sharply drops for tolerances around 2 mm. For a tolerance of 2.5 mm, less than 0.1% of the VMAT arcs presented tolerance faults. Conclusions: Dynalog analysis provides a feasible method for investigating the optimal tolerance for MLC positioning in dynamic fields. In sliding window treatments, the tolerance of 2 mm was found to be adequate, although it can be reduced to 1.5 mm. In VMAT treatments, the typically used 5 mm tolerance is excessively high. Instead, a tolerance of 2.5 mm is recommended.« less

  15. SU-E-T-293: Simplifying Assumption for Determining Sc and Sp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, R; Cheung, A; Anderson, R

    Purpose: Scp(mlc,jaw) is a two-dimensional function of collimator field size and effective field size. Conventionally, Scp(mlc,jaw) is treated as separable into components Sc(jaw) and Sp(mlc). Scp(mlc=jaw) is measured in phantom and Sc(jaw) is measured in air with Sp=Scp/Sc. Ideally, Sc and Sp would be able to predict measured values of Scp(mlc,jaw) for all combinations of mlc and jaw. However, ideal Sc and Sp functions do not exist and a measured two-dimensional Scp dataset cannot be decomposed into a unique pair of one-dimensional functions.If the output functions Sc(jaw) and Sp(mlc) were equal to each other and thus each equal to Scp(mlc=jaw){supmore » 0.5}, this condition would lead to a simpler measurement process by eliminating the need for in-air measurements. Without the distorting effect of the buildup-cap, small-field measurement would be limited only by the dimensions of the detector and would thus be improved by this simplification of the output functions. The goal of the present study is to evaluate an assumption that Sc=Sp. Methods: For a 6 MV x-ray beam, Sc and Sp were determined both by the conventional method and as Scp(mlc=jaw){sup 0.5}. Square field benchmark values of Scp(mlc,jaw) were then measured across the range from 2×2 to 29×29. Both Sc and Sp functions were then evaluated as to their ability to predict these measurements. Results: Both methods produced qualitatively similar results with <4% error for all cases and >3% error in 1 case. The conventional method produced 2 cases with >2% error, while the squareroot method produced only 1 such case. Conclusion: Though it would need to be validated for any specific beam to which it might be applied, under the conditions studied, the simplifying assumption that Sc = Sp is justified.« less

  16. Development and evaluation of aperture-based complexity metrics using film and EPID measurements of static MLC openings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Götstedt, Julia; Karlsson Hauer, Anna; Bäck, Anna, E-mail: anna.back@vgregion.se

    Purpose: Complexity metrics have been suggested as a complement to measurement-based quality assurance for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT). However, these metrics have not yet been sufficiently validated. This study develops and evaluates new aperture-based complexity metrics in the context of static multileaf collimator (MLC) openings and compares them to previously published metrics. Methods: This study develops the converted aperture metric and the edge area metric. The converted aperture metric is based on small and irregular parts within the MLC opening that are quantified as measured distances between MLC leaves. The edge area metricmore » is based on the relative size of the region around the edges defined by the MLC. Another metric suggested in this study is the circumference/area ratio. Earlier defined aperture-based complexity metrics—the modulation complexity score, the edge metric, the ratio monitor units (MU)/Gy, the aperture area, and the aperture irregularity—are compared to the newly proposed metrics. A set of small and irregular static MLC openings are created which simulate individual IMRT/VMAT control points of various complexities. These are measured with both an amorphous silicon electronic portal imaging device and EBT3 film. The differences between calculated and measured dose distributions are evaluated using a pixel-by-pixel comparison with two global dose difference criteria of 3% and 5%. The extent of the dose differences, expressed in terms of pass rate, is used as a measure of the complexity of the MLC openings and used for the evaluation of the metrics compared in this study. The different complexity scores are calculated for each created static MLC opening. The correlation between the calculated complexity scores and the extent of the dose differences (pass rate) are analyzed in scatter plots and using Pearson’s r-values. Results: The complexity scores calculated by the edge area metric, converted aperture metric, circumference/area ratio, edge metric, and MU/Gy ratio show good linear correlation to the complexity of the MLC openings, expressed as the 5% dose difference pass rate, with Pearson’s r-values of −0.94, −0.88, −0.84, −0.89, and −0.82, respectively. The overall trends for the 3% and 5% dose difference evaluations are similar. Conclusions: New complexity metrics are developed. The calculated scores correlate to the complexity of the created static MLC openings. The complexity of the MLC opening is dependent on the penumbra region relative to the area of the opening. The aperture-based complexity metrics that combined either the distances between the MLC leaves or the MLC opening circumference with the aperture area show the best correlation with the complexity of the static MLC openings.« less

  17. MO-FG-BRA-06: Electromagnetic Beacon Insertion in Lung Cancer Patients and Resultant Surrogacy Errors for Dynamic MLC Tumour Tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardcastle, N; Booth, J; Caillet, V

    Purpose: To assess endo-bronchial electromagnetic beacon insertion and to quantify the geometric accuracy of using beacons as a surrogate for tumour motion in real-time multileaf collimator (MLC) tracking of lung tumours. Methods: The LIGHT SABR trial is a world-first clinical trial in which the MLC leaves move with lung tumours in real time on a standard linear accelerator. Tracking is performed based on implanted electromagnetic beacons (CalypsoTM, Varian Medical Systems, USA) as a surrogate for tumour motion. Five patients have been treated and have each had three beacons implanted endo-bronchially under fluoroscopic guidance. The centre of mass (C.O.M) has beenmore » used to adapt the MLC in real-time. The geometric error in using the beacon C.O.M as a surrogate for tumour motion was measured by measuring the tumour and beacon C.O.M in all phases of the respiratory cycle of a 4DCT. The surrogacy error was defined as the difference in beacon and tumour C.O.M relative to the reference phase (maximum exhale). Results: All five patients have had three beacons successfully implanted with no migration between simulation and end of treatment. Beacon placement relative to tumour C.O.M varied from 14 to 74 mm and in one patient spanned two lobes. Surrogacy error was measured in each patient on the simulation 4DCT and ranged from 0 to 3 mm. Surrogacy error as measured on 4DCT was subject to artefacts in mid-ventilation phases. Surrogacy error was a function of breathing phase and was typically larger at maximum inhale. Conclusion: Beacon placement and thus surrogacy error is a major component of geometric uncertainty in MLC tracking of lung tumours. Surrogacy error must be measured on each patient and incorporated into margin calculation. Reduction of surrogacy error is limited by airway anatomy, however should be taken into consideration when performing beacon insertion and planning. This research is funded by Varian Medical Systems via a collaborative research agreement.« less

  18. Myosin Light Chain Kinase Mediates Intestinal Barrier Disruption following Burn Injury

    PubMed Central

    Chen, Chuanli; Wang, Pei; Su, Qin; Wang, Shiliang; Wang, Fengjun

    2012-01-01

    Background Severe burn injury results in the loss of intestinal barrier function, however, the underlying mechanism remains unclear. Myosin light chain (MLC) phosphorylation mediated by MLC kinase (MLCK) is critical to the pathophysiological regulation of intestinal barrier function. We hypothesized that the MLCK-dependent MLC phosphorylation mediates the regulation of intestinal barrier function following burn injury, and that MLCK inhibition attenuates the burn-induced intestinal barrier disfunction. Methodology/Principal Findings Male balb/c mice were assigned randomly to either sham burn (control) or 30% total body surface area (TBSA) full thickness burn without or with intraperitoneal injection of ML-9 (2 mg/kg), an MLCK inhibitor. In vivo intestinal permeability to fluorescein isothiocyanate (FITC)-dextran was measured. Intestinal mucosa injury was assessed histologically. Tight junction proteins ZO-1, occludin and claudin-1 was analyzed by immunofluorescent assay. Expression of MLCK and phosphorylated MLC in ileal mucosa was assessed by Western blot. Intestinal permeability was increased significantly after burn injury, which was accompanied by mucosa injury, tight junction protein alterations, and increase of both MLCK and MLC phosphorylation. Treatment with ML-9 attenuated the burn-caused increase of intestinal permeability, mucosa injury, tight junction protein alterations, and decreased MLC phosphorylation, but not MLCK expression. Conclusions/Significance The MLCK-dependent MLC phosphorylation mediates intestinal epithelial barrier dysfunction after severe burn injury. It is suggested that MLCK-dependent MLC phosphorylation may be a critical target for the therapeutic treatment of intestinal epithelial barrier disruption after severe burn injury. PMID:22529961

  19. Electromagnetic-Guided MLC Tracking Radiation Therapy for Prostate Cancer Patients: Prospective Clinical Trial Results.

    PubMed

    Keall, Paul J; Colvill, Emma; O'Brien, Ricky; Caillet, Vincent; Eade, Thomas; Kneebone, Andrew; Hruby, George; Poulsen, Per R; Zwan, Benjamin; Greer, Peter B; Booth, Jeremy

    2018-06-01

    To report on the primary and secondary outcomes of a prospective clinical trial of electromagnetic-guided multileaf collimator (MLC) tracking radiation therapy for prostate cancer. Twenty-eight men with prostate cancer were treated with electromagnetic-guided MLC tracking with volumetric modulated arc therapy. A total of 858 fractions were delivered, with the dose per fraction ranging from 2 to 13.75 Gy. The primary outcome was feasibility, with success determined if >95% of fractions were successfully delivered. The secondary outcomes were (1) the improvement in beam-target geometric alignment, (2) the improvement in dosimetric coverage of the prostate and avoidance of critical structures, and (3) no acute grade ≥3 genitourinary or gastrointestinal toxicity. All 858 planned fractions were successfully delivered with MLC tracking, demonstrating the primary outcome of feasibility (P < .001). MLC tracking improved the beam-target geometric alignment from 1.4 to 0.90 mm (root-mean-square error). MLC tracking improved the dosimetric coverage of the prostate and reduced the daily variation in dose to critical structures. No acute grade ≥3 genitourinary or gastrointestinal toxicity was observed. Electromagnetic-guided MLC tracking radiation therapy for prostate cancer is feasible. The patients received improved geometric targeting and delivered dose distributions that were closer to those planned than they would have received without electromagnetic-guided MLC tracking. No significant acute toxicity was observed. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Comparision of beam data requirements for MLC commissioning on a TPS

    NASA Astrophysics Data System (ADS)

    Solaiappan, Gopi; Singaravelu, Ganesan; Prakasarao, Aruna; Supe, Sanjay S.

    2008-01-01

    The treatment planning system (TPS) has become a key element in the radiotherapy process with the introduction of computer tomography (CT) based 3D conformal treatment planning. Commissioning of a MLC on a TPS either for conformal radiotherapy or intensity modulated radiation therapy (IMRT) requires beam data to be generated on a linear accelerator. Most of the TPS require these beam data to be generated with routine collimator jaws. However some TPS demand the data to be provided for MLC shaped fields. This prompted us to investigate whether beam data with jaws differ than that with MLC and whether the jaw based beam data would suffice for the commissioning of a MLC on a TPS. Beam data like percentage depth dose (PDD), cross beam profiles and output factors was acquired for jaws and MLC defined square fields for 6, 10 and 23 MV photon beams. Percentage depth dose and cross beam profiles were acquired with a radiation field analyzer RFA-200, CC13-S ion chambers with active volume of 0.13 cm3 and OmniPro-Accept software from Scanditronix-Wellhofer. A Medtec-TG51 water tank with Max-4000 electrometer and 0.6 cc PTW ionization chamber and a mini phantom from Standard Imaging was utilized for output measurements for millennium-120 MLC (Varian Medical Systems) and SRS diode detector (Scanditronix-Wellhofer) of 0.6 mm diameter of active area and 0.3 mm of active volume thickness for micro-MLC (BrainLab). The difference in PDD in the build-up region for millennium MLC was ±1.0% for 6 MV photons. For 10 MV photons the PDD difference was within ±4.0%. The difference in PDD for 23 MV photons ranged from 0% to 40.0%. PDD difference from build-up depth to about 28 cm was within ±1.0%. Difference in PDD crossed ±1.0% at 30 cm depth for 6 MV photons. The difference in PDD in the build-up region for mMLC was ±8.0% for 6 MV photons. For the smallest field size studied with micro-MLC i.e. 0.6 × 0.6 cm2 difference in PDD was more than ±1.0% in the build-up region and beyond a depth of 8.0 cm. The profiles for jaws and MLC agreed within the umbra region. However in the penumbra region small differences in doses were observed. The collimator scatter factor (Sc), phantom scatter factor (Sp) and output factor values for MLC were different that those for jaws. The differences in beam characteristics could have implication for intensity modulated radiation therapy and stereotactic radiosurgery in terms of dose in the build up region, exit dose, dose to the planning target volume (PTV) and organ at risk (OAR). Impact of these dosimetric differences between jaw and MLC needs to be further studied in terms of dose volume histograms for PTV and OAR and its further impact on tumor control probability (TCP) and normal tissue complication probability (NTCP).

  1. Ten Novel Mutations in Chinese Patients with Megalencephalic Leukoencephalopathy with Subcortical Cysts and a Long-Term Follow-Up Research

    PubMed Central

    Cao, Binbin; Yan, Huifang; Guo, Mangmang; Xie, Han; Wu, Ye; Gu, Qiang; Xiao, Jiangxi; Shang, Jing; Yang, Yanling; Xiong, Hui; Niu, Zhengping; Wu, Xiru; Jiang, Yuwu; Wang, Jingmin

    2016-01-01

    Objective Megalencephalic leukoencephalopathy with subcortical cysts (MLC, OMIM 604004) is a rare neurological deterioration disease. We aimed to clarify clinical and genetic features of Chinese MLC patients. Methods Clinical information and peripheral venous blood of 20 patients and their families were collected, Sanger-sequencing and Multiple Ligation-dependent Probe Amplification were performed to make genetic analysis. Splicing-site mutation was confirmed with RT-PCR. UPD was detected by haplotype analysis. Follow-up study was performed through telephone for 27 patients. Results Out of 20 patients, macrocephaly, classic MRI features, motor development delay and cognitive impairment were detected in 20(100%), 20(100%), 17(85%) and 4(20%) patients, respectively. 20(100%) were clinically diagnosed with MLC. 19(95%) were genetically diagnosed with 10 novel mutations in MLC1, MLC1 and GlialCAM mutations were identified in 15 and 4 patients, respectively. Deletion mutation from exon4 to exon9 and a homozygous point mutation due to maternal UPD of chromosome22 in MLC1 were found firstly. c.598-2A>C in MLC1 leads to the skip of exon8. c.772-1G>C in MLC1 accounting for 15.5%(9/58) alleles in Chinese patients might be a founder or a hot-spot mutation. Out of 27 patients in the follow-up study, head circumference was ranged from 56cm to 61cm in patients older than 5yeas old, with a median of 57cm. Motor development delay and cognitive impairment were detected in 22(81.5%) and 5(18.5%) patients, respectively. Motor and cognitive deterioration was found in 5 (18.5%) and 2 patients (7.4%), respectively. Improvements and MRI recovery were first found in Chinese patients. Rate of seizures (45.5%), transient motor retrogress (45.5%) and unconsciousness (13.6%) after head trauma was much higher than that after fever (18.2%, 9.1%, 0%, respectively). Significance It’s a clinical and genetic analysis and a follow-up study for largest sample of Chinese MLC patients, identifying 10 novel mutations, expanding mutation spectrums and discovering clinical features of Chinese MLC patients. PMID:27322623

  2. Multileaf Collimator Tracking Improves Dose Delivery for Prostate Cancer Radiation Therapy: Results of the First Clinical Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvill, Emma; Northern Sydney Cancer Centre, Royal North Shore Hospital, St. Leonards, NSW; Booth, Jeremy T.

    2015-08-01

    Purpose: To test the hypothesis that multileaf collimator (MLC) tracking improves the consistency between the planned and delivered dose compared with the dose without MLC tracking, in the setting of a prostate cancer volumetric modulated arc therapy trial. Methods and Materials: Multileaf collimator tracking was implemented for 15 patients in a prostate cancer radiation therapy trial; in total, 513 treatment fractions were delivered. During each treatment fraction, the prostate trajectory and treatment MLC positions were collected. These data were used as input for dose reconstruction (multiple isocenter shift method) to calculate the treated dose (with MLC tracking) and the dose thatmore » would have been delivered had MLC tracking not been applied (without MLC tracking). The percentage difference from planned for target and normal tissue dose-volume points were calculated. The hypothesis was tested for each dose-volume value via analysis of variance using the F test. Results: Of the 513 fractions delivered, 475 (93%) were suitable for analysis. The mean difference and standard deviation between the planned and treated MLC tracking doses and the planned and without-MLC tracking doses for all 475 fractions were, respectively, PTV D{sub 99%} −0.8% ± 1.1% versus −2.1% ± 2.7%; CTV D{sub 99%} −0.6% ± 0.8% versus −0.6% ± 1.1%; rectum V{sub 65%} 1.6% ± 7.9% versus −1.2% ± 18%; and bladder V{sub 65%} 0.5% ± 4.4% versus −0.0% ± 9.2% (P<.001 for all dose-volume results). Conclusion: This study shows that MLC tracking improves the consistency between the planned and delivered doses compared with the modeled doses without MLC tracking. The implications of this finding are potentially improved patient outcomes, as well as more reliable dose-volume data for radiobiological parameter determination.« less

  3. A novel mechanism for the Ca(2+)-sensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase

    PubMed Central

    1994-01-01

    Mechanisms of Ca2+ sensitization of both myosin light chain (MLC) phosphorylation and force development by protein kinase C (PKC) were studied in permeabilized tonic smooth muscle obtained from the rabbit femoral artery. For comparison, the Ca2+ sensitizing effect of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) was examined, which had been previously shown to inhibit MLC phosphatase in phasic vascular smooth muscle. We now report that PKC activators (phorbol esters, short chain synthetic diacylglycerols and a diacylglycerol kinase inhibitor) and GTP gamma S significantly increase both MLC phosphorylation and force development at constant [Ca2+]. Major phosphorylation site occurring in the presence of phorbol-12,13- dibutyrate (PDBu) or GTP gamma S at constant [Ca2+] is the same serine residue (Ser-19) as that phosphorylated by MLC kinase in response to increased Ca2+ concentrations. In an ATP- and Ca(2+)-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4- diazepine (ML-9), to avoid the kinase activity, both PDBu and GTP gamma S significantly decreased the rate of MLC dephosphorylation to half its control value. However, PDBu inhibited the relaxation rate more than did GTP gamma S. In the presence of microcystin-LR to inhibit the phosphatase activity, neither PDBu nor GTP gamma S affected MLC phosphorylation and force development. These results indicate that PKC, like activation of GTP binding protein, increases Ca2+ sensitivity of both MLC phosphorylation and force production through inhibition of MLC phosphatase. PMID:7807049

  4. The Mathematics and Computer Science Learning Center (MLC).

    ERIC Educational Resources Information Center

    Abraham, Solomon T.

    The Mathematics and Computer Science Learning Center (MLC) was established in the Department of Mathematics at North Carolina Central University during the fall semester of the 1982-83 academic year. The initial operations of the MLC were supported by grants to the University from the Burroughs-Wellcome Company and the Kenan Charitable Trust Fund.…

  5. 76 FR 4375 - In the Matter of Certain MLC Flash Memory Devices and Products Containing Same; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-683] In the Matter of Certain MLC Flash Memory Devices and Products Containing Same; Notice of Commission Determination Not To Review an Initial... the United States after importation of certain MLC flash memory devices and products containing same...

  6. Carbachol-induced rabbit bladder smooth muscle contraction: roles of protein kinase C and Rho kinase.

    PubMed

    Wang, Tanchun; Kendig, Derek M; Smolock, Elaine M; Moreland, Robert S

    2009-12-01

    Smooth muscle contraction is regulated by phosphorylation of the myosin light chain (MLC) catalyzed by MLC kinase and dephosphorylation catalyzed by MLC phosphatase. Agonist stimulation of smooth muscle results in the inhibition of MLC phosphatase activity and a net increase in MLC phosphorylation and therefore force. The two pathways believed to be primarily important for inhibition of MLC phosphatase activity are protein kinase C (PKC)-catalyzed CPI-17 phosphorylation and Rho kinase (ROCK)-catalyzed myosin phosphatase-targeting subunit (MYPT1) phosphorylation. The goal of this study was to determine the roles of PKC and ROCK and their downstream effectors in regulating MLC phosphorylation levels and force during the phasic and sustained phases of carbachol-stimulated contraction in intact bladder smooth muscle. These studies were performed in the presence and absence of the PKC inhibitor bisindolylmaleimide-1 (Bis) or the ROCK inhibitor H-1152. Phosphorylation levels of Thr(38)-CPI-17 and Thr(696)/Thr(850)-MYPT1 were measured at different times during carbachol stimulation using site-specific antibodies. Thr(38)-CPI-17 phosphorylation increased concurrently with carbachol-stimulated force generation. This increase was reduced by inhibition of PKC during the entire contraction but was only reduced by ROCK inhibition during the sustained phase of contraction. MYPT1 showed high basal phosphorylation levels at both sites; however, only Thr(850) phosphorylation increased with carbachol stimulation; the increase was abolished by the inhibition of either ROCK or PKC. Our results suggest that during agonist stimulation, PKC regulates MLC phosphatase activity through phosphorylation of CPI-17. In contrast, ROCK phosphorylates both Thr(850)-MYPT1 and CPI-17, possibly through cross talk with a PKC pathway, but is only significant during the sustained phase of contraction. Last, our results demonstrate that there is a constitutively activate pool of ROCK that phosphorylates MYPT1 in the basal state, which may account for the high resting levels of MLC phosphorylation measured in rabbit bladder smooth muscle.

  7. Effects of prostaglandin F2alpha and latanoprost on phosphoinositide turnover, myosin light chain phosphorylation and contraction in cat iris sphincter.

    PubMed

    Ansari, Habib R; Davis, Angela M; Kaddour-Djebbar, Ismail; Abdel-Latif, Ata A

    2003-06-01

    The effects of the ocular hypotensive agents prostaglandin F(2alpha) (PGF(2alpha)) and its analog latanoprost on intraocular pressure (IOP) in both animals and human have been investigated extensively in the last two decades. While there is general agreement that application of these PGs to the eye alters IOP by altering the aqueous humor outflow of the eye via the uveoscleral and trabecular meshwork pathways, the mechanism of action of these agents on IOP lowering remains unclear. There is evidence which suggests that myosin light kinase (MLC kinase) may be involved in the IOP-lowering effects of these agents. Thus, the purpose of the present work was to investigate in cat iris sphincter the effects of these PGs on the MLC kinase signaling pathway, inositol phosphates production, MLC phosphorylation and contraction, in order to gain more information about the mechanism through which these agents modulate smooth muscle function and lower IOP. [(3)H]myo-inositol phosphates production was measured by ion-exchange chromatography, MLC kinase activity was measured by incorporation of (32)Pi into MLC, and changes in muscle tension were recorded isometrically. PGF(2alpha) and latanoprost induced contraction in a concentration-dependent manner with EC(50) values of 18.6 and 29.9 nM, respectively, and increased inositol phosphates production in a concentration-dependent manner. At 1 microM, PGF(2alpha) and latanoprost increased inositol phosphates formation by 125 and 102% over basal, respectively. PGF(2alpha) and latanoprost increased MLC phosphorylation in a concentration- and time-dependent manner, at 1 microM and 5 min incubation, the PGs increased the MLC response by 181 and 176% over basal, respectively. In general, PGF(2alpha) was slightly more potent in inducing the biochemical and pharmacological responses. Wortmannin, ML-7 and ML-9, selective inhibitors of MLC kinase, inhibited significantly PGF(2alpha)- and latanoprost-induced MLC phosphorylation and contraction. These results demonstrate for the first time involvement of the MLC kinase pathway in the FP receptor function of this ocular tissue. Contraction-relaxation of smooth muscle alters the shape and stiffness of smooth muscle cells and MLC kinase, through myosin phosphorylation and dephosphorylation, has been shown to be involved in cytoskeletal remodeling, cytoskeletal alterations, and IOP lowering. In light of these reports and the findings presented here we suggest that alterations in the MLC kinase signaling pathway and its derived second messengers, which leads to changes in contraction-relaxation of the smooth muscles of the anterior segment, could facilitate aqueous humor outflow and thus contribute to the IOP-lowering effects of the FP-class PGs.

  8. SU-E-T-562: Motion Tracking Optimization for Conformal Arc Radiotherapy Plans: A QUASAR Phantom Based Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Z; Wang, I; Yao, R

    Purpose: This study is to use plan parameters optimization (Dose rate, collimator angle, couch angle, initial starting phase) to improve the performance of conformal arc radiotherapy plans with motion tracking by increasing the plan performance score (PPS). Methods: Two types of 3D conformal arc plans were created based on QUASAR respiratory motion phantom with spherical and cylindrical targets. Sinusoidal model was applied to the MLC leaves to generate motion tracking plans. A MATLAB program was developed to calculate PPS of each plan (ranges from 0–1) and optimize plan parameters. We first selected the dose rate for motion tracking plans andmore » then used simulated annealing algorithm to search for the combination of the other parameters that resulted in the plan of the maximal PPS. The optimized motion tracking plan was delivered by Varian Truebeam Linac. In-room cameras and stopwatch were used for starting phase selection and synchronization between phantom motion and plan delivery. Gaf-EBT2 dosimetry films were used to measure the dose delivered to the target in QUASAR phantom. Dose profiles and Truebeam trajectory log files were used for plan delivery performance evaluation. Results: For spherical target, the maximal PPS (PPSsph) of the optimized plan was 0.79: (Dose rate: 500MU/min, Collimator: 90°, Couch: +10°, starting phase: 0.83π). For cylindrical target, the maximal PPScyl was 0.75 (Dose rate: 300MU/min, Collimator: 87°, starting phase: 0.97π) with couch at 0°. Differences of dose profiles between motion tracking plans (with the maximal and the minimal PPS) and 3D conformal plans were as follows: PPSsph=0.79: %ΔFWHM: 8.9%, %Dmax: 3.1%; PPSsph=0.52: %ΔFWHM: 10.4%, %Dmax: 6.1%. PPScyl=0.75: %ΔFWHM: 4.7%, %Dmax: 3.6%; PPScyl=0.42: %ΔFWHM: 12.5%, %Dmax: 9.6%. Conclusion: By achieving high plan performance score through parameters optimization, we can improve target dose conformity of motion tracking plan by decreasing total MLC leaf travel distance and leaf speed.« less

  9. SU-F-P-39: End-To-End Validation of a 6 MV High Dose Rate Photon Beam, Configured for Eclipse AAA Algorithm Using Golden Beam Data, for SBRT Treatments Using RapidArc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferreyra, M; Salinas Aranda, F; Dodat, D

    Purpose: To use end-to-end testing to validate a 6 MV high dose rate photon beam, configured for Eclipse AAA algorithm using Golden Beam Data (GBD), for SBRT treatments using RapidArc. Methods: Beam data was configured for Varian Eclipse AAA algorithm using the GBD provided by the vendor. Transverse and diagonals dose profiles, PDDs and output factors down to a field size of 2×2 cm2 were measured on a Varian Trilogy Linac and compared with GBD library using 2% 2mm 1D gamma analysis. The MLC transmission factor and dosimetric leaf gap were determined to characterize the MLC in Eclipse. Mechanical andmore » dosimetric tests were performed combining different gantry rotation speeds, dose rates and leaf speeds to evaluate the delivery system performance according to VMAT accuracy requirements. An end-to-end test was implemented planning several SBRT RapidArc treatments on a CIRS 002LFC IMRT Thorax Phantom. The CT scanner calibration curve was acquired and loaded in Eclipse. PTW 31013 ionization chamber was used with Keithley 35617EBS electrometer for absolute point dose measurements in water and lung equivalent inserts. TPS calculated planar dose distributions were compared to those measured using EPID and MapCheck, as an independent verification method. Results were evaluated with gamma criteria of 2% dose difference and 2mm DTA for 95% of points. Results: GBD set vs. measured data passed 2% 2mm 1D gamma analysis even for small fields. Machine performance tests show results are independent of machine delivery configuration, as expected. Absolute point dosimetry comparison resulted within 4% for the worst case scenario in lung. Over 97% of the points evaluated in dose distributions passed gamma index analysis. Conclusion: Eclipse AAA algorithm configuration of the 6 MV high dose rate photon beam using GBD proved efficient. End-to-end test dose calculation results indicate it can be used clinically for SBRT using RapidArc.« less

  10. Underestimation of Low-Dose Radiation in Treatment Planning of Intensity-Modulated Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Si Young; Liu, H. Helen; Mohan, Radhe

    2008-08-01

    Purpose: To investigate potential dose calculation errors in the low-dose regions and identify causes of such errors for intensity-modulated radiotherapy (IMRT). Methods and Materials: The IMRT treatment plans of 23 patients with lung cancer and mesothelioma were reviewed. Of these patients, 15 had severe pulmonary complications after radiotherapy. Two commercial treatment-planning systems (TPSs) and a Monte Carlo system were used to calculate and compare dose distributions and dose-volume parameters of the target volumes and critical structures. The effect of tissue heterogeneity, multileaf collimator (MLC) modeling, beam modeling, and other factors that could contribute to the differences in IMRT dose calculationsmore » were analyzed. Results: In the commercial TPS-generated IMRT plans, dose calculation errors primarily occurred in the low-dose regions of IMRT plans (<50% of the radiation dose prescribed for the tumor). Although errors in the dose-volume histograms of the normal lung were small (<5%) above 10 Gy, underestimation of dose <10 Gy was found to be up to 25% in patients with mesothelioma or large target volumes. These errors were found to be caused by inadequate modeling of MLC transmission and leaf scatter in commercial TPSs. The degree of low-dose errors depends on the target volumes and the degree of intensity modulation. Conclusions: Secondary radiation from MLCs contributes a significant portion of low dose in IMRT plans. Dose underestimation could occur in conventional IMRT dose calculations if such low-dose radiation is not properly accounted for.« less

  11. The Rho-GTPase effector ROCK regulates meiotic maturation of the bovine oocyte via myosin light chain phosphorylation and cofilin phosphorylation.

    PubMed

    Lee, So-Rim; Xu, Yong-Nan; Jo, Yu-Jin; Namgoong, Suk; Kim, Nam-Hyung

    2015-11-01

    Oocyte meiosis involves a unique asymmetric division involving spindle movement from the central cytoplasm to the cortex, followed by polar body extrusion. ROCK is a Rho-GTPase effector involved in various cellular functions in somatic cells as well as oocyte meiosis. ROCK was previously shown to promote actin organization by phosphorylating several downstream targets, including LIM domain kinase (LIMK), phosphorylated cofilin (p-cofilin), and myosin light chain (MLC). In this study, we investigated the roles of ROCK and MLC during bovine oocyte meiosis. We found that ROCK was localized around the nucleus at the oocyte's germinal-vesicle (GV) stage, but spreads to the rest of the cytoplasm in later developmental stages. On the other hand, phosphorylated MLC (p-MLC) localized at the cortex, and its abundance decreased by the metaphase-II stage. Disrupting ROCK activity, via RNAi or the chemical inhibitor Y-27632, blocked both cell cycle progression and polar body extrusion. ROCK inhibition also resulted in decreased cortical actin, p-cofilin, and p-MLC levels. Similar to the phenotype associated with inhibition of ROCK activity, inhibition of MLC kinase by the chemical inhibitor ML-7 caused defects in polar body extrusion. Collectively, our results suggest that the ROCK/MLC/actomyosin as well as ROCK/LIMK/cofilin pathways regulate meiotic spindle migration and cytokinesis during bovine oocyte maturation. © 2015 Wiley Periodicals, Inc.

  12. Leaf dynamics in growth and reproduction of Xanthium canadense as influenced by stand density

    PubMed Central

    Ogawa, Takahiro; Oikawa, Shimpei; Hirose, Tadaki

    2015-01-01

    Background and Aims Leaf longevity is controlled by the light gradient in the canopy and also by the nitrogen (N) sink strength in the plant. Stand density may influence leaf dynamics through its effects on light gradient and on plant growth and reproduction. This study tests the hypothesis that the control by the light gradient is manifested more in the vegetative period, whereas the opposite is true when the plant becomes reproductive and develops a strong N sink. Methods Stands of Xanthium canadense were established at two densities. Emergence, growth and death of every leaf on the main stem and branches, and plant growth and N uptake were determined from germination to full senescence. Mean residence time and dry mass productivity were calculated per leaf number, leaf area, leaf mass and leaf N (collectively termed ‘leaf variables’) in order to analyse leaf dynamics and its effect on plant growth. Key Results Branching and reproductive activities were higher at low than at high density. Overall there was no significant difference in mean residence time of leaf variables between the two stands. However, early leaf cohorts on the main stem had a longer retention time at low density, whereas later cohorts had a longer retention time at high density. Branch leaves emerged earlier and tended to live longer at low than at high density. Leaf efficiencies, defined as carbon export per unit investment of leaf variables, were higher at low density in all leaf variables except for leaf number. Conclusions In the vegetative phase of plant growth, the light gradient strongly controls leaf longevity, whereas later the effects of branching and reproductive activities become stronger and over-rule the effect of light environment. As leaf N supports photosynthesis and also works as an N source for plant development, N use is pivotal in linking leaf dynamics with plant growth and reproduction. PMID:26248476

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsuta, Y; Tohoku University Graduate School of Medicine, Sendal, Miyagi; Kadoya, N

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dosemore » calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.« less

  14. Drastic increase of myosin light chain MLC-2 in senescent skeletal muscle indicates fast-to-slow fibre transition in sarcopenia of old age.

    PubMed

    Gannon, Joan; Doran, Philip; Kirwan, Anne; Ohlendieck, Kay

    2009-11-01

    The age-dependent decline in skeletal muscle mass and function is believed to be due to a multi-factorial pathology and represents a major factor that blocks healthy aging by increasing physical disability, frailty and loss of independence in the elderly. This study has focused on the comparative proteomic analysis of contractile elements and revealed that the most striking age-related changes seem to occur in the protein family representing myosin light chains (MLCs). Comparative screening of total muscle extracts suggests a fast-to-slow transition in the aged MLC population. The mass spectrometric analysis of the myofibril-enriched fraction identified the MLC2 isoform of the slow-type MLC as the contractile protein with the most drastically changed expression during aging. Immunoblotting confirmed an increased abundance of slow MLC2, concomitant with a switch in fast versus slow myosin heavy chains. Staining of two-dimensional gels of crude extracts with the phospho-specific fluorescent dye ProQ-Diamond identified the increased MLC2 spot as a muscle protein with a drastically enhanced phosphorylation level in aged fibres. Comparative immunofluorescence microscopy, using antibodies to fast and slow myosin isoforms, confirmed a fast-to-slow transformation process during muscle aging. Interestingly, the dramatic increase in slow MLC2 expression was restricted to individual senescent fibres. These findings agree with the idea that aged skeletal muscles undergo a shift to more aerobic-oxidative metabolism in a slower-twitching fibre population and suggest the slow MLC2 isoform as a potential biomarker for fibre type shifting in sarcopenia of old age.

  15. Mainland Chinese Students at an Elite Hong Kong University: Habitus-Field Disjuncture in a Transborder Context

    ERIC Educational Resources Information Center

    Xu, Cora Lingling

    2017-01-01

    Drawing on in-depth interview data from 31 mainland Chinese (MLC) students in a Hong Kong university, this article conceptualises MLC and Hong Kong higher education as two dissonant but interrelated subfields of the Chinese higher education field. The article argues that these MLC students' habitus, one that possesses rich economic, social and…

  16. SU-E-J-67: Evaluation of Adaptive MLC Morphing for Online Correction of Prostate Cancer Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, R; Qin, A; Yan, D

    Purpose: Online adaptive MLC morphing is desirable over translational couch shifts to accommodate target position as well as anatomic changes. A reliable method of adaptive MLC segment to target during prostate cancer IMRT treatment is proposed and evaluated by comparison with daily online-image guidance (IGRT) correction and online-IMRT planning. Methods: The MLC adaptive algorithm involves following steps; move the MLC segments according to target translational shifts, and then morph the segment shape to maintain the spatial relationship between the planning-target contour and MLC segment. Efficacy of this method was evaluated retrospectively using daily-CBCT images on seven prostate patients treated withmore » seven-beam IMRT treatment to deliver 64Gy in 20 fractions. Daily modification was simulated with three approaches; daily-IGRT correction based on implanted radio-markers, adaptive MLC morphing, and online-IMRT planning, with no-residual variation. The selected dosimetric endpoints and nEUD (normalized equivalent uniform dose to online-IMRT planning) of each organ of interest were determined for evaluation and comparison. Results: For target(prostate), bladder and rectal-wall, the mean±sd of nEUD were 97.6%+3.2%, 103.9%±4.9% and 97.4%±1.1% for daily-IGRT correction; and 100.2%+0.2%, 108.9%±5.1% and 99.8%±1.2% for adaptive MLC morphing, respectively. For daily-IGRT correction, adaptive MLC morphing and online-IMRT planning, target D99 was <95% of the prescription dose in 30%, 0% and 0% of 140 fractions, respectively. For the rectal-wall, D5 exceeded 105% of the planned-D5 in 2.8%, 11.4% and 0% of 140 fractions, respectively. For the bladder, Dmax exceeded 105% of the planned-D5 in 2.8%, 5.6% and 0% of 140 fractions, respectively. D30 of bladder and rectal-wall were well within the planned-D30 for all three approaches. Conclusion: The proposed method of adaptive MLC morphing can be beneficial for the prostate patient population with large deformation and rotation. It is superior to the daily-IGRT correction, and comparable to the online-IMRT planning for dose to the target and rectal-wall.« less

  17. SU-E-T-550: Modulation Index for VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Park, S; Kim, J

    2015-06-15

    Purpose: To present modulation indices (MIs) for volumetric modulated arc therapy (VMAT). Methods: A total of 40 VMAT plans were retrospectively selected. To investigate the delivery accuracy of each VMAT plan, gamma passing rates, differences in modulating parameters between plans and log files, and differences between the original plans and the plans reconstructed with the log files were acquired. A modulation index (MIt) was designed by multiplications of the weighted quantifications of MLC speeds, MLC accelerations, gantry accelerations and dose-rate variations. Textural features including angular second moment, inverse difference moment, contrast, variance, correlation and entropy were calculated from the fluencesmore » of each VMAT plan. To test the performance of suggested MIs, Spearman’s rank correlation coefficients (r) with the plan delivery accuracy were calculated. Conventional modulation indices for VMAT including the modulation complexity score for VMAT (MCSv), leaf travel modulation complexity score (LTMCS) and MI by Li & Xing were calculated, and their correlations were also analyzed in the same way. Results: The r values of contrast (particular displacement distance, d = 1), variance (d = 1), MIt, MCSv, LTMCS and MI by Li&Xing to the local gamma passing rates with 2%/2 mm were 0.547 (p < 0.001), 0.519 (p < 0.001), −0.658 (p < 0.001), 0.186 (p = 0.251), 0.312 (p = 0.05) and −0.455 (p = 0.003), respectively. The r values of those to the MLC errors were −0.863, −0.828, 0.917, −0.635, − 0.857 and 0.795, respectively (p < 0.001). For dose-volumetric parameters, MIt showed higher statistically significant correlations than did the conventional modulation indices. Conclusion: The MIt, contrast (d = 1) and variance (d = 1) showed good performance to predict the VMAT delivery accuracy showing higher correlations to the results of various types of verification methods for VMAT. This work was in part supported by the National Research Foundation of Korea (NRF) grant (no. 490-20140029 and no. 490-20130047) funded by the Korea government.« less

  18. Quantifying the performance of in vivo portal dosimetry in detecting four types of treatment parameter variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bojechko, C.; Ford, E. C., E-mail: eford@uw.edu

    Purpose: To quantify the ability of electronic portal imaging device (EPID) dosimetry used during treatment (in vivo) in detecting variations that can occur in the course of patient treatment. Methods: Images of transmitted radiation from in vivo EPID measurements were converted to a 2D planar dose at isocenter and compared to the treatment planning dose using a prototype software system. Using the treatment planning system (TPS), four different types of variability were modeled: overall dose scaling, shifting the positions of the multileaf collimator (MLC) leaves, shifting of the patient position, and changes in the patient body contour. The gamma passmore » rate was calculated for the modified and unmodified plans and used to construct a receiver operator characteristic (ROC) curve to assess the detectability of the different parameter variations. The detectability is given by the area under the ROC curve (AUC). The TPS was also used to calculate the impact of the variations on the target dose–volume histogram. Results: Nine intensity modulation radiation therapy plans were measured for four different anatomical sites consisting of 70 separate fields. Results show that in vivo EPID dosimetry was most sensitive to variations in the machine output, AUC = 0.70 − 0.94, changes in patient body habitus, AUC = 0.67 − 0.88, and systematic shifts in the MLC bank positions, AUC = 0.59 − 0.82. These deviations are expected to have a relatively small clinical impact [planning target volume (PTV) D{sub 99} change <7%]. Larger variations have even higher detectability. Displacements in the patient’s position and random variations in MLC leaf positions were not readily detectable, AUC < 0.64. The D{sub 99} of the PTV changed by up to 57% for the patient position shifts considered here. Conclusions: In vivo EPID dosimetry is able to detect relatively small variations in overall dose, systematic shifts of the MLC’s, and changes in the patient habitus. Shifts in the patient’s position which can introduce large changes in the target dose coverage were not readily detected.« less

  19. Validation of Pinnacle treatment planning system for use with Novalis delivery unit.

    PubMed

    Faygelman, Vladimir; Hunt, Dylan; Walker, Luke; Mueller, Richard; Demarco, Mary Lou; Dilling, Thomas; Stevens, Craig; Zhang, Geoffrey

    2010-06-15

    For an institution that already owns the licenses, it is economically advantageous and technically feasible to use Pinnacle TPS (Philips Radiation Oncology Systems, Fitchburg, WI) with the BrainLab Novalis delivery system (BrainLAB A.G., Heimstetten, Germany). This takes advantage of the improved accuracy of the convolution algorithm in the presence of heterogeneities compared with the pencil beam calculation, which is particularly significant for lung SBRT treatments. The reference patient positioning DRRs still have to be generated by the BrainLab software from the CT images and isocenter coordinates transferred from Pinnacle. We validated this process with the end-to-end hidden target test, which showed an isocenter positioning error within one standard deviation from the previously established mean value. The Novalis treatment table attenuation is substantial (up to 6.2% for a beam directed straight up and up to 8.4% for oblique incidence) and has to be accounted for in calculations. A simple single-contour treatment table model was developed, resulting in mean differences between the measured and calculated attenuation factors of 0.0%-0.2%, depending on the field size. The maximum difference for a single incidence angle is 1.1%. The BrainLab micro-MLC (mMLC) leaf tip, although not geometrically round, can be represented in Pinnacle by an arch with satisfactory dosimetric accuracy. Subsequently, step-and-shoot (direct machine parameter optimization) IMRT dosimetric agreement is excellent. VMAT (called "SmartArc" in Pinnacle) treatments with constant gantry speed and dose rate are feasible without any modifications to the accelerator. Due to the 3 mm-wide mMLC leaves, the use of a 2 mm calculation grid is recommended. When dual arcs are used for the more complex cases, the overall dosimetric agreement for the SmartArc plans compares favorably with the previously reported results for other implementations of VMAT: gamma(3%,3mm) for absolute dose obtained with the biplanar diode array passing rates above 97% with the mean of 98.6%. However, a larger than expected dose error with the single-arc plans, confined predominantly to the isocenter region, requires further investigation.

  20. SU-E-T-119: Dosimetric and Mechanical Characteristics of Elekta Infinity LINAC with Agility MLC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, J; Xu, Q; Xue, J

    2014-06-01

    Purpose: Elekta Infinity is the one of the latest generation LINAC with unique features. Two Infinity LINACs are recently commissioned at our institution. The dosimetric and mechanical characteristics of the machines are presented. Methods: Both Infinity LINACs with Agility MLC (160 leaves with 0.5 cm leaf width) are configured with five electron energies (6, 9, 12, 15, and 18 MeV) and two photon energies (6 and 15 MV). One machine has additional photon energy (10 MV). The commissioning was performed by following the manufacturer's specifications and AAPM TG recommendations. Beam data of both electron and photon beams are measured withmore » scanning ion chambers and linear diode array. Machines are adjusted to have the dosimetrically equivalent characteristics. Results: The commissioning of mechanical and imaging system meets the tolerances by TG recommendations. The PDD{sub 10} of various field sizes for 6 and 15 MV shows < 0.5% difference between two machines. For each electron beams, R{sub 80} matches with < 0.4 mm difference. The symmetry and flatness agree within 0.8% and 0.9% differences for photon beams, respectively. For electron beams, the differences of the symmetry and flatness are within 1.2% and 0.8%, respectively. The mean inline penumbras for 6, 10, and 15 MV are respectively 5.1±0.24, 5.6±0.07, and 5.9±0.10 mm for 10x10 cm at 10 cm depth. The crossline penumbras are larger than inline penumbras by 2.2, 1.4, and 1.0 mm, respectively. The MLC transmission factor with interleaf leakage is 0.5 % for all photon energies. Conclusion: The dosimetric and mechanical characteristics of two Infinity LINACs show good agreements between them. Although the Elekta Infinity has been used in many institutions, the detailed characteristics of the machine have not been reported. This study provides invaluable information to understand the Infinity LINAC and to compare the quality of commissioning data for other LINACs.« less

  1. The first patient treatment of electromagnetic-guided real time adaptive radiotherapy using MLC tracking for lung SABR.

    PubMed

    Booth, Jeremy T; Caillet, Vincent; Hardcastle, Nicholas; O'Brien, Ricky; Szymura, Kathryn; Crasta, Charlene; Harris, Benjamin; Haddad, Carol; Eade, Thomas; Keall, Paul J

    2016-10-01

    Real time adaptive radiotherapy that enables smaller irradiated volumes may reduce pulmonary toxicity. We report on the first patient treatment of electromagnetic-guided real time adaptive radiotherapy delivered with MLC tracking for lung stereotactic ablative body radiotherapy. A clinical trial was developed to investigate the safety and feasibility of MLC tracking in lung. The first patient was an 80-year old man with a single left lower lobe lung metastasis to be treated with SABR to 48Gy in 4 fractions. In-house software was integrated with a standard linear accelerator to adapt the treatment beam shape and position based on electromagnetic transponders implanted in the lung. MLC tracking plans were compared against standard ITV-based treatment planning. MLC tracking plan delivery was reconstructed in the patient to confirm safe delivery. Real time adaptive radiotherapy delivered with MLC tracking compared to standard ITV-based planning reduced the PTV by 41% (18.7-11cm 3 ) and the mean lung dose by 30% (202-140cGy), V20 by 35% (2.6-1.5%) and V5 by 9% (8.9-8%). An emerging technology, MLC tracking, has been translated into the clinic and used to treat lung SABR patients for the first time. This milestone represents an important first step for clinical real-time adaptive radiotherapy that could reduce pulmonary toxicity in lung radiotherapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. The national cholesterol education program diet vs a diet lower in carbohydrates and higher in protein and monounsaturated fat: a randomized trial.

    PubMed

    Aude, Y Wady; Agatston, Arthur S; Lopez-Jimenez, Francisco; Lieberman, Eric H; Marie Almon; Hansen, Melinda; Rojas, Gerardo; Lamas, Gervasio A; Hennekens, Charles H

    2004-10-25

    In the United States, obesity is a major clinical and public health problem causing diabetes, dyslipidemia, and hypertension, as well as increasing cardiovascular and total mortality. Dietary restrictions of calories and saturated fat are beneficial. However, it remains unclear whether replacement of saturated fat with carbohydrates (as in the US National Cholesterol Education Program [NCEP] diet) or protein and monounsaturated fat (as in our isocaloric modified low-carbohydrate [MLC] diet, which is lower in total carbohydrates but higher in protein, monounsaturated fat, and complex carbohydrates) is optimal. We randomized 60 participants (29 women and 31 men) to the NCEP or the MLC diet and evaluated them every 2 weeks for 12 weeks. They were aged 28 to 71 years (mean age, 44 years in the NCEP and 46 years in the MLC group). A total of 36% of participants from the NCEP group and 35% from the MLC group had a body mass index (calculated as weight in kilograms divided by the square of height in meters) greater than 27. The primary end point was weight loss, and secondary end points were blood lipid levels and waist-to-hip ratio. Weight loss was significantly greater in the MLC (13.6 lb) than in the NCEP group (7.5 lb), a difference of 6.1 lb (P = .02). There were no significant differences between the groups for total, low density, and high-density lipoprotein cholesterol, triglycerides, or the proportion of small, dense low-density lipoprotein particles. There were significantly favorable changes in all lipid levels within the MLC but not within the NCEP group. Waist-to-hip ratio was not significantly reduced between the groups (P = .27), but it significantly decreased within the MLC group (P = .009). Compared with the NCEP diet, the MLC diet, which is lower in total carbohydrates but higher in complex carbohydrates, protein, and monounsaturated fat, caused significantly greater weight loss over 12 weeks. There were no significant differences between the groups in blood lipid levels, but favorable changes were observed within the MLC diet group.

  3. Dose-to-water conversion for the backscatter-shielded EPID: A frame-based method to correct for EPID energy response to MLC transmitted radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zwan, Benjamin J., E-mail: benjamin.zwan@uon.edu.au; O’Connor, Daryl J.; King, Brian W.

    2014-08-15

    Purpose: To develop a frame-by-frame correction for the energy response of amorphous silicon electronic portal imaging devices (a-Si EPIDs) to radiation that has transmitted through the multileaf collimator (MLC) and to integrate this correction into the backscatter shielded EPID (BSS-EPID) dose-to-water conversion model. Methods: Individual EPID frames were acquired using a Varian frame grabber and iTools acquisition software then processed using in-house software developed inMATLAB. For each EPID image frame, the region below the MLC leaves was identified and all pixels in this region were multiplied by a factor of 1.3 to correct for the under-response of the imager tomore » MLC transmitted radiation. The corrected frames were then summed to form a corrected integrated EPID image. This correction was implemented as an initial step in the BSS-EPID dose-to-water conversion model which was then used to compute dose planes in a water phantom for 35 IMRT fields. The calculated dose planes, with and without the proposed MLC transmission correction, were compared to measurements in solid water using a two-dimensional diode array. Results: It was observed that the integration of the MLC transmission correction into the BSS-EPID dose model improved agreement between modeled and measured dose planes. In particular, the MLC correction produced higher pass rates for almost all Head and Neck fields tested, yielding an average pass rate of 99.8% for 2%/2 mm criteria. A two-sample independentt-test and fisher F-test were used to show that the MLC transmission correction resulted in a statistically significant reduction in the mean and the standard deviation of the gamma values, respectively, to give a more accurate and consistent dose-to-water conversion. Conclusions: The frame-by-frame MLC transmission response correction was shown to improve the accuracy and reduce the variability of the BSS-EPID dose-to-water conversion model. The correction may be applied as a preprocessing step in any pretreatment portal dosimetry calculation and has been shown to be beneficial for highly modulated IMRT fields.« less

  4. Thrombin-induced activation of RhoA in platelet shape change.

    PubMed

    Bodie, S L; Ford, I; Greaves, M; Nixon, G F

    2001-09-14

    Thrombin-induced activation of RhoA and its involvement in the regulation of myosin II light chain(20) phosphorylation (MLC-P) in alpha-toxin permeabilized platelets was investigated. Permeabilized platelets, expressing normal levels of P-selectin, displayed a Ca(2+)-dependent increase in shape change and MLC-P. Thrombin activated RhoA as measured by a rhotekin-binding assay within 30 s of stimulation under conditions of constant [Ca(2+)](i). Under the same conditions and timecourse, thrombin or GTPgammaS induced an increase in MLC-P and platelet shape change which was not dependent on an increase in [Ca(2+)](i). The thrombin- and GTPgammaS-induced MLC-P in constant [Ca(2+)](i) was inhibited by the addition of Y27632, a Rho-kinase inhibitor. This study directly demonstrates that thrombin can activate RhoA in platelets in a timecourse compatible with a role in increasing MLC-P and shape change (not involving an increase in [Ca(2+)](i)). This is also Rho-kinase-dependent. Copyright 2001 Academic Press.

  5. Accelerated development and flight evaluation of active controls concepts for subsonic transport aircraft. Volume 1: Load alleviation/extended span development and flight tests

    NASA Technical Reports Server (NTRS)

    Johnston, J. F.

    1979-01-01

    Active wing load alleviation to extend the wing span by 5.8 percent, giving a 3 percent reduction in cruise drag is covered. The active wing load alleviation used symmetric motions of the outboard ailerons for maneuver load control (MLC) and elastic mode suppression (EMS), and stabilizer motions for gust load alleviation (GLA). Slow maneuvers verified the MLC, and open and closed-loop flight frequency response tests verified the aircraft dynamic response to symmetric aileron and stabilizer drives as well as the active system performance. Flight tests in turbulence verified the effectiveness of the active controls in reducing gust-induced wing loads. It is concluded that active wing load alleviation/extended span is proven in the L-1011 and is ready for application to airline service; it is a very practical way to obtain the increased efficiency of a higher aspect ratio wing with minimum structural impact.

  6. A post-transcriptional compensatory pathway in heterozygous ventricular myosin light chain 2-deficient mice results in lack of gene dosage effect during normal cardiac growth or hypertrophy.

    PubMed

    Minamisawa, S; Gu, Y; Ross, J; Chien, K R; Chen, J

    1999-04-09

    Our previous study of homozygous mutants of the ventricular specific isoform of myosin light chain 2 (mlc-2v) demonstrated that mlc-2v plays an essential role in murine heart development (Chen, J., Kubalak, S. W., Minamisawa, S., Price, R. L., Becker, K. D., Hickey, R., Ross, J., Jr., and Chien, K. R. (1998) J. Biol. Chem. 273, 1252-1256). As gene dosage of some myofibrillar proteins can affect muscle function, we have analyzed heterozygous mutants in depth. Ventricles of heterozygous mutants displayed a 50% reduction in mlc-2v mRNA, yet expressed normal levels of protein both under basal conditions and following induction of cardiac hypertrophy by aortic constriction. Heterozygous mutants exhibited cardiac function comparable to that of wild-type littermate controls both prior to and following aortic constriction. There were no significant differences in contractility and responses to calcium between wild-type and heterozygous unloaded cardiomyocytes. We conclude that heterozygous mutants show neither a molecular nor a physiological cardiac phenotype either at base line or following hypertrophic stimuli. These results suggest that post-transcriptional compensatory mechanisms play a major role in maintaining the level of MLC-2v protein in murine hearts. In addition, as our mlc-2v knockout mutants were created by a knock-in of Cre recombinase into the endogenous mlc-2v locus, this study demonstrates that heterozygous mlc-2v cre knock-in mice are appropriate for ventricular specific gene targeting.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huh, S; Lee, S; Dagan, R

    Purpose: To investigate the feasibility of utilizing Dynamic Arc (DA) and IMRT with 5mm MLC leaf of VERO treatment unit for SRS/FSRT brain cancer patients with non-invasive stereotactic treatments. The DA and IMRT plans using the VERO unit (BrainLab Inc, USA) are compared with cone-based planning and proton plans to evaluate their dosimetric advantages. Methods: The Vero treatment has unique features like no rotational or translational movements of the table during treatments, Dynamic Arc/IMRT, tracking of IR markers, limitation of Ring rotation. Accuracies of the image fusions using CBCT, orthogonal x-rays, and CT are evaluated less than ∼ 0.7mm withmore » a custom-made target phantom with 18 hidden targets. 1mm margin is given to GTV to determine PTV for planning constraints considering all the uncertainties of planning computer and mechanical uncertainties of the treatment unit. Also, double-scattering proton plans with 6F to 9F beams and typical clinical parameters, multiple isocenter plans with 6 to 21 isocenters, and DA/IMRT plans are evaluated to investigate the dosimetric advantages of the DA/IMRT for complex shape of targets. Results: 3 Groups of the patients are divided: (1) Group A (complex target shape), CI's are same for IMRT, and DGI of the proton plan are better by 9.5% than that of the IMRT, (2) Group B, CI of the DA plans (1.91+/−0.4) are better than cone-based plan, while DGI of the DA plan is 4.60+/−1.1 is better than cone-based plan (5.32+/−1.4), (3) Group C (small spherical targets), CI of the DA and cone-based plans are almost the same. Conclusion: For small spherical targets, cone-based plans are superior to other 2 plans: DS proton and DA plans. For complex or irregular plans, dynamic and IMRT plans are comparable to cone-based and proton plans for complex targets.« less

  8. SU-E-T-144: Effective Analysis of VMAT QA Generated Trajectory Log Files for Medical Accelerator Predictive Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Able, CM; Baydush, AH; Nguyen, C

    Purpose: To determine the effectiveness of SPC analysis for a model predictive maintenance process that uses accelerator generated parameter and performance data contained in trajectory log files. Methods: Each trajectory file is decoded and a total of 131 axes positions are recorded (collimator jaw position, gantry angle, each MLC, etc.). This raw data is processed and either axis positions are extracted at critical points during the delivery or positional change over time is used to determine axis velocity. The focus of our analysis is the accuracy, reproducibility and fidelity of each axis. A reference positional trace of the gantry andmore » each MLC is used as a motion baseline for cross correlation (CC) analysis. A total of 494 parameters (482 MLC related) were analyzed using Individual and Moving Range (I/MR) charts. The chart limits were calculated using a hybrid technique that included the use of the standard 3σ limits and parameter/system specifications. Synthetic errors/changes were introduced to determine the initial effectiveness of I/MR charts in detecting relevant changes in operating parameters. The magnitude of the synthetic errors/changes was based on: TG-142 and published analysis of VMAT delivery accuracy. Results: All errors introduced were detected. Synthetic positional errors of 2mm for collimator jaw and MLC carriage exceeded the chart limits. Gantry speed and each MLC speed are analyzed at two different points in the delivery. Simulated Gantry speed error (0.2 deg/sec) and MLC speed error (0.1 cm/sec) exceeded the speed chart limits. Gantry position error of 0.2 deg was detected by the CC maximum value charts. The MLC position error of 0.1 cm was detected by the CC maximum value location charts for every MLC. Conclusion: SPC I/MR evaluation of trajectory log file parameters may be effective in providing an early warning of performance degradation or component failure for medical accelerator systems.« less

  9. SU-F-T-372: Surface and Peripheral Dose in Compensator-Based FFF Beam IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D; Feygelman, V; Moros, E

    2016-06-15

    Purpose: Flattening filter free (FFF) beams produce higher dose rates. Combined with compensator IMRT techniques, the dose delivery for each beam can be much shorter compared to the flattened beam MLC-based or compensator-based IMRT. This ‘snap shot’ IMRT delivery is beneficial to patients for tumor motion management. Due to softer energy, surface doses in FFF beam treatment are usually higher than those from flattened beams. Because of less scattering due to no flattening filter, peripheral doses are usually lower in FFF beam treatment. However, in compensator-based IMRT using FFF beams, the compensator is in the beam pathway. Does it introducemore » beam hardening effects and scattering such that the surface dose is lower and peripheral dose is higher compared to FFF beam MLC-based IMRT? Methods: This study applied Monte Carlo techniques to investigate the surface and peripheral doses in compensator-based IMRT using FFF beams and compared it to the MLC-based IMRT using FFF beams and flattened beams. Besides various thicknesses of copper slabs to simulate various thicknesses of compensators, a simple cone-shaped compensator was simulated to mimic a clinical application. The dose distribution in water phantom by the cone-shaped compensator was then simulated by multiple MLC defined FFF and flattened beams with various openings. After normalized to Dmax, the surface and peripheral dose was compared between the FFF beam compensator-based IMRT and FFF/flattened beam MLC-based IMRT. Results: The surface dose at the central 0.5mm depth was close between the compensator and 6FFF MLC dose distributions, and about 8% (of Dmax) higher than the flattened 6MV MLC dose. At 8cm off axis at dmax, the peripheral dose between the 6FFF and flattened 6MV MLC demonstrated similar doses, while the compensator dose was about 1% higher. Conclusion: Compensator does not reduce the surface doses but slightly increases the peripheral doses due to scatter inside compensator.« less

  10. SU-E-T-122: Dosimetric Comparison Between Cone, HDMLC and MicroMLC for the Treatment of Trigeminal Neuralgia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vacca, N; Caussa, L; Filipuzzi, M

    2014-06-01

    Purpose: The purpose of this work was to evaluate the dosimetric characteristics of three collimation systems, 5mm circular cone (Brainlab) and square fields of 5mm with HDMLC (Varian) and microMLC Moduleaf, Siemens) for trigeminal neuralgia treatment. Methods: A TPS Iplan v4.5 BrainLAB was used to do treatment plans for each collimations system in a square solid water phantom with isocenter at 5cm depth. Single field and treatment plan including 11 arcs with fix field and 100° gantry range was made for each collimation systems. EBT3 films were positioned at isocenter in a coronal plane to measured dose distribution for allmore » geometries. Films were digitized with a Vidar DosimetryPro Red scanner with a resolution of 89dpi and RIT113v6.1 software was used for analysis. Penumbra region (80%–20%), FWHM and dose percentage at 5mm and 10mm from CAX were determined. All profiles were normalized at CAX. Results: For single beam the penumbra (FWHM) was 1.5mm (5.3mm) for the cone, 1.9mm (5.5mm) for HDMLC and 1.8mm (5.4mm) for the microMLC. Dose percentage at 5mm was 6.9% for cone, 12.5% for HDMLC and 8.7% for the microMLC. For treatment plan the penumbra (FWHM) was 2.58mm (5.47mm) for the cone, 2.8mm (5.84mm) for HDMLC and 2.58mm (6.09mm) for the microMLC. Dose perecentage at 5mm was 13.1% for cone, 16.1% for HDMLC, 15.2% for the microMLC. Conclusion: The cone has a dose falloff larger than the microMLC and HDMLC, by its reduced penumbra, this translates into better protection of surrounding healthy tissue, however, the microMLC and HDMLC have similar accuracy to cone.« less

  11. Electron beam collimation with a photon MLC for standard electron treatments

    NASA Astrophysics Data System (ADS)

    Mueller, S.; Fix, M. K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M. F. M.; Manser, P.

    2018-01-01

    Standard electron treatments are currently still performed using standard or molded patient-specific cut-outs placed in the electron applicator. Replacing cut-outs and electron applicators with a photon multileaf collimator (pMLC) for electron beam collimation would make standard electron treatments more efficient and would facilitate advanced treatment techniques like modulated electron radiotherapy (MERT) and mixed beam radiotherapy (MBRT). In this work, a multiple source Monte Carlo beam model for pMLC shaped electron beams commissioned at a source-to-surface distance (SSD) of 70 cm is extended for SSDs of up to 100 cm and validated for several Varian treatment units with field sizes typically used for standard electron treatments. Measurements and dose calculations agree generally within 3% of the maximal dose or 2 mm distance to agreement. To evaluate the dosimetric consequences of using pMLC collimated electron beams for standard electron treatments, pMLC-based and cut-out-based treatment plans are created for a left and a right breast boost, a sternum, a testis and a parotid gland case. The treatment plans consist of a single electron field, either alone (1E) or in combination with two 3D conformal tangential photon fields (1E2X). For each case, a pMLC plan with similar treatment plan quality in terms of dose homogeneity to the target and absolute mean dose values to the organs at risk (OARs) compared to a cut-out plan is found. The absolute mean dose to an OAR is slightly increased for pMLC-based compared to cut-out-based 1E plans if the OAR is located laterally close to the target with respect to beam direction, or if a 6 MeV electron beam is used at an extended SSD. In conclusion, treatment plans using cut-out collimation can be replaced by plans of similar treatment plan quality using pMLC collimation with accurately calculated dose distributions.

  12. Comparative analysis of Worldview-2 and Landsat 8 for coastal saltmarsh mapping accuracy assessment

    NASA Astrophysics Data System (ADS)

    Rasel, Sikdar M. M.; Chang, Hsing-Chung; Diti, Israt Jahan; Ralph, Tim; Saintilan, Neil

    2016-05-01

    Coastal saltmarsh and their constituent components and processes are of an interest scientifically due to their ecological function and services. However, heterogeneity and seasonal dynamic of the coastal wetland system makes it challenging to map saltmarshes with remotely sensed data. This study selected four important saltmarsh species Pragmitis australis, Sporobolus virginicus, Ficiona nodosa and Schoeloplectus sp. as well as a Mangrove and Pine tree species, Avecinia and Casuarina sp respectively. High Spatial Resolution Worldview-2 data and Coarse Spatial resolution Landsat 8 imagery were selected in this study. Among the selected vegetation types some patches ware fragmented and close to the spatial resolution of Worldview-2 data while and some patch were larger than the 30 meter resolution of Landsat 8 data. This study aims to test the effectiveness of different classifier for the imagery with various spatial and spectral resolutions. Three different classification algorithm, Maximum Likelihood Classifier (MLC), Support Vector Machine (SVM) and Artificial Neural Network (ANN) were tested and compared with their mapping accuracy of the results derived from both satellite imagery. For Worldview-2 data SVM was giving the higher overall accuracy (92.12%, kappa =0.90) followed by ANN (90.82%, Kappa 0.89) and MLC (90.55%, kappa = 0.88). For Landsat 8 data, MLC (82.04%) showed the highest classification accuracy comparing to SVM (77.31%) and ANN (75.23%). The producer accuracy of the classification results were also presented in the paper.

  13. Modeling of a multileaf collimator

    NASA Astrophysics Data System (ADS)

    Kim, Siyong

    A comprehensive physics model of a multileaf collimator (MLC) field for treatment planning was developed. Specifically, an MLC user interface module that includes a geometric optimization tool and a general method of in- air output factor calculation were developed. An automatic tool for optimization of MLC conformation is needed to realize the potential benefits of MLC. It is also necessary that a radiation therapy treatment planning (RTTP) system is capable of modeling MLC completely. An MLC geometric optimization and user interface module was developed. The planning time has been reduced significantly by incorporating the MLC module into the main RTTP system, Radiation Oncology Computer System (ROCS). The dosimetric parameter that has the most profound effect on the accuracy of the dose delivered with an MLC is the change in the in-air output factor that occurs with field shaping. It has been reported that the conventional method of calculating an in-air output factor cannot be used for MLC shaped fields accurately. Therefore, it is necessary to develop algorithms that allow accurate calculation of the in-air output factor. A generalized solution for an in-air output factor calculation was developed. Three major contributors of scatter to the in-air output-flattening filter, wedge, and tertiary collimator-were considered separately. By virtue of a field mapping method, in which a source plane field determined by detector's eye view is mapped into a detector plane field, no additional dosimetric data acquisition other than the standard data set for a range of square fields is required for the calculation of head scatter. Comparisons of in-air output factors between calculated and measured values show a good agreement for both open and wedge fields. For rectangular fields, a simple equivalent square formula was derived based on the configuration of a linear accelerator treatment head. This method predicts in-air output to within 1% accuracy. A two-effective-source algorithm was developed to account for the effect of source to detector distance on in-air output for wedge fields. Two effective sources, one for head scatter and the other for wedge scatter, were dealt with independently. Calculations provided less than 1% difference of in-air output factors from measurements. This approach offers the best comprehensive accuracy in radiation delivery with field shapes defined using MLC. This generalized model works equally well with fields shaped by any type of tertiary collimator and have the necessary framework to extend its application to intensity modulated radiation therapy.

  14. Linking nonstructural carbohydrate dynamics to gas exchange and leaf hydraulic behavior in Pinus edulis and Juniperus monosperma

    Treesearch

    David R. Woodruff; Frederick C. Meinzer; Danielle E. Marias; Sanna Sevanto; Michael W. Jenkins; Nate G. McDowell

    2014-01-01

    Leaf hydraulics, gas exchange and carbon storage in Pinus edulis and Juniperus monosperma, two tree species on opposite ends of the isohydry–anisohydry spectrum, were analyzed to examine relationships between hydraulic function and carbohydrate dynamics.Leaf hydraulic vulnerability,...

  15. Use of plan quality degradation to evaluate tradeoffs in delivery efficiency and clinical plan metrics arising from IMRT optimizer and sequencer compromises

    PubMed Central

    Wilkie, Joel R.; Matuszak, Martha M.; Feng, Mary; Moran, Jean M.; Fraass, Benedick A.

    2013-01-01

    Purpose: Plan degradation resulting from compromises made to enhance delivery efficiency is an important consideration for intensity modulated radiation therapy (IMRT) treatment plans. IMRT optimization and/or multileaf collimator (MLC) sequencing schemes can be modified to generate more efficient treatment delivery, but the effect those modifications have on plan quality is often difficult to quantify. In this work, the authors present a method for quantitative assessment of overall plan quality degradation due to tradeoffs between delivery efficiency and treatment plan quality, illustrated using comparisons between plans developed allowing different numbers of intensity levels in IMRT optimization and/or MLC sequencing for static segmental MLC IMRT plans. Methods: A plan quality degradation method to evaluate delivery efficiency and plan quality tradeoffs was developed and used to assess planning for 14 prostate and 12 head and neck patients treated with static IMRT. Plan quality was evaluated using a physician's predetermined “quality degradation” factors for relevant clinical plan metrics associated with the plan optimization strategy. Delivery efficiency and plan quality were assessed for a range of optimization and sequencing limitations. The “optimal” (baseline) plan for each case was derived using a clinical cost function with an unlimited number of intensity levels. These plans were sequenced with a clinical MLC leaf sequencer which uses >100 segments, assuring delivered intensities to be within 1% of the optimized intensity pattern. Each patient's optimal plan was also sequenced limiting the number of intensity levels (20, 10, and 5), and then separately optimized with these same numbers of intensity levels. Delivery time was measured for all plans, and direct evaluation of the tradeoffs between delivery time and plan degradation was performed. Results: When considering tradeoffs, the optimal number of intensity levels depends on the treatment site and on the stage in the process at which the levels are limited. The cost of improved delivery efficiency, in terms of plan quality degradation, increased as the number of intensity levels in the sequencer or optimizer decreased. The degradation was more substantial for the head and neck cases relative to the prostate cases, particularly when fewer than 20 intensity levels were used. Plan quality degradation was less severe when the number of intensity levels was limited in the optimizer rather than the sequencer. Conclusions: Analysis of plan quality degradation allows for a quantitative assessment of the compromises in clinical plan quality as delivery efficiency is improved, in order to determine the optimal delivery settings. The technique is based on physician-determined quality degradation factors and can be extended to other clinical situations where investigation of various tradeoffs is warranted. PMID:23822412

  16. TM 4: Beam through the Main Linac Cryomodule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartnik, A.

    2017-06-14

    On May 15th 2017, the CBETA project reached the major funding milestone, “Beam through the MLC.” For this test, the team had to successfully accelerate the electron beam to 6 MeV in the Injector Cryomodule (ICM), and then to a final energy of 12 MeV in the Main Linac Cryomodule (MLC). The MLC contains six superconducting accelerating cavities; for this initial test only a single cavity was powered.

  17. Randomized algorithms for high quality treatment planning in volumetric modulated arc therapy

    NASA Astrophysics Data System (ADS)

    Yang, Yu; Dong, Bin; Wen, Zaiwen

    2017-02-01

    In recent years, volumetric modulated arc therapy (VMAT) has been becoming a more and more important radiation technique widely used in clinical application for cancer treatment. One of the key problems in VMAT is treatment plan optimization, which is complicated due to the constraints imposed by the involved equipments. In this paper, we consider a model with four major constraints: the bound on the beam intensity, an upper bound on the rate of the change of the beam intensity, the moving speed of leaves of the multi-leaf collimator (MLC) and its directional-convexity. We solve the model by a two-stage algorithm: performing minimization with respect to the shapes of the aperture and the beam intensities alternatively. Specifically, the shapes of the aperture are obtained by a greedy algorithm whose performance is enhanced by random sampling in the leaf pairs with a decremental rate. The beam intensity is optimized using a gradient projection method with non-monotonic line search. We further improve the proposed algorithm by an incremental random importance sampling of the voxels to reduce the computational cost of the energy functional. Numerical simulations on two clinical cancer date sets demonstrate that our method is highly competitive to the state-of-the-art algorithms in terms of both computational time and quality of treatment planning.

  18. SU-G-BRB-10: New Generation of High Frame-Rate and High Spatial-Resolution EPID QA System for Full-Body MLC-Based Robotic Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, B; Xing, L; Wang, L

    Purpose: To systematically investigate an ultra-high spatial-resolution amorphous silicon flat-panel electronic portal imaging device (EPID) for MLC-based full-body robotic radiosurgery geometric and dosimetric quality assurance (QA). Methods: The high frame-rate and ultra-high spatial resolution EPID is an outstanding detector for measuring profiles, MLC-shaped radiosurgery field aperture verification, and small field dosimetry. A Monte Carlo based technique with a robotic linac specific response and calibration is developed to convert a raw EPID-measured image of a radiosurgery field into water-based dose distribution. The technique is applied to measure output factors and profiles for 6MV MLC-defined radiosurgery fields with various sizes ranging frommore » 7.6mm×7.7mm to 100mm×100.1mm and the results are compared with the radiosurgery diode scan measurements in water tank. The EPID measured field sizes and the penumbra regions are analyzed to evaluate the MLC positioning accuracy. Results: For all MLC fields, the EPID measured output factors of MLC-shaped fields are in good agreement with the diode measurements. The mean output difference between the EPID and diode measurement is 0.05±0.87%. The max difference is −1.33% for 7.6mm×7.7mm field. The MLC field size derived from the EPID measurements are in good agreement comparing to the diode scan result. For crossline field sizes, the mean difference is −0.17mm±0.14mm with a maximum of −0.35mm for the 30.8mm×30.8mm field. For inline field sizes, the mean difference is +0.08mm±0.18mm with a maximum of +0.45mm for the 100mm×100.1mm field. The high resolution EPID is able to measure the whole radiation field, without the need to align the detector center perfectly at field center as diode or ion chamber measurement. The setup time is greatly reduced so that the whole process is possible for machine and patient-specific QA. Conclusion: The high spatial-resolution EPID is proved to be an accurate and efficient tool for QA of MLC-equipped robotic radiosurgery system.« less

  19. SU-F-SPS-09: Parallel MC Kernel Calculations for VMAT Plan Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chamberlain, S; Roswell Park Cancer Institute, Buffalo, NY; French, S

    Purpose: Adding kernels (small perturbations in leaf positions) to the existing apertures of VMAT control points may improve plan quality. We investigate the calculation of kernel doses using a parallelized Monte Carlo (MC) method. Methods: A clinical prostate VMAT DICOM plan was exported from Eclipse. An arbitrary control point and leaf were chosen, and a modified MLC file was created, corresponding to the leaf position offset by 0.5cm. The additional dose produced by this 0.5 cm × 0.5 cm kernel was calculated using the DOSXYZnrc component module of BEAMnrc. A range of particle history counts were run (varying from 3more » × 10{sup 6} to 3 × 10{sup 7}); each job was split among 1, 10, or 100 parallel processes. A particle count of 3 × 10{sup 6} was established as the lower range because it provided the minimal accuracy level. Results: As expected, an increase in particle counts linearly increases run time. For the lowest particle count, the time varied from 30 hours for the single-processor run, to 0.30 hours for the 100-processor run. Conclusion: Parallel processing of MC calculations in the EGS framework significantly decreases time necessary for each kernel dose calculation. Particle counts lower than 1 × 10{sup 6} have too large of an error to output accurate dose for a Monte Carlo kernel calculation. Future work will investigate increasing the number of parallel processes and optimizing run times for multiple kernel calculations.« less

  20. Direct aperture optimization: a turnkey solution for step-and-shoot IMRT.

    PubMed

    Shepard, D M; Earl, M A; Li, X A; Naqvi, S; Yu, C

    2002-06-01

    IMRT treatment plans for step-and-shoot delivery have traditionally been produced through the optimization of intensity distributions (or maps) for each beam angle. The optimization step is followed by the application of a leaf-sequencing algorithm that translates each intensity map into a set of deliverable aperture shapes. In this article, we introduce an automated planning system in which we bypass the traditional intensity optimization, and instead directly optimize the shapes and the weights of the apertures. We call this approach "direct aperture optimization." This technique allows the user to specify the maximum number of apertures per beam direction, and hence provides significant control over the complexity of the treatment delivery. This is possible because the machine dependent delivery constraints imposed by the MLC are enforced within the aperture optimization algorithm rather than in a separate leaf-sequencing step. The leaf settings and the aperture intensities are optimized simultaneously using a simulated annealing algorithm. We have tested direct aperture optimization on a variety of patient cases using the EGS4/BEAM Monte Carlo package for our dose calculation engine. The results demonstrate that direct aperture optimization can produce highly conformal step-and-shoot treatment plans using only three to five apertures per beam direction. As compared with traditional optimization strategies, our studies demonstrate that direct aperture optimization can result in a significant reduction in both the number of beam segments and the number of monitor units. Direct aperture optimization therefore produces highly efficient treatment deliveries that maintain the full dosimetric benefits of IMRT.

  1. Functional conservation between rodents and chicken of regulatory sequences driving skeletal muscle gene expression in transgenic chickens

    PubMed Central

    2010-01-01

    Background Regulatory elements that control expression of specific genes during development have been shown in many cases to contain functionally-conserved modules that can be transferred between species and direct gene expression in a comparable developmental pattern. An example of such a module has been identified at the rat myosin light chain (MLC) 1/3 locus, which has been well characterised in transgenic mouse studies. This locus contains two promoters encoding two alternatively spliced isoforms of alkali myosin light chain. These promoters are differentially regulated during development through the activity of two enhancer elements. The MLC3 promoter alone has been shown to confer expression of a reporter gene in skeletal and cardiac muscle in transgenic mice and the addition of the downstream MLC enhancer increased expression levels in skeletal muscle. We asked whether this regulatory module, sufficient for striated muscle gene expression in the mouse, would drive expression in similar domains in the chicken. Results We have observed that a conserved downstream MLC enhancer is present in the chicken MLC locus. We found that the rat MLC1/3 regulatory elements were transcriptionally active in chick skeletal muscle primary cultures. We observed that a single copy lentiviral insert containing this regulatory cassette was able to drive expression of a lacZ reporter gene in the fast-fibres of skeletal muscle in chicken in three independent transgenic chicken lines in a pattern similar to the endogenous MLC locus. Reporter gene expression in cardiac muscle tissues was not observed for any of these lines. Conclusions From these results we conclude that skeletal expression from this regulatory module is conserved in a genomic context between rodents and chickens. This transgenic module will be useful in future investigations of muscle development in avian species. PMID:20184756

  2. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes

    PubMed Central

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B. Cicero; Zarzoso, Manuel; Ramirez, Rafael J.; Sener, Michelle F.; Mundada, Lakshmi V.; Klos, Matthew; Devaney, Eric J.; Vikstrom, Karen L.; Herron, Todd J.; Jalife, José

    2014-01-01

    Applications of human induced pluripotent stemcell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricularmyocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. PMID:24095945

  3. Patient views through the keyhole: new perspectives on single-incision vs. multiport laparoscopic cholecystectomy

    PubMed Central

    Hey, Jennifer; Roberts, Keith John; Morris-Stiff, Gareth J; Toogood, Giles J

    2012-01-01

    Objectives Single-incision laparoscopic cholecystectomy (SILC) may be associated with less pain, shorter hospital stay and better cosmetic results than multiport laparoscopic cholecystectomy (MLC). Advocates suggest that patients prefer SILC, although research directly addressing the question of patient preferences is limited. This study aimed to assess patient preferences using currently available evidence. Methods Patients awaiting elective cholecystectomy were shown a series of postoperative images taken after SILC or MLC and asked which procedure this led them to prefer. This was repeated after patients had completed a questionnaire constructed using published objective data comparing patient-reported outcomes of SILC and MLC. Results The study was completed by 113 consecutive patients. After their initial viewing of the images, 16% of subjects preferred MLC. Younger age, lower body mass index and female sex were associated with choosing SILC. After completing the questionnaire, 88% of patients preferred MLC (P < 0.001). Patients ranked the level of risk for complications and postoperative pain above cosmetic results in determining their choice of procedure. Conclusions Patients' initial preference when presented with cosmetic appearance was for SILC. When contemporary outcome data were included, the majority chose MLC. This underlines the need to fully inform patients during the consent process and indicates that patient views of SILC may differ from the views of those introducing the technology. PMID:22404262

  4. Myosin light chain 2-based selection of human iPSC-derived early ventricular cardiac myocytes.

    PubMed

    Bizy, Alexandra; Guerrero-Serna, Guadalupe; Hu, Bin; Ponce-Balbuena, Daniela; Willis, B Cicero; Zarzoso, Manuel; Ramirez, Rafael J; Sener, Michelle F; Mundada, Lakshmi V; Klos, Matthew; Devaney, Eric J; Vikstrom, Karen L; Herron, Todd J; Jalife, José

    2013-11-01

    Applications of human induced pluripotent stem cell derived-cardiac myocytes (hiPSC-CMs) would be strengthened by the ability to generate specific cardiac myocyte (CM) lineages. However, purification of lineage-specific hiPSC-CMs is limited by the lack of cell marking techniques. Here, we have developed an iPSC-CM marking system using recombinant adenoviral reporter constructs with atrial- or ventricular-specific myosin light chain-2 (MLC-2) promoters. MLC-2a and MLC-2v selected hiPSC-CMs were purified by fluorescence-activated cell sorting and their biochemical and electrophysiological phenotypes analyzed. We demonstrate that the phenotype of both populations remained stable in culture and they expressed the expected sarcomeric proteins, gap junction proteins and chamber-specific transcription factors. Compared to MLC-2a cells, MLC-2v selected CMs had larger action potential amplitudes and durations. In addition, by immunofluorescence, we showed that MLC-2 isoform expression can be used to enrich hiPSC-CM consistent with early atrial and ventricular myocyte lineages. However, only the ventricular myosin light chain-2 promoter was able to purify a highly homogeneous population of iPSC-CMs. Using this approach, it is now possible to develop ventricular-specific disease models using iPSC-CMs while atrial-specific iPSC-CM cultures may require additional chamber-specific markers. © 2013.

  5. Autumn leaf subsidies influence spring dynamics of freshwater plankton communities.

    PubMed

    Fey, Samuel B; Mertens, Andrew N; Cottingham, Kathryn L

    2015-07-01

    While ecologists primarily focus on the immediate impact of ecological subsidies, understanding the importance of ecological subsidies requires quantifying the long-term temporal dynamics of subsidies on recipient ecosystems. Deciduous leaf litter transferred from terrestrial to aquatic ecosystems exerts both immediate and lasting effects on stream food webs. Recently, deciduous leaf additions have also been shown to be important subsidies for planktonic food webs in ponds during autumn; however, the inter-seasonal effects of autumn leaf subsidies on planktonic food webs have not been studied. We hypothesized that autumn leaf drop will affect the spring dynamics of freshwater pond food webs by altering the availability of resources, water transparency, and the metabolic state of ponds. We created leaf-added and no-leaf-added field mesocosms in autumn 2012, allowed mesocosms to ice-over for the winter, and began sampling the physical, chemical, and biological properties of mesocosms immediately following ice-off in spring 2013. At ice-off, leaf additions reduced dissolved oxygen, elevated total phosphorus concentrations and dissolved materials, and did not alter temperature or total nitrogen. These initial abiotic effects contributed to higher bacterial densities and lower chlorophyll concentrations, but by the end of spring, the abiotic environment, chlorophyll and bacterial densities converged. By contrast, zooplankton densities diverged between treatments during the spring, with leaf additions stimulating copepods but inhibiting cladocerans. We hypothesized that these differences between zooplankton orders resulted from resource shifts following leaf additions. These results suggest that leaf subsidies can alter both the short- and long-term dynamics of planktonic food webs, and highlight the importance of fully understanding how ecological subsidies are integrated into recipient food webs.

  6. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  7. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  8. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  9. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  10. 33 CFR 1.07-90 - Criminal penalties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Commandant is required, the Area, Maintenance & Logistics Command (MLC), and District Commanders are..., 121 to 126 inclusive). (c) The Area, MLC, or District Commander will identify the laws or regulations...

  11. Micro-Laser Range Finder Development: Using the Monolithic Approach

    DTIC Science & Technology

    1999-02-01

    components can be joined together, optically aligned to form the laser cavity and then sliced to produce MLC modules . This batch process can greatly reduce...the overall fabrication costs of the µLRF system. The MLC module is ultra-compact. Its overall size is approximately 56 mm (L) x 3 mm (W) x 3 mm (H) as...MLC module is placed on a laser pallet for stiffness, mechanical stability. The laser pallet size is selected as part of the integration design

  12. Modeling the leaf angle dynamics in rice plant.

    PubMed

    Zhang, Yonghui; Tang, Liang; Liu, Xiaojun; Liu, Leilei; Cao, Weixing; Zhu, Yan

    2017-01-01

    The leaf angle between stem and sheath (SSA) is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N) rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT) was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem) and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE) was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  13. SU-F-T-307: Peripheral Dose Comparison Between Static and Dynamic Jaw Tracking On a High Definition MLC System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Andujar, A; Cheung, J; Chuang, C

    Purpose: To investigate the effect of dynamic and static jaw tracking on patient peripheral doses. Materials and Methods: A patient plan with a large sacral metastasis (volume 800cm3, prescription 600cGyx5) was selected for this study. The plan was created using 2-field RapidArc with jaw tracking enabled (Eclipse, V11.0.31). These fields were then exported and edited in MATLAB with static jaw positions using the control point with the largest field size for each respective arc, but preserving the optimized leaf sequences for delivery. These fields were imported back into Eclipse for dose calculation and comparison and copied to a Rando phantommore » for delivery analysis. Points were chosen in the phantom at depth and on the phantom surface at locations outside the primary radiation field, at distances of 12cm, 20cm, and 30cm from the isocenter. Measurements were acquired with OSLDs placed at these positions in the phantom with both the dynamic and static jaw deliveries for comparison. Surface measurements included an additional 1cm bolus over the OSLDs to ensure electron equilibrium. Results: The static jaw deliveries resulted in cumulative jaw-defined field sizes of 17.3% and 17.4% greater area than the dynamic jaw deliveries for each arc. The static jaw plan resulted in very small differences in calculated dose in the treatment planning system ranging from 0–16cGy. The measured dose differences were larger than calculated, but the differences in absolute dose were small. The measured dose differences at depth (surface) between the two deliveries showed an increase for the static jaw delivery of 2.2%(11.4%), 15.6%(20.0%), and 12.7%(12.7%) for distances of 12cm, 20cm, and 30cm, respectively. Eclipse calculates a difference of 0–3.1% for all of these points. The largest absolute dose difference between all points was 6.2cGy. Conclusion: While we demonstrated larger than expected differences in peripheral dose, the absolute dose differences were small.« less

  14. Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate.

    PubMed

    Medvigy, David; Kim, Seung Hee; Kim, Jinwon; Kafatos, Menas C

    2016-07-01

    Models that predict the timing of deciduous tree leaf emergence are typically very sensitive to temperature. However, many temperature data products, including those from climate models, have been developed at a very coarse spatial resolution. Such coarse-resolution temperature products can lead to highly biased predictions of leaf emergence. This study investigates how dynamical downscaling of climate models impacts simulations of deciduous tree leaf emergence in California. Models for leaf emergence are forced with temperatures simulated by a general circulation model (GCM) at ~200-km resolution for 1981-2000 and 2031-2050 conditions. GCM simulations are then dynamically downscaled to 32- and 8-km resolution, and leaf emergence is again simulated. For 1981-2000, the regional average leaf emergence date is 30.8 days earlier in 32-km simulations than in ~200-km simulations. Differences between the 32 and 8 km simulations are small and mostly local. The impact of downscaling from 200 to 8 km is ~15 % smaller in 2031-2050 than in 1981-2000, indicating that the impacts of downscaling are unlikely to be stationary.

  15. Pitfalls of tungsten multileaf collimator in proton beam therapy.

    PubMed

    Moskvin, Vadim; Cheng, Chee-Wai; Das, Indra J

    2011-12-01

    Particle beam therapy is associated with significant startup and operational cost. Multileaf collimator (MLC) provides an attractive option to improve the efficiency and reduce the treatment cost. A direct transfer of the MLC technology from external beam radiation therapy is intuitively straightforward to proton therapy. However, activation, neutron production, and the associated secondary cancer risk in proton beam should be an important consideration which is evaluated. Monte Carlo simulation with FLUKA particle transport code was applied in this study for a number of treatment models. The authors have performed a detailed study of the neutron generation, ambient dose equivalent [H∗(10)], and activation of a typical tungsten MLC and compared with those obtained from a brass aperture used in a typical proton therapy system. Brass aperture and tungsten MLC were modeled by absorber blocks in this study, representing worst-case scenario of a fully closed collimator. With a tungsten MLC, the secondary neutron dose to the patient is at least 1.5 times higher than that from a brass aperture. The H∗(10) from a tungsten MLC at 10 cm downstream is about 22.3 mSv/Gy delivered to water phantom by noncollimated 200 MeV beam of 20 cm diameter compared to 14 mSv/Gy for the brass aperture. For a 30-fraction treatment course, the activity per unit volume in brass aperture reaches 5.3 × 10⁴ Bq cm(-3) at the end of the last treatment. The activity in brass decreases by a factor of 380 after 24 h, additional 6.2 times after 40 days of cooling, and is reduced to background level after 1 yr. Initial activity in tungsten after 30 days of treating 30 patients per day is about 3.4 times higher than in brass that decreases only by a factor of 2 after 40 days and accumulates to 1.2 × 10⁶ Bq cm(-3) after a full year of operation. The daily utilization of the MLC leads to buildup of activity with time. The overall activity continues to increase due to (179)Ta with a half-life of 1.82 yr and thus require prolonged storage for activity cooling. The H∗(10) near the patient side of the tungsten block is about 100 μSv/h and is 27 times higher at the upstream side of the block. This would lead to an accumulated dose for therapists in a year that may exceed occupational maximum permissible dose (50 mSv/yr). The value of H∗(10) at the upstream surface of the tungsten block is about 220 times higher than that of the brass. MLC is an efficient way for beam shaping and overall cost reduction device in proton therapy. However, based on this study, tungsten seems to be not an optimal material for MLC in proton beam therapy. Usage of tungsten MLC in clinic may create unnecessary risks associated with the secondary neutrons and induced radioactivity for patients and staff depending on the patient load. A careful selection of material for manufacturing of an optimal MLC for proton therapy is thus desired.

  16. Electron intensity modulation for mixed-beam radiation therapy with an x-ray multi-leaf collimator

    NASA Astrophysics Data System (ADS)

    Weinberg, Rebecca

    The current standard treatment for head and neck cancer at our institution uses intensity-modulated x-ray therapy (IMRT), which improves target coverage and sparing of critical structures by delivering complex fluence patterns from a variety of beam directions to conform dose distributions to the shape of the target volume. The standard treatment for breast patients is field-in-field forward-planned IMRT, with initial tangential fields and additional reduced-weight tangents with blocking to minimize hot spots. For these treatment sites, the addition of electrons has the potential of improving target coverage and sparing of critical structures due to rapid dose falloff with depth and reduced exit dose. In this work, the use of mixed-beam therapy (MBT), i.e., combined intensity-modulated electron and x-ray beams using the x-ray multi-leaf collimator (MLC), was explored. The hypothesis of this study was that addition of intensity-modulated electron beams to existing clinical IMRT plans would produce MBT plans that were superior to the original IMRT plans for at least 50% of selected head and neck and 50% of breast cases. Dose calculations for electron beams collimated by the MLC were performed with Monte Carlo methods. An automation system was created to facilitate communication between the dose calculation engine and the treatment planning system. Energy and intensity modulation of the electron beams was accomplished by dividing the electron beams into 2x2-cm2 beamlets, which were then beam-weight optimized along with intensity-modulated x-ray beams. Treatment plans were optimized to obtain equivalent target dose coverage, and then compared with the original treatment plans. MBT treatment plans were evaluated by participating physicians with respect to target coverage, normal structure dose, and overall plan quality in comparison with original clinical plans. The physician evaluations did not support the hypothesis for either site, with MBT selected as superior in 1 out of the 15 head and neck cases (p=1) and 6 out of 18 breast cases (p=0.95). While MBT was not shown to be superior to IMRT, reductions were observed in doses to critical structures distal to the target along the electron beam direction and to non-target tissues, at the expense of target coverage and dose homogeneity.

  17. Characteristics of multilevel storage and switching dynamics in resistive switching cell of Al2O3/HfO2/Al2O3 sandwich structure

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Yang, Huafeng; Ma, Zhongyuan; Chen, Kunji; Zhang, Xinxin; Huang, Xinfan; Oda, Shunri

    2018-01-01

    We reported an Al2O3/HfO2/Al2O3 sandwich structure resistive switching device with significant improvement of multilevel cell (MLC) operation capability, which exhibited that four stable and distinct resistance states (one low resistance state and three high resistance states) can be achieved by controlling the Reset stop voltages (V Reset-stop) during the Reset operation. The improved MLC operation capability can be attributed to the R HRS/R LRS ratio enhancement resulting from increasing of the series resistance and decreasing of leakage current by inserting two Al2O3 layers. For the high-speed switching applications, we studied the initial switching dynamics by using the measurements of the pulse width and amplitude dependence of Set and Reset switching characteristics. The results showed that under the same pulse amplitude conditions, the initial Set progress is faster than the initial Reset progress, which can be explained by thermal-assisted electric field induced rupture model in the oxygen vacancies conductive filament. Thus, proper combination of varying pulse amplitude and width can help us to optimize the device operation parameters. Moreover, the device demonstrated ultrafast program/erase speed (10 ns) and good pulse switching endurance (105 cycles) characteristics, which are suitable for high-density and fast-speed nonvolatile memory applications.

  18. Evaluation of Video Image Analysis (VIA) technology to predict meat yield of sheep carcasses on-line under UK abattoir conditions.

    PubMed

    Rius-Vilarrasa, E; Bünger, L; Maltin, C; Matthews, K R; Roehe, R

    2009-05-01

    The Meat and Livestock Commission's (MLC) EUROP classification based scheme and Video Image Analysis (VIA) system were compared in their ability to predict weights of primal carcass joints. A total of 443 commercial lamb carcasses under 12 months of age and mixed gender were selected by their cold carcass weight (CCW), conformation and fat scores. Lamb carcasses were classified for conformation and fatness, scanned by the VIA system and dissected into primal joints of leg, chump, loin, breast and shoulder. After adjustment for CCW, the estimation of primal joints using MLC EUROP scores showed high coefficients of determination (R(2)) in the range of 0.82-0.99. The use of VIA always resulted in equal or higher R(2). The precision measured as root mean square error (RMSE) was 27% (leg), 13% (chump), 1% (loin), 11% (breast), 5% (shoulders) and 13% (total primals) higher using VIA than MLC carcass information. Adjustment for slaughter day and gender effects indicated that estimations of primal joints using MLC EUROP scores were more sensitive to these factors than using VIA. This was consistent with an increase in stability of the prediction model of 28%, 11%, 2%, 12%, 6% and 14% for leg, chump, loin, breast and shoulder and total primals, respectively, using VIA compared to MLC EUROP scores. Consequently, VIA was capable of improving the prediction of primal meat yields compared to the current MLC EUROP carcass classification scheme used in the UK abattoirs.

  19. Controls on mass loss and nitrogen dynamics of oak leaf litter along an urban-rural land-use gradient

    Treesearch

    Richard V. Pouyat; Margaret M. Carreiro

    2003-01-01

    Using reciprocal leaf litter transplants, we investigated the effects of contrasting environments (urban vs. rural) and intraspecific variations in oak leaf litter quality on mass loss rates and nitrogen (N) dynamics along an urban-rural gradient in the New York City metropolitan area. Differences in earthworm abundances and temperature had previously been documented...

  20. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.

    PubMed

    Diffenderfer, Eric S; Ainsley, Christopher G; Kirk, Maura L; McDonough, James E; Maughan, Richard L

    2011-11-01

    To apply the dual ionization chamber method for mixed radiation fields to an accurate comparison of the secondary neutron dose arising from the use of a tungsten alloy multileaf collimator (MLC) as opposed to a brass collimator system for defining the shape of a therapeutic proton field. Hydrogenous and nonhydrogenous ionization chambers were constructed with large volumes to enable measurements of absorbed doses below 10(-4) Gy in mixed radiation fields using the dual ionization chamber method for mixed-field dosimetry. Neutron dose measurements were made with a nominal 230 MeV proton beam incident on a closed tungsten alloy MLC and a solid brass block. The chambers were cross-calibrated against a (60)Co-calibrated Farmer chamber in water using a 6 MV x-ray beam and Monte Carlo simulations were performed to account for variations in ionization chamber response due to differences in secondary neutron energy spectra. The neutron and combined proton plus γ-ray absorbed doses are shown to be nearly equivalent downstream from either a closed tungsten alloy MLC or a solid brass block. At 10 cm downstream from the distal edge of the collimating material the neutron dose from the closed MLC was (5.3 ± 0.4) × 10(- 5) Gy/Gy. The neutron dose with brass was (6.4 ± 0.7) × 10(- 5) Gy/Gy. Further from the secondary neutron source, at 50 cm, the neutron doses remain close for both the MLC and brass block at (6.9 ± 0.6) × 10(- 6) Gy/Gy and (6.3 ± 0.7) × 10(- 6) Gy/Gy, respectively. The dual ionization chamber method is suitable for measuring secondary neutron doses resulting from proton irradiation. The results of measurements downstream from a closed tungsten alloy MLC and a brass block indicate that, even in an overly pessimistic worst-case scenario, secondary neutron production in a tungsten alloy MLC leads to absorbed doses that are nearly equivalent to those seen from brass collimators. Therefore, the choice of tungsten alloy in constructing the leaves of a proton MLC is appropriate, and does not lead to a substantial increase in the secondary neutron dose to the patient compared to that generated in a brass collimator.

  1. Thrombin-induced phosphorylation of the regulatory light chain of myosin II in cultured bovine corneal endothelial cells.

    PubMed

    Satpathy, M; Gallagher, P; Lizotte-Waniewski, M; Srinivas, S P

    2004-10-01

    Phosphorylation of the regulatory light chain of myosin II (referred to as myosin light chain or MLC) leads to a loss of barrier integrity in cellular monolayers by an increase in the contractility of the cortical actin cytoskeleton. This effect has been examined in corneal endothelial (CE) cells. Experiments were performed using cultured bovine CE cells (BCEC). MLC phosphorylation was induced by a thrombin-mediated activation of the proteinase-activated receptor-1 (PAR-1). Expression of MLC kinase (MLCK), a Ca2+/calmodulin-dependent protein kinase that phosphorylates MLC at its Ser-19 and Thr-18 residues, was determined by RT-PCR and Western blotting. Expression of PAR-1, RhoA, and Rho kinase-1 (effector of RhoA) was ascertained by RT-PCR. MLC phosphorylation was assessed by urea-glycerol gel electrophoresis followed by immunoblotting. The effects of Rho kinase-1 and PKC were characterized by using their selective inhibitors, Y-27632 and chelerythrine, respectively. Reorganization of the cytoskeleton was evaluated by the phalloidin staining of actin. [Ca2+]i was measured using Fura-2. The barrier integrity was assayed as permeability of BCEC monolayers to horseradish peroxidase (HRP; 44 kDa). RT-PCR showed expression of MLCK, PAR-1, Rho kinase-1, and RhoA. Western blotting indicated expression of the non-muscle and smooth muscle isoforms of MLCK. Exposure to thrombin induced an increase in [Ca2+]i with the peak unaffected by an absence of extracellular Ca2+. Pre-exposure to thrombin (2 U ml(-1); 2 min) led to mono- and di-phosphorylation of MLC. Under both basal conditions and in the presence of thrombin, MLC phosphorylation was prevented by chelerythrine (10 microm) and Y-27632 (<25 microm). Thrombin led to inter-endothelial gaps secondary to the disruption of the cortical actin cytoskeleton, which under resting conditions was organized as a perijunctional actomyosin ring (PAMR). These responses were blocked by pre-treatment with Y-27632. Thrombin also increased permeability to HRP, which was abolished by pre-treatment with Y-27632. Thrombin induces MLC phosphorylation in BCEC. The consequent increase in the contractility of the actin cytoskeleton produces a centripetal force resulting in inter-endothelial gaps and a breakdown of barrier integrity. These responses are PKC- and Rho kinase-dependent. [Ca2+]i increase, as well as sensitivity of the thrombin response to PKC and Rho kinase inhibitors, are consistent with the expression of PAR-1 receptors in BCEC. Thrombin-induced hyperpermeability is a model to investigate barrier dysfunction induced by MLC phosphorylation.

  2. SU-E-T-483: In Vivo Dosimetry of Conventional and Rotational Intensity Modulated Radiotherapy Using Integral Quality Monitor (IQM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, L; Qian, J; Gonzales, R

    Purpose: To investigate the accuracy, sensitivity and constancy of integral quality monitor (IQM), a new system for in vivo dosimetry of conventional intensity modulated radiation therapy (IMRT) or rotational volumetric modulated arc therapy (VMAT) Methods: A beta-version IQM system was commissioned on an Elekta Infinity LINAC equipped with 160-MLCs Agility head. The stationary and rotational dosimetric constancy of IQM was evaluated, using five-field IMRT and single-or double-arc VMAT plans for prostate and head-and-neck (H&N) patients. The plans were delivered three times over three days to assess the constancy of IQM response. Picket fence (PF) fields were used to evaluate themore » sensitivity of detecting MLC leaf errors. A single leaf offset was intentionally introduced during delivery of various PF fields with segment apertures of 3×1, 5×1, 10×1, and 24×1cm2. Both 2mm and 5mm decrease in the field width were used. Results: Repeated IQM measurements of prostate and H&N IMRT deliveries showed 0.4 and 0.5% average standard deviation (SD) for segment-by-segment comparison and 0.1 and 0.2% for cumulative comparison. The corresponding SDs for VMAT deliveries were 6.5, 9.4% and 0.7, 1.3%, respectively. Statistical analysis indicates that the dosimetric differences detected by IQM were significant (p < 0.05) in all PF test deliveries. The largest average IQM signal response of a 2 mm leaf error was found to be 2.1% and 5.1% by a 5mm leaf error for 3×1 cm2 field size. The same error in 24×1 cm2 generates a 0.7% and 1.4% difference in the signal. Conclusion: IQM provides an effective means for real-time dosimetric verification of IMRT/ VMAT treatment delivery. For VMAT delivery, the cumulative dosimetry of IQM needs to be used in clinical practice.« less

  3. Bridge Crossing Simulator

    DTIC Science & Technology

    2014-10-07

    is counted as. Per the TDTC, a test bridge with longitudinal and/or lateral symmetry under non- eccentric loading can be considered as 1, 2, or 4...Level Run036 3 MLC70T (tracked) BA Run046 6 AB Run055 9 AB Run060 9 BA Run064 12 BA Run071 15 AB Run155 3 MLC96W ( wheeled ) AB...Run331 9 AB Run359 15 AB Run430 12 MLC96W ( wheeled ) BA Run434 12 AB Run447 3 BA Bank Condition: Side Slope, Even Strain Channels High

  4. A model-based 3D patient-specific pre-treatment QA method for VMAT using the EPID

    NASA Astrophysics Data System (ADS)

    McCowan, P. M.; Asuni, G.; van Beek, T.; van Uytven, E.; Kujanpaa, K.; McCurdy, B. M. C.

    2017-02-01

    This study reports the development and validation of a model-based, 3D patient dose reconstruction method for pre-treatment quality assurance using EPID images. The method is also investigated for sensitivity to potential MLC delivery errors. Each cine-mode EPID image acquired during plan delivery was processed using a previously developed back-projection dose reconstruction model providing a 3D dose estimate on the CT simulation data. Validation was carried out using 24 SBRT-VMAT patient plans by comparing: (1) ion chamber point dose measurements in a solid water phantom, (2) the treatment planning system (TPS) predicted 3D dose to the EPID reconstructed 3D dose in a solid water phantom, and (3) the TPS predicted 3D dose to the EPID and our forward predicted reconstructed 3D dose in the patient (CT data). AAA and AcurosXB were used for TPS predictions. Dose distributions were compared using 3%/3 mm (95% tolerance) and 2%/2 mm (90% tolerance) γ-tests in the planning target volume (PTV) and 20% dose volumes. The average percentage point dose differences between the ion chamber and the EPID, AcurosXB, and AAA were 0.73  ±  1.25%, 0.38  ±  0.96% and 1.06  ±  1.34% respectively. For the patient (CT) dose comparisons, seven (3%/3 mm) and nine (2%/2 mm) plans failed the EPID versus AAA. All plans passed the EPID versus Acuros XB and the EPID versus forward model γ-comparisons. Four types of MLC sensitive errors (opening, shifting, stuck, and retracting), of varying magnitude (0.2, 0.5, 1.0, 2.0 mm), were introduced into six different SBRT-VMAT plans. γ-comparisons of the erroneous EPID dose and original predicted dose were carried out using the same criteria as above. For all plans, the sensitivity testing using a 3%/3 mm γ-test in the PTV successfully determined MLC errors on the order of 1.0 mm, except for the single leaf retraction-type error. A 2%/2 mm criteria produced similar results with two more additional detected errors.

  5. Monte Carlo design and simulation of a grid-type multi-layer pixel collimator for radiotherapy: Feasibility study

    NASA Astrophysics Data System (ADS)

    Yoon, Do-Kun; Jung, Joo-Young; Suh, Tae Suk

    2014-05-01

    In order to confirm the possibility of field application of a different type collimator with a multileaf collimator (MLC), we constructed a grid-type multi-layer pixel collimator (GTPC) by using a Monte Carlo n-particle simulation (MCNPX). In this research, a number of factors related to the performance of the GPTC were evaluated using simulated output data of a basic MLC model. A layer was comprised of a 1024-pixel collimator (5.0 × 5.0 mm2) which could operate individually as a grid-type collimator (32 × 32). A 30-layer collimator was constructed for a specific portal form to pass radiation through the opening and closing of each pixel cover. The radiation attenuation level and the leakage were compared between the GTPC modality simulation and MLC modeling (tungsten, 17.50 g/cm3, 5.0 × 70.0 × 160.0 mm3) currently used for a radiation field. Comparisons of the portal imaging, the lateral dose profile from a virtual water phantom, the dependence of the performance on the increase in the number of layers, the radiation intensity modulation verification, and the geometric error between the GTPC and the MLC were done using the MCNPX simulation data. From the simulation data, the intensity modulation of the GTPC showed a faster response than the MLC's (29.6%). In addition, the agreement between the doses that should be delivered to the target region was measured as 97.0%, and the GTPC system had an error below 0.01%, which is identical to that of MLC. A Monte Carlo simulation of the GTPC could be useful for verification of application possibilities. Because the line artifact is caused by the grid frame and the folded cover, a lineal dose transfer type is chosen for the operation of this system. However, the result of GTPC's performance showed that the methods of effective intensity modulation and the specific geometric beam shaping differed with the MLC modality.

  6. Sci-Fri PM: Radiation Therapy, Planning, Imaging, and Special Techniques - 02: Feasibility of using multileaf collimation for stereotactic radiosurgery of arteriovenous malformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young; Ruschin, Mark

    SRS using linac and cones offers steep dose fall-off but a tradeoff exists between conformality and treatment time, which depends on the number of isocentres. Purpose of this study is to quantify planning metrics between cones- and MLC-based SRS for arteriovenous malformation(AVM). Seven AVM cases treated with cones were re-planned with MLC on Pinnacle treatment planning system. Planning target volume(PTV) was created with 1mm uniform margin to the AVM to account for MLC positional variation. Clinically-planned prescription dose(15–25Gy) was used. Four plans were generated per case:non-coplanar VMAT(ncV), single-arc VMAT(saV), non-coplanar IMRT(ncI), non-coplanar conformal(ncC). Plans were compared for conformity(CI), heterogeneity(HI) andmore » gradient(GI) indices and brain doses. Estimated treatment times and monitor units(MU) were compared. Cone-based plans required 2–6 isocentres. Though CI-RTOG was similar for plans(median=0.98), CI-Paddick was most favourable for ncV(median=0.86) and worst for cones(0.54). HI for MLC plans(median=1.19–1.27) were lower than cone-based plans(1.43). GI was similar for all plans. For 2/7 ncC had brainstem maximum dose>16.7Gy and therefore were clinically unacceptable. Brain V12Gy,V10Gy,V2Gy were lowest in the cones plan. ncV brain V12Gy,V10Gy,V2Gy were lowest of all MLC-based plans studied. Treatment MUs were similar for MLC-based plans and up to 70% lower than clinically delivered plans. ncV showed best conformality in this study. Of the MLC-based plans, ncV also showed lowest normal tissue dose with reasonable treatment time.« less

  7. Multiple Leader Candidate and Competitive Position Allocation for Robust Formation against Member Robot Faults

    PubMed Central

    Kwon, Ji-Wook; Kim, Jin Hyo; Seo, Jiwon

    2015-01-01

    This paper proposes a Multiple Leader Candidate (MLC) structure and a Competitive Position Allocation (CPA) algorithm which can be applicable for various applications including environmental sensing. Unlike previous formation structures such as virtual-leader and actual-leader structures with position allocation including a rigid allocation and an optimization based allocation, the formation employing the proposed MLC structure and CPA algorithm is robust against the fault (or disappearance) of the member robots and reduces the entire cost. In the MLC structure, a leader of the entire system is chosen among leader candidate robots. The CPA algorithm is the decentralized position allocation algorithm that assigns the robots to the vertex of the formation via the competition of the adjacent robots. The numerical simulations and experimental results are included to show the feasibility and the performance of the multiple robot system employing the proposed MLC structure and the CPA algorithm. PMID:25954956

  8. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  9. The influence of leaf size and shape on leaf thermal dynamics: does theory hold up under natural conditions?

    DOE PAGES

    Leigh, A.; Sevanto, Sanna Annika; Close, J. D.; ...

    2016-11-05

    Laboratory studies on artificial leaves suggest that leaf thermal dynamics are strongly influenced by the two-dimensional size and shape of leaves and associated boundary layer thickness. Hot environments are therefore said to favour selection for small, narrow or dissected leaves. Empirical evidence from real leaves under field conditions is scant and traditionally based on point measurements that do not capture spatial variation in heat load. Here in this study, we used thermal imagery under field conditions to measure the leaf thermal time constant (τ) in summer and the leaf-to-air temperature difference (ΔT) and temperature range across laminae (T range) duringmore » winter, autumn and summer for 68 Proteaceae species. We investigated the influence of leaf area and margin complexity relative to effective leaf width (w e), the latter being a more direct indicator of boundary layer thickness. Normalized difference of margin complexity had no or weak effects on thermal dynamics, but w e strongly predicted τ and ΔT, whereas leaf area influenced T range. Unlike artificial leaves, however, spatial temperature distribution in large leaves appeared to be governed largely by structural variation. Therefore, we agree that small size, specifically we, has adaptive value in hot environments but not with the idea that thermal regulation is the primary evolutionary driver of leaf dissection.« less

  10. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water.

    PubMed

    Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J

    2015-07-01

    To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  11. Sensitivity of an Elekta iView GT a-Si EPID model to delivery errors for pre-treatment verification of IMRT fields.

    PubMed

    Herwiningsih, Sri; Hanlon, Peta; Fielding, Andrew

    2014-12-01

    A Monte Carlo model of an Elekta iViewGT amorphous silicon electronic portal imaging device (a-Si EPID) has been validated for pre-treatment verification of clinical IMRT treatment plans. The simulations involved the use of the BEAMnrc and DOSXYZnrc Monte Carlo codes to predict the response of the iViewGT a-Si EPID model. The predicted EPID images were compared to the measured images obtained from the experiment. The measured EPID images were obtained by delivering a photon beam from an Elekta Synergy linac to the Elekta iViewGT a-Si EPID. The a-Si EPID was used with no additional build-up material. Frame averaged EPID images were acquired and processed using in-house software. The agreement between the predicted and measured images was analyzed using the gamma analysis technique with acceptance criteria of 3 %/3 mm. The results show that the predicted EPID images for four clinical IMRT treatment plans have a good agreement with the measured EPID signal. Three prostate IMRT plans were found to have an average gamma pass rate of more than 95.0 % and a spinal IMRT plan has the average gamma pass rate of 94.3 %. During the period of performing this work a routine MLC calibration was performed and one of the IMRT treatments re-measured with the EPID. A change in the gamma pass rate for one field was observed. This was the motivation for a series of experiments to investigate the sensitivity of the method by introducing delivery errors, MLC position and dosimetric overshoot, into the simulated EPID images. The method was found to be sensitive to 1 mm leaf position errors and 10 % overshoot errors.

  12. Fluence field modulated CT on a clinical TomoTherapy radiation therapy machine

    NASA Astrophysics Data System (ADS)

    Szczykutowicz, Timothy P.; Hermus, James

    2015-03-01

    Purpose: The multi-leaf collimator (MLC) assembly present on TomoTherapy (Accuray, Madison WI) radiation therapy (RT) and mega voltage CT machines is well suited to perform fluence field modulated CT (FFMCT). In addition, there is a demand in the RT environment for FFMCT imaging techniques, specifically volume of interest (VOI) imaging. Methods: A clinical TomoTherapy machine was programmed to deliver 30% imaging dose outside predefined VOIs. Four different size ROIs were placed at varying distances from isocenter. Projections intersecting the VOI received "full dose" while those not intersecting the VOI received 30% of the dose (i.e. the incident fluence for non VOI projections was 30% of the incident fluence for projections intersecting the VOI). Additional scans without fluence field modulation were acquired at "full" and 30% dose. The noise (pixel standard deviation) was measured inside the VOI region and compared between the three scans. Results: The VOI-FFMCT technique produced an image noise 1.09, 1.05, 1.05, and 1.21 times higher than the "full dose" scan for ROI sizes of 10 cm, 13 cm, 10 cm, and 6 cm respectively within the VOI region. Conclusions: Noise levels can be almost unchanged within clinically relevant VOIs sizes for RT applications while the integral imaging dose to the patient can be decreased, and/or the image quality in RT can be dramatically increased with no change in dose relative to non-FFMCT RT imaging. The ability to shift dose away from regions unimportant for clinical evaluation in order to improve image quality or reduce imaging dose has been demonstrated. This paper demonstrates that FFMCT can be performed using the MLC on a clinical TomoTherapy machine for the first time.

  13. Quantitative evaluation of patient-specific quality assurance using online dosimetry system

    NASA Astrophysics Data System (ADS)

    Jung, Jae-Yong; Shin, Young-Ju; Sohn, Seung-Chang; Min, Jung-Whan; Kim, Yon-Lae; Kim, Dong-Su; Choe, Bo-Young; Suh, Tae-Suk

    2018-01-01

    In this study, we investigated the clinical performance of an online dosimetry system (Mobius FX system, MFX) by 1) dosimetric plan verification using gamma passing rates and dose volume metrics and 2) error-detection capability evaluation by deliberately introduced machine error. Eighteen volumetric modulated arc therapy (VMAT) plans were studied. To evaluate the clinical performance of the MFX, we used gamma analysis and dose volume histogram (DVH) analysis. In addition, to evaluate the error-detection capability, we used gamma analysis and DVH analysis utilizing three types of deliberately introduced errors (Type 1: gantry angle-independent multi-leaf collimator (MLC) error, Type 2: gantry angle-dependent MLC error, and Type 3: gantry angle error). A dosimetric verification comparison of physical dosimetry system (Delt4PT) and online dosimetry system (MFX), gamma passing rates of the two dosimetry systems showed very good agreement with treatment planning system (TPS) calculation. For the average dose difference between the TPS calculation and the MFX measurement, most of the dose metrics showed good agreement within a tolerance of 3%. For the error-detection comparison of Delta4PT and MFX, the gamma passing rates of the two dosimetry systems did not meet the 90% acceptance criterion with the magnitude of error exceeding 2 mm and 1.5 ◦, respectively, for error plans of Types 1, 2, and 3. For delivery with all error types, the average dose difference of PTV due to error magnitude showed good agreement between calculated TPS and measured MFX within 1%. Overall, the results of the online dosimetry system showed very good agreement with those of the physical dosimetry system. Our results suggest that a log file-based online dosimetry system is a very suitable verification tool for accurate and efficient clinical routines for patient-specific quality assurance (QA).

  14. VMAT testing for an Elekta accelerator

    PubMed Central

    Sweeney, Larry E.; Marshall, Edward I.; Mahendra, Saikanth

    2012-01-01

    Volumetric‐modulated arc therapy (VMAT) has been shown to be able to deliver plans equivalent to intensity‐modulated radiation therapy (IMRT) in a fraction of the treatment time. This improvement is important for patient immobilization/ localization compliance due to comfort and treatment duration, as well as patient throughput. Previous authors have suggested commissioning methods for this modality. Here, we extend the methods reported for the Varian RapidArc system (which tested individual system components) to the Elekta linear accelerator, using custom files built using the Elekta iComCAT software. We also extend the method reported for VMAT commissioning of the Elekta accelerator by verifying maximum values of parameters (gantry speed, multileaf collimator (MLC) speed, and backup jaw speed), investigating: 1) beam profiles as a function of dose rate during an arc, 2) over/under dosing due to MLC reversals, and 3) over/under dosing at changing dose rate junctions. Equations for construction of the iComCAT files are given. Results indicate that the beam profile for lower dose rates varies less than 3% from that of the maximum dose rate, with no difference during an arc. The gantry, MLC, and backup jaw maximum speed are internally consistent. The monitor unit chamber is stable over the MUs and gantry movement conditions expected. MLC movement and position during VMAT delivery are within IMRT tolerances. Dose rate, gantry speed, and MLC speed are accurately controlled. Over/under dosing at junctions of MLC reversals or dose rate changes are within clinical acceptability. PACS numbers: 87.55.de, 87.55.Qr, 87.56.bd PMID:22402389

  15. SU-C-BRB-01: Development of Dynamic Gimbaled X-Ray Head Swing Irradiation Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, T; Miyabe, Y; Yokota, K

    Purpose: The Vero4DRT has a unique gimbaled x-ray head with rotating around orthogonal two axes. The purpose of this study was to develop a new irradiation technique using the dynamic gimbaled x-ray head swing function. Methods: The Vero4DRT has maximum field size of 150Χ150 mm2. The expanded irradiation field (expanded-field) for the longitudinal direction which is vertical to the MLC sliding direction, was created by the MLC motion and the gimbaled x-ray head rotation. The gimbaled x-ray head was rotated ± 35 mm, and the expanded-field size was set as 150Χ220 mm2. To irradiate uniform dose distribution, the diamond-shaped radiationmore » field was created and continuously moved for the longitudinal direction. It was achieved by combination of opening and closing of the MLC and gimbal swing rotation. To evaluate dosimetric characteristic of the expanded-field, films inserted in water-equivalent phantoms at 100 mm depth were irradiated and the field size, penumbra, flatness and symmetry were analyzed.In addition, the expanded-field irradiation technique was applied to virtual wedge irradiation. Wedged beam was acquired with the delta–shaped radiation field. 150Χ 220 mm2 fields with 15, 30, 45, and 60 degree wedge were examined. The wedge angles were measured with irradiated film and compared with assumed wedge angles. Results: The field size, penumbra, flatness and symmetry of the expanded-field were 150.0 mm, 8.1–8.4 mm, 2.8% and −0.8% for the lateral direction and 220.1 mm, 6.3–6.4 mm, 3.2% and −0.4% for the longitudinal direction at 100 mm depth. The measured wedge angles were 15.1, 30.2, 45.2 and 60.2 degrees. The differences between assumed and measured angles were within 0.2 degrees. Conclusion: A new technique of the gimbal swing irradiation was developed. To extend applied targets, especially for whole breast irradiation, the expanded-field and virtual wedge irradiations would be effective.« less

  16. Morphological and phenological shoot plasticity in a Mediterranean evergreen oak facing long-term increased drought.

    PubMed

    Limousin, Jean-Marc; Rambal, Serge; Ourcival, Jean-Marc; Rodríguez-Calcerrada, Jesus; Pérez-Ramos, Ignacio M; Rodríguez-Cortina, Raquel; Misson, Laurent; Joffre, Richard

    2012-06-01

    Mediterranean trees must adjust their canopy leaf area to the unpredictable timing and severity of summer drought. The impact of increased drought on the canopy dynamics of the evergreen Quercus ilex was studied by measuring shoot growth, leaf production, litterfall, leafing phenology and leaf demography in a mature forest stand submitted to partial throughfall exclusion for 7 years. The leaf area index rapidly declined in the throughfall-exclusion plot and was 19% lower than in the control plot after 7 years of treatment. Consequently, leaf litterfall was significantly lower in the dry treatment. Such a decline in leaf area occurred through a change in branch allometry with a decreased number of ramifications produced and a reduction of the leaf area supported per unit sapwood area of the shoot (LA/SA). The leafing phenology was slightly delayed and the median leaf life span was slightly longer in the dry treatment. The canopy dynamics in both treatments were driven by water availability with a 1-year lag: leaf shedding and production were reduced following dry years; in contrast, leaf turnover was increased following wet years. The drought-induced decrease in leaf area, resulting from both plasticity in shoot development and slower leaf turnover, appeared to be a hydraulic adjustment to limit canopy transpiration and maintain leaf-specific hydraulic conductivity under drier conditions.

  17. Genetics Home Reference: megalencephalic leukoencephalopathy with subcortical cysts

    MedlinePlus

    ... is unable to correctly transport GlialCAM and MLC1 proteins to cell junctions. It is unknown how a lack of functional MLC1 or GlialCAM protein at cell junctions in the brain impairs brain development and ...

  18. Determination of MLC model parameters for Monaco using commercial diode arrays.

    PubMed

    Kinsella, Paul; Shields, Laura; McCavana, Patrick; McClean, Brendan; Langan, Brian

    2016-07-08

    Multileaf collimators (MLCs) need to be characterized accurately in treatment planning systems to facilitate accurate intensity-modulated radiation therapy (IMRT) and volumetric-modulated arc therapy (VMAT). The aim of this study was to examine the use of MapCHECK 2 and ArcCHECK diode arrays for optimizing MLC parameters in Monaco X-ray voxel Monte Carlo (XVMC) dose calculation algorithm. A series of radiation test beams designed to evaluate MLC model parameters were delivered to MapCHECK 2, ArcCHECK, and EBT3 Gafchromic film for comparison. Initial comparison of the calculated and ArcCHECK-measured dose distributions revealed it was unclear how to change the MLC parameters to gain agreement. This ambiguity arose due to an insufficient sampling of the test field dose distributions and unexpected discrepancies in the open parts of some test fields. Consequently, the XVMC MLC parameters were optimized based on MapCHECK 2 measurements. Gafchromic EBT3 film was used to verify the accuracy of MapCHECK 2 measured dose distributions. It was found that adjustment of the MLC parameters from their default values resulted in improved global gamma analysis pass rates for MapCHECK 2 measurements versus calculated dose. The lowest pass rate of any MLC-modulated test beam improved from 68.5% to 93.5% with 3% and 2 mm gamma criteria. Given the close agreement of the optimized model to both MapCHECK 2 and film, the optimized model was used as a benchmark to highlight the relatively large discrepancies in some of the test field dose distributions found with ArcCHECK. Comparison between the optimized model-calculated dose and ArcCHECK-measured dose resulted in global gamma pass rates which ranged from 70.0%-97.9% for gamma criteria of 3% and 2 mm. The simple square fields yielded high pass rates. The lower gamma pass rates were attributed to the ArcCHECK overestimating the dose in-field for the rectangular test fields whose long axis was parallel to the long axis of the ArcCHECK. Considering ArcCHECK measurement issues and the lower gamma pass rates for the MLC-modulated test beams, it was concluded that MapCHECK 2 was a more suitable detector than ArcCHECK for the optimization process. © 2016 The Authors

  19. Peripheral doses from pediatric IMRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, Eric E.; Maserang, Beth; Wood, Roy

    Peripheral dose (PD) data exist for conventional fields ({>=}10 cm) and intensity-modulated radiotherapy (IMRT) delivery to standard adult-sized phantoms. Pediatric peripheral dose reports are limited to conventional therapy and are model based. Our goal was to ascertain whether data acquired from full phantom studies and/or pediatric models, with IMRT treatment times, could predict Organ at Risk (OAR) dose for pediatric IMRT. As monitor units (MUs) are greater for IMRT, it is expected IMRT PD will be higher; potentially compounded by decreased patient size (absorption). Baseline slab phantom peripheral dose measurements were conducted for very small field sizes (from 2 tomore » 10 cm). Data were collected at distances ranging from 5 to 72 cm away from the field edges. Collimation was either with the collimating jaws or the multileaf collimator (MLC) oriented either perpendicular or along the peripheral dose measurement plane. For the clinical tests, five patients with intracranial or base of skull lesions were chosen. IMRT and conventional three-dimensional (3D) plans for the same patient/target/dose (180 cGy), were optimized without limitation to the number of fields or wedge use. Six MV, 120-leaf MLC Varian axial beams were used. A phantom mimicking a 3-year-old was configured per Center for Disease Control data. Micro (0.125 cc) and cylindrical (0.6 cc) ionization chambers were appropriated for the thyroid, breast, ovaries, and testes. The PD was recorded by electrometers set to the 10{sup -10} scale. Each system set was uniquely calibrated. For the slab phantom studies, close peripheral points were found to have a higher dose for low energy and larger field size and when MLC was not deployed. For points more distant from the field edge, the PD was higher for high-energy beams. MLC orientation was found to be inconsequential for the small fields tested. The thyroid dose was lower for IMRT delivery than that predicted for conventional (ratio of IMRT/cnventional ranged from 0.47-0.94) doses {approx}[0.4-1.8 cGy]/[0.9-2.9 cGy]/fraction, respectively. Prior phantom reports are for fields 10 cm or greater, while pediatric central nervous system fields range from 4 to 7 cm, and effectively much smaller for IMRT (2-6 cm). Peripheral dose in close proximity (<10 cm from the field edge) is dominated by internal scatter; therefore, field-size differences overwhelm phantom size affects and increased MU. Distant peripheral dose, dominated by head leakage, was higher than predicted, even when accounting for MUs ({approx}factor of 3) likely due to the pediatric phantom size. The ratio of the testes dose ranged from 3.3-5.3 for IMRT/conventional. PD to OAR for pediatric IMRT cannot be predicted from large-field full phantom studies. For regional OAR, doses are likely lower than predicted by existing ''large field'' data, while the distant PD is higher.« less

  20. Interrelations of green oak leaf roller population and common oak: results of 30-year monitoring and mathematical modeling

    Treesearch

    V. V. Rubtsov; I. A. Utkina

    2003-01-01

    Long-term monitoring followed by mathematical modeling was used to describe the population dynamics of the green oak leaf roller Tortrix viridana L. over a period of 30 years and to study reactions of oak stands to different levels of defoliation. The mathematical model allows us to forecast the population dynamics of the green oak leaf roller and...

  1. A flexible Monte Carlo tool for patient or phantom specific calculations: comparison with preliminary validation measurements

    NASA Astrophysics Data System (ADS)

    Davidson, S.; Cui, J.; Followill, D.; Ibbott, G.; Deasy, J.

    2008-02-01

    The Dose Planning Method (DPM) is one of several 'fast' Monte Carlo (MC) computer codes designed to produce an accurate dose calculation for advanced clinical applications. We have developed a flexible machine modeling process and validation tests for open-field and IMRT calculations. To complement the DPM code, a practical and versatile source model has been developed, whose parameters are derived from a standard set of planning system commissioning measurements. The primary photon spectrum and the spectrum resulting from the flattening filter are modeled by a Fatigue function, cut-off by a multiplying Fermi function, which effectively regularizes the difficult energy spectrum determination process. Commonly-used functions are applied to represent the off-axis softening, increasing primary fluence with increasing angle ('the horn effect'), and electron contamination. The patient dependent aspect of the MC dose calculation utilizes the multi-leaf collimator (MLC) leaf sequence file exported from the treatment planning system DICOM output, coupled with the source model, to derive the particle transport. This model has been commissioned for Varian 2100C 6 MV and 18 MV photon beams using percent depth dose, dose profiles, and output factors. A 3-D conformal plan and an IMRT plan delivered to an anthropomorphic thorax phantom were used to benchmark the model. The calculated results were compared to Pinnacle v7.6c results and measurements made using radiochromic film and thermoluminescent detectors (TLD).

  2. Leaf Aging of Amazonian Canopy Trees: Insights to Tropical Ecological Processes and Satellited Detected Canopy Dynamics

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Malhi, Y.; Gerard, F.

    2015-12-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby, regulating ecosystem processes and remotely-sensed canopy dynamics. Leaf age is particularly important for carbon-rich tropical evergreen forests, as leaf demography (leaf age distribution) has been proposed as a major driver of seasonal productivity in these forests. We explore leaf reflectance as a tool to monitor leaf age and develop a novel spectra-based (PLSR) model to predict age using data from a phenological study of 1,072 leaves from 12 lowland Amazonian canopy tree species in southern Peru. Our results demonstrate monotonic decreases in LWC and Pmass and increase in LMA with age across species; Nmass and Cmassshowed monotonic but species-specific age responses. Spectrally, we observed large age-related variation across species, with the most age-sensitive spectral domains found to be: green peak (550nm), red edge (680-750 nm), NIR (700-850 nm), and around the main water absorption features (~1450 and ~1940 nm). A spectra-based model was more accurate in predicting leaf age (R2= 0.86; %RMSE= 33) compared to trait-based models using single (R2=0.07 to 0.73; %RMSE=7 to 38) and multiple predictors (step-wise analysis; R2=0.76; %RMSE=28). Spectral and trait-based models established a physiochemical basis for the spectral age model. The relative importance of the traits modifying the leaf spectra of aging leaves was: LWC>LMA>Nmass>Pmass,&Cmass. Vegetation indices (VIs), including NDVI, EVI2, NDWI and PRI were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity, and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing.

  3. Improving cardiovascular health of underserved populations in the community with Life's Simple 7.

    PubMed

    Murphy, Marcia Pencak; Coke, Lola; Staffileno, Beth A; Robinson, Janis D; Tillotson, Robin

    2015-11-01

    The purpose of this nurse practitioner (NP) led initiative was to improve the cardiovascular health of two underserved populations in the community using the American Heart Association (AHA) Life's Simple 7 and My Life Check (MLC) tools. Two inner city community sites were targeted: (a) a senior center servicing African American (AA) older adults, and (b) a residential facility servicing homeless women. Preprogram health data (blood pressure, cholesterol, blood glucose levels, body mass index, and health behaviors) were collected to calculate MLC scores. Postprogram health data were obtained on participants with the lowest MLC scores who completed the program. Eight older adults completed the program with a 37.1% increase in average MLC score (6.2 vs. 8.5). Ten women completed the program with a 9.3% decrease in average MLC score (4.3 vs. 3.9). Favorable benefits were observed in the AA older adults. In contrast, similar benefits were not observed in the women, which may be because of a constellation of social, environmental, biological, and mental health factors. NPs are prepared to target community-based settings to address the health of underserved populations. Engaging key stakeholders in the planning and implementation is essential for success. ©2015 American Association of Nurse Practitioners.

  4. The effect of iron on metronidazole activity against Trichomonas vaginalis in vitro.

    PubMed

    Elwakil, Hala Salah; Tawfik, Rania Ayman; Alam-Eldin, Yosra Hussein; Nassar, Doaa Ashraf

    2017-11-01

    Metronidazole is administered in an inactive form then activated to its cytotoxic form within the hydrogenosome of trichomonads. Two hydrogenosomal proteins, pyruvate ferredoxin oxidoreductase (PFOR) and ferredoxin, play a critical role in the reductive activation of metronidazole. The expression of these proteins and other hydrogenosomal proteins are likewise positively regulated by iron. In the present study, the effect of iron on minimal lethal concentration (MLC) of metronidazole on in vitro cultured Trichomonas vaginalis(T. vaginalis) isolates was investigated. Interestingly, Addition of Ferrous ammonium sulphate (FAS) to T. vaginalis culture led to decrease in the MLC of metronidazole. On using aerobic assay, MLC of metronidazole on untreated T. vaginalis of both isolates was 12.5 μg/ml that decreased to 0.38 μg/ml on FAS treated trichomonads. Also anaerobic assay revealed that MLC on untreated parasites was 3.12 μg/ml that decreased to 0.097 μg/ml and 0.19 μg/ml for isolate 1 and isolate 2 respectively after iron addition. It was concluded that, addition of iron to in vitro cultured T. vaginalis decreases metronidazole MLC that was detected by both aerobic and anaerobic assays. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. IL-4 inhibits the synthesis of IFN-gamma and induces the synthesis of IgE in human mixed lymphocyte cultures.

    PubMed

    Vercelli, D; Jabara, H H; Lauener, R P; Geha, R S

    1990-01-15

    The T cell-derived lymphokine IL-4 is essential for the induction of IgE synthesis by human lymphocytes. The IgE-inducing effect of IL-4 is antagonized by IFN-gamma. The secretion of IFN-gamma is vigorously triggered in MLC. Thus, IL-4-stimulated MLC represent a suitable model to characterize the functional antagonism between IL-4 and IFN-gamma. In this report, we show that rIL-4 consistently induced IgE synthesis when added to human primary MLC. IL-4-dependent IgE production required cognate T/B cell recognition, because it was inhibited by antibodies to CD3 and MHC class II (HlA-DR) Ag. A neutralizing anti-IFN-gamma mAb dramatically enhanced IL-4-dependent IgE synthesis by MLC, indicating that endogenous IFN-gamma is a major inhibitor of IgE production. More importantly, addition of rIL-4 markedly inhibited the release of IFN-gamma in supernatants of MLC and Con A-activated PBMC. The decrease in IFN-gamma protein was accompanied by a decreased expression of IFN-gamma mRNA transcripts. The downregulation of IFN-gamma by IL-4 is likely to play an important role in the IL-4-dependent induction of IgE synthesis.

  6. An increase or a decrease in myosin II phosphorylation inhibits macrophage motility

    PubMed Central

    1991-01-01

    Myosin II purified from mammalian non-muscle cells is phosphorylated on the 20-kD light chain subunit (MLC20) by the Ca2+/calmodulin-dependent enzyme myosin light chain kinase (MLCK). The importance of MLC20 phosphorylation in regulating cell motility was investigated by introducing either antibodies to MLCK (MK-Ab) or a Ca2+/calmodulin- independent, constitutively active form of MLCK (MK-) into macrophages. The effects of these proteins on cell motility were then determined using a quantitative chemotaxis assay. Chemotaxis is significantly diminished in macrophages containing MK-Ab compared to macrophages containing control antibodies. Moreover, there is an inverse relationship between the number of cells that migrate and the amount of MK-Ab introduced into cells. Interestingly, there is also an inverse relationship between the number of cells that migrate and the amount of MK- introduced into cells. Other experiments demonstrated that MK-Ab decreased intracellular MLC20 phosphorylation while MK- increased MLC20 phosphorylation. MK- also increased the amount of myosin associated with the cytoskeleton. These data demonstrate that the regulation of MLCK is an important aspect of cell motility and suggest that MLC20 phosphorylation must be maintained within narrow limits during translational motility by mammalian cells. PMID:2071674

  7. Transient up- and down-regulation of expression of myosin light chain 2 and myostatin mRNA mark the changes from stratified hyperplasia to muscle fiber hypertrophy in larvae of gilthead sea bream (Sparus aurata L.).

    PubMed

    Georgiou, Stella; Alami-Durante, Hélène; Power, Deborah M; Sarropoulou, Elena; Mamuris, Zissis; Moutou, Katerina A

    2016-02-01

    Hyperplasia and hypertrophy are the two mechanisms by which muscle develops and grows. We study these two mechanisms, during the early development of white muscle in Sparus aurata, by means of histology and the expression of structural and regulatory genes. A clear stage of stratified hyperplasia was identified early in the development of gilthead sea bream but ceased by 35 dph when hypertrophy took over. Mosaic recruitment of new white fibers began as soon as 60 dph. The genes mlc2a and mlc2b were expressed at various levels during the main phases of hyperplasia and hypertrophy. The genes myog and mlc2a were significantly up-regulated during the intensive stratified formation of new fibers and their expression was significantly correlated. Expression of mstn1 and igf1 increased at 35 dph, appeared to regulate the hyperplasia-to-hypertrophy transition, and may have stimulated the expression of mlc2a, mlc2b and col1a1 at the onset of mosaic hyperplasia. The up-regulation of mstn1 at transitional phases in muscle development indicates a dual regulatory role of myostatin in fish larval muscle growth.

  8. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework.

    PubMed

    Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W

    2017-06-01

    Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.

  9. Dosimetric Comparison of Intensity-Modulated Stereotactic Radiotherapy With Other Stereotactic Techniques for Locally Recurrent Nasopharyngeal Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kung, Shiris Wai Sum; Wu, Vincent Wing Cheung; Kam, Michael Koon Ming, E-mail: kamkm@yahoo.co

    2011-01-01

    Purpose: Locally recurrent nasopharyngeal carcinoma (NPC) patients can be salvaged by reirradiation with a substantial degree of radiation-related complications. Stereotactic radiotherapy (SRT) is widely used in this regard because of its rapid dose falloff and high geometric precision. The aim of this study was to examine whether the newly developed intensity-modulated stereotactic radiotherapy (IMSRT) has any dosimetric advantages over three other stereotactic techniques, including circular arc (CARC), static conformal beam (SmMLC), and dynamic conformal arc (mARC), in treating locally recurrent NPC. Methods and Materials: Computed tomography images of 32 patients with locally recurrent NPC, previously treated with SRT, were retrievedmore » from the stereotactic planning system for contouring and computing treatment plans. Treatment planning of each patient was performed for the four treatment techniques: CARC, SmMLC, mARC, and IMSRT. The conformity index (CI) and homogeneity index (HI) of the planning target volume (PTV) and doses to the organs at risk (OARs) and normal tissue were compared. Results: All four techniques delivered adequate doses to the PTV. IMSRT, SmMLC, and mARC delivered reasonably conformal and homogenous dose to the PTV (CI <1.47, HI <0.53), but not for CARC (p < 0.05). IMSRT presented with the smallest CI (1.37) and HI (0.40). Among the four techniques, IMSRT spared the greatest number of OARs, namely brainstem, temporal lobes, optic chiasm, and optic nerve, and had the smallest normal tissue volume in the low-dose region. Conclusion: Based on the dosimetric comparison, IMSRT was optimal for locally recurrent NPC by delivering a conformal and homogenous dose to the PTV while sparing OARs.« less

  10. Myosin light chain phosphorylation is critical for adaptation to cardiac stress.

    PubMed

    Warren, Sonisha A; Briggs, Laura E; Zeng, Huadong; Chuang, Joyce; Chang, Eileen I; Terada, Ryota; Li, Moyi; Swanson, Maurice S; Lecker, Stewart H; Willis, Monte S; Spinale, Francis G; Maupin-Furlowe, Julie; McMullen, Julie R; Moss, Richard L; Kasahara, Hideko

    2012-11-27

    Cardiac hypertrophy is a common response to circulatory or neurohumoral stressors as a mechanism to augment contractility. When the heart is under sustained stress, the hypertrophic response can evolve into decompensated heart failure, although the mechanism(s) underlying this transition remain largely unknown. Because phosphorylation of cardiac myosin light chain 2 (MLC2v), bound to myosin at the head-rod junction, facilitates actin-myosin interactions and enhances contractility, we hypothesized that phosphorylation of MLC2v plays a role in the adaptation of the heart to stress. We previously identified an enzyme that predominantly phosphorylates MLC2v in cardiomyocytes, cardiac myosin light-chain kinase (cMLCK), yet the role(s) played by cMLCK in regulating cardiac function in health and disease remain to be determined. We found that pressure overload induced by transaortic constriction in wild-type mice reduced phosphorylated MLC2v levels by ≈40% and cMLCK levels by ≈85%. To examine how a reduction in cMLCK and the corresponding reduction in phosphorylated MLC2v affect function, we generated Mylk3 gene-targeted mice and transgenic mice overexpressing cMLCK specifically in cardiomyocytes. Pressure overload led to severe heart failure in cMLCK knockout mice but not in mice with cMLCK overexpression in which cMLCK protein synthesis exceeded degradation. The reduction in cMLCK protein during pressure overload was attenuated by inhibition of ubiquitin-proteasome protein degradation systems. Our results suggest the novel idea that accelerated cMLCK protein turnover by the ubiquitin-proteasome system underlies the transition from compensated hypertrophy to decompensated heart failure as a result of reduced phosphorylation of MLC2v.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiyagarajan, Rajesh; Karrthick, KP; Kataria, Tejinder

    Purpose: Performing DQA for Bilateral (B-L) breast tomotherapy is a challenging task due to the limitation of any commercially available detector array or film. Aim of this study is to perform DQA for B-L breast tomotherapy plan using MLC fluence sinogram. Methods: Treatment plan was generated on Tomotherapy system for B-L breast tumour. B-L breast targets were given 50.4 Gy prescribed over 28 fractions. Plan is generated with 6 MV photon beam & pitch was set to 0.3. As the width of the total target is 39 cm (left & right) length is 20 cm. DQA plan delivered without anymore » phantom on the mega voltage computed tomography (MCVT) detector system. The pulses recorded by MVCT system were exported to the delivery analysis software (Tomotherapy Inc.) for reconstruction. The detector signals are reconstructed to a sonogram and converted to MLC fluence sonogram. The MLC fluence sinogram compared with the planned fluence sinogram. Also point dose measured with cheese phantom and ionization chamber to verify the absolute dose component Results: Planned fluence sinogram and reconstructed MLC fluence sinogram were compared using Gamma metric. MLC positional difference and intensity of the beamlet were used as parameters to evaluate gamma. 3 mm positional difference and 3% beamlet intensity difference were used set for gamma calculation. A total of 26784 non-zero beamlets were included in the analysis out of which 161 beamlets had gamma more than 1. The gamma passing rate found to be 99.4%. Point dose measurements were within 1.3% of the calculated dose. Conclusion: MLC fluence sinogram based delivery quality assurance performed for bilateral breast irradiation. This would be a suitable alternate for large volume targets like bilateral breast, Total body irradiation etc. However conventional method of DQA should be used to validate this method periodically.« less

  12. Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction.

    PubMed

    Ait-Belgnaoui, A; Han, W; Lamine, F; Eutamene, H; Fioramonti, J; Bueno, L; Theodorou, V

    2006-08-01

    Stress induced increase in colonic paracellular permeability results from epithelial cell cytoskeleton contraction and is responsible for stress induced hypersensitivity to colorectal distension (CRD). The probiotic Lactobacillus farciminis releases spontaneously nitric oxide (NO) in the colonic lumen in vivo and exerts anti-inflammatory effects. This study aimed: (i) to evaluate the effects of L farciminis on stress induced hypersensitivity to CRD and increase in colonic paracellular permeability; and (ii) to ascertain whether these effects are NO mediated and related to changes in colonocyte myosin light chain phosphorylation (p-MLC). Female Wistar rats received either 10(11) CFU/day of L farciminis or saline orally over 15 days before partial restraint stress (PRS) or sham-PRS application. Visceral sensitivity to CRD and colonic paracellular permeability was assessed after PRS or sham-PRS. Haemoglobin was used as an NO scavenger. Western blotting for MLC kinase, MLC, and p-MLC were performed in colonic mucosa from L farciminis treated and control rats after PRS or sham-PRS. PRS significantly increased the number of spike bursts for CRD pressures of 30-60 mm Hg as well as colonic paracellular permeability. L farciminis treatment prevented both effects, while haemoglobin reversed the protective effects of L farciminis. p-MLC expression increased significantly from 15 to 45 minutes after PRS, and L farciminis treatment prevented this increase. L farciminis treatment prevents stress induced hypersensitivity, increase in colonic paracellular permeability, and colonocyte MLC phosphorylation. This antinociceptive effect occurs via inhibition of contraction of colonic epithelial cell cytoskeleton and the subsequent tight junction opening, and may also involve direct or indirect effects of NO produced by this probiotic.

  13. Lactobacillus farciminis treatment suppresses stress induced visceral hypersensitivity: a possible action through interaction with epithelial cell cytoskeleton contraction

    PubMed Central

    Ait‐Belgnaoui, A; Han, W; Lamine, F; Eutamene, H; Fioramonti, J; Bueno, L; Theodorou, V

    2006-01-01

    Background Stress induced increase in colonic paracellular permeability results from epithelial cell cytoskeleton contraction and is responsible for stress induced hypersensitivity to colorectal distension (CRD). The probiotic Lactobacillus farciminis releases spontaneously nitric oxide (NO) in the colonic lumen in vivo and exerts anti‐inflammatory effects. This study aimed: (i) to evaluate the effects of L farciminis on stress induced hypersensitivity to CRD and increase in colonic paracellular permeability; and (ii) to ascertain whether these effects are NO mediated and related to changes in colonocyte myosin light chain phosphorylation (p‐MLC). Methods Female Wistar rats received either 1011 CFU/day of L farciminis or saline orally over 15 days before partial restraint stress (PRS) or sham‐PRS application. Visceral sensitivity to CRD and colonic paracellular permeability was assessed after PRS or sham‐PRS. Haemoglobin was used as an NO scavenger. Western blotting for MLC kinase, MLC, and p‐MLC were performed in colonic mucosa from L farciminis treated and control rats after PRS or sham‐PRS. Results PRS significantly increased the number of spike bursts for CRD pressures of 30–60 mm Hg as well as colonic paracellular permeability. L farciminis treatment prevented both effects, while haemoglobin reversed the protective effects of L farciminis. p‐MLC expression increased significantly from 15 to 45 minutes after PRS, and L farciminis treatment prevented this increase. Conclusion L farciminis treatment prevents stress induced hypersensitivity, increase in colonic paracellular permeability, and colonocyte MLC phosphorylation. This antinociceptive effect occurs via inhibition of contraction of colonic epithelial cell cytoskeleton and the subsequent tight junction opening, and may also involve direct or indirect effects of NO produced by this probiotic. PMID:16507583

  14. Testing the Role of Meander Cutoff in Promoting Gene Flow across a Riverine Barrier in Ground Skinks (Scincella lateralis)

    PubMed Central

    Jackson, Nathan D.; Austin, Christopher C.

    2013-01-01

    Despite considerable attention, the long-term impact of rivers on species diversification remains uncertain. Meander loop cutoff (MLC) is one river phenomenon that may compromise a river’s diversifying effects by passively transferring organisms from one side of the river to the other. However, the ability of MLC to promote gene flow across rivers has not been demonstrated empirically. Here, we test several predictions of MLC-mediated gene flow in populations of North American ground skinks (Scincella lateralis) separated by a well-established riverine barrier, the Mississippi River: 1) individuals collected from within meander cutoffs should be more closely related to individuals across the river than on the same side, 2) individuals within meander cutoffs should contain more immigrants than individuals away from meander cutoffs, 3) immigration rates estimated across the river should be highest in the direction of the cutoff event, and 4) the distribution of alleles native to one side of the river should be better predicted by the historical rather than current path of the river. To test these predictions we sampled 13 microsatellite loci and mitochondrial DNA from ground skinks collected near three ancient meander loops. These predictions were generally supported by genetic data, although support was stronger for mtDNA than for microsatellite data. Partial support for genetic divergence of samples within ancient meander loops also provides evidence for the MLC hypothesis. Although a role for MLC-mediated gene flow was supported here for ground skinks, the transient nature of river channels and morphologies may limit the long-term importance of MLC in stemming population divergence across major rivers. PMID:23658778

  15. FOREST-BGC, A general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets.

    PubMed

    Running, Steven W.; Gower, Stith T.

    1991-01-01

    A new version of the ecosystem process model FOREST-BGC is presented that uses stand water and nitrogen limitations to alter the leaf/root/stem carbon allocation fraction dynamically at each annual iteration. Water deficit is defined by integrating a daily soil water deficit fraction annually. Current nitrogen limitation is defined relative to a hypothetical optimum foliar N pool, computed as maximum leaf area index multiplied by maximum leaf nitrogen concentration. Decreasing availability of water or nitrogen, or both, reduces the leaf/root carbon partitioning ratio. Leaf and root N concentrations, and maximum leaf photosynthetic capacity are also redefined annually as functions of nitrogen availability. Test simulations for hypothetical coniferous forests were performed for Madison, WI and Missoula, MT, and showed simulated leaf area index ranging from 4.5 for a control stand at Missoula, to 11 for a fertilized stand at Madison, with Year 50 stem carbon biomasses of 31 and 128 Mg ha(-1), respectively. Total nitrogen incorporated into new tissue ranged from 34 kg ha(-1) year(-1) for the unfertilized Missoula stand, to 109 kg ha(-1) year(-1) for the fertilized Madison stand. The model successfully showed dynamic annual carbon partitioning controlled by water and nitrogen limitations.

  16. NOTE: Reducing the number of segments in unidirectional MLC segmentations

    NASA Astrophysics Data System (ADS)

    Mellado, X.; Cruz, S.; Artacho, J. M.; Canellas, M.

    2010-02-01

    In intensity-modulated radiation therapy (IMRT), fluence matrices obtained from a treatment planning system are usually delivered by a linear accelerator equipped with a multileaf collimator (MLC). A segmentation method is needed for decomposing these fluence matrices into segments suitable for the MLC, and the number of segments used is an important factor for treatment time. In this work, an algorithm for reduction of the number of segments (NS) is presented for unidirectional segmentations, where there is no backtracking of the MLC leaves. It uses a geometrical representation of the segmentation output for searching the key values in a fluence matrix that complicate its decomposition. The NS reduction is achieved by performing minor modifications in these values, under the conditions of avoiding substantial modifications of the dose-volume histogram, and does not increase in average the total number of monitor units delivered. The proposed method was tested using two clinical cases planned with the PCRT 3D® treatment planning system.

  17. SU-F-T-288: Impact of Trajectory Log Files for Clarkson-Based Independent Dose Verification of IMRT and VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takahashi, R; Kamima, T; Tachibana, H

    2016-06-15

    Purpose: To investigate the effect of the trajectory files from linear accelerator for Clarkson-based independent dose verification in IMRT and VMAT plans. Methods: A CT-based independent dose verification software (Simple MU Analysis: SMU, Triangle Products, Japan) with a Clarksonbased algorithm was modified to calculate dose using the trajectory log files. Eclipse with the three techniques of step and shoot (SS), sliding window (SW) and Rapid Arc (RA) was used as treatment planning system (TPS). In this study, clinically approved IMRT and VMAT plans for prostate and head and neck (HN) at two institutions were retrospectively analyzed to assess the dosemore » deviation between DICOM-RT plan (PL) and trajectory log file (TJ). An additional analysis was performed to evaluate MLC error detection capability of SMU when the trajectory log files was modified by adding systematic errors (0.2, 0.5, 1.0 mm) and random errors (5, 10, 30 mm) to actual MLC position. Results: The dose deviations for prostate and HN in the two sites were 0.0% and 0.0% in SS, 0.1±0.0%, 0.1±0.1% in SW and 0.6±0.5%, 0.7±0.9% in RA, respectively. The MLC error detection capability shows the plans for HN IMRT were the most sensitive and 0.2 mm of systematic error affected 0.7% dose deviation on average. Effect of the MLC random error did not affect dose error. Conclusion: The use of trajectory log files including actual information of MLC location, gantry angle, etc should be more effective for an independent verification. The tolerance level for the secondary check using the trajectory file may be similar to that of the verification using DICOM-RT plan file. From the view of the resolution of MLC positional error detection, the secondary check could detect the MLC position error corresponding to the treatment sites and techniques. This research is partially supported by Japan Agency for Medical Research and Development (AMED)« less

  18. Identification of T. gondii Myosin Light Chain-1 as a Direct Target of TachypleginA-2, a Small-Molecule Inhibitor of Parasite Motility and Invasion

    PubMed Central

    Leung, Jacqueline M.; Tran, Fanny; Pathak, Ravindra B.; Poupart, Séverine; Heaslip, Aoife T.; Ballif, Bryan A.; Westwood, Nicholas J.; Ward, Gary E.

    2014-01-01

    Motility of the protozoan parasite Toxoplasma gondii plays an important role in the parasite’s life cycle and virulence within animal and human hosts. Motility is driven by a myosin motor complex that is highly conserved across the Phylum Apicomplexa. Two key components of this complex are the class XIV unconventional myosin, TgMyoA, and its associated light chain, TgMLC1. We previously showed that treatment of parasites with a small-molecule inhibitor of T. gondii invasion and motility, tachypleginA, induces an electrophoretic mobility shift of TgMLC1 that is associated with decreased myosin motor activity. However, the direct target(s) of tachypleginA and the molecular basis of the compound-induced TgMLC1 modification were unknown. We show here by “click” chemistry labelling that TgMLC1 is a direct and covalent target of an alkyne-derivatized analogue of tachypleginA. We also show that this analogue can covalently bind to model thiol substrates. The electrophoretic mobility shift induced by another structural analogue, tachypleginA-2, was associated with the formation of a 225.118 Da adduct on S57 and/or C58, and treatment with deuterated tachypleginA-2 confirmed that the adduct was derived from the compound itself. Recombinant TgMLC1 containing a C58S mutation (but not S57A) was refractory to click labelling and no longer exhibited a mobility shift in response to compound treatment, identifying C58 as the site of compound binding on TgMLC1. Finally, a knock-in parasite line expressing the C58S mutation showed decreased sensitivity to compound treatment in a quantitative 3D motility assay. These data strongly support a model in which tachypleginA and its analogues inhibit the motility of T. gondii by binding directly and covalently to C58 of TgMLC1, thereby causing a decrease in the activity of the parasite’s myosin motor. PMID:24892871

  19. SU-G-BRB-03: Assessing the Sensitivity and False Positive Rate of the Integrated Quality Monitor (IQM) Large Area Ion Chamber to MLC Positioning Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boehnke, E McKenzie; DeMarco, J; Steers, J

    2016-06-15

    Purpose: To examine both the IQM’s sensitivity and false positive rate to varying MLC errors. By balancing these two characteristics, an optimal tolerance value can be derived. Methods: An un-modified SBRT Liver IMRT plan containing 7 fields was randomly selected as a representative clinical case. The active MLC positions for all fields were perturbed randomly from a square distribution of varying width (±1mm to ±5mm). These unmodified and modified plans were measured multiple times each by the IQM (a large area ion chamber mounted to a TrueBeam linac head). Measurements were analyzed relative to the initial, unmodified measurement. IQM readingsmore » are analyzed as a function of control points. In order to examine sensitivity to errors along a field’s delivery, each measured field was divided into 5 groups of control points, and the maximum error in each group was recorded. Since the plans have known errors, we compared how well the IQM is able to differentiate between unmodified and error plans. ROC curves and logistic regression were used to analyze this, independent of thresholds. Results: A likelihood-ratio Chi-square test showed that the IQM could significantly predict whether a plan had MLC errors, with the exception of the beginning and ending control points. Upon further examination, we determined there was ramp-up occurring at the beginning of delivery. Once the linac AFC was tuned, the subsequent measurements (relative to a new baseline) showed significant (p <0.005) abilities to predict MLC errors. Using the area under the curve, we show the IQM’s ability to detect errors increases with increasing MLC error (Spearman’s Rho=0.8056, p<0.0001). The optimal IQM count thresholds from the ROC curves are ±3%, ±2%, and ±7% for the beginning, middle 3, and end segments, respectively. Conclusion: The IQM has proven to be able to detect not only MLC errors, but also differences in beam tuning (ramp-up). Partially supported by the Susan Scott Foundation.« less

  20. SU-D-201-01: A Multi-Institutional Study Quantifying the Impact of Simulated Linear Accelerator VMAT Errors for Nasopharynx

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogson, E; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW; Ingham Institute for Applied Medical Research, Sydney, NSW

    Purpose: To quantify the impact of differing magnitudes of simulated linear accelerator errors on the dose to the target volume and organs at risk for nasopharynx VMAT. Methods: Ten nasopharynx cancer patients were retrospectively replanned twice with one full arc VMAT by two institutions. Treatment uncertainties (gantry angle and collimator in degrees, MLC field size and MLC shifts in mm) were introduced into these plans at increments of 5,2,1,−1,−2 and −5. This was completed using an in-house Python script within Pinnacle3 and analysed using 3DVH and MatLab. The mean and maximum dose were calculated for the Planning Target Volume (PTV1),more » parotids, brainstem, and spinal cord and then compared to the original baseline plan. The D1cc was also calculated for the spinal cord and brainstem. Patient average results were compared across institutions. Results: Introduced gantry angle errors had the smallest effect of dose, no tolerances were exceeded for one institution, and the second institutions VMAT plans were only exceeded for gantry angle of ±5° affecting different sided parotids by 14–18%. PTV1, brainstem and spinal cord tolerances were exceeded for collimator angles of ±5 degrees, MLC shifts and MLC field sizes of ±1 and beyond, at the first institution. At the second institution, sensitivity to errors was marginally higher for some errors including the collimator error producing doses exceeding tolerances above ±2 degrees, and marginally lower with tolerances exceeded above MLC shifts of ±2. The largest differences occur with MLC field sizes, with both institutions reporting exceeded tolerances, for all introduced errors (±1 and beyond). Conclusion: The plan robustness for VMAT nasopharynx plans has been demonstrated. Gantry errors have the least impact on patient doses, however MLC field sizes exceed tolerances even with relatively low introduced errors and also produce the largest errors. This was consistent across both departments. The authors acknowledge funding support from the NSW Cancer Council.« less

  1. Characterization of dynamic droplet impaction and deposit formation on leaf surfaces

    USDA-ARS?s Scientific Manuscript database

    Elucidation of droplet dynamic impaction and deposition formation on leaf surfaces would assist to optimize application strategies, improve biological control efficiency, and minimize pesticide waste. A custom-designed system consisting of two high-speed digital cameras and a uniform-size droplet ge...

  2. Nutrient dynamics and decomposition of riparian Arundinaria gigantea (Walt.)Muhl. leaves in southern Illinois

    USDA-ARS?s Scientific Manuscript database

    Leaf litter quality and quantity can influence soil nutrient dynamics and stream productivity through decomposition and serving as allochthonous stream inputs. Leaf deposition, nitrogen (N)-resorption efficiency and proficiency, and decomposition rates were analyzed in riparian stands of Arundinaria...

  3. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, L; Thomas, C; Syme, A

    2016-06-15

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depictingmore » the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases, without significant safety concerns that hinder immediate clinical implementation.« less

  4. Tomotherapy as a tool in image-guided radiation therapy (IGRT): theoretical and technological aspects

    PubMed Central

    Yartsev, S; Kron, T; Van Dyk, J

    2007-01-01

    Helical tomotherapy (HT) is a novel treatment approach that combines Intensity-Modulate Radiation Therapy (IMRT) delivery with in-built image guidance using megavoltage (MV) CT scanning. The technique utilises a 6 MV linear accelerator mounted on a CT type ring gantry. The beam is collimated to a fan beam, which is intensity modulated using a binary multileaf collimator (MLC). As the patient advances slowly through the ring gantry, the linac rotates around the patient with a leaf-opening pattern optimised to deliver a highly conformal dose distribution to the target in the helical beam trajectory. The unit also allows the acquisition of MVCT images using the same radiation source detuned to reduce its effective energy to 3.5 MV, making the dose required for imaging less than 3 cGy. This paper discusses the major features of HT and describes the advantages and disadvantages of this approach in the context of the commercial Hi-ART system. PMID:21614257

  5. Chemical characterisation and biological activity of leaf essential oils obtained from Pistacia terebinthus growing wild in Tunisia and Sardinia Island.

    PubMed

    Piras, Alessandra; Marzouki, Hanen; Maxia, Andrea; Marengo, Arianna; Porcedda, Silvia; Falconieri, Danilo; Gonçalves, Maria José; Cavaleiro, Carlos; Salgueiro, Ligia

    2017-11-01

    In the present work the chemical compositions, measured by GC and GC-MS, of the essential oils obtained by hydrodistillation from leaves of Pistacia terebinthus collected in Bizerte (Tunisia) and Baunei (Italy) are reported. Both essential oils possessed high content of monoterpene hydrocarbons (86.3% and 90.9%, respectively), being α-pinene (62.4 vs. 35.0)%, camphene (3.0 vs. 2.4)%, β-pinene (12.1 vs. 4.5)%, terpinolene (1.7 vs. 35.2)% and β-phellandrene (3.8 vs. 4.5)% the main components. The Tunisian essential oil exhibited higher antifungal activity than the Italian one. Cryptococcus neoformans and the majority of dermatophyte strains showed more sensitivity to the Tunisian oil, when compared to Candida strains, in particular Trichophyton rubrum, Microsporum canis and Epidermophyton floccosum, with MIC and MLC values in the range (0.16-0.32) μL/mL. The results obtained support the use of the oil from Tunisia for the treatment of dermatophytosis.

  6. Role of Rac1 in Escherichia coli K1 invasion of human brain microvascular endothelial cells.

    PubMed

    Rudrabhatla, Rajyalakshmi S; Selvaraj, Suresh K; Prasadarao, Nemani V

    2006-02-01

    Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) requires the reorganization of host cytoskeleton at the sites of bacterial entry. Both actin and myosin constitute the cytoskeletal architecture. We have previously shown that myosin light chain (MLC) phosphorylation by MLC kinase is regulated during E. coli invasion by an upstream kinase, p21-activated kinase 1 (PAK1), which is an effector protein of Rac and Cdc42 GTPases, but not of RhoA. Here, we report that the binding of only Rac1 to PAK1 decreases in HBMEC upon infection with E. coli K1, which resulted in increased phosphorylation of MLC. Overexpression of a constitutively active (cAc) form of Rac1 in HBMEC blocked the E. coli invasion significantly, whereas overexpression of a dominant negative form had no effect. Increased PAK1 phosphorylation was observed in HBMEC expressing cAc-Rac1 with a concomitant reduction in the phosphorylation of MLC. Immunocytochemistry studies demonstrated that the inhibition of E. coli invasion into cAc-Rac1/HBMEC is due to lack of phospho-MLC recruitment to the sites of E. coli entry. Taken together the data suggest that E. coli modulates the binding of Rac1, but not Cdc42, to PAK1 during the invasion of HBMEC.

  7. Leaf dynamics and profitability in wild strawberries.

    PubMed

    Jurik, Thomas W; Chabot, Brian F

    1986-05-01

    Leaf dynamics and carbon gain were evaluated for two species of wild strawberry, Fragaria virginiana and F. vesca. Five populations on sites representing a gradient of successional regrowth near Ithaca, N.Y., U.S.A., were studied for two or three years each. A computer-based model of plant growth and CO 2 exchange combined field studies of leaf biomass dynamics with previously-determined gas exchange rates to estimate carbon balances of leaves and whole plants in different environments.Leaves were produced throughout the growing season, although there was usually a decline in rate of leaf-production in mid-summer. Leaves produced in late spring had the largest area and longest lifespan (except for overwintering leaves produced in the fall). Specific Leaf Weight (SLW) varied little with time of leaf production, but differed greatly among populations; SLW increased with amount of light received in each habitat. The population in the most open habitat had the least seasonal variation in all leaf characters. F. vesca produced lighter, longer-lived leaves than F. virginiana.Simulations showed that age had the largest effect on leaf carbon gain in high-light environments; water stress and temperature had lesser effects. Leaf carbon gain in lowlight environments was relatively unaffected by age and environmental factors other than light. Leaves in high-light environments had the greatest lifetime profit and the greatest ratio of profit to cost. Increasing lifespan by 1/3 increased profit by 80% in low-light leaves and 50% in high-light leaves. Increasing the number of days during which the leaf had the potential to exhibit high photosynthetic rate in response to high light led to little change in profit of low-light leaves while increasing profit of high-light leaves by 49%.

  8. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    PubMed

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  9. Matching extended-SSD electron beams to multileaf collimated photon beams in the treatment of head and neck cancer.

    PubMed

    Steel, Jared; Stewart, Allan; Satory, Philip

    2009-09-01

    Matching the penumbra of a 6 MeV electron beam to the penumbra of a 6 MV photon beam is a dose optimization challenge, especially when the electron beam is applied from an extended source-to-surface distance (SSD), as in the case of some head and neck treatments. Traditionally low melting point alloy blocks have been used to define the photon beam shielding over the spinal cord region. However, these are inherently time consuming to construct and employ in the clinical situation. Multileaf collimators (MLCs) provide a fast and reproducible shielding option but generate geometrically nonconformal approximations to the desired beam edge definition. The effects of substituting Cerrobend for the MLC shielding mode in the context of beam matching with extended-SSD electron beams are the subject of this investigation. Relative dose beam data from a Varian EX 2100 linear accelerator were acquired in a water tank under the 6 MeV electron beam at both standard and extended-SSD and under the 6 MV photon beam defined by Cerrobend and a number of MLC stepping regimes. The effect of increasing the electron beam SSD on the beam penumbra was assessed. MLC stepping was also assessed in terms of the effects on both the mean photon beam penumbra and the intraleaf dose-profile nonuniformity relative to the MLC midleaf. Computational techniques were used to combine the beam data so as to simulate composite relative dosimetry in the water tank, allowing fine control of beam abutment gap variation. Idealized volumetric dosimetry was generated based on the percentage depth-dose data for the beam modes and the abutment geometries involved. Comparison was made between each composite dosimetry dataset and the relevant ideal dosimetry dataset by way of subtraction. Weighted dose-difference volume histograms (DDVHs) were produced, and these, in turn, summed to provide an overall dosimetry score for each abutment and shielding type/angle combination. Increasing the electron beam SSD increased the penumbra width (defined as the lateral distance of the 80% and 20% isodose contours) by 8-10 mm at the depths of 10-20 mm. Mean photon beam penumbra width increased with increased MLC stepping, and the mean MLC penumbra was approximately 1.5 times greater than that across the corresponding Cerrobend shielding. Intraleaf dose discrepancy in the direction orthogonal to the beam edge also increased with MLC stepping. The weighted DDVH comparison techniques allowed the composite dosimetry resulting from the interplay of the abovementioned variables to be ranked. The MLC dosimetry ranked as good or better than that resulting from beam matching with Cerrobend for all except large field overlaps (-2.5 mm gap). The results for the linear-weighted DDVH comparison suggest that optimal MLC abutment dosimetry results from an optical surface gap of around 1 +/- 0.5 mm. Furthermore, this appears reasonably lenient to abutment gap variation, such as that arising from uncertainty in beam markup or other setup errors.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riis, Hans L.; Zimmermann, Sune J.; Hjelm-Hansen, Mogens

    Purpose: The delivery of high quality stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) treatments to the patient requires knowledge of the position of the isocenter to submillimeter accuracy. To meet the requirements the deviation between the radiation and mechanical isocenters must be less than 1 mm. The use of add-on micromultileaf collimators ({mu}MLCs) in SRS and SRT is an additional challenge to the anticipated high-level geometric and dosimetric accuracy of the treatment. The aim of this work was to quantify the gantry excursions during rotation with and without an add-on {mu}MLC attached to the gantry head. In addition, the shiftmore » in the position of the isocenter and its correlation to the kV beam center of the cone-beam CT system was included in the study. Methods: The quantification of the gantry rotational performance was done using a pointer supported by an in-house made rigid holder attached to the gantry head of the accelerator. The pointer positions were measured using a digital theodolite. To quantify the effect of an {mu}MLC of 50 kg, the measurements were repeated with the {mu}MLC attached to the gantry head. The displacement of the isocenter due to an add-on {mu}MLC of 50 kg was also investigated. In case of the pointer measurement the {mu}MLC was simulated by weights attached to the gantry head. A method of least squares was applied to determine the position and displacement of the mechanical isocenter. Additionally, the displacement of the radiation isocenter was measured using a ball-bearing phantom and the electronic portal image device system. These measurements were based on 8 MV photon beams irradiated onto the ball from the four cardinal angles and two opposed collimator angles. The measurements and analysis of the data were carried out automatically using software delivered by the manufacturer. Results: The displacement of the mechanical isocenter caused by a 50 kg heavy {mu}MLC was found to be (-0.01 {+-} 0.05, -0.10 {+-} 0.03, -0.26 {+-} 0.05) mm in lateral, longitudinal, and vertical direction, respectively. Similarly, the displacement of the radiation isocenter was found to be (0.00 {+-} 0.03, -0.08 {+-} 0.06, -0.32 {+-} 0.02) mm. Good agreement was found between the displacement of the two isocenters. A displacement of the kV cone-beam CT beam center due to the attached weight of 50 kg could not be detected. Conclusions: General characteristics of the gantry arm excursions and displacements caused by an add-on {mu}MLC have been reported. A 50 kg heavy add-on {mu}MLC results in a isocenter displacement downward of 0.26-0.32 mm. The authors recommend that the beam center of the kV cone-beam CT image system should be matched to the isocenter related to the weight of the {mu}MLC. Consequently, the imperfections in isocenter localizations are transferred to the conventional radiotherapy where the clinical consequences of uncertainties in the submillimeter regime are negligible.« less

  11. Minimal-Level Cataloging: A Look at the Issues--A Symposium.

    ERIC Educational Resources Information Center

    Horny, Karen L.; And Others

    1986-01-01

    Six articles on pros and cons of minimal-level cataloging (MLC) highlight patron access and browsability, time and cost savings, network and bibliographic utility cooperation, standards, alternatives to MLC, levels of records, online catalogs, experimental cataloging program at University of Michigan, and experiences at Kent State University…

  12. Live dynamic analysis of the developing cardiovascular system in mice

    NASA Astrophysics Data System (ADS)

    Lopez, Andrew L.; Wang, Shang; Larin, Kirill V.; Larina, Irina V.

    2017-02-01

    The study of the developing cardiovascular system in mice is important for understanding human cardiogenesis and congenital heart defects. Our research focuses on imaging early development in the mouse embryo to specifically understand cardiovascular development under the regulation of dynamic factors like contractile force and blood flow using optical coherence tomography (OCT). We have previously developed an OCT based approach that combines static embryo culture and advanced image processing with computational modeling to live-image mouse embryos and obtain 4D (3D+time) cardiodynamic datasets. Here we present live 4D dynamic blood flow imaging of the early embryonic mouse heart in correlation with heart wall movement. We are using this approach to understand how specific mutations impact heart wall dynamics, and how this influences flow patterns and cardiogenesis. We perform studies in mutant embryos with cardiac phenotypes such as myosin regulatory light chain 2, atrial isoform (Mlc2a). This work is brings us closer to understanding the connections between dynamic mechanical factors and gene programs responsible for early cardiovascular development.

  13. Leaf Phenology of Amazonian Canopy Trees as Revealed by Spectral and Physiochemical Measurements

    NASA Astrophysics Data System (ADS)

    Chavana-Bryant, C.; Gerard, F. F.; Malhi, Y.; Enquist, B. J.; Asner, G. P.

    2013-12-01

    The phenological dynamics of terrestrial ecosystems reflect the response of the Earth's biosphere to inter- and intra-annual dynamics of climatic and hydrological regimes. Some Dynamic Global Vegetation Models (GDVMs) have predicted that by 2050 the Amazon rainforest will begin to dieback (Cox et al. 2000, Nature) or that the ecosystem will become unsustainable (Salazar et al. 2007, GRL). One major component in DGVMs is the simulation of vegetation phenology, however, modelers are challenged with the estimation of tropical phenology which is highly complex. Current modeled phenology is based on observations of temperate vegetation and accurate representation of tropical phenology is long overdue. Remote sensing (RS) data are a key tool in monitoring vegetation dynamics at regional and global scales. Of the many RS techniques available, time-series analysis of vegetation indices (VIs) has become the most common approach in monitoring vegetation phenology (Samanta et al. 2010, GRL; Bradley et al. 2011, GCB). Our research focuses on investigating the influence that age related variation in the spectral reflectance and physiochemical properties of leaves may have on VIs of tropical canopies. In order to do this, we collected a unique leaf and canopy phenological dataset at two different Amazonian sites: Inselberg, French Guyana (FG) and Tambopata, Peru (PE). Hyperspectral reflectance measurements were collected from 4,102 individual leaves sampled to represent different leaf ages and vertical canopy positions (top, mid and low canopy) from 20 different canopy tree species (8 in FG and 12 in PE). These leaf spectra were complemented with 1) leaf physical measurements: fresh and dry weight, area and thickness, LMA and LWC and 2) leaf chemical measurements: %N, %C, %P, C:N and d13C. Canopy level observations included top-of-canopy reflectance measurements obtained using a multispectral 16-band radiometer, leaf demography (tot. number and age distribution) and branch structural measurements (space between leaves, min. and max. season's growth and diameter) of two 1m branches harvested from each canopy level. Both leaf and canopy-level observations where collected monthly when trees where not in flush and weekly during the period of leaf flushing. Here, we present our leaf spectral and physiochemical results. Results show 1) changes in leaf spectral and physiochemical properties related to leaf age, 2) the most significant changes in the leaves' spectrum during different stages in their life cycle, and 3) how leaf spectral changes are related to changes in the chemical and physical properties of the leaves as they progress through their life cycle. Future work will involve the incorporation of leaf and canopy observations into a light canopy interaction model to investigate the possibility that seasonal variation in VIs may be driven by leaf aging as well as by the shedding or appearance of new leaves.

  14. Utilizing knowledge from prior plans in the evaluation of quality assurance

    NASA Astrophysics Data System (ADS)

    Stanhope, Carl; Wu, Q. Jackie; Yuan, Lulin; Liu, Jianfei; Hood, Rodney; Yin, Fang-Fang; Adamson, Justus

    2015-06-01

    Increased interest regarding sensitivity of pre-treatment intensity modulated radiotherapy and volumetric modulated arc radiotherapy (VMAT) quality assurance (QA) to delivery errors has led to the development of dose-volume histogram (DVH) based analysis. This paradigm shift necessitates a change in the acceptance criteria and action tolerance for QA. Here we present a knowledge based technique to objectively quantify degradations in DVH for prostate radiotherapy. Using machine learning, organ-at-risk (OAR) DVHs from a population of 198 prior patients’ plans were adapted to a test patient’s anatomy to establish patient-specific DVH ranges. This technique was applied to single arc prostate VMAT plans to evaluate various simulated delivery errors: systematic single leaf offsets, systematic leaf bank offsets, random normally distributed leaf fluctuations, systematic lag in gantry angle of the mutli-leaf collimators (MLCs), fluctuations in dose rate, and delivery of each VMAT arc with a constant rather than variable dose rate. Quantitative Analyses of Normal Tissue Effects in the Clinic suggests V75Gy dose limits of 15% for the rectum and 25% for the bladder, however the knowledge based constraints were more stringent: 8.48   ±   2.65% for the rectum and 4.90   ±   1.98% for the bladder. 19   ±   10 mm single leaf and 1.9   ±   0.7 mm single bank offsets resulted in rectum DVHs worse than 97.7% (2σ) of clinically accepted plans. PTV degradations fell outside of the acceptable range for 0.6   ±   0.3 mm leaf offsets, 0.11   ±   0.06 mm bank offsets, 0.6   ±   1.3 mm of random noise, and 1.0   ±   0.7° of gantry-MLC lag. Utilizing a training set comprised of prior treatment plans, machine learning is used to predict a range of achievable DVHs for the test patient’s anatomy. Consequently, degradations leading to statistical outliers may be identified. A knowledge based QA evaluation enables customized QA criteria per treatment site, institution and/or physician and can often be more sensitive to errors than criteria based on organ complication rates.

  15. Four-dimensional dose distributions of step-and-shoot IMRT delivered with real-time tumor tracking for patients with irregular breathing: Constant dose rate vs dose rate regulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Xiaocheng; Han-Oh, Sarah; Gui Minzhi

    2012-09-15

    Purpose: Dose-rate-regulated tracking (DRRT) is a tumor tracking strategy that programs the MLC to track the tumor under regular breathing and adapts to breathing irregularities during delivery using dose rate regulation. Constant-dose-rate tracking (CDRT) is a strategy that dynamically repositions the beam to account for intrafractional 3D target motion according to real-time information of target location obtained from an independent position monitoring system. The purpose of this study is to illustrate the differences in the effectiveness and delivery accuracy between these two tracking methods in the presence of breathing irregularities. Methods: Step-and-shoot IMRT plans optimized at a reference phase weremore » extended to remaining phases to generate 10-phased 4D-IMRT plans using segment aperture morphing (SAM) algorithm, where both tumor displacement and deformation were considered. A SAM-based 4D plan has been demonstrated to provide better plan quality than plans not considering target deformation. However, delivering such a plan requires preprogramming of the MLC aperture sequence. Deliveries of the 4D plans using DRRT and CDRT tracking approaches were simulated assuming the breathing period is either shorter or longer than the planning day, for 4 IMRT cases: two lung and two pancreatic cases with maximum GTV centroid motion greater than 1 cm were selected. In DRRT, dose rate was regulated to speed up or slow down delivery as needed such that each planned segment is delivered at the planned breathing phase. In CDRT, MLC is separately controlled to follow the tumor motion, but dose rate was kept constant. In addition to breathing period change, effect of breathing amplitude variation on target and critical tissue dose distribution is also evaluated. Results: Delivery of preprogrammed 4D plans by the CDRT method resulted in an average of 5% increase in target dose and noticeable increase in organs at risk (OAR) dose when patient breathing is either 10% faster or slower than the planning day. In contrast, DRRT method showed less than 1% reduction in target dose and no noticeable change in OAR dose under the same breathing period irregularities. When {+-}20% variation of target motion amplitude was present as breathing irregularity, the two delivery methods show compatible plan quality if the dose distribution of CDRT delivery is renormalized. Conclusions: Delivery of 4D-IMRT treatment plans, stemmed from 3D step-and-shoot IMRT and preprogrammed using SAM algorithm, is simulated for two dynamic MLC-based real-time tumor tracking strategies: with and without dose-rate regulation. Comparison of cumulative dose distribution indicates that the preprogrammed 4D plan is more accurately and efficiently conformed using the DRRT strategy, as it compensates the interplay between patient breathing irregularity and tracking delivery without compromising the segment-weight modulation.« less

  16. Improvement of multi-level resistive switching characteristics in solution-processed AlO x -based non-volatile resistive memory using microwave irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Tae; Cho, Won-Ju

    2018-01-01

    We fabricated a resistive random access memory (ReRAM) device on a Ti/AlO x /Pt structure with solution-processed AlO x switching layer using microwave irradiation (MWI), and demonstrated multi-level cell (MLC) operation. To investigate the effect of MWI power on the MLC characteristics, post-deposition annealing was performed at 600-3000 W after AlO x switching layer deposition, and the MLC operation was compared with as-deposited (as-dep) and conventional thermally annealing (CTA) treated devices. All solution-processed AlO x -based ReRAM devices exhibited bipolar resistive switching (BRS) behavior. We found that these devices have four-resistance states (2 bits) of MLC operation according to the modulation of the high-resistance state (HRSs) through reset voltage control. Particularly, compared to the as-dep and CTA ReRAM devices, the MWI-treated ReRAM devices showed a significant increase in the memory window and stable endurance for multi-level operation. Moreover, as the MWI power increased, excellent MLC characteristics were exhibited because the resistance ratio between each resistance state was increased. In addition, it exhibited reliable retention characteristics without deterioration at 25 °C and 85 °C for 10 000 s. Finally, the relationship between the chemical characteristics of the solution-processed AlO x switching layer and BRS-based multi-level operation according to the annealing method and MWI power was investigated using x-ray photoelectron spectroscopy.

  17. Coordinate changes of myosin light and heavy chain isoforms during forced fiber type transitions in rabbit muscle.

    PubMed

    Leeuw, T; Pette, D

    1996-01-01

    Skeletal muscle fibers are versatile entities, capable of changing their phenotype in response to altered functional demands. In the present study, fast-to-slow fiber type transitions were induced in rabbit tibialis anterior (fA) muscles by chronic low-frequency stimulation (CLFS). The time course of changes in relative protein concentrations of fast and slow myosin light chain (MLC) isoforms and changes in their relative synthesis rates by in vivo labeling with [35S]methionine were followed during stimulation periods of up to 60 days. Generally, relative synthesis rates and protein concentrations changed in parallel; i.e., fast isoforms decreased and slow isoforms increased. MLC3f, however, which turns over at a higher rate than the other light chains, exhibited a conspicuous discrepancy between a markedly reduced relative synthesis but only a moderate decrease in protein amount during the initial 2 weeks of CLFS. Apparently, MLC3f is regulated independent of MLC1f, with protein degradation playing an important role in its regulation. The exchange of fast MLC isoforms with their slow counterparts seemed to correspond to the ultimate fast-to-slow (MHCIIa-->MHCI) transition at the MHC level. However, due to an earlier onset of the fast-to-slow transition of the regulatory light chain and the delayed fast-to-slow exchange of the alkali light chains, a spectrum of hybrid isomyosins composed of fast and slow light and heavy chains must have existed transiently in transforming fibers. Such hybrid isomyosins appeared to be restricted to MHCIIa- and MHCI-based combinations. In conclusion, fiber type specific programs that normally coordinate the expression of myofibrillar protein isoforms seem to be maintained during fiber type transitions. Possible differences in post-transcriptional regulation may result in the transient accumulation of atypical combinations of fast and slow MLC and MHC isoforms, giving rise to the appearance of hybrid fibers under the conditions of forced fiber type conversion.

  18. Ultrasound-Guided Delivery of siRNA and a Chemotherapeutic Drug by Using Microbubble Complexes: In Vitro and In Vivo Evaluations in a Prostate Cancer Model.

    PubMed

    Bae, Yun Jung; Yoon, Young Il; Yoon, Tae-Jong; Lee, Hak Jong

    2016-01-01

    To evaluate the effectiveness of ultrasound and microbubble-liposome complex (MLC)-mediated delivery of siRNA and doxorubicin into prostate cancer cells and its therapeutic capabilities both in vitro and in vivo. Microbubble-liposome complexes conjugated with anti-human epidermal growth factor receptor type 2 (Her2) antibodies were developed to target human prostate cancer cell lines PC-3 and LNCaP. Intracellular delivery of MLC was observed by confocal microscopy. We loaded MLC with survivin-targeted small interfering RNA (siRNA) and doxorubicin, and delivered it into prostate cancer cells. The release of these agents was facilitated by ultrasound application. Cell viability was analyzed by MTT assay after the delivery of siRNA and doxorubicin. Survivin-targeted siRNA loaded MLC was delivered into the xenograft mouse tumor model. Western blotting was performed to quantify the expression of survivin in vivo. Confocal microscopy demonstrated substantial intracellular uptake of MLCs in LNCaP, which expresses higher levels of Her2 than PC-3. The viability of LNCaP cells was significantly reduced after the delivery of MLCs loaded with siRNA and doxorubicin (85.0 ± 2.9%), which was further potentiated by application of ultrasound (55.0 ± 3.5%, p = 0.009). Survivin expression was suppressed in vivo in LNCaP tumor xenograft model following the ultrasound and MLC-guided delivery of siRNA (77.4 ± 4.90% to 36.7 ± 1.34%, p = 0.027). Microbubble-liposome complex can effectively target prostate cancer cells, enabling intracellular delivery of the treatment agents with the use of ultrasound. Ultrasound and MLC-mediated delivery of survivin-targeted siRNA and doxorubicin can induce prostate cell apoptosis and block survivin expression in vitro and in vivo.

  19. SU-E-T-392: Evaluation of Ion Chamber/film and Log File Based QA to Detect Delivery Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C; Mason, B; Kirsner, S

    2015-06-15

    Purpose: Ion chamber and film (ICAF) is a method used to verify patient dose prior to treatment. More recently, log file based QA has been shown as an alternative for measurement based QA. In this study, we delivered VMAT plans with and without errors to determine if ICAF and/or log file based QA was able to detect the errors. Methods: Using two VMAT patients, the original treatment plan plus 7 additional plans with delivery errors introduced were generated and delivered. The erroneous plans had gantry, collimator, MLC, gantry and collimator, collimator and MLC, MLC and gantry, and gantry, collimator, andmore » MLC errors. The gantry and collimator errors were off by 4{sup 0} for one of the two arcs. The MLC error introduced was one in which the opening aperture didn’t move throughout the delivery of the field. For each delivery, an ICAF measurement was made as well as a dose comparison based upon log files. Passing criteria to evaluate the plans were ion chamber less and 5% and film 90% of pixels pass the 3mm/3% gamma analysis(GA). For log file analysis 90% of voxels pass the 3mm/3% 3D GA and beam parameters match what was in the plan. Results: Two original plans were delivered and passed both ICAF and log file base QA. Both ICAF and log file QA met the dosimetry criteria on 4 of the 12 erroneous cases analyzed (2 cases were not analyzed). For the log file analysis, all 12 erroneous plans alerted a mismatch in delivery versus what was planned. The 8 plans that didn’t meet criteria all had MLC errors. Conclusion: Our study demonstrates that log file based pre-treatment QA was able to detect small errors that may not be detected using an ICAF and both methods of were able to detect larger delivery errors.« less

  20. A stochastic convolution/superposition method with isocenter sampling to evaluate intrafraction motion effects in IMRT.

    PubMed

    Naqvi, Shahid A; D'Souza, Warren D

    2005-04-01

    Current methods to calculate dose distributions with organ motion can be broadly classified as "dose convolution" and "fluence convolution" methods. In the former, a static dose distribution is convolved with the probability distribution function (PDF) that characterizes the motion. However, artifacts are produced near the surface and around inhomogeneities because the method assumes shift invariance. Fluence convolution avoids these artifacts by convolving the PDF with the incident fluence instead of the patient dose. In this paper we present an alternative method that improves the accuracy, generality as well as the speed of dose calculation with organ motion. The algorithm starts by sampling an isocenter point from a parametrically defined space curve corresponding to the patient-specific motion trajectory. Then a photon is sampled in the linac head and propagated through the three-dimensional (3-D) collimator structure corresponding to a particular MLC segment chosen randomly from the planned IMRT leaf sequence. The photon is then made to interact at a point in the CT-based simulation phantom. Randomly sampled monoenergetic kernel rays issued from this point are then made to deposit energy in the voxels. Our method explicitly accounts for MLC-specific effects (spectral hardening, tongue-and-groove, head scatter) as well as changes in SSD with isocentric displacement, assuming that the body moves rigidly with the isocenter. Since the positions are randomly sampled from a continuum, there is no motion discretization, and the computation takes no more time than a static calculation. To validate our method, we obtained ten separate film measurements of an IMRT plan delivered on a phantom moving sinusoidally, with each fraction starting with a random phase. For 2 cm motion amplitude, we found that a ten-fraction average of the film measurements gave an agreement with the calculated infinite fraction average to within 2 mm in the isodose curves. The results also corroborate the existing notion that the interfraction dose variability due to the interplay between the MLC motion and breathing motion averages out over typical multifraction treatments. Simulation with motion waveforms more representative of real breathing indicate that the motion can produce penumbral spreading asymmetric about the static dose distributions. Such calculations can help a clinician decide to use, for example, a larger margin in the superior direction than in the inferior direction. In the paper we demonstrate that a 15 min run on a single CPU can readily illustrate the effect of a patient-specific breathing waveform, and can guide the physician in making informed decisions about margin expansion and dose escalation.

  1. Empirical determination of collimator scatter data for use in Radcalc commercial monitor unit calculation software: Implication for prostate volumetric modulated-arc therapy calculations.

    PubMed

    Richmond, Neil; Tulip, Rachael; Walker, Chris

    2016-01-01

    The aim of this work was to determine, by measurement and independent monitor unit (MU) check, the optimum method for determining collimator scatter for an Elekta Synergy linac with an Agility multileaf collimator (MLC) within Radcalc, a commercial MU calculation software package. The collimator scatter factors were measured for 13 field shapes defined by an Elekta Agility MLC on a Synergy linac with 6MV photons. The value of the collimator scatter associated with each field was also calculated according to the equation Sc=Sc(mlc)+Sc(corr)(Sc(open)-Sc(mlc)) with Sc(corr) varied between 0 and 1, where Sc(open) is the value of collimator scatter calculated from the rectangular collimator-defined field and Sc(mlc) the value using only the MLC-defined field shape by applying sector integration. From this the optimum value of the correction was determined as that which gives the minimum difference between measured and calculated Sc. Single (simple fluence modulation) and dual-arc (complex fluence modulation) treatment plans were generated on the Monaco system for prostate volumetric modulated-arc therapy (VMAT) delivery. The planned MUs were verified by absolute dose measurement in phantom and by an independent MU calculation. The MU calculations were repeated with values of Sc(corr) between 0 and 1. The values of the correction yielding the minimum MU difference between treatment planning system (TPS) and check MU were established. The empirically derived value of Sc(corr) giving the best fit to the measured collimator scatter factors was 0.49. This figure however was not found to be optimal for either the single- or dual-arc prostate VMAT plans, which required 0.80 and 0.34, respectively, to minimize the differences between the TPS and independent-check MU. Point dose measurement of the VMAT plans demonstrated that the TPS MUs were appropriate for the delivered dose. Although the value of Sc(corr) may be obtained by direct comparison of calculation with measurement, the efficacy of the value determined for VMAT-MU calculations are very much dependent on the complexity of the MLC delivery. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  2. TH-AB-202-05: BEST IN PHYSICS (JOINT IMAGING-THERAPY): First Online Ultrasound-Guided MLC Tracking for Real-Time Motion Compensation in Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ipsen, S; Bruder, R; Schweikard, A

    Purpose: While MLC tracking has been successfully used for motion compensation of moving targets, current real-time target localization methods rely on correlation models with x-ray imaging or implanted electromagnetic transponders rather than direct target visualization. In contrast, ultrasound imaging yields volumetric data in real-time (4D) without ionizing radiation. We report the first results of online 4D ultrasound-guided MLC tracking in a phantom. Methods: A real-time tracking framework was installed on a 4D ultrasound station (Vivid7 dimension, GE) and used to detect a 2mm spherical lead marker inside a water tank. The volumetric frame rate was 21.3Hz (47ms). The marker wasmore » rigidly attached to a motion stage programmed to reproduce nine tumor trajectories (five prostate, four lung). The 3D marker position from ultrasound was used for real-time MLC aperture adaption. The tracking system latency was measured and compensated by prediction for lung trajectories. To measure geometric accuracy, anterior and lateral conformal fields with 10cm circular aperture were delivered for each trajectory. The tracking error was measured as the difference between marker position and MLC aperture in continuous portal imaging. For dosimetric evaluation, 358° VMAT fields were delivered to a biplanar diode array dosimeter using the same trajectories. Dose measurements with and without MLC tracking were compared to a static reference dose using a 3%/3 mm γ-test. Results: The tracking system latency was 170ms. The mean root-mean-square tracking error was 1.01mm (0.75mm prostate, 1.33mm lung). Tracking reduced the mean γ-failure rate from 13.9% to 4.6% for prostate and from 21.8% to 0.6% for lung with high-modulation VMAT plans and from 5% (prostate) and 18% (lung) to 0% with low modulation. Conclusion: Real-time ultrasound tracking was successfully integrated with MLC tracking for the first time and showed similar accuracy and latency as other methods while holding the potential to measure target motion non-invasively. SI was supported by the Graduate School for Computing in Medicine and Life Science, German Excellence Initiative [grant DFG GSC 235/1].« less

  3. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model

    USGS Publications Warehouse

    Euskirchen, E.S.; Carman, T.B.; McGuire, Anthony David

    2013-01-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970 -2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared to simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.

  4. Changes in the structure and function of northern Alaskan ecosystems when considering variable leaf-out times across groupings of species in a dynamic vegetation model.

    PubMed

    Euskirchen, Eugénie S; Carman, Tobey B; McGuire, A David

    2014-03-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970-2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared with simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf-out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf-out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions. © 2013 John Wiley & Sons Ltd.

  5. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements.

    PubMed

    Chavana-Bryant, Cecilia; Malhi, Yadvinder; Wu, Jin; Asner, Gregory P; Anastasiou, Athanasios; Enquist, Brian J; Cosio Caravasi, Eric G; Doughty, Christopher E; Saleska, Scott R; Martin, Roberta E; Gerard, France F

    2017-05-01

    Leaf aging is a fundamental driver of changes in leaf traits, thereby regulating ecosystem processes and remotely sensed canopy dynamics. We explore leaf reflectance as a tool to monitor leaf age and develop a spectra-based partial least squares regression (PLSR) model to predict age using data from a phenological study of 1099 leaves from 12 lowland Amazonian canopy trees in southern Peru. Results demonstrated monotonic decreases in leaf water (LWC) and phosphorus (P mass ) contents and an increase in leaf mass per unit area (LMA) with age across trees; leaf nitrogen (N mass ) and carbon (C mass ) contents showed monotonic but tree-specific age responses. We observed large age-related variation in leaf spectra across trees. A spectra-based model was more accurate in predicting leaf age (R 2  = 0.86; percent root mean square error (%RMSE) = 33) compared with trait-based models using single (R 2  = 0.07-0.73; %RMSE = 7-38) and multiple (R 2  = 0.76; %RMSE = 28) predictors. Spectra- and trait-based models established a physiochemical basis for the spectral age model. Vegetation indices (VIs) including the normalized difference vegetation index (NDVI), enhanced vegetation index 2 (EVI2), normalized difference water index (NDWI) and photosynthetic reflectance index (PRI) were all age-dependent. This study highlights the importance of leaf age as a mediator of leaf traits, provides evidence of age-related leaf reflectance changes that have important impacts on VIs used to monitor canopy dynamics and productivity and proposes a new approach to predicting and monitoring leaf age with important implications for remote sensing. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  6. Purification, Characterization and Analysis of the Allergenic Properties of Myosin Light Chain in Procambarus clarkia.

    USDA-ARS?s Scientific Manuscript database

    Myosin light chain (MLC) plays a vital role in cell and muscle functions and has been identified as an allergen in close species. In this study, MLC with the molecular mass of 18kDa was purified from crayfish (Procambarus clarkii) muscle fibrils. Its physicochemical characterization showed that the...

  7. Role of soil-to-leaf tritium transfer in controlling leaf tritium dynamics: Comparison of experimental garden and tritium-transfer model results.

    PubMed

    Ota, Masakazu; Kwamena, Nana-Owusua A; Mihok, Steve; Korolevych, Volodymyr

    2017-11-01

    Environmental transfer models assume that organically-bound tritium (OBT) is formed directly from tissue-free water tritium (TFWT) in environmental compartments. Nevertheless, studies in the literature have shown that measured OBT/HTO ratios in environmental samples are variable and generally higher than expected. The importance of soil-to-leaf HTO transfer pathway in controlling the leaf tritium dynamics is not well understood. A model inter-comparison of two tritium transfer models (CTEM-CLASS-TT and SOLVEG-II) was carried out with measured environmental samples from an experimental garden plot set up next to a tritium-processing facility. The garden plot received one of three different irrigation treatments - no external irrigation, irrigation with low tritium water and irrigation with high tritium water. The contrast between the results obtained with the different irrigation treatments provided insights into the impact of soil-to-leaf HTO transfer on the leaf tritium dynamics. Concentrations of TFWT and OBT in the garden plots that were not irrigated or irrigated with low tritium water were variable, responding to the arrival of the HTO-plume from the tritium-processing facility. In contrast, for the plants irrigated with high tritium water, the TFWT concentration remained elevated during the entire experimental period due to a continuous source of high HTO in the soil. Calculated concentrations of OBT in the leaves showed an initial increase followed by quasi-equilibration with the TFWT concentration. In this quasi-equilibrium state, concentrations of OBT remained elevated and unchanged despite the arrivals of the plume. These results from the model inter-comparison demonstrate that soil-to-leaf HTO transfer significantly affects tritium dynamics in leaves and thereby OBT/HTO ratio in the leaf regardless of the atmospheric HTO concentration, only if there is elevated HTO concentrations in the soil. The results of this work indicate that assessment models should be refined to consider the importance of soil-to-leaf HTO transfer to ensure that dose estimates are accurate and conservative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Leaf-litter inputs from an invasive nitrogen-fixing tree influence organic-matter dynamics and nitrogen inputs in a Hawaiian river

    Treesearch

    Richard A. MacKenzie; Tracy N. Wiegner; Frances Kinslow; Nicole Cormier; Ayron M. Strauch

    2013-01-01

    Abstract. We examined how invasion of tropical riparian forests by an exotic N-fixing tree (Falcataria moluccana) affects organic-matter dynamics in a Hawaiian river by comparing early stages of leaf-litter breakdown between the exotic F. moluccana and native Metrosideros polymorpha trees. We examined early...

  9. Isolation and characterization of ventricular-like cells derived from NKX2-5eGFP/w and MLC2vmCherry/w double knock-in human pluripotent stem cells.

    PubMed

    Yamauchi, Kaori; Li, Junjun; Morikawa, Kumi; Liu, Li; Shirayoshi, Yasuaki; Nakatsuji, Norio; Elliott, David A; Hisatome, Ichiro; Suemori, Hirofumi

    2018-01-01

    Human pluripotent stem cell (hPSC)-derived cardiomyocytes (CMs) are a promising source for cell transplantation into the damaged heart, which has limited regenerative ability. Many methods have been developed to obtain large amounts of functional CMs from hPSCs for therapeutic applications. However, during the differentiation process, a mixed population of various cardiac cells, including ventricular, atrial, and pacemaker cells, is generated, which hampers the proper functional analysis and evaluation of cell properties. Here, we established NKX2-5 eGFP/w and MLC2v mCherry/w hPSC double knock-ins that allow for labeling, tracing, purification, and analysis of the development of ventricular cells from early to late stages. As with the endogenous transcriptional activities of these genes, MLC2v-mCherry expression following NKX2-5-eGFP expression was observed under previously established culture conditions, which mimic the in vivo cardiac developmental process. Patch-clamp and microelectrode array electrophysiological analyses showed that the NKX2-5 and MLC2v double-positive cells possess ventricular-like properties. The results demonstrate that the NKX2-5 eGFP/w and MLC2v mCherry/w hPSCs provide a powerful model system to capture region-specific cardiac differentiation from early to late stages. Our study would facilitate subtype-specific cardiac development and functional analysis using the hPSC-derived sources. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. SU-F-P-36: Automation of Linear Accelerator Star Shot Measurement with Advanced XML Scripting and Electronic Portal Imaging Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, N; Knutson, N; Schmidt, M

    Purpose: To verify a method used to automatically acquire jaw, MLC, collimator and couch star shots for a Varian TrueBeam linear accelerator utilizing Developer Mode and an Electronic Portal Imaging Device (EPID). Methods: An XML script was written to automate motion of the jaws, MLC, collimator and couch in TrueBeam Developer Mode (TBDM) to acquire star shot measurements. The XML script also dictates MV imaging parameters to facilitate automatic acquisition and recording of integrated EPID images. Since couch star shot measurements cannot be acquired using a combination of EPID and jaw/MLC collimation alone due to a fixed imager geometry, amore » method utilizing a 5mm wide steel ruler placed on the table and centered within a 15×15cm2 open field to produce a surrogate of the narrow field aperture was investigated. Four individual star shot measurements (X jaw, Y jaw, MLC and couch) were obtained using our proposed as well as traditional film-based method. Integrated EPID images and scanned measurement films were analyzed and compared. Results: Star shot (X jaw, Y jaw, MLC and couch) measurements were obtained in a single 5 minute delivery using the TBDM XML script method compared to 60 minutes for equivalent traditional film measurements. Analysis of the images and films demonstrated comparable isocentricity results, agreeing within 0.3mm of each other. Conclusion: The presented automatic approach of acquiring star shot measurements using TBDM and EPID has proven to be more efficient than the traditional film approach with equivalent results.« less

  11. Real-time auto-adaptive margin generation for MLC-tracked radiotherapy

    NASA Astrophysics Data System (ADS)

    Glitzner, M.; Fast, M. F.; de Senneville, B. Denis; Nill, S.; Oelfke, U.; Lagendijk, J. J. W.; Raaymakers, B. W.; Crijns, S. P. M.

    2017-01-01

    In radiotherapy, abdominal and thoracic sites are candidates for performing motion tracking. With real-time control it is possible to adjust the multileaf collimator (MLC) position to the target position. However, positions are not perfectly matched and position errors arise from system delays and complicated response of the electromechanic MLC system. Although, it is possible to compensate parts of these errors by using predictors, residual errors remain and need to be compensated to retain target coverage. This work presents a method to statistically describe tracking errors and to automatically derive a patient-specific, per-segment margin to compensate the arising underdosage on-line, i.e. during plan delivery. The statistics of the geometric error between intended and actual machine position are derived using kernel density estimators. Subsequently a margin is calculated on-line according to a selected coverage parameter, which determines the amount of accepted underdosage. The margin is then applied onto the actual segment to accommodate the positioning errors in the enlarged segment. The proof-of-concept was tested in an on-line tracking experiment and showed the ability to recover underdosages for two test cases, increasing {{V}90 %} in the underdosed area about 47 % and 41 % , respectively. The used dose model was able to predict the loss of dose due to tracking errors and could be used to infer the necessary margins. The implementation had a running time of 23 ms which is compatible with real-time requirements of MLC tracking systems. The auto-adaptivity to machine and patient characteristics makes the technique a generic yet intuitive candidate to avoid underdosages due to MLC tracking errors.

  12. HRR Upgrade to mass loss calorimeter and modified Schlyter test for FR Wood

    Treesearch

    Mark A. Dietenberger; Charles R. Boardman

    2013-01-01

    Enhanced Heat Release Rate (HRR) methodology has been extended to the Mass Loss Calorimeter (MLC) and the Modified Schlyter flame spread test to evaluate fire retardant effectiveness used on wood based materials. Modifications to MLC include installation of thermopile on the chimney walls to correct systematic errors to the sensible HRR calculations to account for...

  13. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    NASA Astrophysics Data System (ADS)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  14. Growth response by big-leaf mahogany (Swietenia macrophylla) advance seedling regeneration to overhead canopy release in southeast Pará, Brazil

    Treesearch

    James Grogana; R. Matthew Landisc; Mark S. Ashtona; Jurandir Galva˜od

    2005-01-01

    Big-leaf mahogany (Swietenia macrophylla) is a valuable neotropical timber species whose seedling survival and growth dynamics in natural forests are poorly understood. To document regeneration dynamics of mahogany in seasonal transitional evergreen forests of southeast Pará, Brazil, we followed naturally established seedlings in the forest understory...

  15. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment

    Treesearch

    S. C. Stark; V. Leitold; J. L. Wu; M. O. Hunter; C. V. de Castilho; F. R. C. Costa; S. M. McMahon; G. G. Parker; M. Takako Shimabukuro; M. A. Lefsky; M. Keller; L. F. Alves; J. Schietti; Y. E. Shimabukuro; D. O. Brandao; T. K. Woodcock; N. Higuchi; P. B de Camargo; R. C. de Oliveira; S. R. Saleska

    2012-01-01

    Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) – remotely estimated from LiDAR – control variation in above-ground coarse wood production (biomass growth). Using a statistical model, these factors predicted biomass growth...

  16. TH-E-BRE-04: An Online Replanning Algorithm for VMAT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahunbay, E; Li, X; Moreau, M

    2014-06-15

    Purpose: To develop a fast replanning algorithm based on segment aperture morphing (SAM) for online replanning of volumetric modulated arc therapy (VMAT) with flattening filtered (FF) and flattening filter free (FFF) beams. Methods: A software tool was developed to interface with a VMAT planning system ((Monaco, Elekta), enabling the output of detailed beam/machine parameters of original VMAT plans generated based on planning CTs for FF or FFF beams. A SAM algorithm, previously developed for fixed-beam IMRT, was modified to allow the algorithm to correct for interfractional variations (e.g., setup error, organ motion and deformation) by morphing apertures based on themore » geometric relationship between the beam's eye view of the anatomy from the planning CT and that from the daily CT for each control point. The algorithm was tested using daily CTs acquired using an in-room CT during daily IGRT for representative prostate cancer cases along with their planning CTs. The algorithm allows for restricted MLC leaf travel distance between control points of the VMAT delivery to prevent SAM from increasing leaf travel, and therefore treatment delivery time. Results: The VMAT plans adapted to the daily CT by SAM were found to improve the dosimetry relative to the IGRT repositioning plans for both FF and FFF beams. For the adaptive plans, the changes in leaf travel distance between control points were < 1cm for 80% of the control points with no restriction. When restricted to the original plans' maximum travel distance, the dosimetric effect was minimal. The adaptive plans were delivered successfully with similar delivery times as the original plans. The execution of the SAM algorithm was < 10 seconds. Conclusion: The SAM algorithm can quickly generate deliverable online-adaptive VMAT plans based on the anatomy of the day for both FF and FFF beams.« less

  17. SU-F-T-310: Does a Head-Mounted Ionization Chamber Detect IMRT Errors?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wegener, S; Herzog, B; Sauer, O

    2016-06-15

    Purpose: The conventional plan verification strategy is delivering a plan to a QA-phantom before the first treatment. Monitoring each fraction of the patient treatment in real-time would improve patient safety. We evaluated how well a new detector, the IQM (iRT Systems, Germany), is capable of detecting errors we induced into IMRT plans of three different treatment regions. Results were compared to an established phantom. Methods: Clinical plans of a brain, prostate and head-and-neck patient were modified in the Pinnacle planning system, such that they resulted in either several percent lower prescribed doses to the target volume or several percent highermore » doses to relevant organs at risk. Unaltered plans were measured on three days, modified plans once, each with the IQM at an Elekta Synergy with an Agility MLC. All plans were also measured with the ArcCHECK with the cavity plug and a PTW semiflex 31010 ionization chamber inserted. Measurements were evaluated with SNC patient software. Results: Repeated IQM measurements of the original plans were reproducible, such that a 1% deviation from the mean as warning and 3% as action level as suggested by the manufacturer seemed reasonable. The IQM detected most of the simulated errors including wrong energy, a faulty leaf, wrong trial exported and a 2 mm shift of one leaf bank. Detection limits were reached for two plans - a 2 mm field position error and a leaf bank offset combined with an MU change. ArcCHECK evaluation according to our current standards also left undetected errors. Ionization chamber evaluation alone would leave most errors undetected. Conclusion: The IQM detected most errors and performed as well as currently established phantoms with the advantage that it can be used throughout the whole treatment. Drawback is that it does not indicate the source of the error.« less

  18. MO-H-19A-02: Investigation of Modulated Electron Arc (MeArc) Therapy for the Treatment of Scalp Tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, A; Al-Azhar University, Cairo; Jin, L

    2014-06-15

    Purpose: Electron arc therapy has long been proposed as the most suitable technique for the treatment of superficial tumors that follow circularly curved surfaces. However it was challenged by unsuitability of the conventional applicators and the lack of adequate 3-D dose calculation tools for arc electron beams in the treatment planning systems (TPS). Now with the availability of an electron specific multi-leaf collimator (eMLC) and an in-house Monte Carlo (MC) based TPS, we were motivated to investigate more advanced modulated electron arc (MeARC) therapy and its beneficial outcome. Methods: We initiated the study by a film measurement conducted in amore » head and neck phantom, where we delivered electron arcs in a step and shoot manner using the light field as a guide to avoid fields abutments. This step was done to insure enough clearance for the arcs with eMLC. MCBEAM and MCPLAN MC codes were used for the treatment head simulation and phantom dose calculation, respectively. Treatment plans were generated for targets drawn in real patient CTs and head and neck phantom. We utilized beams eye view available from a commercial planning system to create beamlets having same isocenter and adjoined at the scalp surface. Then dose-deposition coefficients from those beamlets were calculated for all electron energies using MCPLAN. An in-house optimization code was then used to find the optimum weights needed from individual beamlets. Results: MeARC showed a nicely tailored dose distribution around the circular curved target on the scalp. Some hot spots were noticed and could be attributed to fields abutment problem owing to the bulging nature of electron profiles. Brain dose was shown to be at lower levels compared to photon treatment. Conclusion: MeARC was shown to be a promising modality for treating scalp cases and could be beneficial to all superficial tumors with a circular curvature.« less

  19. SU-F-T-493: An Investigation Into the Feasibility of Using PipsPro Software with Film for Linac QA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Underwood, R

    2016-06-15

    Purpose: To determine the feasibility of using radiochromic and radiographic film with Pipspro software for quality assurance of linear accelerators with no on-board imaging. Methods: The linear accelerator being used is a Varian Clinac 21EX. All IGRT is performed using the BrainLab ExacTrac system. Because of the lack of on board imaging, certain monthly and annual TG-142 quality assurance tests are more difficult to perform and analyze to a high degree of accuracy. Pipspro was not designed to be used with hard film, and to our knowledge its use with film had not been investigated. The film used will bemore » GafChromic EBT3 film and Kodak EDR2 film, scanned with an Epson V700 scanner. The following routine tests will be attempted: MLC picket fence, light vs. radiation field coincidence, starshots, and MLC transmission. Results: The only tests that gave accurate and reliable results were the couch, gantry, and collimator starshots. Typical MV and kV images are acquired with a much higher level of contrast between the irradiated and non-irradiated areas when compared to film. Pipspro relies on this level of contrast to be able to automatically detect the fiducial points from its phantom devices, leaf edges for picket fence and transmission tests, and jaw edges for light vs. radiation field tests. Because of this, certain tests gave erroneous results and others were not able to be performed in the software at all, with either type of film. The number of monitor units delivered to the film, the experimental setup, and the scan settings was not able to rectify the problem. Conclusion: For linear accelerators with no on-board imaging, it is not recommended to use hard film with PipsPro to perform TG-142 quality assurance tests. Other software or methods should instead be investigated.« less

  20. Automation of a Linear Accelerator Dosimetric Quality Assurance Program

    NASA Astrophysics Data System (ADS)

    Lebron Gonzalez, Sharon H.

    According to the American Society of Radiation Oncology, two-thirds of all cancer patients will receive radiation therapy during their illness with the majority of the treatments been delivered by a linear accelerator (linac). Therefore, quality assurance (QA) procedures must be enforced in order to deliver treatments with a machine in proper conditions. The overall goal of this project is to automate the linac's dosimetric QA procedures by analyzing and accomplishing various tasks. First, the photon beam dosimetry (i.e. total scatter correction factor, infinite percentage depth dose (PDD) and profiles) were parameterized. Parameterization consists of defining the parameters necessary for the specification of a dosimetric quantity model creating a data set that is portable and easy to implement for different applications including: beam modeling data input into a treatment planning system (TPS), comparing measured and TPS modelled data, the QA of a linac's beam characteristics, and the establishment of a standard data set for comparison with other data, etcetera. Second, this parameterization model was used to develop a universal method to determine the radiation field size of flattened (FF), flattening-filter-free (FFF) and wedge beams which we termed the parameterized gradient method (PGM). Third, the parameterized model was also used to develop a profile-based method for assessing the beam quality of photon FF and FFF beams using an ionization chamber array. The PDD and PDD change was also predicted from the measured profile. Lastly, methods were created to automate the multileaf collimator (MLC) calibration and QA procedures as well as the acquisition of the parameters included in monthly and annual photon dosimetric QA. A two field technique was used for the calculation of the MLC leaf relative offsets using an electronic portal imaging device (EPID). A step-and-shoot technique was used to accurately acquire the radiation field size, flatness, symmetry, output and beam quality specifiers in a single delivery to an ionization chamber array for FF and FFF beams.

  1. Estimating the uncertainty of calculated out-of-field organ dose from a commercial treatment planning system.

    PubMed

    Wang, Lilie; Ding, George X

    2018-06-12

    Therapeutic radiation to cancer patients is accompanied by unintended radiation to organs outside the treatment field. It is known that the model-based dose algorithm has limitation in calculating the out-of-field doses. This study evaluated the out-of-field dose calculated by the Varian Eclipse treatment planning system (v.11 with AAA algorithm) in realistic treatment plans with the goal of estimating the uncertainties of calculated organ doses. Photon beam phase-space files for TrueBeam linear accelerator were provided by Varian. These were used as incident sources in EGSnrc Monte Carlo simulations of radiation transport through the downstream jaws and MLC. Dynamic movements of the MLC leaves were fully modeled based on treatment plans using IMRT or VMAT techniques. The Monte Carlo calculated out-of-field doses were then compared with those calculated by Eclipse. The dose comparisons were performed for different beam energies and treatment sites, including head-and-neck, lung, and pelvis. For 6 MV (FF/FFF), 10 MV (FF/FFF), and 15 MV (FF) beams, Eclipse underestimated out-of-field local doses by 30%-50% compared with Monte Carlo calculations when the local dose was <1% of prescribed dose. The accuracy of out-of-field dose calculations using Eclipse is improved when collimator jaws were set at the smallest possible aperture for MLC openings. The Eclipse system consistently underestimates out-of-field dose by a factor of 2 for all beam energies studied at the local dose level of less than 1% of prescribed dose. These findings are useful in providing information on the uncertainties of out-of-field organ doses calculated by Eclipse treatment planning system. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  2. Short-term effect of nutrient availability and rainfall distribution on biomass production and leaf nutrient content of savanna tree species.

    PubMed

    Barbosa, Eduardo R M; Tomlinson, Kyle W; Carvalheiro, Luísa G; Kirkman, Kevin; de Bie, Steven; Prins, Herbert H T; van Langevelde, Frank

    2014-01-01

    Changes in land use may lead to increased soil nutrient levels in many ecosystems (e.g. due to intensification of agricultural fertilizer use). Plant species differ widely in their response to differences in soil nutrients, and for savannas it is uncertain how this nutrient enrichment will affect plant community dynamics. We set up a large controlled short-term experiment in a semi-arid savanna to test how water supply (even water supply vs. natural rainfall) and nutrient availability (no fertilisation vs. fertilisation) affects seedlings' above-ground biomass production and leaf-nutrient concentrations (N, P and K) of broad-leafed and fine-leafed tree species. Contrary to expectations, neither changes in water supply nor changes in soil nutrient level affected biomass production of the studied species. By contrast, leaf-nutrient concentration did change significantly. Under regular water supply, soil nutrient addition increased the leaf phosphorus concentration of both fine-leafed and broad-leafed species. However, under uneven water supply, leaf nitrogen and phosphorus concentration declined with soil nutrient supply, this effect being more accentuated in broad-leafed species. Leaf potassium concentration of broad-leafed species was lower when growing under constant water supply, especially when no NPK fertilizer was applied. We found that changes in environmental factors can affect leaf quality, indicating a potential interactive effect between land-use changes and environmental changes on savanna vegetation: under more uneven rainfall patterns within the growing season, leaf quality of tree seedlings for a number of species can change as a response to changes in nutrient levels, even if overall plant biomass does not change. Such changes might affect herbivore pressure on trees and thus savanna plant community dynamics. Although longer term experiments would be essential to test such potential effects of eutrophication via changes in leaf nutrient concentration, our findings provide important insights that can help guide management plans that aim to preserve savanna biodiversity.

  3. Feasibility of using the linac real-time log data for VMAT treatment verification

    NASA Astrophysics Data System (ADS)

    Midi, N. S.; Zin, Hafiz M.

    2017-05-01

    This study investigates the feasibility of using the real-time log data from a linac to verify Volumetric Modulated Arc Therapy (VMAT) treatment. The treatment log data for an Elekta Synergy linac can be recorded at a sampling rate of 4 Hz using the service graphing tool on the linac control computer. A treatment plan that simulates a VMAT treatment was delivered from the linac and all the dynamic treatment parameters including monitor unit (MU), Multileaf Collimator (MLC) position, jaw position, gantry angle and collimator angle were recorded in real-time using the service graphing tool. The recorded raw data were extracted and analysed using algorithms written in Matlab (MathWorks, Natick, MA). The actual treatment parameters logged using the service graphing tool was compared to the prescription and the deviations were analysed. The MLC position errors travelling at the speed range from -3.25 to 5.92 cm/s were between -1.7 mm to 2.5 mm, well within the 3.5 mm tolerance value (AAPM TG-142). The discrepancies of other delivery parameters were also within the tolerance. The real-time linac parameters logged using the service graphing tool can be used as a supplementary data for patient specific VMAT pre-treatment quality assurance.

  4. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Treesearch

    Steven L. Voelker; J. Renee Brooks; Frederick C. Meinzer; Rebecca Anderson; Martin K.-F. Bader; Giovanna Battipaglia; Katie M. Becklin; David Beerling; Didier Bert; Julio L. Betancourt; Todd E. Dawson; Jean-Christophe Domec; Richard P. Guyette; Christian K??rner; Steven W. Leavitt; Sune Linder; John D. Marshall; Manuel Mildner; Jerome Ogee; Irina Panyushkina; Heather J. Plumpton; Kurt S. Pregitzer; Matthias Saurer; Andrew R. Smith; Rolf T. W. Siegwolf; Michael C. Stambaugh; Alan F. Talhelm; Jacques C. Tardif; Peter K. Van de Water; Joy K. Ward; Lisa Wingate

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO...

  5. Molecular prenatal diagnosis of megalencephalic leukoencephalopathy with subcortical cysts in a child from southwest of Iran.

    PubMed

    Shariati, Gholamreza; Hamid, Mohammad; Saberi, Alihossein; Andashti, Behnaz; Galehdari, Hamid

    2015-02-01

    Megalencephalic leukoencephalopathy (MLC) is a rare neurological disorder with an autosomal recessive pattern. Clinical diagnosis was based on macrocephaly, recurrent seizure, and magnetic resonance imaging (MRI). Here we report first finding of a novel homozygous single base deletion in the MLC1 gene in an affected Iranian child causing a premature stop codon (p.L150fs.160X).

  6. Development of a Multileaf Collimator for Proton Radiotherapy

    DTIC Science & Technology

    2007-06-01

    for proton radiotherapy, and the first year of the project to develop image guided treatment protocols for proton therapy . This research...multileaf collimator (MLC) for proton therapy and investigates the issues that must be resolved to use an MLC in proton therapy . The second technology...the contract included three development agreements directly related to the work supported by this grant to develop technology for proton therapy .

  7. MLC Libraries--A School Library's Journey with Students, Staff and Web 2.0 Technologies: Blogs, Wikis and E-Books--Where Are We Going Next?

    ERIC Educational Resources Information Center

    Viner, Jane; Lucas, Amanda; Ricchini, Tracey; Ri, Regina

    2010-01-01

    This workshop paper explores the Web 2.0 journey of the MLC Libraries' teacher-librarians, librarian, library and audio visual technicians. Our journey was initially inspired by Will Richardson and supported by the School Library Association of Victoria (SLAV) Web 2.0 professional development program. The 12 week technological skills program…

  8. SU-F-T-384: Step and Shoot IMRT, VMAT and Autoplan VMAT Nasopharnyx Plan Robustness to Linear Accelerator Delivery Errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pogson, EM; Liverpool and Macarthur Cancer Therapy Centres, Liverpool, NSW; Ingham Institute for Applied Medical Research, Sydney, NSW

    Purpose: To identify the robustness of different treatment techniques in respect to simulated linac errors on the dose distribution to the target volume and organs at risk for step and shoot IMRT (ssIMRT), VMAT and Autoplan generated VMAT nasopharynx plans. Methods: A nasopharynx patient dataset was retrospectively replanned with three different techniques: 7 beam ssIMRT, one arc manual generated VMAT and one arc automatically generated VMAT. Treatment simulated uncertainties: gantry, collimator, MLC field size and MLC shifts, were introduced into these plans at increments of 5,2,1,−1,−2 and −5 (degrees or mm) and recalculated in Pinnacle. The mean and maximum dosesmore » were calculated for the high dose PTV, parotids, brainstem, and spinal cord and then compared to the original baseline plan. Results: Simulated gantry angle errors have <1% effect on the PTV, ssIMRT is most sensitive. The small collimator errors (±1 and ±2 degrees) impacted the mean PTV dose by <2% for all techniques, however for the ±5 degree errors mean target varied by up to 7% for the Autoplan VMAT and 10% for the max dose to the spinal cord and brain stem, seen in all techniques. The simulated MLC shifts introduced the largest errors for the Autoplan VMAT, with the larger MLC modulation presumably being the cause. The most critical error observed, was the MLC field size error, where even small errors of 1 mm, caused significant changes to both the PTV and the OAR. The ssIMRT is the least sensitive and the Autoplan the most sensitive, with target errors of up to 20% over and under dosages observed. Conclusion: For a nasopharynx patient the plan robustness observed is highest for the ssIMRT plan and lowest for the Autoplan generated VMAT plan. This could be caused by the more complex MLC modulation seen for the VMAT plans. This project is supported by a grant from NSW Cancer Council.« less

  9. Long-term outcomes after hepatic resection combined with radiofrequency ablation for initially unresectable multiple and bilobar liver malignancies.

    PubMed

    Qiu, Jianguo; Chen, Shuting; Wu, Hong

    2014-05-01

    Hepatic resection (HRE) combined with radiofrequency ablation (RFA) offers a surgical option to a group of patients with multiple and bilobar liver malignancies who are traditionally unresectable for inadequate functional hepatic reserve. The aims of the present study were to assess the perioperative outcomes, recurrence, and long-term survival rates for patients treated with HRE plus RFA in the management of primary hepatocellular carcinoma (HCC) and metastatic liver cancer (MLC). Data from all consecutive patients with primary and secondary hepatic malignancies who were treated with HRE combined with RFA between 2007 and 2013 were prospectively collected and retrospectively reviewed. A total of 112 patients, with 368 hepatic tumors underwent HRE combined with ultrasound-guided RFA, were included in the present study. There were 40 cases of HCC with 117 tumors and 72 cases of MLC with 251 metastases. Most cases of liver metastases originated from the gastrointestinal tract (44, 61.1%). Other uncommon lesions included breast cancer (5, 6.9%), pancreatic cancer (3, 4.2%), lung cancer (4, 5.6%), cholangiocarcinoma (4, 5.6%), and so on. The ablation success rates were 93.3% for HCC and 96.7% for MLC. The 1-, 2-, 3-, 4-, and 5-y overall recurrence rates were 52.5%, 59.5%, 72.3%, 75%, and 80% for the HCC group and 44.4%, 52.7%, 56.1%, 69.4%, and 77.8% for the MLC group, respectively. The 1-, 2-, 3-, 4-, and 5-y overall survival rates for the HCC patients were 67.5%, 50%, 32.5%, 22.5%, and 12.5% and for the MLC patients were 66.5%, 55.5%, 50%, 30.5%, and 19.4%, respectively. The corresponding recurrence-free survival rates for the HCC patients were 52.5%, 35%, 22.5%, 15%, and 10% and for the MLC patients were 58.3%, 41.6%, 23.6%, 16.9%, and 12.5%, respectively. HRE combined with RFA provides an effective treatment approach for patients with primary and secondary liver malignancies who are initially unsuitable for radical resection, with high local tumor control rates and promising survival data. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. An MLC-based linac QA procedure for the characterization of radiation isocenter and room lasers' position.

    PubMed

    Rosca, Florin; Lorenz, Friedlieb; Hacker, Fred L; Chin, Lee M; Ramakrishna, Naren; Zygmanski, Piotr

    2006-06-01

    We have designed and implemented a new stereotactic linac QA test with stereotactic precision. The test is used to characterize gantry sag, couch wobble, cone placement, MLC offsets, and room lasers' positions relative to the radiation isocenter. Two MLC star patterns, a cone pattern, and the laser line patterns are recorded on the same imaging medium. Phosphor plates are used as imaging medium due to their sensitivity to red light. The red light of room lasers erases some of the irradiation information stored on the phosphor plates enabling accurate and direct measurements for the position of room lasers and radiation isocenter. Using film instead of the phosphor plate as imaging medium is possible, however, it is less practical. The QA method consists of irradiating four phosphor plates that record the gantry sag between the 0 degrees and 180 degrees gantry angles, the position and stability of couch rotational axis, the sag between the 90 degrees and 270 degrees gantry angles, the accuracy of cone placement on the collimator, the MLC offsets from the collimator rotational axis, and the position of laser lines relative to the radiation isocenter. The estimated accuracy of the method is +/- 0.2 mm. The observed reproducibility of the method is about +/- 0.1 mm. The total irradiation/ illumination time is about 10 min per image. Data analysis, including the phosphor plate scanning, takes less than 5 min for each image. The method characterizes the radiation isocenter geometry with the high accuracy required for the stereotactic radiosurgery. In this respect, it is similar to the standard ball test for stereotactic machines. However, due to the usage of the MLC instead of the cross-hair/ball, it does not depend on the cross-hair/ball placement errors with respect to the lasers and it provides more information on the mechanical integrity of the linac/couch/laser system. Alternatively, it can be used as a highly accurate QA procedure for the nonstereotactic machines. Noteworthy is its ability to characterize the MLC position accuracy, which is an important factor in IMRT delivery.

  11. Monte Carlo modeling of HD120 multileaf collimator on Varian TrueBeam linear accelerator for verification of 6X and 6X FFF VMAT SABR treatment plans

    PubMed Central

    Gete, Ermias; Duzenli, Cheryl; Teke, Tony

    2014-01-01

    A Monte Carlo (MC) validation of the vendor‐supplied Varian TrueBeam 6 MV flattened (6X) phase‐space file and the first implementation of the Siebers‐Keall MC MLC model as applied to the HD120 MLC (for 6X flat and 6X flattening filterfree (6X FFF) beams) are described. The MC model is validated in the context of VMAT patient‐specific quality assurance. The Monte Carlo commissioning process involves: 1) validating the calculated open‐field percentage depth doses (PDDs), profiles, and output factors (OF), 2) adapting the Siebers‐Keall MLC model to match the new HD120‐MLC geometry and material composition, 3) determining the absolute dose conversion factor for the MC calculation, and 4) validating this entire linac/MLC in the context of dose calculation verification for clinical VMAT plans. MC PDDs for the 6X beams agree with the measured data to within 2.0% for field sizes ranging from 2 × 2 to 40 × 40 cm2. Measured and MC profiles show agreement in the 50% field width and the 80%‐20% penumbra region to within 1.3 mm for all square field sizes. MC OFs for the 2 to 40 cm2 square fields agree with measurement to within 1.6%. Verification of VMAT SABR lung, liver, and vertebra plans demonstrate that measured and MC ion chamber doses agree within 0.6% for the 6X beam and within 2.0% for the 6X FFF beam. A 3D gamma factor analysis demonstrates that for the 6X beam, > 99% of voxels meet the pass criteria (3%/3 mm). For the 6X FFF beam, > 94% of voxels meet this criteria. The TrueBeam accelerator delivering 6X and 6X FFF beams with the HD120 MLC can be modeled in Monte Carlo to provide an independent 3D dose calculation for clinical VMAT plans. This quality assurance tool has been used clinically to verify over 140 6X and 16 6X FFF TrueBeam treatment plans. PACS number: 87.55.K‐ PMID:24892341

  12. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy.

    PubMed

    Park, So-Yeon; Kim, Il Han; Ye, Sung-Joon; Carlson, Joel; Park, Jong Min

    2014-11-01

    Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantry angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman's rank correlation coefficients (rs) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MISPORT) were calculated, and their correlations were analyzed in the same way. There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The rs values of contrast to the global gamma passing rates with criteria of 2%/2 mm, 2%/1 mm, and 1%/2 mm were 0.536, 0.473, and 0.718, respectively. The respective values for variance were 0.551, 0.481, and 0.688. In the case of local gamma passing rates, the rs values of contrast were 0.547, 0.578, and 0.620, respectively, and those of variance were 0.519, 0.527, and 0.569. All of the rs values in those cases were statistically significant (p < 0.003). In the cases of global and local gamma passing rates, MISPORT showed the highest correlations among the conventional modulation indices. For global passing rates, rs values of MISPORT were -0.420, -0.330, and -0.632, respectively, and those for local passing rates were -0.455, -0.490 and -0.502. The values of rs of contrast, variance, and MISPORT with the MLC errors were -0.863, -0.828, and 0.795, respectively, all with statistical significances (p < 0.001). The correlations with statistical significances between variance and dose-volumetric differences were observed more frequently than the others. The contrast (d = 1) and variance (d = 1) calculated from fluence maps of VMAT plans showed considerable correlations with the plan deliverability, indicating their potential use as indicators for assessing the degree of modulation of VMAT plans. Both contrast and variance consistently showed better performance than the conventional modulation indices for VMAT.

  13. Modeling forest stand dynamics from optimal balances of carbon and nitrogen

    Treesearch

    Harry T. Valentine; Annikki Makela

    2012-01-01

    We formulate a dynamic evolutionary optimization problem to predict the optimal pattern by which carbon (C) and nitrogen (N) are co-allocated to fine-root, leaf, and wood production, with the objective of maximizing height growth rate, year by year, in an even-aged stand. Height growth is maximized with respect to two adaptive traits, leaf N concentration and the ratio...

  14. A new application of micellar liquid chromatography in the determination of free ampicillin concentration in the drug-human serum albumin standard solution in comparison with the adsorption method.

    PubMed

    Stępnik, Katarzyna E; Malinowska, Irena; Maciejewska, Małgorzata

    2016-06-01

    The determination of free drug concentration is a very important issue in the field of pharmacology because only the unbound drug fraction can achieve a pharmacological effect. Due to the ability to solubilize many different compounds in micellar aggregates, micellar liquid chromatography (MLC) can be used for direct determination of free drug concentration. Proteins are not retained on the stationary phase probably due to the formation of protein - surfactant complexes which are excluded from the pores of stationary phase. The micellar method is simple and fast. It does not require any pre-preparation of the tested samples for analysis. The main aim of this paper is to demonstrate a completely new applicability of the analytical use of MLC concerning the determination of free drug concentration in the standard solution of human serum albumin. The well-known adsorption method using RP-HPLC and the spectrophotometric technique was applied as the reference method. The results show that the free drug concentration value obtained in the MLC system (based on the RP-8 stationary phase and CTAB) is similar to that obtained by the adsorption method: both RP-HPLC (95.83μgmL(-1), 79.86% of free form) and spectrophotometry (95.71μgmL(-1), 79.76%). In the MLC the free drug concentration was 93.98μgmL(-1) (78.3%). This indicates that the obtained results are within the analytical range of % of free ampicillin fraction and the MLC with direct sample injection can be treated like a promising method for the determination of free drug concentration. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Antimicrobial Activity and Biocompatibility of the Psidium cattleianum Extracts for Endodontic Purposes.

    PubMed

    Massunari, Loiane; Novais, Renata Zoccal; Oliveira, Márcio Teixeira; Valentim, Diego; Dezan Junior, Eloi; Duque, Cristiane

    2017-01-01

    Psidium cattleianum (PC) has been displaying inhibitory effect against a variety of microorganisms, but this effect has not yet been tested against endodontic pathogens. The aim of this study was to evaluate the antimicrobial activity and biocompatibility of the aqueous (PCAE) and hydroethanolic (PCHE) extracts from Psidium cattleianum (PC) leaves. Minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the microdilution broth method in order to analyze the antimicrobial effect against Enterococcus faecalis, Pseudomonas aeruginosa, Actinomyces israelii and Candida albicans in planktonic conditions. Biofilm assays were conducted only with the extracts that were able to determine the MLC for microorganisms in planktonic conditions. Immediate and late tissue reactions against PC extracts were evaluated using edemogenic test and histological analysis of subcutaneous implants in Wistar rats. The results showed that the MIC and MLC values ranged between 0.25 and 4 mg/mL. The MLC obtained for PCHE inhibited 100% growth of all the tested strains, except for C. albicans. PCAE had the same effect for E. faecalis and P. aeruginosa. Both PC extracts were able to eliminate E. faecalis biofilms and only the PCHE eliminated P. aeruginosa biofilms. The positive controls inhibited the growth of all tested strains in MIC and MLC essays, but no CHX tested concentrations were able to eliminate A. israelii biofilm. PCAE caused a discrete increase in the edema over time, while PCHE caused a higher initial edema, which decreased progressively. Both PCAE and PCHE extracts were biocompatible, but PCHE showed better results with slight levels of inflammation at 28 days. In conclusion, PCHE was biocompatible and presented better antimicrobial effect against important pathogens associated with persistent endodontic infections.

  16. Matching of electron beams for conformal therapy of target volumes at moderate depths.

    PubMed

    Zackrisson, B; Karlsson, M

    1996-06-01

    The basic requirements for conformal electron therapy are an accelerator with a wide range of energies and field shapes. The beams should be well characterised in a full 3-D dose planning system which has been verified for the geometries of the current application. Differences in the basic design of treatment units have been shown to have a large influence on beam quality and dosimetry. Modern equipment can deliver electron beams of good quality with a high degree of accuracy. A race-track microtron with minimised electron scattering and a multi-leaf collimator (MLC) for electron collimating will facilitate the isocentric technique as a general treatment technique for electrons. This will improve the possibility of performing combined electron field techniques in order to conform the dose distribution with no or minimal use of a bolus. Furthermore, the isocentric technique will facilitate multiple field arrangements that decrease the problems with distortion of the dose distribution due to inhomogeneities, etc. These situations are demonstrated by clinical examples where isocentric, matched electron fields for treatment of the nose, thyroid and thoracic wall have been used.

  17. Functional traits of the understory plant community of a pyrogenic longleaf pine forest across environmental gradients.

    PubMed

    Ames, Gregory M; Anderson, Steven M; Ungberg, Eric A; Wright, Justin P

    2017-08-01

    Understanding and predicting the response of plant communities to environmental changes and disturbances such as fire requires an understanding of the functional traits present in the system, including within and across species variability, and their dynamics over time. These data are difficult to obtain as few studies provide comprehensive information for more than a few traits or species, rarely cover more than a single growing season, and usually present only summary statistics of trait values. As part of a larger study seeking to understand the dynamics of plant communities in response to different prescribed fire regimes, we measured the functional traits of the understory plant communities located in over 140 permanent plots spanning strong gradients in soil moisture in a pyrogenic longleaf pine forest in North Carolina, USA, over a four-year period from 2011 and 2014. We present over 120,000 individual trait measurements from over 130 plant species representing 91 genera from 47 families. We include data on the following 18 traits: specific leaf area, leaf dry matter content, leaf area, leaf length, leaf width, leaf perimeter, plant height, leaf nitrogen, leaf carbon, leaf carbon to nitrogen ratio, water use efficiency, time to ignition, maximum flame height, maximum burn temperature, mass-specific burn time, mass-specific smolder time, branching architecture, and the ratio of leaf matter consumed by fire. We also include information on locations, soil moisture, relative elevation, soil bulk density, and fire histories for each site. © 2017 by the Ecological Society of America.

  18. Effect of conductance linearity and multi-level cell characteristics of TaOx-based synapse device on pattern recognition accuracy of neuromorphic system

    NASA Astrophysics Data System (ADS)

    Sung, Changhyuck; Lim, Seokjae; Kim, Hyungjun; Kim, Taesu; Moon, Kibong; Song, Jeonghwan; Kim, Jae-Joon; Hwang, Hyunsang

    2018-03-01

    To improve the classification accuracy of an image data set (CIFAR-10) by using analog input voltage, synapse devices with excellent conductance linearity (CL) and multi-level cell (MLC) characteristics are required. We analyze the CL and MLC characteristics of TaOx-based filamentary resistive random access memory (RRAM) to implement the synapse device in neural network hardware. Our findings show that the number of oxygen vacancies in the filament constriction region of the RRAM directly controls the CL and MLC characteristics. By adopting a Ta electrode (instead of Ti) and the hot-forming step, we could form a dense conductive filament. As a result, a wide range of conductance levels with CL is achieved and significantly improved image classification accuracy is confirmed.

  19. Actin-myosin-based contraction is responsible for apoptotic nuclear disintegration.

    PubMed

    Croft, Daniel R; Coleman, Mathew L; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L; Olson, Michael F

    2005-01-17

    Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization.

  20. Actin-myosin–based contraction is responsible for apoptotic nuclear disintegration

    PubMed Central

    Croft, Daniel R.; Coleman, Mathew L.; Li, Shuixing; Robertson, David; Sullivan, Teresa; Stewart, Colin L.; Olson, Michael F.

    2005-01-01

    Membrane blebbing during the apoptotic execution phase results from caspase-mediated cleavage and activation of ROCK I. Here, we show that ROCK activity, myosin light chain (MLC) phosphorylation, MLC ATPase activity, and an intact actin cytoskeleton, but not microtubular cytoskeleton, are required for disruption of nuclear integrity during apoptosis. Inhibition of ROCK or MLC ATPase activity, which protect apoptotic nuclear integrity, does not affect caspase-mediated degradation of nuclear proteins such as lamins A, B1, or C. The conditional activation of ROCK I was sufficient to tear apart nuclei in lamin A/C null fibroblasts, but not in wild-type fibroblasts. Thus, apoptotic nuclear disintegration requires actin-myosin contractile force and lamin proteolysis, making apoptosis analogous to, but distinct from, mitosis where nuclear disintegration results from microtubule-based forces and from lamin phosphorylation and depolymerization. PMID:15657395

  1. Modeling leaf phenology variation by groupings of species within and across ecosystems in northern Alaska

    NASA Astrophysics Data System (ADS)

    Euskirchen, E. S.; Carman, T. B.; McGuire, A. D.

    2012-12-01

    The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst and in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf-out, dynamic vegetation models simulated over a regional to global scale typically assume some average leaf-out for all of the species within an ecosystem. Here, we make use of air temperature records and observational data of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and ecotonal boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest. This implementation improves the timing of the onset of carbon uptake in the spring, permitting a more accurate assessment of the contribution of each grouping of species to ecosystem performance. Furthermore, this implementation provides a more nuanced perspective on light competition among species and across ecosystems. For example, in the shrub tundra, the sedges and grasses leaf-out before the shade-inducing willow and dwarf birch, thereby providing the sedges and grasses time to accumulate biomass before shading effects arise. Also in the shrub tundra, the forbs leaf-out last, and are therefore, more prone to shading impacts by the taller willow and dwarf birch shrubs. However, in the wet sedge and heath tundra ecosystems, the forbs leaf-out before the shrubs, and are therefore less prone to shading impacts early in the growing season. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape. These findings also demonstrate that high-latitude dynamic vegetation models should consider variation in leaf-out by groupings of species within and across ecosystems in order to provide more accurate projections of future plant distributions in Arctic regions.

  2. TU-CD-304-04: Scanning Field Total Body Irradiation Using Dynamic Arc with Variable Dose Rate and Gantry Speed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, B; Xu, H; Mutaf, Y

    2015-06-15

    Purpose: Enable a scanning field total body irradiation (TBI) technique, using dynamic arcs, which is biologically equivalent to a moving couch TBI. Methods: Patient is treated slightly above the floor and the treatment field scans across the patient by a moving gantry. MLC positions change during gantry motion to keep same field opening at the level of the treatment plane (170 cm). This is done to mimic the same geometry as the moving couch TBI technique which has been used in our institution for over 10 years. The dose rate and the gantry speed are determined considering a constant speedmore » of the moving field, variations in SSD and slanted depths resulting from oblique gantry angles. An Eclipse (Varian) planning system is commissioned to accommodate the extended SSD. The dosimetric foundations of the technique have been thoroughly investigated using phantom measurements. Results: Dose uniformity better than 2% across 180 cm length at 10cm depth is achieved by moving the gantry from −55 to +55 deg. Treatment range can be extended by increasing gantry range. No device such as a gravity-oriented compensator is needed to achieve a uniform dose. It is feasible to modify the dose distribution by adjusting the dose rate at each gantry angle to compensate for body thickness differences. Total treatment time for 2 Gy AP/PA fields is 40–50 minutes excluding patient set up time, at the machine dose rate of 100 MU/min. Conclusion: This novel yet transportable moving field technique enables TBI treatment in a small treatment room with less program development preparation than other techniques. Treatment length can be extended per need, and. MLC-based thickness compensation and partial lung blocking are also possible.« less

  3. Interface Message Processors for the ARPA Computer Network

    DTIC Science & Technology

    1975-04-01

    Pluribus IMP construction and checkout; sizeable changes to the i*4P message-processing algorithms: and Satellite IMP issues. The IMP message...extremely low cost modification design. We have begun to consider changes to the MLC design which would enable the MLC to suppress continuous breaks...existing authentication mechanisms need not make these changes . 2.7 Other Topics During the first quarter BBN constructed an environmental test chamber

  4. Kidney protection against ischemia/reperfusion injury by myofibrillogenesis regulator-1.

    PubMed

    Wang, Xiaoreng; Tao, Tianqi; Ding, Rui; Song, Dandan; Liu, Mi; Xie, Yuansheng; Liu, Xiuhua

    2014-01-01

    Ischemia/reperfusion (I/R) injury is characterized by cytoskeletal reorganization and loss of polarity in proximal tubule epithelial cells. Previously, we showed that myofibrillogenesis regulator (MR)-1 promoted actin organization in cardiomyocytes. MR-1 is also expressed in the kidney. In this study, we investigated MR-1 expression in acute renal failure induced by I/R in Sprague-Dawley rats. We determined the MR-1 expression and the ratio of fibrous actin (F-actin) to globular actin (G-actin). HK-2 cells were treated with or without hypoxia/reoxygenation (H/R), and MR-1 levels were increased by adenoviral overexpression or silenced by RNA interference. I/R and H/R resulted in cellular injury and decreases of MR-1, the F-/G-actin ratio, and myosin light chain (MLC)-2. MR-1 overexpression attenuated H/R-induced cell injury and loss of surface membrane polarity of actin. MR-1 overexpression also increased the expression and phosphorylation of MLC-2 and MLC kinase, which were decreased in MR-1-silenced and H/R-treated cells. Together, these data show that MR-1 promoted actin polarity on the membrane surface and protected HK-2 cells from H/R injury. The mechanism might involve the rapid organization of F-actin through the upregulation and phosphorylation of MLC-2.

  5. Aspects of cooling tower biocides and protozoa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berk, S.G.; Ashburn, R.J.; Ting, R.S.

    1998-12-31

    Previous work has shown that certain cooling tower amoebae and ciliated protozoa are resistant to several cooling tower biocides, even at the manufacturer`s recommended dosages. For the present study, an Acunthumoeba species was isolated from a cooling tower in Australia. Suspensions of the trophozoites (feeding stages) were exposed to isothiazolones. Cysts were tested separately. The minimum lethal concentration (MLC) for trophozoites was between 31-62 ppm of the biocide product, which is slightly less than the MLC for an amoebae species from the United States; and cyst forms were twofold more resistant than those of the US species, with a MLCmore » of 62,500 ppm. A ciliate and an amoeba species were also exposed to bromochlorodimethylhydantoin. The MLC for the ciliate species was 1 ppm of the biocide product, and the MLC was 30--40 ppm for the amoeba trophozoites. Since amoebae can expel vesicles containing live Legionella, experiments were conducted to determine whether exposure of Acunthamoebu polyphugu to biocides influenced release of such potentially infectious particles. Vesicle release was not inhibited by any of the three biocides: quaternary ammonium compounds (QACs), isothiazolones, and a thiocarbamate compound. These results suggest that amoebae from various sources are resistant to recommended levels of biocides, and the amoebae may continue to release potentially infectious vesicles in the presence of biocides.« less

  6. Maximizing the potential of direct aperture optimization through collimator rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milette, Marie-Pierre; Otto, Karl; Medical Physics, BC Cancer Agency-Vancouver Centre, Vancouver, British Columbia

    Intensity-modulated radiation therapy (IMRT) treatment plans are conventionally produced by the optimization of fluence maps followed by a leaf sequencing step. An alternative to fluence based inverse planning is to optimize directly the leaf positions and field weights of multileaf collimator (MLC) apertures. This approach is typically referred to as direct aperture optimization (DAO). It has been shown that equivalent dose distributions may be generated that have substantially fewer monitor units (MU) and number of apertures compared to fluence based optimization techniques. Here we introduce a DAO technique with rotated apertures that we call rotating aperture optimization (RAO). The advantagesmore » of collimator rotation in IMRT have been shown previously and include higher fluence spatial resolution, increased flexibility in the generation of aperture shapes and less interleaf effects. We have tested our RAO algorithm on a complex C-shaped target, seven nasopharynx cancer recurrences, and one multitarget nasopharynx carcinoma patient. A study was performed in order to assess the capabilities of RAO as compared to fixed collimator angle DAO. The accuracy of fixed and rotated collimator aperture delivery was also verified. An analysis of the optimized treatment plans indicates that plans generated with RAO are as good as or better than DAO while maintaining a smaller number of apertures and MU than fluence based IMRT. Delivery verification results show that RAO is less sensitive to tongue and groove effects than DAO. Delivery time is currently increased due to the collimator rotation speed although this is a mechanical limitation that can be eliminated in the future.« less

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petasecca, M., E-mail: marcop@uow.edu.au; Newall, M. K.; Aldosari, A. H.

    Purpose: Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named “MagicPlate-512” for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. Methods: MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of smallmore » field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by GEANT4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Results: Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. Conclusions: MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.« less

  8. Growth history and crown vine coverage are principal factors influencing growth and mortality rates of big-leaf mahogany Swietenia macrophylla in Brazil

    Treesearch

    James Grogan; R. Matthew Landis

    2009-01-01

    1. Current efforts to model population dynamics of high-value tropical timber species largely assume that individual growth history is unimportant to population dynamics, yet growth autocorrelation is known to adversely affect model predictions. In this study, we analyse a decade of annual census data from a natural population of big-leaf mahogany Swietenia macrophylla...

  9. Effects of elevated atmospheric Co2 and tropospheric O3 on nutrient dynamics: decomposition of leaf litter in trembling aspen and paper birch communities. Plant Soil. 299:65–82.

    Treesearch

    Lingli Liu; John S. King; Christian P. Giardina

    2007-01-01

    Atmospheric changes could strongly influence how terrestrial ecosystems function by altering nutrient cycling. We examined how the dynamics of nutrient release from leaf litter responded to two important atmospheric changes: rising atmospheric Co2 and tropospheric O3. We evaluated the independent and combined effects of...

  10. Seasonal Dynamics in Leaf Area Index in Intensively Managed Loblolly Pine

    Treesearch

    Timothy B. Harrington; Jason A. Gatch; Bruce E. Borders

    2002-01-01

    Leaf area index (LAI; leaf area per ground area) was measured monthly or bimonthly for two years (March 1999 to February 2001) with the LAI-2000 in intensively managed plantations of loblolly pine (Pinus taeda L.) at Eatonton and Waycross GA. Since establishment of the three age classes at each site, the stands have received combinations of complete...

  11. Leaf litter decomposition and elemental change in three Appalachian mountain streams of different pH

    Treesearch

    Steven W. Solada; Sue A. Perry; William B. Perry

    1996-01-01

    The decomposition of leaf litter provides the primary nutrient source for many of the headwater mountain streams in forested catchments. An investigation of factors affected by global change that influence organic matter decomposition, such as temperature and pH, is important in understanding the dynamics of these systems. We conducted a study of leaf litter elemental...

  12. Stomatal dynamics are limited by leaf hydraulics in ferns and conifers: results from simultaneous measurements of liquid and vapour fluxes in leaves.

    PubMed

    Martins, Samuel C V; McAdam, Scott A M; Deans, Ross M; DaMatta, Fábio M; Brodribb, Tim J

    2016-03-01

    Stomatal responsiveness to vapour pressure deficit (VPD) results in continuous regulation of daytime gas-exchange directly influencing leaf water status and carbon gain. Current models can reasonably predict steady-state stomatal conductance (gs ) to changes in VPD but the gs dynamics between steady-states are poorly known. Here, we used a diverse sample of conifers and ferns to show that leaf hydraulic architecture, in particular leaf capacitance, has a major role in determining the gs response time to perturbations in VPD. By using simultaneous measurements of liquid and vapour fluxes into and out of leaves, the in situ fluctuations in leaf water balance were calculated and appeared to be closely tracked by changes in gs thus supporting a passive model of stomatal control. Indeed, good agreement was found between observed and predicted gs when using a hydropassive model based on hydraulic traits. We contend that a simple passive hydraulic control of stomata in response to changes in leaf water status provides for efficient stomatal responses to VPD in ferns and conifers, leading to closure rates as fast or faster than those seen in most angiosperms. © 2015 John Wiley & Sons Ltd.

  13. Population dynamics of the rubber plantation litter beetle Luprops tristis, in relation to annual cycle of foliage phenology of its host, the para rubber tree, Hevea brasiliensis.

    PubMed

    Sabu, Thomas K; Vinod, K V

    2009-01-01

    The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m(2) of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf availability is suggested as contributing to the reproductive efficiency of parental adults, the survival of early developmental stages and of new generation adults during dormancy.

  14. Population Dynamics of the Rubber Plantation Litter Beetle Luprops tristis, in Relation to Annual Cycle of Foliage Phenology of Its Host, the Para Rubber Tree, Hevea brasiliensis

    PubMed Central

    Sabu, Thomas K.; Vinod, K.V.

    2009-01-01

    The population dynamics of the rubber plantation litter beetle, Luprops tristis Fabricius 1801 (Coleoptera: Tenebrionidae) was assessed in relation to the phenology of leaf shedding and defoliation pattern of para rubber trees, Hevea brasiliensis Müll. Arg (Malpighiales: Euphorbiaceae), during a two year study period. The abundance of adults, larvae and pupae per 1m2 of litter sample was recorded. Post dormancy beetles appeared in leaf litter following annual leaf shedding, whereas larvae, pupae and teneral adults were present after leaf flush. No stages were recorded from plantations following the summer rains until the annual litter fall in the next season. Parental adults peaked at the time of leaf sprouting and tender leaf fall. Larvae and teneral adults peaked at the time of premature fall of green leaves and flowers. Teneral adults of six age classes were recorded and all entered dormancy irrespective of the feeding time available to each age class. Females outnumbered males in the parent generation, while the sex ratio of new generation adults was not biased towards either sex. The phenological stages of rubber trees included leaf fall in late December and early January, leaf sprouting and new leaf production in January and flowering in February. All feeding stages of L. tristis peaked in abundance when premature leaves are most abundant in the leaf litter. Prediction of the timing of appearance of various developmental stages of L. tristis in plantations, invasion into buildings and intensity of population build up in rubber belts is possible by tracking the phenology of leaf fall in rubber plantations, time of return of post dormancy adults and the onset of summer rainfall. Perfect synchrony was recorded between the field return of parental adults with annual leaf shedding, the oviposition phase of parental adults with tender leaf fall at the time of leaf sprouting, and larval and teneral adult stages with premature fall of leaves. Premature leaf availability is suggested as contributing to the reproductive efficiency of parental adults, the survival of early developmental stages and of new generation adults during dormancy. PMID:20050775

  15. A novel software and conceptual design of the hardware platform for intensity modulated radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Dan; Ruan, Dan; O’Connor, Daniel

    Purpose: To deliver high quality intensity modulated radiotherapy (IMRT) using a novel generalized sparse orthogonal collimators (SOCs), the authors introduce a novel direct aperture optimization (DAO) approach based on discrete rectangular representation. Methods: A total of seven patients—two glioblastoma multiforme, three head & neck (including one with three prescription doses), and two lung—were included. 20 noncoplanar beams were selected using a column generation and pricing optimization method. The SOC is a generalized conventional orthogonal collimators with N leaves in each collimator bank, where N = 1, 2, or 4. SOC degenerates to conventional jaws when N = 1. For SOC-basedmore » IMRT, rectangular aperture optimization (RAO) was performed to optimize the fluence maps using rectangular representation, producing fluence maps that can be directly converted into a set of deliverable rectangular apertures. In order to optimize the dose distribution and minimize the number of apertures used, the overall objective was formulated to incorporate an L2 penalty reflecting the difference between the prescription and the projected doses, and an L1 sparsity regularization term to encourage a low number of nonzero rectangular basis coefficients. The optimization problem was solved using the Chambolle–Pock algorithm, a first-order primal–dual algorithm. Performance of RAO was compared to conventional two-step IMRT optimization including fluence map optimization and direct stratification for multileaf collimator (MLC) segmentation (DMS) using the same number of segments. For the RAO plans, segment travel time for SOC delivery was evaluated for the N = 1, N = 2, and N = 4 SOC designs to characterize the improvement in delivery efficiency as a function of N. Results: Comparable PTV dose homogeneity and coverage were observed between the RAO and the DMS plans. The RAO plans were slightly superior to the DMS plans in sparing critical structures. On average, the maximum and mean critical organ doses were reduced by 1.94% and 1.44% of the prescription dose. The average number of delivery segments was 12.68 segments per beam for both the RAO and DMS plans. The N = 2 and N = 4 SOC designs were, on average, 1.56 and 1.80 times more efficient than the N = 1 SOC design to deliver. The mean aperture size produced by the RAO plans was 3.9 times larger than that of the DMS plans. Conclusions: The DAO and dose domain optimization approach enabled high quality IMRT plans using a low-complexity collimator setup. The dosimetric quality is comparable or slightly superior to conventional MLC-based IMRT plans using the same number of delivery segments. The SOC IMRT delivery efficiency can be significantly improved by increasing the leaf numbers, but the number is still significantly lower than the number of leaves in a typical MLC.« less

  16. A novel software and conceptual design of the hardware platform for intensity modulated radiation therapy.

    PubMed

    Nguyen, Dan; Ruan, Dan; O'Connor, Daniel; Woods, Kaley; Low, Daniel A; Boucher, Salime; Sheng, Ke

    2016-02-01

    To deliver high quality intensity modulated radiotherapy (IMRT) using a novel generalized sparse orthogonal collimators (SOCs), the authors introduce a novel direct aperture optimization (DAO) approach based on discrete rectangular representation. A total of seven patients-two glioblastoma multiforme, three head & neck (including one with three prescription doses), and two lung-were included. 20 noncoplanar beams were selected using a column generation and pricing optimization method. The SOC is a generalized conventional orthogonal collimators with N leaves in each collimator bank, where N = 1, 2, or 4. SOC degenerates to conventional jaws when N = 1. For SOC-based IMRT, rectangular aperture optimization (RAO) was performed to optimize the fluence maps using rectangular representation, producing fluence maps that can be directly converted into a set of deliverable rectangular apertures. In order to optimize the dose distribution and minimize the number of apertures used, the overall objective was formulated to incorporate an L2 penalty reflecting the difference between the prescription and the projected doses, and an L1 sparsity regularization term to encourage a low number of nonzero rectangular basis coefficients. The optimization problem was solved using the Chambolle-Pock algorithm, a first-order primal-dual algorithm. Performance of RAO was compared to conventional two-step IMRT optimization including fluence map optimization and direct stratification for multileaf collimator (MLC) segmentation (DMS) using the same number of segments. For the RAO plans, segment travel time for SOC delivery was evaluated for the N = 1, N = 2, and N = 4 SOC designs to characterize the improvement in delivery efficiency as a function of N. Comparable PTV dose homogeneity and coverage were observed between the RAO and the DMS plans. The RAO plans were slightly superior to the DMS plans in sparing critical structures. On average, the maximum and mean critical organ doses were reduced by 1.94% and 1.44% of the prescription dose. The average number of delivery segments was 12.68 segments per beam for both the RAO and DMS plans. The N = 2 and N = 4 SOC designs were, on average, 1.56 and 1.80 times more efficient than the N = 1 SOC design to deliver. The mean aperture size produced by the RAO plans was 3.9 times larger than that of the DMS plans. The DAO and dose domain optimization approach enabled high quality IMRT plans using a low-complexity collimator setup. The dosimetric quality is comparable or slightly superior to conventional MLC-based IMRT plans using the same number of delivery segments. The SOC IMRT delivery efficiency can be significantly improved by increasing the leaf numbers, but the number is still significantly lower than the number of leaves in a typical MLC.

  17. Quantification of the effects of architectural traits on dry mass production and light interception of tomato canopy under different temperature regimes using a dynamic functional–structural plant model

    PubMed Central

    Chen, Tsu-Wei; Nguyen, Thi My Nguyet; Kahlen, Katrin; Stützel, Hartmut

    2014-01-01

    There is increasing interest in evaluating the environmental effects on crop architectural traits and yield improvement. However, crop models describing the dynamic changes in canopy structure with environmental conditions and the complex interactions between canopy structure, light interception, and dry mass production are only gradually emerging. Using tomato (Solanum lycopersicum L.) as a model crop, a dynamic functional–structural plant model (FSPM) was constructed, parameterized, and evaluated to analyse the effects of temperature on architectural traits, which strongly influence canopy light interception and shoot dry mass. The FSPM predicted the organ growth, organ size, and shoot dry mass over time with high accuracy (>85%). Analyses of this FSPM showed that, in comparison with the reference canopy, shoot dry mass may be affected by leaf angle by as much as 20%, leaf curvature by up to 7%, the leaf length:width ratio by up to 5%, internode length by up to 9%, and curvature ratios and leaf arrangement by up to 6%. Tomato canopies at low temperature had higher canopy density and were more clumped due to higher leaf area and shorter internodes. Interestingly, dry mass production and light interception of the clumped canopy were more sensitive to changes in architectural traits. The complex interactions between architectural traits, canopy light interception, dry mass production, and environmental conditions can be studied by the dynamic FSPM, which may serve as a tool for designing a canopy structure which is ‘ideal’ in a given environment. PMID:25183746

  18. WE-G-BRF-01: Adaptation to Intrafraction Tumor Deformation During Intensity-Modulated Radiotherapy: First Proof-Of-Principle Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Y; OBrien, R; Shieh, C

    2014-06-15

    Purpose: Intrafraction tumor deformation limits targeting accuracy in radiotherapy and cannot be adapted to by current motion management techniques. This study simulated intrafractional treatment adaptation to tumor deformations using a dynamic Multi-Leaf Collimator (DMLC) tracking system during Intensity-modulated radiation therapy (IMRT) treatment for the first time. Methods: The DMLC tracking system was developed to adapt to the intrafraction tumor deformation by warping the planned beam aperture guided by the calculated deformation vector field (DVF) obtained from deformable image registration (DIR) at the time of treatment delivery. Seven single phantom deformation images up to 10.4 mm deformation and eight tumor systemmore » phantom deformation images up to 21.5 mm deformation were acquired and used in tracking simulation. The intrafraction adaptation was simulated at the DMLC tracking software platform, which was able to communicate with the image registration software, reshape the instantaneous IMRT field aperture and log the delivered MLC fields.The deformation adaptation accuracy was evaluated by a geometric target coverage metric defined as the sum of the area incorrectly outside and inside the reference aperture. The incremental deformations were arbitrarily determined to take place equally over the delivery interval. The geometric target coverage of delivery with deformation adaptation was compared against the delivery without adaptation. Results: Intrafraction deformation adaptation during dynamic IMRT plan delivery was simulated for single and system deformable phantoms. For the two particular delivery situations, over the treatment course, deformation adaptation improved the target coverage by 89% for single target deformation and 79% for tumor system deformation compared with no-tracking delivery. Conclusion: This work demonstrated the principle of real-time tumor deformation tracking using a DMLC. This is the first step towards the development of an image-guided radiotherapy system to treat deforming tumors in real-time. The authors acknowledge funding support from the Australian NHMRC Australia Fellowship, Cure Cancer Australia Foundation, NHMRC Project Grant APP1042375 and US NIH/NCI R01CA93626.« less

  19. Temporal dynamics and spatial variability in the enhancement of canopy leaf area under elevated atmospheric CO2

    Treesearch

    Heather R. McCarthy; Ram Oren; Adrien C. Finzi; David S. Ellsworth; Hyun-Seok Kim; Kurt H. Johnsen; Bonnie Millar

    2007-01-01

    Increased canopy leaf area (L) may lead to higher forest productivity and alter processes such as species dynamics and ecosystem mass and energy fluxes. Few CO2enrichment studies have been conducted in closed canopy forests and none have shown a sustained enhancement of L. We reconstructed 8 years (1996–2003) of L at Duke’s Free Air CO...

  20. Leaf area and tree increment dynamics of even-aged and multiaged lodgepole pine stands in Montana

    Treesearch

    Cassandra L. Kollenberg; Kevin L. O' Hara

    1999-01-01

    Age structure and distribution of leaf area index (LAI) of even and multiaged lodgepole pine (Pinus contorta var. latifolia Engelm.) stands were examined on three study areas in western and central Montana. Projected leaf area was determined based on a relationship with sapwood cross-sectional area at breast height. Stand structure and LAI varied considerably between...

  1. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    EPA Science Inventory

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around “set...

  2. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development1[OPEN

    PubMed Central

    2017-01-01

    Rice (Oryza sativa) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1, a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. PMID:28500269

  3. Dynamic Cytology and Transcriptional Regulation of Rice Lamina Joint Development.

    PubMed

    Zhou, Li-Juan; Xiao, Lang-Tao; Xue, Hong-Wei

    2017-07-01

    Rice ( Oryza sativa ) leaf angle is determined by lamina joint and is an important agricultural trait determining leaf erectness and, hence, the photosynthesis efficiency and grain yield. Genetic studies reveal a complex regulatory network of lamina joint development; however, the morphological changes, cytological transitions, and underlying transcriptional programming remain to be elucidated. A systemic morphological and cytological study reveals a dynamic developmental process and suggests a common but distinct regulation of the lamina joint. Successive and sequential cell division and expansion, cell wall thickening, and programmed cell death at the adaxial or abaxial sides form the cytological basis of the lamina joint, and the increased leaf angle results from the asymmetric cell proliferation and elongation. Analysis of the gene expression profiles at four distinct developmental stages ranging from initiation to senescence showed that genes related to cell division and growth, hormone synthesis and signaling, transcription (transcription factors), and protein phosphorylation (protein kinases) exhibit distinct spatiotemporal patterns during lamina joint development. Phytohormones play crucial roles by promoting cell differentiation and growth at early stages or regulating the maturation and senescence at later stages, which is consistent with the quantitative analysis of hormones at different stages. Further comparison with the gene expression profile of leaf inclination1 , a mutant with decreased auxin and increased leaf angle, indicates the coordinated effects of hormones in regulating lamina joint. These results reveal a dynamic cytology of rice lamina joint that is fine-regulated by multiple factors, providing informative clues for illustrating the regulatory mechanisms of leaf angle and plant architecture. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Magnetic decoupling of the linac in a low field biplanar linac-MR system.

    PubMed

    St Aubin, J; Steciw, S; Fallone, B G

    2010-09-01

    The integration of a low field biplanar magnetic resonance (MR) imager and linear accelerator (linac) causes magnetic interference at the linac due to the MR fringe fields. In order to eliminate this interference, passive and active magnetic shielding designs are investigated. The optimized design of passive magnetic shielding was performed using the finite element method. The design was required to achieve no greater than a 20% electron beam loss within the linac waveguide and electron gun, no greater than 0.06 T at the multileaf collimator (MLC) motors, and generate a distortion of the main MR imaging volume of no greater than 300 ppm. Through the superposition of the analytical solution for a single current carrying wire loop, active shielding designs in the form of three and four sets of coil pairs surrounding the linac waveguide and electron gun were also investigated. The optimized current and coil center locations that yielded the best cancellation of the MR fringe fields at the linac were determined using sequential quadratic programming. Optimized passive shielding in the form of two steel cylinders was designed to meet the required constraints. When shielding the MLC motors along with the waveguide and electron gun, the thickness of the cylinders was less than 1 mm. If magnetically insensitive MLC motors are used, no MLC shielding would be required and the waveguide shield (shielding the waveguide and electron gun) became 1.58 mm thick. In addition, the optimized current and coil spacing for active shielding was determined for both three and four coil pair configurations. The results of the active shielding optimization produced no beam loss within the waveguide and electron gun and a maximum MR field distortion of 91 ppm over a 30 cm diameter spherical volume. Very simple passive and active shielding designs have been shown to magnetically decouple the linac from the MR imager in a low field biplanar linac-MR system. The MLC passive shielding produced the largest distortion of the MR field over the imaging volume. With the use of magnetically insensitive motors, the MR field distortion drops substantially since no MLC shield is required. The active shielding designs yielded no electron beam loss within the linac.

  5. Do technological advances in linear accelerators improve dosimetric outcomes in stereotaxy? A head-on comparison of seven linear accelerators using volumetric modulated arc therapy-based stereotactic planning.

    PubMed

    Sarkar, B; Pradhan, A; Munshi, A

    2016-01-01

    Linear accelerator (Linac) based stereotactic radiosurgery (SRS) and stereotactic radiotherapy (SRT) using volumetric modulated arc therapy (VMAT) has been used for treating small intracranial lesions. Recent development in the Linacs such as inbuilt micro multileaf collimator (MLC) and flattening filter free (FFF) beam are intended to provide a better dose conformity and faster delivery when using VMAT technique. This study was aimed to compare the dosimetric outcomes and monitor units (MUs) of the stereotactic treatment plans for different commercially available MLC models and beam profiles. Ten patients having 12 planning target volume (PTV)/gross target volume's (GTVs) who received the SRS/SRT treatment in our clinic using Axesse Linac (considered reference arm gold standard) were considered for this study. The test arms comprised of plans using Elekta Agility with FFF, Elekta Agility with the plane beam, Elekta APEX, Varian Millennium 120, Varian Millennium 120HD, and Elekta Synergy in Monaco treatment planning system. Planning constraints and calculation grid spacing were not altered in the test plans. To objectively evaluate the efficacy of MLC-beam model, the resultant dosimetric outcomes were subtracted from the reference arm parameters. V95%, V100%, V105%, D1%, maximum dose, and mean dose of PTV/GTV showed a maximum inter MLC - beam model variation of 1.5% and 2% for PTV and GTV, respectively. Average PTV conformity index and heterogeneity index shows a variation in the range 0.56-0.63 and 1.08-1.11, respectively. Mean dose difference (excluding Axesse) for all organs varied between 1.1 cGy and 74.8 cGy (mean dose = 6.1 cGy standard deviation [SD] = 26.9 cGy) and 1.7 cGy-194.5 cGy (mean dose 16.1 cGy SD = 57.2 cGy) for single and multiple fraction, respectively. The dosimetry of VMAT-based SRS/SRT treatment plan had minimal dependence on MLC and beam model variations. All tested MLC and beam model could fulfil the desired PTV coverage and organs at risk dose constraints. The only notable difference was the halving of the MU for FFF beam as compared to the plane beam. This has the potential to reduce the total patient on couch time by 15% (approximately 2 min).

  6. Effect of tertiary multileaf collimator (MLC) on foetal dose during three-dimensional conformal radiation therapy (3DCRT) of a brain tumour during pregnancy.

    PubMed

    Sharma, Dayananda S; Jalali, Rakesh; Tambe, Chandrashekhar M; Animesh; Deshpande, Deepak D

    2004-01-01

    The aim of this work was to measure the dose to foetus both in vivo and in vitro during three-dimensional conformal radiation therapy (3DCRT) in a pregnant patient with a pituitary adenoma. The study was then extended to assess the components contributing to the foetal dose such as collimator scatter, internal scatter, head leakage, wedge scatter and multileaf collimator (MLC) effect. A 30-year-old pregnant woman with a non-functioning pituitary macroadenoma was planned for 3DCRT with 6MV X-ray using four equally weighted MLC-shaped non-coplanar wedged portals. In vivo dosimetry was carried out using thermoluminescent (TL) phosphor powder, which was placed at different positions on the patient, corresponding to different locations in the uterus and also at external os. In vitro measurements were also performed on a simulated phantom using the same set-up parameters and beam arrangement to verify the in vivo measured dose. Experiments were carried out to measure the respective contributions of different components towards peripheral dose. In vitro measured dose to foetus was found to be slightly more than that of in vivo measurement with a maximum of 0.044% of the prescribed dose of 45Gy, which corresponded to 0.0199+/-0.0008Gy. Thermoluminescence dosimeter (TLD) kept at the external os of the patient showed a dose of 0.031% of the prescribed dose. Among the various components of the peripheral dose (foetal dose) measured, head leakage was found to be the leading cause contributing 52%, followed by wedge scatter (31%), collimator scatter (14%) and internal scatter (13%). The use of MLC reduced not only the volume of normal brain irradiation as compared to open fields but also the peripheral dose by 10%. Radiotherapy of brain tumours during pregnancy poses a unique clinical situation and decisions to deliver radiotherapy should be taken after detailed in vitro and in vivo dosimetric measurements. Our findings suggest that the beam arrangement using 3-4-fields generally used for 3DCRT of brain tumour with MLC for optimal coverage can be employed for pregnant patients even in early trimester. A possible increase in foetal dose from wedges to a large extent can be compensated with the use of MLC.

  7. Prognostic Factors and Pattern of Long-Term Recovery with MLC601 (NeuroAiD™) in the Chinese Medicine NeuroAiD Efficacy on Stroke Recovery - Extension Study.

    PubMed

    Venketasubramanian, Narayanaswamy; Lee, Chun Fan; Young, Sherry H; Tay, San San; Umapathi, Thirugnanam; Lao, Annabelle Y; Gan, Herminigildo H; Baroque Ii, Alejandro C; Navarro, Jose C; Chang, Hui Meng; Advincula, Joel M; Muengtaweepongsa, Sombat; Chan, Bernard P L; Chua, Carlos L; Wijekoon, Nirmala; de Silva, H Asita; Hiyadan, John Harold B; Suwanwela, Nijasri C; Wong, K S Lawrence; Poungvarin, Niphon; Eow, Gaik Bee; Chen, Christopher L H

    2017-01-01

    The Chinese Medicine NeuroAiD Efficacy on Stroke recovery - Extension (CHIMES-E) study is among the few acute stroke trials with long-term outcome data. We aimed to evaluate the recovery pattern and the influence of prognostic factors on treatment effect of MLC601 over 2 years. The CHIMES-E study evaluated the 2 years outcome of subjects aged ≥18 years with acute ischemic stroke, National Institutes of Health Stroke Scale (NIHSS) score 6-14, pre-stroke modified Rankin Scale (mRS) score ≤1 included in a multicenter, randomized, double-blind, placebo-controlled trial of MLC601 for 3 months. Standard stroke care and rehabilitation were allowed during follow-up with mRS score being assessed in-person at month (M) 3 and by telephone at M1, M6, M12, M18 and M24. Data from 880 subjects were analyzed. There was no difference in baseline characteristics between treatment groups. The proportion of subjects with mRS score 0-1 increased over time in favor of MLC601 most notably from M3 to M6, thereafter remaining stable up to M24, while the proportion deteriorating to mRS score ≥2 remained low at all time points. Older age (p < 0.01), female sex (p = 0.06), higher baseline NIHSS score (p < 0.01) and longer onset to treatment time (OTT; p < 0.01) were found to be predictors of poorer outcome at M3. Greater treatment effect, with more subjects improving on MLC601 than placebo, was seen among subjects with 2 or more prognostic factors (OR 1.65 at M3, 1.78 at M6, 1.90 at M12, 1.65 at M18, 1.39 at M24), especially in subjects with more severe stroke or longer OTT. The sustained benefits of MLC601 over 2 years were due to more subjects improving to functional independence at M6 and beyond compared to placebo. Selection of subjects with poorer prognosis, particularly those with more severe NIHSS score and longer OTT delay, as well as a long follow-up period, may improve the power of future trials investigating the treatment effect of neuroprotective or neurorestorative therapies. © 2016 The Author(s) Published by S. Karger AG, Basel.

  8. Species differences in the effects of prostanoids on MAP kinase phosphorylation, myosin light chain phosphorylation and contraction in bovine and cat iris sphincter smooth muscle.

    PubMed

    Kaddour-Djebbar, I; Ansari, H R; Akhtar, R A; Abdel-Latif, A A

    2005-01-01

    There is evidence from our own laboratory and that of others that EP-receptor ligands are strong contractile agonists in bovine iris sphincter and that FP-receptor agonists are strong contractile agonists in cat iris sphincter. Here, we have investigated the effects of prostaglandin (PG) receptor agonists of the FP-, EP-, TP- and DP-class on myosin light chain (MLC) phosphorylation, p42/p44 MAP kinase phosphorylation and contraction in the iris sphincter of bovine and cat. Using three signal transduction mechanism assays, namely MLC phosphorylation, MAP kinase phosphorylation and contraction, we demonstrated that in bovine iris sphincter the rank order of potency of the PG agonists in the contractile and MLC phosphorylation assays is as follows: E2>U46619>F2alpha>D2, and in cat F2alpha>D2>E2>U46619. In the MAP kinase assay, in bovine iris sphincter the rank order of potency is E2>F2alpha and in cat F2alpha>E2. These conclusions are supported by the following findings: (1) In the contractile assay, in the bovine sphincter the EC50s for PGF2alpha, PGE2, U46619 and PGD2 were found to be 1.4x10(-7), 5.0x10(-9), 9.0x10(-9) and 1.3x10(-6)M, respectively, and the corresponding values in the cat were 1.9x10(-8), 2.3x10(-7), 1.5x10(-6) and 6.9x10(-8)M, respectively. (2) In the MLC phophorylation assay, in the bovine sphincter PGF2alpha, PGE2, U46619 and PGD2 increased MLC phophorylation by 118%, 165%, 153% and 72%, respectively, and the corresponding values in cat were 175%, 99%, 90% and 95%, respectively. (3) In the MAP kinase assay, in the bovine iris sphincter PGF2alpha and PGE2, increased MAP kinase phosphorylation by 276% and 328%, respectively, and the corresponding values in cat were 308% and 245%, respectively. The data presented demonstrate pronounced species differences in the effects of the prostanoids on the MLC kinase signaling pathway in bovine and cat irides and furthermore confirm the existence of FP-receptors in that of the bovine.

  9. Increasing leaf hydraulic conductance with transpiration rate minimizes the water potential drawdown from stem to leaf

    PubMed Central

    Simonin, Kevin A.; Burns, Emily; Choat, Brendan; Barbour, Margaret M.; Dawson, Todd E.; Franks, Peter J.

    2015-01-01

    Leaf hydraulic conductance (k leaf) is a central element in the regulation of leaf water balance but the properties of k leaf remain uncertain. Here, the evidence for the following two models for k leaf in well-hydrated plants is evaluated: (i) k leaf is constant or (ii) k leaf increases as transpiration rate (E) increases. The difference between stem and leaf water potential (ΔΨstem–leaf), stomatal conductance (g s), k leaf, and E over a diurnal cycle for three angiosperm and gymnosperm tree species growing in a common garden, and for Helianthus annuus plants grown under sub-ambient, ambient, and elevated atmospheric CO2 concentration were evaluated. Results show that for well-watered plants k leaf is positively dependent on E. Here, this property is termed the dynamic conductance, k leaf(E), which incorporates the inherent k leaf at zero E, which is distinguished as the static conductance, k leaf(0). Growth under different CO2 concentrations maintained the same relationship between k leaf and E, resulting in similar k leaf(0), while operating along different regions of the curve owing to the influence of CO2 on g s. The positive relationship between k leaf and E minimized variation in ΔΨstem–leaf. This enables leaves to minimize variation in Ψleaf and maximize g s and CO2 assimilation rate over the diurnal course of evaporative demand. PMID:25547915

  10. Using narrow beam profiles to quantify focal spot size, for accurate Monte Carlo simulations of SRS/SRT systems

    NASA Astrophysics Data System (ADS)

    Kairn, T.; Crowe, S. B.; Charles, P. H.; Trapp, J. V.

    2014-03-01

    This study investigates the variation of photon field penumbra shape with initial electron beam diameter, for very narrow beams. A Varian Millenium MLC (Varian Medical Systems, Palo Alto, USA) and a Brainlab m3 microMLC (Brainlab AB. Feldkirchen, Germany) were used, with one Varian iX linear accelerator, to produce fields that were (nominally) 0.20 cm across. Dose profiles for these fields were measured using radiochromic film and compared with the results of simulations completed using BEAMnrc and DOSXYZnrc, where the initial electron beam was set to FWHM = 0.02, 0.10, 0.12, 0.15, 0.20 and 0.50 cm. Increasing the electron-beam FWHM produced increasing occlusion of the photon source by the closely spaced collimator leaves and resulted in blurring of the simulated profile widths from 0.24 to 0.58 cm, for the MLC, from 0.11 to 0.40 cm, for the microMLC. Comparison with measurement data suggested that the electron spot size in the clinical linear accelerator was between FWHM = 0.10 and 0.15 cm, encompassing the result of our previous output-factor based work, which identified a FWHM of 0.12 cm. Investigation of narrow-beam penumbra variation has been found to be a useful procedure, with results varying noticeably with linear accelerator spot size and allowing FWHM estimates obtained using other methods to be verified.

  11. Multiple period-doubling bifurcation route to chaos in periodically pulsed Murali-Lakshmanan-Chua circuit-controlling and synchronization of chaos.

    PubMed

    Parthasarathy, S; Manikandakumar, K

    2007-12-01

    We consider a simple nonautonomous dissipative nonlinear electronic circuit consisting of Chua's diode as the only nonlinear element, which exhibit a typical period doubling bifurcation route to chaotic oscillations. In this paper, we show that the effect of additional periodic pulses in this Murali-Lakshmanan-Chua (MLC) circuit results in novel multiple-period-doubling bifurcation behavior, prior to the onset of chaos, by using both numerical and some experimental simulations. In the chaotic regime, this circuit exhibits a rich variety of dynamical behavior including enlarged periodic windows, attractor crises, distinctly modified bifurcation structures, and so on. For certain types of periodic pulses, this circuit also admits transcritical bifurcations preceding the onset of multiple-period-doubling bifurcations. We have characterized our numerical simulation results by using Lyapunov exponents, correlation dimension, and power spectrum, which are found to be in good agreement with the experimental observations. Further controlling and synchronization of chaos in this periodically pulsed MLC circuit have been achieved by using suitable methods. We have also shown that the chaotic attractor becomes more complicated and their corresponding return maps are no longer simple for large n-periodic pulses. The above study also indicates that one can generate any desired n-period-doubling bifurcation behavior by applying n-periodic pulses to a chaotic system.

  12. An event-specific method for the detection and quantification of ML01, a genetically modified Saccharomyces cerevisiae wine strain, using quantitative PCR.

    PubMed

    Vaudano, Enrico; Costantini, Antonella; Garcia-Moruno, Emilia

    2016-10-03

    The availability of genetically modified (GM) yeasts for winemaking and, in particular, transgenic strains based on the integration of genetic constructs deriving from other organisms into the genome of Saccharomyces cerevisiae, has been a reality for several years. Despite this, their use is only authorized in a few countries and limited to two strains: ML01, able to convert malic acid into lactic acid during alcoholic fermentation, and ECMo01 suitable for reducing the risk of carbamate production. In this work we propose a quali-quantitative culture-independent method for the detection of GM yeast ML01 in commercial preparations of ADY (Active Dry Yeast) consisting of efficient extraction of DNA and qPCR (quantitative PCR) analysis based on event-specific assay targeting MLC (malolactic cassette), and a taxon-specific S. cerevisiae assay detecting the MRP2 gene. The ADY DNA extraction methodology has been shown to provide good purity DNA suitable for subsequent qPCR. The MLC and MRP2 qPCR assay showed characteristics of specificity, dynamic range, limit of quantification (LOQ) limit of detection (LOD), precision and trueness, which were fully compliant with international reference guidelines. The method has been shown to reliably detect 0.005% (mass/mass) of GM ML01 S. cerevisiae in commercial preparations of ADY. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Distribution and uptake dynamics of mercury in leaves of common deciduous tree species in Minnesota, U.S.A.

    Treesearch

    Aicam Laacouri; Edward A. Nater; Randall K. Kolka

    2013-01-01

    A sequential extraction technique for compartmentalizing mercury (Hg) in leaves was developed based on a water extraction of Hg from the leaf surface followed by a solvent extraction of the cuticle. The bulk of leaf Hg was found in the tissue compartment (90-96%) with lesser amounts in the surface and cuticle compartments. Total leaf concentrations of Hg varied among...

  14. Mechanistic studies of a cell-permeant peptide designed to enhance myosin light chain phosphorylation in polarized intestinal epithelia.

    PubMed

    Almansour, Khaled; Taverner, Alistair; Eggleston, Ian M; Mrsny, Randall J

    2018-06-10

    Tight junction (TJ) structures restrict the movement of solutes between adjacent epithelial cells to maintain homeostatic conditions. A peptide, termed PIP 640, with the capacity to regulate the transient opening of intestinal TJ structures through an endogenous mechanism involving the induction of myosin light chain (MLC) phosphorylation at serine 19 (MLC-pS 19 ) has provided a promising new method to enhance the in vivo oral bioavailability of peptide therapeutics. PIP 640 is a decapeptide composed of all D-amino acids (rrdykvevrr-NH 2 ) that contains a central sequence designed to emulates a specific domain of C-kinase potentiated protein phosphatase-1 inhibitor-17 kDa (CPI-17) surrounded by positively-charged amino acids that provide a cell penetrating peptide (CPP)-like character. Here, we examine compositional requirements of PIP 640 with regard to its actions on MLC phosphorylation, its intracellular localization to TJ structures, and its interactions with MLC phosphatase (MLCP) elements that correlate with enhanced solute uptake. These studies showed that a glutamic acid and tyrosine within this peptide are critical for PIP 640 to retain its ability to increase MLC-pS 19 levels and enhance the permeability of macromolecular solutes of the size range of therapeutic peptides without detectable cytotoxicity. On the other hand, exchange of the aspartic acid for alanine and then arginine resulted in an increasingly greater bias toward protein phosphatase-1 (PP1) relative to MLCP inhibition, an outcome that resulted in increased paracellular permeability for solutes in the size range of therapeutic peptides, but with a significant increase in cytotoxicity. Together, these data further our understanding of the composition requirements of PIP 640 with respect to the desired goal of transiently altering the intestinal epithelial cell paracellular barrier properties through an endogenous mechanism, providing a novel approach to enhance the oral bioavailability of poorly absorbed therapeutic agents of < ~ 5 kDa. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Role of Telokin in Regulating Murine Gastric Fundus Smooth Muscle Tension

    PubMed Central

    An, Changlong; Bhetwal, Bhupal P.; Sanders, Kenton M.; Somlyo, Avril V.; Perrino, Brian A.

    2015-01-01

    Telokin phosphorylation by cyclic GMP-dependent protein kinase facilitates smooth muscle relaxation. In this study we examined the relaxation of gastric fundus smooth muscles from basal tone, or pre-contracted with KCl or carbachol (CCh), and the phosphorylation of telokin S13, myosin light chain (MLC) S19, MYPT1 T853, T696, and CPI-17 T38 in response to 8-Bromo-cGMP, the NO donor sodium nitroprusside (SNP), or nitrergic neurotransmission. We compared MLC phosphorylation and the contraction and relaxation responses of gastric fundus smooth muscles from telokin-/- mice and their wild-type littermates to KCl or CCh, and 8-Bromo-cGMP, SNP, or nitrergic neurotransmission, respectively. We compared the relaxation responses and telokin phosphorylation of gastric fundus smooth muscles from wild-type mice and W/W V mice which lack ICC-IM, to 8-Bromo-cGMP, SNP, or nitrergic neurotransmission. We found that telokin S13 is basally phosphorylated and that 8-Bromo-cGMP and SNP increased basal telokin phosphorylation. In muscles pre-contracted with KCl or CCh, 8-Bromo-cGMP and SNP had no effect on CPI-17 or MYPT1 phosphorylation, but increased telokin phosphorylation and reduced MLC phosphorylation. In telokin-/- gastric fundus smooth muscles, basal tone and constitutive MLC S19 phosphorylation were increased. Pre-contracted telokin-/- gastric fundus smooth muscles have increased contractile responses to KCl, CCh, or cholinergic neurotransmission and reduced relaxation to 8-Bromo-cGMP, SNP, and nitrergic neurotransmission. However, basal telokin phosphorylation was not increased when muscles were stimulated with lower concentrations of SNP or when the muscles were stimulated by nitrergic neurotransmission. SNP, but not nitrergic neurotransmission, increased telokin Ser13 phosphorylation in both wild-type and W/W V gastric fundus smooth muscles. Our findings indicate that telokin may play a role in attenuating constitutive MLC phosphorylation and provide an additional mechanism to augment gastric fundus mechanical responses to inhibitory neurotransmission. PMID:26258553

  16. SU-E-I-49: The Evaluation of Usability of Multileaf Collimator for Diagnostic Radiation in Cephalometric Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, S; Kim, K; Jung, H

    Purpose: This study evaluated usability of Multileaf collimator (MLC) for diagnostic radiation in cephalometric exposure using optical stimulated luminance dosimeters (OSLDs) Methods: The MLC material was made alloy tool steel (SKD-11) and the density of it is 7.89g/m3 that is similar to it of steel (Fe, 7.85 g/m3) and the MLC was attached to general radiography unit (Rex-650R, Listem Inc, Korea) for cephalometric exposure. The OSLDs that used were nanoDotTM Dosimeter (Landauer Inc, Glenwood, USA) and we read out OSLDs with micro star system (Landauer Inc, Glenwood, USA). The Optical annealing system contained fluorescent lamps (Osram lumilux, 24 W, 280more » ∼780 nm). To measure absorbed dose using OSLDs, was carried out dosimetric characteristics of OSLDs. Based on these, we evaluated dose reduction of critical organ (Eyes, Thyroids) with MLC in cephalometric exposure Results: The dosimetric characteristics were following that batch homogeneity was 1.21% and reproducibility was 0.96% of the coefficient of variation The linearity was that the correlation of between dose and count was fitted by linear function (dose,mGy = 0.00029 × Count, R2 =0.997). The range of angular dependence was from −3.6% to 3.7% variation when each degree was normalized by zero degree. The organ dose of Rt. eye, Lt eye, thyroids were 77.8 μGy, 337.0 μGy, 323.1μGy, respectively in open field and the dose reduction of organ dose was 10.6%(8.3μGy), 12.4 %(42 μGy), 87.1%(281.4μGy) with MLC Conclusion: We certified dose reduction of organ dose in cephalometric exposure. The dose reduction of Eye was 11% because of reduction of field size and it of thyroids was 87% by primary beam shielding.« less

  17. SU-E-T-774: Use of a Scintillator-Mirror-Camera System for the Measurement of MLC Leakage Radiation with the CyberKnife M6 System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goggin, L; Kilby, W; Noll, M

    2015-06-15

    Purpose: A technique using a scintillator-mirror-camera system to measure MLC leakage was developed to provide an efficient alternative to film dosimetry while maintaining high spatial resolution. This work describes the technique together with measurement uncertainties. Methods: Leakage measurements were made for the InCise™ MLC using the Logos XRV-2020A device. For each measurement approximately 170 leakage and background images were acquired using optimized camera settings. Average background was subtracted from each leakage frame before filtering the integrated leakage image to replace anomalous pixels. Pixel value to dose conversion was performed using a calibration image. Mean leakage was calculated within an ROImore » corresponding to the primary beam, and maximum leakage was determined by binning the image into overlapping 1mm x 1mm ROIs. 48 measurements were performed using 3 cameras and multiple MLC-linac combinations in varying beam orientations, with each compared to film dosimetry. Optical and environmental influences were also investigated. Results: Measurement time with the XRV-2020A was 8 minutes vs. 50 minutes using radiochromic film, and results were available immediately. Camera radiation exposure degraded measurement accuracy. With a relatively undamaged camera, mean leakage agreed with film measurement to ≤0.02% in 92% cases, ≤0.03% in 100% (for maximum leakage the values were 88% and 96%) relative to reference open field dose. The estimated camera lifetime over which this agreement is maintained is at least 150 measurements, and can be monitored using reference field exposures. A dependency on camera temperature was identified and a reduction in sensitivity with distance from image center due to optical distortion was characterized. Conclusion: With periodic monitoring of the degree of camera radiation damage, the XRV-2020A system can be used to measure MLC leakage. This represents a significant time saving when compared to the traditional film-based approach without any substantial reduction in accuracy.« less

  18. Inhibition of the AMP-activated protein kinase-α2 accentuates agonist-induced vascular smooth muscle contraction and high blood pressure in mice.

    PubMed

    Wang, Shuangxi; Liang, Bin; Viollet, Benoit; Zou, Ming-Hui

    2011-05-01

    The aim of the present study was to determine the effects and molecular mechanisms by which AMP-activated protein kinase (AMPK) regulates smooth muscle contraction and blood pressure in mice. In cultured human vascular smooth muscle cells, we observed that activation of AMPK by 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited agonist-induced phosphorylation of myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1). Conversely, AMPK inhibition with pharmacological or genetic means potentiated agonist-induced the phosphorylation of MLC and MYPT1, whereas it inhibited both Ras homolog gene family member A and Rho-associated kinase activity. In addition, AMPK activation or Rho-associated kinase inhibition with Y27632 abolished agonist-induced phosphorylation of MLC and MYPT1. Gene silencing of p190-guanosine triphosphatase-activating protein abolished the effects of AMPK activation on MLC, MYPT1, and Ras homolog gene family member A in human smooth muscle cells. Ex vivo analyses revealed that agonist-induced contractions of the mesenteric artery and aortas were stronger in both AMPKα1(-/-) and AMPKα2(-/-) knockout mice than in wild-type mice. Inhibition of Rho-associated kinase with Y27632 normalized agonist-induced contractions of AMPKα1(-/-) and AMPKα2(-/-) vessels. AMPKα2(-/-) mice had higher blood pressure along with decreased serine phosphorylation of p190-guanosine triphosphatase-activating protein. Finally, inhibition of the Ras homolog gene family member A/Rho-associated kinase pathway with Y27632, which suppressed MYPT1 and MLC phosphorylation, lowered blood pressure in AMPKα2(-/-) mice. In conclusion, AMPK decreases vascular smooth muscle cell contractility by inhibiting p190-GTP-activating protein-dependent Ras homolog gene family member A activation, indicating that AMPK may be a new therapeutic target in lowering high blood pressure.

  19. HyperART: non-invasive quantification of leaf traits using hyperspectral absorption-reflectance-transmittance imaging.

    PubMed

    Bergsträsser, Sergej; Fanourakis, Dimitrios; Schmittgen, Simone; Cendrero-Mateo, Maria Pilar; Jansen, Marcus; Scharr, Hanno; Rascher, Uwe

    2015-01-01

    Combined assessment of leaf reflectance and transmittance is currently limited to spot (point) measurements. This study introduces a tailor-made hyperspectral absorption-reflectance-transmittance imaging (HyperART) system, yielding a non-invasive determination of both reflectance and transmittance of the whole leaf. We addressed its applicability for analysing plant traits, i.e. assessing Cercospora beticola disease severity or leaf chlorophyll content. To test the accuracy of the obtained data, these were compared with reflectance and transmittance measurements of selected leaves acquired by the point spectroradiometer ASD FieldSpec, equipped with the FluoWat device. The working principle of the HyperART system relies on the upward redirection of transmitted and reflected light (range of 400 to 2500 nm) of a plant sample towards two line scanners. By using both the reflectance and transmittance image, an image of leaf absorption can be calculated. The comparison with the dynamically high-resolution ASD FieldSpec data showed good correlation, underlying the accuracy of the HyperART system. Our experiments showed that variation in both leaf chlorophyll content of four different crop species, due to different fertilization regimes during growth, and fungal symptoms on sugar beet leaves could be accurately estimated and monitored. The use of leaf reflectance and transmittance, as well as their sum (by which the non-absorbed radiation is calculated) obtained by the HyperART system gave considerably improved results in classification of Cercospora leaf spot disease and determination of chlorophyll content. The HyperART system offers the possibility for non-invasive and accurate mapping of leaf transmittance and absorption, significantly expanding the applicability of reflectance, based on mapping spectroscopy, in plant sciences. Therefore, the HyperART system may be readily employed for non-invasive determination of the spatio-temporal dynamics of various plant properties.

  20. Analysis of leaf surfaces using scanning ion conductance microscopy.

    PubMed

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  1. Storage nitrogen co-ordinates leaf expansion and photosynthetic capacity in winter oilseed rape

    PubMed Central

    Liu, Tao; Ren, Tao; White, Philip J; Cong, Rihuan

    2018-01-01

    Abstract Storage nitrogen (N) is a buffer pool for maintaining leaf growth and synthesizing photosynthetic proteins, but the dynamics of its forms within the life cycle of a single leaf and how it is influenced by N supply remain poorly understood. A field experiment was conducted to estimate the influence of N supply on leaf growth, photosynthetic characteristics, and N partitioning inthe sixth leaf of winter oilseed rape (Brassica napus L.) from emergence through senescence. Storage N content (Nstore) decreased gradually along with leaf expansion. The relative growth rate based on leaf area (RGRa) was positively correlated with Nstore during leaf expansion. The water-soluble protein form of storage N was the main N source for leaf expansion. After the leaves fully expanded, the net photosynthetic rate (An) followed a linear–plateau response to Nstore, with An stabilizing at the highest value above a threshold and declining below the threshold. Non-protein and SDS (detergent)-soluble protein forms of storage N were the main N sources for maintaining photosynthesis. For the leaf N economy, storage N is used for co-ordinating leaf expansion and photosynthetic capacity. N supply can improve Nstore, thereby promoting leaf growth and biomass. PMID:29669007

  2. Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: implications for soil nitrogen dynamics.

    PubMed

    Bernal, S; Butturini, A; Nin, E; Sabater, F; Sabater, S

    2003-01-01

    Mediterranean riparian zones can experience severe drought periods that lead to low soil moisture content, which dramatically affects their performance as nitrate removal systems. In the Mediterranean riparian zone of this study, we determined that N2O emission was practically nil. To understand the role of forest floor processes in nitrogen retention of a Mediterranean riparian area, we studied leaf litter dynamics of two tree species, London planetree [Platanus x acerifolia (Aiton) Willd.] and alder [Alnus glutinosa (L.) Gaertn.], for two years, along with soil nitrogen mineralization rates. Annual leaf litter fall equaled 562.6 +/- 10.1 (standard error) g dry wt. m(-2), 68% of which was planetree and 32% of which was alder. The temporal distribution of litterfall showed a two-peak annual cycle, one occurring in midsummer, the other in autumn. Planetree provided the major input of organic nitrogen to the forest floor, and the amount of planetree leaves remaining on the forest floor was equivalent to approximately four years of stock. Leaf litter decomposition was three times higher for alder (decay coefficient [k] = 1.13 yr(-1)) than for planetree (k = 0.365 yr(-1)). Mineralization rates showed a seasonal pattern, with the maximum rate in summer (1.92 mg N kg(-1) d(-1)). Although the forest floor was an important sink for nitrogen due to planetree leaf accumulation, 7.5% of this leaf litter was scoured to the streambed by wind. This loss was irrelevant for alder leaves. Due to the litter quality, the forest floor of this Mediterranean riparian forest acts as a nitrogen sink.

  3. Leaf and stem economics spectra drive diversity of functional plant traits in a dynamic global vegetation model.

    PubMed

    Sakschewski, Boris; von Bloh, Werner; Boit, Alice; Rammig, Anja; Kattge, Jens; Poorter, Lourens; Peñuelas, Josep; Thonicke, Kirsten

    2015-01-22

    Functional diversity is critical for ecosystem dynamics, stability and productivity. However, dynamic global vegetation models (DGVMs) which are increasingly used to simulate ecosystem functions under global change, condense functional diversity to plant functional types (PFTs) with constant parameters. Here, we develop an individual- and trait-based version of the DGVM LPJmL (Lund-Potsdam-Jena managed Land) called LPJmL- flexible individual traits (LPJmL-FIT) with flexible individual traits) which we apply to generate plant trait maps for the Amazon basin. LPJmL-FIT incorporates empirical ranges of five traits of tropical trees extracted from the TRY global plant trait database, namely specific leaf area (SLA), leaf longevity (LL), leaf nitrogen content (N area ), the maximum carboxylation rate of Rubisco per leaf area (vcmaxarea), and wood density (WD). To scale the individual growth performance of trees, the leaf traits are linked by trade-offs based on the leaf economics spectrum, whereas wood density is linked to tree mortality. No preselection of growth strategies is taking place, because individuals with unique trait combinations are uniformly distributed at tree establishment. We validate the modeled trait distributions by empirical trait data and the modeled biomass by a remote sensing product along a climatic gradient. Including trait variability and trade-offs successfully predicts natural trait distributions and achieves a more realistic representation of functional diversity at the local to regional scale. As sites of high climatic variability, the fringes of the Amazon promote trait divergence and the coexistence of multiple tree growth strategies, while lower plant trait diversity is found in the species-rich center of the region with relatively low climatic variability. LPJmL-FIT enables to test hypotheses on the effects of functional biodiversity on ecosystem functioning and to apply the DGVM to current challenges in ecosystem management from local to global scales, that is, deforestation and climate change effects. © 2015 John Wiley & Sons Ltd.

  4. [A review of progress of real-time tumor tracking radiotherapy technology based on dynamic multi-leaf collimator].

    PubMed

    Liu, Fubo; Li, Guangjun; Shen, Jiuling; Li, Ligin; Bai, Sen

    2017-02-01

    While radiation treatment to patients with tumors in thorax and abdomen is being performed, further improvement of radiation accuracy is restricted by the tumor intra-fractional motion due to respiration. Real-time tumor tracking radiation is an optimal solution to tumor intra-fractional motion. A review of the progress of real-time dynamic multi-leaf collimator(DMLC) tracking is provided in the present review, including DMLC tracking method, time lag of DMLC tracking system, and dosimetric verification.

  5. MagicPlate-512: A 2D silicon detector array for quality assurance of stereotactic motion adaptive radiotherapy.

    PubMed

    Petasecca, M; Newall, M K; Booth, J T; Duncan, M; Aldosari, A H; Fuduli, I; Espinoza, A A; Porumb, C S; Guatelli, S; Metcalfe, P; Colvill, E; Cammarano, D; Carolan, M; Oborn, B; Lerch, M L F; Perevertaylo, V; Keall, P J; Rosenfeld, A B

    2015-06-01

    Spatial and temporal resolutions are two of the most important features for quality assurance instrumentation of motion adaptive radiotherapy modalities. The goal of this work is to characterize the performance of the 2D high spatial resolution monolithic silicon diode array named "MagicPlate-512" for quality assurance of stereotactic body radiation therapy (SBRT) and stereotactic radiosurgery (SRS) combined with a dynamic multileaf collimator (MLC) tracking technique for motion compensation. MagicPlate-512 is used in combination with the movable platform HexaMotion and a research version of radiofrequency tracking system Calypso driving MLC tracking software. The authors reconstruct 2D dose distributions of small field square beams in three modalities: in static conditions, mimicking the temporal movement pattern of a lung tumor and tracking the moving target while the MLC compensates almost instantaneously for the tumor displacement. Use of Calypso in combination with MagicPlate-512 requires a proper radiofrequency interference shielding. Impact of the shielding on dosimetry has been simulated by (GEANT)4 and verified experimentally. Temporal and spatial resolutions of the dosimetry system allow also for accurate verification of segments of complex stereotactic radiotherapy plans with identification of the instant and location where a certain dose is delivered. This feature allows for retrospective temporal reconstruction of the delivery process and easy identification of error in the tracking or the multileaf collimator driving systems. A sliding MLC wedge combined with the lung motion pattern has been measured. The ability of the MagicPlate-512 (MP512) in 2D dose mapping in all three modes of operation was benchmarked by EBT3 film. Full width at half maximum and penumbra of the moving and stationary dose profiles measured by EBT3 film and MagicPlate-512 confirm that motion has a significant impact on the dose distribution. Motion, no motion, and motion with MLC tracking profiles agreed within 1 and 0.4 mm, respectively, for all field sizes tested. Use of electromagnetic tracking system generates a fluctuation of the detector baseline up to 10% of the full scale signal requiring a proper shielding strategy. MagicPlate-512 is also able to reconstruct the dose variation pulse-by-pulse in each pixel of the detector. An analysis of the dose transients with motion and motion with tracking shows that the tracking feedback algorithm used for this experiment can compensate effectively only the effect of the slower transient components. The fast changing components of the organ motion can contribute only to discrepancy of the order of 15% in penumbral region while the slower components can change the dose profile up to 75% of the expected dose. MagicPlate-512 is shown to be, potentially, a valid alternative to film or 2D ionizing chambers for quality assurance dosimetry in SRS or SBRT. Its high spatial and temporal resolutions allow for accurate reconstruction of the profile in any conditions with motion and with tracking of the motion. It shows excellent performance to reconstruct the dose deposition in real time or retrospectively as a function of time for detailed analysis of the effect of motion in a specific pixel or area of interest.

  6. Leaf growth dynamics in four plant species of the Patagonian Monte, Argentina.

    PubMed

    Campanella, M Victoria; Bertiller, Mónica B

    2013-07-01

    Studying plant responses to environmental variables is an elemental key to understand the functioning of arid ecosystems. We selected four dominant species of the two main life forms. The species selected were two evergreen shrubs: Larrea divaricata and Chuquiraga avellanedae and two perennial grasses: Nassella tenuis and Pappostipa speciosa. We registered leaf/shoot growth, leaf production and environmental variables (precipitation, air temperature, and volumetric soil water content at two depths) during summer-autumn and winter-spring periods. Multiple regressions were used to test the predictive power of the environmental variables. During the summer-autumn period, the strongest predictors of leaf/shoot growth and leaf production were the soil water content of the upper layer and air temperature while during the winter-spring period, the strongest predictor was air temperature. In conclusion, we found that the leaf/shoot growth and leaf production were associated with current environmental conditions, specially to soil water content and air temperature.

  7. How did the swiss cheese plant get its holes?

    PubMed

    Muir, Christopher D

    2013-02-01

    Adult leaf fenestration in "Swiss cheese" plants (Monstera Adans.) is an unusual leaf shape trait lacking a convincing evolutionary explanation. Monstera are secondary hemiepiphytes that inhabit the understory of tropical rainforests, where photosynthesis from sunflecks often makes up a large proportion of daily carbon assimilation. Here I present a simple model of leaf-level photosynthesis and whole-plant canopy dynamics in a stochastic light environment. The model demonstrates that leaf fenestration can reduce the variance in plant growth and thereby increase geometric mean fitness. This growth-variance hypothesis also suggests explanations for conspicuous ontogenetic changes in leaf morphology (heteroblasty) in Monstera, as well as the absence of leaf fenestration in co-occurring juvenile tree species. The model provides a testable hypothesis of the adaptive significance of a unique leaf shape and illustrates how variance in growth rate could be an important factor shaping plant morphology and physiology.

  8. Climatic and biotic drivers of tropical evergreen forest photosynthesis: integrating field, eddy flux, remote sensing and modelling

    NASA Astrophysics Data System (ADS)

    Wu, J.; Serbin, S.; Xu, X.; Guan, K.; Albert, L.; Hayek, M.; Restrepo-Coupe, N.; Lopes, A. P.; Wiedemann, K. T.; Christoffersen, B. O.; Meng, R.; De Araujo, A. C.; Oliveira Junior, R. C.; Camargo, P. B. D.; Silva, R. D.; Nelson, B. W.; Huete, A. R.; Rogers, A.; Saleska, S. R.

    2016-12-01

    Tropical evergreen forest photosynthetic metabolism is an important driver of large-scale carbon, water, and energy cycles, generating various climate feedbacks. However, considerable uncertainties remain regarding how best to represent evergreen forest photosynthesis in current terrestrial biosphere models (TBMs), especially its sensitivity to climatic vs. biotic variation. Here, we develop a new approach to partition climatic and biotic controls on tropical forest photosynthesis from hourly to inter-annual timescales. Our results show that climatic factors dominate photosynthesis dynamics at shorter-time scale (i.e. hourly), while biotic factors dominate longer-timescale (i.e. monthly and longer) photosynthetic dynamics. Focusing on seasonal timescales, we combine camera and ecosystem carbon flux observations of forests across a rainfall gradient in Amazonia to show that high dry season leaf turnover shifts canopy composition towards younger more efficient leaves. This seasonal variation in leaf quality (per-area leaf photosynthetic capacity) thus can explain the high photosynthetic seasonality observed in the tropics. Finally, we evaluated the performance of models with different phenological schemes (i.e. leaf quantity versus leaf quality; with and without leaf phenological variation alone the vertical canopy profile). We found that models which represented the phenology of leaf quality and its within-canopy variation performed best in simulating photosynthetic seasonality in tropical evergreen forests. This work highlights the importance of incorporating improved understanding of climatic and biotic controls in next generation TBMs to project future carbon and water cycles in the tropics.

  9. Neighbor detection at the leaf tip adaptively regulates upward leaf movement through spatial auxin dynamics

    PubMed Central

    Reinen, Emilie; Anten, Niels P. R.

    2017-01-01

    Vegetation stands have a heterogeneous distribution of light quality, including the red/far-red light ratio (R/FR) that informs plants about proximity of neighbors. Adequate responses to changes in R/FR are important for competitive success. How the detection and response to R/FR are spatially linked and how this spatial coordination between detection and response affects plant performance remains unresolved. We show in Arabidopsis thaliana and Brassica nigra that localized FR enrichment at the lamina tip induces upward leaf movement (hyponasty) from the petiole base. Using a combination of organ-level transcriptome analysis, molecular reporters, and physiology, we show that PIF-dependent spatial auxin dynamics are key to this remote response to localized FR enrichment. Using computational 3D modeling, we show that remote signaling of R/FR for hyponasty has an adaptive advantage over local signaling in the petiole, because it optimizes the timing of leaf movement in response to neighbors and prevents hyponasty caused by self-shading. PMID:28652357

  10. Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments.

    PubMed

    Tyler, Madelaine K

    2016-01-08

    This study quantified the interplay and gradient effects on GTV dose coverage for 3D CRT, dMLC IMRT, and VMAT SABR treatments for target amplitudes of 5-30 mm using 3DVH v3.1 software incorporating 4D Respiratory MotionSim (4D RMS) module. For clinically relevant motion periods (5 s), the interplay effect was small, with deviations in the minimum dose covering the target volume (D99%) of less than ± 2.5% for target amplitudes up to 30 mm. Increasing the period to 60 s resulted in interplay effects of up to ± 15.0% on target D99% dose coverage. The gradient effect introduced by target motion resulted in deviations of up to ± 3.5% in D99% target dose coverage. VMAT treatments showed the largest deviation in dose metrics, which was attributed to the long delivery times in comparison to dMLC IMRT. Retrospective patient analysis indicated minimal interplay and gradient effects for patients treated with dMLC IMRT at the NCCI.

  11. [Ambulatory laparoscopic cholecystectomy by minilaparoscopy versus traditional multiport ambulatory laparoscopic cholecystectomy. Prospective randomized trial].

    PubMed

    Planells Roig, Manuel; Arnal Bertomeu, Consuelo; Garcia Espinosa, Rafael; Cervera Delgado, Maria; Carrau Giner, Miguel

    2016-02-01

    Difference analysis of ambulatorization rate, pain, analgesic requirements and daily activities recovery in patients undergoing laparoscopic cholecystectomy with standard multiport access (CLMP) versus a minilaparoscopic, 3mm size, technique. Prospective randomized trial of 40 consecutive patients undergoing laparoscopic cholecystectomy. Comparison criteria included predictive ultrasound factors of difficult cholecystectomy, previous history of complicated biliary disease and demographics. Results are analyzed in terms of ambulatorization rate, pain, analgesic requirements, postoperative recovery, technical difficulty, hemorrhage intensity, overnight stay, readmission rate and total or partial conversion. Both procedures were similar in surgery time, technical score and hemorrhage score. MLC was associated with similar ambulatorization rate, 85%, and over-night stay 15%, with only 15% partial conversion rate. MLC showed less postoperative pain (P=.026), less analgesic consumption (P=.006) and similar DAR (P=.879). MLC is similar to CLMP in terms of ambulatorization with less postoperative pain and analgesic requirements without differences in postoperative recovery. Copyright © 2014 AEC. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Trastuzumab Alters the Expression of Genes Essential for Cardiac Function and Induces Ultrastructural Changes of Cardiomyocytes in Mice

    PubMed Central

    ElZarrad, M. Khair; Mukhopadhyay, Partha; Mohan, Nishant; Hao, Enkui; Dokmanovic, Milos; Hirsch, Dianne S.; Shen, Yi; Pacher, Pal; Wu, Wen Jin

    2013-01-01

    Treatment with trastuzumab, a humanized monoclonal antibody directed against the extracellular domain of Human Epidermal Growth Factor Receptor 2 (HER2), very successfully improves outcomes for women with HER2-positive breast cancer. However, trastuzumab treatment was recently linked to potentially irreversible serious cardiotoxicity, the mechanisms of which are largely elusive. This study reports that trastuzumab significantly alters the expression of myocardial genes essential for DNA repair, cardiac and mitochondrial functions, which is associated with impaired left ventricular performance in mice coupled with significant ultrastructural alterations in cardiomyocytes revealed by electron microscopy. Furthermore, trastuzumab treatment also promotes oxidative stress and apoptosis in myocardium of mice, and elevates serum levels of cardiac troponin-I (cTnI) and cardiac myosin light chain-1 (cMLC1). The elevated serum levels of cMLC1 in mice treated with trastuzumab highlights the potential that cMLC1 could be a useful biomarker for trastuzumab-induced cardiotoxicity. PMID:24255707

  13. Rate adaptive multilevel coded modulation with high coding gain in intensity modulation direct detection optical communication

    NASA Astrophysics Data System (ADS)

    Xiao, Fei; Liu, Bo; Zhang, Lijia; Xin, Xiangjun; Zhang, Qi; Tian, Qinghua; Tian, Feng; Wang, Yongjun; Rao, Lan; Ullah, Rahat; Zhao, Feng; Li, Deng'ao

    2018-02-01

    A rate-adaptive multilevel coded modulation (RA-MLC) scheme based on fixed code length and a corresponding decoding scheme is proposed. RA-MLC scheme combines the multilevel coded and modulation technology with the binary linear block code at the transmitter. Bits division, coding, optional interleaving, and modulation are carried out by the preset rule, then transmitted through standard single mode fiber span equal to 100 km. The receiver improves the accuracy of decoding by means of soft information passing through different layers, which enhances the performance. Simulations are carried out in an intensity modulation-direct detection optical communication system using MATLAB®. Results show that the RA-MLC scheme can achieve bit error rate of 1E-5 when optical signal-to-noise ratio is 20.7 dB. It also reduced the number of decoders by 72% and realized 22 rate adaptation without significantly increasing the computing time. The coding gain is increased by 7.3 dB at BER=1E-3.

  14. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    NASA Astrophysics Data System (ADS)

    Rokni Deilmai, B.; Ahmad, B. Bin; Zabihi, H.

    2014-06-01

    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification.

  15. SU-F-T-266: Dynalogs Based Evaluation of Different Dose Rate IMRT Using DVH and Gamma Index

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, S; Ahmed, S; Ahmed, F

    2016-06-15

    Purpose: This work investigates the impact of low and high dose rate on IMRT through Dynalogs by evaluating Gamma Index and Dose Volume Histogram. Methods: The Eclipse™ treatment planning software was used to generate plans on prostate and head and neck sites. A range of dose rates 300 MU/min and 600 MU/min were applied to each plan in order to investigate their effect on the beam ON time, efficiency and accuracy. Each plan had distinct monitor units per fraction, delivery time, mean dose rate and leaf speed. The DVH data was used in the assessment of the conformity and planmore » quality.The treatments were delivered on Varian™ Clinac 2100C accelerator equipped with 120 leaf millennium MLC. Dynalogs of each plan were analyzed by MATLAB™ program. Fluence measurements were performed using the Sun Nuclear™ 2D diode array and results were assessed, based on Gamma analysis of dose fluence maps, beam delivery statistics and Dynalogs data. Results: Minor differences found by adjusted R-squared analysis of DVH’s for all the plans with different dose rates. It has been also found that more and larger fields have greater time reduction at high dose rate and there was a sharp decrease in number of control points observed in dynalog files by switching dose rate from 300 MU/min to 600 MU/min. Gamma Analysis of all plans passes the confidence limit of ≥95% with greater number of passing points in 300 MU/min dose rate plans. Conclusion: The dynalog files are compatible tool for software based IMRT QA. It can work perfectly parallel to measurement based QA setup and stand-by procedure for pre and post delivery of treatment plan.« less

  16. Stomata size and spatial pattern effects on leaf gas exchange - a quantitative assessment of plant evolutionary choices

    NASA Astrophysics Data System (ADS)

    Or, Dani; Assouline, Shmuel; Aminzadeh, Milad; Haghighi, Erfan; Schymanski, Stan; Lehmann, Peter

    2014-05-01

    Land plants developed a dynamically gas-permeable layer at their leaf surfaces to allow CO2 uptake for photosynthesis while controlling water vapor loss through numerous adjustable openings (stomata) in the impervious leaf epidermis. Details of stomata structure, density and function may vary greatly among different plant families and respond to local environmental conditions, yet they share basic traits in dynamically controlling gaseous exchange rates by varying stomata apertures. We implement a pore scale gas diffusion model to quantitatively interpret the functionality of different combinations of stomata size and pattern on leaf gas exchange and thermal management based on data from fossil records and contemporary data sets. Considering all available data we draw several general conclusions concerning stomata design considerations: (1) the sizes and densities of stomata in the available fossil record leaves were designed to evaporate at rates in the range 0.75≤e/e0 ≤0.99 (relative to free water evaporation); (2) examination of evaporation curves show that for a given stomata size, the density (jointly defining the leaf evaporating area when fully open) was chosen to enable a high sensitivity in reducing evaporation rate with incremental stomatal closure, nevertheless, results show the design includes safety margins to account for different wind conditions (boundary layer thickness); (3) scaled for mean vapor flux, the size of stomata plays a minor role in the uniformity of leaf thermal field for a given stomata density. These principles enable rationale assessment of plant response to raising CO2, and provide a physical framework for considering the consequences of different stomata patterns (patchy) on leaf gas exchange (and thermal regime). In contrast with present quantitative description of traits and functionality of these dynamic covers in terms of gaseous diffusion resistance (or conductance), where stomata size, density and spatial pattern are lumped into a single effective resistance parameter, the present approach enables derivation of nuanced insights and offers predictive capabilities that link changes in stomata structure and geometrical attributes to quantifying environmental influences and feedbacks on leaf structure and function.

  17. Texture analysis on the fluence map to evaluate the degree of modulation for volumetric modulated arc therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, So-Yeon; Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul 110-744; Biomedical Research Institute, Seoul National University College of Medicine, Seoul 110-744

    Purpose: Texture analysis on fluence maps was performed to evaluate the degree of modulation for volumetric modulated arc therapy (VMAT) plans. Methods: A total of six textural features including angular second moment, inverse difference moment, contrast, variance, correlation, and entropy were calculated for fluence maps generated from 20 prostate and 20 head and neck VMAT plans. For each of the textural features, particular displacement distances (d) of 1, 5, and 10 were adopted. To investigate the deliverability of each VMAT plan, gamma passing rates of pretreatment quality assurance, and differences in modulating parameters such as multileaf collimator (MLC) positions, gantrymore » angles, and monitor units at each control point between VMAT plans and dynamic log files registered by the Linac control system during delivery were acquired. Furthermore, differences between the original VMAT plan and the plan reconstructed from the dynamic log files were also investigated. To test the performance of the textural features as indicators for the modulation degree of VMAT plans, Spearman’s rank correlation coefficients (r{sub s}) with the plan deliverability were calculated. For comparison purposes, conventional modulation indices for VMAT including the modulation complexity score for VMAT, leaf travel modulation complexity score, and modulation index supporting station parameter optimized radiation therapy (MI{sub SPORT}) were calculated, and their correlations were analyzed in the same way. Results: There was no particular textural feature which always showed superior correlations with every type of plan deliverability. Considering the results comprehensively, contrast (d = 1) and variance (d = 1) generally showed considerable correlations with every type of plan deliverability. These textural features always showed higher correlations to the plan deliverability than did the conventional modulation indices, except in the case of modulating parameter differences. The r{sub s} values of contrast to the global gamma passing rates with criteria of 2%/2 mm, 2%/1 mm, and 1%/2 mm were 0.536, 0.473, and 0.718, respectively. The respective values for variance were 0.551, 0.481, and 0.688. In the case of local gamma passing rates, the r{sub s} values of contrast were 0.547, 0.578, and 0.620, respectively, and those of variance were 0.519, 0.527, and 0.569. All of the r{sub s} values in those cases were statistically significant (p < 0.003). In the cases of global and local gamma passing rates, MI{sub SPORT} showed the highest correlations among the conventional modulation indices. For global passing rates, r{sub s} values of MI{sub SPORT} were −0.420, −0.330, and −0.632, respectively, and those for local passing rates were −0.455, −0.490 and −0.502. The values of r{sub s} of contrast, variance, and MI{sub SPORT} with the MLC errors were −0.863, −0.828, and 0.795, respectively, all with statistical significances (p < 0.001). The correlations with statistical significances between variance and dose-volumetric differences were observed more frequently than the others. Conclusions: The contrast (d = 1) and variance (d = 1) calculated from fluence maps of VMAT plans showed considerable correlations with the plan deliverability, indicating their potential use as indicators for assessing the degree of modulation of VMAT plans. Both contrast and variance consistently showed better performance than the conventional modulation indices for VMAT.« less

  18. [Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum].

    PubMed

    Zheng, Yueliang; Cao, Shuang; Huang, Yuqi; Liao, Guojian; Hu, Changhua

    2014-12-04

    To study the regulation of laeA overexpression on mevastatin production and sporulation in Penicillium citrinum. We cloned the laeA gene from Penicillium citrinum and constructed the vector pGiHTGi-laeA. The plasmid pGiHTGi-laeA was transformed in Penicillium citrinum by agrobacterium tumefaciens-mediated transformation. Positive transformants were detected by cloning the hygromycin gene. The mevastatin production of the wild type and OE:: laeA was compared by HPLC. The conidia number was counted by blood counting chamber. The biosynthetic gene cluster expression quantity of mevastatin in the wild type and OE: :laeA were analyzed by qRT-PCR. We constructed the plasmid pGiHTGi-laeA, and screened the positive transformants that overexpress the laeA in Penicillium citrinum. With the overexpression of laeA, the mevastatin production was increased from (0.69 ± 0.12) mg/g to (4.02 ± 0.50) mg/g dry cell weight. Compared to the wild type strain, the laeA expression quantity in the OE :: laeA strain increased 29%, and the mlcB expression increased 72%, the mlcR expression increased 153%. Moreover, the overexpression of laeA would decrease the conidia number. Overexpression of LaeA enhances mevastatin production and reduces sporulation of Penicillium citrinum, with increases expression of pathway-regulator mlcR, and biosynthetic gene MlcR. These results could guide global regulatory mechanism of mevastatin biosynthesis and the exploitation of high-production strain.

  19. Airborne particulate matter in vitro exposure induces cytoskeleton remodeling through activation of the ROCK-MYPT1-MLC pathway in A549 epithelial lung cells.

    PubMed

    Chirino, Yolanda I; García-Cuellar, Claudia María; García-García, Carlos; Soto-Reyes, Ernesto; Osornio-Vargas, Álvaro Román; Herrera, Luis A; López-Saavedra, Alejandro; Miranda, Javier; Quintana-Belmares, Raúl; Pérez, Irma Rosas; Sánchez-Pérez, Yesennia

    2017-04-15

    Airborne particulate matter with an aerodynamic diameter ≤10μm (PM 10 ) is considered a risk factor for the development of lung cancer. Little is known about the cellular mechanisms by which PM 10 is associated with cancer, but there is evidence that its exposure can lead to an acquired invasive phenotype, apoptosis evasion, inflammasome activation, and cytoskeleton remodeling in lung epithelial cells. Cytoskeleton remodeling occurs through actin stress fiber formation, which is partially regulated through ROCK kinase activation, we aimed to investigate if this protein was activated in response to PM 10 exposure in A549 lung epithelial cells. Results showed that 10μg/cm 2 of PM 10 had no influence on cell viability but increased actin stress fibers, cytoplasmic ROCK expression, and phosphorylation of myosin phosphatase-targeting 1 (MYPT1) and myosin light chain (MLC) proteins, which are targeted by ROCK. The inhibition of ROCK prevented actin stress fiber formation and the phosphorylation of MYPT1 and MLC, suggesting that PM 10 activated the ROCK-MYPT1-MLC pathway in lung epithelial cells. The activation of ROCK1 has been involved in the acquisition of malignant phenotypes, and its induction by PM 10 exposure could contribute to the understanding of PM 10 as a risk factor for cancer development through the mechanisms associated with invasive phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?

    NASA Astrophysics Data System (ADS)

    Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.

    2006-12-01

    The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.

  1. SU-C-201-04: Noise and Temporal Resolution in a Near Real-Time 3D Dosimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rilling, M; Centre de recherche sur le cancer, Universite Laval, Quebec City, QC; Radiation oncology department, CHU de Quebec, Quebec City, QC

    Purpose: To characterize the performance of a real-time three-dimensional scintillation dosimeter in terms of signal-to-noise ratio (SNR) and temporal resolution of 3D dose measurements. This study quantifies its efficiency in measuring low dose levels characteristic of EBRT dynamic treatments, and in reproducing field profiles for varying multileaf collimator (MLC) speeds. Methods: The dosimeter prototype uses a plenoptic camera to acquire continuous images of the light field emitted by a 10×10×10 cm{sup 3} plastic scintillator. Using EPID acquisitions, ray tracing-based iterative tomographic algorithms allow millimeter-sized reconstruction of relative 3D dose distributions. Measurements were taken at 6MV, 400 MU/min with the scintillatormore » centered at the isocenter, first receiving doses from 1.4 to 30.6 cGy. Dynamic measurements were then performed by closing half of the MLCs at speeds of 0.67 to 2.5 cm/s, at 0° and 90° collimator angles. A reference static half-field was obtained for measured profile comparison. Results: The SNR steadily increases as a function of dose and reaches a clinically adequate plateau of 80 at 10 cGy. Below this, the decrease in light collected and increase in pixel noise diminishes the SNR; nonetheless, the EPID acquisitions and the voxel correlation employed in the reconstruction algorithms result in suitable SNR values (>75) even at low doses. For dynamic measurements at varying MLC speeds, central relative dose profiles are characterized by gradients at %D{sub 50} of 8.48 to 22.7 %/mm. These values converge towards the 32.8 %/mm-gradient measured for the static reference field profile, but are limited by the dosimeter’s current acquisition rate of 1Hz. Conclusion: This study emphasizes the efficiency of the 3D dose distribution reconstructions, while identifying limits of the current prototype’s temporal resolution in terms of dynamic EBRT parameters. This work paves the way for providing an optimized, second-generational real-time 3D scintillation dosimeter capable of highly efficient and precise dose measurements. The presenting author is financially supported by an Alexander-Graham Bell doctoral scholarship from the Natural Sciences and Engineering Research Council of Canada (NSERC).« less

  2. Contrasting dynamics of leaf potential and gas exchange during progressive drought cycles and recovery in Amorpha fruticosa and Robinia pseudoacacia.

    PubMed

    Yan, Weiming; Zheng, Shuxia; Zhong, Yangquanwei; Shangguan, Zhouping

    2017-06-30

    Leaf gas exchange is closely associated with water relations; however, less attention has been given to this relationship over successive drought events. Dynamic changes in gas exchange and water potential in the seedlings of two woody species, Amorpha fruticosa and Robinia pseudoacacia, were monitored during recurrent drought. The pre-dawn leaf water potential declined in parallel with gas exchange in both species, and sharp declines in gas exchange occurred with decreasing water potential. A significant correlation between pre-dawn water potential and gas exchange was observed in both species and showed a right shift in R. pseudoacacia in the second drought. The results suggested that stomatal closure in early drought was mediated mainly by elevated foliar abscisic acid (ABA) in R. pseudoacacia, while a shift from ABA-regulated to leaf-water-potential-driven stomatal closure was observed in A. fruticosa. After re-watering, the pre-dawn water potential recovered quickly, whereas stomatal conductance did not fully recover from drought in R. pseudoacacia, which affected the ability to tightly control transpiration post-drought. The dynamics of recovery from drought suggest that stomatal behavior post-drought may be restricted mainly by hydraulic factors, but non-hydraulic factors may also be involved in R. pseudoacacia.

  3. [Indoor simulation on dew formation on plant leaves].

    PubMed

    Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong

    2014-03-01

    Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.

  4. Leaf non-structural carbohydrate allocation and C:N:P stoichiometry in response to light acclimation in seedlings of two subtropical shade-tolerant tree species.

    PubMed

    Xie, Hongtao; Yu, Mukui; Cheng, Xiangrong

    2018-03-01

    Light availability greatly affects plant growth and development. In shaded environments, plants must respond to reduced light intensity to ensure a regular rate of photosynthesis to maintain the dynamic balance of nutrients, such as leaf non-structural carbohydrates (NSCs), carbon (C), nitrogen (N) and phosphorus (P). To improve our understanding of the nutrient utilization strategies of understory shade-tolerant plants, we compared the variations in leaf NSCs, C, N and P in response to heterogeneous controlled light conditions between two subtropical evergreen broadleaf shade-tolerant species, Elaeocarpus sylvestris (E. sylvestris) and Illicium henryi (I. henryi). Light intensity treatments were applied at five levels (100%, 52%, 33%, 15% and 6% full sunlight) for 30 weeks to identify the effects of reduced light intensity on leaf NSC allocation patterns and leaf C:N:P stoichiometry characteristics. We found that leaf soluble sugar, starch and NSC concentrations in E. sylvestris showed decreasing trends with reduced light intensity, whereas I. henryi presented slightly increasing trends from 100% to 15% full sunlight and then significant decreases at extremely low light intensity (6% full sunlight). The soluble sugar/starch ratio of E. sylvestris decreased with decreasing light intensity, whereas that of I. henryi remained stable. Moreover, both species exhibited increasing trends in leaf N and P concentrations but limited leaf N:P and C:P ratio fluctuations with decreasing light intensity, revealing their adaptive strategies for poor light environments and their growth strategies under ideal light environments. There were highly significant correlations between leaf NSC variables and C:N:P stoichiometric variables in both species, revealing a trade-off in photosynthesis production between leaf NSC and carbon allocation. Thus, shade-tolerant plants readjusted their allocation of leaf NSCs, C, N and P in response to light acclimation. Redundancy analysis showed that leaf morphological features of both E. sylvestris and I. henryi affected their corresponding leaf nutrient traits. These results improve our understanding of the dynamic balance between leaf NSCs and leaf C, N and P components in the nutritional metabolism of shade-tolerant plants. Two species of understory shade-tolerant plants responded differently to varying light intensities in terms of leaf non-structural carbohydrate allocation and the utilization of carbon, nitrogen and phosphorus to balance nutritional metabolism and adapt to environmental stress. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Foliage motion under wind, from leaf flutter to branch buffeting.

    PubMed

    Tadrist, Loïc; Saudreau, Marc; Hémon, Pascal; Amandolese, Xavier; Marquier, André; Leclercq, Tristan; de Langre, Emmanuel

    2018-05-01

    The wind-induced motion of the foliage in a tree is an important phenomenon both for biological issues (photosynthesis, pathogens development or herbivory) and for more subtle effects such as on wi-fi transmission or animal communication. Such foliage motion results from a combination of the motion of the branches that support the leaves, and of the motion of the leaves relative to the branches. Individual leaf dynamics relative to the branch, and branch dynamics have usually been studied separately. Here, in an experimental study on a whole tree in a large-scale wind tunnel, we present the first empirical evidence that foliage motion is actually dominated by individual leaf flutter at low wind velocities, and by branch turbulence buffeting responses at higher velocities. The transition between the two regimes is related to a weak dependence of leaf flutter on wind velocity, while branch turbulent buffeting is strongly dependent on it. Quantitative comparisons with existing engineering-based models of leaf and branch motion confirm the prevalence of these two mechanisms. Simultaneous measurements of the wind-induced drag on the tree and of the light interception by the foliage show the role of an additional mechanism, reconfiguration, whereby leaves bend and overlap, limiting individual leaf flutter. We then discuss the consequences of these findings on the role of wind-mediated phenomena. © 2018 The Author(s).

  6. The light response of mesophyll conductance is controlled by structure across leaf profiles.

    PubMed

    Théroux-Rancourt, Guillaume; Gilbert, Matthew E

    2017-05-01

    Mesophyll conductance to CO 2 (g m ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf g m (g m,leaf ). Thus, the bulk g m,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring g m,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of g m,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of g m,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that g m,leaf apparently responds to light has large implications for how g m,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring g m under full light saturation. Responses of g m,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon. © 2016 John Wiley & Sons Ltd.

  7. Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species.

    PubMed

    Blackman, Christopher J; Brodribb, Timothy J; Jordan, Gregory J

    2009-11-01

    Efficient conduction of water inside leaves is essential for leaf function, yet the hydraulic-mediated impact of drought on gas exchange remains poorly understood. Here we examine the decline and subsequent recovery of leaf water potential (Psi(leaf)), leaf hydraulic conductance (K(leaf)), and midday transpiration (E) in four temperate woody species exposed to controlled drought conditions ranging from mild to lethal. During drought the vulnerability of K(leaf) to declining Psi(leaf) varied greatly among the species sampled. Following drought, plants were rewatered and the rate of E and K(leaf) recovery was found to be strongly dependent on the severity of the drought imposed. Gas exchange recovery was strongly correlated with the relatively slow recovery of K(leaf) for three of the four species, indicating conformity to a hydraulic-stomatal limitation model of plant recovery. However, there was also a shift in the sensitivity of stomata to Psi(leaf) suggesting that the plant hormone abscisic acid may be involved in limiting the rate of stomatal reopening. The level of drought tolerance varied among the four species and was correlated with leaf hydraulic vulnerability. These results suggest that species-specific variation in hydraulic properties plays a fundamental role in steering the dynamic response of plants during recovery.

  8. Dynamics of vacuum-sealed, double-leaf partitions

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  9. Compliant Turbomachine Sealing

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Deng, D.; Hendricks, J. A.

    2011-01-01

    Sealing interface materials and coatings are sacrificial, giving up their integrity for the benefit of the component. Seals that are compliant while still controlling leakage, dynamics, and coolant flows are sought to enhance turbomachine performance. Herein we investigate the leaf-seal configuration. While the leaf seal is classified as contacting, a ready modification using the leaf-housing arrangement in conjunction with an interface film rider (a bore seal, for example) provides for a film-riding noncontact seal. The leaf housing and leaf elements can be made from a variety of materials from plastic to ceramic. Four simplistic models are used to identify the physics essential to controlling leakage. Corroborated by CFD, these results provide design parameters for applications to within reasonable engineering certainty. Some potential improvements are proposed.

  10. Clinical implementation and error sensitivity of a 3D quality assurance protocol for prostate and thoracic IMRT

    PubMed Central

    Cotter, Christopher; Turcotte, Julie Catherine; Crawford, Bruce; Sharp, Gregory; Mah'D, Mufeed

    2015-01-01

    This work aims at three goals: first, to define a set of statistical parameters and plan structures for a 3D pretreatment thoracic and prostate intensity‐modulated radiation therapy (IMRT) quality assurance (QA) protocol; secondly, to test if the 3D QA protocol is able to detect certain clinical errors; and third, to compare the 3D QA method with QA performed with single ion chamber and 2D gamma test in detecting those errors. The 3D QA protocol measurements were performed on 13 prostate and 25 thoracic IMRT patients using IBA's COMPASS system. For each treatment planning structure included in the protocol, the following statistical parameters were evaluated: average absolute dose difference (AADD), percent structure volume with absolute dose difference greater than 6% (ADD6), and 3D gamma test. To test the 3D QA protocol error sensitivity, two prostate and two thoracic step‐and‐shoot IMRT patients were investigated. Errors introduced to each of the treatment plans included energy switched from 6 MV to 10 MV, multileaf collimator (MLC) leaf errors, linac jaws errors, monitor unit (MU) errors, MLC and gantry angle errors, and detector shift errors. QA was performed on each plan using a single ion chamber and 2D array of ion chambers for 2D and 3D QA. Based on the measurements performed, we established a uniform set of tolerance levels to determine if QA passes for each IMRT treatment plan structure: maximum allowed AADD is 6%; maximum 4% of any structure volume can be with ADD6 greater than 6%, and maximum 4% of any structure volume may fail 3D gamma test with test parameters 3%/3 mm DTA. Out of the three QA methods tested the single ion chamber performed the worst by detecting 4 out of 18 introduced errors, 2D QA detected 11 out of 18 errors, and 3D QA detected 14 out of 18 errors. PACS number: 87.56.Fc PMID:26699299

  11. Intensity modulated neutron radiotherapy optimization by photon proxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snyder, Michael; Hammoud, Ahmad; Bossenberger, Todd

    2012-08-15

    Purpose: Introducing intensity modulation into neutron radiotherapy (IMNRT) planning has the potential to mitigate some normal tissue complications seen in past neutron trials. While the hardware to deliver IMNRT plans has been in use for several years, until recently the IMNRT planning process has been cumbersome and of lower fidelity than conventional photon plans. Our in-house planning system used to calculate neutron therapy plans allows beam weight optimization of forward planned segments, but does not provide inverse optimization capabilities. Commercial treatment planning systems provide inverse optimization capabilities, but currently cannot model our neutron beam. Methods: We have developed a methodologymore » and software suite to make use of the robust optimization in our commercial planning system while still using our in-house planning system to calculate final neutron dose distributions. Optimized multileaf collimator (MLC) leaf positions for segments designed in the commercial system using a 4 MV photon proxy beam are translated into static neutron ports that can be represented within our in-house treatment planning system. The true neutron dose distribution is calculated in the in-house system and then exported back through the MATLAB software into the commercial treatment planning system for evaluation. Results: The planning process produces optimized IMNRT plans that reduce dose to normal tissue structures as compared to 3D conformal plans using static MLC apertures. The process involves standard planning techniques using a commercially available treatment planning system, and is not significantly more complex than conventional IMRT planning. Using a photon proxy in a commercial optimization algorithm produces IMNRT plans that are more conformal than those previously designed at our center and take much less time to create. Conclusions: The planning process presented here allows for the optimization of IMNRT plans by a commercial treatment planning optimization algorithm, potentially allowing IMNRT to achieve similar conformality in treatment as photon IMRT. The only remaining requirements for the delivery of very highly modulated neutron treatments are incremental improvements upon already implemented hardware systems that should be readily achievable.« less

  12. Adaptive intensity modulated radiotherapy for advanced prostate cancer

    NASA Astrophysics Data System (ADS)

    Ludlum, Erica Marie

    The purpose of this research is to develop and evaluate improvements in intensity modulated radiotherapy (IMRT) for concurrent treatment of prostate and pelvic lymph nodes. The first objective is to decrease delivery time while maintaining treatment quality, and evaluate the effectiveness and efficiency of novel one-step optimization compared to conventional two-step optimization. Both planning methods are examined at multiple levels of complexity by comparing the number of beam apertures, or segments, the amount of radiation delivered as measured by monitor units (MUs), and delivery time. One-step optimization is demonstrated to simplify IMRT planning and reduce segments (from 160 to 40), MUs (from 911 to 746), and delivery time (from 22 to 7 min) with comparable plan quality. The second objective is to examine the capability of three commercial dose calculation engines employing different levels of accuracy and efficiency to handle high--Z materials, such as metallic hip prostheses, included in the treatment field. Pencil beam, convolution superposition, and Monte Carlo dose calculation engines are compared by examining the dose differences for patient plans with unilateral and bilateral hip prostheses, and for phantom plans with a metal insert for comparison with film measurements. Convolution superposition and Monte Carlo methods calculate doses that are 1.3% and 34.5% less than the pencil beam method, respectively. Film results demonstrate that Monte Carlo most closely represents actual radiation delivery, but none of the three engines accurately predict the dose distribution when high-Z heterogeneities exist in the treatment fields. The final objective is to improve the accuracy of IMRT delivery by accounting for independent organ motion during concurrent treatment of the prostate and pelvic lymph nodes. A leaf-shifting algorithm is developed to track daily prostate position without requiring online dose calculation. Compared to conventional methods of adjusting patient position, adjusting the multileaf collimator (MLC) leaves associated with the prostate in each segment significantly improves lymph node dose coverage (maintains 45 Gy compared to 42.7, 38.3, and 34.0 Gy for iso-shifts of 0.5, 1 and 1.5 cm). Altering the MLC portal shape is demonstrated as a new and effective solution to independent prostate movement during concurrent treatment.

  13. SU-F-T-524: Investigation of the Dosimertric Benefits of Interchangeable Source Size of a Novel Rotating Gamma System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eldib, A; Chibani, O; Chen, L

    Purpose: Tremendous technological developments were made for conformal therapy techniques with linear accelerators, while less attention was paid to cobalt-60 units. The aim of the current study is to explore the dosimetric benefits of a novel rotating gamma ray system enhanced with interchangeable source sizes and multi-leaf collimator (MLC). Material and Methods: CybeRT is a novel rotating gamma ray machine with a ring gantry that ensures an iso-center accuracy of less than 0.3 mm. The new machine has a 70cm source axial distance allowing for improved penumbra compared to conventional machines. MCBEAM was used to simulate Cobalt-60 beams from themore » CybeRT head, while the MCPLAN code was used for modeling the MLC and for phantom/patient dose calculation. The CybeRT collimation will incorporate a system allowing for interchanging source sizes. In this work we have created phase space files for 1cm and 2cm source sizes. Evaluation of the system was done by comparing CybeRT beams with the 6MV beams in a water phantom and in patient geometry. Treatment plans were compared based on isodose distributions and dose volume histograms. Results: Profiles for the 1cm source were comparable to that from 6MV in the order of 6mm for 10×10 cm{sup 2} field size at the depth of maximum dose. This could ascribe to Cobalt-60 beams producing lowerenergy secondary electrons. Although, the 2cm source have a larger penumbra however it could be still used for large targets with proportionally increased dose rate. For large lung targets, the difference between cobalt and 6MV plans is clinically insignificant. Our preliminary results showed that interchanging source sizes will allow cobalt beams for volumetric arc therapy of both small lesions and large tumors. Conclusion: The CybeRT system will be a cost effective machine capable of performing advanced radiation therapy treatments of both small tumors and large target volumes.« less

  14. Remote sensing of leaf, canopy and vegetation water contents for satellite climate data records

    USDA-ARS?s Scientific Manuscript database

    Foliar water content is a dynamic quantity depending on water losses from transpiration and water uptake from the soil. Absorption of shortwave radiation by water is determined by various frequency overtones of fundamental bending and stretching molecular transitions. Leaf water potential and rela...

  15. Effect of pest management system on 'Empire' apple leaf phyllosphere populations

    USDA-ARS?s Scientific Manuscript database

    The phyllosphere of plant tissues is varied and dynamic. Pest management, time of sampling, proximity to immigration sources, tissue and tissue status such as leaf/fruit age and location within the canopy, and other environmental and biological factors interact to influence the composition and abun...

  16. A Rapidly Deployable Bridge System

    DTIC Science & Technology

    2013-01-15

    17 - 4PH SS H1150 Hinge Pins 30x106 psi (2) 143 ksi (4) 157 ksi (4) - 104.7 ksi SS T316 Cables 30x106 psi - 116 ksi - 77.3 ksi The stress...CLASSIFICATION OF: 17 . LIMITATION OF ABSTRACT Public Release 18. NUMBER OF PAGES 12 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b...an MLC30/12m configuration. The MLC50/20m system uses 17 modules in a 9/8 configuration. The connection of the modules to each other is by means of

  17. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    PubMed

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. On the Relationship Between Hyperspectral Data and Foliar Nitrogen Content in Closed Canopy Forests

    NASA Astrophysics Data System (ADS)

    Knyazikhin, Y.; Schull, M.; Lepine, L. C.; Stenberg, P.; Mõttus, M.; Rautiainen, M.; Latorre, P.; Myneni, R.; Kaufmann, R.

    2011-12-01

    The importance of nitrogen for terrestrial ecosystem carbon dynamics and its climate feedback has been well recognized by the ecological community. Interaction between carbon and nitrogen at leaf level is among the fundamental mechanisms that directly control the dynamics of terrestrial vegetation carbon. This process influences absorption and scattering of solar radiation by foliage, which in turn impacts radiation reflected by the vegetation and measured by satellite sensors. NASA's Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and ground based data on canopy structure and foliage nitrogen concentration acquired over six sites in Maine, New England, Florida, North Carolina and Washington were analyzed to assess the role of canopy structure, leaf optics and its biochemical constituents in the spectral variation of radiation reflected by the forest. The study sites represent closed canopy forests (LAI~5). Our results suggest: 1. Impact of canopy structure is so strong that it can significantly suppress the sensitivity of hyperspectral data to leaf optics. 2. Forest reflectance spectra in the interval [710, 790 nm] are required to obtain the fraction of the total leaf area that a "sensor sees" in a given direction. For closed canopy forests its retrieval does not require canopy reflectance models, suggesting that canopy reflectance spectra in this interval provide a direct estimate of the leaf area fraction. 3. The leaf area fraction fully explains variation in measured reflectance spectra due to variation in canopy structure. This variable is used to estimate the mean leaf scattering over foliage that the "sensor sees." For example the nadir-viewing AVIRIS sensor accumulates foliage optical properties over 25% of the total foliage area in needle leaf forest and about 50% in broadleaf forest. 4. Leaf surface properties have an impact on forest reflectivity, lowering its sensitivity to leaf absorbing pigments. 5. Variation in foliar nitrogen concentration can explain up to 55% of variation in AVIRIS spectra in the interval between 400 and 900 nm. The remaining factors could be due to (a) impact of leaf surface properties and/or (b) under-sampling of leaf optical properties due to the single view of the AVIRIS sensor. The theory of canopy spectral invariants underlies the separation of leaf scattering from the total canopy reflectance spectrum.

  19. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.

    PubMed

    Zhu, Junqi; Dai, Zhanwu; Vivin, Philippe; Gambetta, Gregory A; Henke, Michael; Peccoux, Anthony; Ollat, Nathalie; Delrot, Serge

    2017-12-23

    Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). The model included novel features that account for the effects of xylem embolism (fPLC) on leaf hydraulic conductance and residual stomatal conductance (g0), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g0 with increasing fPLC were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a basis for future modelling efforts aimed at describing the physiology and growth of individual organs in relation to water status. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Dynamic behavioral strategies during sonar signal emission in roundleaf bats.

    PubMed

    Feng, Lin; Li, Yitan; Lu, Hongwang

    2013-10-02

    For echolocating bats which emit biosonar pulses nasally, their nostrils are surrounded by fleshy appendages that diffract the outgoing ultrasonic waves. The posterior leaf, as a prominent part of the noseleaf, was mentioned in previous preliminary observations to move during flight in some species of bats, yet the detailed motion patterns and thus the possible functional role of the posterior leaf movement in biosonar systems remain unclear. In the current work, the motion of the posterior leaf of living pratt's roundleaf bats has been investigated quantitatively. Temporal characterizations of the noseleaf movement and the ultrasonic pulse emission were performed by virtue of synchronized laser vibrometry and sound recording. The results showed that the posterior leaf tilted forwards and restored to original position within tens of milliseconds. Noseleaf motions were temporally correlated with the emitted ultrasonic pulses. The surfaces of the posterior leaf were moving in the anterior direction in most of the pulse duration. The bats were able to switch the motions on or off. From the comparison with the previously reported noseleaf dynamics in horseshoe bat, we find similar ratio sizes and displacements of the noseleaves compared to the used wavelengths, implying that similar behavioral strategies are utilized by species of bats and it may be applied to different components of the signal emitting apparatus. It suggests that the dynamic sensing principles may widely play a role in the biosonar systems and the investigation on time-variant mechanisms is of capital importance to understand the biosonar sensing strategies used by echolocating bats. © 2013.

Top