Sample records for dynamic multi-slice ct

  1. [The application of multi-slice CT dynamic enhancement scan in the diagnosis and treatment of colonic lymphomas].

    PubMed

    Wang, Xi-ming; Wu, Le-bin; Zhang, Yun-ting; Li, Zhen-jia; Liu, Chen

    2006-11-01

    To discuss the value of multi-slice CT dynamic enhancement scan in the diagnosis and treatment of colonic lymphomas. 16 patients with colonic lymphomas underwent multi-slice CT dynamic enhancement scans, images of axial and reconstructive images of VR, MPR and CTVE were analyzed, patients were respectively diagnosed. Appearances of primary colorectal lymphomas were categorized into focal and diffuse lesions. Focal and diffuse lesions were 6 and 10 patients, respectively. The accuracy rate of diagnosis was 87.5%. MSCT dynamic scan has distinctive superiority in diagnosis and treatment of colonic lymphomas.

  2. [Diagnostic values of bronchoscopy and multi-slice spiral CT for congenital dysplasia of the respiratory system in infants: a comparative study].

    PubMed

    Wang, Xing-Lu; Huang, Ying; Li, Qu-Bei; Dai, Ji-Hong

    2013-09-01

    To investigate and compare the diagnostic values of bronchoscopy and multi-slice spiral computed tomography (CT) for congenital dysplasia of the respiratory system in infants. Analysis was performed on the clinical data, bronchoscopic findings and multi-slice spiral CT findings of 319 infants (≤1 years old) who underwent bronchoscopy and/or multi-slice spiral CT and were diagnosed with congenital dysplasia of the respiratory system. A total of 476 cases of congenital dysplasia of the respiratory system were found in the 319 infants, including primary dysplasia of the respiratory system (392 cases) and compressive dysplasia of the respiratory system (84 cases). Of the 392 cases of primary dysplasia of the respiratory system, 225 (57.4%) were diagnosed by bronchoscopy versus 167 (42.6%) by multi-slice spiral CT. There were significant differences in etiological diagnosis between bronchoscopy and multi-slice spiral CT in infants with congenital dysplasia of the respiratory system (P<0.05). All 76 cases of primary dysplasia of the respiratory system caused by tracheobronchomalacia were diagnosed by bronchoscopy and all 17 cases of primary dysplasia of the respiratory system caused by lung tissue dysplasia were diagnosed by multi-slice spiral CT. Of the 84 cases of compressive dysplasia of the respiratory system, 74 cases were diagnosed by multi-slice spiral CT and only 10 cases were diagnosed by bronchoscopy. Compared with multi-slice spiral CT, bronchoscopy can detect primary dysplasia of the respiratory system more directly. Bronchoscopy is valuable in the confirmed diagnosis of tracheobronchomalacia. Multi-slice spiral CT has a higher diagnostic value for lung tissue dysplasia than bronchoscopy.

  3. Multislice spiral CT simulator for dynamic cardiopulmonary studies

    NASA Astrophysics Data System (ADS)

    De Francesco, Silvia; Ferreira da Silva, Augusto M.

    2002-04-01

    We've developed a Multi-slice Spiral CT Simulator modeling the acquisition process of a real tomograph over a 4-dimensional phantom (4D MCAT) of the human thorax. The simulator allows us to visually characterize artifacts due to insufficient temporal sampling and a priori evaluate the quality of the images obtained in cardio-pulmonary studies (both with single-/multi-slice and ECG gated acquisition processes). The simulating environment allows both for conventional and spiral scanning modes and includes a model of noise in the acquisition process. In case of spiral scanning, reconstruction facilities include longitudinal interpolation methods (360LI and 180LI both for single and multi-slice). Then, the reconstruction of the section is performed through FBP. The reconstructed images/volumes are affected by distortion due to insufficient temporal sampling of the moving object. The developed simulating environment allows us to investigate the nature of the distortion characterizing it qualitatively and quantitatively (using, for example, Herman's measures). Much of our work is focused on the determination of adequate temporal sampling and sinogram regularization techniques. At the moment, the simulator model is limited to the case of multi-slice tomograph, being planned as a next step of development the extension to cone beam or area detectors.

  4. Low contrast detection in abdominal CT: comparing single-slice and multi-slice tasks

    NASA Astrophysics Data System (ADS)

    Ba, Alexandre; Racine, Damien; Viry, Anaïs.; Verdun, Francis R.; Schmidt, Sabine; Bochud, François O.

    2017-03-01

    Image quality assessment is crucial for the optimization of computed tomography (CT) protocols. Human and mathematical model observers are increasingly used for the detection of low contrast signal in abdominal CT, but are frequently limited to the use of a single image slice. Another limitation is that most of them only consider the detection of a signal embedded in a uniform background phantom. The purpose of this paper was to test if human observer performance is significantly different in CT images read in single or multiple slice modes and if these differences are the same for anatomical and uniform clinical images. We investigated detection performance and scrolling trends of human observers of a simulated liver lesion embedded in anatomical and uniform CT backgrounds. Results show that observers don't take significantly benefit of additional information provided in multi-slice reading mode. Regarding the background, performances are moderately higher for uniform than for anatomical images. Our results suggest that for low contrast detection in abdominal CT, the use of multi-slice model observers would probably only add a marginal benefit. On the other hand, the quality of a CT image is more accurately estimated with clinical anatomical backgrounds.

  5. Correlation between model observers in uniform background and human observers in patient liver background for a low-contrast detection task in CT

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Yu, Lifeng; Leng, Shuai; Dilger, Samantha; Zhou, Wei; Ren, Liqiang; McCollough, Cynthia H.

    2018-03-01

    Channelized Hotelling observer (CHO) has demonstrated strong correlation with human observer (HO) in both single-slice viewing mode and multi-slice viewing mode in low-contrast detection tasks with uniform background. However, it remains unknown if the simplest single-slice CHO in uniform background can be used to predict human observer performance in more realistic tasks that involve patient anatomical background and multi-slice viewing mode. In this study, we aim to investigate the correlation between CHO in a uniform water background and human observer performance at a multi-slice viewing mode on patient liver background for a low-contrast lesion detection task. The human observer study was performed on CT images from 7 abdominal CT exams. A noise insertion tool was employed to synthesize CT scans at two additional dose levels. A validated lesion insertion tool was used to numerically insert metastatic liver lesions of various sizes and contrasts into both phantom and patient images. We selected 12 conditions out of 72 possible experimental conditions to evaluate the correlation at various radiation doses, lesion sizes, lesion contrasts and reconstruction algorithms. CHO with both single and multi-slice viewing modes were strongly correlated with HO. The corresponding Pearson's correlation coefficient was 0.982 (with 95% confidence interval (CI) [0.936, 0.995]) and 0.989 (with 95% CI of [0.960, 0.997]) in multi-slice and single-slice viewing modes, respectively. Therefore, this study demonstrated the potential to use the simplest single-slice CHO to assess image quality for more realistic clinically relevant CT detection tasks.

  6. Diagnostic performance of multi-slice CT angiography combined with enterography for small bowel obstruction and intestinal ischaemia.

    PubMed

    He, Bosheng; Gu, Jinhua; Huang, Sheng; Gao, Xuesong; Fan, Jinhe; Sheng, Meihong; Wang, Lin; Gong, Shenchu

    2017-02-01

    This study was performed to evaluate the diagnostic performance of multi-slice CT angiography combined with enterography in determining the cause and location of obstruction as well as intestinal ischaemia in patients with small bowel obstruction (SBO). This study retrospectively summarized the image data of 57 SBO patients who received both multi-slice CT angiography and enterography examination between December 2012 and May 2013. The CT diagnoses of SBO and intestinal ischaemia were correlated with the findings at surgery or digital subtraction angiography, which were set as standard references. Multi-slice CT angiography and enterography indicated that the cause of SBO in three patients was misjudged, suggesting a diagnostic accuracy of 94.7%. In one patient the level of obstruction was incorrect, demonstrating a diagnostic accuracy of 98.2%. Based on the results of the receiver operating characteristic (ROC) curve analysis, the diagnostic criterion for ischaemic SBO was at least two of the four CT signs (circumferential bowel wall thickening, reduced enhancement of the intestinal wall, mesenteric oedema and mesenteric vascular engorgement). The criterion yielded a sensitivity of 94.4%, a specificity of 92.3%, a positive predicted value of 85.0% and a negative predicted value of 97.3%, and the area under curve (AUC) was 0.92 (95% CI, 0.85-0.99). Multi-slice CT angiography and enterography have high diagnostic value in identifying the cause and site of SBO. In addition, the suggested diagnostic criterion using CT signs is helpful for diagnosing intestinal ischaemia in SBO patients. © 2016 The Royal Australian and New Zealand College of Radiologists.

  7. Multi-slice computed tomography-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma: a comparison with conventional microscopic transsphenoidal surgery.

    PubMed

    Tosaka, Masahiko; Nagaki, Tomohito; Honda, Fumiaki; Takahashi, Katsumasa; Yoshimoto, Yuhei

    2015-11-01

    Intraoperative computed tomography (iCT) is a reliable method for the detection of residual tumour, but previous single-slice low-resolution computed tomography (CT) without coronal or sagittal reconstructions was not of adequate quality for clinical use. The present study evaluated the results of multi-slice iCT-assisted endoscopic transsphenoidal surgery for pituitary macroadenoma. This retrospective study included 30 consecutive patients with newly diagnosed or recurrent pituitary macroadenoma with supradiaphragmatic extension who underwent endoscopic transsphenoidal surgery using iCT (eTSS+iCT group), and control 30 consecutive patients who underwent conventional endoscope-assisted transsphenoidal surgery (cTSS group). The tumour volume was calculated by multiplying the tumour area by the slice thickness. Visual acuity and visual field were estimated by the visual impairment score (VIS). The resection extent, (preoperative tumour volume - postoperative residual tumour volume)/preoperative tumour volume, was 98.9% (median) in the eTSS+iCT group and 91.7% in the cTSS group, and had significant difference between the groups (P = 0.04). Greater than 95 and >90% removal rates were significantly higher in the eTSS+iCT group than in the cTSS group (P = 0.02 and P = 0.001, respectively). However, improvement in VIS showed no significant difference between the groups. The rate of complications also showed no significant difference. Multi-slice iCT-assisted endoscopic transsphenoidal surgery may improve the resection extent of pituitary macroadenoma. Multi-slice iCT may have advantages over intraoperative magnetic resonance imaging in less expensive, short acquisition time, and that special protection against magnetic fields is not needed.

  8. Correlation between a 2D Channelized Hotelling Observer and Human Observers in a Low-contrast Detection Task with Multi-slice Reading in CT

    PubMed Central

    Yu, Lifeng; Chen, Baiyu; Kofler, James M.; Favazza, Christopher P.; Leng, Shuai; Kupinski, Matthew A.; McCollough, Cynthia H.

    2017-01-01

    Purpose Model observers have been successfully developed and used to assess the quality of static 2D CT images. However, radiologists typically read images by paging through multiple 2D slices (i.e. multi-slice reading). The purpose of this study was to correlate human and model observer performance in a low-contrast detection task performed using both 2D and multi-slice reading, and to determine if the 2D model observer still correlate well with human observer performance in multi-slice reading. Methods A phantom containing 18 low-contrast spheres (6 sizes × 3 contrast levels) was scanned on a 192-slice CT scanner at 5 dose levels (CTDIvol = 27, 13.5, 6.8, 3.4, and 1.7 mGy), each repeated 100 times. Images were reconstructed using both filtered-backprojection (FBP) and an iterative reconstruction (IR) method (ADMIRE, Siemens). A 3D volume of interest (VOI) around each sphere was extracted and placed side-by-side with a signal-absent VOI to create a 2-alternative forced choice (2AFC) trial. Sixteen 2AFC studies were generated, each with 100 trials, to evaluate the impact of radiation dose, lesion size and contrast, and reconstruction methods on object detection. In total, 1600 trials were presented to both model and human observers. Three medical physicists acted as human observers and were allowed to page through the 3D volumes to make a decision for each 2AFC trial. The human observer performance was compared with the performance of a multi-slice channelized Hotelling observer (CHO_MS), which integrates multi-slice image data, and with the performance of previously validated CHO, which operates on static 2D images (CHO_2D). For comparison, the same 16 2AFC studies were also performed in a 2D viewing mode by the human observers and compared with the multi-slice viewing performance and the two CHO models. Results Human observer performance was well correlated with the CHO_2D performance in the 2D viewing mode (Pearson product-moment correlation coefficient R=0.972, 95% confidence interval (CI): 0.919 to 0.990) and with the CHO_MS performance in the multi-slice viewing mode (R=0.952, 95% CI: 0.865 to 0.984). The CHO_2D performance, calculated from the 2D viewing mode, also had a strong correlation with human observer performance in the multi-slice viewing mode (R=0.957, 95% CI: 879 to 0.985). Human observer performance varied between the multi-slice and 2D modes. One reader performed better in the multi-slice mode (p=0.013); whereas the other two readers showed no significant difference between the two viewing modes (p=0.057 and p=0.38). Conclusions A 2D CHO model is highly correlated with human observer performance in detecting spherical low contrast objects in multi-slice viewing of CT images. This finding provides some evidence for the use of a simpler, 2D CHO to assess image quality in clinically relevant CT tasks where multi-slice viewing is used. PMID:28555878

  9. Classification algorithm of lung lobe for lung disease cases based on multislice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Kawata, Y.; Niki, N.; Nakano, Y.; Mishima, M.; Ohmatsu, H.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2011-03-01

    With the development of multi-slice CT technology, to obtain an accurate 3D image of lung field in a short time is possible. To support that, a lot of image processing methods need to be developed. In clinical setting for diagnosis of lung cancer, it is important to study and analyse lung structure. Therefore, classification of lung lobe provides useful information for lung cancer analysis. In this report, we describe algorithm which classify lungs into lung lobes for lung disease cases from multi-slice CT images. The classification algorithm of lung lobes is efficiently carried out using information of lung blood vessel, bronchus, and interlobar fissure. Applying the classification algorithms to multi-slice CT images of 20 normal cases and 5 lung disease cases, we demonstrate the usefulness of the proposed algorithms.

  10. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images

    NASA Astrophysics Data System (ADS)

    McClelland, Jamie R.; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; O' Connell, Dylan; Low, Daniel A.; Kaza, Evangelia; Collins, David J.; Leach, Martin O.; Hawkes, David J.

    2017-06-01

    Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.

  11. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images.

    PubMed

    McClelland, Jamie R; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; Connell, Dylan O'; Low, Daniel A; Kaza, Evangelia; Collins, David J; Leach, Martin O; Hawkes, David J

    2017-06-07

    Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of 'partial' imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.

  12. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images

    PubMed Central

    McClelland, Jamie R; Modat, Marc; Arridge, Simon; Grimes, Helen; D’Souza, Derek; Thomas, David; Connell, Dylan O’; Low, Daniel A; Kaza, Evangelia; Collins, David J; Leach, Martin O; Hawkes, David J

    2017-01-01

    Abstract Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated. PMID:28195833

  13. Evaluation of a metal artifact reduction algorithm applied to post-interventional flat detector CT in comparison to pre-treatment CT in patients with acute subarachnoid haemorrhage.

    PubMed

    Mennecke, Angelika; Svergun, Stanislav; Scholz, Bernhard; Royalty, Kevin; Dörfler, Arnd; Struffert, Tobias

    2017-01-01

    Metal artefacts can impair accurate diagnosis of haemorrhage using flat detector CT (FD-CT), especially after aneurysm coiling. Within this work we evaluate a prototype metal artefact reduction algorithm by comparison of the artefact-reduced and the non-artefact-reduced FD-CT images to pre-treatment FD-CT and multi-slice CT images. Twenty-five patients with acute aneurysmal subarachnoid haemorrhage (SAH) were selected retrospectively. FD-CT and multi-slice CT before endovascular treatment as well as FD-CT data sets after treatment were available for all patients. The algorithm was applied to post-treatment FD-CT. The effect of the algorithm was evaluated utilizing the pre-post concordance of a modified Fisher score, a subjective image quality assessment, the range of the Hounsfield units within three ROIs, and the pre-post slice-wise Pearson correlation. The pre-post concordance of the modified Fisher score, the subjective image quality, and the pre-post correlation of the ranges of the Hounsfield units were significantly higher for artefact-reduced than for non-artefact-reduced images. Within the metal-affected slices, the pre-post slice-wise Pearson correlation coefficient was higher for artefact-reduced than for non-artefact-reduced images. The overall diagnostic quality of the artefact-reduced images was improved and reached the level of the pre-interventional FD-CT images. The metal-unaffected parts of the image were not modified. • After coiling subarachnoid haemorrhage, metal artefacts seriously reduce FD-CT image quality. • This new metal artefact reduction algorithm is feasible for flat-detector CT. • After coiling, MAR is necessary for diagnostic quality of affected slices. • Slice-wise Pearson correlation is introduced to evaluate improvement of MAR in future studies. • Metal-unaffected parts of image are not modified by this MAR algorithm.

  14. [Virtual otoscopy--technique, indications and initial experiences with multislice spiral CT].

    PubMed

    Klingebiel, R; Bauknecht, H C; Lehmann, R; Rogalla, P; Werbs, M; Behrbohm, H; Kaschke, O

    2000-11-01

    We report the standardized postprocessing of high-resolution CT data acquired by incremental CT and multi-slice CT in patients with suspected middle ear disorders to generate three-dimensional endoluminal views known as virtual otoscopy. Subsequent to the definition of a postprocessing protocol, standardized endoluminal views of the middle ear were generated according to their otological relevance. The HRCT data sets of 26 ENT patients were transferred to a workstation and postprocessed to 52 virtual otoscopies. Generation of predefined endoluminal views from the HRCT data sets was possible in all patients. Virtual endoscopic views added meaningful information to the primary cross-sectional data in patients suffering from ossicular pathology, having contraindications for invasive tympanic endoscopy or being assessed for surgery of the tympanic cavity. Multi slice CT improved the visualization of subtle anatomic details such as the stapes suprastructure and reduced the scanning time. Virtual endoscopy allows for the non invasive endoluminal visualization of various tympanic lesions. Use of the multi-slice CT technique reduces the scanning time and improves image quality in terms of detail resolution.

  15. An extraction algorithm of pulmonary fissures from multislice CT image

    NASA Astrophysics Data System (ADS)

    Tachibana, Hiroyuki; Saita, Shinsuke; Yasutomo, Motokatsu; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Sasagawa, Michizo; Eguchi, Kenji; Moriyama, Noriyuki

    2005-04-01

    Aging and smoking history increases number of pulmonary emphysema. Alveoli restoration destroyed by pulmonary emphysema is difficult and early direction is important. Multi-slice CT technology has been improving 3-D image analysis with higher body axis resolution and shorter scan time. And low-dose high accuracy scanning becomes available. Multi-slice CT image helps physicians with accurate measuring but huge volume of the image data takes time and cost. This paper is intended for computer added emphysema region analysis and proves effectiveness of proposed algorithm.

  16. Helical 4D CT and Comparison with Cine 4D CT

    NASA Astrophysics Data System (ADS)

    Pan, Tinsu

    4D CT was one of the most important developments in radiation oncology in the last decade. Its early development in single slice CT and commercialization in multi-slice CT has radically changed our practice in radiation treatment of lung cancer, and has enabled the stereotactic radiosurgery of early stage lung cancer. In this chapter, we will document the history of 4D CT development, detail the data sufficiency condition governing the 4D CT data collection; present the design of the commercial helical 4D CTs from Philips and Siemens; compare the differences between the helical 4D CT and the GE cine 4D CT in data acquisition, slice thickness, acquisition time and work flow; review the respiratory monitoring devices; and understand the causes of image artifacts in 4D CT.

  17. Sinogram restoration for ultra-low-dose x-ray multi-slice helical CT by nonparametric regression

    NASA Astrophysics Data System (ADS)

    Jiang, Lu; Siddiqui, Khan; Zhu, Bin; Tao, Yang; Siegel, Eliot

    2007-03-01

    During the last decade, x-ray computed tomography (CT) has been applied to screen large asymptomatic smoking and nonsmoking populations for early lung cancer detection. Because a larger population will be involved in such screening exams, more and more attention has been paid to studying low-dose, even ultra-low-dose x-ray CT. However, reducing CT radiation exposure will increase noise level in the sinogram, thereby degrading the quality of reconstructed CT images as well as causing more streak artifacts near the apices of the lung. Thus, how to reduce the noise levels and streak artifacts in the low-dose CT images is becoming a meaningful topic. Since multi-slice helical CT has replaced conventional stop-and-shoot CT in many clinical applications, this research mainly focused on the noise reduction issue in multi-slice helical CT. The experiment data were provided by Siemens SOMATOM Sensation 16-Slice helical CT. It included both conventional CT data acquired under 120 kvp voltage and 119 mA current and ultra-low-dose CT data acquired under 120 kvp and 10 mA protocols. All other settings are the same as that of conventional CT. In this paper, a nonparametric smoothing method with thin plate smoothing splines and the roughness penalty was proposed to restore the ultra-low-dose CT raw data. Each projection frame was firstly divided into blocks, and then the 2D data in each block was fitted to a thin-plate smoothing splines' surface via minimizing a roughness-penalized least squares objective function. By doing so, the noise in each ultra-low-dose CT projection was reduced by leveraging the information contained not only within each individual projection profile, but also among nearby profiles. Finally the restored ultra-low-dose projection data were fed into standard filtered back projection (FBP) algorithm to reconstruct CT images. The rebuilt results as well as the comparison between proposed approach and traditional method were given in the results and discussions section, and showed effectiveness of proposed thin-plate based nonparametric regression method.

  18. Description of patellar movement by 3D parameters obtained from dynamic CT acquisition

    NASA Astrophysics Data System (ADS)

    de Sá Rebelo, Marina; Moreno, Ramon Alfredo; Gobbi, Riccardo Gomes; Camanho, Gilberto Luis; de Ávila, Luiz Francisco Rodrigues; Demange, Marco Kawamura; Pecora, Jose Ricardo; Gutierrez, Marco Antonio

    2014-03-01

    The patellofemoral joint is critical in the biomechanics of the knee. The patellofemoral instability is one condition that generates pain, functional impairment and often requires surgery as part of orthopedic treatment. The analysis of the patellofemoral dynamics has been performed by several medical image modalities. The clinical parameters assessed are mainly based on 2D measurements, such as the patellar tilt angle and the lateral shift among others. Besides, the acquisition protocols are mostly performed with the leg laid static at fixed angles. The use of helical multi slice CT scanner can allow the capture and display of the joint's movement performed actively by the patient. However, the orthopedic applications of this scanner have not yet been standardized or widespread. In this work we present a method to evaluate the biomechanics of the patellofemoral joint during active contraction using multi slice CT images. This approach can greatly improve the analysis of patellar instability by displaying the physiology during muscle contraction. The movement was evaluated by computing its 3D displacements and rotations from different knee angles. The first processing step registered the images in both angles based on the femuŕs position. The transformation matrix of the patella from the images was then calculated, which provided the rotations and translations performed by the patella from its position in the first image to its position in the second image. Analysis of these parameters for all frames provided real 3D information about the patellar displacement.

  19. Three-dimensional computed topography analysis of a patient with an unusual anatomy of the maxillary second and third molars.

    PubMed

    Zhao, Jin; Li, Yan; Yang, Zhi-Wei; Wang, Wei; Meng, Yan

    2011-10-01

    We present a case of a patient with rare anatomy of a maxillary second molar with three mesiobuccal root canals and a maxillary third molar with four separate roots, identified using multi-slice computed topography (CT) and three-dimensional reconstruction techniques. The described case enriched/might enrich our knowledge about possible anatomical aberrations of maxillary molars. In addition, we demonstrate the role of multi-slice CT as an objective tool for confirmatory diagnosis and successful endodontic management.

  20. Coronary CT angiography using 64 detector rows: methods and design of the multi-centre trial CORE-64.

    PubMed

    Miller, Julie M; Dewey, Marc; Vavere, Andrea L; Rochitte, Carlos E; Niinuma, Hiroyuki; Arbab-Zadeh, Armin; Paul, Narinder; Hoe, John; de Roos, Albert; Yoshioka, Kunihiro; Lemos, Pedro A; Bush, David E; Lardo, Albert C; Texter, John; Brinker, Jeffery; Cox, Christopher; Clouse, Melvin E; Lima, João A C

    2009-04-01

    Multislice computed tomography (MSCT) for the noninvasive detection of coronary artery stenoses is a promising candidate for widespread clinical application because of its non-invasive nature and high sensitivity and negative predictive value as found in several previous studies using 16 to 64 simultaneous detector rows. A multi-centre study of CT coronary angiography using 16 simultaneous detector rows has shown that 16-slice CT is limited by a high number of nondiagnostic cases and a high false-positive rate. A recent meta-analysis indicated a significant interaction between the size of the study sample and the diagnostic odds ratios suggestive of small study bias, highlighting the importance of evaluating MSCT using 64 simultaneous detector rows in a multi-centre approach with a larger sample size. In this manuscript we detail the objectives and methods of the prospective "CORE-64" trial ("Coronary Evaluation Using Multidetector Spiral Computed Tomography Angiography using 64 Detectors"). This multi-centre trial was unique in that it assessed the diagnostic performance of 64-slice CT coronary angiography in nine centres worldwide in comparison to conventional coronary angiography. In conclusion, the multi-centre, multi-institutional and multi-continental trial CORE-64 has great potential to ultimately assess the per-patient diagnostic performance of coronary CT angiography using 64 simultaneous detector rows.

  1. Validation of geometric measurements of the left atrium and pulmonary veins for analysis of reverse structural remodeling following ablation therapy

    NASA Astrophysics Data System (ADS)

    Rettmann, M. E.; Holmes, D. R., III; Gunawan, M. S.; Ge, X.; Karwoski, R. A.; Breen, J. F.; Packer, D. L.; Robb, R. A.

    2012-03-01

    Geometric analysis of the left atrium and pulmonary veins is important for studying reverse structural remodeling following cardiac ablation therapy. It has been shown that the left atrium decreases in volume and the pulmonary vein ostia decrease in diameter following ablation therapy. Most analysis techniques, however, require laborious manual tracing of image cross-sections. Pulmonary vein diameters are typically measured at the junction between the left atrium and pulmonary veins, called the pulmonary vein ostia, with manually drawn lines on volume renderings or on image cross-sections. In this work, we describe a technique for making semi-automatic measurements of the left atrium and pulmonary vein ostial diameters from high resolution CT scans and multi-phase datasets. The left atrium and pulmonary veins are segmented from a CT volume using a 3D volume approach and cut planes are interactively positioned to separate the pulmonary veins from the body of the left atrium. The cut plane is also used to compute the pulmonary vein ostial diameter. Validation experiments are presented which demonstrate the ability to repeatedly measure left atrial volume and pulmonary vein diameters from high resolution CT scans, as well as the feasibility of this approach for analyzing dynamic, multi-phase datasets. In the high resolution CT scans the left atrial volume measurements show high repeatability with approximately 4% intra-rater repeatability and 8% inter-rater repeatability. Intra- and inter-rater repeatability for pulmonary vein diameter measurements range from approximately 2 to 4 mm. For the multi-phase CT datasets, differences in left atrial volumes between a standard slice-by-slice approach and the proposed 3D volume approach are small, with percent differences on the order of 3% to 6%.

  2. Fourier crosstalk analysis of multislice and cone-beam helical CT

    NASA Astrophysics Data System (ADS)

    La Riviere, Patrick J.

    2004-05-01

    Multi-slice helical CT scanners allow for much faster scanning and better x-ray utilization than do their single-slice predecessors, but they engender considerably more complicated data sampling patterns due to the interlacing of the samples from different rows as the patient is translated. Characterizing and optimizing this sampling is challenging because the conebeam geometry of such scanners means that the projections measured by each detector row are at least slightly oblique, making it difficult to apply standard multidimensional sampling analyses. In this study, we seek to apply a more general framework for analyzing sampled imaging systems known as Fourier crosstalk analysis. Our purpose in this preliminary work is to compare the information content of the data acquired in three different scanner geometries and operating conditions with ostensibly equivalent volume coverage and average longitudinal sampling interval: a single-slice scanner operating at pitch 1, a four-slice scanner operating at pitch 3 and a 15-slice scanner operating at pitch 15. We find that moving from a single-slice to a multi-slice geometry introduces longitudinal crosstalk characteristic of the longitudinal sampling interval between periods of individual each detector row, and not of the overall interlaced sampling pattern. This is attributed to data inconsistencies caused by the obliqueness of the projections in a multi-slice/conebeam configuration. However, these preliminary results suggest that the significance of this additional crosstalk actually decreases as the number of detector rows increases.

  3. TU-EF-204-11: Impact of Using Multi-Slice Training Sets On the Performance of a Channelized Hotelling Observer in a Low-Contrast Detection Task in CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Favazza, C; Yu, L; Leng, S

    2015-06-15

    Purpose: To investigate using multiple CT image slices from a single acquisition as independent training images for a channelized Hotelling observer (CHO) model to reduce the number of repeated scans for CHO-based CT image quality assessment. Methods: We applied a previously validated CHO model to detect low contrast disk objects formed from cross-sectional images of three epoxy-resin-based rods (diameters: 3, 5, and 9 mm; length: ∼5cm). The rods were submerged in a 35x 25 cm2 iodine-doped water filled phantom, yielding-15 HU object contrast. The phantom was scanned 100 times with and without the rods present. Scan and reconstruction parameters include:more » 5 mm slice thickness at 0.5 mm intervals, 120 kV, 480 Quality Reference mAs, and a 128-slice scanner. The CHO’s detectability index was evaluated as a function of factors related to incorporating multi-slice image data: object misalignment along the z-axis, inter-slice pixel correlation, and number of unique slice locations. In each case, the CHO training set was fixed to 100 images. Results: Artificially shifting the object’s center position by as much as 3 pixels in any direction relative to the Gabor channel filters had insignificant impact on object detectability. An inter-slice pixel correlation of >∼0.2 yielded positive bias in the model’s performance. Incorporating multi-slice image data yielded slight negative bias in detectability with increasing number of slices, likely due to physical variations in the objects. However, inclusion of image data from up to 5 slice locations yielded detectability indices within measurement error of the single slice value. Conclusion: For the investigated model and task, incorporating image data from 5 different slice locations of at least 5 mm intervals into the CHO model yielded detectability indices within measurement error of the single slice value. Consequently, this methodology would Result in a 5-fold reduction in number of image acquisitions. This project was supported by National Institutes of Health grants R01 EB017095 and U01 EB017185 from the National Institute of Biomedical Imaging and Bioengineering.« less

  4. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose

    PubMed Central

    Wenz, Holger; Maros, Máté E.; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O.; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    Objectives To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. Methods 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Results Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Conclusion Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels. PMID:26288186

  5. Image Quality of 3rd Generation Spiral Cranial Dual-Source CT in Combination with an Advanced Model Iterative Reconstruction Technique: A Prospective Intra-Individual Comparison Study to Standard Sequential Cranial CT Using Identical Radiation Dose.

    PubMed

    Wenz, Holger; Maros, Máté E; Meyer, Mathias; Förster, Alex; Haubenreisser, Holger; Kurth, Stefan; Schoenberg, Stefan O; Flohr, Thomas; Leidecker, Christianne; Groden, Christoph; Scharf, Johann; Henzler, Thomas

    2015-01-01

    To prospectively intra-individually compare image quality of a 3rd generation Dual-Source-CT (DSCT) spiral cranial CT (cCT) to a sequential 4-slice Multi-Slice-CT (MSCT) while maintaining identical intra-individual radiation dose levels. 35 patients, who had a non-contrast enhanced sequential cCT examination on a 4-slice MDCT within the past 12 months, underwent a spiral cCT scan on a 3rd generation DSCT. CTDIvol identical to initial 4-slice MDCT was applied. Data was reconstructed using filtered backward projection (FBP) and 3rd-generation iterative reconstruction (IR) algorithm at 5 different IR strength levels. Two neuroradiologists independently evaluated subjective image quality using a 4-point Likert-scale and objective image quality was assessed in white matter and nucleus caudatus with signal-to-noise ratios (SNR) being subsequently calculated. Subjective image quality of all spiral cCT datasets was rated significantly higher compared to the 4-slice MDCT sequential acquisitions (p<0.05). Mean SNR was significantly higher in all spiral compared to sequential cCT datasets with mean SNR improvement of 61.65% (p*Bonferroni0.05<0.0024). Subjective image quality improved with increasing IR levels. Combination of 3rd-generation DSCT spiral cCT with an advanced model IR technique significantly improves subjective and objective image quality compared to a standard sequential cCT acquisition acquired at identical dose levels.

  6. One-stop shop assessment for atrial septal defect closure using 256-slice coronary CT angiography.

    PubMed

    Yamasaki, Yuzo; Nagao, Michinobu; Kawanami, Satoshi; Kamitani, Takeshi; Sagiyama, Koji; Yamanouchi, Torahiko; Sakamoto, Ichiro; Yamamura, Kenichiro; Yabuuchi, Hidetake; Honda, Hiroshi

    2017-02-01

    To investigate the feasibility and accuracy of measurement of the pulmonary to systemic blood flow ratio (Qp/Qs) and defect and rim sizes in secundum atrial septal defects (ASDs) using 256-slice CT, compared to the reference transoesophageal echocardiography (TEE) and right heart catheterization (RHC) measurements. Twenty-three consecutive adult patients with secundum ASDs who underwent retrospective ECG-gated coronary CT angiography (CCTA), TEE and RHC were enrolled in this study. Right ventricular (RV) and left ventricular (LV) stroke volumes (SV) were calculated by biventricular volumetry of CCTA. Qp/Qs-CT was defined as RVSV/LVSV. The sizes of the defect and rim were measured by multi-planar reconstruction CT images. Correlations between Qp/Qs-CT and Qp/Qs-RHC and between the defect diameter obtained by CT and TEE were analyzed by Pearson's coefficient analysis. Rim sizes by CT and TEE were compared by paired t-test. Qp/Qs-CT was significantly correlated with Qp/Qs-RHC (r = 0.83, p < 0.0001), and the defect diameter by CT was significantly correlated with that by TEE (r = 0.95, p < 0.0001). There was no significant difference between CT and TEE in measurements of rim size. 256-slice CCTA allows measuring Qp/Qs and size of defects and rims in patients with secundum ASDs, accomplishing pretreatment evaluation non-invasively and comprehensively. • Quantification of left-to-right shunting can be performed reliably and accurately by CT. • The sizes of defects and rims can be measured accurately using 256-slice CT. • 256-slice CT permits pretreatment evaluation of ASD non-invasively and comprehensively.

  7. Measurement of cardiac output from dynamic pulmonary circulation time CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yee, Seonghwan, E-mail: Seonghwan.Yee@Beaumont.edu; Scalzetti, Ernest M.

    Purpose: To introduce a method of estimating cardiac output from the dynamic pulmonary circulation time CT that is primarily used to determine the optimal time window of CT pulmonary angiography (CTPA). Methods: Dynamic pulmonary circulation time CT series, acquired for eight patients, were retrospectively analyzed. The dynamic CT series was acquired, prior to the main CTPA, in cine mode (1 frame/s) for a single slice at the level of the main pulmonary artery covering the cross sections of ascending aorta (AA) and descending aorta (DA) during the infusion of iodinated contrast. The time series of contrast changes obtained for DA,more » which is the downstream of AA, was assumed to be related to the time series for AA by the convolution with a delay function. The delay time constant in the delay function, representing the average time interval between the cross sections of AA and DA, was determined by least square error fitting between the convoluted AA time series and the DA time series. The cardiac output was then calculated by dividing the volume of the aortic arch between the cross sections of AA and DA (estimated from the single slice CT image) by the average time interval, and multiplying the result by a correction factor. Results: The mean cardiac output value for the six patients was 5.11 (l/min) (with a standard deviation of 1.57 l/min), which is in good agreement with the literature value; the data for the other two patients were too noisy for processing. Conclusions: The dynamic single-slice pulmonary circulation time CT series also can be used to estimate cardiac output.« less

  8. Computer-aided diagnosis for osteoporosis using chest 3D CT images

    NASA Astrophysics Data System (ADS)

    Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2016-03-01

    The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.

  9. Cochlear Implant Electrode Localization Using an Ultra-High Resolution Scan Mode on Conventional 64-Slice and New Generation 192-Slice Multi-Detector Computed Tomography.

    PubMed

    Carlson, Matthew L; Leng, Shuai; Diehn, Felix E; Witte, Robert J; Krecke, Karl N; Grimes, Josh; Koeller, Kelly K; Bruesewitz, Michael R; McCollough, Cynthia H; Lane, John I

    2017-08-01

    A new generation 192-slice multi-detector computed tomography (MDCT) clinical scanner provides enhanced image quality and superior electrode localization over conventional MDCT. Currently, accurate and reliable cochlear implant electrode localization using conventional MDCT scanners remains elusive. Eight fresh-frozen cadaveric temporal bones were implanted with full-length cochlear implant electrodes. Specimens were subsequently scanned with conventional 64-slice and new generation 192-slice MDCT scanners utilizing ultra-high resolution modes. Additionally, all specimens were scanned with micro-CT to provide a reference criterion for electrode position. Images were reconstructed according to routine temporal bone clinical protocols. Three neuroradiologists, blinded to scanner type, reviewed images independently to assess resolution of individual electrodes, scalar localization, and severity of image artifact. Serving as the reference standard, micro-CT identified scalar crossover in one specimen; imaging of all remaining cochleae demonstrated complete scala tympani insertions. The 192-slice MDCT scanner exhibited improved resolution of individual electrodes (p < 0.01), superior scalar localization (p < 0.01), and reduced blooming artifact (p < 0.05), compared with conventional 64-slice MDCT. There was no significant difference between platforms when comparing streak or ring artifact. The new generation 192-slice MDCT scanner offers several notable advantages for cochlear implant imaging compared with conventional MDCT. This technology provides important feedback regarding electrode position and course, which may help in future optimization of surgical technique and electrode design.

  10. Peripleural lung disease detection based on multi-slice CT images

    NASA Astrophysics Data System (ADS)

    Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2015-03-01

    With the development of multi-slice CT technology, obtaining accurate 3D images of lung field in a short time become possible. To support that, a lot of image processing methods need to be developed. Detection peripleural lung disease is difficult due to its existence out of lung region, because lung extraction is often performed based on threshold processing. The proposed method uses thoracic inner region extracted by inner cavity of bone as well as air region, covers peripleural lung diseased cases such as lung nodule, calcification, pleural effusion and pleural plaque. We applied this method to 50 cases including 39 peripleural lung diseased cases. This method was able to detect 39 peripleural lung disease with 2.9 false positive per case.

  11. Dynamic three-dimensional model of the coronary circulation

    NASA Astrophysics Data System (ADS)

    Lehmann, Glen; Gobbi, David G.; Dick, Alexander J.; Starreveld, Yves P.; Quantz, M.; Holdsworth, David W.; Drangova, Maria

    2001-05-01

    A realistic numerical three-dimensional (3D) model of the dynamics of human coronary arteries has been developed. High- resolution 3D images of the coronary arteries of an excised human heart were obtained using a C-arm based computed tomography (CT) system. Cine bi-plane coronary angiograms were then acquired from a patient with similar coronary anatomy. These angiograms were used to determine the vessel motion, which was applied to the static 3D coronary tree. Corresponding arterial bifurcations were identified in the 3D CT image and in the 2D angiograms. The 3D positions of the angiographic landmarks, which were known throughout the cardiac cycle, were used to warp the 3D image via a non-linear thin-plate spline algorithm. The result was a set or 30 dynamic volumetric images sampling a complete cardiac cycle. To the best of our knowledge, the model presented here is the first dynamic 3D model that provides a true representation of both the geometry and motion of a human coronary artery tree. In the future, similar models can be generated to represent different coronary anatomy and motion. Such models are expected to become an invaluable tool during the development of dynamic imaging techniques such as MRI, multi-slice CT and 3D angiography.

  12. Evaluation of lung tumor motion management in radiation therapy with dynamic MRI

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2017-03-01

    Surrogate-based tumor motion estimation and tracing methods are commonly used in radiotherapy despite the lack of continuous real time 3D tumor and surrogate data. In this study, we propose a method to simultaneously track the tumor and external surrogates with dynamic MRI, which allows us to evaluate their reproducible correlation. Four MRIcompatible fiducials are placed on the patient's chest and upper abdomen, and multi-slice 2D cine MRIs are acquired to capture the lung and whole tumor, followed by two-slice 2D cine MRIs to simultaneously track the tumor and fiducials, all in sagittal orientation. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and group-wise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model to the fiducial segmentations on the 2D cine MRIs. We tested our method on five lung cancer patients. Internal target volume from 4D-CT showed average sensitivity of 86.5% compared to the actual tumor motion for 5 min. 3D tumor motion correlated with the external surrogate signal, but showed a noticeable phase mismatch. The 3D tumor trajectory showed significant cycle-to-cycle variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from fiducials at different locations.

  13. SU-E-J-97: Evaluation of Multi-Modality (CT/MR/PET) Image Registration Accuracy in Radiotherapy Planning.

    PubMed

    Sethi, A; Rusu, I; Surucu, M; Halama, J

    2012-06-01

    Evaluate accuracy of multi-modality image registration in radiotherapy planning process. A water-filled anthropomorphic head phantom containing eight 'donut-shaped' fiducial markers (3 internal + 5 external) was selected for this study. Seven image sets (3CTs, 3MRs and PET) of phantom were acquired and fused in a commercial treatment planning system. First, a narrow slice (0.75mm) baseline CT scan was acquired (CT1). Subsequently, the phantom was re-scanned with a coarse slice width = 1.5mm (CT2) and after subjecting phantom to rotation/displacement (CT3). Next, the phantom was scanned in a 1.5 Tesla MR scanner and three MR image sets (axial T1, axial T2, coronal T1) were acquired at 2mm slice width. Finally, the phantom and center of fiducials were doped with 18F and a PET scan was performed with 2mm cubic voxels. All image scans (CT/MR/PET) were fused to the baseline (CT1) data using automated mutual-information based fusion algorithm. Difference between centroids of fiducial markers in various image modalities was used to assess image registration accuracy. CT/CT image registration was superior to CT/MR and CT/PET: average CT/CT fusion error was found to be 0.64 ± 0.14 mm. Corresponding values for CT/MR and CT/PET fusion were 1.33 ± 0.71mm and 1.11 ± 0.37mm. Internal markers near the center of phantom fused better than external markers placed on the phantom surface. This was particularly true for the CT/MR and CT/PET. The inferior quality of external marker fusion indicates possible distortion effects toward the edges of MR image. Peripheral targets in the PET scan may be subject to parallax error caused by depth of interaction of photons in detectors. Current widespread use of multimodality imaging in radiotherapy planning calls for periodic quality assurance of image registration process. Such studies may help improve safety and accuracy in treatment planning. © 2012 American Association of Physicists in Medicine.

  14. Efficient organ localization using multi-label convolutional neural networks in thorax-abdomen CT scans

    NASA Astrophysics Data System (ADS)

    Efrain Humpire-Mamani, Gabriel; Arindra Adiyoso Setio, Arnaud; van Ginneken, Bram; Jacobs, Colin

    2018-04-01

    Automatic localization of organs and other structures in medical images is an important preprocessing step that can improve and speed up other algorithms such as organ segmentation, lesion detection, and registration. This work presents an efficient method for simultaneous localization of multiple structures in 3D thorax-abdomen CT scans. Our approach predicts the location of multiple structures using a single multi-label convolutional neural network for each orthogonal view. Each network takes extra slices around the current slice as input to provide extra context. A sigmoid layer is used to perform multi-label classification. The output of the three networks is subsequently combined to compute a 3D bounding box for each structure. We used our approach to locate 11 structures of interest. The neural network was trained and evaluated on a large set of 1884 thorax-abdomen CT scans from patients undergoing oncological workup. Reference bounding boxes were annotated by human observers. The performance of our method was evaluated by computing the wall distance to the reference bounding boxes. The bounding boxes annotated by the first human observer were used as the reference standard for the test set. Using the best configuration, we obtained an average wall distance of 3.20~+/-~7.33 mm in the test set. The second human observer achieved 1.23~+/-~3.39 mm. For all structures, the results were better than those reported in previously published studies. In conclusion, we proposed an efficient method for the accurate localization of multiple organs. Our method uses multiple slices as input to provide more context around the slice under analysis, and we have shown that this improves performance. This method can easily be adapted to handle more organs.

  15. Determination of dosimetric quantities in pediatric abdominal computed tomography scans*

    PubMed Central

    Jornada, Tiago da Silva; da Silva, Teógenes Augusto

    2014-01-01

    Objective Aiming at contributing to the knowledge on doses in computed tomography (CT), this study has the objective of determining dosimetric quantities associated with pediatric abdominal CT scans, comparing the data with diagnostic reference levels (DRL). Materials and methods The study was developed with a Toshiba Asteion single-slice CT scanner and a GE BrightSpeed multi-slice CT unit in two hospitals. Measurements were performed with a pencil-type ionization chamber and a 16 cm-diameter polymethylmethacrylate trunk phantom. Results No significant difference was observed in the values for weighted air kerma index (CW), but the differences were relevant in values for volumetric air kerma index (CVOL), air kerma-length product (PKL,CT) and effective dose. Conclusion Only the CW values were lower than the DRL, suggesting that dose optimization might not be necessary. However, PKL,CT and effective dose values stressed that there still is room for reducing pediatric radiation doses. The present study emphasizes the importance of determining all dosimetric quantities associated with CT scans. PMID:25741103

  16. Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-aided implant placement. Part II: reliability of mucosa-supported stereolithographic guides.

    PubMed

    Arisan, Volkan; Karabuda, Zihni Cüneyt; Pişkin, Bülent; Özdemir, Tayfun

    2013-12-01

    Deviations of implants that were placed by conventional computed tomography (CT)- or cone beam CT (CBCT)-derived mucosa-supported stereolithographic (SLA) surgical guides were analyzed in this study. Eleven patients were randomly scanned by a multi-slice CT (CT group) or a CBCT scanner (CBCT group). A total of 108 implants were planned on the software and placed using SLA guides. A new CT or CBCT scan was obtained and merged with the planning data to identify the deviations between the planned and placed implants. Results were analyzed by Mann-Whitney U test and multiple regressions (p < .05). Mean angular and linear deviations in the CT group were 3.30° (SD 0.36), and 0.75 (SD 0.32) and 0.80 mm (SD 0.35) at the implant shoulder and tip, respectively. In the CBCT group, mean angular and linear deviations were 3.47° (SD 0.37), and 0.81 (SD 0.32) and 0.87 mm (SD 0.32) at the implant shoulder and tip, respectively. No statistically significant differences were detected between the CT and CBCT groups (p = .169 and p = .551, p = .113 for angular and linear deviations, respectively). Implant placement via CT- or CBCT-derived mucosa-supported SLA guides yielded similar deviation values. Results should be confirmed on alternative CBCT scanners. © 2012 Wiley Periodicals, Inc.

  17. An iterative reconstruction method for high-pitch helical luggage CT

    NASA Astrophysics Data System (ADS)

    Xue, Hui; Zhang, Li; Chen, Zhiqiang; Jin, Xin

    2012-10-01

    X-ray luggage CT is widely used in airports and railway stations for the purpose of detecting contrabands and dangerous goods that may be potential threaten to public safety, playing an important role in homeland security. An X-ray luggage CT is usually in a helical trajectory with a high pitch for achieving a high passing speed of the luggage. The disadvantage of high pitch is that conventional filtered back-projection (FBP) requires a very large slice thickness, leading to bad axial resolution and helical artifacts. Especially when severe data inconsistencies are present in the z-direction, like the ends of a scanning object, the partial volume effect leads to inaccuracy value and may cause a wrong identification. In this paper, an iterative reconstruction method is developed to improve the image quality and accuracy for a large-spacing multi-detector high-pitch helical luggage CT system. In this method, the slice thickness is set to be much smaller than the pitch. Each slice involves projection data collected in a rather small angular range, being an ill-conditioned limited-angle problem. Firstly a low-resolution reconstruction is employed to obtain images, which are used as prior images in the following process. Then iterative reconstruction is performed to obtain high-resolution images. This method enables a high volume coverage speed and a thin reconstruction slice for the helical luggage CT. We validate this method with data collected in a commercial X-ray luggage CT.

  18. Multi-slice computed tomography 5-minute delayed scan is superior to immediate scan after contrast media application in characterization of intracranial tuberculosis.

    PubMed

    Hou, Dailun; Qu, Huifang; Zhang, Xu; Li, Ning; Liu, Cheng; Ma, Xiangxing

    2014-09-02

    The aim of this study was to determine whether the diagnosis of intracranial tuberculosis (TB) can be improved when multi-slice computed tomography (MSCT) scans are taken with a 5-min delay after contrast media application. Pre- and post-contrast CT scans of the head were obtained from 30 patients using a 16-slice spiral CT. Dual-phase acquisition was performed immediately and 5 min after contrast agent injection. Diagnostic values of different images were compared using a scoring system applied by 2 experienced radiologists. We found 526 lesions in 30 patients, including 22 meningeal thickenings, 235 meningeal tuberculomas/tubercles, and 269 parenchymal tuberculomas/tubercles. Images obtained with 5-min delayed scan time were superior in terms of lesion size and meningeal thickening outlining in all disease types (P<0.01). The ability to distinguish between vascular sections from the cerebral sulcus and tubercle was also improved (P<0.01). Image acquisition with 5-min delay after contrast agent injection should be performed as a standard scanning protocol to diagnose intracranial TB.

  19. Comparison of glomerular filtration rate determined by use of single-slice dynamic computed tomography and scintigraphy in cats.

    PubMed

    Schmidt, David M; Scrivani, Peter V; Dykes, Nathan L; Goldstein, Richard M; Erb, Hollis N; Reeves, Anthony P

    2012-04-01

    To compare estimation of glomerular filtration rate determined via conventional methods (ie, scintigraphy and plasma clearance of technetium Tc 99m pentetate) and dynamic single-slice computed tomography (CT). 8 healthy adult cats. Scintigraphy, plasma clearance testing, and dynamic CT were performed on each cat on the same day; order of examinations was randomized. Separate observers performed GFR calculations for scintigraphy, plasma clearance testing, or dynamic CT. Methods were compared via Bland-Altman plots and considered interchangeable and acceptable when the 95% limits of agreement (mean difference between methods ± 1.96 SD of the differences) were ≤ 0.7 mL/min/kg. Global GFR differed < 0.7 mL/min/kg in 5 of 8 cats when comparing plasma clearance testing and dynamic CT; the limits of agreement were 1.4 and -1.7 mL/min/kg. The mean ± SD difference was -0.2 ± 0.8 mL/min/kg, and the maximum difference was 1.6 mL/min/kg. The mean ± SD difference (absolute value) for percentage filtration by individual kidneys was 2.4 ± 10.5% when comparing scintigraphy and dynamic CT; the maximum difference was 20%, and the limits of agreement were 18% and 23% (absolute value). GFR estimation via dynamic CT exceeded the definition for acceptable clinical use, compared with results for conventional methods, which was likely attributable to sample size and preventable technical complications. Because 5 of 8 cats had comparable values between methods, further investigation of dynamic CT in a larger sample population with a wide range of GFR values should be performed.

  20. Diagnostic performance and radiation dose of lower extremity CT angiography using a 128-slice dual source CT at 80 kVp and high pitch.

    PubMed

    Kim, Jin Woo; Choo, Ki Seok; Jeon, Ung Bae; Kim, Tae Un; Hwang, Jae Yeon; Yeom, Jeong A; Jeong, Hee Seok; Choi, Yoon Young; Nam, Kyung Jin; Kim, Chang Won; Jeong, Dong Wook; Lim, Soo Jin

    2016-07-01

    Multi-detector computed tomography (MDCT) angiography is now used for the diagnosing patients with peripheral arterial disease. The dose of radiation is related to variable factors, such as tube current, tube voltage, and helical pitch. To assess the diagnostic performance and radiation dose of lower extremity CT angiography (CTA) using a 128-slice dual source CT at 80 kVp and high pitch in patients with critical limb ischemia (CLI). Twenty-eight patients (mean, 64.1 years; range, 39-80 years) with CLI were enrolled in this retrospective study and underwent CTA using a 128-slice dual source CT at 80 kVp and high pitch and subsequent intra-arterial digital subtraction angiography (DSA), which was used as a reference standard for assessing diagnostic performance. For arterial segments with significant disease (>50% stenosis), overall sensitivity, specificity, and accuracy of lower extremity CTA were 94.8% (95% CI, 91.7-98.0%), 91.5% (95% CI, 87.7-95.2%), and 93.1% (95% CI, 90.6-95.6%), respectively, and its positive and negative predictive values were 91.0% (95% CI, 87.1-95.0%), and 95.1% (95% CI, 92.1-98.1%), respectively. Mean radiation dose delivered to lower extremities was 266.6 mGy.cm. Lower extremity CTA using a 128-slice dual source CT at 80 kVp and high pitch was found to have good diagnostic performance for the assessment of patients with CLI using an extremely low radiation dose. © The Foundation Acta Radiologica 2015.

  1. CT liver volumetry using three-dimensional image data in living donor liver transplantation: Effects of slice thickness on volume calculation

    PubMed Central

    Hori, Masatoshi; Suzuki, Kenji; Epstein, Mark L.; Baron, Richard L.

    2011-01-01

    The purpose was to evaluate a relationship between slice thickness and calculated volume on CT liver volumetry by comparing the results for images with various slice thicknesses including three-dimensional images. Twenty adult potential liver donors (12 men, 8 women; mean age, 39 years; range, 24–64) underwent CT with a 64-section multi-detector row CT scanner after intra-venous injection of contrast material. Four image sets with slice thicknesses of 0.625 mm, 2.5 mm, 5 mm, and 10 mm were used. First, a program developed in our laboratory for automated liver extraction was applied to CT images, and the liver boundary was obtained automatically. Then, an abdominal radiologist reviewed all images on which automatically extracted boundaries were superimposed, and edited the boundary on each slice to enhance the accuracy. Liver volumes were determined by counting of the voxels within the liver boundary. Mean whole liver volumes estimated with CT were 1322.5 cm3 on 0.625-mm, 1313.3 cm3 on 2.5-mm, 1310.3 cm3 on 5-mm, and 1268.2 cm3 on 10-mm images. Volumes calculated for three-dimensional (0.625-mm-thick) images were significantly larger than those for thicker images (P<.0001). Partial liver volumes of right lobe, left lobe, and lateral segment were also evaluated in a similar manner. Estimated maximum differences in calculated volumes of lateral segment was −10.9 cm3 (−4.6%) between 0.625-mm and 5-mm images. In conclusion, liver volumes calculated on 2.5-mm or thicker images were significantly smaller than volumes calculated on three-dimensional images. If a maximum error of 5% in the calculated graft volume is within the range of having an insignificant clinical impact, 5-mm thick images are acceptable for CT volumetry. If not, three-dimensional images could be essential. PMID:21850689

  2. Combination of CT scanning and fluoroscopy imaging on a flat-panel CT scanner

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Gupta, R.; Reichardt, B.; Suess, Ch.; Schmidt, B.; Stierstorfer, K.; Popescu, S.; Brady, T.; Flohr, T.

    2006-03-01

    We developed and evaluated a prototype flat-panel detector based Volume CT (fpVCT) scanner. The fpVCT scanner consists of a Varian 4030CB a-Si flat-panel detector mounted in a multi slice CT-gantry (Siemens Medical Solutions). It provides a 25 cm field of view with 18 cm z-coverage at the isocenter. In addition to the standard tomographic scanning, fpVCT allows two new scan modes: (1) fluoroscopic imaging from any arbitrary rotation angle, and (2) continuous, time-resolved tomographic scanning of a dynamically changing viewing volume. Fluoroscopic imaging is feasible by modifying the standard CT gantry so that the imaging chain can be oriented along any user-selected rotation angle. Scanning with a stationary gantry, after it has been oriented, is equivalent to a conventional fluoroscopic examination. This scan mode enables combined use of high-resolution tomography and real-time fluoroscopy with a clinically usable field of view in the z direction. The second scan mode allows continuous observation of a timeevolving process such as perfusion. The gantry can be continuously rotated for up to 80 sec, with the rotation time ranging from 3 to 20 sec, to gather projection images of a dynamic process. The projection data, that provides a temporal log of the viewing volume, is then converted into multiple image stacks that capture the temporal evolution of a dynamic process. Studies using phantoms, ex vivo specimens, and live animals have confirmed that these new scanning modes are clinically usable and offer a unique view of the anatomy and physiology that heretofore has not been feasible using static CT scanning. At the current level of image quality and temporal resolution, several clinical applications such a dynamic angiography, tumor enhancement pattern and vascularity studies, organ perfusion, and interventional applications are in reach.

  3. Automated method for relating regional pulmonary structure and function: integration of dynamic multislice CT and thin-slice high-resolution CT

    NASA Astrophysics Data System (ADS)

    Tajik, Jehangir K.; Kugelmass, Steven D.; Hoffman, Eric A.

    1993-07-01

    We have developed a method utilizing x-ray CT for relating pulmonary perfusion to global and regional anatomy, allowing for detailed study of structure to function relationships. A thick slice, high temporal resolution mode is used to follow a bolus contrast agent for blood flow evaluation and is fused with a high spatial resolution, thin slice mode to obtain structure- function detail. To aid analysis of blood flow, we have developed a software module, for our image analysis package (VIDA), to produce the combined structure-function image. Color coded images representing blood flow, mean transit time, regional tissue content, regional blood volume, regional air content, etc. are generated and imbedded in the high resolution volume image. A text file containing these values along with a voxel's 3-D coordinates is also generated. User input can be minimized to identifying the location of the pulmonary artery from which the input function to a blood flow model is derived. Any flow model utilizing one input and one output function can be easily added to a user selectable list. We present examples from our physiologic based research findings to demonstrate the strengths of combining dynamic CT and HRCT relative to other scanning modalities to uniquely characterize pulmonary normal and pathophysiology.

  4. Quantitative myocardial perfusion from static cardiac and dynamic arterial CT

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.

    2018-05-01

    Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative perfusion imaging with an acquisition strategy offering substantial radiation dose and computational complexity savings over dynamic CT.

  5. Automated segmentations of skin, soft-tissue, and skeleton, from torso CT images

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Hara, Takeshi; Fujita, Hiroshi; Yokoyama, Ryujiro; Kiryu, Takuji; Hoshi, Hiroaki

    2004-05-01

    We have been developing a computer-aided diagnosis (CAD) scheme for automatically recognizing human tissue and organ regions from high-resolution torso CT images. We show some initial results for extracting skin, soft-tissue and skeleton regions. 139 patient cases of torso CT images (male 92, female 47; age: 12-88) were used in this study. Each case was imaged with a common protocol (120kV/320mA) and covered the whole torso with isotopic spatial resolution of about 0.63 mm and density resolution of 12 bits. A gray-level thresholding based procedure was applied to separate the human body from background. The density and distance features to body surface were used to determine the skin, and separate soft-tissue from the others. A 3-D region growing based method was used to extract the skeleton. We applied this system to the 139 cases and found that the skin, soft-tissue and skeleton regions were recognized correctly for 93% of the patient cases. The accuracy of segmentation results was acceptable by evaluating the results slice by slice. This scheme will be included in CAD systems for detecting and diagnosing the abnormal lesions in multi-slice torso CT images.

  6. COMPUTED TOMOGRAPHIC APPEARANCE OF THE TEMPOROMANDIBULAR JOINT IN 1018 ASYMPTOMATIC HORSES: A MULTI-INSTITUTION STUDY.

    PubMed

    Carmalt, James L; Kneissl, Sibylle; Rawlinson, Jennifer E; Zwick, Timo; Zekas, Lisa; Ohlerth, Stefanie; Bienert-Zeit, Astrid

    2016-05-01

    Published descriptions of nonseptic arthritis of the equine temporomandibular joint (TMJ) are rare and large studies investigating variations in the TMJ for asymptomatic horses are lacking. The objectives of this cross-sectional, retrospective, multi-institutional study were to describe anatomical variations in the TMJ detected using computed tomography (CT) in an equid population asymptomatic for TMJ disease and determine whether these variations were associated with patient signalment, reason for CT examination, or CT slice width. Medical records at eight hospitals were searched for horses that had head/neck CT scans and no clinical signs of TMJ disease. Age, breed, sex, clinical presentation, and CT slice width data were recorded. Alterations in CT contour and density of the mandibular condyles, mandibular fossae, and TMJ intra-articular discs were described for each horse. Generalized logistic regression was used to test associations between anatomical variations and horse age. A total of 1018 horses were sampled. Anatomical variations were found in TMJ CT images for 40% of horses and 29% of joints. These were dichotomous with regard to age. Horses <1 year old commonly had alterations in the shape and density of the mandibular condyle. Older horses commonly had spherical hypodensities within the mandibular condyles consistent with bone cysts; and hyperdense regions of the intra-articular disc consistent with dystrophic mineralization. Findings indicated that TMJ anatomic variations were common in CT images of younger and older horses asymptomatic for TMJ disease. Future studies are needed to more definitively characterize these CT variations using gross pathology and histopathology. © 2016 American College of Veterinary Radiology.

  7. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging.

    PubMed

    So, Aaron; Imai, Yasuhiro; Nett, Brian; Jackson, John; Nett, Liz; Hsieh, Jiang; Wisenberg, Gerald; Teefy, Patrick; Yadegari, Andrew; Islam, Ali; Lee, Ting-Yim

    2016-08-01

    The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisition protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP maps were generated from the dynamic contrast-enhanced (DCE) heart images taken at baseline and three weeks after the ischemic insult. Their results showed that the phantom and animal images acquired with the CT platform were minimally affected by image noise and artifacts. For the beam-hardening phantom study, changes in water HU in the wall surrounding the heart chambers greatly reduced from >±30 to ≤ ± 5 HU at all kVp settings except one region at 100 kVp (7 HU). For the cone-beam phantom study, differences in mean water HU from the central slice were less than 5 HU at two peripheral slices with each 4 cm away from the central slice. These findings were reproducible in the pig DCE images at two peripheral slices that were 6 cm away from the central slice. For the partial-scan phantom study, standard deviations of the mean water HU in 10 successive partial scans were less than 5 HU at the central slice. Similar observations were made in the pig DCE images at two peripheral slices with each 6 cm away from the central slice. For the image noise phantom study, CNRs in the ASiR-V images were statistically higher (p < 0.05) than the non-ASiR-V images at all kVp settings. MP maps generated from the porcine DCE images were in excellent quality, with the ischemia in the LAD territory clearly seen in the three orthogonal views. The study demonstrates that this CT system can provide accurate and reproducible CT numbers during cardiac gated acquisitions across a wide axial field of view. This CT number fidelity will enable this imaging tool to assess contrast enhancement, potentially providing valuable added information beyond anatomic evaluation of coronary stenoses. Furthermore, their results collectively suggested that the 100 kVp/25 mAs protocol run on this CT system provides sufficient image accuracy at a low radiation dose (<3 mSv) for whole-heart quantitative CT MP imaging.

  8. Optimization of view weighting in tilted-plane-based reconstruction algorithms to minimize helical artifacts in multi-slice helical CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang

    2003-05-01

    In multi-slice helical CT, the single-tilted-plane-based reconstruction algorithm has been proposed to combat helical and cone beam artifacts by tilting a reconstruction plane to fit a helical source trajectory optimally. Furthermore, to improve the noise characteristics or dose efficiency of the single-tilted-plane-based reconstruction algorithm, the multi-tilted-plane-based reconstruction algorithm has been proposed, in which the reconstruction plane deviates from the pose globally optimized due to an extra rotation along the 3rd axis. As a result, the capability of suppressing helical and cone beam artifacts in the multi-tilted-plane-based reconstruction algorithm is compromised. An optomized tilted-plane-based reconstruction algorithm is proposed in this paper, in which a matched view weighting strategy is proposed to optimize the capability of suppressing helical and cone beam artifacts and noise characteristics. A helical body phantom is employed to quantitatively evaluate the imaging performance of the matched view weighting approach by tabulating artifact index and noise characteristics, showing that the matched view weighting improves both the helical artifact suppression and noise characteristics or dose efficiency significantly in comparison to the case in which non-matched view weighting is applied. Finally, it is believed that the matched view weighting approach is of practical importance in the development of multi-slive helical CT, because it maintains the computational structure of fan beam filtered backprojection and demands no extra computational services.

  9. Dynamic CT perfusion imaging of the myocardium: a technical note on improvement of image quality.

    PubMed

    Muenzel, Daniela; Kabus, Sven; Gramer, Bettina; Leber, Vivian; Vembar, Mani; Schmitt, Holger; Wildgruber, Moritz; Fingerle, Alexander A; Rummeny, Ernst J; Huber, Armin; Noël, Peter B

    2013-01-01

    To improve image and diagnostic quality in dynamic CT myocardial perfusion imaging (MPI) by using motion compensation and a spatio-temporal filter. Dynamic CT MPI was performed using a 256-slice multidetector computed tomography scanner (MDCT). Data from two different patients-with and without myocardial perfusion defects-were evaluated to illustrate potential improvements for MPI (institutional review board approved). Three datasets for each patient were generated: (i) original data (ii) motion compensated data and (iii) motion compensated data with spatio-temporal filtering performed. In addition to the visual assessment of the tomographic slices, noise and contrast-to-noise-ratio (CNR) were measured for all data. Perfusion analysis was performed using time-density curves with regions-of-interest (ROI) placed in normal and hypoperfused myocardium. Precision in definition of normal and hypoperfused areas was determined in corresponding coloured perfusion maps. The use of motion compensation followed by spatio-temporal filtering resulted in better alignment of the cardiac volumes over time leading to a more consistent perfusion quantification and improved detection of the extend of perfusion defects. Additionally image noise was reduced by 78.5%, with CNR improvements by a factor of 4.7. The average effective radiation dose estimate was 7.1±1.1 mSv. The use of motion compensation and spatio-temporal smoothing will result in improved quantification of dynamic CT MPI using a latest generation CT scanner.

  10. Volume error analysis for lung nodules attached to pulmonary vessels in an anthropomorphic thoracic phantom

    NASA Astrophysics Data System (ADS)

    Kinnard, Lisa M.; Gavrielides, Marios A.; Myers, Kyle J.; Zeng, Rongping; Peregoy, Jennifer; Pritchard, William; Karanian, John W.; Petrick, Nicholas

    2008-03-01

    High-resolution CT, three-dimensional (3D) methods for nodule volumetry have been introduced, with the hope that such methods will be more accurate and consistent than currently used planar measures of size. However, the error associated with volume estimation methods still needs to be quantified. Volume estimation error is multi-faceted in the sense that it is impacted by characteristics of the patient, the software tool and the CT system. The overall goal of this research is to quantify the various sources of measurement error and, when possible, minimize their effects. In the current study, we estimated nodule volume from ten repeat scans of an anthropomorphic phantom containing two synthetic spherical lung nodules (diameters: 5 and 10 mm; density: -630 HU), using a 16-slice Philips CT with 20, 50, 100 and 200 mAs exposures and 0.8 and 3.0 mm slice thicknesses. True volume was estimated from an average of diameter measurements, made using digital calipers. We report variance and bias results for volume measurements as a function of slice thickness, nodule diameter, and X-ray exposure.

  11. [Relationship between multi-slice spiral CT angiography imaging features and in-hospital death of patients with aortic dissection].

    PubMed

    Xiao, Z Y; Wang, H J; Yao, C L; Gu, G R; Xue, Y; Yin, J; Chen, J; Zhang, C; Tong, C Y; Song, Z J

    2017-03-24

    Objective: To explore the imaging manifestations of multi-slice spiral CT angiography (CTA) and relationship with in-hospital death in patients with aortic dissection (AD). Methods: The clinical data of 429 patients with AD who underwent CTA in Zhongshan Hospital of Fudan University between January 2009 and January 2016 were retrospectively analyzed. AD patients were divided into 2 groups, including operation group who underwent surgery or interventional therapy (370 cases) and non-operation group who underwent medical conservative treatment(59 cases). The multi-slice spiral CTA imaging features of AD were analyzed, and multivariate logistic regression analysis was used to investigate the relationship between imaging manifestations and in-hospital death in AD patients. Results: There were 12 cases (3.24%) of in-hospital death in operation group, and 28 cases (47.46%) of in-hospital death in non-operation group( P <0.001). AD involved different vascular branches. Multi-slice spiral CTA can clearly show the dissection of true and false lumen, and intimal tear was detected in 363 (84.62%) cases, outer wall calcification was revealed in 63 (14.69%) cases, and thrombus formation was present in 227 (52.91%) cases. The multivariate logistic regression analysis showed that the number of branch vessels involved ( OR =1.374, 95% CI 1.081-1.745, P =0.009) and tearing false lumen range( OR =2.059, 95% CI 1.252-3.385, P =0.004) were independent risk factors of in-hospital death in AD patients, and the number of branch vessels involved ( OR =1.600, 95% CI 1.062-2.411, P =0.025) was independent risk factor of in-hospital death in the operation group, while the tearing false lumen range ( OR =2.315, 95% CI 1.019-5.262, P =0.045) was independent risk factor of in-hospital death of non-operation group. Conclusions: Multi-slice spiral CTA can clearly show the entire AD, true and false lumen, intimal tear, wall calcification and thrombosis of AD patients. The number of branch vessels involved and tearing false lumen range are the independent risk factors of in-hospital death in AD patients.

  12. On-site Rapid Diagnosis of Intracranial Hematoma using Portable Multi-slice Microwave Imaging System.

    PubMed

    Mobashsher, Ahmed Toaha; Abbosh, A M

    2016-11-29

    Rapid, on-the-spot diagnostic and monitoring systems are vital for the survival of patients with intracranial hematoma, as their conditions drastically deteriorate with time. To address the limited accessibility, high costs and static structure of currently used MRI and CT scanners, a portable non-invasive multi-slice microwave imaging system is presented for accurate 3D localization of hematoma inside human head. This diagnostic system provides fast data acquisition and imaging compared to the existing systems by means of a compact array of low-profile, unidirectional antennas with wideband operation. The 3D printed low-cost and portable system can be installed in an ambulance for rapid on-site diagnosis by paramedics. In this paper, the multi-slice head imaging system's operating principle is numerically analysed and experimentally validated on realistic head phantoms. Quantitative analyses demonstrate that the multi-slice head imaging system is able to generate better quality reconstructed images providing 70% higher average signal to clutter ratio, 25% enhanced maximum signal to clutter ratio and with around 60% hematoma target localization compared to the previous head imaging systems. Nevertheless, numerical and experimental results demonstrate that previous reported 2D imaging systems are vulnerable to localization error, which is overcome in the presented multi-slice 3D imaging system. The non-ionizing system, which uses safe levels of very low microwave power, is also tested on human subjects. Results of realistic phantom and subjects demonstrate the feasibility of the system in future preclinical trials.

  13. Evaluation of the accuracy of linear measurements on multi-slice and cone beam computed tomography scans to detect the mandibular canal during bilateral sagittal split osteotomy of the mandible.

    PubMed

    Freire-Maia, B; Machado, V deC; Valerio, C S; Custódio, A L N; Manzi, F R; Junqueira, J L C

    2017-03-01

    The aim of this study was to compare the accuracy of linear measurements of the distance between the mandibular cortical bone and the mandibular canal using 64-detector multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT). It was sought to evaluate the reliability of these examinations in detecting the mandibular canal for use in bilateral sagittal split osteotomy (BSSO) planning. Eight dry human mandibles were studied. Three sites, corresponding to the lingula, the angle, and the body of the mandible, were selected. After the CT scans had been obtained, the mandibles were sectioned and the bone segments measured to obtain the actual measurements. On analysis, no statistically significant difference was found between the measurements obtained through MSCT and CBCT, or when comparing the measurements from these scans with the actual measurements. It is concluded that the images obtained by CT scan, both 64-detector multi-slice and cone beam, can be used to obtain accurate linear measurements to locate the mandibular canal for preoperative planning of BSSO. The ability to correctly locate the mandibular canal during BSSO will reduce the occurrence of neurosensory disturbances in the postoperative period. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, H; UT Southwestern Medical Center, Dallas, TX; Hilts, M

    Purpose: To commission a multislice computed tomography (CT) scanner for fast and reliable readout of radiation therapy (RT) dose distributions using CT polymer gel dosimetry (PGD). Methods: Commissioning was performed for a 16-slice CT scanner using images acquired through a 1L cylinder filled with water. Additional images were collected using a single slice machine for comparison purposes. The variability in CT number associated with the anode heel effect was evaluated and used to define a new slice-by-slice background image subtraction technique. Image quality was assessed for the multislice system by comparing image noise and uniformity to that of the singlemore » slice machine. The consistency in CT number across slices acquired simultaneously using the multislice detector array was also evaluated. Finally, the variability in CT number due to increasing x-ray tube load was measured for the multislice scanner and compared to the tube load effects observed on the single slice machine. Results: Slice-by-slice background subtraction effectively removes the variability in CT number across images acquired simultaneously using the multislice scanner and is the recommended background subtraction method when using a multislice CT system. Image quality for the multislice machine was found to be comparable to that of the single slice scanner. Further study showed CT number was consistent across image slices acquired simultaneously using the multislice detector array for each detector configuration of the slice thickness examined. In addition, the multislice system was found to eliminate variations in CT number due to increasing x-ray tube load and reduce scanning time by a factor of 4 when compared to imaging a large volume using a single slice scanner. Conclusion: A multislice CT scanner has been commissioning for CT PGD, allowing images of an entire dose distribution to be acquired in a matter of minutes. Funding support provided by the Natural Sciences and Engineering Research Council of Canada (NSERC)« less

  15. Lesion detection performance of cone beam CT images with anatomical background noise: single-slice vs. multi-slice human and model observer study

    NASA Astrophysics Data System (ADS)

    Han, Minah; Jang, Hanjoo; Baek, Jongduk

    2018-03-01

    We investigate lesion detectability and its trends for different noise structures in single-slice and multislice CBCT images with anatomical background noise. Anatomical background noise is modeled using a power law spectrum of breast anatomy. Spherical signal with a 2 mm diameter is used for modeling a lesion. CT projection data are acquired by the forward projection and reconstructed by the Feldkamp-Davis-Kress algorithm. To generate different noise structures, two types of reconstruction filters (Hanning and Ram-Lak weighted ramp filters) are used in the reconstruction, and the transverse and longitudinal planes of reconstructed volume are used for detectability evaluation. To evaluate single-slice images, the central slice, which contains the maximum signal energy, is used. To evaluate multislice images, central nine slices are used. Detectability is evaluated using human and model observer studies. For model observer, channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels are used. For all noise structures, detectability by a human observer is higher for multislice images than single-slice images, and the degree of detectability increase in multislice images depends on the noise structure. Variation in detectability for different noise structures is reduced in multislice images, but detectability trends are not much different between single-slice and multislice images. The CHO with D-DOG channels predicts detectability by a human observer well for both single-slice and multislice images.

  16. Accuracy of limited four-slice CT-scan in diagnosis of chronic rhinosinusitis.

    PubMed

    Zojaji, R; Nekooei, S; Naghibi, S; Mazloum Farsi Baf, M; Jalilian, R; Masoomi, M

    2015-12-01

    Chronic rhinosinusitis (CRS) is a common chronic health condition worldwide. Standard CT-scan is the method of choice for diagnosis of CRS but its high price and considerable radiation exposure have limited its application. The main goal of this study was to evaluate the accuracy of limited four-slice coronal CT-scan in the diagnosis of CRS. This cross-sectional study was conducted on 46 patients with CRS, for one year, based on American Society of Head and Neck Surgery criteria. All patients received the preoperative standard and four-slice CT-scans, after which endoscopic sinus surgery was performed. Findings of four-slice CT-scans were compared with those of conventional CT-scan and the sensitivity and specificity of four-slice CT-scan and its agreement with conventional CT-scan was calculated. In this study, 46 patients including 32 males (69.6%) and 14 females (30.46%) with a mean age of 33 and standard deviation of 9 years, were evaluated. Sensitivity and specificity of four-slice CT-scan were 97.5% and 100%, respectively. Also, positive predictive value (PPV) and negative predictive value (NPV) of four-slice CT was 100% and 85.71%, respectively. There was a strong agreement between four-slice CT and conventional CT findings. Considering the high sensitivity and specificity of four-slice CT-scan and strong agreement with conventional CT-scan in the diagnosis of CRS and the lower radiation exposure and cost, application of this method is suggested for both diagnosis and treatment follow-up in CRS. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  17. Conventional multi-slice computed tomography (CT) and cone-beam CT (CBCT) for computer-assisted implant placement. Part I: relationship of radiographic gray density and implant stability.

    PubMed

    Arisan, Volkan; Karabuda, Zihni Cüneyt; Avsever, Hakan; Özdemir, Tayfun

    2013-12-01

    The relationship of conventional multi-slice computed tomography (CT)- and cone beam CT (CBCT)-based gray density values and the primary stability parameters of implants that were placed by stereolithographic surgical guides were analyzed in this study. Eighteen edentulous jaws were randomly scanned by a CT (CT group) or a CBCT scanner (CBCT group) and radiographic gray density was measured from the planned implants. A total of 108 implants were placed, and primary stability parameters were measured by insertion torque value (ITV) and resonance frequency analysis (RFA). Radiographic and subjective bone quality classification (BQC) was also classified. Results were analyzed by correlation tests and multiple regressions (p < .05). CBCT-based gray density values (765 ± 97.32 voxel value) outside the implants were significantly higher than those of CT-based values (668.4 ± 110 Hounsfield unit, p < .001). Significant relations were found among the gray density values outside the implants, ITV (adjusted r(2)  = 0.6142, p = .001 and adjusted r(2)  = 0.5166, p = .0021), and RFA (adjusted r(2)  = 0.5642, p = .0017 and adjusted r(2)  = 0.5423, p = .0031 for CT and CBCT groups, respectively). Data from radiographic and subjective BQC were also in agreement. Similar to the gray density values of CT, that of CBCT could also be predictive for the subjective BQC and primary implant stability. Results should be confirmed on different CBCT scanners. © 2012 Wiley Periodicals, Inc.

  18. The impact of computed tomography slice thickness on the assessment of stereotactic, 3D conformal and intensity-modulated radiotherapy of brain tumors.

    PubMed

    Caivano, R; Fiorentino, A; Pedicini, P; Califano, G; Fusco, V

    2014-05-01

    To evaluate radiotherapy treatment planning accuracy by varying computed tomography (CT) slice thickness and tumor size. CT datasets from patients with primary brain disease and metastatic brain disease were selected. Tumor volumes ranging from about 2.5 to 100 cc and CT scan at different slice thicknesses (1, 2, 4, 6 and 10 mm) were used to perform treatment planning (1-, 2-, 4-, 6- and 10-CT, respectively). For any slice thickness, a conformity index (CI) referring to 100, 98, 95 and 90 % isodoses and tumor size was computed. All the CI and volumes obtained were compared to evaluate the impact of CT slice thickness on treatment plans. The smallest volumes reduce significantly if defined on 1-CT with respect to 4- and 6-CT, while the CT slice thickness does not affect target definition for the largest volumes. The mean CI for all the considered isodoses and CT slice thickness shows no statistical differences when 1-CT is compared to 2-CT. Comparing the mean CI of 1- with 4-CT and 1- with 6-CT, statistical differences appear only for the smallest volumes with respect to 100, 98 and 95 % isodoses-the CI for 90 % isodose being not statistically significant for all the considered PTVs. The accuracy of radiotherapy tumor volume definition depends on CT slice thickness. To achieve a better tumor definition and dose coverage, 1- and 2-CT would be suitable for small targets, while 4- and 6-CT are suitable for the other volumes.

  19. Comparison of helical and cine acquisitions for 4D-CT imaging with multislice CT.

    PubMed

    Pan, Tinsu

    2005-02-01

    We proposed a data sufficiency condition (DSC) for four-dimensional-CT (4D-CT) imaging on a multislice CT scanner, designed a pitch factor for a helical 4D-CT, and compared the acquisition time, slice sensitivity profile (SSP), effective dose, ability to cope with an irregular breathing cycle, and gating technique (retrospective or prospective) of the helical 4D-CT and the cine 4D-CT on the General Electric (GE) LightSpeed RT (4-slice), Plus (4-slice), Ultra (8-slice) and 16 (16-slice) multislice CT scanners. To satisfy the DSC, a helical or cine 4D-CT acquisition has to collect data at each location for the duration of a breathing cycle plus the duration of data acquisition for an image reconstruction. The conditions for the comparison were 20 cm coverage in the cranial-caudal direction, a 4 s breathing cycle, and half-scan reconstruction. We found that the helical 4D-CT has the advantage of a shorter scan time that is 10% shorter than that of the cine 4D-CT, and the disadvantages of 1.8 times broadening of SSP and requires an additional breathing cycle of scanning to ensure an adequate sampling at the start and end locations. The cine 4D-CT has the advantages of maintaining the same SSP as slice collimation (e.g., 8 x 2.5 mm slice collimation generates 2.5 mm SSP in the cine 4D-CT as opposed to 4.5 mm in the helical 4D-CT) and a lower dose by 4% on the 8- and 16-slice systems, and 8% on the 4-slice system. The advantage of faster scanning in the helical 4D-CT will diminish if a repeat scan at the location of a breathing irregularity becomes necessary. The cine 4D-CT performs better than the helical 4D-CT in the repeat scan because it can scan faster and is more dose efficient.

  20. Deep multi-spectral ensemble learning for electronic cleansing in dual-energy CT colonography

    NASA Astrophysics Data System (ADS)

    Tachibana, Rie; Näppi, Janne J.; Hironaka, Toru; Kim, Se Hyung; Yoshida, Hiroyuki

    2017-03-01

    We developed a novel electronic cleansing (EC) method for dual-energy CT colonography (DE-CTC) based on an ensemble deep convolution neural network (DCNN) and multi-spectral multi-slice image patches. In the method, an ensemble DCNN is used to classify each voxel of a DE-CTC image volume into five classes: luminal air, soft tissue, tagged fecal materials, and partial-volume boundaries between air and tagging and those between soft tissue and tagging. Each DCNN acts as a voxel classifier, where an input image patch centered at the voxel is generated as input to the DCNNs. An image patch has three channels that are mapped from a region-of-interest containing the image plane of the voxel and the two adjacent image planes. Six different types of spectral input image datasets were derived using two dual-energy CT images, two virtual monochromatic images, and two material images. An ensemble DCNN was constructed by use of a meta-classifier that combines the output of multiple DCNNs, each of which was trained with a different type of multi-spectral image patches. The electronically cleansed CTC images were calculated by removal of regions classified as other than soft tissue, followed by a colon surface reconstruction. For pilot evaluation, 359 volumes of interest (VOIs) representing sources of subtraction artifacts observed in current EC schemes were sampled from 30 clinical CTC cases. Preliminary results showed that the ensemble DCNN can yield high accuracy in labeling of the VOIs, indicating that deep learning of multi-spectral EC with multi-slice imaging could accurately remove residual fecal materials from CTC images without generating major EC artifacts.

  1. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    So, Aaron, E-mail: aso@robarts.ca

    Purpose: The authors investigated the performance of a recently introduced 160-mm/256-row CT system for low dose quantitative myocardial perfusion (MP) imaging of the whole heart. This platform is equipped with a gantry capable of rotating at 280 ms per full cycle, a second generation of adaptive statistical iterative reconstruction (ASiR-V) to correct for image noise arising from low tube voltage potential/tube current dynamic scanning, and image reconstruction algorithms to tackle beam-hardening, cone-beam, and partial-scan effects. Methods: Phantom studies were performed to investigate the effectiveness of image noise and artifact reduction with a GE Healthcare Revolution CT system for three acquisitionmore » protocols used in quantitative CT MP imaging: 100, 120, and 140 kVp/25 mAs. The heart chambers of an anthropomorphic chest phantom were filled with iodinated contrast solution at different concentrations (contrast levels) to simulate the circulation of contrast through the heart in quantitative CT MP imaging. To evaluate beam-hardening correction, the phantom was scanned at each contrast level to measure the changes in CT number (in Hounsfield unit or HU) in the water-filled region surrounding the heart chambers with respect to baseline. To evaluate cone-beam artifact correction, differences in mean water HU between the central and peripheral slices were compared. Partial-scan artifact correction was evaluated from the fluctuation of mean water HU in successive partial scans. To evaluate image noise reduction, a small hollow region adjacent to the heart chambers was filled with diluted contrast, and contrast-to-noise ratio in the region before and after noise correction with ASiR-V was compared. The quality of MP maps acquired with the CT system was also evaluated in porcine CT MP studies. Myocardial infarct was induced in a farm pig from a transient occlusion of the distal left anterior descending (LAD) artery with a catheter-based interventional procedure. MP maps were generated from the dynamic contrast-enhanced (DCE) heart images taken at baseline and three weeks after the ischemic insult. Results: Their results showed that the phantom and animal images acquired with the CT platform were minimally affected by image noise and artifacts. For the beam-hardening phantom study, changes in water HU in the wall surrounding the heart chambers greatly reduced from >±30 to ≤ ± 5 HU at all kVp settings except one region at 100 kVp (7 HU). For the cone-beam phantom study, differences in mean water HU from the central slice were less than 5 HU at two peripheral slices with each 4 cm away from the central slice. These findings were reproducible in the pig DCE images at two peripheral slices that were 6 cm away from the central slice. For the partial-scan phantom study, standard deviations of the mean water HU in 10 successive partial scans were less than 5 HU at the central slice. Similar observations were made in the pig DCE images at two peripheral slices with each 6 cm away from the central slice. For the image noise phantom study, CNRs in the ASiR-V images were statistically higher (p < 0.05) than the non-ASiR-V images at all kVp settings. MP maps generated from the porcine DCE images were in excellent quality, with the ischemia in the LAD territory clearly seen in the three orthogonal views. Conclusions: The study demonstrates that this CT system can provide accurate and reproducible CT numbers during cardiac gated acquisitions across a wide axial field of view. This CT number fidelity will enable this imaging tool to assess contrast enhancement, potentially providing valuable added information beyond anatomic evaluation of coronary stenoses. Furthermore, their results collectively suggested that the 100 kVp/25 mAs protocol run on this CT system provides sufficient image accuracy at a low radiation dose (<3 mSv) for whole-heart quantitative CT MP imaging.« less

  2. Case series of 64 slice computed tomography-computed tomographic angiography with 3D reconstruction to diagnose symptomatic cerebral aneurysms: new standard of care?

    PubMed Central

    Jehle, Dietrich; Chae, Floria; Wai, Jonathan; Cloud, Sam; Pierce, David; Meyer, Michael

    2012-01-01

    CT angiography (CTA) has improved significantly over the past few years such that the reconstructed images of the cerebral arteries may now be equivalent to conventional digital angiography. The new technology of 64 slice multi-detector CTA can reconstruct detailed images that can reliably identify small cerebral aneurysms, even those <3mm. In addition, it is estimated that CT followed by lumbar puncture (LP) misses up to 4% of symptomatic aneurysms. We present a series of cases that illustrates how CT followed by CTA may be replacing CT-LP as the standard of care in working up patients for symptomatic cerebral aneurysms and the importance of performing three dimensional (3D) reconstructions. A series of seven cases of symptomatic cerebral aneurysms were identified that illustrate the sensitivity of CT-CTA versus CT-LP and the importance of 3D reconstruction in identifying these aneurysms. Surgical treatment was recommended for 6 of the 7 patients with aneurysms and strict hypertension control was recommended for the seventh patient. Some of these patients demonstrated subarachnoid hemorrhage on presentation while others had negative LPs. A number of these patients with negative LPs were clearly symptomatic from their aneurysms. At least one of these cerebral aneurysms was not apparent on CTA without 3D reconstruction. 3D reconstruction of CTA is crucial to adequately identify cerebral aneurysms. This case series helps reinforce the importance of 3D reconstruction. There is some data to suggest that 64 slice CT-CTA may be equivalent or superior to CT-LP in the detection of symptomatic cerebral aneurysms. PMID:22593806

  3. Low-contrast detectability in volume rendering: a phantom study on multidetector-row spiral CT data.

    PubMed

    Shin, Hoen-Oh; Falck, Christian V; Galanski, Michael

    2004-02-01

    To cope with the increasing amount of CT data, there is growing interest in direct volume-rendering techniques (VRT) as a diagnostic tool. The aim of this phantom study was to analyze the low-contrast detectability (LCD) of VRT compared with multi-planar reformations (MPR). Soft tissue lesions were simulated by spheres of different diameters (3-8 mm). The average lesion density was 15 HU compared with a background density of 35 HU. Two different CT protocols with 40 and 150 mAs were performed on a multi-detector row CT. The scanning parameters were as following: 140 kV; 2x0.5-mm slice collimation; pitch 2 (table movement per rotation/single slice collimation), and reconstruction with 0.5-mm slice thickness at 0.5-mm interval. A B30 kernel was used for reconstruction. The VRT was performed by mapping Hounsfield values to gray levels equal to a CT window (center: 60 HU; window: 370 HU ). A linear ramp was applied for the opacity transfer function varying the maximum opacity between 0.1 and 1.0. A statistical method based on the Rose model was used to calculate the detection threshold depending on lesion size and image noise. Additionally, clinical data of 2 patients with three liver lesions of different sizes and density were evaluated. In VRT, LCD was most dependent on object size. Regarding lesions larger than 5 mm, VRT is significantly superior to MPR (p<0.05) for all opacity settings. In lesions sized 3-5 mm a maximum opacity level approximately 40-50% showed a near equivalent detectability in VRT and MPR. For higher opacity levels VRT was superior to MPR. Only for 3-mm lesions MPR performed slightly better in low-contrast detectability (p<0.05). Compared with MPR, VRT shows similar performance in LCD. Due to noise suppression effects, it is suited for visualization of data with high noise content.

  4. Development of Multi-slice Analytical Tool to Support BIM-based Design Process

    NASA Astrophysics Data System (ADS)

    Atmodiwirjo, P.; Johanes, M.; Yatmo, Y. A.

    2017-03-01

    This paper describes the on-going development of computational tool to analyse architecture and interior space based on multi-slice representation approach that is integrated with Building Information Modelling (BIM). Architecture and interior space is experienced as a dynamic entity, which have the spatial properties that might be variable from one part of space to another, therefore the representation of space through standard architectural drawings is sometimes not sufficient. The representation of space as a series of slices with certain properties in each slice becomes important, so that the different characteristics in each part of space could inform the design process. The analytical tool is developed for use as a stand-alone application that utilises the data exported from generic BIM modelling tool. The tool would be useful to assist design development process that applies BIM, particularly for the design of architecture and interior spaces that are experienced as continuous spaces. The tool allows the identification of how the spatial properties change dynamically throughout the space and allows the prediction of the potential design problems. Integrating the multi-slice analytical tool in BIM-based design process thereby could assist the architects to generate better design and to avoid unnecessary costs that are often caused by failure to identify problems during design development stages.

  5. Development of a fast multi-line x-ray CT detector for NDT

    NASA Astrophysics Data System (ADS)

    Hofmann, T.; Nachtrab, F.; Schlechter, T.; Neubauer, H.; Mühlbauer, J.; Schröpfer, S.; Ernst, J.; Firsching, M.; Schweiger, T.; Oberst, M.; Meyer, A.; Uhlmann, N.

    2015-04-01

    Typical X-ray detectors for non-destructive testing (NDT) are line detectors or area detectors, like e.g. flat panel detectors. Multi-line detectors are currently only available in medical Computed Tomography (CT) scanners. Compared to flat panel detectors, line and multi-line detectors can achieve much higher frame rates. This allows time-resolved 3D CT scans of an object under investigation. Also, an improved image quality can be achieved due to reduced scattered radiation from object and detector themselves. Another benefit of line and multi-line detectors is that very wide detectors can be assembled easily, while flat panel detectors are usually limited to an imaging field with a size of approx. 40 × 40 cm2 at maximum. The big disadvantage of line detectors is the limited number of object slices that can be scanned simultaneously. This leads to long scan times for large objects. Volume scans with a multi-line detector are much faster, but with almost similar image quality. Due to the promising properties of multi-line detectors their application outside of medical CT would also be very interesting for NDT. However, medical CT multi-line detectors are optimized for the scanning of human bodies. Many non-medical applications require higher spatial resolutions and/or higher X-ray energies. For those non-medical applications we are developing a fast multi-line X-ray detector.In the scope of this work, we present the current state of the development of the novel detector, which includes several outstanding properties like an adjustable curved design for variable focus-detector-distances, conserving nearly uniform perpendicular irradiation over the entire detector width. Basis of the detector is a specifically designed, radiation hard CMOS imaging sensor with a pixel pitch of 200 μ m. Each pixel has an automatic in-pixel gain adjustment, which allows for both: a very high sensitivity and a wide dynamic range. The final detector is planned to have 256 lines of pixels. By using a modular assembly of the detector, the width can be chosen as multiples of 512 pixels. With a frame rate of up to 300 frames/s (full resolution) or 1200 frame/s (analog binning to 400 μ m pixel pitch) time-resolved 3D CT applications become possible. Two versions of the detector are in development, one with a high resolution scintillator and one with a thick, structured and very efficient scintillator (pitch 400 μ m). This way the detector can even work with X-ray energies up to 450 kVp.

  6. Role of Multi Detector Computed Tomography (MDCT) in Preoperative Staging of Pancreatic Carcinoma.

    PubMed

    Singhal, Soumil; Prabhu, Nirmal Kumar; Sethi, Pulkit; Moorthy, Srikanth

    2017-05-01

    Pancreatic carcinoma is one of the leading causes of cancer related death in advanced countries and has shown rising trends in developing countries like India. Increase in the incidence has been linked to risk factors like lifestyle modification associated with increased alcohol consumption and rapid urbanization. Most patients at the time of diagnosis present with an advanced condition. Surgical resection offers the only chance for cure in them and imaging plays a crucial role in the early diagnosis of the condition. To compare the staging of pancreatic carcinoma by MDCT (Multi Detector Computed Tomography) with surgery in a preoperative setting in a tertiary referral centre in Kerala. A cross-sectional observational study was performed between November 2014 and October 2016, 25 patients (12 men, 13 women), with a mean age of 54.2 years, were evaluated. MDCT was performed using 16 slice, 64 slice and 256 slice multi detector CT machines. The gold standard for diagnosis was histopathology and operative data. All statistical analysis was done using IBM SPSS version 20.0. Validity parameters like sensitivity, specificity, accuracy and Positive Predictive Value (PPV) / Negative Predictive Value (NPV) were computed for MDCT with respect to surgery. Of the 25 patients who were evaluated for surgery, 15 (60%) cases were classified as resectable tumours, 3 (12%) as borderline resectable and 7 (28%) as unresectable tumours. CT showed a sensitivity of 82.3% with a specificity of 87.5%. However, for assessing vascular invasion, CT showed sensitivity and specificity of 100% and 93.3% respectively. Three (12%) patients in the study who were classified as borderline resectable pancreatic tumours underwent surgery. Contrast-enhanced multiphase pancreatic imaging using MDCT plays a pivotal role in diagnosing and assessing resectability and vascular invasion of pancreatic tumours. It is very useful for determining borderline resectable tumours pre-operatively, which aids for better treatment planning.

  7. Comparative evaluation of physicians' pulmonary nodule detection with reduced slice thickness at CT screening

    NASA Astrophysics Data System (ADS)

    Sinsuat, Marodina; Shimamura, Ichiro; Saita, Shinsuke; Kubo, Mitsuru; Kawata, Yoshiki; Niki, Noboru; Ohmatsu, Hironobu; Kakinuma, Ryutaro; Eguchi, Kenji; Kaneko, Masahiro; Tominaga, Keigo; Moriyama, Noriyuki

    2008-03-01

    With thin and thick section Multi-slice CT images at lung cancer screening, we have statistically and quantitatively shown and evaluated the diagnostic capabilities of these slice thicknesses on physicians' pulmonary nodule diagnosis. To comparatively evaluate the 2 mm and 10 mm slice thicknesses, MSCT images of 360 people were read by six physicians. The reading criteria consisted of nodule for further examination (NFE), nodule for no further examination (NNFE) and no abnormality (NA) case. For reading results evaluation; firstly, cross-tabulation was carried out to roughly analyze the diagnoses based on whole lung field and each lung lobes. Secondly, from semi-automated extraction result of the nodule, detailed quantitative analysis was carried out to determine the diagnostic capabilities of two slice thicknesses. Finally, using the reading results of 2 mm thick image as the gold standard, the diagnostic capabilities were analyzed through the features and locations of pulmonary nodules. The study revealed that both slice thicknesses can depict lung cancer. Thin section may not be effective to diagnose nodules of <=3 mm in size and nodules of <= 5mm in size for thick section. Though thick section is less tiring for reading physicians, it is not good at depicting nodules located at the border of lung upper lobe and which have a pixel size distance of <=5 from the chest wall. The information presented may serve as a useful reference to determine in which particular pulmonary nodule condition the two slice thicknesses can be effectively used for early detection of lung cancer.

  8. A multicenter, randomized controlled trial of immediate total-body CT scanning in trauma patients (REACT-2)

    PubMed Central

    2012-01-01

    Background Computed tomography (CT) scanning has become essential in the early diagnostic phase of trauma care because of its high diagnostic accuracy. The introduction of multi-slice CT scanners and infrastructural improvements made total-body CT scanning technically feasible and its usage is currently becoming common practice in several trauma centers. However, literature provides limited evidence whether immediate total-body CT leads to better clinical outcome then conventional radiographic imaging supplemented with selective CT scanning in trauma patients. The aim of the REACT-2 trial is to determine the value of immediate total-body CT scanning in trauma patients. Methods/design The REACT-2 trial is an international, multicenter randomized clinical trial. All participating trauma centers have a multi-slice CT scanner located in the trauma room or at the Emergency Department (ED). All adult, non-pregnant, severely injured trauma patients according to predefined criteria will be included. Patients in whom direct scanning will hamper necessary cardiopulmonary resuscitation or who require an immediate operation because of imminent death (both as judged by the trauma team leader) are excluded. Randomization will be computer assisted. The intervention group will receive a contrast-enhanced total-body CT scan (head to pelvis) during the primary survey. The control group will be evaluated according to local conventional trauma imaging protocols (based on ATLS guidelines) supplemented with selective CT scanning. Primary outcome will be in-hospital mortality. Secondary outcomes are differences in mortality and morbidity during the first year post trauma, several trauma work-up time intervals, radiation exposure, general health and quality of life at 6 and 12 months post trauma and cost-effectiveness. Discussion The REACT-2 trial is a multicenter randomized clinical trial that will provide evidence on the value of immediate total-body CT scanning during the primary survey of severely injured trauma patients. If immediate total-body CT scanning is found to be the best imaging strategy in severely injured trauma patients it could replace conventional imaging supplemented with CT in this specific group. Trial Registration ClinicalTrials.gov: (NCT01523626). PMID:22458247

  9. [Chronic pancreatitis: which is the role of 320-row CT for the staging?].

    PubMed

    Stabile Ianora, Amato Antonio; Rubini, Giuseppe; Lorusso, Filomenamila; Ambriola, Angela; Rella, Leonarda; Di Crescenzo, Vincenzo; Moschetta, Marco

    2013-01-01

    The purpose of this study was to evaluate the diagnostic potential of multi-planar and volumetric reconstructions obtained from isotropic data by using 16-slice computed tomography (CT) in the diagnosis and staging of chronic pancreatitis. In a group of 42 patients CT images were evaluated searching for alterations in morphology and structure of the pancreas, alterations of the Wirsung duct, dilatation of the bile ducts, fluid collections, and vascular involvement of the digestive tract. The disease was then staged in mild, moderate and severe and correlated with the clinical staging. CT allowed the recognition of chronic pancreatitis in all cases. The staging was correct in 25/42 patients, with an accuracy rate of 59.5%. In the staging of moderate and severe forms, CT correlation with clinical and laboratory data was valid, but in mild forms it appeared less significant. Multi-detector CT is accurate in the recognition of moderate, advanced forms of chronic pancreatitis and in the identification of its complications, while it is poorly correlated with the clinical staging in mild forms of the disease.

  10. Simultaneous extraction of centerlines, stenosis, and thrombus detection in renal CT angiography

    NASA Astrophysics Data System (ADS)

    Subramanyan, Krishna; Durgan, Jacob; Hodgkiss, Thomas D.; Chandra, Shalabh

    2004-05-01

    The Renal Artery Stenosis (RAS) is the major cause of renovascular hypertension and CT angiography has shown tremendous promise as a noninvasive method for reliably detecting renal artery stenosis. The purpose of this study was to validate the semi-automated methods to assist in extraction of renal branches and characterizing the associated renal artery stenosis. Automatically computed diagnostic images such as straight MIP, curved MPR, cross-sections, and diameters from multi-slice CT are presented and evaluated for its acceptance. We used vessel-tracking image processing methods to extract the aortic-renal vessel tree in a CT data in axial slice images. Next, from the topology and anatomy of the aortic vessel tree, the stenosis, and thrombus section and branching of the renal arteries are extracted. The results are presented in curved MPR and continuously variable MIP images. In this study, 15 patients were scanned with contrast on Mx8000 CT scanner (Philips Medical Systems), with 1.0 mm thickness, 0.5mm slice spacing, and 120kVp and a stack of 512x512x150 volume sets were reconstructed. The automated image processing took less than 50 seconds to compute the centerline and borders of the aortic/renal vessel tree. The overall assessment of manual and automatically generated stenosis yielded a weighted kappa statistic of 0.97 at right renal arteries, 0.94 at the left renal branches. The thrombus region contoured manually and semi-automatically agreed upon at 0.93. The manual time to process each case is approximately 25 to 30 minutes.

  11. Initial experience in treating lung cancer with helical tomotherapy

    PubMed Central

    Yartsev, S; Dar, AR; Woodford, C; Wong, E; Bauman, G; Van Dyk, J

    2007-01-01

    Helical tomotherapy is a new form of image-guided radiation therapy that combines features of a linear accelerator and a helical computed tomography (CT) scanner. Megavoltage CT (MVCT) data allow the verification and correction of patient setup on the couch by comparison and image registration with the kilovoltage CT multi-slice images used for treatment planning. An 84-year-old male patient with Stage III bulky non-small cell lung cancer was treated on a Hi-ART II tomotherapy unit. Daily MVCT imaging was useful for setup corrections and signaled the need to adapt the delivery plan when the patient’s anatomy changed significantly. PMID:21614260

  12. Evidence of neurofibromatosis type 1 in a multi-morbid Inca child mummy: A paleoradiological investigation using computed tomography

    PubMed Central

    Wittig, Holger; Zesch, Stephanie; Rosendahl, Wilfried; Blache, Sandra; Müller-Gerbl, Magdalena; Hotz, Gerhard

    2017-01-01

    Objective In this study, an Inca bundle was examined using computed tomography (CT). The primary aim was to determine the preservation status of bony and soft tissues, the sex, the age at the time of death, possible indicators for disease or even the cause of death, as well as the kind of mummification. A secondary aim was to obtain a brief overview of the wrapping in order to gain additional information on the cultural background. Materials and methods The bundle belongs to the Museum of Cultures in Basel, Switzerland, and was bought in Munich, Germany, in 1921. Radiocarbon dating of the superficial textile yielded a calibrated age between 1480 and 1650 AD. The mummy was investigated using multi-slice CT with slice thickness of 0.75 mm and 110 kilovolt. For standardized assessment of soft tissue preservation, a recently developed checklist was applied. Results CT revealed the mummy of a seven to nine year old boy with superior preservation of bony and soft tissues allowing detailed assessment. Indicators of neurofibromatosis type 1 (paravertebral and cutaneous neurofibromas, a breast neurofibroma, sphenoid wing dysplasia), Chagas disease (dilatation of the esophagus, stomach, rectum, and large amounts of feces), and lung infection (pleural adherence, calcifications), probably due to tuberculosis, were found. Furthermore, signs of peri-mortem violence (transection of the chest and a defect in the abdominal wall) were detected. CT images revealed a carefully performed wrapping. Conclusion CT examination of the Inca bundle proved to be an important non-destructive examination method. Standardized assessment, especially of the soft tissue structures, allowed for diagnoses of several diseases, indicating a multi-morbid child at the time of death. The careful wrapping pointed to a ceremonial burial. Within the cultural background, the signs of fatal violence were discussed as a possible result of war, murder, accident, or human sacrifice. PMID:28403237

  13. [Virtual bronchoscopy in the child using multi-slice CT: initial clinical experiences].

    PubMed

    Kirchner, J; Laufer, U; Jendreck, M; Kickuth, R; Schilling, E M; Liermann, D

    2000-01-01

    Virtual bronchoscopy of the pediatric patient has been reported to be more difficult because of artifacts due to breathing or motion. We demonstrate the benefit of the accelerated examination based on multislice spiral CT (MSCT) in the pediatric patient which has not been reported so far. MSCT (tube voltage 120 kV, tube current 110 mA, 4 x 1 mm Slice thickness, 500 ms rotation time, Pitch 6) was performed on a CT scanner of the latest generation (Volume Zoom, Siemens Corp. Forchheim, Germany). In totally we examined 11 patients (median age 48 months, range 2-122 months) suspected of having tracheoesophageal fistula (n = 2), tracheobronchial narrowing (n = 8) due to intrinsic or extrinsic factors or injury of the bronchial system (n = 1). In all patients we obtained sufficient data for 3D reconstruction avoiding general anesthesia. 6/11 examinations were described to be without pathological finding. A definite diagnosis was obtained in 10 patients. Virtual bronchoscopy could avoid other invasive diagnostic examination in 8/11 patients (73%). Helical CT provides 3D-reconstruction and virtual bronchoscopy in the newborn as well as the infant. It avoids additional diagnostic bronchoscopy in a high percentage of all cases.

  14. The role of multislice spiral computed tomography in the diagnosis and management of acute facial trauma in patients with multiple injuries.

    PubMed

    Nemsadze, G; Urushadze, O

    2011-11-01

    Using of mutislice spiral CT as first line examination for the diagnosis of Acute Facial trauma in the setting of Polytrauma reduces both: valuable time and cost of patient treatment. After a brief clinical examination, MDCT was performed depending on the area of injury, using a slice thickness of 0.65 mm. The obtained data were analyzed using 3D, MIP and Standard axial with Bone reconstruction protocols. 64 polytrauma patients were evaluated with both Anterior and Lateral craniography (plain skull X ray: AP and Lateral) and Multi Slice CT. Craniography detected only 18 cases of traumatic injuries of facial bones, but exact range of dislocation and accurate management plan could not be established. In the same 64 cases, Multislice CT revealed localization of all existed fractures, range of fragment dislocation, soft tissue damage and status of Paranasal sinus in 62 cases (96.8%). In two cases MS CT missed the facial fracture, in one case the examination was complicated because of bone thinness and numerous fracture fragments, in another multiple foreign body artifacts complicated the investigation. The study results show that, CT investigation based on our MDCT polytrauma protocol, detects all more or less serious facial bone injuries.

  15. Recent technologic advances in multi-detector row cardiac CT.

    PubMed

    Halliburton, Sandra Simon

    2009-11-01

    Recent technical advances in multi-detector row CT have resulted in lower radiation dose, improved temporal and spatial resolution, decreased scan time, and improved tissue differentiation. Lower radiation doses have resulted from the use of pre-patient z collimators, the availability of thin-slice axial data acquisition, the increased efficiency of ECG-based tube current modulation, and the implementation of iterative reconstruction algorithms. Faster gantry rotation and the simultaneous use of two x-ray sources have led to improvements in temporal resolution, and gains in spatial resolution have been achieved through application of the flying x-ray focal-spot technique in the z-direction. Shorter scan times have resulted from the design of detector arrays with increasing numbers of detector rows and through the simultaneous use of two x-ray sources to allow higher helical pitch. Some improvement in tissue differentiation has been achieved with dual energy CT. This article discusses these recent technical advances in detail.

  16. Whole abdominal wall segmentation using augmented active shape models (AASM) with multi-atlas label fusion and level set

    NASA Astrophysics Data System (ADS)

    Xu, Zhoubing; Baucom, Rebeccah B.; Abramson, Richard G.; Poulose, Benjamin K.; Landman, Bennett A.

    2016-03-01

    The abdominal wall is an important structure differentiating subcutaneous and visceral compartments and intimately involved with maintaining abdominal structure. Segmentation of the whole abdominal wall on routinely acquired computed tomography (CT) scans remains challenging due to variations and complexities of the wall and surrounding tissues. In this study, we propose a slice-wise augmented active shape model (AASM) approach to robustly segment both the outer and inner surfaces of the abdominal wall. Multi-atlas label fusion (MALF) and level set (LS) techniques are integrated into the traditional ASM framework. The AASM approach globally optimizes the landmark updates in the presence of complicated underlying local anatomical contexts. The proposed approach was validated on 184 axial slices of 20 CT scans. The Hausdorff distance against the manual segmentation was significantly reduced using proposed approach compared to that using ASM, MALF, and LS individually. Our segmentation of the whole abdominal wall enables the subcutaneous and visceral fat measurement, with high correlation to the measurement derived from manual segmentation. This study presents the first generic algorithm that combines ASM, MALF, and LS, and demonstrates practical application for automatically capturing visceral and subcutaneous fat volumes.

  17. Reference geometry-based detection of (4D-)CT motion artifacts: a feasibility study

    NASA Astrophysics Data System (ADS)

    Werner, René; Gauer, Tobias

    2015-03-01

    Respiration-correlated computed tomography (4D or 3D+t CT) can be considered as standard of care in radiation therapy treatment planning for lung and liver lesions. The decision about an application of motion management devices and the estimation of patient-specific motion effects on the dose distribution relies on precise motion assessment in the planning 4D CT data { which is impeded in case of CT motion artifacts. The development of image-based/post-processing approaches to reduce motion artifacts would benefit from precise detection and localization of the artifacts. Simple slice-by-slice comparison of intensity values and threshold-based analysis of related metrics suffer from- depending on the threshold- high false-positive or -negative rates. In this work, we propose exploiting prior knowledge about `ideal' (= artifact free) reference geometries to stabilize metric-based artifact detection by transferring (multi-)atlas-based concepts to this specific task. Two variants are introduced and evaluated: (S1) analysis and comparison of warped atlas data obtained by repeated non-linear atlas-to-patient registration with different levels of regularization; (S2) direct analysis of vector field properties (divergence, curl magnitude) of the atlas-to-patient transformation. Feasibility of approaches (S1) and (S2) is evaluated by motion-phantom data and intra-subject experiments (four patients) as well as - adopting a multi-atlas strategy- inter-subject investigations (twelve patients involved). It is demonstrated that especially sorting/double structure artifacts can be precisely detected and localized by (S1). In contrast, (S2) suffers from high false positive rates.

  18. Assessment of multislice CT to quantify pulmonary emphysema function and physiology in a rat model

    NASA Astrophysics Data System (ADS)

    Cao, Minsong; Stantz, Keith M.; Liang, Yun; Krishnamurthi, Ganapathy; Presson, Robert G., Jr.

    2005-04-01

    Purpose: The purpose of this study is to evaluate multi-slice computed tomography technology to quantify functional and physiologic changes in rats with pulmonary emphysema. Method: Seven rats were scanned using a 16-slice CT (Philips MX8000 IDT) before and after artificial inducement of emphysema. Functional parameters i.e. lung volumes were measured by non-contrast spiral scan during forced breath-hold at inspiration and expiration followed by image segmentation based on attenuation threshold. Dynamic CT imaging was performed immediately following the contrast injection to estimate physiology changes. Pulmonary perfusion, fractional blood volume, and mean transit times (MTTs) were estimated by fitting the time-density curves of contrast material using a compartmental model. Results: The preliminary results indicated that the lung volumes of emphysema rats increased by 3.52+/-1.70mL (p<0.002) at expiration and 4.77+/-3.34mL (p<0.03) at inspiration. The mean lung densities of emphysema rats decreased by 91.76+/-68.11HU (p<0.01) at expiration and low attenuation areas increased by 5.21+/-3.88% (p<0.04) at inspiration compared with normal rats. The perfusion for normal and emphysema rats were 0.25+/-0.04ml/s/ml and 0.32+/-0.09ml/s/ml respectively. The fractional blood volumes for normal and emphysema rats were 0.21+/-0.04 and 0.15+/-0.02. There was a trend toward faster MTTs for emphysema rats (0.42+/-0.08s) than normal rats (0.89+/-0.19s) with p<0.006, suggesting that blood flow crossing the capillaries increases as the capillary volume decreases and which may cause the red blood cells to leave the capillaries incompletely saturated with oxygen if the MTTs become too short. Conclusion: Quantitative measurement using CT of structural and functional changes in pulmonary emphysema appears promising for small animals.

  19. Blunt trauma of bone structures of the chest--computed tomography vs multidetector computed tomography.

    PubMed

    Petrović, Kosta; Turkalj, Ivan; Stojanović, Sanja; Vucaj-Cirilović, Viktorija; Nikolić, Olivera; Stojiljković, Dragana

    2013-08-01

    Computerized tomography (CT), especially multidetector CT (MDCT), has had a revolutionary impact in diagnostic in traumatized patients. The aim of the study was to identify and compare the frequency of injuries to bone structures of the thorax displayed with 5-mm-thick axial CT slices and thin-slice (MDCT) examination with the use of 3D reconstructions, primarily multiplanar reformations (MPR). This prospective study included 61 patients with blunt trauma submitted to CT scan of the thorax as initial assessment. The two experienced radiologists inde pendently and separately described the findings for 5-mm-thick axial CT slices (5 mm CT) as in monoslice CT examination; MPR and other 3D reconstructions along with thin-slice axial sections which were available in modern MDCT technologies. After describing thin-slice examination in case of disagreement in the findings, the examiners redescribed thin-slice examination together which was ultimately considered as a real, true finding. No statistically significant difference in interobserver evaluation of 5 mm CT examination was recorded (p > 0.05). Evaluation of fractures of sternum with 5 mm CT and MDCT showed a statistically significant difference (p < 0.05) in favor of better display of injury by MDCT examination. MDCT is a powerful diagnostic tool that can describe higher number of bone fractures of the chest in traumatized patients compared to 5 mm CT, especially in the region of sternum for which a statistical significance was obtained using MPR. Moreover, the importance of MDCT is also set by easier and more accurate determination of the level of bone injury.

  20. [Localization of upper airway stricture by CT scan in patients with obstructive sleep apnea syndrome during drug-induced sleeping].

    PubMed

    Hu, Ji-bo; Hu, Hong-jie; Hou, Tie-ning; Gao, Hang-xiang; He, Jian

    2010-03-01

    To evaluate the feasibility of multi-slice spiral CT scan to localize upper airway stricture in patients with obstructive sleep apnea syndrome (OSAS) during drug-induced sleeping. One hundred and fourteen patients diagnosed as OSAS by polysomnography were included in the study. Multi-slice spiral CT scan covering upper airway was performed at the end of inspiration and clear upper airway images were obtained in waking. After injecting 5 mg of midazolam intravenously slowly in 109 patients, CT scan was performed at apnea and clear upper airway images were obtained in sleeping. Cross-section area and minimal diameter of airway were measured and the parameters were compared under those two states. Upper airway was displayed intuitionisticly by using post-processing techniques. One hundred and nine patients with OSAS finished the examination with a success rate of 100 %. Airway obstruction at retropalatal level was observed in 62 patients, among whom 26 were associated with airway obstruction at retroglossal level, 27 with narrower airway at retroglossal level in sleeping compared with that in waking, and 9 with no significant change of the airway at retroglossal level after sleeping. Narrower airway at retropalatal level in sleeping compared with that in waking was observed in 40 patients, among whom 20 were associated with narrower airway at retroglossal level in sleeping compared with that in waking, 10 with complete airway obstruction at retroglossal level in sleeping, and 7 with no significant change of the airway at both retropalatal and retroglossal levels before and after sleeping. Minimal mean cross-section area of airway at retropalatal level was (72.60 +/-45.15)mm(2) in waking and (8.26 +/-18.16)mm(2) in sleeping; and minimal mean cross-section area of airway at retroglossal level was (133.21 +/-120.36)mm(2)in waking and (16.73 +/-30.21)mm(2) in sleeping (P <0.01). Minimal mean diameter of airway at retropalatal level was (6.91 +/-2.23) mm in waking and (1.18 +/-2.14) mm in sleeping; and minimal mean diameter of airway at retroglossal level was (8.68 +/-4.32) mm in waking and (1.68 +/-2.22) mm in sleeping (P <0.01). Multi-slice spiral CT with post-processing techniques can display the shape of the upper airway in patients with OSAS in sleeping, and can localize the upper airway stricture and assess its range accurately.

  1. Reproducible Simulation of Respiratory Motion in Porcine Lung Explants.

    PubMed

    Biederer, J; Plathow, C; Schoebinger, M; Tetzlaff, R; Puderbach, M; Bolte, H; Zaporozhan, J; Meinzer, H-P; Heller, M; Kauczor, H-U

    2006-11-01

    To develop a model for exactly reproducible respiration motion simulations of animal lung explants inside an MR-compatible chest phantom. The materials included a piston pump and a flexible silicone reconstruction of a porcine diaphragm and were used in combination with an established MR-compatible chest phantom for porcine heart-lung preparations. The rhythmic inflation and deflation of the diaphragm at the bottom of the artificial thorax with water (1 - 1.5 L) induced lung tissue displacement resembling diaphragmatic breathing. This system was tested on five porcine heart-lung preparations using 1.5T MRI with transverse and coronal 3D-GRE (TR/TE = 3.63/1.58, 256 x 256 matrix, 350 mm FOV, 4 mm slices) and half Fourier T2-FSE (TR/TE = 545/29, 256 x 192, 350 mm, 6 mm) as well as multiple row detector CT (16 x 1 mm collimation, pitch 1.5, FOV 400 mm, 120 mAs) acquired at five fixed inspiration levels. Dynamic CT scans and coronal MRI with dynamic 2D-GRE and 2D-SS-GRE sequences (image frequencies of 10/sec and 3/sec, respectively) were acquired during continuous "breathing" (7/minute). The position of the piston pump was visually correlated with the respiratory motion visible through the transparent wall of the phantom and with dynamic displays of CT and MR images. An elastic body splines analysis of the respiratory motion was performed using CT data. Visual evaluation of MRI and CT showed three-dimensional movement of the lung tissue throughout the respiration cycle. Local tissue displacement inside the lung explants was documented with motion maps calculated from CT. The maximum displacement at the top of the diaphragm (mean 26.26 [SD 1.9] mm on CT and 27.16 [SD 1.5] mm on MRI, respectively [p = 0.25; Wilcoxon test]) was in the range of tidal breathing in human patients. The chest phantom with a diaphragmatic pump is a promising platform for multi-modality imaging studies of the effects of respiratory lung motion.

  2. Personalized assessment of radiation risks from the one-stop-shop myocardial 256-slice CT examination.

    PubMed

    Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis; Pagonidis, Kostas; Papadakis, Antonios E; Damilakis, John

    2013-10-15

    This study provides data on the cumulative life attributable risk (LAR) of radiation-induced cancer from the combination of coronary CT angiography (CCTA), dynamic CT perfusion (CTP) and delayed enhancement (DE) CT scans, required for reliable risk-benefit analysis of the one-stop-shop CCTA + CTP + DECT cardiac examination. Monte Carlo simulation of the dynamic CTP and DECT exposures on 62 adult individuals was employed to determine radiation absorbed dose to exposed radiosensitive organs. Corresponding data for CCTA were derived using patient chest circumference and previously published data. Individual-specific LARs of cancer were estimated using organ/tissue-specific radiogenic cancer risk factors. Total LAR from CCTA + CTP + DECT scans' sequence were estimated and compared to nominal intrinsic risk of cancer. The main contribution, up to 80%, to cumulative radiation burden from CCTA + CTP + DECT scan-sequence was found to originate from the CTP scan. The total LAR from CCTA + CTP + DECT for females was found 4-6 times higher, compared to males. The mean cumulative risk of radiogenic cancer associated with the complete CCTA + CTP + DECT scan sequence was found to marginally increase the intrinsic risk for cancer induction by less than 0.6% and 0.1% for females and males, respectively. The radiation risk from the 256-slice CCTA + CTP + DECT scan sequence may be considered low and should not constitute an obstacle for the clinical endorsement of the one-stop-shop cardiac CT examination, given that its clinical value has been well verified. Nevertheless, every effort should be made towards optimization of the dynamic CTP component which is the main contributor to patient radiation burden. © 2013.

  3. Influence of image slice thickness on rectal dose-response relationships following radiotherapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Olsson, C.; Thor, M.; Liu, M.; Moissenko, V.; Petersen, S. E.; Høyer, M.; Apte, A.; Deasy, J. O.

    2014-07-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose-response relationships. We investigated this for rectal bleeding using dose-volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman-Kutcher-Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose-response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice thickness variations within this range. Presented in part at the European Society for Therapeutic Radiotherapy and Oncology Annual Meeting, April 5-8, 2014, Vienna, Austria.

  4. Organ dose measurements from multiple-detector computed tomography using a commercial dosimetry system and tomographic, physical phantoms

    NASA Astrophysics Data System (ADS)

    Lavoie, Lindsey K.

    The technology of computed tomography (CT) imaging has soared over the last decade with the use of multi-detector CT (MDCT) scanners that are capable of performing studies in a matter of seconds. While the diagnostic information obtained from MDCT imaging is extremely valuable, it is important to ensure that the radiation doses resulting from these studies are at acceptably safe levels. This research project focused on the measurement of organ doses resulting from modern MDCT scanners. A commercially-available dosimetry system was used to measure organ doses. Small dosimeters made of optically-stimulated luminescent (OSL) material were analyzed with a portable OSL reader. Detailed verification of this system was performed. Characteristics studied include energy, scatter, and angular responses; dose linearity, ability to erase the exposed dose and ability to reuse dosimeters multiple times. The results of this verification process were positive. While small correction factors needed to be applied to the dose reported by the OSL reader, these factors were small and expected. Physical, tomographic pediatric and adult phantoms were used to measure organ doses. These phantoms were developed from CT images and are composed of tissue-equivalent materials. Because the adult phantom is comprised of numerous segments, dosimeters were placed in the phantom at several organ locations, and doses to select organs were measured using three clinical protocols: pediatric craniosynostosis, adult brain perfusion and adult cardiac CT angiography (CTA). A wide-beam, 320-slice, volumetric CT scanner and a 64-slice, MDCT scanner were used for organ dose measurements. Doses ranged from 1 to 26 mGy for the pediatric protocol, 1 to 1241 mGy for the brain perfusion protocol, and 2-100 mGy for the cardiac protocol. In most cases, the doses measured on the 64-slice scanner were higher than those on the 320-slice scanner. A methodology to measure organ doses with OSL dosimeters received from CT imaging has been presented. These measurements are especially important in keeping with the ALARA (as low as reasonably achievable) principle. While diagnostic information from CT imaging is valuable and necessary, the dose to patients is always a consideration. This methodology aids in this important task. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  5. Computerized detection of breast lesions in multi-centre and multi-instrument DCE-MR data using 3D principal component maps and template matching

    NASA Astrophysics Data System (ADS)

    Ertas, Gokhan; Doran, Simon; Leach, Martin O.

    2011-12-01

    In this study, we introduce a novel, robust and accurate computerized algorithm based on volumetric principal component maps and template matching that facilitates lesion detection on dynamic contrast-enhanced MR. The study dataset comprises 24 204 contrast-enhanced breast MR images corresponding to 4034 axial slices from 47 women in the UK multi-centre study of MRI screening for breast cancer and categorized as high risk. The scans analysed here were performed on six different models of scanner from three commercial vendors, sited in 13 clinics around the UK. 1952 slices from this dataset, containing 15 benign and 13 malignant lesions, were used for training. The remaining 2082 slices, with 14 benign and 12 malignant lesions, were used for test purposes. To prevent false positives being detected from other tissues and regions of the body, breast volumes are segmented from pre-contrast images using a fast semi-automated algorithm. Principal component analysis is applied to the centred intensity vectors formed from the dynamic contrast-enhanced T1-weighted images of the segmented breasts, followed by automatic thresholding to eliminate fatty tissues and slowly enhancing normal parenchyma and a convolution and filtering process to minimize artefacts from moderately enhanced normal parenchyma and blood vessels. Finally, suspicious lesions are identified through a volumetric sixfold neighbourhood connectivity search and calculation of two morphological features: volume and volumetric eccentricity, to exclude highly enhanced blood vessels, nipples and normal parenchyma and to localize lesions. This provides satisfactory lesion localization. For a detection sensitivity of 100%, the overall false-positive detection rate of the system is 1.02/lesion, 1.17/case and 0.08/slice, comparing favourably with previous studies. This approach may facilitate detection of lesions in multi-centre and multi-instrument dynamic contrast-enhanced breast MR data.

  6. Use of a thin-section archive and enterprise 3D software for long-term storage of thin-slice CT data sets.

    PubMed

    Meenan, Christopher; Daly, Barry; Toland, Christopher; Nagy, Paul

    2006-01-01

    Rapid advances are changing the technology and applications of multidetector computed tomography (CT) scanners. The major increase in data associated with this new technology, however, breaks most commercial picture archiving and communication system (PACS) architectures by preventing them from delivering data in real time to radiologists and outside clinicians. We proposed a phased model for 3D workflow, installed a thin-slice archive and measured thin-slice data storage over a period of 5 months. A mean of 1,869 CT studies were stored per month, with an average of 643 images per study and a mean total volume of 588 GB/month. We also surveyed 48 radiologists to determine diagnostic use, impressions of thin-slice value, and requirements for retention times. The majority of radiologists thought thin slice was helpful for diagnosis and regularly used the application. Permanent storage of thin slice CT is likely to become best practice and a mission-critical pursuit for the health care enterprise.

  7. Time-resolved computed tomography of the liver: retrospective, multi-phase image reconstruction derived from volumetric perfusion imaging.

    PubMed

    Fischer, Michael A; Leidner, Bertil; Kartalis, Nikolaos; Svensson, Anders; Aspelin, Peter; Albiin, Nils; Brismar, Torkel B

    2014-01-01

    To assess feasibility and image quality (IQ) of a new post-processing algorithm for retrospective extraction of an optimised multi-phase CT (time-resolved CT) of the liver from volumetric perfusion imaging. Sixteen patients underwent clinically indicated perfusion CT using 4D spiral mode of dual-source 128-slice CT. Three image sets were reconstructed: motion-corrected and noise-reduced (MCNR) images derived from 4D raw data; maximum and average intensity projections (time MIP/AVG) of the arterial/portal/portal-venous phases and all phases (total MIP/ AVG) derived from retrospective fusion of dedicated MCNR split series. Two readers assessed the IQ, detection rate and evaluation time; one reader assessed image noise and lesion-to-liver contrast. Time-resolved CT was feasible in all patients. Each post-processing step yielded a significant reduction of image noise and evaluation time, maintaining lesion-to-liver contrast. Time MIPs/AVGs showed the highest overall IQ without relevant motion artefacts and best depiction of arterial and portal/portal-venous phases respectively. Time MIPs demonstrated a significantly higher detection rate for arterialised liver lesions than total MIPs/AVGs and the raw data series. Time-resolved CT allows data from volumetric perfusion imaging to be condensed into an optimised multi-phase liver CT, yielding a superior IQ and higher detection rate for arterialised liver lesions than the raw data series. • Four-dimensional computed tomography is limited by motion artefacts and poor image quality. • Time-resolved-CT facilitates 4D-CT data visualisation, segmentation and analysis by condensing raw data. • Time-resolved CT demonstrates better image quality than raw data images. • Time-resolved CT improves detection of arterialised liver lesions in cirrhotic patients.

  8. A Registration Method Based on Contour Point Cloud for 3D Whole-Body PET and CT Images

    PubMed Central

    Yang, Qiyao; Wang, Zhiguo; Zhang, Guoxu

    2017-01-01

    The PET and CT fusion image, combining the anatomical and functional information, has important clinical meaning. An effective registration of PET and CT images is the basis of image fusion. This paper presents a multithread registration method based on contour point cloud for 3D whole-body PET and CT images. Firstly, a geometric feature-based segmentation (GFS) method and a dynamic threshold denoising (DTD) method are creatively proposed to preprocess CT and PET images, respectively. Next, a new automated trunk slices extraction method is presented for extracting feature point clouds. Finally, the multithread Iterative Closet Point is adopted to drive an affine transform. We compare our method with a multiresolution registration method based on Mattes Mutual Information on 13 pairs (246~286 slices per pair) of 3D whole-body PET and CT data. Experimental results demonstrate the registration effectiveness of our method with lower negative normalization correlation (NC = −0.933) on feature images and less Euclidean distance error (ED = 2.826) on landmark points, outperforming the source data (NC = −0.496, ED = 25.847) and the compared method (NC = −0.614, ED = 16.085). Moreover, our method is about ten times faster than the compared one. PMID:28316979

  9. Reduction of thoracic aorta motion artifact with high-pitch 128-slice dual-source computed tomographic angiography: a historical control study.

    PubMed

    Nakagawa, Junichiro; Tasaki, Osamu; Watanabe, Yoshiyuki; Azuma, Takeo; Ohnishi, Mitsuo; Ukai, Isao; Tahara, Kenichi; Ogura, Hiroshi; Kuwagata, Yasuyuki; Hamasaki, Toshimitsu; Shimazu, Takeshi

    2013-01-01

    Electrocardiogram-gated imaging combined with multi-detector row computed tomography (MDCT) has reduced cardiac motion artifacts, but it was not practical in the emergency setting. The purpose of this study was to evaluate the ability of a high-pitch, 128-slice dual-source CT (DSCT) scanner to reduce motion artifacts in patients admitted to the emergency room. This study comprised 100 patients suspected of having thoracic aorta lesions. We examined 47 patients with the 128-slice DSCT scanner (DSCT group), and 53 patients were examined with a 64-slice MDCT scanner (MDCT group). Six anatomic areas in the thoracic aorta were evaluated. Computed tomography images in the DSCT group were distinct, and significant differences were observed in images of all areas between the 2 groups except for the descending aorta. The high-pitch DSCT scanner can reduce motion artifacts of the thoracic aorta and enable radiological diagnosis even in patients with tachycardia and without breath hold.

  10. TU-H-207A-03: CT Hounsfield Unit Accuracy: Effect of Beam Hardening On Phantom and Clinical Whole-Body CT Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ai, H; Wendt, R

    2016-06-15

    Purpose: To assess the effect of beam hardening on measured CT HU values. Methods: An anthropomorphic knee phantom was scanned with the CT component of a GE Discovery 690 PET/CT scanner (120kVp, 300mAs, 40?0.625mm collimation, pitch=0.984, FOV=500mm, matrix=512?512) with four different scan setups, each of which induces different degrees of beam hardening by introducing additional attenuation media into the field of view. Homogeneous voxels representing “soft tissue” and “bone” were segmented by HU thresholding followed by a 3D morphological erosion operation which removes the non-homogenous voxels located on the interface of thresholded tissue mask. HU values of segmented “soft tissue”more » and “bone” were compared.Additionally, whole-body CT data with coverage from the skull apex to the end of toes were retrospectively retrieved from seven PET/CT exams to evaluate the effect of beam hardening in vivo. Homogeneous bone voxels were segmented with the same method previously described. Total In-Slice Attenuation (TISA) for each CT slice, defined as the summation of HU values over all voxels within a CT slice, was calculated for all slices of the seven whole-body CT datasets and evaluated against the mean HU values of homogeneous bone voxels within that slice. Results: HU values measured from the phantom showed that while “soft tissue” HU values were unaffected, added attenuation within the FOV caused noticeable decreases in the measured HU values of “bone” voxels. A linear relationship was observed between bone HU and TISA for slices of the torso and legs, but not of the skull. Conclusion: Beam hardening effect is not an issue of concern for voxels with HU in the soft tissue range, but should not be neglected for bone voxels. A linear relationship exists between bone HU and the associated TISA in non-skull CT slices, which can be exploited to develop a correction strategy.« less

  11. SU-E-I-60: The Correct Selection of Pitch and Rotation Time for Optimal CT Scanning : The Big Misconception

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranallo, F; Szczykutowicz, T

    2014-06-01

    Purpose: To provide correct guidance in the proper selection of pitch and rotation time for optimal CT imaging with multi-slice scanners. Methods: There exists a widespread misconception concerning the role of pitch in patient dose with modern multi-slice scanners, particularly with the use of mA modulation techniques. We investigated the relationship of pitch and rotation time to image quality, dose, and scan duration, with CT scanners from different manufacturers in a way that clarifies this misconception. This source of this misconception may concern the role of pitch in single slice CT scanners. Results: We found that the image noise andmore » dose are generally independent of the selected effective mAs (mA*time/ pitch) with manual mA technique settings and are generally independent of the selected pitch and /or rotation time with automatic mA modulation techniques. However we did find that on certain scanners the use of a pitch just above 0.5 provided images of equal image noise at a lower dose compared to the use of a pitch just below 1.0. Conclusion: The misconception that the use of a lower pitch over-irradiates patients by wasting dose is clearly false. The use of a lower pitch provides images of equal or better image quality at the same patient dose, whether using manual mA or automatic mA modulation techniques. By decreasing the pitch and the rotation times by equal amounts, both helical and patient motion artifacts can be reduced without affecting the exam time. The use of lower helical pitch also allows better scanning of larger patients by allowing a greater scan effective mAs, if the exam time can be extended. The one caution with the use of low pitch is not related to patient dose, but to the length of the scan time if the rotation time is not set short enough. Partial Research funding from GE HealthCare.« less

  12. Effect of slice thickness on image noise and diagnostic content of single-source-dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Alshipli, Marwan; Kabir, Norlaili A.

    2017-05-01

    Computed tomography (CT) employs X-ray radiation to create cross-sectional images. Dual-energy CT acquisition includes the images acquired from an alternating voltage of X-ray tube: a low- and a high-peak kilovoltage. The main objective of this study is to determine the best slice thickness that reduces image noise with adequate diagnostic information using dual energy CT head protocol. The study used the ImageJ software and statistical analyses to aid the medical image analysis of dual-energy CT. In this study, ImageJ software and F-test were utilised as the combination methods to analyse DICOM CT images. They were used to investigate the effect of slice thickness on noise and visibility in dual-energy CT head protocol images. Catphan-600 phantom was scanned at different slice thickness values;.6, 1, 2, 3, 4, 5 and 6 mm, then quantitative analyses were carried out. The DECT operated in helical mode with another fixed scan parameter values. Based on F-test statistical analyses, image noise at 0.6, 1, and 2 mm were significantly different compared to the other images acquired at slice thickness of 3, 4, 5, and 6 mm. However, no significant differences of image noise were observed at 3, 4, 5, and 6 mm. As a result, better diagnostic image value, image visibility, and lower image noise in dual-energy CT head protocol was observed at a slice thickness of 3 mm.

  13. Computer aided detection system for Osteoporosis using low dose thoracic 3D CT images

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Matsuhiro, Mikio; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Nakano, Yasutaka; Harada, Masafumi; Kusumoto, Masahiko; Tsuchida, Takaaki; Eguchi, Kenji; Kaneko, Masahiro

    2018-02-01

    The patient of osteoporosis is about 13 million people in Japan and it is one of healthy life problems in the aging society. It is necessary to do early stage detection and treatment in order to prevent the osteoporosis. Multi-slice CT technology has been improving the three dimensional (3D) image analysis with higher resolution and shorter scan time. The 3D image analysis of thoracic vertebra can be used for supporting to diagnosis of osteoporosis. This analysis can be used for lung cancer detection at the same time. We develop method of shape analysis and CT values of spongy bone for the detection osteoporosis. Osteoporosis and lung cancer screening show high extraction rate by the thoracic vertebral evaluation CT images. In addition, we created standard pattern of CT value per thoracic vertebra for male age group using 298 low dose data.

  14. Approximations of noise covariance in multi-slice helical CT scans: impact on lung nodule size estimation.

    PubMed

    Zeng, Rongping; Petrick, Nicholas; Gavrielides, Marios A; Myers, Kyle J

    2011-10-07

    Multi-slice computed tomography (MSCT) scanners have become popular volumetric imaging tools. Deterministic and random properties of the resulting CT scans have been studied in the literature. Due to the large number of voxels in the three-dimensional (3D) volumetric dataset, full characterization of the noise covariance in MSCT scans is difficult to tackle. However, as usage of such datasets for quantitative disease diagnosis grows, so does the importance of understanding the noise properties because of their effect on the accuracy of the clinical outcome. The goal of this work is to study noise covariance in the helical MSCT volumetric dataset. We explore possible approximations to the noise covariance matrix with reduced degrees of freedom, including voxel-based variance, one-dimensional (1D) correlation, two-dimensional (2D) in-plane correlation and the noise power spectrum (NPS). We further examine the effect of various noise covariance models on the accuracy of a prewhitening matched filter nodule size estimation strategy. Our simulation results suggest that the 1D longitudinal, 2D in-plane and NPS prewhitening approaches can improve the performance of nodule size estimation algorithms. When taking into account computational costs in determining noise characterizations, the NPS model may be the most efficient approximation to the MSCT noise covariance matrix.

  15. Hyoid bone development: An assessment of optimal CT scanner parameters and 3D volume rendering techniques

    PubMed Central

    Cotter, Meghan M.; Whyms, Brian J.; Kelly, Michael P.; Doherty, Benjamin M.; Gentry, Lindell R.; Bersu, Edward T.; Vorperian, Houri K.

    2015-01-01

    The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared to corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. PMID:25810349

  16. Hyoid Bone Development: An Assessment Of Optimal CT Scanner Parameters and Three-Dimensional Volume Rendering Techniques.

    PubMed

    Cotter, Meghan M; Whyms, Brian J; Kelly, Michael P; Doherty, Benjamin M; Gentry, Lindell R; Bersu, Edward T; Vorperian, Houri K

    2015-08-01

    The hyoid bone anchors and supports the vocal tract. Its complex shape is best studied in three dimensions, but it is difficult to capture on computed tomography (CT) images and three-dimensional volume renderings. The goal of this study was to determine the optimal CT scanning and rendering parameters to accurately measure the growth and developmental anatomy of the hyoid and to determine whether it is feasible and necessary to use these parameters in the measurement of hyoids from in vivo CT scans. Direct linear and volumetric measurements of skeletonized hyoid bone specimens were compared with corresponding CT images to determine the most accurate scanning parameters and three-dimensional rendering techniques. A pilot study was undertaken using in vivo scans from a retrospective CT database to determine feasibility of quantifying hyoid growth. Scanning parameters and rendering technique affected accuracy of measurements. Most linear CT measurements were within 10% of direct measurements; however, volume was overestimated when CT scans were acquired with a slice thickness greater than 1.25 mm. Slice-by-slice thresholding of hyoid images decreased volume overestimation. The pilot study revealed that the linear measurements tested correlate with age. A fine-tuned rendering approach applied to small slice thickness CT scans produces the most accurate measurements of hyoid bones. However, linear measurements can be accurately assessed from in vivo CT scans at a larger slice thickness. Such findings imply that investigation into the growth and development of the hyoid bone, and the vocal tract as a whole, can now be performed using these techniques. © 2015 Wiley Periodicals, Inc.

  17. Comparison of sensitivity of lung nodule detection between radiologists and technologists on low-dose CT lung cancer screening images

    PubMed Central

    Kakinuma, R; Ashizawa, K; Kobayashi, T; Fukushima, A; Hayashi, H; Kondo, T; Machida, M; Matsusako, M; Minami, K; Oikado, K; Okuda, M; Takamatsu, S; Sugawara, M; Gomi, S; Muramatsu, Y; Hanai, K; Muramatsu, Y; Kaneko, M; Tsuchiya, R; Moriyama, N

    2012-01-01

    Objectives The objective of this study was to compare the sensitivity of detection of lung nodules on low-dose screening CT images between radiologists and technologists. Methods 11 radiologists and 10 technologists read the low-dose screening CT images of 78 subjects. On images with a slice thickness of 5 mm, there were 60 lung nodules that were ≥5 mm in diameter: 26 nodules with pure ground-glass opacity (GGO), 7 nodules with mixed ground-glass opacity (GGO with a solid component) and 27 solid nodules. On images with a slice thickness of 2 mm, 69 lung nodules were ≥5 mm in diameter: 35 pure GGOs, 7 mixed GGOs and 27 solid nodules. The 21 observers read screening CT images of 5-mm slice thickness at first; then, 6 months later, they read screening CT images of 2-mm slice thickness from the 78 subjects. Results The differences in the mean sensitivities of detection of the pure GGOs, mixed GGOs and solid nodules between radiologists and technologists were not statistically significant, except for the case of solid nodules; the p-values of the differences for pure GGOs, mixed GGOs and solid nodules on the CT images with 5-mm slice thickness were 0.095, 0.461 and 0.005, respectively, and the corresponding p-values on CT images of 2-mm slice thickness were 0.971, 0.722 and 0.0037, respectively. Conclusion Well-trained technologists may contribute to the detection of pure and mixed GGOs ≥5 mm in diameter on low-dose screening CT images. PMID:22919013

  18. Computer-aided detection of acute pulmonary embolism with 64-slice multi-detector row computed tomography: impact of the scanning conditions and overall image quality in the detection of peripheral clots.

    PubMed

    Dewailly, Marion; Rémy-Jardin, Martine; Duhamel, Alain; Faivre, Jean-Baptiste; Pontana, François; Deken, Valérie; Bakai, Anne-Marie; Remy, Jacques

    2010-01-01

    To evaluate the performance of a computer-aided detection (CAD) system for diagnosing peripheral acute pulmonary embolism (PE) with a 64-slice multi-detector row computed tomography (CT). Two radiologists investigated the accuracy of a software aimed at detecting peripheral clots (PECAD prototype, version 7; Siemens Medical Systems, Forchheim, Germany) by applying this tool for the analysis of the pulmonary arterial bed of 74 CT angiograms obtained with 64-slice dual-source CT (Definition; Siemens Medical Systems). These cases were retrospectively selected from a database of CT studies performed on the same CT unit, with a similar collimation (64 x 0.6 mm) and similar injection protocols. Patient selection was based on a variety of (1) scanning conditions, namely, nongated (n = 30), electrocardiography-gated (n = 30), and dual-energy CT angiograms (n = 14), and (2) image quality (IQ), namely, scans of excellent IQ (n = 53) and lower IQ due to lower levels of arterial enhancement and/or presence of noise (n = 21). The standard of truth was based on the 2 radiologists' consensus reading and the results of CAD. The software detected 80 of 93 peripheral clots present in the 21 patients (42 segmental and 38 subsegmental clots). The overall sensitivity (95% confidence interval) of the CAD tool was 86% (77%-92%) for detecting peripheral clots, 78% (64.5%-88%) at the segmental level and 97% (85.5%-99.9%) at the subsegmental level. Assuming normal vascular anatomy with 20 segmental and 40 subsegmental arteries, overall specificity and positive and negative predictive values (95% confidence interval) of the software were 91.8% (91%-92.6%), 18.4% (15%-22.4%), and 99.7% (99.5%-99.8%), respectively. A mean of 5.4 false positives was found per patient (total, 354 false positives), mainly linked to the presence of perivascular connective tissue (n = 119; 34%) and perivascular airspace consolidation (n = 97; 27%). The sensitivities (95% confidence interval) for the CAD tool were 91% (69.8%-99.3%) for dual-energy, 87% (59.3%-93.2%) for electrocardiography-gated, and 87% (73.5%-95.3%) for nongated scans (P > 0.05). No significant difference was found in the sensitivity of the CAD software when comparing the scans according to the scanning conditions and image quality. The evaluated CAD software has a good sensitivity in detecting peripheral PE, which is not influenced by the scanning conditions or the overall image quality.

  19. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  20. Inter-slice bidirectional registration-based segmentation of the prostate gland in MR and CT image sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalvati, Farzad, E-mail: farzad.khalvati@uwaterloo.ca; Tizhoosh, Hamid R.; Salmanpour, Aryan

    2013-12-15

    Purpose: Accurate segmentation and volume estimation of the prostate gland in magnetic resonance (MR) and computed tomography (CT) images are necessary steps in diagnosis, treatment, and monitoring of prostate cancer. This paper presents an algorithm for the prostate gland volume estimation based on the semiautomated segmentation of individual slices in T2-weighted MR and CT image sequences. Methods: The proposedInter-Slice Bidirectional Registration-based Segmentation (iBRS) algorithm relies on interslice image registration of volume data to segment the prostate gland without the use of an anatomical atlas. It requires the user to mark only three slices in a given volume dataset, i.e., themore » first, middle, and last slices. Next, the proposed algorithm uses a registration algorithm to autosegment the remaining slices. We conducted comprehensive experiments to measure the performance of the proposed algorithm using three registration methods (i.e., rigid, affine, and nonrigid techniques). Results: The results with the proposed technique were compared with manual marking using prostate MR and CT images from 117 patients. Manual marking was performed by an expert user for all 117 patients. The median accuracies for individual slices measured using the Dice similarity coefficient (DSC) were 92% and 91% for MR and CT images, respectively. The iBRS algorithm was also evaluated regarding user variability, which confirmed that the algorithm was robust to interuser variability when marking the prostate gland. Conclusions: The proposed algorithm exploits the interslice data redundancy of the images in a volume dataset of MR and CT images and eliminates the need for an atlas, minimizing the computational cost while producing highly accurate results which are robust to interuser variability.« less

  1. Observation of the effect of targeted therapy of 64-slice spiral CT combined with cryoablation for liver cancer

    PubMed Central

    Yan, Qiao-Huan; Xu, Dian-Guo; Shen, Yan-Feng; Yuan, Ding-Ling; Bao, Jun-Hui; Li, Hai-Bin; Lv, Ying-Gang

    2017-01-01

    AIM To observe the effect of targeted therapy with 64-slice spiral computed tomography (CT) combined with cryoablation for liver cancer. METHODS A total of 124 patients (142 tumors) were enrolled into this study. According to the use of dual-slice spiral CT or 64-slice spiral CT as a guide technology, patients were divided into two groups: dual-slice group (n = 56, 65 tumors) and 64-slice group (n = 8, 77 tumors). All patients were accepted and received targeted therapy by an argon-helium superconducting surgery system. The guided scan times of the two groups was recorded and compared. In the two groups, the lesion ice coverage in diameter of ≥ 3 cm and < 3 cm were recorded, and freezing effective rate was compared. Hepatic perfusion values [hepatic artery perfusion (HAP), portal vein perfusion (PVP), and the hepatic arterial perfusion index (HAPI)] of tumor tissues, adjacent tissues and normal liver tissues at preoperative and postoperative four weeks in the two groups were compared. Local tumor changes were recorded and efficiency was compared at four weeks post-operation. Adverse events were recorded and compared between the two groups, including fever, pain, frostbite, nausea, vomiting, pleural effusion and abdominal bleeding. RESULTS Guided scan times in the dual-slice group was longer than that in the 64-slice group (t = 11.445, P = 0.000). The freezing effective rate for tumors < 3 cm in diameter in the dual-slice group (81.58%) was lower than that in the 64-slice group (92.86%) (χ2 = 5.707, P = 0.017). The HAP and HAPI of tumor tissues were lower at four weeks post-treatment than at pre-treatment in both groups (all P < 0.05), and those in the 64-slice group were lower than that in the dual-slice group (all P < 0.05). HAP and PVP were lower and HAPI was higher in tumor adjacent tissues at post-treatment than at pre-treatment (all P < 0.05). Furthermore, the treatment effect and therapeutic efficacy in the dual-slice group were lower than the 64-slice group at four weeks post-treatment (all P < 0.05). Moreover, pleural effusion and intraperitoneal hemorrhage occurred in patients in the dual-slice group, while no complications occurred in the 64-slice group (all P < 0.05). CONCLUSION 64-slice spiral CT applied with cryoablation in targeted therapy for liver cancer can achieve a safe and effective freezing treatment, so it is worth being used. PMID:28652661

  2. Observation of the effect of targeted therapy of 64-slice spiral CT combined with cryoablation for liver cancer.

    PubMed

    Yan, Qiao-Huan; Xu, Dian-Guo; Shen, Yan-Feng; Yuan, Ding-Ling; Bao, Jun-Hui; Li, Hai-Bin; Lv, Ying-Gang

    2017-06-14

    To observe the effect of targeted therapy with 64-slice spiral computed tomography (CT) combined with cryoablation for liver cancer. A total of 124 patients (142 tumors) were enrolled into this study. According to the use of dual-slice spiral CT or 64-slice spiral CT as a guide technology, patients were divided into two groups: dual-slice group ( n = 56, 65 tumors) and 64-slice group ( n = 8, 77 tumors). All patients were accepted and received targeted therapy by an argon-helium superconducting surgery system. The guided scan times of the two groups was recorded and compared. In the two groups, the lesion ice coverage in diameter of ≥ 3 cm and < 3 cm were recorded, and freezing effective rate was compared. Hepatic perfusion values [hepatic artery perfusion (HAP), portal vein perfusion (PVP), and the hepatic arterial perfusion index (HAPI)] of tumor tissues, adjacent tissues and normal liver tissues at preoperative and postoperative four weeks in the two groups were compared. Local tumor changes were recorded and efficiency was compared at four weeks post-operation. Adverse events were recorded and compared between the two groups, including fever, pain, frostbite, nausea, vomiting, pleural effusion and abdominal bleeding. Guided scan times in the dual-slice group was longer than that in the 64-slice group ( t = 11.445, P = 0.000). The freezing effective rate for tumors < 3 cm in diameter in the dual-slice group (81.58%) was lower than that in the 64-slice group (92.86%) (χ 2 = 5.707, P = 0.017). The HAP and HAPI of tumor tissues were lower at four weeks post-treatment than at pre-treatment in both groups (all P < 0.05), and those in the 64-slice group were lower than that in the dual-slice group (all P < 0.05). HAP and PVP were lower and HAPI was higher in tumor adjacent tissues at post-treatment than at pre-treatment (all P < 0.05). Furthermore, the treatment effect and therapeutic efficacy in the dual-slice group were lower than the 64-slice group at four weeks post-treatment (all P < 0.05). Moreover, pleural effusion and intraperitoneal hemorrhage occurred in patients in the dual-slice group, while no complications occurred in the 64-slice group (all P < 0.05). 64-slice spiral CT applied with cryoablation in targeted therapy for liver cancer can achieve a safe and effective freezing treatment, so it is worth being used.

  3. Results of a Multi-Institutional Benchmark Test for Cranial CT/MR Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulin, Kenneth; Urie, Marcia M., E-mail: murie@qarc.or; Cherlow, Joel M.

    2010-08-01

    Purpose: Variability in computed tomography/magnetic resonance imaging (CT/MR) cranial image registration was assessed using a benchmark case developed by the Quality Assurance Review Center to credential institutions for participation in Children's Oncology Group Protocol ACNS0221 for treatment of pediatric low-grade glioma. Methods and Materials: Two DICOM image sets, an MR and a CT of the same patient, were provided to each institution. A small target in the posterior occipital lobe was readily visible on two slices of the MR scan and not visible on the CT scan. Each institution registered the two scans using whatever software system and method itmore » ordinarily uses for such a case. The target volume was then contoured on the two MR slices, and the coordinates of the center of the corresponding target in the CT coordinate system were reported. The average of all submissions was used to determine the true center of the target. Results: Results are reported from 51 submissions representing 45 institutions and 11 software systems. The average error in the position of the center of the target was 1.8 mm (1 standard deviation = 2.2 mm). The least variation in position was in the lateral direction. Manual registration gave significantly better results than did automatic registration (p = 0.02). Conclusion: When MR and CT scans of the head are registered with currently available software, there is inherent uncertainty of approximately 2 mm (1 standard deviation), which should be considered when defining planning target volumes and PRVs for organs at risk on registered image sets.« less

  4. Terahertz computed tomography of NASA thermal protection system materials

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2012-05-01

    A terahertz (THz) axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 m3 (1 ft3) with no safety concerns as for x-ray computed tomography. In this study, the THz-CT system was evaluated for its ability to detect and characterize 1) an embedded void in Space Shuttle external fuel tank thermal protection system (TPS) foam material and 2) impact damage in a TPS configuration under consideration for use in NASA's multi-purpose Orion crew module (CM). Micro-focus X-ray CT is utilized to characterize the flaws and provide a baseline for which to compare the THz CT results.

  5. Effect of different CT scanners and settings on femoral failure loads calculated by finite element models.

    PubMed

    Eggermont, Florieke; Derikx, Loes C; Free, Jeffrey; van Leeuwen, Ruud; van der Linden, Yvette M; Verdonschot, Nico; Tanck, Esther

    2018-03-06

    In a multi-center patient study, using different CT scanners, CT-based finite element (FE) models are utilized to calculate failure loads of femora with metastases. Previous studies showed that using different CT scanners can result in different outcomes. This study aims to quantify the effects of (i) different CT scanners; (ii) different CT protocols with variations in slice thickness, field of view (FOV), and reconstruction kernel; and (iii) air between calibration phantom and patient, on Hounsfield Units (HU), bone mineral density (BMD), and FE failure load. Six cadaveric femora were scanned on four CT scanners. Scans were made with multiple CT protocols and with or without an air gap between the body model and calibration phantom. HU and calibrated BMD were determined in cortical and trabecular regions of interest. Non-linear isotropic FE models were constructed to calculate failure load. Mean differences between CT scanners varied up to 7% in cortical HU, 6% in trabecular HU, 6% in cortical BMD, 12% in trabecular BMD, and 17% in failure load. Changes in slice thickness and FOV had little effect (≤4%), while reconstruction kernels had a larger effect on HU (16%), BMD (17%), and failure load (9%). Air between the body model and calibration phantom slightly decreased the HU, BMD, and failure loads (≤8%). In conclusion, this study showed that quantitative analysis of CT images acquired with different CT scanners, and particularly reconstruction kernels, can induce relatively large differences in HU, BMD, and failure loads. Additionally, if possible, air artifacts should be avoided. © 2018 Orthopaedic Research Society. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. J Orthop Res. © 2018 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society.

  6. Dynamic 2D self-phase-map Nyquist ghost correction for simultaneous multi-slice echo planar imaging.

    PubMed

    Yarach, Uten; Tung, Yi-Hang; Setsompop, Kawin; In, Myung-Ho; Chatnuntawech, Itthi; Yakupov, Renat; Godenschweger, Frank; Speck, Oliver

    2018-02-09

    To develop a reconstruction pipeline that intrinsically accounts for both simultaneous multislice echo planar imaging (SMS-EPI) reconstruction and dynamic slice-specific Nyquist ghosting correction in time-series data. After 1D slice-group average phase correction, the separate polarity (i.e., even and odd echoes) SMS-EPI data were unaliased by slice GeneRalized Autocalibrating Partial Parallel Acquisition. Both the slice-unaliased even and odd echoes were jointly reconstructed using a model-based framework, extended for SMS-EPI reconstruction that estimates a 2D self-phase map, corrects dynamic slice-specific phase errors, and combines data from all coils and echoes to obtain the final images. The percentage ghost-to-signal ratios (%GSRs) and its temporal variations for MB3R y 2 with a field of view/4 shift in a human brain obtained by the proposed dynamic 2D and standard 1D phase corrections were 1.37 ± 0.11 and 2.66 ± 0.16, respectively. Even with a large regularization parameter λ applied in the proposed reconstruction, the smoothing effect in fMRI activation maps was comparable to a very small Gaussian kernel size 1 × 1 × 1 mm 3 . The proposed reconstruction pipeline reduced slice-specific phase errors in SMS-EPI, resulting in reduction of GSR. It is applicable for functional MRI studies because the smoothing effect caused by the regularization parameter selection can be minimal in a blood-oxygen-level-dependent activation map. © 2018 International Society for Magnetic Resonance in Medicine.

  7. Bone suppression in CT angiography data by region-based multiresolution segmentation

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Wiemker, Rafael; Lin, Zhong Min

    2003-05-01

    Multi slice CT (MSCT) scanners have the advantage of high and isotropic image resolution, which broadens the range of examinations for CT angiography (CTA). A very important method to present the large amount of high-resolution 3D data is the visualization by maximum intensity projections (MIP). A problem with MIP projections in angiography is that bones often hide the vessels of interest, especially the scull and vertebral column. Software tools for a manual selection of bone regions and their suppression in the MIP are available, but processing is time-consuming and tedious. A highly computer-assisted of even fully automated suppression of bones would considerably speed up the examination and probably increase the number of examined cases. In this paper we investigate the suppression (or removal) of bone regions in 3D CT data sets for vascular examinations of the head with a visualization of the carotids and the circle of Willis.

  8. TH-C-18A-11: Investigating the Minimum Scan Parameters Required to Generate Free-Breathing Fast-Helical CT Scans Without Motion-Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, D; Neylon, J; Dou, T

    Purpose: A recently proposed 4D-CT protocol uses deformable registration of free-breathing fast-helical CT scans to generate a breathing motion model. In order to allow accurate registration, free-breathing images are required to be free of doubling-artifacts, which arise when tissue motion is greater than scan speed. This work identifies the minimum scanner parameters required to successfully generate free-breathing fast-helical scans without doubling-artifacts. Methods: 10 patients were imaged under free breathing conditions 25 times in alternating directions with a 64-slice CT scanner using a low dose fast helical protocol. A high temporal resolution (0.1s) 4D-CT was generated using a patient specific motionmore » model and patient breathing waveforms, and used as the input for a scanner simulation. Forward projections were calculated using helical cone-beam geometry (800 projections per rotation) and a GPU accelerated reconstruction algorithm was implemented. Various CT scanner detector widths and rotation times were simulated, and verified using a motion phantom. Doubling-artifacts were quantified in patient images using structural similarity maps to determine the similarity between axial slices. Results: Increasing amounts of doubling-artifacts were observed with increasing rotation times > 0.2s for 16×1mm slice scan geometry. No significant increase in doubling artifacts was observed for 64×1mm slice scan geometry up to 1.0s rotation time although blurring artifacts were observed >0.6s. Using a 16×1mm slice scan geometry, a rotation time of less than 0.3s (53mm/s scan speed) would be required to produce images of similar quality to a 64×1mm slice scan geometry. Conclusion: The current generation of 16 slice CT scanners, which are present in most Radiation Oncology departments, are not capable of generating free-breathing sorting-artifact-free images in the majority of patients. The next generation of CT scanners should be capable of at least 53mm/s scan speed in order to use a fast-helical 4D-CT protocol to generate a motion-artifact free 4D-CT. NIH R01CA096679.« less

  9. Comparison of 0.625-mm source computed tomographic images versus 5-mm thick reconstructed images in the evaluation for renal calculi in at-risk patients.

    PubMed

    Berkenblit, Robert; Hoenig, David; Lerer, Daniel; Moses, Melanie; Minsky, Lloyd

    2013-02-01

    CT has become a well-established modality in the evaluation of urinary calculi. The advent of multidetector CT (MDCT) scanners and submillimeter thick slice acquisitions has yielded CT images with even greater resolution. MDCT scanners allow for source data slice acquisition with submillimeter slice thickness. These source images can then be reconstructed to thicker slices for more convenient interpretation of the CT scan. Previous authors have looked at the effect of slice thickness on detection of urinary calculi. We investigated whether the thin slice source images yielded detection of additional stones and the potential significance of detecting these additional stones. Ninety-five consecutive patients who were referred to our outpatient imaging center for CT, with a clinical history placing them at risk for urinary calculi, were included in the study. In 49 (52%) of the 95 patients, more calculi were visualized using the 0.625-mm thick images than with the 5-mm thick images. In 34 (69%) of these 49 patients, the additional findings were thought to be "clinically significant," while in the remaining 15 (31%) patients, the additional findings were not thought to be clinically significant. In 46 (48%) of the 95 patients, there were no additional urinary calculi identified on the 0.625-mm thick images compared with that observed on 5-mm thick images. The results from this study encourage reviewing the thin slice source images of MDCTs in patients at risk for urinary calculi, because important clinical decisions may hinge on the additional findings made on these images.

  10. TU-A-12A-07: CT-Based Biomarkers to Characterize Lung Lesion: Effects of CT Dose, Slice Thickness and Reconstruction Algorithm Based Upon a Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, B; Tan, Y; Tsai, W

    2014-06-15

    Purpose: Radiogenomics promises the ability to study cancer tumor genotype from the phenotype obtained through radiographic imaging. However, little attention has been paid to the sensitivity of image features, the image-based biomarkers, to imaging acquisition techniques. This study explores the impact of CT dose, slice thickness and reconstruction algorithm on measuring image features using a thorax phantom. Methods: Twentyfour phantom lesions of known volume (1 and 2mm), shape (spherical, elliptical, lobular and spicular) and density (-630, -10 and +100 HU) were scanned on a GE VCT at four doses (25, 50, 100, and 200 mAs). For each scan, six imagemore » series were reconstructed at three slice thicknesses of 5, 2.5 and 1.25mm with continuous intervals, using the lung and standard reconstruction algorithms. The lesions were segmented with an in-house 3D algorithm. Fifty (50) image features representing lesion size, shape, edge, and density distribution/texture were computed. Regression method was employed to analyze the effect of CT dose, slice of thickness and reconstruction algorithm on these features adjusting 3 confounding factors (size, density and shape of phantom lesions). Results: The coefficients of CT dose, slice thickness and reconstruction algorithm are presented in Table 1 in the supplementary material. No significant difference was found between the image features calculated on low dose CT scans (25mAs and 50mAs). About 50% texture features were found statistically different between low doses and high doses (100 and 200mAs). Significant differences were found for almost all features when calculated on 1.25mm, 2.5mm, and 5mm slice thickness images. Reconstruction algorithms significantly affected all density-based image features, but not morphological features. Conclusions: There is a great need to standardize the CT imaging protocols for radiogenomics study because CT dose, slice thickness and reconstruction algorithm impact quantitative image features to various degrees as our study has shown.« less

  11. Prior image constrained image reconstruction in emerging computed tomography applications

    NASA Astrophysics Data System (ADS)

    Brunner, Stephen T.

    Advances have been made in computed tomography (CT), especially in the past five years, by incorporating prior images into the image reconstruction process. In this dissertation, we investigate prior image constrained image reconstruction in three emerging CT applications: dual-energy CT, multi-energy photon-counting CT, and cone-beam CT in image-guided radiation therapy. First, we investigate the application of Prior Image Constrained Compressed Sensing (PICCS) in dual-energy CT, which has been called "one of the hottest research areas in CT." Phantom and animal studies are conducted using a state-of-the-art 64-slice GE Discovery 750 HD CT scanner to investigate the extent to which PICCS can enable radiation dose reduction in material density and virtual monochromatic imaging. Second, we extend the application of PICCS from dual-energy CT to multi-energy photon-counting CT, which has been called "one of the 12 topics in CT to be critical in the next decade." Numerical simulations are conducted to generate multiple energy bin images for a photon-counting CT acquisition and to investigate the extent to which PICCS can enable radiation dose efficiency improvement. Third, we investigate the performance of a newly proposed prior image constrained scatter correction technique to correct scatter-induced shading artifacts in cone-beam CT, which, when used in image-guided radiation therapy procedures, can assist in patient localization, and potentially, dose verification and adaptive radiation therapy. Phantom studies are conducted using a Varian 2100 EX system with an on-board imager to investigate the extent to which the prior image constrained scatter correction technique can mitigate scatter-induced shading artifacts in cone-beam CT. Results show that these prior image constrained image reconstruction techniques can reduce radiation dose in dual-energy CT by 50% in phantom and animal studies in material density and virtual monochromatic imaging, can lead to radiation dose efficiency improvement in multi-energy photon-counting CT, and can mitigate scatter-induced shading artifacts in cone-beam CT in full-fan and half-fan modes.

  12. A high-resolution photon-counting breast CT system with tensor-framelet based iterative image reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Ding, Huanjun; Gao, Hao; Zhao, Bo; Cho, Hyo-Min; Molloi, Sabee

    2014-10-01

    Both computer simulations and experimental phantom studies were carried out to investigate the radiation dose reduction with tensor framelet based iterative image reconstruction (TFIR) for a dedicated high-resolution spectral breast computed tomography (CT) based on a silicon strip photon-counting detector. The simulation was performed with a 10 cm-diameter water phantom including three contrast materials (polyethylene, 8 mg ml-1 iodine and B-100 bone-equivalent plastic). In the experimental study, the data were acquired with a 1.3 cm-diameter polymethylmethacrylate (PMMA) phantom containing iodine in three concentrations (8, 16 and 32 mg ml-1) at various radiation doses (1.2, 2.4 and 3.6 mGy) and then CT images were reconstructed using the filtered-back-projection (FBP) technique and the TFIR technique, respectively. The image quality between these two techniques was evaluated by the quantitative analysis on contrast-to-noise ratio (CNR) and spatial resolution that was evaluated using the task-based modulation transfer function (MTF). Both the simulation and experimental results indicated that the task-based MTF obtained from TFIR reconstruction with one-third of the radiation dose was comparable to that from the FBP reconstruction for low contrast target. For high contrast target, the TFIR was substantially superior to the FBP reconstruction in terms of spatial resolution. In addition, TFIR was able to achieve a factor of 1.6-1.8 increase in CNR, depending on the target contrast level. This study demonstrates that the TFIR can reduce the required radiation dose by a factor of two-thirds for a CT image reconstruction compared to the FBP technique. It achieves much better CNR and spatial resolution for high contrast target in addition to retaining similar spatial resolution for low contrast target. This TFIR technique has been implemented with a graphic processing unit system and it takes approximately 10 s to reconstruct a single-slice CT image, which can potentially be used in a future multi-slit multi-slice spiral CT system.

  13. Simultaneous Multi-Slice fMRI using Spiral Trajectories

    PubMed Central

    Zahneisen, Benjamin; Poser, Benedikt A.; Ernst, Thomas; Stenger, V. Andrew

    2014-01-01

    Parallel imaging methods using multi-coil receiver arrays have been shown to be effective for increasing MRI acquisition speed. However parallel imaging methods for fMRI with 2D sequences show only limited improvements in temporal resolution because of the long echo times needed for BOLD contrast. Recently, Simultaneous Multi-Slice (SMS) imaging techniques have been shown to increase fMRI temporal resolution by factors of four and higher. In SMS fMRI multiple slices can be acquired simultaneously using Echo Planar Imaging (EPI) and the overlapping slices are un-aliased using a parallel imaging reconstruction with multiple receivers. The slice separation can be further improved using the “blipped-CAIPI” EPI sequence that provides a more efficient sampling of the SMS 3D k-space. In this paper a blipped-spiral SMS sequence for ultra-fast fMRI is presented. The blipped-spiral sequence combines the sampling efficiency of spiral trajectories with the SMS encoding concept used in blipped-CAIPI EPI. We show that blipped spiral acquisition can achieve almost whole brain coverage at 3 mm isotropic resolution in 168 ms. It is also demonstrated that the high temporal resolution allows for dynamic BOLD lag time measurement using visual/motor and retinotopic mapping paradigms. The local BOLD lag time within the visual cortex following the retinotopic mapping stimulation of expanding flickering rings is directly measured and easily translated into an eccentricity map of the cortex. PMID:24518259

  14. Evaluation of a pulmonary strain model by registration of dynamic CT scans

    NASA Astrophysics Data System (ADS)

    Pomeroy, Marc; Liang, Zhengrong; Brehm, Anthony

    2017-03-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic fibrotic lung disease that develops in adults without any known cause. It is an interstitial lung disease in which the lung tissue becomes scarred and stiffens, ultimately leading to respiratory failure. This disease currently has no cure with limited treatment options, leading to an average survival time of 3-5 years after diagnosis. In this paper we employ a mathematical model simulating the lung parenchyma as hexagons with elastic forces applied to connecting vertices and opposing vertices. Using an image registration algorithm, we obtain trajectories of 4D-CT scans of a healthy patient, and one suffering from IPF. Converting the image trajectories into a hexagonal lattice, we fit the model parameters to match the respiratory motion seen for both patients across multiple image slices. We found the model could decently describe the healthy lung slices, with a minimum average error between corresponding vertices to be 1.66 mm. For the fibrotic lung slices the model was less accurate, maintaining a higher average error across all slices. Using the optimized parameters, we apply the forces predicted from the model using the image trajectory positions for each phase. Although the error is large, the spring constant values determined for the fibrotic patient were not as high as we expected, and more often than not determined to be lower than corresponding healthy lung slices. However, the net force distribution for some of those slices was still found to be greater than the healthy lung counterparts. Other modifications to the model, including additional directional components and which vertices were receiving with the limited sample size available, a clear distinction between the healthy and fibrotic lung cannot yet be made by this model.

  15. Assessment of calcium scoring performance in cardiac computed tomography.

    PubMed

    Ulzheimer, Stefan; Kalender, Willi A

    2003-03-01

    Electron beam tomography (EBT) has been used for cardiac diagnosis and the quantitative assessment of coronary calcium since the late 1980s. The introduction of mechanical multi-slice spiral CT (MSCT) scanners with shorter rotation times opened new possibilities of cardiac imaging with conventional CT scanners. The purpose of this work was to qualitatively and quantitatively evaluate the performance for EBT and MSCT for the task of coronary artery calcium imaging as a function of acquisition protocol, heart rate, spiral reconstruction algorithm (where applicable) and calcium scoring method. A cardiac CT semi-anthropomorphic phantom was designed and manufactured for the investigation of all relevant image quality parameters in cardiac CT. This phantom includes various test objects, some of which can be moved within the anthropomorphic phantom in a manner that mimics realistic heart motion. These tools were used to qualitatively and quantitatively demonstrate the accuracy of coronary calcium imaging using typical protocols for an electron beam (Evolution C-150XP, Imatron, South San Francisco, Calif.) and a 0.5-s four-slice spiral CT scanner (Sensation 4, Siemens, Erlangen, Germany). A special focus was put on the method of quantifying coronary calcium, and three scoring systems were evaluated (Agatston, volume, and mass scoring). Good reproducibility in coronary calcium scoring is always the result of a combination of high temporal and spatial resolution; consequently, thin-slice protocols in combination with retrospective gating on MSCT scanners yielded the best results. The Agatston score was found to be the least reproducible scoring method. The hydroxyapatite mass, being better reproducible and comparable on different scanners and being a physical quantitative measure, appears to be the method of choice for future clinical studies. The hydroxyapatite mass is highly correlated to the Agatston score. The introduced phantoms can be used to quantitatively assess the performance characteristics of, for example, different scanners, reconstruction algorithms, and quantification methods in cardiac CT. This is especially important for quantitative tasks, such as the determination of the amount of calcium in the coronary arteries, to achieve high and constant quality in this field.

  16. Segmentation algorithm of colon based on multi-slice CT colonography

    NASA Astrophysics Data System (ADS)

    Hu, Yizhong; Ahamed, Mohammed Shabbir; Takahashi, Eiji; Suzuki, Hidenobu; Kawata, Yoshiki; Niki, Noboru; Suzuki, Masahiro; Iinuma, Gen; Moriyama, Noriyuki

    2012-02-01

    CT colonography is a radiology test that looks at people's large intestines(colon). CT colonography can screen many options of colon cancer. This test is used to detect polyps or cancers of the colon. CT colonography is safe and reliable. It can be used if people are too sick to undergo other forms of colon cancer screening. In our research, we proposed a method for automatic segmentation of the colon from abdominal computed Tomography (CT) images. Our multistage detection method extracted colon and spited colon into different parts according to the colon anatomy information. We found that among the five segmented parts of the colon, sigmoid (20%) and rectum (50%) are more sensitive toward polyps and masses than the other three parts. Our research focused on detecting the colon by the individual diagnosis of sigmoid and rectum. We think it would make the rapid and easy diagnosis of colon in its earlier stage and help doctors for analysis of correct position of each part and detect the colon rectal cancer much easier.

  17. Large focal nodular hyperplasia and extrahepatic portosystemic shunt in a male patient: multi-modality imaging features.

    PubMed

    Kitzing, Yu Xuan; Gallagher, James; Waugh, Richard

    2011-10-01

    Congenital extrahepatic portocaval shunt is a rare condition that is described mostly in female patients. We report an unusual case of a young adult male patient with type 1 congenital extrahepatic portocaval shunt with associated development of a focal nodular hyperplasia on a background of regenerative nodules. With multi-slice CT utilisation, there is increased detection of portocaval malformation in asymptomatic patients. This congenital variant is clinically significant with associated development of hepatocellular lesions, hepatic dysfunction and/or encephalopathy. © 2011 The Authors. Journal of Medical Imaging and Radiation Oncology © 2011 The Royal Australian and New Zealand College of Radiologists.

  18. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning.

    PubMed

    Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza

    2017-01-01

    In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle.

  19. Reduction of the estimated radiation dose and associated patient risk with prospective ECG-gated 256-slice CT coronary angiography

    NASA Astrophysics Data System (ADS)

    Efstathopoulos, E. P.; Kelekis, N. L.; Pantos, I.; Brountzos, E.; Argentos, S.; Grebáč, J.; Ziaka, D.; Katritsis, D. G.; Seimenis, I.

    2009-09-01

    Computed tomography (CT) coronary angiography has been widely used since the introduction of 64-slice scanners and dual-source CT technology, but high radiation doses have been reported. Prospective ECG-gating using a 'step-and-shoot' axial scanning protocol has been shown to reduce radiation exposure effectively while maintaining diagnostic accuracy. 256-slice scanners with 80 mm detector coverage have been currently introduced into practice, but their impact on radiation exposure has not been adequately studied. The aim of this study was to assess radiation doses associated with CT coronary angiography using a 256-slice CT scanner. Radiation doses were estimated for 25 patients scanned with either prospective or retrospective ECG-gating. Image quality was assessed objectively in terms of mean CT attenuation at selected regions of interest on axial coronary images and subjectively by coronary segment quality scoring. It was found that radiation doses associated with prospective ECG-gating were significantly lower than retrospective ECG-gating (3.2 ± 0.6 mSv versus 13.4 ± 2.7 mSv). Consequently, the radiogenic fatal cancer risk for the patient is much lower with prospective gating (0.0176% versus 0.0737%). No statistically significant differences in image quality were observed between the two scanning protocols for both objective and subjective quality assessments. Therefore, prospective ECG-gating using a 'step-and-shoot' protocol that covers the cardiac anatomy in two axial acquisitions effectively reduces radiation doses in 256-slice CT coronary angiography without compromising image quality.

  20. Optimal slice thickness for cone-beam CT with on-board imager

    PubMed Central

    Seet, KYT; Barghi, A; Yartsev, S; Van Dyk, J

    2010-01-01

    Purpose: To find the optimal slice thickness (Δτ) setting for patient registration with kilovoltage cone-beam CT (kVCBCT) on the Varian On Board Imager (OBI) system by investigating the relationship of slice thickness to automatic registration accuracy and contrast-to-noise ratio. Materials and method: Automatic registration was performed on kVCBCT studies of the head and pelvis of a RANDO anthropomorphic phantom. Images were reconstructed with 1.0 ≤ Δτ (mm) ≤ 5.0 at 1.0 mm increments. The phantoms were offset by a known amount, and the suggested shifts were compared to the known shifts by calculating the residual error. A uniform cylindrical phantom with cylindrical inserts of various known CT numbers was scanned with kVCBCT at 1.0 ≤ Δτ (mm) ≤ 5.0 at increments of 0.5 mm. The contrast-to-noise ratios for the inserts were measured at each Δτ. Results: For the planning CT slice thickness used in this study, there was no significant difference in residual error below a threshold equal to the planning CT slice thickness. For Δτ > 3.0 mm, residual error increased for both the head and pelvis phantom studies. The contrast-to-noise ratio is proportional to slice thickness until Δτ = 2.5 mm. Beyond this point, the contrast-to-noise ratio was not affected by Δτ. Conclusion: Automatic registration accuracy is greatest when 1.0 ≤ Δτ (mm) ≤ 3.0 is used. Contrast-to-noise ratio is optimal for the 2.5 ≤ Δτ (mm) ≤ 5.0 range. Therefore 2.5 ≤ Δτ (mm) ≤ 3.0 is recommended for kVCBCT patient registration where the planning CT is 3.0 mm. PMID:21611047

  1. Spotting L3 slice in CT scans using deep convolutional network and transfer learning.

    PubMed

    Belharbi, Soufiane; Chatelain, Clément; Hérault, Romain; Adam, Sébastien; Thureau, Sébastien; Chastan, Mathieu; Modzelewski, Romain

    2017-08-01

    In this article, we present a complete automated system for spotting a particular slice in a complete 3D Computed Tomography exam (CT scan). Our approach does not require any assumptions on which part of the patient's body is covered by the scan. It relies on an original machine learning regression approach. Our models are learned using the transfer learning trick by exploiting deep architectures that have been pre-trained on imageNet database, and therefore it requires very little annotation for its training. The whole pipeline consists of three steps: i) conversion of the CT scans into Maximum Intensity Projection (MIP) images, ii) prediction from a Convolutional Neural Network (CNN) applied in a sliding window fashion over the MIP image, and iii) robust analysis of the prediction sequence to predict the height of the desired slice within the whole CT scan. Our approach is applied to the detection of the third lumbar vertebra (L3) slice that has been found to be representative to the whole body composition. Our system is evaluated on a database collected in our clinical center, containing 642 CT scans from different patients. We obtained an average localization error of 1.91±2.69 slices (less than 5 mm) in an average time of less than 2.5 s/CT scan, allowing integration of the proposed system into daily clinical routines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Localized Spatio-Temporal Constraints for Accelerated CMR Perfusion

    PubMed Central

    Akçakaya, Mehmet; Basha, Tamer A.; Pflugi, Silvio; Foppa, Murilo; Kissinger, Kraig V.; Hauser, Thomas H.; Nezafat, Reza

    2013-01-01

    Purpose To develop and evaluate an image reconstruction technique for cardiac MRI (CMR)perfusion that utilizes localized spatio-temporal constraints. Methods CMR perfusion plays an important role in detecting myocardial ischemia in patients with coronary artery disease. Breath-hold k-t based image acceleration techniques are typically used in CMR perfusion for superior spatial/temporal resolution, and improved coverage. In this study, we propose a novel compressed sensing based image reconstruction technique for CMR perfusion, with applicability to free-breathing examinations. This technique uses local spatio-temporal constraints by regularizing image patches across a small number of dynamics. The technique is compared to conventional dynamic-by-dynamic reconstruction, and sparsity regularization using a temporal principal-component (pc) basis, as well as zerofilled data in multi-slice 2D and 3D CMR perfusion. Qualitative image scores are used (1=poor, 4=excellent) to evaluate the technique in 3D perfusion in 10 patients and 5 healthy subjects. On 4 healthy subjects, the proposed technique was also compared to a breath-hold multi-slice 2D acquisition with parallel imaging in terms of signal intensity curves. Results The proposed technique results in images that are superior in terms of spatial and temporal blurring compared to the other techniques, even in free-breathing datasets. The image scores indicate a significant improvement compared to other techniques in 3D perfusion (2.8±0.5 vs. 2.3±0.5 for x-pc regularization, 1.7±0.5 for dynamic-by-dynamic, 1.1±0.2 for zerofilled). Signal intensity curves indicate similar dynamics of uptake between the proposed method with a 3D acquisition and the breath-hold multi-slice 2D acquisition with parallel imaging. Conclusion The proposed reconstruction utilizes sparsity regularization based on localized information in both spatial and temporal domains for highly-accelerated CMR perfusion with potential utility in free-breathing 3D acquisitions. PMID:24123058

  3. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation.

    PubMed

    Kim, Sangroh; Yoshizumi, Terry T; Yin, Fang-Fang; Chetty, Indrin J

    2013-04-21

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan-scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the 'ISource = 8: Phase-Space Source Incident from Multiple Directions' in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.

  4. Spiral computed tomography phase-space source model in the BEAMnrc/EGSnrc Monte Carlo system: implementation and validation

    NASA Astrophysics Data System (ADS)

    Kim, Sangroh; Yoshizumi, Terry T.; Yin, Fang-Fang; Chetty, Indrin J.

    2013-04-01

    Currently, the BEAMnrc/EGSnrc Monte Carlo (MC) system does not provide a spiral CT source model for the simulation of spiral CT scanning. We developed and validated a spiral CT phase-space source model in the BEAMnrc/EGSnrc system. The spiral phase-space source model was implemented in the DOSXYZnrc user code of the BEAMnrc/EGSnrc system by analyzing the geometry of spiral CT scan—scan range, initial angle, rotational direction, pitch, slice thickness, etc. Table movement was simulated by changing the coordinates of the isocenter as a function of beam angles. Some parameters such as pitch, slice thickness and translation per rotation were also incorporated into the model to make the new phase-space source model, designed specifically for spiral CT scan simulations. The source model was hard-coded by modifying the ‘ISource = 8: Phase-Space Source Incident from Multiple Directions’ in the srcxyznrc.mortran and dosxyznrc.mortran files in the DOSXYZnrc user code. In order to verify the implementation, spiral CT scans were simulated in a CT dose index phantom using the validated x-ray tube model of a commercial CT simulator for both the original multi-direction source (ISOURCE = 8) and the new phase-space source model in the DOSXYZnrc system. Then the acquired 2D and 3D dose distributions were analyzed with respect to the input parameters for various pitch values. In addition, surface-dose profiles were also measured for a patient CT scan protocol using radiochromic film and were compared with the MC simulations. The new phase-space source model was found to simulate the spiral CT scanning in a single simulation run accurately. It also produced the equivalent dose distribution of the ISOURCE = 8 model for the same CT scan parameters. The MC-simulated surface profiles were well matched to the film measurement overall within 10%. The new spiral CT phase-space source model was implemented in the BEAMnrc/EGSnrc system. This work will be beneficial in estimating the spiral CT scan dose in the BEAMnrc/EGSnrc system.

  5. Target volume definition for post prostatectomy radiotherapy: Do the consensus guidelines correctly define the inferior border of the CTV?

    PubMed

    Manji, Mo; Crook, Juanita; Schmid, Matt; Rajapakshe, Rasika

    2016-01-01

    We compare urethrogram delineation of the caudal aspect of the anastomosis to the recommended guidelines of post prostatectomy radiotherapy. Level one evidence has established the indications for, and importance of, adjuvant radiotherapy following radical prostatectomy. Several guidelines have recently addressed delineation of the prostate bed target volume including identification of the vesico-urethral anastomosis, taken as the first CT slice caudal to visible urine in the bladder neck. The inferior border of clinical target volume is then variably defined 5-12 mm below this anastomosis or 15 mm cranial to the penile bulb. Thirty-three patients who received adjuvant radiotherapy following radical prostatectomy were reviewed. All underwent planning CT with urethrogram. The authors (MM, JC) independently identified the CT slice caudal to the last slice showing urine in the bladder neck (called the CT Reference Slice), and measured the distance between this and the tip of the urethrogram cone. Five patients also had a diagnostic MRI at the time of CT planning to better visualize the anatomy. Sixty-six readings were obtained. The mean distance between the Bladder CT Reference Slice and the most cranial urethrogram contrast slice was 16.1 mm (MM 16.4 mm, JC 15.8 mm), range: 6.8-34.2 mm. The mean distance between the urethrogram tip and the ischial tuberosities was 19.9 mm (range 12.5-29.8 mm). The mean distance between the CT Reference Slice and the ischial tuberosities was 36.9 mm (range 28.3-52.4 mm). Guidelines for prostate bed radiation post prostatectomy have been developed after publication of the trials proving benefit of such treatment, and are thus untested. The anastomosis is a frequent site of local relapse but is variably defined by the existing guidelines, none of which take into account anatomic patient variation and all of which are at variance with urethrogram data. We recommend the use of planning urethrogram to better delineate the vesico-urethral junction and minimize the potential for geographic misses.

  6. Can multi-slice or navigator-gated R2* MRI replace single-slice breath-hold acquisition for hepatic iron quantification?

    PubMed

    Loeffler, Ralf B; McCarville, M Beth; Wagstaff, Anne W; Smeltzer, Matthew P; Krafft, Axel J; Song, Ruitian; Hankins, Jane S; Hillenbrand, Claudia M

    2017-01-01

    Liver R2* values calculated from multi-gradient echo (mGRE) magnetic resonance images (MRI) are strongly correlated with hepatic iron concentration (HIC) as shown in several independently derived biopsy calibration studies. These calibrations were established for axial single-slice breath-hold imaging at the location of the portal vein. Scanning in multi-slice mode makes the exam more efficient, since whole-liver coverage can be achieved with two breath-holds and the optimal slice can be selected afterward. Navigator echoes remove the need for breath-holds and allow use in sedated patients. To evaluate if the existing biopsy calibrations can be applied to multi-slice and navigator-controlled mGRE imaging in children with hepatic iron overload, by testing if there is a bias-free correlation between single-slice R2* and multi-slice or multi-slice navigator controlled R2*. This study included MRI data from 71 patients with transfusional iron overload, who received an MRI exam to estimate HIC using gradient echo sequences. Patient scans contained 2 or 3 of the following imaging methods used for analysis: single-slice images (n = 71), multi-slice images (n = 69) and navigator-controlled images (n = 17). Small and large blood corrected region of interests were selected on axial images of the liver to obtain R2* values for all data sets. Bland-Altman and linear regression analysis were used to compare R2* values from single-slice images to those of multi-slice images and navigator-controlled images. Bland-Altman analysis showed that all imaging method comparisons were strongly associated with each other and had high correlation coefficients (0.98 ≤ r ≤ 1.00) with P-values ≤0.0001. Linear regression yielded slopes that were close to 1. We found that navigator-gated or breath-held multi-slice R2* MRI for HIC determination measures R2* values comparable to the biopsy-validated single-slice, single breath-hold scan. We conclude that these three R2* methods can be interchangeably used in existing R2*-HIC calibrations.

  7. SU-E-QI-21: Iodinated Contrast Agent Time Course In Human Brain Metastasis: A Study For Stereotactic Synchrotron Radiotherapy Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Obeid, L; Esteve, F; Adam, J

    2014-06-15

    Purpose: Synchrotron stereotactic radiotherapy (SSRT) is an innovative treatment combining the selective accumulation of heavy elements in tumors with stereotactic irradiations using monochromatic medium energy x-rays from a synchrotron source. Phase I/II clinical trials on brain metastasis are underway using venous infusion of iodinated contrast agents. The radiation dose enhancement depends on the amount of iodine in the tumor and its time course. In the present study, the reproducibility of iodine concentrations between the CT planning scan day (Day 0) and the treatment day (Day 10) was assessed in order to predict dose errors. Methods: For each of days 0more » and 10, three patients received a biphasic intravenous injection of iodinated contrast agent (40 ml, 4 ml/s, followed by 160 ml, 0.5 ml/s) in order to ensure stable intra-tumoral amounts of iodine during the treatment. Two volumetric CT scans (before and after iodine injection) and a multi-slice dynamic CT of the brain were performed using conventional radiotherapy CT (Day 0) or quantitative synchrotron radiation CT (Day 10). A 3D rigid registration was processed between images. The absolute and relative differences of absolute iodine concentrations and their corresponding dose errors were evaluated in the GTV and PTV used for treatment planning. Results: The differences in iodine concentrations remained within the standard deviation limits. The 3D absolute differences followed a normal distribution centered at zero mg/ml with a variance (∼1 mg/ml) which is related to the image noise. Conclusion: The results suggest that dose errors depend only on the image noise. This study shows that stable amounts of iodine are achievable in brain metastasis for SSRT treatment in a 10 days interval.« less

  8. Applying a deep learning based CAD scheme to segment and quantify visceral and subcutaneous fat areas from CT images

    NASA Astrophysics Data System (ADS)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin

    2017-03-01

    Abdominal obesity is strongly associated with a number of diseases and accurately assessment of subtypes of adipose tissue volume plays a significant role in predicting disease risk, diagnosis and prognosis. The objective of this study is to develop and evaluate a new computer-aided detection (CAD) scheme based on deep learning models to automatically segment subcutaneous fat areas (SFA) and visceral (VFA) fat areas depicting on CT images. A dataset involving CT images from 40 patients were retrospectively collected and equally divided into two independent groups (i.e. training and testing group). The new CAD scheme consisted of two sequential convolutional neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. Selection-CNN was trained using 2,240 CT slices to automatically select CT slices belonging to abdomen areas and SegmentationCNN was trained using 84,000 fat-pixel patches to classify fat-pixels as belonging to SFA or VFA. Then, data from the testing group was used to evaluate the performance of the optimized CAD scheme. Comparing to manually labelled results, the classification accuracy of CT slices selection generated by Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using Segmentation-CNN yielded 96.8%. Therefore, this study demonstrated the feasibility of using deep learning based CAD scheme to recognize human abdominal section from CT scans and segment SFA and VFA from CT slices with high agreement compared with subjective segmentation results.

  9. Evaluation of Effective Parameters on Quality of Magnetic Resonance Imaging-computed Tomography Image Fusion in Head and Neck Tumors for Application in Treatment Planning

    PubMed Central

    Shirvani, Atefeh; Jabbari, Keyvan; Amouheidari, Alireza

    2017-01-01

    Background: In radiation therapy, computed tomography (CT) simulation is used for treatment planning to define the location of tumor. Magnetic resonance imaging (MRI)-CT image fusion leads to more efficient tumor contouring. This work tried to identify the practical issues for the combination of CT and MRI images in real clinical cases. The effect of various factors is evaluated on image fusion quality. Materials and Methods: In this study, the data of thirty patients with brain tumors were used for image fusion. The effect of several parameters on possibility and quality of image fusion was evaluated. These parameters include angles of the patient's head on the bed, slices thickness, slice gap, and height of the patient's head. Results: According to the results, the first dominating factor on quality of image fusion was the difference slice gap between CT and MRI images (cor = 0.86, P < 0.005) and second factor was the angle between CT and MRI slice in the sagittal plane (cor = 0.75, P < 0.005). In 20% of patients, this angle was more than 28° and image fusion was not efficient. In 17% of patients, difference slice gap in CT and MRI was >4 cm and image fusion quality was <25%. Conclusion: The most important problem in image fusion is that MRI images are taken without regard to their use in treatment planning. In general, parameters related to the patient position during MRI imaging should be chosen to be consistent with CT images of the patient in terms of location and angle. PMID:29387672

  10. Preparation and fabrication of a full-scale, sagittal-sliced, 3D-printed, patient-specific radiotherapy phantom.

    PubMed

    Craft, Daniel F; Howell, Rebecca M

    2017-09-01

    Patient-specific 3D-printed phantoms have many potential applications, both research and clinical. However, they have been limited in size and complexity because of the small size of most commercially available 3D printers as well as material warping concerns. We aimed to overcome these limitations by developing and testing an effective 3D printing workflow to fabricate a large patient-specific radiotherapy phantom with minimal warping errors. In doing so, we produced a full-scale phantom of a real postmastectomy patient. We converted a patient's clinical CT DICOM data into a 3D model and then sliced the model into eleven 2.5-cm-thick sagittal slices. The slices were printed with a readily available thermoplastic material representing all body tissues at 100% infill, but with air cavities left open. Each slice was printed on an inexpensive and commercially available 3D printer. Once the printing was completed, the slices were placed together for imaging and verification. The original patient CT scan and the assembled phantom CT scan were registered together to assess overall accuracy. The materials for the completed phantom cost $524. The printed phantom agreed well with both its design and the actual patient. Individual slices differed from their designs by approximately 2%. Registered CT images of the assembled phantom and original patient showed excellent agreement. Three-dimensional printing the patient-specific phantom in sagittal slices allowed a large phantom to be fabricated with high accuracy. Our results demonstrate that our 3D printing workflow can be used to make large, accurate, patient-specific phantoms at 100% infill with minimal material warping error. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  11. Image-based metal artifact reduction in x-ray computed tomography utilizing local anatomical similarity

    NASA Astrophysics Data System (ADS)

    Dong, Xue; Yang, Xiaofeng; Rosenfield, Jonathan; Elder, Eric; Dhabaan, Anees

    2017-03-01

    X-ray computed tomography (CT) is widely used in radiation therapy treatment planning in recent years. However, metal implants such as dental fillings and hip prostheses can cause severe bright and dark streaking artifacts in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. In this work, a metal artifact reduction method is proposed based on the intrinsic anatomical similarity between neighboring CT slices. Neighboring CT slices from the same patient exhibit similar anatomical features. Exploiting this anatomical similarity, a gamma map is calculated as a weighted summation of relative HU error and distance error for each pixel in an artifact-corrupted CT image relative to a neighboring, artifactfree image. The minimum value in the gamma map for each pixel is used to identify an appropriate pixel from the artifact-free CT slice to replace the corresponding artifact-corrupted pixel. With the proposed method, the mean CT HU error was reduced from 360 HU and 460 HU to 24 HU and 34 HU on head and pelvis CT images, respectively. Dose calculation accuracy also improved, as the dose difference was reduced from greater than 20% to less than 4%. Using 3%/3mm criteria, the gamma analysis failure rate was reduced from 23.25% to 0.02%. An image-based metal artifact reduction method is proposed that replaces corrupted image pixels with pixels from neighboring CT slices free of metal artifacts. This method is shown to be capable of suppressing streaking artifacts, thereby improving HU and dose calculation accuracy.

  12. A Knowledge Discovery Approach to Diagnosing Intracranial Hematomas on Brain CT: Recognition, Measurement and Classification

    NASA Astrophysics Data System (ADS)

    Liao, Chun-Chih; Xiao, Furen; Wong, Jau-Min; Chiang, I.-Jen

    Computed tomography (CT) of the brain is preferred study on neurological emergencies. Physicians use CT to diagnose various types of intracranial hematomas, including epidural, subdural and intracerebral hematomas according to their locations and shapes. We propose a novel method that can automatically diagnose intracranial hematomas by combining machine vision and knowledge discovery techniques. The skull on the CT slice is located and the depth of each intracranial pixel is labeled. After normalization of the pixel intensities by their depth, the hyperdense area of intracranial hematoma is segmented with multi-resolution thresholding and region-growing. We then apply C4.5 algorithm to construct a decision tree using the features of the segmented hematoma and the diagnoses made by physicians. The algorithm was evaluated on 48 pathological images treated in a single institute. The two discovered rules closely resemble those used by human experts, and are able to make correct diagnoses in all cases.

  13. Application of multislice spiral CT for guidance of insertion of thoracic spine pedicle screws: an in vitro study.

    PubMed

    Wang, Juan; Zhou, Yicheng; Hu, Ning; Wang, Renfa

    2006-01-01

    To investigate the value of the guidance of three dimensional (3-D) reconstruction of multi-slice spiral CT (MSCT) for the placement of pedicle screws, the 3-D anatomical data of the thoracic pedicles were measured by MSCT in two embalmed human cadaveric thoracic pedicles spines (T1-T10) to guide the insertion of pedicle screws. After pulling the screws out, the pathways were filled with contrast media. The PW, PH, TSA and SSA of developed pathways were measured on the CT images and they were also measured on the real objects by caliper and goniometer. Analysis of variance demonstrated that the difference between the CT scans and real objects had no statistical significance (P > 0.05). Moreover, the difference between pedicle axis and developed pathway also had no statistical significance (P > 0.05). The data obtained from 3-D reconstruction of MSCT demonstrated that individualized standards, are not only accurate but also helpful for the successful placement of pedicle screws.

  14. Lung lobe modeling and segmentation with individualized surface meshes

    NASA Astrophysics Data System (ADS)

    Blaffert, Thomas; Barschdorf, Hans; von Berg, Jens; Dries, Sebastian; Franz, Astrid; Klinder, Tobias; Lorenz, Cristian; Renisch, Steffen; Wiemker, Rafael

    2008-03-01

    An automated segmentation of lung lobes in thoracic CT images is of interest for various diagnostic purposes like the quantification of emphysema or the localization of tumors within the lung. Although the separating lung fissures are visible in modern multi-slice CT-scanners, their contrast in the CT-image often does not separate the lobes completely. This makes it impossible to build a reliable segmentation algorithm without additional information. Our approach uses general anatomical knowledge represented in a geometrical mesh model to construct a robust lobe segmentation, which even gives reasonable estimates of lobe volumes if fissures are not visible at all. The paper describes the generation of the lung model mesh including lobes by an average volume model, its adaptation to individual patient data using a special fissure feature image, and a performance evaluation over a test data set showing an average segmentation accuracy of 1 to 3 mm.

  15. SU-G-206-01: A Fully Automated CT Tool to Facilitate Phantom Image QA for Quantitative Imaging in Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahi-Anwar, M; Lo, P; Kim, H

    Purpose: The use of Quantitative Imaging (QI) methods in Clinical Trials requires both verification of adherence to a specified protocol and an assessment of scanner performance under that protocol, which are currently accomplished manually. This work introduces automated phantom identification and image QA measure extraction towards a fully-automated CT phantom QA system to perform these functions and facilitate the use of Quantitative Imaging methods in clinical trials. Methods: This study used a retrospective cohort of CT phantom scans from existing clinical trial protocols - totaling 84 phantoms, across 3 phantom types using various scanners and protocols. The QA system identifiesmore » the input phantom scan through an ensemble of threshold-based classifiers. Each classifier - corresponding to a phantom type - contains a template slice, which is compared to the input scan on a slice-by-slice basis, resulting in slice-wise similarity metric values for each slice compared. Pre-trained thresholds (established from a training set of phantom images matching the template type) are used to filter the similarity distribution, and the slice with the most optimal local mean similarity, with local neighboring slices meeting the threshold requirement, is chosen as the classifier’s matched slice (if it existed). The classifier with the matched slice possessing the most optimal local mean similarity is then chosen as the ensemble’s best matching slice. If the best matching slice exists, image QA algorithm and ROIs corresponding to the matching classifier extracted the image QA measures. Results: Automated phantom identification performed with 84.5% accuracy and 88.8% sensitivity on 84 phantoms. Automated image quality measurements (following standard protocol) on identified water phantoms (n=35) matched user QA decisions with 100% accuracy. Conclusion: We provide a fullyautomated CT phantom QA system consistent with manual QA performance. Further work will include parallel component to automatically verify image acquisition parameters and automated adherence to specifications. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; NIH Grant support from: U01 CA181156.« less

  16. SU-C-206-03: Metal Artifact Reduction in X-Ray Computed Tomography Based On Local Anatomical Similarity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Yang, X; Rosenfield, J

    Purpose: Metal implants such as orthopedic hardware and dental fillings cause severe bright and dark streaking in reconstructed CT images. These artifacts decrease image contrast and degrade HU accuracy, leading to inaccuracies in target delineation and dose calculation. Additionally, such artifacts negatively impact patient set-up in image guided radiation therapy (IGRT). In this work, we propose a novel method for metal artifact reduction which utilizes the anatomical similarity between neighboring CT slices. Methods: Neighboring CT slices show similar anatomy. Based on this anatomical similarity, the proposed method replaces corrupted CT pixels with pixels from adjacent, artifact-free slices. A gamma map,more » which is the weighted summation of relative HU error and distance error, is calculated for each pixel in the artifact-corrupted CT image. The minimum value in each pixel’s gamma map is used to identify a pixel from the adjacent CT slice to replace the corresponding artifact-corrupted pixel. This replacement only occurs if the minimum value in a particular pixel’s gamma map is larger than a threshold. The proposed method was evaluated with clinical images. Results: Highly attenuating dental fillings and hip implants cause severe streaking artifacts on CT images. The proposed method eliminates the dark and bright streaking and improves the implant delineation and visibility. In particular, the image non-uniformity in the central region of interest was reduced from 1.88 and 1.01 to 0.28 and 0.35, respectively. Further, the mean CT HU error was reduced from 328 HU and 460 HU to 60 HU and 36 HU, respectively. Conclusions: The proposed metal artifact reduction method replaces corrupted image pixels with pixels from neighboring slices that are free of metal artifacts. This method proved capable of suppressing streaking artifacts, improving HU accuracy and image detectability.« less

  17. Improved quantitation and reproducibility in multi-PET/CT lung studies by combining CT information.

    PubMed

    Holman, Beverley F; Cuplov, Vesna; Millner, Lynn; Endozo, Raymond; Maher, Toby M; Groves, Ashley M; Hutton, Brian F; Thielemans, Kris

    2018-06-05

    Matched attenuation maps are vital for obtaining accurate and reproducible kinetic and static parameter estimates from PET data. With increased interest in PET/CT imaging of diffuse lung diseases for assessing disease progression and treatment effectiveness, understanding the extent of the effect of respiratory motion and establishing methods for correction are becoming more important. In a previous study, we have shown that using the wrong attenuation map leads to large errors due to density mismatches in the lung, especially in dynamic PET scans. Here, we extend this work to the case where the study is sub-divided into several scans, e.g. for patient comfort, each with its own CT (cine-CT and 'snap shot' CT). A method to combine multi-CT information into a combined-CT has then been developed, which averages the CT information from each study section to produce composite CT images with the lung density more representative of that in the PET data. This combined-CT was applied to nine patients with idiopathic pulmonary fibrosis, imaged with dynamic 18 F-FDG PET/CT to determine the improvement in the precision of the parameter estimates. Using XCAT simulations, errors in the influx rate constant were found to be as high as 60% in multi-PET/CT studies. Analysis of patient data identified displacements between study sections in the time activity curves, which led to an average standard error in the estimates of the influx rate constant of 53% with conventional methods. This reduced to within 5% after use of combined-CTs for attenuation correction of the study sections. Use of combined-CTs to reconstruct the sections of a multi-PET/CT study, as opposed to using the individually acquired CTs at each study stage, produces more precise parameter estimates and may improve discrimination between diseased and normal lung.

  18. Changes in entrance surface dose in relation to the location of shielding material in chest computed tomography

    NASA Astrophysics Data System (ADS)

    Kang, Y. M.; Cho, J. H.; Kim, S. C.

    2015-07-01

    This study examined the effects of entrance surface dose (ESD) on the abdomen and pelvis of the patient when undergoing chest computed tomography (CT) procedure, and evaluated the effects of ESD reduction depending on the location of radiation shield. For CT scanner, the 64-slice multi-detector computed tomography was used. The alderson radiation therapy phantom and optically stimulated luminescence dosimeter (OSLD), which enabled measurement from low to high dose, were also used. For measurement of radiation dose, the slice number from 9 to 21 of the phantom was set as the test range, which included apex up to both costophrenic angles. A total of 10 OSLD nanoDots were attached for measurement of the front and rear ESD. Cyclic tests were performed using the low-dose chest CT and high-resolution CT (HRCT) protocol on the following set-ups: without shielding; shielding only on the front side; shielding only on the rear side; and shielding for both front and rear sides. According to the test results, ESD for both front and rear sides was higher in HRCT than low-dose CT when radiation shielding was not used. It was also determined that, compared to the set-up that did not use the radiation shield, locating the radiation shield on the front side was effective in reducing front ESD, while locating the radiation shield on the rear side reduced rear ESD level. Shielding both the front and rear sides resulted in ESD reduction. In conclusion, it was confirmed that shielding the front and rear sides was the most effective method to reduce the ESD effect caused by scatter ray during radiography.

  19. MRI-Based Computed Tomography Metal Artifact Correction Method for Improving Proton Range Calculation Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Peter C.; Schreibmann, Eduard; Roper, Justin

    2015-03-15

    Purpose: Computed tomography (CT) artifacts can severely degrade dose calculation accuracy in proton therapy. Prompted by the recently increased popularity of magnetic resonance imaging (MRI) in the radiation therapy clinic, we developed an MRI-based CT artifact correction method for improving the accuracy of proton range calculations. Methods and Materials: The proposed method replaces corrupted CT data by mapping CT Hounsfield units (HU number) from a nearby artifact-free slice, using a coregistered MRI. MRI and CT volumetric images were registered with use of 3-dimensional (3D) deformable image registration (DIR). The registration was fine-tuned on a slice-by-slice basis by using 2D DIR.more » Based on the intensity of paired MRI pixel values and HU from an artifact-free slice, we performed a comprehensive analysis to predict the correct HU for the corrupted region. For a proof-of-concept validation, metal artifacts were simulated on a reference data set. Proton range was calculated using reference, artifactual, and corrected images to quantify the reduction in proton range error. The correction method was applied to 4 unique clinical cases. Results: The correction method resulted in substantial artifact reduction, both quantitatively and qualitatively. On respective simulated brain and head and neck CT images, the mean error was reduced from 495 and 370 HU to 108 and 92 HU after correction. Correspondingly, the absolute mean proton range errors of 2.4 cm and 1.7 cm were reduced to less than 2 mm in both cases. Conclusions: Our MRI-based CT artifact correction method can improve CT image quality and proton range calculation accuracy for patients with severe CT artifacts.« less

  20. 4D CT sorting based on patient internal anatomy

    NASA Astrophysics Data System (ADS)

    Li, Ruijiang; Lewis, John H.; Cerviño, Laura I.; Jiang, Steve B.

    2009-08-01

    Respiratory motion during free-breathing computed tomography (CT) scan may cause significant errors in target definition for tumors in the thorax and upper abdomen. A four-dimensional (4D) CT technique has been widely used for treatment simulation of thoracic and abdominal cancer radiotherapy. The current 4D CT techniques require retrospective sorting of the reconstructed CT slices oversampled at the same couch position. Most sorting methods depend on external surrogates of respiratory motion recorded by extra instruments. However, respiratory signals obtained from these external surrogates may not always accurately represent the internal target motion, especially when irregular breathing patterns occur. We have proposed a new sorting method based on multiple internal anatomical features for multi-slice CT scan acquired in the cine mode. Four features are analyzed in this study, including the air content, lung area, lung density and body area. We use a measure called spatial coherence to select the optimal internal feature at each couch position and to generate the respiratory signals for 4D CT sorting. The proposed method has been evaluated for ten cancer patients (eight with thoracic cancer and two with abdominal cancer). For nine patients, the respiratory signals generated from the combined internal features are well correlated to those from external surrogates recorded by the real-time position management (RPM) system (average correlation: 0.95 ± 0.02), which is better than any individual internal measures at 95% confidence level. For these nine patients, the 4D CT images sorted by the combined internal features are almost identical to those sorted by the RPM signal. For one patient with an irregular breathing pattern, the respiratory signals given by the combined internal features do not correlate well with those from RPM (correlation: 0.68 ± 0.42). In this case, the 4D CT image sorted by our method presents fewer artifacts than that from the RPM signal. Our 4D CT internal sorting method eliminates the need of externally recorded surrogates of respiratory motion. It is an automatic, accurate, robust, cost efficient and yet simple method and therefore can be readily implemented in clinical settings.

  1. SU-E-T-669: Radiosurgery Failure for Trigeminal Neuralgia: A Study of Radiographic Spatial Fidelity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howe, J; Spalding, A

    Purpose: Management of Trigeminal Neuralgia with radiosurgery is well established, but often met with limited success. Recent advancements in imaging afford improvements in target localization for radiosurgery. Methods: A Trigeminal Neuralgia radiosurgery specific protocol was established for MR enhancement of the trigeminal nerve using a CISS scan with slice spacing of 0.7mm. Computed Tomography simulation was performed using axial slices on a 40 slice CT with slice spacing of 0.6mm. These datasets were registered using a mutual information algorithm and localized in a stereotactic coordinate system. Image registration between the MR and CT was evaluated for each patient by amore » Medical Physicist to ensure accuracy. The dorsal root entry zone target was defined on the CISS MR by a Neurosurgeon and dose calculations performed on the localized CT. Treatment plans were reviewed and approved by a Radiation Oncologist and Neurosurgeon. Image guided radiosurgery was delivered using positioning tolerance of 0.5mm and 1°. Eight patients with Trigeminal Neuralgia were treated with this protocol. Results: Seven patients reported a favorable response to treatment with average Barrow Neurological Index pain score of four before treatment and one following treatment. Only one patient had a BNI>1 following treatment and review of the treatment plan revealed that the CISS MR was registered to the CT via a low resolution (5mm slice spacing) T2 MR. All other patients had CISS MR registered directly with the localized CT. This patient was retreated 6 months later using direct registration between CISS MR and localized CT and subsequently responded to treatment with a BNI of one. Conclusion: Frameless radiosurgery offers an effective solution to Trigeminal Neuralgia management provided appropriate technology and imaging protocols (utilizing submillimeter imaging) are established and maintained.« less

  2. Visualisation of the temporary cavity by computed tomography using contrast material.

    PubMed

    Schyma, Christian; Hagemeier, Lars; Greschus, Susanne; Schild, Hans; Madea, Burkhard

    2012-01-01

    The temporary cavity of a missile produces radial tears in ordnance gelatine, which correlate to the energy transfer. Computed tomography is a useful and non-destructive method to examine gelatine blocks. However, the tears give only few radiocontrast by air filling, which decreases with the time past shooting. Therefore, systematically, a radiocontrast material was searched to enhance the contrast. Different contrast materials were amalgamated to acryl paint, and about 7 g was sealed in a foil bag, which was integrated in the front of a standard 10% gelatine cylinder. Shots with Action-5 expanding bullets were performed from a 5-m distance. Gelatine was scanned by multi-slice computed tomography. The multiplanar reconstructed images were compared to mechanically cut slices of 1 cm thickness. It was shown experimentally that iodine containing water-soluble contrast material did not give sufficient contrast and caused diffusion artefacts. Best results were obtained by barium sulphate emulsion. The amount of acryl paint was sufficient to colour the tears for optical scanning. The radiocontrast of barium leads to satisfying imaging of tears and allowed the creation of a three-dimensional reconstruction of the temporary cavity. Comparison of optical and radiological results showed an excellent correlation, but absolute measures in computed tomographic (CT) images remained lower compared with optically gathered values in the gelatine slices. Combination of paint and contrast material for CT examination will facilitate the evaluation of complex ballistic models and increase accuracy.

  3. Application of machine learning methodology for pet-based definition of lung cancer

    PubMed Central

    Kerhet, A.; Small, C.; Quon, H.; Riauka, T.; Schrader, L.; Greiner, R.; Yee, D.; McEwan, A.; Roa, W.

    2010-01-01

    We applied a learning methodology framework to assist in the threshold-based segmentation of non-small-cell lung cancer (nsclc) tumours in positron-emission tomography–computed tomography (pet–ct) imaging for use in radiotherapy planning. Gated and standard free-breathing studies of two patients were independently analysed (four studies in total). Each study had a pet–ct and a treatment-planning ct image. The reference gross tumour volume (gtv) was identified by two experienced radiation oncologists who also determined reference standardized uptake value (suv) thresholds that most closely approximated the gtv contour on each slice. A set of uptake distribution-related attributes was calculated for each pet slice. A machine learning algorithm was trained on a subset of the pet slices to cope with slice-to-slice variation in the optimal suv threshold: that is, to predict the most appropriate suv threshold from the calculated attributes for each slice. The algorithm’s performance was evaluated using the remainder of the pet slices. A high degree of geometric similarity was achieved between the areas outlined by the predicted and the reference suv thresholds (Jaccard index exceeding 0.82). No significant difference was found between the gated and the free-breathing results in the same patient. In this preliminary work, we demonstrated the potential applicability of a machine learning methodology as an auxiliary tool for radiation treatment planning in nsclc. PMID:20179802

  4. Development of a Radiation Dose Reporting Software for X-ray Computed Tomography (CT)

    NASA Astrophysics Data System (ADS)

    Ding, Aiping

    X-ray computed tomography (CT) has experienced tremendous technological advances in recent years and has established itself as one of the most popular diagnostic imaging tools. While CT imaging clearly plays an invaluable role in modern medicine, its rapid adoption has resulted in a dramatic increase in the average medical radiation exposure to the worldwide and United States populations. Existing software tools for CT dose estimation and reporting are mostly based on patient phantoms that contain overly simplified anatomies insufficient in meeting the current and future needs. This dissertation describes the development of an easy-to-use software platform, “VirtualDose”, as a service to estimate and report the organ dose and effective dose values for patients undergoing the CT examinations. “VirtualDose” incorporates advanced models for the adult male and female, pregnant women, and children. To cover a large portion of the ignored obese patients that frequents the radiology clinics, a new set of obese male and female phantoms are also developed and applied to study the effects of the fat tissues on the CT radiation dose. Multi-detector CT scanners (MDCT) and clinical protocols, as well as the most recent effective dose algorithms from the International Commission on Radiological Protection (ICRP) Publication 103 are adopted in “VirtualDose” to keep pace with the MDCT development and regulatory requirements. A new MDCT scanner model with both body and head bowtie filter is developed to cover both the head and body scanning modes. This model was validated through the clinical measurements. A comprehensive slice-by-slice database is established by deriving the data from a larger number of single axial scans simulated on the patient phantoms using different CT bowtie filters, beam thicknesses, and different tube voltages in the Monte Carlo N-Particle Extended (MCNPX) code. When compared to the existing CT dose software packages, organ dose data in this software provides a better CT dose assessment by using anatomically realistic patient phantoms. All the related organ doses are incorporated into a standardized database compiled using Microsoft Structured Query Language (SQL) server 2008. Organ doses from contiguous axial or helical scans defined by a specific protocol can be rapidly obtained from the database. A next-generation software architecture and Active Server Pages (ASP) .NET framework are adopted to create a browser-hosted application to improve the user interactivity and reporting functionality including scanning parameter selection and organ dose reporting. “VirtualDose” has been developed as a web-based CT dose reporting platform to facilitate several important features including: (1) easy access via Internet; (2) no need for installation on the local computer; (3) a user-friendly, dynamic, browser-hosted graphical user interface; (4) use of advanced patient models for the adult male and female, pregnant women, children, and obese patient models; (5) adoption of modern CT scanners and protocols, as well as the most recent ICRP 103 effective dose algorithms; and (6) flexibility to manage and easily upgrade without impacting user’s usage.

  5. Silhouette-Slice Theorems.

    DTIC Science & Technology

    1986-09-01

    necessary to define "canonical" * parameterizations. Examples of proposed parameterizations are Munge N...of a slice of the surface oriented along the vector CT on the surface is given by STr -(A4.24) 11 is clear from the above expression, that when a slice

  6. Kidney segmentation in CT sequences using graph cuts based active contours model and contextual continuity.

    PubMed

    Zhang, Pin; Liang, Yanmei; Chang, Shengjiang; Fan, Hailun

    2013-08-01

    Accurate segmentation of renal tissues in abdominal computed tomography (CT) image sequences is an indispensable step for computer-aided diagnosis and pathology detection in clinical applications. In this study, the goal is to develop a radiology tool to extract renal tissues in CT sequences for the management of renal diagnosis and treatments. In this paper, the authors propose a new graph-cuts-based active contours model with an adaptive width of narrow band for kidney extraction in CT image sequences. Based on graph cuts and contextual continuity, the segmentation is carried out slice-by-slice. In the first stage, the middle two adjacent slices in a CT sequence are segmented interactively based on the graph cuts approach. Subsequently, the deformable contour evolves toward the renal boundaries by the proposed model for the kidney extraction of the remaining slices. In this model, the energy function combining boundary with regional information is optimized in the constructed graph and the adaptive search range is determined by contextual continuity and the object size. In addition, in order to reduce the complexity of the min-cut computation, the nodes in the graph only have n-links for fewer edges. The total 30 CT images sequences with normal and pathological renal tissues are used to evaluate the accuracy and effectiveness of our method. The experimental results reveal that the average dice similarity coefficient of these image sequences is from 92.37% to 95.71% and the corresponding standard deviation for each dataset is from 2.18% to 3.87%. In addition, the average automatic segmentation time for one kidney in each slice is about 0.36 s. Integrating the graph-cuts-based active contours model with contextual continuity, the algorithm takes advantages of energy minimization and the characteristics of image sequences. The proposed method achieves effective results for kidney segmentation in CT sequences.

  7. Comparison of 68Ga-HBED-CC PSMA-PET/CT and multiparametric MRI for gross tumour volume detection in patients with primary prostate cancer based on slice by slice comparison with histopathology

    PubMed Central

    Zamboglou, Constantinos; Drendel, Vanessa; Jilg, Cordula A.; Rischke, Hans C.; Beck, Teresa I.; Schultze-Seemann, Wolfgang; Krauss, Tobias; Mix, Michael; Schiller, Florian; Wetterauer, Ulrich; Werner, Martin; Langer, Mathias; Bock, Michael; Meyer, Philipp T.; Grosu, Anca L.

    2017-01-01

    Purpose: The exact detection and delineation of the intraprostatic tumour burden is crucial for treatment planning in primary prostate cancer (PCa). We compared 68Ga-HBED-CC-PSMA PET/CT with multiparametric MRI (mpMRI) for diagnosis and tumour delineation in patients with primary PCa based on slice by slice correlation with histopathological reference material. Methodology: Seven patients with histopathologically proven primary PCa underwent 68Ga-HBED-CC-PSMA PET/CT and MRI followed by radical prostatectomy. Resected prostates were scanned by ex-vivo CT in a special localizer and prepared for histopathology. Invasive PCa was delineated on a HE stained histologic tissue slide and matched to ex-vivo CT to obtain gross tumor volume (GTV-)histo. Ex-vivo CT including GTV-histo and MRI data were matched to in-vivo CT(PET). Consensus contours based on MRI (GTV-MRI), PSMA PET (GTV-PET) or the combination of both (GTV-union/-intersection) were created. In each in-vivo CT slice the prostate was separated into 4 equal segments and sensitivity and specificity for PSMA PET and mpMRI were assessed by comparison with histological reference material. Furthermore, the spatial overlap between GTV-histo and GTV-PET/-MRI and the Sørensen-Dice coefficient (DSC) were calculated. In the case of multifocal PCa (4/7 patients), SUV values (PSMA PET) and ADC-values (diffusion weighted MRI) were obtained for each lesion. Results: PSMA PET and mpMRI detected PCa in all patients. GTV-histo was detected in 225 of 340 segments (66.2%). Sensitivity and specificity for GTV-PET, GTV-MRI, GTV-union and GTV-intersection were 75% and 87%, 70% and 82%, 82% and 67%, 55% and 99%, respectively. GTV-histo had on average the highest overlap with GTV-union (57±22%), which was significantly higher than overlap with GTV-MRI (p=0.016) and GTV-PET (p=0.016), respectively. The mean DSC for GTV-union, GTV-PET and GTV-MRI was 0.51 (±0.18), 0.45 (±0.17) and 0.48 (±0.19), respectively. In every patient with multifocal PCa there was one lesion which had both the highest SUV and the lowest ADC-value (mean and max). Conclusion: In a slice by slice analysis with histopathology, 68Ga-HBED-CC-PSMA PET/CT and mpMRI showed high sensitivity and specificity in detection of primary PCa. A combination of both methods performed even better in terms of sensitivity (GTV-union) and specificity (GTV-intersection). A moderate to good spatial overlap with GTV-histo was observed for PSMA PET/CT and mpMRI alone which was significantly improved by GTV-union. Further studies are warranted to analyse the impact of these preliminary findings for diagnostic (multimodal guided TRUS biopsy) and therapeutic (focal therapy) strategies in primary PCa. PMID:28042330

  8. Comparative performance analysis for computer aided lung nodule detection and segmentation on ultra-low-dose vs. standard-dose CT

    NASA Astrophysics Data System (ADS)

    Wiemker, Rafael; Rogalla, Patrik; Opfer, Roland; Ekin, Ahmet; Romano, Valentina; Bülow, Thomas

    2006-03-01

    The performance of computer aided lung nodule detection (CAD) and computer aided nodule volumetry is compared between standard-dose (70-100 mAs) and ultra-low-dose CT images (5-10 mAs). A direct quantitative performance comparison was possible, since for each patient both an ultra-low-dose and a standard-dose CT scan were acquired within the same examination session. The data sets were recorded with a multi-slice CT scanner at the Charite university hospital Berlin with 1 mm slice thickness. Our computer aided nodule detection and segmentation algorithms were deployed on both ultra-low-dose and standard-dose CT data without any dose-specific fine-tuning or preprocessing. As a reference standard 292 nodules from 20 patients were visually identified, each nodule both in ultra-low-dose and standard-dose data sets. The CAD performance was analyzed by virtue of multiple FROC curves for different lower thresholds of the nodule diameter. For nodules with a volume-equivalent diameter equal or larger than 4 mm (149 nodules pairs), we observed a detection rate of 88% at a median false positive rate of 2 per patient in standard-dose images, and 86% detection rate in ultra-low-dose images, also at 2 FPs per patient. Including even smaller nodules equal or larger than 2 mm (272 nodules pairs), we observed a detection rate of 86% in standard-dose images, and 84% detection rate in ultra-low-dose images, both at a rate of 5 FPs per patient. Moreover, we observed a correlation of 94% between the volume-equivalent nodule diameter as automatically measured on ultra-low-dose versus on standard-dose images, indicating that ultra-low-dose CT is also feasible for growth-rate assessment in follow-up examinations. The comparable performance of lung nodule CAD in ultra-low-dose and standard-dose images is of particular interest with respect to lung cancer screening of asymptomatic patients.

  9. Optimization of Brain T2 Mapping Using Standard CPMG Sequence In A Clinical Scanner

    NASA Astrophysics Data System (ADS)

    Hnilicová, P.; Bittšanský, M.; Dobrota, D.

    2014-04-01

    In magnetic resonance imaging, transverse relaxation time (T2) mapping is a useful quantitative tool enabling enhanced diagnostics of many brain pathologies. The aim of our study was to test the influence of different sequence parameters on calculated T2 values, including multi-slice measurements, slice position, interslice gap, echo spacing, and pulse duration. Measurements were performed using standard multi-slice multi-echo CPMG imaging sequence on a 1.5 Tesla routine whole body MR scanner. We used multiple phantoms with different agarose concentrations (0 % to 4 %) and verified the results on a healthy volunteer. It appeared that neither the pulse duration, the size of interslice gap nor the slice shift had any impact on the T2. The measurement accuracy was increased with shorter echo spacing. Standard multi-slice multi-echo CPMG protocol with the shortest echo spacing, also the smallest available interslice gap (100 % of slice thickness) and shorter pulse duration was found to be optimal and reliable for calculating T2 maps in the human brain.

  10. Chest Fat Quantification via CT Based on Standardized Anatomy Space in Adult Lung Transplant Candidates

    PubMed Central

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.; Odhner, Dewey; Wu, Caiyun; Pednekar, Gargi; Palmer, Scott; Rozenshtein, Anna; Shirk, Melissa A.; Newell, John D.; Porteous, Mary; Diamond, Joshua M.

    2017-01-01

    Purpose Overweight and underweight conditions are considered relative contraindications to lung transplantation due to their association with excess mortality. Yet, recent work suggests that body mass index (BMI) does not accurately reflect adipose tissue mass in adults with advanced lung diseases. Alternative and more accurate measures of adiposity are needed. Chest fat estimation by routine computed tomography (CT) imaging may therefore be important for identifying high-risk lung transplant candidates. In this paper, an approach to chest fat quantification and quality assessment based on a recently formulated concept of standardized anatomic space (SAS) is presented. The goal of the paper is to seek answers to several key questions related to chest fat quantity and quality assessment based on a single slice CT (whether in the chest, abdomen, or thigh) versus a volumetric CT, which have not been addressed in the literature. Methods Unenhanced chest CT image data sets from 40 adult lung transplant candidates (age 58 ± 12 yrs and BMI 26.4 ± 4.3 kg/m2), 16 with chronic obstructive pulmonary disease (COPD), 16 with idiopathic pulmonary fibrosis (IPF), and the remainder with other conditions were analyzed together with a single slice acquired for each patient at the L5 vertebral level and mid-thigh level. The thoracic body region and the interface between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the chest were consistently defined in all patients and delineated using Live Wire tools. The SAT and VAT components of chest were then segmented guided by this interface. The SAS approach was used to identify the corresponding anatomic slices in each chest CT study, and SAT and VAT areas in each slice as well as their whole volumes were quantified. Similarly, the SAT and VAT components were segmented in the abdomen and thigh slices. Key parameters of the attenuation (Hounsfield unit (HU) distributions) were determined from each chest slice and from the whole chest volume separately for SAT and VAT components. The same parameters were also computed from the single abdominal and thigh slices. The ability of the slice at each anatomic location in the chest (and abdomen and thigh) to act as a marker of the measures derived from the whole chest volume was assessed via Pearson correlation coefficient (PCC) analysis. Results The SAS approach correctly identified slice locations in different subjects in terms of vertebral levels. PCC between chest fat volume and chest slice fat area was maximal at the T8 level for SAT (0.97) and at the T7 level for VAT (0.86), and was modest between chest fat volume and abdominal slice fat area for SAT and VAT (0.73 and 0.75, respectively). However, correlation was weak for chest fat volume and thigh slice fat area for SAT and VAT (0.52 and 0.37, respectively), and for chest fat volume for SAT and VAT and BMI (0.65 and 0.28, respectively). These same single slice locations with maximal PCC were found for SAT and VAT within both COPD and IPF groups. Most of the attenuation properties derived from the whole chest volume and single best chest slice for VAT (but not for SAT) were significantly different between COPD and IPF groups. Conclusions This study demonstrates a new way of optimally selecting slices whose measurements may be used as markers of similar measurements made on the whole chest volume. The results suggest that one or two slices imaged at T7 and T8 vertebral levels may be enough to estimate reliably the total SAT and VAT components of chest fat and the quality of chest fat as determined by attenuation distributions in the entire chest volume. PMID:28046024

  11. Chest Fat Quantification via CT Based on Standardized Anatomy Space in Adult Lung Transplant Candidates.

    PubMed

    Tong, Yubing; Udupa, Jayaram K; Torigian, Drew A; Odhner, Dewey; Wu, Caiyun; Pednekar, Gargi; Palmer, Scott; Rozenshtein, Anna; Shirk, Melissa A; Newell, John D; Porteous, Mary; Diamond, Joshua M; Christie, Jason D; Lederer, David J

    2017-01-01

    Overweight and underweight conditions are considered relative contraindications to lung transplantation due to their association with excess mortality. Yet, recent work suggests that body mass index (BMI) does not accurately reflect adipose tissue mass in adults with advanced lung diseases. Alternative and more accurate measures of adiposity are needed. Chest fat estimation by routine computed tomography (CT) imaging may therefore be important for identifying high-risk lung transplant candidates. In this paper, an approach to chest fat quantification and quality assessment based on a recently formulated concept of standardized anatomic space (SAS) is presented. The goal of the paper is to seek answers to several key questions related to chest fat quantity and quality assessment based on a single slice CT (whether in the chest, abdomen, or thigh) versus a volumetric CT, which have not been addressed in the literature. Unenhanced chest CT image data sets from 40 adult lung transplant candidates (age 58 ± 12 yrs and BMI 26.4 ± 4.3 kg/m2), 16 with chronic obstructive pulmonary disease (COPD), 16 with idiopathic pulmonary fibrosis (IPF), and the remainder with other conditions were analyzed together with a single slice acquired for each patient at the L5 vertebral level and mid-thigh level. The thoracic body region and the interface between subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in the chest were consistently defined in all patients and delineated using Live Wire tools. The SAT and VAT components of chest were then segmented guided by this interface. The SAS approach was used to identify the corresponding anatomic slices in each chest CT study, and SAT and VAT areas in each slice as well as their whole volumes were quantified. Similarly, the SAT and VAT components were segmented in the abdomen and thigh slices. Key parameters of the attenuation (Hounsfield unit (HU) distributions) were determined from each chest slice and from the whole chest volume separately for SAT and VAT components. The same parameters were also computed from the single abdominal and thigh slices. The ability of the slice at each anatomic location in the chest (and abdomen and thigh) to act as a marker of the measures derived from the whole chest volume was assessed via Pearson correlation coefficient (PCC) analysis. The SAS approach correctly identified slice locations in different subjects in terms of vertebral levels. PCC between chest fat volume and chest slice fat area was maximal at the T8 level for SAT (0.97) and at the T7 level for VAT (0.86), and was modest between chest fat volume and abdominal slice fat area for SAT and VAT (0.73 and 0.75, respectively). However, correlation was weak for chest fat volume and thigh slice fat area for SAT and VAT (0.52 and 0.37, respectively), and for chest fat volume for SAT and VAT and BMI (0.65 and 0.28, respectively). These same single slice locations with maximal PCC were found for SAT and VAT within both COPD and IPF groups. Most of the attenuation properties derived from the whole chest volume and single best chest slice for VAT (but not for SAT) were significantly different between COPD and IPF groups. This study demonstrates a new way of optimally selecting slices whose measurements may be used as markers of similar measurements made on the whole chest volume. The results suggest that one or two slices imaged at T7 and T8 vertebral levels may be enough to estimate reliably the total SAT and VAT components of chest fat and the quality of chest fat as determined by attenuation distributions in the entire chest volume.

  12. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans

    PubMed Central

    Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Background Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. Methods We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). Results and Discussion The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results. PMID:28533960

  13. Body composition estimation from selected slices: equations computed from a new semi-automatic thresholding method developed on whole-body CT scans.

    PubMed

    Lacoste Jeanson, Alizé; Dupej, Ján; Villa, Chiara; Brůžek, Jaroslav

    2017-01-01

    Estimating volumes and masses of total body components is important for the study and treatment monitoring of nutrition and nutrition-related disorders, cancer, joint replacement, energy-expenditure and exercise physiology. While several equations have been offered for estimating total body components from MRI slices, no reliable and tested method exists for CT scans. For the first time, body composition data was derived from 41 high-resolution whole-body CT scans. From these data, we defined equations for estimating volumes and masses of total body AT and LT from corresponding tissue areas measured in selected CT scan slices. We present a new semi-automatic approach to defining the density cutoff between adipose tissue (AT) and lean tissue (LT) in such material. An intra-class correlation coefficient (ICC) was used to validate the method. The equations for estimating the whole-body composition volume and mass from areas measured in selected slices were modeled with ordinary least squares (OLS) linear regressions and support vector machine regression (SVMR). The best predictive equation for total body AT volume was based on the AT area of a single slice located between the 4th and 5th lumbar vertebrae (L4-L5) and produced lower prediction errors (|PE| = 1.86 liters, %PE = 8.77) than previous equations also based on CT scans. The LT area of the mid-thigh provided the lowest prediction errors (|PE| = 2.52 liters, %PE = 7.08) for estimating whole-body LT volume. We also present equations to predict total body AT and LT masses from a slice located at L4-L5 that resulted in reduced error compared with the previously published equations based on CT scans. The multislice SVMR predictor gave the theoretical upper limit for prediction precision of volumes and cross-validated the results.

  14. Analysis of discrete and continuous distributions of ventilatory time constants from dynamic computed tomography

    NASA Astrophysics Data System (ADS)

    Doebrich, Marcus; Markstaller, Klaus; Karmrodt, Jens; Kauczor, Hans-Ulrich; Eberle, Balthasar; Weiler, Norbert; Thelen, Manfred; Schreiber, Wolfgang G.

    2005-04-01

    In this study, an algorithm was developed to measure the distribution of pulmonary time constants (TCs) from dynamic computed tomography (CT) data sets during a sudden airway pressure step up. Simulations with synthetic data were performed to test the methodology as well as the influence of experimental noise. Furthermore the algorithm was applied to in vivo data. In five pigs sudden changes in airway pressure were imposed during dynamic CT acquisition in healthy lungs and in a saline lavage ARDS model. The fractional gas content in the imaged slice (FGC) was calculated by density measurements for each CT image. Temporal variations of the FGC were analysed assuming a model with a continuous distribution of exponentially decaying time constants. The simulations proved the feasibility of the method. The influence of experimental noise could be well evaluated. Analysis of the in vivo data showed that in healthy lungs ventilation processes can be more likely characterized by discrete TCs whereas in ARDS lungs continuous distributions of TCs are observed. The temporal behaviour of lung inflation and deflation can be characterized objectively using the described new methodology. This study indicates that continuous distributions of TCs reflect lung ventilation mechanics more accurately compared to discrete TCs.

  15. Factors Affecting Prostate Volume Estimation in Computed Tomography Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Cheng-Hsiu; Wang, Shyh-Jen; Institute of Biomedical Engineering, National Yang Ming University, Taipei, Taiwan

    2011-04-01

    The aim of this study was to investigate how apex-localizing methods and the computed tomography (CT) slice thickness affected the CT-based prostate volume estimation. Twenty-eight volunteers underwent evaluations of prostate volume by CT, where the contour segmentations were performed by three observers. The bottom of ischial tuberosities (ITs) and the bulb of the penis were used as reference positions to locate the apex, and the distances to the apex were recorded as 1.3 and 2.0 cm, respectively. Interobserver variations to locate ITs and the bulb of the penis were, on average, 0.10 cm (range 0.03-0.38 cm) and 0.30 cm (rangemore » 0.00-0.98 cm), respectively. The range of CT slice thickness varied from 0.08-0.48 cm and was adopted to examine the influence of the variation on volume estimation. The volume deviation from the reference case (0.08 cm), which increases in tandem with the slice thickness, was within {+-} 3 cm{sup 3}, regardless of the adopted apex-locating reference positions. In addition, the maximum error of apex identification was 1.5 times of slice thickness. Finally, based on the precise CT films and the methods of apex identification, there were strong positive correlation coefficients for the estimated prostate volume by CT and the transabdominal ultrasonography, as found in the present study (r > 0.87; p < 0.0001), and this was confirmed by Bland-Altman analysis. These results will help to identify factors that affect prostate volume calculation and to contribute to the improved estimation of the prostate volume based on CT images.« less

  16. Emergency department CT screening of patients with nontraumatic neurological symptoms referred to the posterior fossa: comparison of thin versus thick slice images.

    PubMed

    Kamalian, Shervin; Atkinson, Wendy L; Florin, Lauren A; Pomerantz, Stuart R; Lev, Michael H; Romero, Javier M

    2014-06-01

    Evaluation of the posterior fossa (PF) on 5-mm-thick helical CT images (current default) has improved diagnostic accuracy compared to 5-mm sequential CT images; however, 5-mm-thick images may not be ideal for PF pathology due to volume averaging of rapid changes in anatomy in the Z-direction. Therefore, we sought to determine if routine review of 1.25-mm-thin helical CT images has superior accuracy in screening for nontraumatic PF pathology. MRI proof of diagnosis was obtained within 6 h of helical CT acquisition for 90 consecutive ED patients with, and 88 without, posterior fossa lesions. Helical CT images were post-processed at 1.25 and 5-mm-axial slice thickness. Two neuroradiologists blinded to the clinical/MRI findings reviewed both image sets. Interobserver agreement and accuracy were rated using Kappa statistics and ROC analysis, respectively. Of the 90/178 (51 %) who were MR positive, 60/90 (66 %) had stroke and 30/90 (33 %) had other etiologies. There was excellent interobserver agreement (κ > 0.97) for both thick and thin slice assessments. The accuracy, sensitivity, and specificity for 1.25-mm images were 65, 44, and 84 %, respectively, and for 5-mm images were 67, 45, and 85 %, respectively. The diagnostic accuracy was not significantly different (p > 0.5). In this cohort of patients with nontraumatic neurological symptoms referred to the posterior fossa, 1.25-mm-thin slice CT reformatted images do not have superior accuracy compared to 5-mm-thick images. This information has implications on optimizing resource utilizations and efficiency in a busy emergency room. Review of 1.25-mm-thin images may help diagnostic accuracy only when review of 5-mm-thick images as current default is inconclusive.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Z; Reyhan, M; Huang, Q

    Purpose: The calibration of the Hounsfield units (HU) to relative proton stopping powers (RSP) is a crucial component in assuring the accurate delivery of proton therapy dose distributions to patients. The purpose of this work is to assess the uncertainty of CT calibration considering the impact of CT slice thickness, position of the plug within the phantom and phantom sizes. Methods: Stoichiometric calibration method was employed to develop the CT calibration curve. Gammex 467 tissue characterization phantom was scanned in Tomotherapy Cheese phantom and Gammex 451 phantom by using a GE CT scanner. Each plug was individually inserted into themore » same position of inner and outer ring of phantoms at each time, respectively. 1.25 mm and 2.5 mm slice thickness were used. Other parameters were same. Results: HU of selected human tissues were calculated based on fitted coefficient (Kph, Kcoh and KKN), and RSP were calculated according to the Bethe-Bloch equation. The calibration curve was obtained by fitting cheese phantom data with 1.25 mm thickness. There is no significant difference if the slice thickness, phantom size, position of plug changed in soft tissue. For boney structure, RSP increases up to 1% if the phantom size and the position of plug changed but keep the slice thickness the same. However, if the slice thickness varied from the one in the calibration curve, 0.5%–3% deviation would be expected depending on the plug position. The Inner position shows the obvious deviation (averagely about 2.5%). Conclusion: RSP shows a clinical insignificant deviation in soft tissue region. Special attention may be required when using a different slice thickness from the calibration curve for boney structure. It is clinically practical to address 3% deviation due to different thickness in the definition of clinical margins.« less

  18. SU-F-J-156: The Feasibility of MR-Only IMRT Planning for Prostate Anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaitheeswaran, R; Sivaramakrishnan, KR; Kumar, Prashant

    Purpose: For prostate anatomy, previous investigations have shown that simulated CT (sCT) generated from MR images can be used for accurate dose computation. In this study, we demonstrate the feasibility of MR-only IMRT planning for prostate case. Methods: Regular CT (rCT) and MR images of the same patient were acquired for prostate anatomy. Regions-of-interest (ROIs) i.e. target and risk structures are delineated on the rCT. A simulated CT (sCT) is generated from the MR image using the method described by Schadewaldt N et al. Their work establishes the clinical acceptability of dose calculation results on the sCT when compared tomore » rCT. rCT and sCT are rigidly registered to ensure proper alignment between the two images. rCT and sCT are overlaid on each other and slice-wise visual inspection confirms excellent agreement between the two images. ROIs on the rCT are copied over to sCT. Philips AutoPlanning solution is used for generating treatment plans. The same treatment technique protocol (plan parameters and clinical goals) is used to generate AutoPlan-rCT and AutoPlan-sCT respectively for rCT and and sCT. DVH comparison on ROIs and slice-wise evaluation of dose is performed between AutoPlan-rCT and AutoPlan-sCT. Delivery parameters i.e. beam and corresponding segments from the AutoPlan-sCT are copied over to rCT and dose is computed to get AutoPlan-sCT-on-rCT. Results: Plan evaluation is done based on Dose Volume Histogram (DVH) of ROIs and manual slice-wise inspection of dose distribution. Both AutoPlan-rCT and AutoPlan-sCT provide a clinically acceptable plan. Also, AutoPlan-sCT-on-rCT shows excellent agreement with AutoPlan-sCT. Conclusion: The study demonstrates that it is feasible to do IMRT planning on the simulated CT image obtained from MR image for prostate anatomy. The research is supported by Philips India Ltd.« less

  19. An in vitro comparison of subjective image quality of panoramic views acquired via 2D or 3D imaging.

    PubMed

    Pittayapat, P; Galiti, D; Huang, Y; Dreesen, K; Schreurs, M; Souza, P Couto; Rubira-Bullen, I R F; Westphalen, F H; Pauwels, R; Kalema, G; Willems, G; Jacobs, R

    2013-01-01

    The objective of this study is to compare subjective image quality and diagnostic validity of cone-beam CT (CBCT) panoramic reformatting with digital panoramic radiographs. Four dry human skulls and two formalin-fixed human heads were scanned using nine different CBCTs, one multi-slice CT (MSCT) and one standard digital panoramic device. Panoramic views were generated from CBCTs in four slice thicknesses. Seven observers scored image quality and visibility of 14 anatomical structures. Four observers repeated the observation after 4 weeks. Digital panoramic radiographs showed significantly better visualization of anatomical structures except for the condyle. Statistical analysis of image quality showed that the 3D imaging modalities (CBCTs and MSCT) were 7.3 times more likely to receive poor scores than the 2D modality. Yet, image quality from NewTom VGi® and 3D Accuitomo 170® was almost equivalent to that of digital panoramic radiographs with respective odds ratio estimates of 1.2 and 1.6 at 95% Wald confidence limits. A substantial overall agreement amongst observers was found. Intra-observer agreement was moderate to substantial. While 2D-panoramic images are significantly better for subjective diagnosis, 2/3 of the 3D-reformatted panoramic images are moderate or good for diagnostic purposes. Panoramic reformattings from particular CBCTs are comparable to digital panoramic images concerning the overall image quality and visualization of anatomical structures. This clinically implies that a 3D-derived panoramic view can be generated for diagnosis with a recommended 20-mm slice thickness, if CBCT data is a priori available for other purposes.

  20. TH-C-BRD-06: A Novel MRI Based CT Artifact Correction Method for Improving Proton Range Calculation in the Presence of Severe CT Artifacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, P; Schreibmann, E; Fox, T

    2014-06-15

    Purpose: Severe CT artifacts can impair our ability to accurately calculate proton range thereby resulting in a clinically unacceptable treatment plan. In this work, we investigated a novel CT artifact correction method based on a coregistered MRI and investigated its ability to estimate CT HU and proton range in the presence of severe CT artifacts. Methods: The proposed method corrects corrupted CT data using a coregistered MRI to guide the mapping of CT values from a nearby artifact-free region. First patient MRI and CT images were registered using 3D deformable image registration software based on B-spline and mutual information. Themore » CT slice with severe artifacts was selected as well as a nearby slice free of artifacts (e.g. 1cm away from the artifact). The two sets of paired MRI and CT images at different slice locations were further registered by applying 2D deformable image registration. Based on the artifact free paired MRI and CT images, a comprehensive geospatial analysis was performed to predict the correct CT HU of the CT image with severe artifact. For a proof of concept, a known artifact was introduced that changed the ground truth CT HU value up to 30% and up to 5cm error in proton range. The ability of the proposed method to recover the ground truth was quantified using a selected head and neck case. Results: A significant improvement in image quality was observed visually. Our proof of concept study showed that 90% of area that had 30% errors in CT HU was corrected to 3% of its ground truth value. Furthermore, the maximum proton range error up to 5cm was reduced to 4mm error. Conclusion: MRI based CT artifact correction method can improve CT image quality and proton range calculation for patients with severe CT artifacts.« less

  1. Comparative analysis of 2 glenoid version measurement methods in variable axial slices on 3-dimensionally reconstructed computed tomography scans.

    PubMed

    Cunningham, Gregory; Freebody, John; Smith, Margaret M; Taha, Mohy E; Young, Allan A; Cass, Benjamin; Giuffre, Bruno

    2018-05-16

    Most glenoid version measurement methods have been validated on 3-dimensionally corrected axial computed tomography (CT) slices at the mid glenoid. Variability of the vault according to slice height and angulation has not yet been studied and is crucial for proper surgical implant positioning. The aim of this study was to analyze the variation of the glenoid vault compared with the Friedman angle according to different CT slice heights and angulations. The hypothesis was that the Friedman angle would show less variability. Sixty shoulder CT scans were retrieved from a hospital imaging database and were reconstructed in the plane of the scapula. Seven axial slices of different heights and coronal angulations were selected, and measurements were carried out by 3 observers. Mid-glenoid mean version was -8.0° (±4.9°; range, -19.6° to +7.0°) and -2.1° (±4.7°; range, -13.0° to +10.3°) using the vault method and Friedman angle, respectively. For both methods, decreasing slice height or angulation did not significantly alter version. Increasing slice height or angulation significantly increased anteversion for the vault method (P < .001). Both interobserver reliability and intraobserver reliability were significantly higher using the Friedman angle. Version at the mid and lower glenoid is similar using either method. The vault method shows less reliability and more variability according to slice height or angulation. Yet, as it significantly differs from the Friedman angle, it should still be used in situations where maximum bone purchase is sought with glenoid implants. For any other situation, the Friedman angle remains the method of choice. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Multiphoton Rydberg and valence dynamics of CH3Br probed by mass spectrometry and slice imaging.

    PubMed

    Hafliðason, Arnar; Glodic, Pavle; Koumarianou, Greta; Samartzis, Peter C; Kvaran, Ágúst

    2018-06-18

    The multiphoton dynamics of CH3Br were probed by Mass Resolved MultiPhoton Ionization (MR-MPI), Slice Imaging and Photoelectron Imaging in the two-photon excitation region of 66 000 to 80 000 cm-1. Slice images of the CH3+ and Br+ photoproducts of ten two-photon resonant transitions to np and nd Rydberg states of the parent molecule were recorded. CH3+ ions dominate the mass spectra. Kinetic energy release spectra (KERs) were derived from slice and photoelectron images and anisotropy parameters were extracted from the angular distributions of the ions to identify the processes and the dynamics involved. At all wavelengths we observe three-photon excitations, via the two-photon resonant transitions to molecular Rydberg states, forming metastable, superexcited (CH3Br#) states which dissociate to form CH3 Rydberg states (CH3**) along with Br/Br*. A correlation between the parent Rydberg states excited and CH3** formed is evident. For the three highest excitation energies used, the CH3Br# metastable states also generate high kinetic energy fragments of CH3(X) and Br/Br*. In addition for two out of these three wavelengths we also measure one-photon photolysis of CH3Br in the A band forming CH3(X) in various vibrational modes and bromine atoms in the ground (Br) and spin-orbit excited (Br*) states.

  3. Quantitative CT analysis of honeycombing area in idiopathic pulmonary fibrosis: Correlations with pulmonary function tests.

    PubMed

    Nakagawa, Hiroaki; Nagatani, Yukihiro; Takahashi, Masashi; Ogawa, Emiko; Tho, Nguyen Van; Ryujin, Yasushi; Nagao, Taishi; Nakano, Yasutaka

    2016-01-01

    The 2011 official statement of idiopathic pulmonary fibrosis (IPF) mentions that the extent of honeycombing and the worsening of fibrosis on high-resolution computed tomography (HRCT) in IPF are associated with the increased risk of mortality. However, there are few reports about the quantitative computed tomography (CT) analysis of honeycombing area. In this study, we first proposed a computer-aided method for quantitative CT analysis of honeycombing area in patients with IPF. We then evaluated the correlations between honeycombing area measured by the proposed method with that estimated by radiologists or with parameters of PFTs. Chest HRCTs and pulmonary function tests (PFTs) of 36 IPF patients, who were diagnosed using HRCT alone, were retrospectively evaluated. Two thoracic radiologists independently estimated the honeycombing area as Identified Area (IA) and the percentage of honeycombing area to total lung area as Percent Area (PA) on 3 axial CT slices for each patient. We also developed a computer-aided method to measure the honeycombing area on CT images of those patients. The total honeycombing area as CT honeycombing area (HA) and the percentage of honeycombing area to total lung area as CT %honeycombing area (%HA) were derived from the computer-aided method for each patient. HA derived from three CT slices was significantly correlated with IA (ρ=0.65 for Radiologist 1 and ρ=0.68 for Radiologist 2). %HA derived from three CT slices was also significantly correlated with PA (ρ=0.68 for Radiologist 1 and ρ=0.70 for Radiologist 2). HA and %HA derived from all CT slices were significantly correlated with FVC (%pred.), DLCO (%pred.), and the composite physiologic index (CPI) (HA: ρ=-0.43, ρ=-0.56, ρ=0.63 and %HA: ρ=-0.60, ρ=-0.49, ρ=0.69, respectively). The honeycombing area measured by the proposed computer-aided method was correlated with that estimated by expert radiologists and with parameters of PFTs. This quantitative CT analysis of honeycombing area may be useful and reliable in patients with IPF. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Pulmonary parenchyma segmentation in thin CT image sequences with spectral clustering and geodesic active contour model based on similarity

    NASA Astrophysics Data System (ADS)

    He, Nana; Zhang, Xiaolong; Zhao, Juanjuan; Zhao, Huilan; Qiang, Yan

    2017-07-01

    While the popular thin layer scanning technology of spiral CT has helped to improve diagnoses of lung diseases, the large volumes of scanning images produced by the technology also dramatically increase the load of physicians in lesion detection. Computer-aided diagnosis techniques like lesions segmentation in thin CT sequences have been developed to address this issue, but it remains a challenge to achieve high segmentation efficiency and accuracy without much involvement of human manual intervention. In this paper, we present our research on automated segmentation of lung parenchyma with an improved geodesic active contour model that is geodesic active contour model based on similarity (GACBS). Combining spectral clustering algorithm based on Nystrom (SCN) with GACBS, this algorithm first extracts key image slices, then uses these slices to generate an initial contour of pulmonary parenchyma of un-segmented slices with an interpolation algorithm, and finally segments lung parenchyma of un-segmented slices. Experimental results show that the segmentation results generated by our method are close to what manual segmentation can produce, with an average volume overlap ratio of 91.48%.

  5. Image Quality and Radiation Dose for Prospectively Triggered Coronary CT Angiography: 128-Slice Single-Source CT versus First-Generation 64-Slice Dual-Source CT

    NASA Astrophysics Data System (ADS)

    Gu, Jin; Shi, He-Shui; Han, Ping; Yu, Jie; Ma, Gui-Na; Wu, Sheng

    2016-10-01

    This study sought to compare the image quality and radiation dose of coronary computed tomography angiography (CCTA) from prospectively triggered 128-slice CT (128-MSCT) versus dual-source 64-slice CT (DSCT). The study was approved by the Medical Ethics Committee at Tongji Medical College of Huazhong University of Science and Technology. Eighty consecutive patients with stable heart rates lower than 70 bpm were enrolled. Forty patients were scanned with 128-MSCT, and the other 40 patients were scanned with DSCT. Two radiologists independently assessed the image quality in segments (diameter >1 mm) according to a three-point scale (1: excellent; 2: moderate; 3: insufficient). The CCTA radiation dose was calculated. Eighty patients with 526 segments in the 128-MSCT group and 544 segments in the DSCT group were evaluated. The image quality 1, 2 and 3 scores were 91.6%, 6.9% and 1.5%, respectively, for the 128-MSCT group and 97.6%, 1.7% and 0.7%, respectively, for the DSCT group, and there was a statistically significant inter-group difference (P ≤ 0.001). The effective doses were 3.0 mSv in the 128-MSCT group and 4.5 mSv in the DSCT group (P ≤ 0.001). Compared with DSCT, CCTA with prospectively triggered 128-MSCT had adequate image quality and a 33.3% lower radiation dose.

  6. Accuracy of lung nodule density on HRCT: analysis by PSF-based image simulation.

    PubMed

    Ohno, Ken; Ohkubo, Masaki; Marasinghe, Janaka C; Murao, Kohei; Matsumoto, Toru; Wada, Shinichi

    2012-11-08

    A computed tomography (CT) image simulation technique based on the point spread function (PSF) was applied to analyze the accuracy of CT-based clinical evaluations of lung nodule density. The PSF of the CT system was measured and used to perform the lung nodule image simulation. Then, the simulated image was resampled at intervals equal to the pixel size and the slice interval found in clinical high-resolution CT (HRCT) images. On those images, the nodule density was measured by placing a region of interest (ROI) commonly used for routine clinical practice, and comparing the measured value with the true value (a known density of object function used in the image simulation). It was quantitatively determined that the measured nodule density depended on the nodule diameter and the image reconstruction parameters (kernel and slice thickness). In addition, the measured density fluctuated, depending on the offset between the nodule center and the image voxel center. This fluctuation was reduced by decreasing the slice interval (i.e., with the use of overlapping reconstruction), leading to a stable density evaluation. Our proposed method of PSF-based image simulation accompanied with resampling enables a quantitative analysis of the accuracy of CT-based evaluations of lung nodule density. These results could potentially reveal clinical misreadings in diagnosis, and lead to more accurate and precise density evaluations. They would also be of value for determining the optimum scan and reconstruction parameters, such as image reconstruction kernels and slice thicknesses/intervals.

  7. Performance evaluation of a 64-slice CT system with z-flying focal spot.

    PubMed

    Flohr, T; Stierstorfer, K; Raupach, R; Ulzheimer, S; Bruder, H

    2004-12-01

    The meanwhile established generation of 16-slice CT systems enables routine sub-millimeter imaging at short breath-hold times. Clinical progress in the development of multidetector row CT (MDCT) technology beyond 16 slices can more likely be expected from further improvement in spatial and temporal resolution rather than from a mere increase in the speed of volume coverage. We present an evaluation of a recently introduced 64-slice CT system (SOMATOM Sensation 64, Siemens AG, Forchheim, Germany), which uses a periodic motion of the focal spot in longitudinal direction (z-flying focal spot) to double the number of simultaneously acquired slices. This technique acquires 64 overlapping 0.6 mm slices per rotation. The sampling scheme corresponds to that of a 64 x 0.3 mm detector, with the goal of improved longitudinal resolution and reduced spiral artifacts. After an introduction to the detector design, we discuss the basics of z-flying focal spot technology (z-Sharp). We present phantom and specimen scans for performance evaluation. The measured full width at half maximum (FWHM) of the thinnest spiral slice is 0.65 mm. All spiral slice widths are almost independent of the pitch, with deviations of less than 0.1 mm from the nominal value. Using a high-resolution bar pattern phantom (CATPHAN, Phantom Laboratories, Salem, NY), the longitudinal resolution can be demonstrated to be up to 15 lp/cm at the isocenter independent of the pitch, corresponding to a bar diameter of 0.33 mm. Longitudinal resolution is only slightly degraded for off-center locations. At a distance of 100 mm from the isocenter, 14 lp/cm can be resolved in the z-direction, corresponding to a bar diameter of 0.36 mm. Spiral "windmill" artifacts presenting as hyper- and hypodense structures around osseous edges are effectively reduced by the z-flying focal spot technique. Cardiac scanning benefits from the short gantry rotation time of 0.33 s, providing up to 83 ms temporal resolution with 2-segment ECG-gated reconstruction.

  8. SU-E-I-10: Investigation On Detectability of a Small Target for Different Slice Direction of a Volumetric Cone Beam CT Image

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, C; Han, M; Baek, J

    Purpose: To investigate the detectability of a small target for different slice direction of a volumetric cone beam CT image and its impact on dose reduction. Methods: Analytic projection data of a sphere object (1 mm diameter, 0.2/cm attenuation coefficient) were generated and reconstructed by FDK algorithm. In this work, we compared the detectability of the small target from four different backprojection Methods: hanning weighted ramp filter with linear interpolation (RECON 1), hanning weighted ramp filter with Fourier interpolation (RECON2), ramp filter with linear interpolation (RECON 3), and ramp filter with Fourier interpolation (RECON4), respectively. For noise simulation, 200 photonsmore » per measurement were used, and the noise only data were reconstructed using FDK algorithm. For each reconstructed volume, axial and coronal slice were extracted and detection-SNR was calculated using channelized Hotelling observer (CHO) with dense difference-of-Gaussian (D-DOG) channels. Results: Detection-SNR of coronal images varies for different backprojection methods, while axial images have a similar detection-SNR. Detection-SNR{sup 2} ratios of coronal and axial images in RECON1 and RECON2 are 1.33 and 1.15, implying that the coronal image has a better detectability than axial image. In other words, using coronal slices for the small target detection can reduce the patient dose about 33% and 15% compared to using axial slices in RECON 1 and RECON 2. Conclusion: In this work, we investigated slice direction dependent detectability of a volumetric cone beam CT image. RECON 1 and RECON 2 produced the highest detection-SNR, with better detectability in coronal slices. These results indicate that it is more beneficial to use coronal slice to improve detectability of a small target in a volumetric cone beam CT image. This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea, under the IT Consilience Creative Program (NIPA-2014-H0201-14-1002) supervised by the NIPA (National IT Industry Promotion Agency). Authors declares that s/he has no conflict of Interest in relation to the work in this abstract.« less

  9. Determination of split renal function using dynamic CT-angiography: preliminary results.

    PubMed

    Helck, Andreas; Schönermarck, Ulf; Habicht, Antje; Notohamiprodjo, Mike; Stangl, Manfred; Klotz, Ernst; Nikolaou, Konstantin; la Fougère, Christian; Clevert, Dirk Andrè; Reiser, Maximilian; Becker, Christoph

    2014-01-01

    To determine the feasibility of a dynamic CT angiography-protocol with regard to simultaneous assessment of renal anatomy and function. 7 healthy potential kidney donors (58 ± 7 years) underwent a dynamic computed tomography angiography (CTA) using a 128-slice CT-scanner with continuous bi-directional table movement, allowing the coverage of a scan range of 18 cm within 1.75 sec. Twelve scans of the kidneys (n = 14) were acquired every 3.5 seconds with the aim to simultaneously obtain CTA and renal function data. Image quality was assessed quantitatively (HU-measurements) and qualitatively (grade 1-4, 1 = best). The glomerular filtration rate (GFR) was calculated by a modified Patlak method and compared with the split renal function obtained with renal scintigraphy. Mean maximum attenuation was 464 ± 58 HU, 435 ± 48 HU and 277 ± 29 HU in the aorta, renal arteries, and renal veins, respectively. The abdominal aorta and all renal vessels were depicted excellently (grade 1.0). The image quality score for cortex differentiation was 1.6 ± 0.49, for the renal parenchyma 2.4 ± 0.49. GFR obtained from dynamic CTA correlated well with renal scintigraphy with a correlation coefficient of r = 0.84; P = 0.0002 (n = 14). The average absolute deviation was 1.6 mL/min. The average effective dose was 8.96 mSv. Comprehensive assessment of renal anatomy and function is feasible using a single dynamic CT angiography examination. The proposed protocol may help to improve management in case of asymmetric kidney function as well as to simplify evaluation of potential living kidney donors.

  10. Automatic 3D kidney segmentation based on shape constrained GC-OAAM

    NASA Astrophysics Data System (ADS)

    Chen, Xinjian; Summers, Ronald M.; Yao, Jianhua

    2011-03-01

    The kidney can be classified into three main tissue types: renal cortex, renal medulla and renal pelvis (or collecting system). Dysfunction of different renal tissue types may cause different kidney diseases. Therefore, accurate and efficient segmentation of kidney into different tissue types plays a very important role in clinical research. In this paper, we propose an automatic 3D kidney segmentation method which segments the kidney into the three different tissue types: renal cortex, medulla and pelvis. The proposed method synergistically combines active appearance model (AAM), live wire (LW) and graph cut (GC) methods, GC-OAAM for short. Our method consists of two main steps. First, a pseudo 3D segmentation method is employed for kidney initialization in which the segmentation is performed slice-by-slice via a multi-object oriented active appearance model (OAAM) method. An improved iterative model refinement algorithm is proposed for the AAM optimization, which synergistically combines the AAM and LW method. Multi-object strategy is applied to help the object initialization. The 3D model constraints are applied to the initialization result. Second, the object shape information generated from the initialization step is integrated into the GC cost computation. A multi-label GC method is used to segment the kidney into cortex, medulla and pelvis. The proposed method was tested on 19 clinical arterial phase CT data sets. The preliminary results showed the feasibility and efficiency of the proposed method.

  11. Multi-slice ultrasound image calibration of an intelligent skin-marker for soft tissue artefact compensation.

    PubMed

    Masum, M A; Pickering, M R; Lambert, A J; Scarvell, J M; Smith, P N

    2017-09-06

    In this paper, a novel multi-slice ultrasound (US) image calibration of an intelligent skin-marker used for soft tissue artefact compensation is proposed to align and orient image slices in an exact H-shaped pattern. Multi-slice calibration is complex, however, in the proposed method, a phantom based visual alignment followed by transform parameters estimation greatly reduces the complexity and provides sufficient accuracy. In this approach, the Hough Transform (HT) is used to further enhance the image features which originate from the image feature enhancing elements integrated into the physical phantom model, thus reducing feature detection uncertainty. In this framework, slice by slice image alignment and calibration are carried out and this provides manual ease and convenience. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Multi-modal anatomical optical coherence tomography and CT for in vivo dynamic upper airway imaging

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Santosh; Bu, Ruofei; Price, Hillel; Zdanski, Carlton; Oldenburg, Amy L.

    2017-02-01

    We describe a novel, multi-modal imaging protocol for validating quantitative dynamic airway imaging performed using anatomical Optical Coherence Tomography (aOCT). The aOCT system consists of a catheter-based aOCT probe that is deployed via a bronchoscope, while a programmable ventilator is used to control airway pressure. This setup is employed on the bed of a Siemens Biograph CT system capable of performing respiratory-gated acquisitions. In this arrangement the position of the aOCT catheter may be visualized with CT to aid in co-registration. Utilizing this setup we investigate multiple respiratory pressure parameters with aOCT, and respiratory-gated CT, on both ex vivo porcine trachea and live, anesthetized pigs. This acquisition protocol has enabled real-time measurement of airway deformation with simultaneous measurement of pressure under physiologically relevant static and dynamic conditions- inspiratory peak or peak positive airway pressures of 10-40 cm H2O, and 20-30 breaths per minute for dynamic studies. We subsequently compare the airway cross sectional areas (CSA) obtained from aOCT and CT, including the change in CSA at different stages of the breathing cycle for dynamic studies, and the CSA at different peak positive airway pressures for static studies. This approach has allowed us to improve our acquisition methodology and to validate aOCT measurements of the dynamic airway for the first time. We believe that this protocol will prove invaluable for aOCT system development and greatly facilitate translation of OCT systems for airway imaging into the clinical setting.

  13. Evaluation of portable CT scanners for otologic image-guided surgery

    PubMed Central

    Balachandran, Ramya; Schurzig, Daniel; Fitzpatrick, J Michael; Labadie, Robert F

    2011-01-01

    Purpose Portable CT scanners are beneficial for diagnosis in the intensive care unit, emergency room, and operating room. Portable fixed-base versus translating-base CT systems were evaluated for otologic image-guided surgical (IGS) applications based on geometric accuracy and utility for percutaneous cochlear implantation. Methods Five cadaveric skulls were fitted with fiducial markers and scanned using both a translating-base, 8-slice CT scanner (CereTom®) and a fixed-base, flat-panel, volume-CT (fpVCT) scanner (Xoran xCAT®). Images were analyzed for: (a) subjective quality (i.e. noise), (b) consistency of attenuation measurements (Hounsfield units) across similar tissue, and (c) geometric accuracy of fiducial marker positions. The utility of these scanners in clinical IGS cases was tested. Results Five cadaveric specimens were scanned using each of the scanners. The translating-base, 8-slice CT scanner had spatially consistent Hounsfield units, and the image quality was subjectively good. However, because of movement variations during scanning, the geometric accuracy of fiducial marker positions was low. The fixed-base, fpVCT system had high spatial resolution, but the images were noisy and had spatially inconsistent attenuation measurements; while the geometric representation of the fiducial markers was highly accurate. Conclusion Two types of portable CT scanners were evaluated for otologic IGS. The translating-base, 8-slice CT scanner provided better image quality than a fixed-base, fpVCT scanner. However, the inherent error in three-dimensional spatial relationships by the translating-based system makes it suboptimal for otologic IGS use. PMID:21779768

  14. [Performance evaluation of CT automatic exposure control on fast dual spiral scan].

    PubMed

    Niwa, Shinji; Hara, Takanori; Kato, Hideki; Wada, Yoichi

    2014-11-01

    The performance of individual computed tomography automatic exposure control (CT-AEC) is very important for radiation dose reduction and image quality equalization in CT examinations. The purpose of this study was to evaluate the performance of CT-AEC in conventional pitch mode (Normal spiral) and fast dual spiral scan (Flash spiral) in a 128-slice dual-source CT scanner. To evaluate the response properties of CT-AEC in the 128-slice DSCT scanner, a chest phantom was placed on the patient table and was fixed at the center of the field of view (FOV). The phantom scan was performed using Normal spiral and Flash spiral scanning. We measured the effective tube current time product (Eff. mAs) of simulated organs in the chest phantom along the longitudinal (z) direction, and the dose dependence (distribution) of in-plane locations for the respective scan modes was also evaluated by using a 100-mm-long pencil-type ionization chamber. The dose length product (DLP) was evaluated using the value displayed on the console after scanning. It was revealed that the response properties of CT-AEC in Normal spiral scanning depend on the respective pitches and Flash spiral scanning is independent of the respective pitches. In-plane radiation dose of Flash spiral was lower than that of Normal spiral. The DLP values showed a difference of approximately 1.7 times at the maximum. The results of our experiments provide information for adjustments for appropriate scanning parameters using CT-AEC in a 128-slice DSCT scanner.

  15. Evaluation of the effect of low tube voltage on radiation dose and image quality

    NASA Astrophysics Data System (ADS)

    Norhasrina Nik Din, Nik; Zainon, Rafidah; Rahman, A. T. Abdul

    2017-05-01

    Number of Computed Tomography (CT) examinations performed worldwide is increasing. In 2010, the FDA issued an initiative to reduce unnecessary radiation exposure from CT imaging. The aim of this study is to evaluate the effect of low tube voltage on radiation dose and image quality using CTDI phantom. The CTDI phantom was scanned with dual energy CT at 80 kV and 120 kV with the tube current from 150 mAs to 350 mAs. Pitch was 1.0 while slice thickness was 1 mm and 5 mm. Results show if mAs was increased, the SNR values also will be increased. The 5 mm slice thickness shows higher SNR value compared to 1 mm slice thickness. As the voltage and tube current increased, the amount of dose absorbed is also increased because current is proportional to photon flux.

  16. SU-E-J-13: Six Degree of Freedom Image Fusion Accuracy for Cranial Target Localization On the Varian Edge Stereotactic Radiosurgery System: Comparison Between 2D/3D and KV CBCT Image Registration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, H; Song, K; Chetty, I

    Purpose: To determine the 6 degree of freedom systematic deviations between 2D/3D and CBCT image registration with various imaging setups and fusion algorithms on the Varian Edge Linac. Methods: An anthropomorphic head phantom with radio opaque targets embedded was scanned with CT slice thicknesses of 0.8, 1, 2, and 3mm. The 6 DOF systematic errors were assessed by comparing 2D/3D (kV/MV with CT) with 3D/3D (CBCT with CT) image registrations with different offset positions, similarity measures, image filters, and CBCT slice thicknesses (1 and 2 mm). The 2D/3D registration accuracy of 51 fractions for 26 cranial SRS patients was alsomore » evaluated by analyzing 2D/3D pre-treatment verification taken after 3D/3D image registrations. Results: The systematic deviations of 2D/3D image registration using kV- kV, MV-kV and MV-MV image pairs were within ±0.3mm and ±0.3° for translations and rotations with 95% confidence interval (CI) for a reference CT with 0.8 mm slice thickness. No significant difference (P>0.05) on target localization was observed between 0.8mm, 1mm, and 2mm CT slice thicknesses with CBCT slice thicknesses of 1mm and 2mm. With 3mm CT slice thickness, both 2D/3D and 3D/3D registrations performed less accurately in longitudinal direction than thinner CT slice thickness (0.60±0.12mm and 0.63±0.07mm off, respectively). Using content filter and using similarity measure of pattern intensity instead of mutual information, improved the 2D/3D registration accuracy significantly (P=0.02 and P=0.01, respectively). For the patient study, means and standard deviations of residual errors were 0.09±0.32mm, −0.22±0.51mm and −0.07±0.32mm in VRT, LNG and LAT directions, respectively, and 0.12°±0.46°, −0.12°±0.39° and 0.06°±0.28° in RTN, PITCH, and ROLL directions, respectively. 95% CI of translational and rotational deviations were comparable to those in phantom study. Conclusion: 2D/3D image registration provided on the Varian Edge radiosurgery, 6 DOF-based system provides accurate target positioning for frameless image-guided cranial stereotactic radiosurgery.« less

  17. Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment.

    PubMed

    Erovic, Boban M; Chan, Harley H L; Daly, Michael J; Pothier, David D; Yu, Eugene; Coulson, Chris; Lai, Philip; Irish, Jonathan C

    2014-01-01

    Conventional computed tomography (CT) imaging is the standard imaging technique for temporal bone diseases, whereas cone-beam CT (CBCT) imaging is a very fast imaging tool with a significant less radiation dose compared with conventional CT. We hypothesize that a system for intraoperative cone-beam CT provides comparable image quality to diagnostic CT for identifying temporal bone anatomical landmarks in cadaveric specimens. Cross-sectional study. University tertiary care facility. Twenty cadaveric temporal bones were affixed into a head phantom and scanned with both a prototype cone-beam CT C-arm and multislice helical CT. Imaging performance was evaluated by 3 otologic surgeons and 1 head and neck radiologist. Participants were presented images in a randomized order and completed landmark identification questionnaires covering 21 structures. CBCT and multislice CT have comparable performance in identifying temporal structures. Three otologic surgeons indicated that CBCT provided statistically equivalent performance for 19 of 21 landmarks, with CBCT superior to CT for the chorda tympani and inferior for the crura of the stapes. Subgroup analysis showed that CBCT performed superiorly for temporal bone structures compared with CT. The radiologist rated CBCT and CT as statistically equivalent for 18 of 21 landmarks, with CT superior to CBCT for the crura of stapes, chorda tympani, and sigmoid sinus. CBCT provides comparable image quality to conventional CT for temporal bone anatomical sites in cadaveric specimens. Clinical applications of low-dose CBCT imaging in surgical planning, intraoperative guidance, and postoperative assessment are promising but require further investigation.

  18. Combined texture feature analysis of segmentation and classification of benign and malignant tumour CT slices.

    PubMed

    Padma, A; Sukanesh, R

    2013-01-01

    A computer software system is designed for the segmentation and classification of benign from malignant tumour slices in brain computed tomography (CT) images. This paper presents a method to find and select both the dominant run length and co-occurrence texture features of region of interest (ROI) of the tumour region of each slice to be segmented by Fuzzy c means clustering (FCM) and evaluate the performance of support vector machine (SVM)-based classifiers in classifying benign and malignant tumour slices. Two hundred and six tumour confirmed CT slices are considered in this study. A total of 17 texture features are extracted by a feature extraction procedure, and six features are selected using Principal Component Analysis (PCA). This study constructed the SVM-based classifier with the selected features and by comparing the segmentation results with the experienced radiologist labelled ground truth (target). Quantitative analysis between ground truth and segmented tumour is presented in terms of segmentation accuracy, segmentation error and overlap similarity measures such as the Jaccard index. The classification performance of the SVM-based classifier with the same selected features is also evaluated using a 10-fold cross-validation method. The proposed system provides some newly found texture features have an important contribution in classifying benign and malignant tumour slices efficiently and accurately with less computational time. The experimental results showed that the proposed system is able to achieve the highest segmentation and classification accuracy effectiveness as measured by jaccard index and sensitivity and specificity.

  19. Best single-slice location to measure visceral adipose tissue on paediatric CT scans and the relationship between anthropometric measurements, gender and VAT volume in children.

    PubMed

    O'Connor, Michelle; Ryan, John; Foley, Shane

    2015-10-01

    Visceral adipose tissue (VAT) is a significant risk factor for obesity-related metabolic diseases. This study investigates (1) the best single CT slice location for predicting total abdominal VAT volume in paediatrics and (2) the relationship between waist circumference (WC), sagittal diameter (SD), gender and VAT volume. A random sample of 130 paediatric abdomen CT scans, stratified according to age and gender, was collected. Three readers measured VAT area at each intervertebral level between T12 and S1 using ImageJ analysis (National Institute of Health, Bethesda, MD) software by thresholding -190 to -30 HU and manually segmenting VAT. Single-slice VAT measurements were correlated with total VAT volume to identify the most representative slice. WC and SD were measured at L3-L4 and L4-L5 slices, respectively. Regression analysis was used to evaluate WC, SD and gender as VAT volume predictors. Interviewer and intraviewer reliability were excellent (intraclass correlation coefficient = 0.99). Although VAT measured at multiple slices correlated strongly with abdominal VAT, only one slice in females at L2-L3 and two slices in males at L1-L2 and L5-S1 were strongly correlated across all age groups. Linear regression analysis showed that WC was strongly correlated with VAT volume (beta = 0.970, p < 0.001). Single-slice VAT measurements are highly reproducible. Measurements performed at L2-L3 in females and L1-L2 or L5-S1 in males were most representative of VAT. WC is indicative of VAT. VAT should be measured at L2-L3 in female children and at either L1-L2 or L5-S1 in males. WC is a strong indicator of VAT in children.

  20. Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?

    PubMed Central

    van Hamersvelt, R. W.; Budde, R. P. J.; de Jong, P. A.; Schilham, A. M. R.; Bos, C.; Breur, J. M. P. J.; Leiner, T.

    2017-01-01

    Background Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted. Purpose To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. Material and methods Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1), placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RF-spoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D sequence. Two blinded observers assessed stent lumen visibility (measured diameter/true diameter *100%) in the center and at the outlets of the stent. Reproducibility of diameter measurements was evaluated using the intraclass correlation coefficient for reliability and 95% limits of agreement for agreement analysis. Results Median stent lumen visibility was 88 (IQR 86–90)% with CT for all stents at both the center and outlets. With MRI, the T2-weighted turbo spin echo sequence was preferred which resulted in 82 (78–84%) stent lumen visibility. Interobserver reliability and agreement was good for both CT (ICC 0.997, mean difference -0.51 [-1.07–0.05] mm) and MRI measurements (ICC 0.951, mean difference -0.05 [-2.52 –-2.41] mm). Conclusion Good in-stent lumen visibility was achievable in this in-vitro study with both CT and MRI in different great vessel stents. Overall reliability was good with clinical acceptable limits of agreement for both CT and MRI. However, common conditions such as in-stent stenosis and associated aneurysms were not tested in this in-vitro study, limiting the value of the in-vitro study. PMID:28141852

  1. Imaging of pediatric great vessel stents: Computed tomography or magnetic resonance imaging?

    PubMed

    den Harder, A M; Suchá, D; van Hamersvelt, R W; Budde, R P J; de Jong, P A; Schilham, A M R; Bos, C; Breur, J M P J; Leiner, T

    2017-01-01

    Complications might occur after great vessel stent implantation in children. Therefore follow-up using imaging is warranted. To determine the optimal imaging modality for the assessment of stents used to treat great vessel obstructions in children. Five different large vessel stents were evaluated in an in-vitro setting. All stents were expanded to the maximal vendor recommended diameter (20mm; n = 4 or 10mm; n = 1), placed in an anthropomorphic chest phantom and imaged with a 256-slice CT-scanner. MRI images were acquired at 1.5T using a multi-slice T2-weighted turbo spin echo, an RF-spoiled three-dimensional T1-weighted Fast Field Echo and a balanced turbo field echo 3D sequence. Two blinded observers assessed stent lumen visibility (measured diameter/true diameter *100%) in the center and at the outlets of the stent. Reproducibility of diameter measurements was evaluated using the intraclass correlation coefficient for reliability and 95% limits of agreement for agreement analysis. Median stent lumen visibility was 88 (IQR 86-90)% with CT for all stents at both the center and outlets. With MRI, the T2-weighted turbo spin echo sequence was preferred which resulted in 82 (78-84%) stent lumen visibility. Interobserver reliability and agreement was good for both CT (ICC 0.997, mean difference -0.51 [-1.07-0.05] mm) and MRI measurements (ICC 0.951, mean difference -0.05 [-2.52 --2.41] mm). Good in-stent lumen visibility was achievable in this in-vitro study with both CT and MRI in different great vessel stents. Overall reliability was good with clinical acceptable limits of agreement for both CT and MRI. However, common conditions such as in-stent stenosis and associated aneurysms were not tested in this in-vitro study, limiting the value of the in-vitro study.

  2. Study of Image Quality From CT Scanner Multi-Detector by using Americans College of Radiology (ACR) Phantom

    NASA Astrophysics Data System (ADS)

    Mulyadin; Dewang, Syamsir; Abdullah, Bualkar; Tahir, Dahlang

    2018-03-01

    In this study, the image quality of CT scan using phantom American College of Radiology (ACR) was determined. Scanning multidetector CT is used to know the image quality parameters by using a solid phantom containing four modules and primarily from materials that are equivalent to water. Each module is 4 cm in diameter and 20 cm in diameter. There is white alignment marks painted white to reflect the alignment laser and there are also “HEAD”, “FOOT”, and “TOP” marks on the phantom to help align. This test obtains CT images of each module according to the routine inspection protocol of the head. Acceptance of image quality obtained for determination: CT Number Accuracy (CTN), CT Number Uniformity and Noise, Linearity CT Number, Slice Technique, Low Contrast Resolution and High Contrast Resolution represent image quality parameters. In testing CT Number Accuracy (CTN), CT Uniform number and Noise are in the range of tolerable values allowed. In the test, Linearity CT Number obtained correlation value above 0.99 is the relationship between electron density and CT Number. In a low contrast resolution test, the smallest contrast groups are visible. In contrast, the high resolution is seen up to 7 lp/cm. The quality of GE CT Scan is very high, as all the image quality tests obtained are within the tolerance brackets of values permitted by the Nuclear Power Control Agency (BAPETEN). Image quality test is a way to get very important information about the accuracy of snoring result by using phantom ACR.

  3. Influence of detector collimation on SNR in four different MDCT scanners using a reconstructed slice thickness of 5 mm.

    PubMed

    Verdun, F R; Noel, A; Meuli, R; Pachoud, M; Monnin, P; Valley, J-F; Schnyder, P; Denys, A

    2004-10-01

    The purpose of this paper is to compare the influence of detector collimation on the signal-to-noise ratio (SNR) for a 5.0 mm reconstructed slice thickness for four multi-detector row CT (MDCT) units. SNRs were measured on Catphan test phantom images from four MDCT units: a GE LightSpeed QX/I, a Marconi MX 8000, a Toshiba Aquilion and a Siemens Volume Zoom. Five-millimetre-thick reconstructed slices were obtained from acquisitions performed using detector collimations of 2.0-2.5 mm and 5.0 mm, 120 kV, a 360 degrees tube rotation time of 0.5 s, a wide range of mA and pitch values in the range of 0.75-0.85 and 1.25-1.5. For each set of acquisition parameters, a Wiener spectrum was also calculated. Statistical differences in SNR for the different acquisition parameters were evaluated using a Student's t-test (P<0.05). The influence of detector collimation on the SNR for a 5.0-mm reconstructed slice thickness is different for different MDCT scanners. At pitch values lower than unity, the use of a small detector collimation to produce 5.0-mm thick slices is beneficial for one unit and detrimental for another. At pitch values higher than unity, using a small detector collimation is beneficial for two units. One manufacturer uses different reconstruction filters when switching from a 2.5- to a 5.0-mm detector collimation. For a comparable reconstructed slice thickness, using a smaller detector collimation does not always reduce image noise. Thus, the impact of the detector collimation on image noise should be determined by standard deviation calculations, and also by assessing the power spectra of the noise. Copyright 2004 Springer-Verlag

  4. Ejection fraction in myocardial perfusion imaging assessed with a dynamic phantom: comparison between IQ-SPECT and LEHR.

    PubMed

    Hippeläinen, Eero; Mäkelä, Teemu; Kaasalainen, Touko; Kaleva, Erna

    2017-12-01

    Developments in single photon emission tomography instrumentation and reconstruction methods present a potential for decreasing acquisition times. One of such recent options for myocardial perfusion imaging (MPI) is IQ-SPECT. This study was motivated by the inconsistency in the reported ejection fraction (EF) and left ventricular (LV) volume results between IQ-SPECT and more conventional low-energy high-resolution (LEHR) collimation protocols. IQ-SPECT and LEHR quantitative results were compared while the equivalent number of iterations (EI) was varied. The end-diastolic (EDV) and end-systolic volumes (ESV) and the derived EF values were investigated. A dynamic heart phantom was used to produce repeatable ESVs, EDVs and EFs. Phantom performance was verified by comparing the set EF values to those measured from a gated multi-slice X-ray computed tomography (CT) scan (EF True ). The phantom with an EF setting of 45, 55, 65 and 70% was imaged with both IQ-SPECT and LEHR protocols. The data were reconstructed with different EI, and two commonly used clinical myocardium delineation software were used to evaluate the LV volumes. The CT verification showed that the phantom EF settings were repeatable and accurate with the EF True being within 1% point from the manufacture's nominal value. Depending on EI both MPI protocols can be made to produce correct EF estimates, but IQ-SPECT protocol produced on average 41 and 42% smaller EDV and ESV when compared to the phantom's volumes, while LEHR protocol underestimated volumes by 24 and 21%, respectively. The volume results were largely similar between the delineation methods used. The reconstruction parameters can greatly affect the volume estimates obtained from perfusion studies. IQ-SPECT produces systematically smaller LV volumes than the conventional LEHR MPI protocol. The volume estimates are also software dependent.

  5. Patient-specific calibration of cone-beam computed tomography data sets for radiotherapy dose calculations and treatment plan assessment.

    PubMed

    MacFarlane, Michael; Wong, Daniel; Hoover, Douglas A; Wong, Eugene; Johnson, Carol; Battista, Jerry J; Chen, Jeff Z

    2018-03-01

    In this work, we propose a new method of calibrating cone beam computed tomography (CBCT) data sets for radiotherapy dose calculation and plan assessment. The motivation for this patient-specific calibration (PSC) method is to develop an efficient, robust, and accurate CBCT calibration process that is less susceptible to deformable image registration (DIR) errors. Instead of mapping the CT numbers voxel-by-voxel with traditional DIR calibration methods, the PSC methods generates correlation plots between deformably registered planning CT and CBCT voxel values, for each image slice. A linear calibration curve specific to each slice is then obtained by least-squares fitting, and applied to the CBCT slice's voxel values. This allows each CBCT slice to be corrected using DIR without altering the patient geometry through regional DIR errors. A retrospective study was performed on 15 head-and-neck cancer patients, each having routine CBCTs and a middle-of-treatment re-planning CT (reCT). The original treatment plan was re-calculated on the patient's reCT image set (serving as the gold standard) as well as the image sets produced by voxel-to-voxel DIR, density-overriding, and the new PSC calibration methods. Dose accuracy of each calibration method was compared to the reference reCT data set using common dose-volume metrics and 3D gamma analysis. A phantom study was also performed to assess the accuracy of the DIR and PSC CBCT calibration methods compared with planning CT. Compared with the gold standard using reCT, the average dose metric differences were ≤ 1.1% for all three methods (PSC: -0.3%; DIR: -0.7%; density-override: -1.1%). The average gamma pass rates with thresholds 3%, 3 mm were also similar among the three techniques (PSC: 95.0%; DIR: 96.1%; density-override: 94.4%). An automated patient-specific calibration method was developed which yielded strong dosimetric agreement with the results obtained using a re-planning CT for head-and-neck patients. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  6. Dynamic updating atlas for heart segmentation with a nonlinear field-based model.

    PubMed

    Cai, Ken; Yang, Rongqian; Yue, Hongwei; Li, Lihua; Ou, Shanxing; Liu, Feng

    2017-09-01

    Segmentation of cardiac computed tomography (CT) images is an effective method for assessing the dynamic function of the heart and lungs. In the atlas-based heart segmentation approach, the quality of segmentation usually relies upon atlas images, and the selection of those reference images is a key step. The optimal goal in this selection process is to have the reference images as close to the target image as possible. This study proposes an atlas dynamic update algorithm using a scheme of nonlinear deformation field. The proposed method is based on the features among double-source CT (DSCT) slices. The extraction of these features will form a base to construct an average model and the created reference atlas image is updated during the registration process. A nonlinear field-based model was used to effectively implement a 4D cardiac segmentation. The proposed segmentation framework was validated with 14 4D cardiac CT sequences. The algorithm achieved an acceptable accuracy (1.0-2.8 mm). Our proposed method that combines a nonlinear field-based model and dynamic updating atlas strategies can provide an effective and accurate way for whole heart segmentation. The success of the proposed method largely relies on the effective use of the prior knowledge of the atlas and the similarity explored among the to-be-segmented DSCT sequences. Copyright © 2016 John Wiley & Sons, Ltd.

  7. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography.

    PubMed

    Lell, Michael M; May, Matthias; Deak, Paul; Alibek, Sedat; Kuefner, Michael; Kuettner, Axel; Köhler, Henrik; Achenbach, Stephan; Uder, Michael; Radkow, Tanja

    2011-02-01

    computed tomography (CT) is considered the method of choice in thoracic imaging for a variety of indications. Sedation is usually necessary to enable CT and to avoid deterioration of image quality because of patient movement in small children. We evaluated a new, subsecond high-pitch scan mode (HPM), which obviates the need of sedation and to hold the breath. a total of 60 patients were included in this study. 30 patients (mean age, 14 ± 17 month; range, 0-55 month) were examined with a dual source CT system in an HPM. Scan parameters were as follows: pitch = 3.0, 128 × 0.6 mm slice acquisition, 0.28 seconds gantry rotation time, ref. mAs adapted to the body weight (50-100 mAs) at 80 kV. Images were reconstructed with a slice thickness of 0.75 mm. None of the children was sedated for the CT examination and no breathing instructions were given. Image quality was assessed focusing on motion artifacts and delineation of the vascular structures and lung parenchyma. Thirty patients (mean age, 15 ± 17 month; range, 0-55 month) were examined under sedation on 2 different CT systems (10-slice CT, n = 18; 64-slice CT, n = 13 patients) in conventional pitch mode (CPM). Dose values were calculated from the dose length product provided in the patient protocol/dose reports, Monte Carlo simulations were performed to assess dose distribution for CPM and HPM. all scans were performed without complications. Image quality was superior with HPM, because of a significant reduction in motion artifacts, as compared to CPM with 10- and 64-slice CT. In the control group, artifacts were encountered at the level of the diaphragm (n = 30; 100%), the borders of the heart (n = 30; 100%), and the ribs (n = 20; 67%) and spine (n = 6; 20%), whereas motion artifacts were detected in the HPM-group only in 6 patients in the lung parenchyma next to the diaphragm or the heart (P < 0,001). Dose values were within the same range in the patient examinations (CPM, 1.9 ± 0.6 mSv; HPM, 1.9 ± 0.5 mSv; P = 0.95), although z-overscanning increased with the increase of detector width and pitch-value. high-pitch chest CT is a robust method to provide highest image quality making sedation or controlled ventilation for the examination of infants, small or uncooperative children unnecessary, whereas maintaining low radiation dose values.

  8. SparseCT: interrupted-beam acquisition and sparse reconstruction for radiation dose reduction

    NASA Astrophysics Data System (ADS)

    Koesters, Thomas; Knoll, Florian; Sodickson, Aaron; Sodickson, Daniel K.; Otazo, Ricardo

    2017-03-01

    State-of-the-art low-dose CT methods reduce the x-ray tube current and use iterative reconstruction methods to denoise the resulting images. However, due to compromises between denoising and image quality, only moderate dose reductions up to 30-40% are accepted in clinical practice. An alternative approach is to reduce the number of x-ray projections and use compressed sensing to reconstruct the full-tube-current undersampled data. This idea was recognized in the early days of compressed sensing and proposals for CT dose reduction appeared soon afterwards. However, no practical means of undersampling has yet been demonstrated in the challenging environment of a rapidly rotating CT gantry. In this work, we propose a moving multislit collimator as a practical incoherent undersampling scheme for compressed sensing CT and evaluate its application for radiation dose reduction. The proposed collimator is composed of narrow slits and moves linearly along the slice dimension (z), to interrupt the incident beam in different slices for each x-ray tube angle (θ). The reduced projection dataset is then reconstructed using a sparse approach, where 3D image gradients are employed to enforce sparsity. The effects of the collimator slits on the beam profile were measured and represented as a continuous slice profile. SparseCT was tested using retrospective undersampling and compared against commercial current-reduction techniques on phantoms and in vivo studies. Initial results suggest that SparseCT may enable higher performance than current-reduction, particularly for high dose reduction factors.

  9. Novel utilization of 3D technology and the hybrid operating theatre: Peri-operative assessment of posterior sterno-clavicular dislocation using cone beam CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crowhurst, James A; Campbell, Douglas; Whitby, Mark

    A patient with a medial and posterior dislocation of the right sterno-clavicular (SC) joint and displacement of the trachea and brachiocephalic artery by the medial head of the clavicle underwent general anaesthetic in the operating theatre for an open reduction procedure. The surgeon initially attempted a closed reduction, but this required imaging to check SC alignment. The patient was transferred to an adjacent hybrid operating theatre for imaging. Cone beam computed tomography (CBCT) was performed, which successfully demonstrated a significant reduction in the dislocation of the SC joint. The trachea and brachiocephalic artery were no longer compressed or displaced. Thismore » case study demonstrates an alternative to the patient being transferred to the medical imaging department for multi-slice CT. It also describes a novel use of the hybrid operating theatre and its CBCT capabilities.« less

  10. Research on radiation exposure from CT part of hybrid camera and diagnostic CT

    NASA Astrophysics Data System (ADS)

    Solný, Pavel; Zimák, Jaroslav

    2014-11-01

    Research on radiation exposure from CT part of hybrid camera in seven different Departments of Nuclear Medicine (DNM) was conducted. Processed data and effective dose (E) estimations led to the idea of phantom verification and comparison of absorbed doses and software estimation. Anonymous data from about 100 examinations from each DNM was gathered. Acquired data was processed and utilized by dose estimation programs (ExPACT, ImPACT, ImpactDose) with respect to the type of examination and examination procedures. Individual effective doses were calculated using enlisted programs. Preserving the same procedure in dose estimation process allows us to compare the resulting E. Some differences and disproportions during dose estimation led to the idea of estimated E verification. Consequently, two different sets of about 100 of TLD 100H detectors were calibrated for measurement inside the Aldersnon RANDO Anthropomorphic Phantom. Standard examination protocols were examined using a 2 Slice CT- part of hybrid SPECT/CT. Moreover, phantom exposure from body examining protocol for 32 Slice and 64 Slice diagnostic CT scanner was also verified. Absorbed dose (DT,R) measured using TLD detectors was compared with software estimation of equivalent dose HT values, computed by E estimation software. Though, only limited number of cavities for detectors enabled measurement within the regions of lung, liver, thyroid and spleen-pancreas region, some basic comparison is possible.

  11. Software Method for Computed Tomography Cylinder Data Unwrapping, Re-slicing, and Analysis

    NASA Technical Reports Server (NTRS)

    Roth, Don J.

    2013-01-01

    A software method has been developed that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography (CT). This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2D sheets (or flattened onion skins ) in addition to a series of top view slices and 3D volume rendering. The advantages of viewing the data in this fashion are as follows: (1) the use of standard and specialized image processing and analysis methods is facilitated having 2D array data versus a volume rendering; (2) accurate lateral dimensional analysis of flaws is possible in the unwrapped sheets versus volume rendering; (3) flaws in the part jump out at the inspector with the proper contrast expansion settings in the unwrapped sheets; and (4) it is much easier for the inspector to locate flaws in the unwrapped sheets versus top view slices for very thin cylinders. The method is fully automated and requires no input from the user except proper voxel dimension from the CT experiment and wall thickness of the part. The software is available in 32-bit and 64-bit versions, and can be used with binary data (8- and 16-bit) and BMP type CT image sets. The software has memory (RAM) and hard-drive based modes. The advantage of the (64-bit) RAM-based mode is speed (and is very practical for users of 64-bit Windows operating systems and computers having 16 GB or more RAM). The advantage of the hard-drive based analysis is one can work with essentially unlimited-sized data sets. Separate windows are spawned for the unwrapped/re-sliced data view and any image processing interactive capability. Individual unwrapped images and un -wrapped image series can be saved in common image formats. More information is available at http://www.grc.nasa.gov/WWW/OptInstr/ NDE_CT_CylinderUnwrapper.html.

  12. WE-G-18A-03: Cone Artifacts Correction in Iterative Cone Beam CT Reconstruction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, H; Folkerts, M; Jiang, S

    Purpose: For iterative reconstruction (IR) in cone-beam CT (CBCT) imaging, data truncation along the superior-inferior (SI) direction causes severe cone artifacts in the reconstructed CBCT volume images. Not only does it reduce the effective SI coverage of the reconstructed volume, it also hinders the IR algorithm convergence. This is particular a problem for regularization based IR, where smoothing type regularization operations tend to propagate the artifacts to a large area. It is our purpose to develop a practical cone artifacts correction solution. Methods: We found it is the missing data residing in the truncated cone area that leads to inconsistencymore » between the calculated forward projections and measured projections. We overcome this problem by using FDK type reconstruction to estimate the missing data and design weighting factors to compensate the inconsistency caused by the missing data. We validate the proposed methods in our multi-GPU low-dose CBCT reconstruction system on multiple patients' datasets. Results: Compared to the FDK reconstruction with full datasets, while IR is able to reconstruct CBCT images using a subset of projection data, the severe cone artifacts degrade overall image quality. For head-neck case under a full-fan mode, 13 out of 80 slices are contaminated. It is even more severe in pelvis case under half-fan mode, where 36 out of 80 slices are affected, leading to inferior soft-tissue delineation. By applying the proposed method, the cone artifacts are effectively corrected, with a mean intensity difference decreased from ∼497 HU to ∼39HU for those contaminated slices. Conclusion: A practical and effective solution for cone artifacts correction is proposed and validated in CBCT IR algorithm. This study is supported in part by NIH (1R01CA154747-01)« less

  13. The influence of focal spot blooming on high-contrast spatial resolution in CT imaging.

    PubMed

    Grimes, Joshua; Duan, Xinhui; Yu, Lifeng; Halaweish, Ahmed F; Haag, Nicole; Leng, Shuai; McCollough, Cynthia

    2015-10-01

    The objective of this work was to investigate focal spot blooming effects on the spatial resolution of CT images and to evaluate an x-ray tube that uses dynamic focal spot control for minimizing focal spot blooming. The influence of increasing tube current at a fixed tube potential of 80 kV on high-contrast spatial resolution of seven different CT scanner models (scanners A-G), including one scanner that uses dynamic focal spot control to reduce focal spot blooming (scanner A), was evaluated. Spatial resolution was assessed using a wire phantom for the modulation transfer function (MTF) calculation and a copper disc phantom for measuring the slice sensitivity profile (SSP). The impact of varying the tube potential was investigated on two scanner models (scanners A and B) by measuring the MTF and SSP and also by using the resolution bar pattern module of the ACR CT phantom. The phantoms were scanned at 70-150 kV on scanner A and 80-140 kV on scanner B, with tube currents from 100 mA up to the maximum tube current available on each scanner. The images were reconstructed using a slice thickness of 0.6 mm with both smooth and sharp kernels. Additionally, focal spot size at varying tube potentials and currents was directly measured using pinhole and slit camera techniques. Evaluation of the MTF and SSP data from the 7 CT scanner models evaluated demonstrated decreased focal spot blooming for newer scanners, as evidenced by decreasing deviations in MTF and SSP as tube current varied. For scanners A and B, where focal spot blooming effects as a function of tube potential were assessed, the spatial resolution variation in the axial plane was much smaller on scanner A compared to scanner B as tube potential and current changed. On scanner A, the 50% MTF never decreased by more than 2% from the 50% MTF measured at 100 mA. On scanner B, the 50% MTF decreased by as much as 19% from the 50% MTF measured at 100 mA. Assessments of the SSP, the bar patterns in the ACR phantom and the pinhole and slit camera measurements were consistent with the MTF calculations. Focal spot blooming has a noticeable effect on spatial resolution in CT imaging. The focal spot shaping technology of scanner A greatly reduced blooming effects.

  14. Reduction of irregular breathing artifacts in respiration-correlated CT images using a respiratory motion model.

    PubMed

    Hertanto, Agung; Zhang, Qinghui; Hu, Yu-Chi; Dzyubak, Oleksandr; Rimner, Andreas; Mageras, Gig S

    2012-06-01

    Respiration-correlated CT (RCCT) images produced with commonly used phase-based sorting of CT slices often exhibit discontinuity artifacts between CT slices, caused by cycle-to-cycle amplitude variations in respiration. Sorting based on the displacement of the respiratory signal yields slices at more consistent respiratory motion states and hence reduces artifacts, but missing image data (gaps) may occur. The authors report on the application of a respiratory motion model to produce an RCCT image set with reduced artifacts and without missing data. Input data consist of CT slices from a cine CT scan acquired while recording respiration by monitoring abdominal displacement. The model-based generation of RCCT images consists of four processing steps: (1) displacement-based sorting of CT slices to form volume images at 10 motion states over the cycle; (2) selection of a reference image without gaps and deformable registration between the reference image and each of the remaining images; (3) generation of the motion model by applying a principal component analysis to establish a relationship between displacement field and respiration signal at each motion state; (4) application of the motion model to deform the reference image into images at the 9 other motion states. Deformable image registration uses a modified fast free-form algorithm that excludes zero-intensity voxels, caused by missing data, from the image similarity term in the minimization function. In each iteration of the minimization, the displacement field in the gap regions is linearly interpolated from nearest neighbor nonzero intensity slices. Evaluation of the model-based RCCT examines three types of image sets: cine scans of a physical phantom programmed to move according to a patient respiratory signal, NURBS-based cardiac torso (NCAT) software phantom, and patient thoracic scans. Comparison in physical motion phantom shows that object distortion caused by variable motion amplitude in phase-based sorting is visibly reduced with model-based RCCT. Comparison of model-based RCCT to original NCAT images as ground truth shows best agreement at motion states whose displacement-sorted images have no missing slices, with mean and maximum discrepancies in lung of 1 and 3 mm, respectively. Larger discrepancies correlate with motion states having a larger number of missing slices in the displacement-sorted images. Artifacts in patient images at different motion states are also reduced. Comparison with displacement-sorted patient images as a ground truth shows that the model-based images closely reproduce the ground truth geometry at different motion states. Results in phantom and patient images indicate that the proposed method can produce RCCT image sets with reduced artifacts relative to phase-sorted images, without the gaps inherent in displacement-sorted images. The method requires a reference image at one motion state that has no missing data. Highly irregular breathing patterns can affect the method's performance, by introducing artifacts in the reference image (although reduced relative to phase-sorted images), or in decreased accuracy in the image prediction of motion states containing large regions of missing data. © 2012 American Association of Physicists in Medicine.

  15. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion.

    PubMed

    Guo, Zhi-Jun; Lin, Qiang; Liu, Hai-Tao; Lu, Jun-Ying; Zeng, Yan-Hong; Meng, Fan-Jie; Cao, Bin; Zi, Xue-Rong; Han, Shu-Ming; Zhang, Yu-Huan

    2013-09-01

    Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 × d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l × h × d): V = 0.56 × (l × h × d) + 39.44 (r = 0.92, P = 0.000). The 64-slice CT volume-rendering technique can accurately measure the volume in pleural effusion patients, and a linear regression equation can be used to estimate the volume of the free pleural effusion.

  16. Collateral Ventilation Quantification Using Xenon-Enhanced Dynamic Dual-Energy CT: Differences between Canine and Swine Models of Bronchial Occlusion.

    PubMed

    Park, Eun-Ah; Goo, Jin Mo; Park, Sang Joon; Lee, Chang Hyun; Park, Chang Min

    2015-01-01

    The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 ± 5.0 Hounsfield units [HU] vs. -2.8 ± 7.1 HU, p = 0.001; normalized percentage difference, -79.8 ± 1.8% vs. -5.4 ± 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction.

  17. Collateral Ventilation Quantification Using Xenon-Enhanced Dynamic Dual-Energy CT: Differences between Canine and Swine Models of Bronchial Occlusion

    PubMed Central

    Park, Eun-Ah; Park, Sang Joon; Lee, Chang Hyun; Park, Chang Min

    2015-01-01

    Objective The aim of this study was to evaluate whether the difference in the degree of collateral ventilation between canine and swine models of bronchial obstruction could be detected by using xenon-enhanced dynamic dual-energy CT. Materials and Methods Eight mongrel dogs and six pigs underwent dynamic dual-energy scanning of 64-slice dual-source CT at 12-second interval for 2-minute wash-in period (60% xenon) and at 24-second interval for 3-minute wash-out period with segmental bronchus occluded. Ventilation parameters of magnitude (A value), maximal slope, velocity (K value), and time-to-peak (TTP) enhancement were calculated from dynamic xenon maps using exponential function of Kety model. Results A larger difference in A value between parenchyma was observed in pigs than in dogs (absolute difference, -33.0 ± 5.0 Hounsfield units [HU] vs. -2.8 ± 7.1 HU, p = 0.001; normalized percentage difference, -79.8 ± 1.8% vs. -5.4 ± 16.4%, p = 0.0007). Mean maximal slopes in both periods in the occluded parenchyma only decreased in pigs (all p < 0.05). K values of both periods were not different (p = 0.892) in dogs. However, a significant (p = 0.027) difference was found in pigs in the wash-in period. TTP was delayed in the occluded parenchyma in pigs (p = 0.013) but not in dogs (p = 0.892). Conclusion Xenon-ventilation CT allows the quantification of collateral ventilation and detection of differences between canine and swine models of bronchial obstruction. PMID:25995696

  18. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    NASA Astrophysics Data System (ADS)

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2014-03-01

    Hyperpolarized metabolic imaging is a growing field that has provided a new tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model.

  19. In vivo single-shot 13C spectroscopic imaging of hyperpolarized metabolites by spatiotemporal encoding

    PubMed Central

    Schmidt, Rita; Laustsen, Christoffer; Dumez, Jean-Nicolas; Kettunen, Mikko I.; Serrao, Eva M.; Marco-Rius, Irene; Brindle, Kevin M.; Ardenkjaer-Larsen, Jan Henrik; Frydman, Lucio

    2016-01-01

    Hyperpolarized metabolic imaging is a growing field that has provided a tool for analyzing metabolism, particularly in cancer. Given the short life times of the hyperpolarized signal, fast and effective spectroscopic imaging methods compatible with dynamic metabolic characterizations are necessary. Several approaches have been customized for hyperpolarized 13C MRI, including CSI with a center-out k-space encoding, EPSI, and spectrally selective pulses in combination with spiral EPI acquisitions. Recent studies have described the potential of single-shot alternatives based on spatiotemporal encoding (SPEN) principles, to derive chemical-shift images within a sub-second period. By contrast to EPSI, SPEN does not require oscillating acquisition gradients to deliver chemical-shift information: its signal encodes both spatial as well as chemical shift information, at no extra cost in experimental complexity. SPEN MRI sequences with slice-selection and arbitrary excitation pulses can also be devised, endowing SPEN with the potential to deliver single-shot multi-slice chemical shift images, with a temporal resolution required for hyperpolarized dynamic metabolic imaging. The present work demonstrates this with initial in vivo results obtained from SPEN-based imaging of pyruvate and its metabolic products, after injection of hyperpolarized [1-13C]pyruvate. Multi-slice chemical-shift images of healthy rats were obtained at 4.7 T in the region of the kidney, and 4D (2D spatial, 1D spectral, 1D temporal) data sets were obtained at 7 T from a murine lymphoma tumor model. PMID:24486720

  20. Computed Tomography Scanner Productivity and Entry-Level Models in the Global Market

    PubMed Central

    Almeida, R. M. V. R.

    2017-01-01

    Objective This study evaluated the productivity of computed tomography (CT) models and characterized their simplest (entry-level) models' supply in the world market. Methods CT exam times were measured in eight health facilities in the state of Rio de Janeiro, Brazil. Exams were divided into six stages: (1) arrival of patient records to the examination room; (2) patient arrival; (3) patient positioning; (4) data input prior to exam; (5) image acquisition; and (6) patient departure. CT exam productivity was calculated by dividing the total weekly working time by the total exam time for each model. Additionally, an internet search identified full-body CT manufacturers and their offered entry-level models. Results The time durations of 111 CT exams were obtained. Differences among average exam times were not large, and they were mainly due to stages not directly related to data acquisition or image reconstruction. The survey identified that most manufacturers offer 2- to 4-slice models for Asia, South America, and Africa, and one offers single-slice models (Asia). In the USA, two manufacturers offer models below 16-slice. Conclusion Productivity gains are not linearly related to “slice” number. It is suggested that the use of “shareable platforms” could make CTs cheaper, increasing their availability. PMID:29093804

  1. Assessment of Risk Reduction for Lymphedema Following Sentinel Lymph Noded Guided Surgery for Primary Breast Cancer

    DTIC Science & Technology

    2006-10-01

    patients with breast cancer underwent scanning with a hybrid camera which combined a dual-head SPECT camera and a low-dose, single slice CT scanner , (GE...investigated a novel approach which combines the output of a dual-head SPECT camera and a low-dose, single slice CT scanner , (GE Hawkeye®). This... scanner , (Hawkeye®, GE Medical system) is attempted in this study. This device is widely available in cardiology community and has the potential to

  2. A z-gradient array for simultaneous multi-slice excitation with a single-band RF pulse.

    PubMed

    Ertan, Koray; Taraghinia, Soheil; Sadeghi, Alireza; Atalar, Ergin

    2018-07-01

    Multi-slice radiofrequency (RF) pulses have higher specific absorption rates, more peak RF power, and longer pulse durations than single-slice RF pulses. Gradient field design techniques using a z-gradient array are investigated for exciting multiple slices with a single-band RF pulse. Two different field design methods are formulated to solve for the required current values of the gradient array elements for the given slice locations. The method requirements are specified, optimization problems are formulated for the minimum current norm and an analytical solution is provided. A 9-channel z-gradient coil array driven by independent, custom-designed gradient amplifiers is used to validate the theory. Performance measures such as normalized slice thickness error, gradient strength per unit norm current, power dissipation, and maximum amplitude of the magnetic field are provided for various slice locations and numbers of slices. Two and 3 slices are excited by a single-band RF pulse in simulations and phantom experiments. The possibility of multi-slice excitation with a single-band RF pulse using a z-gradient array is validated in simulations and phantom experiments. Magn Reson Med 80:400-412, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  3. Lesion Detection in CT Images Using Deep Learning Semantic Segmentation Technique

    NASA Astrophysics Data System (ADS)

    Kalinovsky, A.; Liauchuk, V.; Tarasau, A.

    2017-05-01

    In this paper, the problem of automatic detection of tuberculosis lesion on 3D lung CT images is considered as a benchmark for testing out algorithms based on a modern concept of Deep Learning. For training and testing of the algorithms a domestic dataset of 338 3D CT scans of tuberculosis patients with manually labelled lesions was used. The algorithms which are based on using Deep Convolutional Networks were implemented and applied in three different ways including slice-wise lesion detection in 2D images using semantic segmentation, slice-wise lesion detection in 2D images using sliding window technique as well as straightforward detection of lesions via semantic segmentation in whole 3D CT scans. The algorithms demonstrate superior performance compared to algorithms based on conventional image analysis methods.

  4. MRI vs. CT for orthodontic applications: comparison of two MRI protocols and three CT (multislice, cone-beam, industrial) technologies.

    PubMed

    Detterbeck, Andreas; Hofmeister, Michael; Hofmann, Elisabeth; Haddad, Daniel; Weber, Daniel; Hölzing, Astrid; Zabler, Simon; Schmid, Matthias; Hiller, Karl-Heinz; Jakob, Peter; Engel, Jens; Hiller, Jochen; Hirschfelder, Ursula

    2016-07-01

    To examine the relative usefulness and suitability of magnetic resonance imaging (MRI) in daily clinical practice as compared to various technologies of computed tomography (CT) in addressing questions of orthodontic interest. Three blinded raters evaluated 2D slices and 3D reconstructions created from scans of two pig heads. Five imaging modalities were used, including three CT technologies-multislice (MSCT), cone-beam CT (CBCT), and industrial (µCT)-and two MRI protocols with different scan durations. Defined orthodontic parameters were rated one by one on the 2D slices and the 3D reconstructions, followed by final overall ratings for each modality. A mixed linear model was used for statistical analysis. Based on the 2D slices, the parameter of visualizing tooth-germ topography did not yield any significantly different ratings for MRI versus any of the CT scans. While some ratings for the other parameters did involve significant differences, how these should be interpreted depends greatly on the relevance of each parameter. Based on the 3D reconstructions, the only significant difference between technologies was noted for the parameter of visualizing root-surface morphology. Based on the final overall ratings, the imaging performance of the standard MRI protocol was noninferior to the performance of the three CT technologies. On comparing the imaging performance of MRI and CT scans, it becomes clear that MRI has a huge potential for applications in daily clinical practice. Given its additional benefits of a good contrast ratio and complete absence of ionizing radiation, further studies are needed to explore this clinical potential in greater detail.

  5. A novel scatter separation method for multi-energy x-ray imaging

    NASA Astrophysics Data System (ADS)

    Sossin, A.; Rebuffel, V.; Tabary, J.; Létang, J. M.; Freud, N.; Verger, L.

    2016-06-01

    X-ray imaging coupled with recently emerged energy-resolved photon counting detectors provides the ability to differentiate material components and to estimate their respective thicknesses. However, such techniques require highly accurate images. The presence of scattered radiation leads to a loss of spatial contrast and, more importantly, a bias in radiographic material imaging and artefacts in computed tomography (CT). The aim of the present study was to introduce and evaluate a partial attenuation spectral scatter separation approach (PASSSA) adapted for multi-energy imaging. This evaluation was carried out with the aid of numerical simulations provided by an internal simulation tool, Sindbad-SFFD. A simplified numerical thorax phantom placed in a CT geometry was used. The attenuation images and CT slices obtained from corrected data showed a remarkable increase in local contrast and internal structure detectability when compared to uncorrected images. Scatter induced bias was also substantially decreased. In terms of quantitative performance, the developed approach proved to be quite accurate as well. The average normalized root-mean-square error between the uncorrected projections and the reference primary projections was around 23%. The application of PASSSA reduced this error to around 5%. Finally, in terms of voxel value accuracy, an increase by a factor  >10 was observed for most inspected volumes-of-interest, when comparing the corrected and uncorrected total volumes.

  6. SU-F-I-31: Reproducibility of An Automatic Exposure Control Technique in the Low-Dose CT Scan of Cardiac PET/CT Exams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, M; Rosica, D; Agarwal, V

    Purpose: Two separate low-dose CT scans are usually performed for attenuation correction of rest and stress N-13 ammonia PET/CT myocardial perfusion imaging (PET/CT). We utilize an automatic exposure control (AEC) technique to reduce CT radiation dose while maintaining perfusion image quality. Our goal is to assess the reproducibility of displayed CT dose index (CTDI) on same-day repeat CT scans (CT1 and CT2). Methods: Retrospectively, we reviewed CT images of PET/CT studies performed on the same day. Low-dose CT utilized AEC technique based on tube current modulation called Smart-mA. The scan parameters were 64 × 0.625mm collimation, 5mm slice thickness, 0.984more » pitch, 1-sec rotation time, 120 kVp, and noise index 50 with a range of 10–200 mA. The scan length matched with PET field of view (FOV) with the heart near the middle of axial FOV. We identified the reference slice number (RS) for an anatomical landmark (carina) and used it to estimate axial shift between two CTs. For patient size, we measured an effective diameter on the reference slice. The effect of patient positioning to CTDI was evaluated using the table height. We calculated the absolute percent difference of the CTDI (%diff) for estimation of the reproducibility. Results: The study included 168 adults with an average body-mass index of 31.72 ± 9.10 (kg/m{sup 2}) and effective diameter was 32.72 ± 4.60 cm. The average CTDI was 1.95 ± 1.40 mGy for CT1 and 1.97 ± 1.42mGy for CT2. The mean %diff was 7.8 ± 6.8%. Linear regression analysis showed a significant correlation between the table height and %diff CTDI. (r=0.82, p<0.001) Conclusion: We have shown for the first time in human subjects, using two same-day CT images, that the AEC technique in low-dose CT is reproducible within 10% and significantly depends on the patient centering.« less

  7. Validation of multi-detector computed tomography as a non-invasive method for measuring ovarian volume in macaques (Macaca fascicularis).

    PubMed

    Jones, Jeryl C; Appt, Susan E; Werre, Stephen R; Tan, Joshua C; Kaplan, Jay R

    2010-06-01

    The purpose of this study was to validate low radiation dose, contrast-enhanced, multi-detector computed tomography (MDCT) as a non-invasive method for measuring ovarian volume in macaques. Computed tomography scans of four known-volume phantoms and nine mature female cynomolgus macaques were acquired using a previously described, low radiation dose scanning protocol, intravenous contrast enhancement, and a 32-slice MDCT scanner. Immediately following MDCT, ovaries were surgically removed and the ovarian weights were measured. The ovarian volumes were determined using water displacement. A veterinary radiologist who was unaware of actual volumes measured ovarian CT volumes three times, using a laptop computer, pen display tablet, hand-traced regions of interest, and free image analysis software. A statistician selected and performed all tests comparing the actual and CT data. Ovaries were successfully located in all MDCT scans. The iliac arteries and veins, uterus, fallopian tubes, cervix, ureters, urinary bladder, rectum, and colon were also consistently visualized. Large antral follicles were detected in six ovaries. Phantom mean CT volume was 0.702+/-SD 0.504 cc and the mean actual volume was 0.743+/-SD 0.526 cc. Ovary mean CT volume was 0.258+/-SD 0.159 cc and mean water displacement volume was 0.257+/-SD 0.145 cc. For phantoms, the mean coefficient of variation for CT volumes was 2.5%. For ovaries, the least squares mean coefficient of variation for CT volumes was 5.4%. The ovarian CT volume was significantly associated with actual ovarian volume (ICC coefficient 0.79, regression coefficient 0.5, P=0.0006) and the actual ovarian weight (ICC coefficient 0.62, regression coefficient 0.6, P=0.015). There was no association between the CT volume accuracy and mean ovarian CT density (degree of intravenous contrast enhancement), and there was no proportional or fixed bias in the CT volume measurements. Findings from this study indicate that MDCT is a valid non-invasive technique for measuring the ovarian volume in macaques.

  8. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators.

    PubMed

    Chamberland, Simon; Yang, Helen H; Pan, Michael M; Evans, Stephen W; Guan, Sihui; Chavarha, Mariya; Yang, Ying; Salesse, Charleen; Wu, Haodi; Wu, Joseph C; Clandinin, Thomas R; Toth, Katalin; Lin, Michael Z; St-Pierre, François

    2017-07-27

    Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila . These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision.

  9. Automatic liver volume segmentation and fibrosis classification

    NASA Astrophysics Data System (ADS)

    Bal, Evgeny; Klang, Eyal; Amitai, Michal; Greenspan, Hayit

    2018-02-01

    In this work, we present an automatic method for liver segmentation and fibrosis classification in liver computed-tomography (CT) portal phase scans. The input is a full abdomen CT scan with an unknown number of slices, and the output is a liver volume segmentation mask and a fibrosis grade. A multi-stage analysis scheme is applied to each scan, including: volume segmentation, texture features extraction and SVM based classification. Data contains portal phase CT examinations from 80 patients, taken with different scanners. Each examination has a matching Fibroscan grade. The dataset was subdivided into two groups: first group contains healthy cases and mild fibrosis, second group contains moderate fibrosis, severe fibrosis and cirrhosis. Using our automated algorithm, we achieved an average dice index of 0.93 ± 0.05 for segmentation and a sensitivity of 0.92 and specificity of 0.81for classification. To the best of our knowledge, this is a first end to end automatic framework for liver fibrosis classification; an approach that, once validated, can have a great potential value in the clinic.

  10. Optimization of abdominal fat quantification on CT imaging through use of standardized anatomic space: A novel approach

    PubMed Central

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.

    2014-01-01

    Purpose: The quantification of body fat plays an important role in the study of numerous diseases. It is common current practice to use the fat area at a single abdominal computed tomography (CT) slice as a marker of the body fat content in studying various disease processes. This paper sets out to answer three questions related to this issue which have not been addressed in the literature. At what single anatomic slice location do the areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) estimated from the slice correlate maximally with the corresponding fat volume measures? How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? Are there combinations of multiple slices (not necessarily contiguous) whose area sum correlates better with volume than does single slice area with volume? Methods: The authors propose a novel strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. The authors then study the volume-to-area correlations and determine where they become maximal. To address the third issue, the authors carry out similar correlation studies by utilizing two and three slices for calculating area sum. Results: Based on 50 abdominal CT data sets, the proposed mapping achieves significantly improved consistency of anatomic localization compared to current practice. Maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized currently for single slice area estimation as a marker. Conclusions: The maximum area-to-volume correlation achieved is quite high, suggesting that it may be reasonable to estimate body fat by measuring the area of fat from a single anatomic slice at the site of maximum correlation and use this as a marker. The site of maximum correlation is not at L4-L5 as commonly assumed, but is more superiorly located at T12-L1 for SAT and at L3-L4 for VAT. Furthermore, the optimal anatomic locations for SAT and VAT estimation are not the same, contrary to common assumption. The proposed standardized space mapping achieves high consistency of anatomic localization by accurately managing nonlinearities in the relationships among landmarks. Multiple slices achieve greater improvement in correlation for VAT than for SAT. The optimal locations in the case of multiple slices are not contiguous. PMID:24877839

  11. Optimization of abdominal fat quantification on CT imaging through use of standardized anatomic space: A novel approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Yubing; Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Torigian, Drew A.

    Purpose: The quantification of body fat plays an important role in the study of numerous diseases. It is common current practice to use the fat area at a single abdominal computed tomography (CT) slice as a marker of the body fat content in studying various disease processes. This paper sets out to answer three questions related to this issue which have not been addressed in the literature. At what single anatomic slice location do the areas of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) estimated from the slice correlate maximally with the corresponding fat volume measures? How doesmore » one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? Are there combinations of multiple slices (not necessarily contiguous) whose area sum correlates better with volume than does single slice area with volume? Methods: The authors propose a novel strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. The authors then study the volume-to-area correlations and determine where they become maximal. To address the third issue, the authors carry out similar correlation studies by utilizing two and three slices for calculating area sum. Results: Based on 50 abdominal CT data sets, the proposed mapping achieves significantly improved consistency of anatomic localization compared to current practice. Maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized currently for single slice area estimation as a marker. Conclusions: The maximum area-to-volume correlation achieved is quite high, suggesting that it may be reasonable to estimate body fat by measuring the area of fat from a single anatomic slice at the site of maximum correlation and use this as a marker. The site of maximum correlation is not at L4-L5 as commonly assumed, but is more superiorly located at T12-L1 for SAT and at L3-L4 for VAT. Furthermore, the optimal anatomic locations for SAT and VAT estimation are not the same, contrary to common assumption. The proposed standardized space mapping achieves high consistency of anatomic localization by accurately managing nonlinearities in the relationships among landmarks. Multiple slices achieve greater improvement in correlation for VAT than for SAT. The optimal locations in the case of multiple slices are not contiguous.« less

  12. Multislice CT imaging of ruptured left sinus of Valsalva aneurysm with fistulous track between left sinus and right atrium.

    PubMed

    Pampapati, Praveenkumar; Rao, Hejmadi Tati Gururaj; Radhesh, Srinivasan; Anand, Hejjaji Krishnamurthy; Praveen, Lokkur Srinivasamurthy

    2011-01-01

    Sinus of valsalva aneurysm is a rare condition arising from any of the three aortic sinuses. Among them, an aneurysm arising from the left coronary sinus is the rarest. Most of these cases were earlier diagnosed using echocardiography and conventional angiography. But with the availability of advanced imaging modalities like 64 slice cardiac CT and MR modalities, this condition can be accurately assessed noninvasively. We report a case of ruptured aneurysm originating from the left coronary sinus with a long windsock type of fistulous track between the aneurysm and right atrium evaluated by 64 slice cardiac CT imaging. This was later confirmed perioperatively.

  13. Nonlinear histogram binning for quantitative analysis of lung tissue fibrosis in high-resolution CT data

    NASA Astrophysics Data System (ADS)

    Zavaletta, Vanessa A.; Bartholmai, Brian J.; Robb, Richard A.

    2007-03-01

    Diffuse lung diseases, such as idiopathic pulmonary fibrosis (IPF), can be characterized and quantified by analysis of volumetric high resolution CT scans of the lungs. These data sets typically have dimensions of 512 x 512 x 400. It is too subjective and labor intensive for a radiologist to analyze each slice and quantify regional abnormalities manually. Thus, computer aided techniques are necessary, particularly texture analysis techniques which classify various lung tissue types. Second and higher order statistics which relate the spatial variation of the intensity values are good discriminatory features for various textures. The intensity values in lung CT scans range between [-1024, 1024]. Calculation of second order statistics on this range is too computationally intensive so the data is typically binned between 16 or 32 gray levels. There are more effective ways of binning the gray level range to improve classification. An optimal and very efficient way to nonlinearly bin the histogram is to use a dynamic programming algorithm. The objective of this paper is to show that nonlinear binning using dynamic programming is computationally efficient and improves the discriminatory power of the second and higher order statistics for more accurate quantification of diffuse lung disease.

  14. Bidirectional segmentation of prostate capsule from ultrasound volumes: an improved strategy

    NASA Astrophysics Data System (ADS)

    Wei, Liyang; Narayanan, Ramkrishnan; Kumar, Dinesh; Fenster, Aaron; Barqawi, Albaha; Werahera, Priya; Crawford, E. David; Suri, Jasjit S.

    2008-03-01

    Prostate volume is an indirect indicator for several prostate diseases. Volume estimation is a desired requirement during prostate biopsy, therapy and clinical follow up. Image segmentation is thus necessary. Previously, discrete dynamic contour (DDC) was implemented in orthogonal unidirectional on the slice-by-slice basis for prostate boundary estimation. This suffered from the glitch that it needed stopping criteria during the propagation of segmentation procedure from slice-to-slice. To overcome this glitch, axial DDC was implemented and this suffered from the fact that central axis never remains fixed and wobbles during propagation of segmentation from slice-to-slice. The effect of this was a multi-fold reconstructed surface. This paper presents a bidirectional DDC approach, thereby removing the two glitches. Our bidirectional DDC protocol was tested on a clinical dataset on 28 3-D ultrasound image volumes acquired using side fire Philips transrectal ultrasound. We demonstrate the orthogonal bidirectional DDC strategy achieved the most accurate volume estimation compared with previously published orthogonal unidirectional DDC and axial DDC methods. Compared to the ground truth, we show that the mean volume estimation errors were: 18.48%, 9.21% and 7.82% for unidirectional, axial and bidirectional DDC methods, respectively. The segmentation architecture is implemented in Visual C++ in Windows environment.

  15. The pattern of renal vessels in live related potential donors pool. A multislice computed tomography angiography review.

    PubMed

    Mishra, Anuj; Ehtuish, Ehtuish F

    2006-06-01

    To assess the renal vessel anatomy, compare the findings with the perioperative findings, to determine the sensitivity of multislice computed tomography (CT) angiography in the work-up of live potential donors and to discuss and compare the results of the present study with the reported results using single slice CT, magnetic resonance (MRI) and conventional angiography (CA). Retrospective analysis of the angiographic data of 118 of prospective live related kidney donors was carried out from October 2004 to August 2005 at the National Organ Transplant Centre, Tripoli Central Hospital, Libya. All donors underwent renal angiography on multislice (16-slice) CT scan using 80 cc intravenous contrast with 1.25 mm slice thickness followed by maximum intensity projection (MIP) and volume rendering techniques (VRT) post-processing algorithms. The number of vessels, vessel bifurcation, vessel morphology and venous anatomy were analyzed and the findings were compared with the surgical findings. Multislice spiral CT angiography (MSCTA) showed clear delineation of the main renal arteries in all donors with detailed vessel morphology. The study revealed 100% sensitivity in detection of accessory renal vessels, with an overall incidence of 26.7%, which is the most common distribution in the parahilar region. The present study showed 100% sensitivity in the visualization and detection of main and accessory renal vessels. These results were comparable with conventional angiography which has so far been considered as the gold standard and were found superior in specificity and accuracy to the use of single slice CT (SSCT) and MR in the angiographic work-up of live renal donors. Due to improved detection of accessory vessels less than 2 mm in diameter, a higher incidence of aberrant vessels was seen on the right side as has been suggested so far.

  16. Can clinical CT data improve forensic reconstruction?

    PubMed

    Schuh, P; Scheurer, E; Fritz, K; Pavlic, M; Hassler, E; Rienmüller, R; Yen, K

    2013-05-01

    In accidents resulting in severe injuries, a clinical forensic examination is generally abandoned in the initial phase due to high-priority clinical needs. However, in many cases, data from clinical computed tomography (CT) examinations are available. The goals of this prospective study were (a) to evaluate clinical CT data as a basis for forensic reconstruction of the sequence of events, (b) to assess if forensic radiological follow-up reading improves the forensic diagnostic benefit compared to the written clinical radiological reports, and (c) to evaluate if full data storage including additional reconstructed 0.6-mm slices enhances forensic analysis. Clinical CT data of 15 living individuals with imaging of at least the head, thorax, and abdomen following polytrauma were examined regarding the forensic evaluation of the sequence of events. Additionally, 0.6-mm slices and 3D images were reconstructed for forensic purposes and used for the evaluation. At the forensic radiological readings, additional traumatic findings were observed in ten of the 15 patients. The main weakness of the clinical reports was that they were not detailed enough, particularly regarding the localization of injuries and description of wound morphology. In seven cases, however, forensic conclusions were possible on the basis of the written clinical reports, whereas in five cases forensic reconstruction required specific follow-up reading. The additional 0.6-mm slices were easily available and with improved 3D image quality and forensic diagnostics. In conclusion, the use of clinical CT data can considerably support forensic expertise regarding reconstruction issues. Forensic follow-up reading as well as the use of additional thin slices for 3D analysis can further improve its benefit for forensic reconstruction purposes.

  17. CT in your clinical practice.

    PubMed

    Kohs, Gregory J; Legunn, Joel

    2004-09-01

    This report presents the results of a survey of 500 U.S.-based radiologists on critical issues associated with the use of CT. The survey represents a collaboration between the American Roentgen Ray Society (ARRS) and Philips Medical Systems. An outside firm, ICR/International Communications Research, conducted the survey. Survey questions were designed to elicit opinions about the past, present and future of CT, especially MDCT imaging, in various practice environments. Most radiologists (69%) indicated that CT has had a major influence on their specialty, more than any other medical advance, and that they expected this influence to increase. The idea that MDCT radically improves diagnostic quality was not universal, and opinions were mixed about the expansion of CT into new applications such as cardiac imaging. A number of concerns were attributed to the advent of MDCT and expansion in the number of slices-a phenomenon commonly referred to as a "slice war." These concerns revolved around managing the data explosion, excessive patient irradiation, bottlenecks in patient throughput, the ability of CT staffs to keep up with the rapidly evolving technology and the costs of keeping up with these changes. Nevertheless, most radiologists (78%) who were surveyed indicated that they used MDCT and that MDCT has had a positive effect on their practices in the past five years (90%); most (77%) expected that the number of slices would increase by two to 10 times the current level. Fifty-six percent said that they would be adding one to two scanners to their practices in the next five years.

  18. Quantitative CT imaging for adipose tissue analysis in mouse model of obesity

    NASA Astrophysics Data System (ADS)

    Marchadier, A.; Vidal, C.; Tafani, J.-P.; Ordureau, S.; Lédée, R.; Léger, C.

    2011-03-01

    In obese humans CT imaging is a validated method for follow up studies of adipose tissue distribution and quantification of visceral and subcutaneous fat. Equivalent methods in murine models of obesity are still lacking. Current small animal micro-CT involves long-term X-ray exposure precluding longitudinal studies. We have overcome this limitation by using a human medical CT which allows very fast 3D imaging (2 sec) and minimal radiation exposure. This work presents novel methods fitted to in vivo investigations of mice model of obesity, allowing (i) automated detection of adipose tissue in abdominal regions of interest, (ii) quantification of visceral and subcutaneous fat. For each mouse, 1000 slices (100μm thickness, 160 μm resolution) were acquired in 2 sec using a Toshiba medical CT (135 kV, 400mAs). A Gaussian mixture model of the Hounsfield curve of 2D slices was computed with the Expectation Maximization algorithm. Identification of each Gaussian part allowed the automatic classification of adipose tissue voxels. The abdominal region of interest (umbilical) was automatically detected as the slice showing the highest ratio of the Gaussian proportion between adipose and lean tissues. Segmentation of visceral and subcutaneous fat compartments was achieved with 2D 1/2 level set methods. Our results show that the application of human clinical CT to mice is a promising approach for the study of obesity, allowing valuable comparison between species using the same imaging materials and software analysis.

  19. TH-CD-207B-06: Swank Factor of Segmented Scintillators in Multi-Slice CT Detectors: Pulse Height Spectra and Light Escape

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Howansky, A; Peng, B; Lubinsky, A

    Purpose: Pulse height spectra (PHS) have been used to determine the Swank factor of a scintillator by measuring fluctuations in its light output per x-ray interaction. The Swank factor and x-ray quantum efficiency of a scintillator define the upper limit to its imaging performance, i.e. DQE(0). The Swank factor below the K-edge is dominated by optical properties, i.e. variations in light escape efficiency from different depths of interaction, denoted e(z). These variations can be optimized to improve tradeoffs in x-ray absorption, light yield, and spatial resolution. This work develops a quantitative model for interpreting measured PHS, and estimating e(z) onmore » an absolute scale. The method is used to investigate segmented ceramic GOS scintillators used in multi-slice CT detectors. Methods: PHS of a ceramic GOS plate (1 mm thickness) and segmented GOS array (1.4 mm thick) were measured at 46 keV. Signal and noise propagation through x-ray conversion gain, light escape, detection by a photomultiplier tube and dynode amplification were modeled using a cascade of stochastic gain stages. PHS were calculated with these expressions and compared to measurements. Light escape parameters were varied until modeled PHS agreed with measurements. The resulting estimates of e(z) were used to calculate PHS without measurement noise to determine the inherent Swank factor. Results: The variation in e(z) was 67.2–89.7% in the plate and 40.2–70.8% in the segmented sample, corresponding to conversion gains of 28.6–38.1 keV{sup −1} and 17.1–30.1 keV{sup −1}, respectively. The inherent Swank factors of the plate and segmented sample were 0.99 and 0.95, respectively. Conclusion: The high light escape efficiency in the ceramic GOS samples yields high Swank factors and DQE(0) in CT applications. The PHS model allows the intrinsic optical properties of scintillators to be deduced from PHS measurements, thus it provides new insights for evaluating the imaging performance of segmented ceramic GOS scintillators.« less

  20. Multi-phase simultaneous segmentation of tumor in lung 4D-CT data with context information.

    PubMed

    Shen, Zhengwen; Wang, Huafeng; Xi, Weiwen; Deng, Xiaogang; Chen, Jin; Zhang, Yu

    2017-01-01

    Lung 4D computed tomography (4D-CT) plays an important role in high-precision radiotherapy because it characterizes respiratory motion, which is crucial for accurate target definition. However, the manual segmentation of a lung tumor is a heavy workload for doctors because of the large number of lung 4D-CT data slices. Meanwhile, tumor segmentation is still a notoriously challenging problem in computer-aided diagnosis. In this paper, we propose a new method based on an improved graph cut algorithm with context information constraint to find a convenient and robust approach of lung 4D-CT tumor segmentation. We combine all phases of the lung 4D-CT into a global graph, and construct a global energy function accordingly. The sub-graph is first constructed for each phase. A context cost term is enforced to achieve segmentation results in every phase by adding a context constraint between neighboring phases. A global energy function is finally constructed by combining all cost terms. The optimization is achieved by solving a max-flow/min-cut problem, which leads to simultaneous and robust segmentation of the tumor in all the lung 4D-CT phases. The effectiveness of our approach is validated through experiments on 10 different lung 4D-CT cases. The comparison with the graph cut without context constraint, the level set method and the graph cut with star shape prior demonstrates that the proposed method obtains more accurate and robust segmentation results.

  1. Gunshot energy transfer profile in ballistic gelatine, determined with computed tomography using the total crack length method.

    PubMed

    Bolliger, Stephan A; Thali, Michael J; Bolliger, Michael J; Kneubuehl, Beat P

    2010-11-01

    By measuring the total crack lengths (TCL) along a gunshot wound channel simulated in ordnance gelatine, one can calculate the energy transferred by a projectile to the surrounding tissue along its course. Visual quantitative TCL analysis of cut slices in ordnance gelatine blocks is unreliable due to the poor visibility of cracks and the likely introduction of secondary cracks resulting from slicing. Furthermore, gelatine TCL patterns are difficult to preserve because of the deterioration of the internal structures of gelatine with age and the tendency of gelatine to decompose. By contrast, using computed tomography (CT) software for TCL analysis in gelatine, cracks on 1-cm thick slices can be easily detected, measured and preserved. In this, experiment CT TCL analyses were applied to gunshots fired into gelatine blocks by three different ammunition types (9-mm Luger full metal jacket, .44 Remington Magnum semi-jacketed hollow point and 7.62 × 51 RWS Cone-Point). The resulting TCL curves reflected the three projectiles' capacity to transfer energy to the surrounding tissue very accurately and showed clearly the typical energy transfer differences. We believe that CT is a useful tool in evaluating gunshot wound profiles using the TCL method and is indeed superior to conventional methods applying physical slicing of the gelatine.

  2. Image reconstruction of x-ray tomography by using image J platform

    NASA Astrophysics Data System (ADS)

    Zain, R. M.; Razali, A. M.; Salleh, K. A. M.; Yahya, R.

    2017-01-01

    A tomogram is a technical term for a CT image. It is also called a slice because it corresponds to what the object being scanned would look like if it were sliced open along a plane. A CT slice corresponds to a certain thickness of the object being scanned. So, while a typical digital image is composed of pixels, a CT slice image is composed of voxels (volume elements). In the case of x-ray tomography, similar to x-ray Radiography, the quantity being imaged is the distribution of the attenuation coefficient μ(x) within the object of interest. The different is only on the technique to produce the tomogram. The image of x-ray radiography can be produced straight foward after exposed to x-ray, while the image of tomography produces by combination of radiography images in every angle of projection. A number of image reconstruction methods by converting x-ray attenuation data into a tomography image have been produced by researchers. In this work, Ramp filter in "filtered back projection" has been applied. The linear data acquired at each angular orientation are convolved with a specially designed filter and then back projected across a pixel field at the same angle. This paper describe the step of using Image J software to produce image reconstruction of x-ray tomography.

  3. Evaluation of treatment response after chemoembolisation (TACE) in hepatocellular carcinoma using real time image fusion of contrast-enhanced ultrasound (CEUS) and computed tomography (CT)--preliminary results.

    PubMed

    Wobser, Hella; Wiest, Reiner; Salzberger, Bernd; Wohlgemuth, Walter Alexander; Stroszczynski, Christian; Jung, Ernst-Michael

    2014-01-01

    To evaluate treatment response of hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE) with a new real-time imaging fusion technique of contrast-enhanced ultrasound (CEUS) with multi-slice detection computed tomography (CT) in comparison to conventional post-interventional follow-up. 40 patients with HCC (26 male, ages 46-81 years) were evaluated 24 hours after TACE using CEUS with ultrasound volume navigation and image fusion with CT compared to non-enhanced CT and follow-up contrast-enhanced CT after 6-8 weeks. Reduction of tumor vascularization to less than 25% was regarded as "successful" treatment, whereas reduction to levels >25% was considered as "partial" treatment response. Homogenous lipiodol retention was regarded as successful treatment in non-enhanced CT. Post-interventional image fusion of CEUS with CT was feasible in all 40 patients. In 24 patients (24/40), post-interventional image fusion with CEUS revealed residual tumor vascularity, that was confirmed by contrast-enhanced CT 6-8 weeks later in 24/24 patients. In 16 patients (16/40), post-interventional image fusion with CEUS demonstrated successful treatment, but follow-up CT detected residual viable tumor (6/16). Non-enhanced CT did not identify any case of treatment failure. Image fusion with CEUS assessed treatment efficacy with a specificity of 100%, sensitivity of 80% and a positive predictive value of 1 (negative predictive value 0.63). Image fusion of CEUS with CT allows a reliable, highly specific post-interventional evaluation of embolization response with good sensitivity without any further radiation exposure. It can detect residual viable tumor at early state, resulting in a close patient monitoring or re-therapy.

  4. A post-reconstruction method to correct cupping artifacts in cone beam breast computed tomography

    PubMed Central

    Altunbas, M. C.; Shaw, C. C.; Chen, L.; Lai, C.; Liu, X.; Han, T.; Wang, T.

    2007-01-01

    In cone beam breast computed tomography (CT), scattered radiation leads to nonuniform biasing of CT numbers known as a cupping artifact. Besides being visual distractions, cupping artifacts appear as background nonuniformities, which impair efficient gray scale windowing and pose a problem in threshold based volume visualization/segmentation. To overcome this problem, we have developed a background nonuniformity correction method specifically designed for cone beam breast CT. With this technique, the cupping artifact is modeled as an additive background signal profile in the reconstructed breast images. Due to the largely circularly symmetric shape of a typical breast, the additive background signal profile was also assumed to be circularly symmetric. The radial variation of the background signals were estimated by measuring the spatial variation of adipose tissue signals in front view breast images. To extract adipose tissue signals in an automated manner, a signal sampling scheme in polar coordinates and a background trend fitting algorithm were implemented. The background fits compared with targeted adipose tissue signal value (constant throughout the breast volume) to get an additive correction value for each tissue voxel. To test the accuracy, we applied the technique to cone beam CT images of mastectomy specimens. After correction, the images demonstrated significantly improved signal uniformity in both front and side view slices. The reduction of both intra-slice and inter-slice variations in adipose tissue CT numbers supported our observations. PMID:17822018

  5. Automated estimation of abdominal effective diameter for body size normalization of CT dose.

    PubMed

    Cheng, Phillip M

    2013-06-01

    Most CT dose data aggregation methods do not currently adjust dose values for patient size. This work proposes a simple heuristic for reliably computing an effective diameter of a patient from an abdominal CT image. Evaluation of this method on 106 patients scanned on Philips Brilliance 64 and Brilliance Big Bore scanners demonstrates close correspondence between computed and manually measured patient effective diameters, with a mean absolute error of 1.0 cm (error range +2.2 to -0.4 cm). This level of correspondence was also demonstrated for 60 patients on Siemens, General Electric, and Toshiba scanners. A calculated effective diameter in the middle slice of an abdominal CT study was found to be a close approximation of the mean calculated effective diameter for the study, with a mean absolute error of approximately 1.0 cm (error range +3.5 to -2.2 cm). Furthermore, the mean absolute error for an adjusted mean volume computed tomography dose index (CTDIvol) using a mid-study calculated effective diameter, versus a mean per-slice adjusted CTDIvol based on the calculated effective diameter of each slice, was 0.59 mGy (error range 1.64 to -3.12 mGy). These results are used to calculate approximate normalized dose length product values in an abdominal CT dose database of 12,506 studies.

  6. Time-Domain Terahertz Computed Axial Tomography NDE System

    NASA Technical Reports Server (NTRS)

    Zimdars, David

    2012-01-01

    NASA has identified the need for advanced non-destructive evaluation (NDE) methods to characterize aging and durability in aircraft materials to improve the safety of the nation's airline fleet. 3D THz tomography can play a major role in detection and characterization of flaws and degradation in aircraft materials, including Kevlar-based composites and Kevlar and Zylon fabric covers for soft-shell fan containment where aging and durability issues are critical. A prototype computed tomography (CT) time-domain (TD) THz imaging system has been used to generate 3D images of several test objects including a TUFI tile (a thermal protection system tile used on the Space Shuttle and possibly the Orion or similar capsules). This TUFI tile had simulated impact damage that was located and the depth of damage determined. The CT motion control gan try was designed and constructed, and then integrated with a T-Ray 4000 control unit and motion controller to create a complete CT TD-THz imaging system prototype. A data collection software script was developed that takes multiple z-axis slices in sequence and saves the data for batch processing. The data collection software was integrated with the ability to batch process the slice data with the CT TD-THz image reconstruction software. The time required to take a single CT slice was decreased from six minutes to approximately one minute by replacing the 320 ps, 100-Hz waveform acquisition system with an 80 ps, 1,000-Hz waveform acquisition system. The TD-THZ computed tomography system was built from pre-existing commercial off-the-shelf subsystems. A CT motion control gantry was constructed from COTS components that can handle larger samples. The motion control gantry allows inspection of sample sizes of up to approximately one cubic foot (.0.03 cubic meters). The system reduced to practice a CT-TDTHz system incorporating a COTS 80- ps/l-kHz waveform scanner. The incorporation of this scanner in the system allows acquisition of 3D slice data with better signal-to-noise using a COTS scanner rather than the gchirped h scanner. The system also reduced to practice a prototype for commercial CT systems for insulating materials where safety concerns cannot accommodate x-ray. A software script was written to automate the COTS software to collect and process TD-THz CT data.

  7. Perfusion CT to assess angiogenesis in colon cancer: technical limitations and practical challenges.

    PubMed

    Dighe, S; Castellano, E; Blake, H; Jeyadevan, N; Koh, M U; Orten, M; Swift, I; Brown, G

    2012-10-01

    Perfusion CT may have the potential to quantify the degree of angiogenesis of solid tumours in vivo. This study aims to identify the practical and technical challenges inherent to the technique, and evaluate its feasibility in colorectal tumours. 51 patients from 2 institutions prospectively underwent a single perfusion CT on 2 different multidetector scanners. The patients were advised to breath-hold as long as possible, followed by shallow breathing, and were given intravenous buscopan to reduce movement. Numerous steps were explored to identify the challenges. 43 patients successfully completed the perfusion CT as per protocol. Inability to detect the tumour (n=3), misplacement of dynamic sequence co-ordinates (n=2), failure of contrast injection (n=2) and displacement of tumour (n=1) were the reasons for failure. In 14 cases excessive respiratory motion displaced the tumour out of the scanning field along the temporal sequence, leading to erroneous data capture. In nine patients, minor displacements of the tumour were corrected by repositioning the region of interest (ROI) to its original position after reviewing each dynamic sequence slice. In 20 patients the tumour was stable, and data captured from the ROI were representative, and could have been analysed by commercially available Body Tumor Perfusion 3.0® software (GE Healthcare, Waukesha, WI). Hence all data were manually analysed by MATLAB® processing software (MathWorks, Cambridge, UK). Perfusion CT in tumours susceptible to motion during acquisition makes accurate data capture challenging and requires meticulous attention to detail. Motion correction software is essential if perfusion CT is to be used routinely in colorectal cancer.

  8. Bicuspid aortic valves: diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT.

    PubMed

    Murphy, David J; McEvoy, Sinead H; Iyengar, Sri; Feuchtner, Gudrun; Cury, Ricardo C; Roobottom, Carl; Baumueller, Stephan; Alkadhi, Hatem; Dodd, Jonathan D

    2014-08-01

    To assess the diagnostic accuracy of standard axial 64-slice chest CT compared to aortic valve image plane ECG-gated cardiac CT for bicuspid aortic valves. The standard axial chest CT scans of 20 patients with known bicuspid aortic valves were blindly, randomly analyzed for (i) the appearance of the valve cusps, (ii) the largest aortic sinus area, (iii) the longest aortic cusp length, (iv) the thickest aortic valve cusp and (v) valve calcification. A second blinded reader independently analyzed the appearance of the valve cusps. Forty-two age- and sex-matched patients with known tricuspid aortic valves were used as controls. Retrospectively ECG-gated cardiac CT multiphase reconstructions of the aortic valve were used as the gold-standard. Fourteen (21%) scans were scored as unevaluable (7 bicuspid, 7 tricuspid). Of the remainder, there were 13 evaluable bicuspid valves, ten of which showed an aortic valve line sign, while the remaining three showed a normal Mercedes-Benz appearance owing to fused valve cusps. The 35 evaluable tricuspid aortic valves all showed a normal Mercedes-Benz appearance (P=0.001). Kappa analysis=0.62 indicating good interobserver agreement for the aortic valve cusp appearance. Aortic sinus areas, aortic cusp lengths and aortic cusp thicknesses of ≥ 3.8 cm(2), 3.2 cm and 1.6mm respectively on standard axial chest CT best distinguished bicuspid from tricuspid aortic valves (P<0.0001 for all). Of evaluable scans, the sensitivity, specificity, positive and negative predictive values of standard axial chest CT in diagnosing bicuspid aortic valves was 77% (CI 0.54-1.0), 100%, 100% and 70% respectively. The aortic valve is evaluable in approximately 80% of standard chest 64-slice CT scans. Bicuspid aortic valves may be diagnosed on evaluable scans with good diagnostic accuracy. An aortic valve line sign, enlarged aortic sinuses and elongated, thickened valve cusps are specific CT features. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Dynamic Multi-Coil Shimming of the Human Brain at 7 Tesla

    PubMed Central

    Juchem, Christoph; Nixon, Terence W.; McIntyre, Scott; Boer, Vincent O.; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    High quality magnetic field homogenization of the human brain (i.e. shimming) for MR imaging and spectroscopy is a demanding task. The susceptibility differences between air and tissue are a longstanding problem as they induce complex field distortions in the prefrontal cortex and the temporal lobes. To date, the theoretical gains of high field MR have only been realized partially in the human brain due to limited magnetic field homogeneity. A novel shimming technique for the human brain is presented that is based on the combination of non-orthogonal basis fields from 48 individual, circular coils. Custom-built amplifier electronics enabled the dynamic application of the multi-coil shim fields in a slice-specific fashion. Dynamic multi-coil (DMC) shimming is shown to eliminate most of the magnetic field inhomogeneity apparent in the human brain at 7 Tesla and provided improved performance compared to state-of-the-art dynamic shim updating with zero through third order spherical harmonic functions. The novel technique paves the way for high field MR applications of the human brain for which excellent magnetic field homogeneity is a prerequisite. PMID:21824794

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kohli, K; Liu, F; Krishnan, K

    Purpose: Multi-frequency EIT has been reported to be a potential tool in distinguishing a tissue anomaly from background. In this study, we investigate the feasibility of acquiring functional information by comparing multi-frequency EIT images in reference to the structural information from the CT image through fusion. Methods: EIT data was acquired from a slice of winter melon using sixteen electrodes around the phantom, injecting a current of 0.4mA at 100, 66, 24.8 and 9.9 kHz. Differential EIT images were generated by considering different combinations of pair frequencies, one serving as reference data and the other as test data. The experimentmore » was repeated after creating an anomaly in the form of an off-centered cavity of diameter 4.5 cm inside the melon. All EIT images were reconstructed using Electrical Impedance Tomography and Diffuse Optical Tomography Reconstruction Software (EIDORS) package in 2-D differential imaging mode using one-step Gaussian Newton minimization solver. CT image of the melon was obtained using a Phillips CT Scanner. A segmented binary mask image was generated based on the reference electrode position and the CT image to define the regions of interest. The region selected by the user was fused with the CT image through logical indexing. Results: Differential images based on the reference and test signal frequencies were reconstructed from EIT data. Result illustrated distinct structural inhomogeneity in seeded region compared to fruit flesh. The seeded region was seen as a higherimpedance region if the test frequency was lower than the base frequency in the differential EIT reconstruction. When the test frequency was higher than the base frequency, the signal experienced less electrical impedance in the seeded region during the EIT data acquisition. Conclusion: Frequency-based differential EIT imaging can be explored to provide additional functional information along with structural information from CT for identifying different tissues.« less

  11. Graph-based retrospective 4D image construction from free-breathing MRI slice acquisitions

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Ciesielski, Krzysztof C.; McDonough, Joseph M.; Mong, Andrew; Campbell, Robert M.

    2014-03-01

    4D or dynamic imaging of the thorax has many potential applications [1, 2]. CT and MRI offer sufficient speed to acquire motion information via 4D imaging. However they have different constraints and requirements. For both modalities both prospective and retrospective respiratory gating and tracking techniques have been developed [3, 4]. For pediatric imaging, x-ray radiation becomes a primary concern and MRI remains as the de facto choice. The pediatric subjects we deal with often suffer from extreme malformations of their chest wall, diaphragm, and/or spine, as such patient cooperation needed by some of the gating and tracking techniques are difficult to realize without causing patient discomfort. Moreover, we are interested in the mechanical function of their thorax in its natural form in tidal breathing. Therefore free-breathing MRI acquisition is the ideal modality of imaging for these patients. In our set up, for each coronal (or sagittal) slice position, slice images are acquired at a rate of about 200-300 ms/slice over several natural breathing cycles. This produces typically several thousands of slices which contain both the anatomic and dynamic information. However, it is not trivial to form a consistent and well defined 4D volume from these data. In this paper, we present a novel graph-based combinatorial optimization solution for constructing the best possible 4D scene from such data entirely in the digital domain. Our proposed method is purely image-based and does not need breath holding or any external surrogates or instruments to record respiratory motion or tidal volume. Both adult and children patients' data are used to illustrate the performance of the proposed method. Experimental results show that the reconstructed 4D scenes are smooth and consistent spatially and temporally, agreeing with known shape and motion of the lungs.

  12. Concept and development of an orthotropic FE model of the proximal femur.

    PubMed

    Wirtz, Dieter Christian; Pandorf, Thomas; Portheine, Frank; Radermacher, Klaus; Schiffers, Norbert; Prescher, Andreas; Weichert, Dieter; Niethard, Fritz Uwe

    2003-02-01

    In contrast to many isotropic finite-element (FE) models of the femur in literature, it was the object of our study to develop an orthotropic FE "model femur" to realistically simulate three-dimensional bone remodelling. The three-dimensional geometry of the proximal femur was reconstructed by CT scans of a pair of cadaveric femurs at equal distances of 2mm. These three-dimensional CT models were implemented into an FE simulation tool. Well-known "density-determined" bony material properties (Young's modulus; Poisson's ratio; ultimate strength in pressure, tension and torsion; shear modulus) were assigned to each FE of the same "CT-density-characterized" volumetric group. In order to fix the principal directions of stiffness in FE areas with the same "density characterization", the cadaveric femurs were cut in 2mm slices in frontal (left femur) and sagittal plane (right femur). Each femoral slice was scanned into a computer-based image processing system. On these images, the principal directions of stiffness of cancellous and cortical bone were determined manually using the orientation of the trabecular structures and the Haversian system. Finally, these geometric data were matched with the "CT-density characterized" three-dimensional femur model. In addition, the time and density-dependent adaptive behaviour of bone remodelling was taken into account by implementation of Carter's criterion. In the constructed "model femur", each FE is characterized by the principal directions of the stiffness and the "CT-density-determined" material properties of cortical and cancellous bone. Thus, on the basis of anatomic data a three-dimensional FE simulation reference model of the proximal femur was realized considering orthotropic conditions of bone behaviour. With the orthotropic "model femur", the fundamental basis has been formed to realize realistic simulations of the dynamical processes of bone remodelling under different loading conditions or operative procedures (osteotomies, total hip replacements, etc).

  13. MO-E-17A-01: BEST IN PHYSICS (IMAGING) - Calculating SSDE From CT Exams Using Size Data Available in the DICOM Header of CT Localizer Radiographs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMillan, K; Bostani, M; McNitt-Gray, M

    2014-06-15

    Purpose: To demonstrate the feasibility of using existing data stored within the DICOM header of certain CT localizer radiographs as a patient size metric for calculating CT size-specific dose estimates (SSDE). Methods: For most Siemens CT scanners, the CT localizer radiograph (topogram) contains a private DICOM field that stores an array of numbers describing AP and LAT attenuation-based measures of patient dimension. The square root of the product of the AP and LAT size data, which provides an estimate of water-equivalent-diameter (WED), was calculated retrospectively from topogram data of 20 patients who received clinically-indicated abdomen/pelvis (n=10) and chest (n=10) scansmore » (WED-topo). In addition, slice-by-slice water-equivalent-diameter (WED-image) and effective diameter (ED-image) values were calculated from the respective image data. Using TG-204 lookup tables, size-dependent conversion factors were determined based upon WED-topo, WED-image and ED-image values. These conversion factors were used with the reported CTDIvol to calculate slice-by-slice SSDE for each method. Averaging over all slices, a single SSDE value was determined for each patient and size metric. Patientspecific SSDE and CTDIvol values were then compared with patientspecific organ doses derived from detailed Monte Carlo simulations of fixed tube current scans. Results: For abdomen/pelvis scans, the average difference between liver dose and CTDIvol, SSDE(WED-topo), SSDE(WED-image), and SSDE(ED-image) was 18.70%, 8.17%, 6.84%, and 7.58%, respectively. For chest scans, the average difference between lung dose and CTDIvol, SSDE(WED-topo), SSDE(WED-image), and SSDE(ED-image) was 25.80%, 3.33%, 4.11%, and 7.66%, respectively. Conclusion: SSDE calculated using WED derived from data in the DICOM header of the topogram was comparable to SSDE calculated using WED and ED derived from axial images; each of these estimated organ dose to within 10% for both abdomen/pelvis and chest CT examinations. The topogrambased method has the advantage that WED data are already provided and therefore available without additional post-processing of the image data. Funding Support: NIH Grant R01-EB017095; Disclosures - Michael McNitt-Gray: Institutional Research Agreement, Siemens AG; Research Support, Siemens AG; Consultant, Flaherty Sensabaugh Bonasso PLLC; Consultant, Fulbright and Jaworski; Disclosures - Cynthia McCollough: Research Grant, Siemens Healthcare.« less

  14. Simultaneous tumor and surrogate motion tracking with dynamic MRI for radiation therapy planning

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Farah, Rana; Shea, Steven M.; Tryggestad, Erik; Hales, Russell; Lee, Junghoon

    2018-01-01

    Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure. To capture the lung and whole tumor, four MRI-compatible fiducials are placed on the patient’s chest and upper abdomen. Two different types of acquisitions are performed in the sagittal orientation including multi-slice 2D cine MRIs to reconstruct 4D-MRI and two-slice 2D cine MRIs to simultaneously track the tumor and fiducials. A phase-binned 4D-MRI is first reconstructed from multi-slice MR images using body area as a respiratory surrogate and groupwise registration. The 4D-MRI provides 3D template volumes for different breathing phases. 3D tumor position is calculated by 3D-2D template matching in which 3D tumor templates in the 4D-MRI reconstruction and the 2D cine MRIs from the two-slice tracking dataset are registered. 3D trajectories of the external surrogates are derived via matching a 3D geometrical model of the fiducials to their segmentations on the 2D cine MRIs. We tested our method on ten lung cancer patients. Using a correlation analysis, the 3D tumor trajectory demonstrates a noticeable phase mismatch and significant cycle-to-cycle motion variation, while the external surrogate was not sensitive enough to capture such variations. Additionally, there was significant phase mismatch between surrogate signals obtained from the fiducials at different locations.

  15. Deformable registration of CT and cone-beam CT with local intensity matching.

    PubMed

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-07

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  16. Deformable registration of CT and cone-beam CT with local intensity matching

    NASA Astrophysics Data System (ADS)

    Park, Seyoun; Plishker, William; Quon, Harry; Wong, John; Shekhar, Raj; Lee, Junghoon

    2017-02-01

    Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate. This causes different reconstruction artifacts at off-mid-planes depending on slice locations, and therefore impedes accurate registration between CT and CBCT. In this paper, we propose a method to accurately register CT and CBCT by iteratively matching local CT and CBCT intensities. We correct CBCT intensities by matching local intensity histograms slice by slice in conjunction with intensity-based deformable registration. The correction-registration steps are repeated in an alternating way until the result image converges. We integrate the intensity matching into three different deformable registration methods, B-spline, demons, and optical flow that are widely used for CT-CBCT registration. All three registration methods were implemented on a graphics processing unit for efficient parallel computation. We tested the proposed methods on twenty five head and neck cancer cases and compared the performance with state-of-the-art registration methods. Normalized cross correlation (NCC), structural similarity index (SSIM), and target registration error (TRE) were computed to evaluate the registration performance. Our method produced overall NCC of 0.96, SSIM of 0.94, and TRE of 2.26 → 2.27 mm, outperforming existing methods by 9%, 12%, and 27%, respectively. Experimental results also show that our method performs consistently and is more accurate than existing algorithms, and also computationally efficient.

  17. Image quality of conventional images of dual-layer SPECTRAL CT: A phantom study.

    PubMed

    van Ommen, Fasco; Bennink, Edwin; Vlassenbroek, Alain; Dankbaar, Jan Willem; Schilham, Arnold M R; Viergever, Max A; de Jong, Hugo W A M

    2018-05-10

    Spectral CT using a dual layer detector offers the possibility of retrospectively introducing spectral information to conventional CT images. In theory, the dual-layer technology should not come with a dose or image quality penalty for conventional images. In this study, we evaluate the influence of a dual-layer detector (IQon Spectral CT, Philips Healthcare) on the image quality of conventional CT images, by comparing these images with those of a conventional but otherwise technically comparable single-layer CT scanner (Brilliance iCT, Philips Healthcare), by means of phantom experiments. For both CT scanners, conventional CT images were acquired using four adult scanning protocols: (a) body helical, (b) body axial, (c) head helical, and (d) head axial. A CATPHAN 600 phantom was scanned to conduct an assessment of image quality metrics at equivalent (CTDI) dose levels. Noise was characterized by means of noise power spectra (NPS) and standard deviation (SD) of a uniform region, and spatial resolution was evaluated with modulation transfer functions (MTF) of a tungsten wire. In addition, contrast-to-noise ratio (CNR), image uniformity, CT number linearity, slice thickness, slice spacing, and spatial linearity were measured and evaluated. Additional measurements of CNR, resolution and noise were performed in two larger phantoms. The resolution levels at 50%, 10%, and 5% MTF of the iCT and IQon showed small, but significant differences up to 0.25 lp/cm for body scans, and up to 0.2 lp/cm for head scans in favor of the IQon. The iCT and IQon showed perfect CT linearity for body scans, but for head scans both scanners showed an underestimation of the CT numbers of materials with a high opacity. Slice thickness was slightly overestimated for both scanners. Slice spacing was comparable and reconstructed correctly. In addition, spatial linearity was excellent for both scanners, with a maximum error of 0.11 mm. CNR was higher on the IQon compared to the iCT for both normal and larger phantoms with differences up to 0.51. Spatial resolution did not change with phantom size, but noise levels increased significantly. For head scans, IQon had a noise level that was significantly lower than the iCT, on the other hand IQon showed noise levels significantly higher than the iCT for body scans. Still, these differences were well within the specified range of performance of iCT scanners. At equivalent dose levels, this study showed similar quality of conventional images acquired on iCT and IQon for medium-sized phantoms and slightly degraded image quality for (very) large phantoms at lower tube voltages on the IQon. Accordingly, it may be concluded that the introduction of a dual-layer detector neither compromises image quality of conventional images nor increases radiation dose for normal-sized patients, and slightly degrades dose efficiency for large patients at 120 kVp and lower tube voltages. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  18. Automatic extraction of via in the CT image of PCB

    NASA Astrophysics Data System (ADS)

    Liu, Xifeng; Hu, Yuwei

    2018-04-01

    In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. In order to detect the via in the PCB base on the CT image automatically accurately and reliably, a novel algorithm for via extraction based on weighting stack combining the morphologic character of via is designed. Every slice data in the vertical direction of the PCB is superimposed to enhanced vias target. The OTSU algorithm is used to segment the slice image. OTSU algorithm of thresholding gray level images is efficient for separating an image into two classes where two types of fairly distinct classes exist in the image. Randomized Hough Transform was used to locate the region of via in the segmented binary image. Then the 3D reconstruction of via based on sequence slice images was done by volume rendering. The accuracy of via positioning and detecting from a CT images of PCB was demonstrated by proposed algorithm. It was found that the method is good in veracity and stability for detecting of via in three dimensional.

  19. Circadian Periods of Sensitivity for Ramelteon on the onset of Running-wheel Activity and the Peak of Suprachiasmatic Nucleus Neuronal Firing Rhythms in C3H/HeN Mice

    PubMed Central

    Rawashdeh, Oliver; Hudson, Randall L.; Stepien, Iwona; Dubocovich, Margarita L.

    2016-01-01

    Ramelteon, an MT1/MT2 melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3H/ HeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90 μg/mouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3H/HeN mice. The PRC for ramelteon resembles that for melatonin in C3H/ HeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8–CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6 ± 0.29 h, n = 3) and at CT2 phase delays (−3.2 ± 0.12 h, n = 6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7 ± 0.15 h, n = 4, p < .05; CT2: −1.13 ± 0.08 h, n = 6, p < .001, respectively). The phase shifts induced by both melatonin and ramelteon in the SCN brain slice at either CT10 or CT2 corresponded with the period of sensitivity observed in vivo. In conclusion, melatonin and ramelteon showed identical periods of circadian sensitivity at CT10 (advance) and CT2 (delay) to shift the onset of circadian activity rhythms in vivo and the peak of SCN neuronal firing rhythms in vitro. PMID:21182402

  20. 128 slice computed tomography dose profile measurement using thermoluminescent dosimeter

    NASA Astrophysics Data System (ADS)

    Salehhon, N.; Hashim, S.; Karim, M. K. A.; Ang, W. C.; Musa, Y.; Bahruddin, N. A.

    2017-05-01

    The increasing use of computed tomography (CT) in clinical practice marks the needs to understand the dose descriptor and dose profile. The purposes of the current study were to determine the CT dose index free-in-air (CTDIair) in 128 slice CT scanner and to evaluate the single scan dose profile (SSDP). Thermoluminescent dosimeters (TLD-100) were used to measure the dose profile of the scanner. There were three sets of CT protocols where the tube potential (kV) setting was manipulated for each protocol while the rest of parameters were kept constant. These protocols were based from routine CT abdominal examinations for male adult abdomen. It was found that the increase of kV settings made the values of CTDIair increased as well. When the kV setting was changed from 80 kV to 120 kV and from 120 kV to 140 kV, the CTDIair values were increased as much as 147.9% and 53.9% respectively. The highest kV setting (140 kV) led to the highest CTDIair value (13.585 mGy). The p-value of less than 0.05 indicated that the results were statistically different. The SSDP showed that when the kV settings were varied, the peak sharpness and height of Gaussian function profiles were affected. The full width at half maximum (FWHM) of dose profiles for all protocols were coincided with the nominal beam width set for the measurements. The findings of the study revealed much information on the characterization and performance of 128 slice CT scanner.

  1. Development of a thresholding algorithm for calcium classification at multiple CT energies

    NASA Astrophysics Data System (ADS)

    Ng, LY.; Alssabbagh, M.; Tajuddin, A. A.; Shuaib, I. L.; Zainon, R.

    2017-05-01

    The objective of this study was to develop a thresholding method for calcium classification with different concentration using single-energy computed tomography. Five different concentrations of calcium chloride were filled in PMMA tubes and placed inside a water-filled PMMA phantom (diameter 10 cm). The phantom was scanned at 70, 80, 100, 120 and 140 kV using a SECT. CARE DOSE 4D was used and the slice thickness was set to 1 mm for all energies. ImageJ software inspired by the National Institute of Health (NIH) was used to measure the CT numbers for each calcium concentration from the CT images. The results were compared with a developed algorithm for verification. The percentage differences between the measured CT numbers obtained from the developed algorithm and the ImageJ show similar results. The multi-thresholding algorithm was found to be able to distinguish different concentrations of calcium chloride. However, it was unable to detect low concentrations of calcium chloride and iron (III) nitrate with CT numbers between 25 HU and 65 HU. The developed thresholding method used in this study may help to differentiate between calcium plaques and other types of plaques in blood vessels as it is proven to have a good ability to detect the high concentration of the calcium chloride. However, the algorithm needs to be improved to solve the limitations of detecting calcium chloride solution which has a similar CT number with iron (III) nitrate solution.

  2. Contextual convolutional neural networks for lung nodule classification using Gaussian-weighted average image patches

    NASA Astrophysics Data System (ADS)

    Lee, Haeil; Lee, Hansang; Park, Minseok; Kim, Junmo

    2017-03-01

    Lung cancer is the most common cause of cancer-related death. To diagnose lung cancers in early stages, numerous studies and approaches have been developed for cancer screening with computed tomography (CT) imaging. In recent years, convolutional neural networks (CNN) have become one of the most common and reliable techniques in computer aided detection (CADe) and diagnosis (CADx) by achieving state-of-the-art-level performances for various tasks. In this study, we propose a CNN classification system for false positive reduction of initially detected lung nodule candidates. First, image patches of lung nodule candidates are extracted from CT scans to train a CNN classifier. To reflect the volumetric contextual information of lung nodules to 2D image patch, we propose a weighted average image patch (WAIP) generation by averaging multiple slice images of lung nodule candidates. Moreover, to emphasize central slices of lung nodules, slice images are locally weighted according to Gaussian distribution and averaged to generate the 2D WAIP. With these extracted patches, 2D CNN is trained to achieve the classification of WAIPs of lung nodule candidates into positive and negative labels. We used LUNA 2016 public challenge database to validate the performance of our approach for false positive reduction in lung CT nodule classification. Experiments show our approach improves the classification accuracy of lung nodules compared to the baseline 2D CNN with patches from single slice image.

  3. Assessing vertebral fracture risk on volumetric quantitative computed tomography by geometric characterization of trabecular bone structure

    NASA Astrophysics Data System (ADS)

    Checefsky, Walter A.; Abidin, Anas Z.; Nagarajan, Mahesh B.; Bauer, Jan S.; Baum, Thomas; Wismüller, Axel

    2016-03-01

    The current clinical standard for measuring Bone Mineral Density (BMD) is dual X-ray absorptiometry, however more recently BMD derived from volumetric quantitative computed tomography has been shown to demonstrate a high association with spinal fracture susceptibility. In this study, we propose a method of fracture risk assessment using structural properties of trabecular bone in spinal vertebrae. Experimental data was acquired via axial multi-detector CT (MDCT) from 12 spinal vertebrae specimens using a whole-body 256-row CT scanner with a dedicated calibration phantom. Common image processing methods were used to annotate the trabecular compartment in the vertebral slices creating a circular region of interest (ROI) that excluded cortical bone for each slice. The pixels inside the ROI were converted to values indicative of BMD. High dimensional geometrical features were derived using the scaling index method (SIM) at different radii and scaling factors (SF). The mean BMD values within the ROI were then extracted and used in conjunction with a support vector machine to predict the failure load of the specimens. Prediction performance was measured using the root-mean-square error (RMSE) metric and determined that SIM combined with mean BMD features (RMSE = 0.82 +/- 0.37) outperformed MDCT-measured mean BMD (RMSE = 1.11 +/- 0.33) (p < 10-4). These results demonstrate that biomechanical strength prediction in vertebrae can be significantly improved through the use of SIM-derived texture features from trabecular bone.

  4. Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators

    PubMed Central

    Chamberland, Simon; Yang, Helen H; Pan, Michael M; Evans, Stephen W; Guan, Sihui; Chavarha, Mariya; Yang, Ying; Salesse, Charleen; Wu, Haodi; Wu, Joseph C; Clandinin, Thomas R; Toth, Katalin; Lin, Michael Z; St-Pierre, François

    2017-01-01

    Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila. These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision. DOI: http://dx.doi.org/10.7554/eLife.25690.001 PMID:28749338

  5. Effects of dose reduction on multi-detector computed tomographic images in evaluating the maxilla and mandible for pre-surgical implant planning: a cadaveric study.

    PubMed

    Koizumi, Hiroshi; Sur, Jaideep; Seki, Kenji; Nakajima, Koh; Sano, Tsukasa; Okano, Tomohiro

    2010-08-01

    To assess effects of dose reduction on image quality in evaluating maxilla and mandible for pre-surgical implant planning using cadavers. Six cadavers were used for the study using multi-detector computed tomography (CT) operated at 120 kV and the variable tube current of 80, 40, 20 and 10 mA. A slice thickness of 0.625 mm and pitch 1 were used. Multi-planar images perpendicular and parallel to dentitions were created. The images were evaluated by five oral radiologists in terms of visibility of the anatomical landmarks including alveolar crest, mandibular canal, floors of the maxillary sinus and nasal cavity, contours/cortical layer of jaw bones and the details of trabecular bone. Observers were asked to determine the quality of the images in comparison with 80 mA images based on the criteria: excellent, good, fair or non-diagnostic. The average scores of all observers were calculated for each specimen in all exposure conditions. The 40 mA images could visualize such landmarks and were evaluated to be same or almost equivalent in quality to the 80 mA images. Even the 20 mA images could be accepted just for diagnostic purpose for implant with substantial deterioration of the image quality. The 10 mA images may not be accepted because of the obscured contour caused by image noise. Significant dose reduction by lowering mA can be utilized for pre-surgical implant planning in multi-detector CT.

  6. Comparison of the Diagnostic Image Quality of the Canine Maxillary Dentoalveolar Structures Obtained by Cone Beam Computed Tomography and 64-Multidetector Row Computed Tomography

    PubMed Central

    Soukup, Jason W.; Drees, Randi; Koenig, Lisa J.; Snyder, Christopher J.; Hetzel, Scott; Miles, Chanda R.; Schwarz, Tobias

    2016-01-01

    Summary The objective of this blinded study was to validate the use of cone beam computed tomography (CT) for imaging of the canine maxillary dentoalveolar structures by comparing its diagnostic image quality with that of 64-multidetector row CT. Sagittal slices of a tooth-bearing segment of the maxilla of a commercially purchased dog skull embedded in methyl methacrylate were obtained along a line parallel with the dental arch using a commercial histology diamond saw. The slice of tooth-bearing bone that best depicted the dentoalveolar structures was chosen and photographed. The maxilla segment was imaged with cone beam CT and 64-multidetector row CT. Four blinded evaluators compared the cone beam CT and 64-multidetector row CT images and image quality was scored as it related to the anatomy of dentoalveolar structures. Trabecular bone, enamel, dentin, pulp cavity, periodontal ligament space, and lamina dura were scored. In addition, a score depicting the evaluators overall impression of the image was recorded. Images acquired with cone beam CT were found to be significantly superior in image quality to images acquired with 64-multidetector row CT overall, and in all scored categories. In our study setting, cone beam CT was found to be a valid and clinically superior imaging modality for the canine maxillary dentoalveolar structures when compared to 64-multidetector row CT. PMID:26415384

  7. SU-G-IeP4-11: Monitoring Tumor Growth in Subcutaneous Murine Tumor Model in Vivo: A Comparison Between MRI and Small Animal CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, B; He, W; Cvetkovic, D

    Purpose: The purpose of the study is to compare the volume measurement of subcutaneous tumors in mice with different imaging platforms, namely a GE MRI and a Sofie-Biosciences small animal CT scanner. Methods: A549 human lung carcinoma cells and FaDu human head and neck squamous cell carcinoma cells were implanted subcutaneously into flanks of nude mice. Three FaDu tumors and three A549 tumors were included in this study. The MRI scans were done with a GE Signa 1.5 Tesla MR scanner using a fast T2-weighted sequence (70mm FOV and 1.2mm slice thickness), while the CT scans were done with themore » CT scanner on a Sofie-Biosciences G8 PET/CT platform dedicated for small animal studies (48mm FOV and 0.2mm slice thickness). Imaging contrast agent was not used in this study. Based on the DICOM images from MRI and CT scans, the tumors were contoured with Philips DICOM Viewer and the tumor volumes were obtained by summing up the contoured area and multiplied by the slice thickness. Results: The volume measurements based on the CT scans agree reasonably with that obtained with MR images for the subcutaneous tumors. The mean difference in the absolute tumor volumes between MRI- and CT-based measurements was found to be −6.2% ± 1.0%, with the difference defined as (VMR – VCT)*100%/VMR. Furthermore, we evaluated the normalized tumor volumes, which were defined for each tumor as V/V{sub 0} where V{sub 0} stands for the volume from the first MR or CT scan. The mean difference in the normalized tumor volumes was found to be 0.10% ± 0.96%. Conclusion: Despite the fact that the difference between normal and abnormal tissues is often less clear on small animal CT images than on MR images, one can still obtain reasonable tumor volume information with the small animal CT scans for subcutaneous murine xenograft models.« less

  8. Interactive dual-volume rendering visualization with real-time fusion and transfer function enhancement

    NASA Astrophysics Data System (ADS)

    Macready, Hugh; Kim, Jinman; Feng, David; Cai, Weidong

    2006-03-01

    Dual-modality imaging scanners combining functional PET and anatomical CT constitute a challenge in volumetric visualization that can be limited by the high computational demand and expense. This study aims at providing physicians with multi-dimensional visualization tools, in order to navigate and manipulate the data running on a consumer PC. We have maximized the utilization of pixel-shader architecture of the low-cost graphic hardware and the texture-based volume rendering to provide visualization tools with high degree of interactivity. All the software was developed using OpenGL and Silicon Graphics Inc. Volumizer, tested on a Pentium mobile CPU on a PC notebook with 64M graphic memory. We render the individual modalities separately, and performing real-time per-voxel fusion. We designed a novel "alpha-spike" transfer function to interactively identify structure of interest from volume rendering of PET/CT. This works by assigning a non-linear opacity to the voxels, thus, allowing the physician to selectively eliminate or reveal information from the PET/CT volumes. As the PET and CT are rendered independently, manipulations can be applied to individual volumes, for instance, the application of transfer function to CT to reveal the lung boundary while adjusting the fusion ration between the CT and PET to enhance the contrast of a tumour region, with the resultant manipulated data sets fused together in real-time as the adjustments are made. In addition to conventional navigation and manipulation tools, such as scaling, LUT, volume slicing, and others, our strategy permits efficient visualization of PET/CT volume rendering which can potentially aid in interpretation and diagnosis.

  9. The effect of simulation courseware on critical thinking in undergraduate nursing students: multi-site pre-post study.

    PubMed

    Shin, Hyunsook; Ma, Hyunhee; Park, Jiyoung; Ji, Eun Sun; Kim, Dong Hee

    2015-04-01

    The use of simulations has been considered as opportunities for students to enhance their critical thinking (CT), but previous studies were limited because they did not provide in-depth information on the working dynamics of simulation or on the effects of the number of simulation exposures on CT. This study examined the effect of an integrated pediatric nursing simulation used in a nursing practicum on students' CT abilities and identified the effects of differing numbers of simulation exposures on CT in a multi-site environment. The study used a multi-site, pre-test, post-test design. A total of 237 nursing students at three universities enrolled in a pediatric practicum participated in this study from February to December 2013. All three schools used the same simulation courseware, including the same simulation scenarios, evaluation tools, and simulation equipment. The courseware incorporated high-fidelity simulators and standardized patients. Students at school A completed one simulation session, whereas students at schools B and C completed two and three simulation sessions, respectively. Yoon's Critical Thinking Disposition tool (2008) was used to measure students' CT abilities. The gains in students' CT scores varied according to their numbers of exposures to the simulation courseware. With a single exposure, there were no statistically significant gains in CT, whereas three exposures to the courseware produced significant gains in CT. In seven subcategories of critical thinking, three exposures to the simulation courseware produced CT gains in the prudence and intellectual eagerness subcategories, and the overall simulation experience produced CT gains in the prudence, systematicity, healthy skepticism, and intellectual eagerness subcategories. Simulation courseware may produce positive learning outcomes for prudence in nursing education. In addition, the findings from the multi-site comparative study may contribute to greater understanding of how patient simulation experiences impact students' CT abilities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. CT Angiography of Peripheral Arterial Disease by 256-Slice Scanner: Accuracy, Advantages and Disadvantages Compared to Digital Subtraction Angiography.

    PubMed

    Mishra, Atul; Jain, Narendra; Bhagwat, Anand

    2017-07-01

    Peripheral arterial occlusive disease (PAOD) may cause disabling claudication or critical limb ischemia. Multidetector computed tomography (CT) technology has evolved to the level of 256-slice CT scanners which has significantly improved the spatial and temporal resolution of the images. This has provided the capability of chasing the contrast bolus at a fast speed enabling angiographic imaging of long segments of the body. These images can be reconstructed in various planes and various modes for detailed analysis of the peripheral vascular diseases which helps in making treatment decision. The aim of this retrospective study was to compare the CT angiograms (CTAs) of all cases of PAOD done by 256-slice CT scanner at a tertiary care vascular center and comparing these images with the digital subtraction angiograms (DSAs) of these patients. The retrospective study included 53 patients who underwent both CTA and DSA at our center over a period of 3 years from March 2013 to March 2016. The CTA showed high sensitivity (93%) and specificity (92.7%) for overall assessment of degree of stenosis in a vascular segment in cases of aortic and lower limb occlusive disease. The assessment of lesions of infrapopliteal segment was comparatively inferior (sensitivity 91.6%, accuracy 73.3%, and positive predictive value 78.5%), more so in the presence of significant calcification. The advantages of CTA were its noninvasive nature, ability to image large area of body, almost no adverse effects to the patients, and better assessment of vessel wall disease. However, the CTA assessment of collaterals was inferior with a sensitivity of only 62.7% as compared to DSA. Overall, 256-slice CTA provides fast and accurate imaging of vascular tree which can restrict DSA only in few selected cases as a problem-solving tool where clinico-radiological mismatch is present.

  11. SU-F-I-49: Vendor-Independent, Model-Based Iterative Reconstruction On a Rotating Grid with Coordinate-Descent Optimization for CT Imaging Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Young, S; Hoffman, J; McNitt-Gray, M

    Purpose: Iterative reconstruction methods show promise for improving image quality and lowering the dose in helical CT. We aim to develop a novel model-based reconstruction method that offers potential for dose reduction with reasonable computation speed and storage requirements for vendor-independent reconstruction from clinical data on a normal desktop computer. Methods: In 2012, Xu proposed reconstructing on rotating slices to exploit helical symmetry and reduce the storage requirements for the CT system matrix. Inspired by this concept, we have developed a novel reconstruction method incorporating the stored-system-matrix approach together with iterative coordinate-descent (ICD) optimization. A penalized-least-squares objective function with amore » quadratic penalty term is solved analytically voxel-by-voxel, sequentially iterating along the axial direction first, followed by the transaxial direction. 8 in-plane (transaxial) neighbors are used for the ICD algorithm. The forward problem is modeled via a unique approach that combines the principle of Joseph’s method with trilinear B-spline interpolation to enable accurate reconstruction with low storage requirements. Iterations are accelerated with multi-CPU OpenMP libraries. For preliminary evaluations, we reconstructed (1) a simulated 3D ellipse phantom and (2) an ACR accreditation phantom dataset exported from a clinical scanner (Definition AS, Siemens Healthcare). Image quality was evaluated in the resolution module. Results: Image quality was excellent for the ellipse phantom. For the ACR phantom, image quality was comparable to clinical reconstructions and reconstructions using open-source FreeCT-wFBP software. Also, we did not observe any deleterious impact associated with the utilization of rotating slices. The system matrix storage requirement was only 4.5GB, and reconstruction time was 50 seconds per iteration. Conclusion: Our reconstruction method shows potential for furthering research in low-dose helical CT, in particular as part of our ongoing development of an acquisition/reconstruction pipeline for generating images under a wide range of conditions. Our algorithm will be made available open-source as “FreeCT-ICD”. NIH U01 CA181156; Disclosures (McNitt-Gray): Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics.« less

  12. An intelligent support system for automatic detection of cerebral vascular accidents from brain CT images.

    PubMed

    Hajimani, Elmira; Ruano, M G; Ruano, A E

    2017-07-01

    This paper presents a Radial Basis Functions Neural Network (RBFNN) based detection system, for automatic identification of Cerebral Vascular Accidents (CVA) through analysis of Computed Tomographic (CT) images. For the design of a neural network classifier, a Multi Objective Genetic Algorithm (MOGA) framework is used to determine the architecture of the classifier, its corresponding parameters and input features by maximizing the classification precision, while ensuring generalization. This approach considers a large number of input features, comprising first and second order pixel intensity statistics, as well as symmetry/asymmetry information with respect to the ideal mid-sagittal line. Values of specificity of 98% and sensitivity of 98% were obtained, at pixel level, by an ensemble of non-dominated models generated by MOGA, in a set of 150 CT slices (1,867,602pixels), marked by a NeuroRadiologist. This approach also compares favorably at a lesion level with three other published solutions, in terms of specificity (86% compared with 84%), degree of coincidence of marked lesions (89% compared with 77%) and classification accuracy rate (96% compared with 88%). Copyright © 2017. Published by Elsevier B.V.

  13. Volumetric analysis of maxillary sinuses of Zulu and European crania by helical, multislice computed tomography.

    PubMed

    Fernandes, C L

    2004-11-01

    The volumes of the maxillary sinuses are of interest to surgeons operating endoscopically as variation in maxillary sinus volume may mean variation in anatomical landmarks. Other surgical disciplines, such as dentistry, maxillo-facial surgery and plastic surgery, may benefit from this information. To compare the maxillary sinus volumes of dried crania from cadavers of European and Zulu descent, with respect to ethnic group and gender. Helical, multislice computed tomography (CT) was performed using 1-mm coronal slices. The area for each slice was obtained by tracing the outline of each slice. The CT machine calculated a volume by totalling the slices for each sinus. Ethnic and gender variations were found in the different groups. It was found that European crania had significantly larger antral volumes than Zulu crania and men had larger volumes than women. Race and gender interaction was also assessed, as was maxillary sinus side. A variation in maxillary sinus volume between different ethnic groups and genders exists, and surgeons operating in this region should be aware of this.

  14. Temporal resolution measurement of 128-slice dual source and 320-row area detector computed tomography scanners in helical acquisition mode using the impulse method.

    PubMed

    Hara, Takanori; Urikura, Atsushi; Ichikawa, Katsuhiro; Hoshino, Takashi; Nishimaru, Eiji; Niwa, Shinji

    2016-04-01

    To analyse the temporal resolution (TR) of modern computed tomography (CT) scanners using the impulse method, and assess the actual maximum TR at respective helical acquisition modes. To assess the actual TR of helical acquisition modes of a 128-slice dual source CT (DSCT) scanner and a 320-row area detector CT (ADCT) scanner, we assessed the TRs of various acquisition combinations of a pitch factor (P) and gantry rotation time (R). The TR of the helical acquisition modes for the 128-slice DSCT scanner continuously improved with a shorter gantry rotation time and greater pitch factor. However, for the 320-row ADCT scanner, the TR with a pitch factor of <1.0 was almost equal to the gantry rotation time, whereas with pitch factor of >1.0, it was approximately one half of the gantry rotation time. The maximum TR values of single- and dual-source helical acquisition modes for the 128-slice DSCT scanner were 0.138 (R/P=0.285/1.5) and 0.074s (R/P=0.285/3.2), and the maximum TR values of the 64×0.5- and 160×0.5-mm detector configurations of the helical acquisition modes for the 320-row ADCT scanner were 0.120 (R/P=0.275/1.375) and 0.195s (R/P=0.3/0.6), respectively. Because the TR of a CT scanner is not accurately depicted in the specifications of the individual scanner, appropriate acquisition conditions should be determined based on the actual TR measurement. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, withmore » radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A passing rate of 99% was measured in areas of above 40% of the prescription dose. The final inverse treatment plan was comprised of 43 beams ranging from 5 to 12.5 mm in diameter (2.5 mm size increments are available up to 15 mm in diameter collimation). Using the Xsight Spine Tracking module, the CyberKnife system could not reliably identify and track the tiny mouse spine; however, the CyberKnife system could identify and track the fiducial markers on the 3D mold.In vivo positional accuracy analysis using the 3D mold generated a mean error of 1.41 mm ± 0.73 mm when fiducial markers were used for position tracking. Analysis of the dissected brain confirmed the ability to target the correct brain volume. Conclusions: With the use of a stereotactic body mold with fiducial markers, microCT imaging, and resolution down-sampling, the CyberKnife system can successfully perform small-animal radiotherapy studies.« less

  16. Comparison of the Diagnostic Image Quality of the Canine Maxillary Dentoalveolar Structures Obtained by Cone Beam Computed Tomography and 64-Multidetector Row Computed Tomography.

    PubMed

    Soukup, Jason W; Drees, Randi; Koenig, Lisa J; Snyder, Christopher J; Hetzel, Scott; Miles, Chanda R; Schwarz, Tobias

    2015-01-01

    The objective of this blinded study was to validate the use of cone beam computed tomography (C) for imaging of the canine maxillary dentoalveolar structures by comparing its diagnostic image quality with that of 64-multidetector row CT Sagittal slices of a tooth-bearing segment of the maxilla of a commercially purchased dog skull embedded in methylmethacrylate were obtained along a line parallel with the dental arch using a commercial histology diamond saw. The slice of tooth-bearing bone that best depicted the dentoalveolar structures was chosen and photographed. The maxillary segment was imaged with cone beam CT and 64-multidetector row CT. Four blinded evaluators compared the cone beam CT and 64-multidetector row CT images and image quality was scored as it related to the anatomy of dentoalveolar structures. Trabecular bone, enamel, dentin, pulp cavity, periodontal ligament space, and lamina dura were scored In addition, a score depicting the evaluators overall impression of the image was recorded. Images acquired with cone beam CT were found to be significantly superior in image quality to images acquired with 64-multidetector row CT overall, and in all scored categories. In our study setting cone beam CT was found to be a valid and clinically superior imaging modality for the canine maxillary dentoalveolar structures when compared to 64-multidetector row CT.

  17. Multiple two-dimensional versus three-dimensional PTV definition in treatment planning for conformal radiotherapy.

    PubMed

    Stroom, J C; Korevaar, G A; Koper, P C; Visser, A G; Heijmen, B J

    1998-06-01

    To demonstrate the need for a fully three-dimensional (3D) computerized expansion of the gross tumour volume (GTV) or clinical target volume (CTV), as delineated by the radiation oncologist on CT slices, to obtain the proper planning target volume (PTV) for treatment planning according to the ICRU-50 recommendations. For 10 prostate cancer patients two PTVs have been determined by expansion of the GTV with a 1.5 cm margin, i.e. a 3D PTV and a multiple 2D PTV. The former was obtained by automatically adding the margin while accounting in 3D for GTV contour differences in neighbouring slices. The latter was generated by automatically adding the 1.5 cm margin to the GTV in each CT slice separately; the resulting PTV is a computer simulation of the PTV that a radiation oncologist would obtain with (the still common) manual contouring in CT slices. For each patient the two PTVs were compared to assess the deviations of the multiple 2D PTV from the 3D PTV. For both PTVs conformal plans were designed using a three-field technique with fixed block margins. For each patient dose-volume histograms and tumour control probabilities (TCPs) of the (correct) 3D PTV were calculated, both for the plan designed for this PTV and for the treatment plan based on the (deviating) 2D PTV. Depending on the shape of the GTV, multiple 2D PTV generation could locally result in a 1 cm underestimation of the GTV-to-PTV margin. The deviations occurred predominantly in the cranio-caudal direction at locations where the GTV contour shape varies significantly from slice to slice. This could lead to serious underdosage and to a TCP decrease of up to 15%. A full 3D GTV-to-PTV expansion should be applied in conformal radiotherapy to avoid underdosage.

  18. Analysis of acetabular orientation and femoral anteversion using images of three-dimensional reconstructed bone models.

    PubMed

    Park, Jaeyeong; Kim, Jun-Young; Kim, Hyun Deok; Kim, Young Cheol; Seo, Anna; Je, Minkyu; Mun, Jong Uk; Kim, Bia; Park, Il Hyung; Kim, Shin-Yoon

    2017-05-01

    Radiographic measurements using two-dimensional (2D) plain radiographs or planes from computed tomography (CT) scans have several drawbacks, while measurements using images of three-dimensional (3D) reconstructed bone models can provide more consistent anthropometric information. We compared the consistency of results using measurements based on images of 3D reconstructed bone models (3D measurements) with those using planes from CT scans (measurements using 2D slice images). Ninety-six of 561 patients who had undergone deep vein thrombosis-CT between January 2013 and November 2014 were randomly selected. We evaluated measurements using 2D slice images and 3D measurements. The images used for 3D reconstruction of bone models were obtained and measured using [Formula: see text] and [Formula: see text] (Materialize, Leuven, Belgium). The mean acetabular inclination, acetabular anteversion and femoral anteversion values on 2D slice images were 42.01[Formula: see text], 18.64[Formula: see text] and 14.44[Formula: see text], respectively, while those using images of 3D reconstructed bone models were 52.80[Formula: see text], 14.98[Formula: see text] and 17.26[Formula: see text]. Intra-rater reliabilities for acetabular inclination, acetabular anteversion, and femoral anteversion on 2D slice images were 0.55, 0.81, and 0.85, respectively, while those for 3D measurements were 0.98, 0.99, and 0.98. Inter-rater reliabilities for acetabular inclination, acetabular anteversion and femoral anteversion on 2D slice images were 0.48, 0.86, and 0.84, respectively, while those for 3D measurements were 0.97, 0.99, and 0.97. The differences between the two measurements are explained by the use of different tools. However, more consistent measurements were possible using the images of 3D reconstructed bone models. Therefore, 3D measurement can be a good alternative to measurement using 2D slice images.

  19. Computer aided detection of ureteral stones in thin slice computed tomography volumes using Convolutional Neural Networks.

    PubMed

    Längkvist, Martin; Jendeberg, Johan; Thunberg, Per; Loutfi, Amy; Lidén, Mats

    2018-06-01

    Computed tomography (CT) is the method of choice for diagnosing ureteral stones - kidney stones that obstruct the ureter. The purpose of this study is to develop a computer aided detection (CAD) algorithm for identifying a ureteral stone in thin slice CT volumes. The challenge in CAD for urinary stones lies in the similarity in shape and intensity of stones with non-stone structures and how to efficiently deal with large high-resolution CT volumes. We address these challenges by using a Convolutional Neural Network (CNN) that works directly on the high resolution CT volumes. The method is evaluated on a large data base of 465 clinically acquired high-resolution CT volumes of the urinary tract with labeling of ureteral stones performed by a radiologist. The best model using 2.5D input data and anatomical information achieved a sensitivity of 100% and an average of 2.68 false-positives per patient on a test set of 88 scans. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. 64 slice MDCT generally underestimates coronary calcium scores as compared to EBT: A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greuter, M. J. W.; Dijkstra, H.; Groen, J. M.

    The objective of our study was the determination of the influence of the sequential and spiral acquisition modes on the concordance and deviation of the calcium score on 64-slice multi-detector computed tomography (MDCT) scanners in comparison to electron beam tomography (EBT) as the gold standard. Our methods and materials were an anthropomorphic cardio CT phantom with different calcium inserts scanned in sequential and spiral acquisition modes on three identical 64-slice MDCT scanners of manufacturer A and on three identical 64-slice MDCT scanners of manufacturer B and on an EBT system. Every scan was repeated 30 times with and 15 timesmore » without a small random variation in the phantom position for both sequential and spiral modes. Significant differences were observed between EBT and 64-slice MDCT data for all inserts, both acquisition modes, and both manufacturers of MDCT systems. High regression coefficients (0.90-0.98) were found between the EBT and 64-slice MDCT data for both scoring methods and both systems with high correlation coefficients (R{sup 2}>0.94). System A showed more significant differences between spiral and sequential mode than system B. Almost no differences were observed in scanners of the same manufacturer for the Agatston score and no differences for the Volume score. The deviations of the Agatston and Volume scores showed regression dependencies approximately equal to the square root of the absolute score. The Agatston and Volume scores obtained with 64-slice MDCT imaging are highly correlated with EBT-obtained scores but are significantly underestimated (-10% to -2%) for both sequential and spiral acquisition modes. System B is more independent of acquisition mode to calcium score than system A. The Volume score shows no intramanufacturer dependency and its use is advocated versus the Agatston score. Using the same cut points for MDCT-based calcium scores as for EBT-based calcium scores can result in classifying individuals into a too low risk category. System information and scanprotocol is therefore needed for every calcium score procedure to ensure a correct clinical interpretation of the obtained calcium score results.« less

  1. Impact of knowledge-based iterative model reconstruction on myocardial late iodine enhancement in computed tomography and comparison with cardiac magnetic resonance.

    PubMed

    Tanabe, Yuki; Kido, Teruhito; Kurata, Akira; Fukuyama, Naoki; Yokoi, Takahiro; Kido, Tomoyuki; Uetani, Teruyoshi; Vembar, Mani; Dhanantwari, Amar; Tokuyasu, Shinichi; Yamashita, Natsumi; Mochizuki, Teruhito

    2017-10-01

    We evaluated the image quality and diagnostic performance of late iodine enhancement computed tomography (LIE-CT) with knowledge-based iterative model reconstruction (IMR) for the detection of myocardial infarction (MI) in comparison with late gadolinium enhancement magnetic resonance imaging (LGE-MRI). The study investigated 35 patients who underwent a comprehensive cardiac CT protocol and LGE-MRI for the assessment of coronary artery disease. The CT protocol consisted of stress dynamic myocardial CT perfusion, coronary CT angiography (CTA) and LIE-CT using 256-slice CT. LIE-CT scans were acquired 5 min after CTA without additional contrast medium and reconstructed with filtered back projection (FBP), a hybrid iterative reconstruction (HIR), and IMR. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were assessed. Sensitivity and specificity of LIE-CT for detecting MI were assessed according to the 16-segment model. Image quality scores, and diagnostic performance were compared among LIE-CT with FBP, HIR and IMR. Among the 35 patients, 139 of 560 segments showed MI in LGE-MRI. On LIE-CT with FBP, HIR, and IMR, the median SNRs were 2.1, 2.9, and 6.1; and the median CNRs were 1.7, 2.2, and 4.7, respectively. Sensitivity and specificity were 56 and 93% for FBP, 62 and 91% for HIR, and 80 and 91% for IMR. LIE-CT with IMR showed the highest image quality and sensitivity (p < 0.05). The use of IMR enables significant improvement of image quality and diagnostic performance of LIE-CT for detecting MI in comparison with FBP and HIR.

  2. Automatic Solitary Lung Nodule Detection in Computed Tomography Images Slices

    NASA Astrophysics Data System (ADS)

    Sentana, I. W. B.; Jawas, N.; Asri, S. A.

    2018-01-01

    Lung nodule is an early indicator of some lung diseases, including lung cancer. In Computed Tomography (CT) based image, nodule is known as a shape that appears brighter than lung surrounding. This research aim to develop an application that automatically detect lung nodule in CT images. There are some steps in algorithm such as image acquisition and conversion, image binarization, lung segmentation, blob detection, and classification. Data acquisition is a step to taking image slice by slice from the original *.dicom format and then each image slices is converted into *.tif image format. Binarization that tailoring Otsu algorithm, than separated the background and foreground part of each image slices. After removing the background part, the next step is to segment part of the lung only so the nodule can localized easier. Once again Otsu algorithm is use to detect nodule blob in localized lung area. The final step is tailoring Support Vector Machine (SVM) to classify the nodule. The application has succeed detecting near round nodule with a certain threshold of size. Those detecting result shows drawback in part of thresholding size and shape of nodule that need to enhance in the next part of the research. The algorithm also cannot detect nodule that attached to wall and Lung Chanel, since it depend the searching only on colour differences.

  3. A fully automated non-external marker 4D-CT sorting algorithm using a serial cine scanning protocol.

    PubMed

    Carnes, Greg; Gaede, Stewart; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-04-07

    Current 4D-CT methods require external marker data to retrospectively sort image data and generate CT volumes. In this work we develop an automated 4D-CT sorting algorithm that performs without the aid of data collected from an external respiratory surrogate. The sorting algorithm requires an overlapping cine scan protocol. The overlapping protocol provides a spatial link between couch positions. Beginning with a starting scan position, images from the adjacent scan position (which spatial match the starting scan position) are selected by maximizing the normalized cross correlation (NCC) of the images at the overlapping slice position. The process was continued by 'daisy chaining' all couch positions using the selected images until an entire 3D volume was produced. The algorithm produced 16 phase volumes to complete a 4D-CT dataset. Additional 4D-CT datasets were also produced using external marker amplitude and phase angle sorting methods. The image quality of the volumes produced by the different methods was quantified by calculating the mean difference of the sorted overlapping slices from adjacent couch positions. The NCC sorted images showed a significant decrease in the mean difference (p < 0.01) for the five patients.

  4. Magnetic resonance imaging, computed tomography, and gross anatomy of the canine tarsus.

    PubMed

    Deruddere, Kirsten J; Milne, Marjorie E; Wilson, Kane M; Snelling, Sam R

    2014-11-01

    To describe the normal anatomy of the soft tissues of the canine tarsus as identified on computed tomography (CT) and magnetic resonance imaging (MRI) and to evaluate specific MRI sequences and planes for observing structures of diagnostic interest. Prospective descriptive study. Canine cadavers (n = 3). A frozen cadaver pelvic limb was used to trial multiple MRI sequences using a 1.5 T superconducting magnet and preferred sequences were selected. Radiographs of 6 canine cadaver pelvic limbs confirmed the tarsi were radiographically normal. A 16-slice CT scanner was used to obtain 1 mm contiguous slices through the tarsi. T1-weighted, proton density with fat suppression (PD FS) and T2-weighted MRI sequences were obtained in the sagittal plane, T1-weighted, and PD FS sequences in the dorsal plane and PD FS sequences in the transverse plane. The limbs were frozen for one month and sliced into 4-5 mm thick frozen sections. Anatomic sections were photographed and visually correlated to CT and MR images. Most soft tissue structures were easiest to identify on the transverse MRI sections with cross reference to either the sagittal or dorsal plane. Bony structures were easily identified on all CT, MR, and gross sections. The anatomy of the canine tarsus can be readily identified on MR imaging. © Copyright 2014 by The American College of Veterinary Surgeons.

  5. Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR

    NASA Astrophysics Data System (ADS)

    Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A.; Costes, Nicolas; Hammers, Alexander

    2017-04-01

    In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [18F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [18F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BPND). On static [18F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [18F]MPPF, most regional errors on BPND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.

  6. Multi-atlas attenuation correction supports full quantification of static and dynamic brain PET data in PET-MR.

    PubMed

    Mérida, Inés; Reilhac, Anthonin; Redouté, Jérôme; Heckemann, Rolf A; Costes, Nicolas; Hammers, Alexander

    2017-04-07

    In simultaneous PET-MR, attenuation maps are not directly available. Essential for absolute radioactivity quantification, they need to be derived from MR or PET data to correct for gamma photon attenuation by the imaged object. We evaluate a multi-atlas attenuation correction method for brain imaging (MaxProb) on static [ 18 F]FDG PET and, for the first time, on dynamic PET, using the serotoninergic tracer [ 18 F]MPPF. A database of 40 MR/CT image pairs (atlases) was used. The MaxProb method synthesises subject-specific pseudo-CTs by registering each atlas to the target subject space. Atlas CT intensities are then fused via label propagation and majority voting. Here, we compared these pseudo-CTs with the real CTs in a leave-one-out design, contrasting the MaxProb approach with a simplified single-atlas method (SingleAtlas). We evaluated the impact of pseudo-CT accuracy on reconstructed PET images, compared to PET data reconstructed with real CT, at the regional and voxel levels for the following: radioactivity images; time-activity curves; and kinetic parameters (non-displaceable binding potential, BP ND ). On static [ 18 F]FDG, the mean bias for MaxProb ranged between 0 and 1% for 73 out of 84 regions assessed, and exceptionally peaked at 2.5% for only one region. Statistical parametric map analysis of MaxProb-corrected PET data showed significant differences in less than 0.02% of the brain volume, whereas SingleAtlas-corrected data showed significant differences in 20% of the brain volume. On dynamic [ 18 F]MPPF, most regional errors on BP ND ranged from -1 to  +3% (maximum bias 5%) for the MaxProb method. With SingleAtlas, errors were larger and had higher variability in most regions. PET quantification bias increased over the duration of the dynamic scan for SingleAtlas, but not for MaxProb. We show that this effect is due to the interaction of the spatial tracer-distribution heterogeneity variation over time with the degree of accuracy of the attenuation maps. This work demonstrates that inaccuracies in attenuation maps can induce bias in dynamic brain PET studies. Multi-atlas attenuation correction with MaxProb enables quantification on hybrid PET-MR scanners, eschewing the need for CT.

  7. Establishing a process of irradiating small animal brain using a CyberKnife and a microCT scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Haksoo; Welford, Scott; Fabien, Jeffrey

    2014-02-15

    Purpose: Establish and validate a process of accurately irradiating small animals using the CyberKnife G4 System (version 8.5) with treatment plans designed to irradiate a hemisphere of a mouse brain based on microCT scanner images. Methods: These experiments consisted of four parts: (1) building a mouse phantom for intensity modulated radiotherapy (IMRT) quality assurance (QA), (2) proving usability of a microCT for treatment planning, (3) fabricating a small animal positioning system for use with the CyberKnife's image guided radiotherapy (IGRT) system, and (4)in vivo verification of targeting accuracy. A set of solid water mouse phantoms was designed and fabricated, withmore » radiochromic films (RCF) positioned in selected planes to measure delivered doses. After down-sampling for treatment planning compatibility, a CT image set of a phantom was imported into the CyberKnife treatment planning system—MultiPlan (ver. 3.5.2). A 0.5 cm diameter sphere was contoured within the phantom to represent a hemispherical section of a mouse brain. A nude mouse was scanned in an alpha cradle using a microCT scanner (cone-beam, 157 × 149 pixels slices, 0.2 mm longitudinal slice thickness). Based on the results of our positional accuracy study, a planning treatment volume (PTV) was created. A stereotactic body mold of the mouse was “printed” using a 3D printer laying UV curable acrylic plastic. Printer instructions were based on exported contours of the mouse's skin. Positional reproducibility in the mold was checked by measuring ten CT scans. To verify accurate dose delivery in vivo, six mice were irradiated in the mold with a 4 mm target contour and a 2 mm PTV margin to 3 Gy and sacrificed within 20 min to avoid DNA repair. The brain was sliced and stained for analysis. Results: For the IMRT QA using a set of phantoms, the planned dose (6 Gy to the calculation point) was compared to the delivered dose measured via film and analyzed using Gamma analysis (3% and 3 mm). A passing rate of 99% was measured in areas of above 40% of the prescription dose. The final inverse treatment plan was comprised of 43 beams ranging from 5 to 12.5 mm in diameter (2.5 mm size increments are available up to 15 mm in diameter collimation). Using the Xsight Spine Tracking module, the CyberKnife system could not reliably identify and track the tiny mouse spine; however, the CyberKnife system could identify and track the fiducial markers on the 3D mold.In vivo positional accuracy analysis using the 3D mold generated a mean error of 1.41 mm ± 0.73 mm when fiducial markers were used for position tracking. Analysis of the dissected brain confirmed the ability to target the correct brain volume. Conclusions: With the use of a stereotactic body mold with fiducial markers, microCT imaging, and resolution down-sampling, the CyberKnife system can successfully perform small-animal radiotherapy studies.« less

  8. A predictive software tool for optimal timing in contrast enhanced carotid MR angiography

    NASA Astrophysics Data System (ADS)

    Moghaddam, Abbas N.; Balawi, Tariq; Habibi, Reza; Panknin, Christoph; Laub, Gerhard; Ruehm, Stefan; Finn, J. Paul

    2008-03-01

    A clear understanding of the first pass dynamics of contrast agents in the vascular system is crucial in synchronizing data acquisition of 3D MR angiography (MRA) with arrival of the contrast bolus in the vessels of interest. We implemented a computational model to simulate contrast dynamics in the vessels using the theory of linear time-invariant systems. The algorithm calculates a patient-specific impulse response for the contrast concentration from time-resolved images following a small test bolus injection. This is performed for a specific region of interest and through deconvolution of the intensity curve using the long division method. Since high spatial resolution 3D MRA is not time-resolved, the method was validated on time-resolved arterial contrast enhancement in Multi Slice CT angiography. For 20 patients, the timing of the contrast enhancement of the main bolus was predicted by our algorithm from the response to the test bolus, and then for each case the predicted time of maximum intensity was compared to the corresponding time in the actual scan which resulted in an acceptable agreement. Furthermore, as a qualitative validation, the algorithm's predictions of the timing of the carotid MRA in 20 patients with high quality MRA were correlated with the actual timing of those studies. We conclude that the above algorithm can be used as a practical clinical tool to eliminate guesswork and to replace empiric formulae by a priori computation of patient-specific timing of data acquisition for MR angiography.

  9. [Comparative analysis of the semiotics of disseminated pulmonary tuberculosis and exogenous allergic alveolitis in accordance with the data of computed tomography].

    PubMed

    Amansakhedov, R B; Limarova, I V; Perfiliev, A V; Abdullaev, R Yu; Sigaev, A T; Ergeshov, A E

    2016-01-01

    to improve the differential diagnosis of disseminated pulmonary tuberculosis (DPT) and exogenous allergic alveolitis (EAA) via comparative investigation of their computed tomography (CT) semiotics and identification of the most informative diagnostic criteria. 70 patients, including 40 patients with DPT in a phase of infiltration and 30 patients with acute EAA, were studied using a Somatom Emotion 16 multi-slice spiral CT scanner (Siemens). All the patients underwent spiral scanning from the upper chest aperture to the costodiaphragmatic recesses with a high CT algorithm at 0.8-mm slice thickness and a 1.5-mm step. Analysis of the spread of dissemination foci established that pathological changes were peribronchovascularly located in both nosological entities and characterized by a preponderance of septal and intrabronchial locations in DPT and by a centrilobular distribution in EAA. Centrilobular foci were more commonly poorly defined in EAA and mixed foci were observed in DPT. In the latter, peribronchovascular, centrilobular foci were revealed at a distance from the visceral pleura (the boundary of the deep and superficial lymphatic network, respectively) in 38% and more than half of the cases (62%) with the involvement of the visceral and parietal pleura; in EAA, the centrilobular foci were more often combined with the involvement of the visceral pleura in more than 92% of cases. The tree-in-bud sign was significantly more common in DPT. The latter was mostly characterized by apicocaudal regression of dissemination. In EAA, the foci were more frequently located asymmetrically. Monomorphic foci with destruction, as well as their polymorphism were seen in DPT; those without destruction were predominantly observed in EAA. CT ground glass and mosaic perfusion syndromes were significantly more often in EAA. In DPT, the visceral and parietal pleuras were involved in the process in 62% of cases and changes were also more common in the extrapleural fat. In addition to the peribronchovascular location of foci, the characteristic CT signs for DPT are a preponderance of intrabronchial and septal locations of foci, their apicocaudal regression, the presence of the CT tree-in-bud sign, and thickened extrapleural fat. EAA showed a prevalence of asymmetrical foci with centrilobular location with the involvement of the visceral pleura into the process, with the presence of CT ground glass and mosaic perfusion syndromes, as well as the bronchial lumen visualized in the peripheral segments of the lung.

  10. The CT image standardization based on the verified PSF

    NASA Astrophysics Data System (ADS)

    Wada, Shinichi; Ohkubo, Masaki; Kunii, Masayuki; Matsumoto, Toru; Murao, Kohei; Awai, Kazuo; Ikeda, Mitsuru

    2007-03-01

    This study discusses a method of CT image quality standardization that uses a point-spread function (PSF) in MDCT. CT image I(x,y,z) is represented by the following formula: I(x,y,z) = O(x,y,z)***PSF(x,y,z). Standardization was performed by measuring the three-dimensional (3-D) PSFs of two CT images with different image qualities. The image conversion method was constructed and tested using the 3-D PSFs and CT images of the CT scanners of three different manufacturers. The CT scanners used were Lightspeed QX/i, Somatom Volume Zoom, and Brilliance-40. To obtain the PSF(x,y) of these CT scanners, the line spread functions of the respective reconstruction kernels were measured using a phantom described by J.M. Boone. The kernels for each scanner were: soft, standard, lung, bone, and bone plus (GE); B20f, B40f, B41f, B50f, and B60f (Siemens); and B, C, D, E, and L (Philips). Slice sensitivity profile (SSP) were measured using a micro-disk phantom (50 μm* φ1 mm) with 5 mm slice thickness and beam pitch of 1.5 (GE, Siemens) and 0.626 (Philips). 3-D PSF was verified using an MDCT QA phantom. Real chest CT images were converted to images with contrasting standard image quality. Comparison between the converted CT image and the original standard image showed good agreement. The usefulness of the image conversion method is discussed using clinical CT images acquired by CT scanners produced by different manufacturers.

  11. Automated segmentation and recognition of the bone structure in non-contrast torso CT images using implicit anatomical knowledge

    NASA Astrophysics Data System (ADS)

    Zhou, X.; Hayashi, T.; Han, M.; Chen, H.; Hara, T.; Fujita, H.; Yokoyama, R.; Kanematsu, M.; Hoshi, H.

    2009-02-01

    X-ray CT images have been widely used in clinical diagnosis in recent years. A modern CT scanner can generate about 1000 CT slices to show the details of all the human organs within 30 seconds. However, CT image interpretations (viewing 500-1000 slices of CT images manually in front of a screen or films for each patient) require a lot of time and energy. Therefore, computer-aided diagnosis (CAD) systems that can support CT image interpretations are strongly anticipated. Automated recognition of the anatomical structures in CT images is a basic pre-processing of the CAD system. The bone structure is a part of anatomical structures and very useful to act as the landmarks for predictions of the other different organ positions. However, the automated recognition of the bone structure is still a challenging issue. This research proposes an automated scheme for segmenting the bone regions and recognizing the bone structure in noncontrast torso CT images. The proposed scheme was applied to 48 torso CT cases and a subjective evaluation for the experimental results was carried out by an anatomical expert following the anatomical definition. The experimental results showed that the bone structure in 90% CT cases have been recognized correctly. For quantitative evaluation, automated recognition results were compared to manual inputs of bones of lower limb created by an anatomical expert on 10 randomly selected CT cases. The error (maximum distance in 3D) between the recognition results and manual inputs distributed from 3-8 mm in different parts of the bone regions.

  12. Automatic detection of axillary lymphadenopathy on CT scans of untreated chronic lymphocytic leukemia patients

    NASA Astrophysics Data System (ADS)

    Liu, Jiamin; Hua, Jeremy; Chellappa, Vivek; Petrick, Nicholas; Sahiner, Berkman; Farooqui, Mohammed; Marti, Gerald; Wiestner, Adrian; Summers, Ronald M.

    2012-03-01

    Patients with chronic lymphocytic leukemia (CLL) have an increased frequency of axillary lymphadenopathy. Pretreatment CT scans can be used to upstage patients at the time of presentation and post-treatment CT scans can reduce the number of complete responses. In the current clinical workflow, the detection and diagnosis of lymph nodes is usually performed manually by examining all slices of CT images, which can be time consuming and highly dependent on the observer's experience. A system for automatic lymph node detection and measurement is desired. We propose a computer aided detection (CAD) system for axillary lymph nodes on CT scans in CLL patients. The lung is first automatically segmented and the patient's body in lung region is extracted to set the search region for lymph nodes. Multi-scale Hessian based blob detection is then applied to detect potential lymph nodes within the search region. Next, the detected potential candidates are segmented by fast level set method. Finally, features are calculated from the segmented candidates and support vector machine (SVM) classification is utilized for false positive reduction. Two blobness features, Frangi's and Li's, are tested and their free-response receiver operating characteristic (FROC) curves are generated to assess system performance. We applied our detection system to 12 patients with 168 axillary lymph nodes measuring greater than 10 mm. All lymph nodes are manually labeled as ground truth. The system achieved sensitivities of 81% and 85% at 2 false positives per patient for Frangi's and Li's blobness, respectively.

  13. Characterization of the relation between CT technical parameters and accuracy of quantification of lung attenuation on quantitative chest CT.

    PubMed

    Trotta, Brian M; Stolin, Alexander V; Williams, Mark B; Gay, Spencer B; Brody, Alan S; Altes, Talissa A

    2007-06-01

    The purpose of this study was to assess the compromise between CT technical parameters and the accuracy of CT quantification of lung attenuation. Materials that simulate water (0 H), healthy lung (-650 H), borderline emphysematous lung (-820 H), and severely emphysematous lung (-1,000 H) were placed at both the base and the apex of the lung of an anthropomorphic phantom and outside the phantom. Transaxial CT images through the samples were obtained while the effective tube current was varied from 440 to 10 mAs, kilovoltage from 140 to 80 kVp, and slice thickness from 0.625 to 10 mm. Mean +/- SD attenuation within the samples and the standard quantitative chest CT measurements, the percentage of pixels with attenuation less than -910 H and 15th percentile of attenuation, were computed. Outside the phantom, variations in CT parameters produced less than 2.0% error in all measurements. Within the anthropomorphic phantom at 30 mAs, error in measurements was much larger, ranging from zero to 200%. Below approximately 80 mAs, mean attenuation became increasingly biased. The effects were most pronounced at the apex of the lungs. Mean attenuation of the borderline emphysematous sample of apex decreased 55 H as the tube current was decreased from 300 to 30 mAs. Both the 15th percentile of attenuation and percentage of pixels with less than -910 H attenuation were more sensitive to variations in effective tube current than was mean attenuation. For example, the -820 H sample should have 0% of pixels less than -910 H, which was true at 400 mA. At 30 mA in the lung apex, however, the measurement was highly inaccurate, 51% of pixels being below this value. Decreased kilovoltage and slice thickness had analogous, but lesser, effects. The accuracy of quantitative chest CT is determined by the CT acquisition parameters. There can be significant decreases in accuracy at less than 80 mAs for thin slices in an anthropomorphic phantom, the most pronounced effects occurring in the lung apex.

  14. Reducing 4D CT artifacts using optimized sorting based on anatomic similarity.

    PubMed

    Johnston, Eric; Diehn, Maximilian; Murphy, James D; Loo, Billy W; Maxim, Peter G

    2011-05-01

    Four-dimensional (4D) computed tomography (CT) has been widely used as a tool to characterize respiratory motion in radiotherapy. The two most commonly used 4D CT algorithms sort images by the associated respiratory phase or displacement into a predefined number of bins, and are prone to image artifacts at transitions between bed positions. The purpose of this work is to demonstrate a method of reducing motion artifacts in 4D CT by incorporating anatomic similarity into phase or displacement based sorting protocols. Ten patient datasets were retrospectively sorted using both the displacement and phase based sorting algorithms. Conventional sorting methods allow selection of only the nearest-neighbor image in time or displacement within each bin. In our method, for each bed position either the displacement or the phase defines the center of a bin range about which several candidate images are selected. The two dimensional correlation coefficients between slices bordering the interface between adjacent couch positions are then calculated for all candidate pairings. Two slices have a high correlation if they are anatomically similar. Candidates from each bin are then selected to maximize the slice correlation over the entire data set using the Dijkstra's shortest path algorithm. To assess the reduction of artifacts, two thoracic radiation oncologists independently compared the resorted 4D datasets pairwise with conventionally sorted datasets, blinded to the sorting method, to choose which had the least motion artifacts. Agreement between reviewers was evaluated using the weighted kappa score. Anatomically based image selection resulted in 4D CT datasets with significantly reduced motion artifacts with both displacement (P = 0.0063) and phase sorting (P = 0.00022). There was good agreement between the two reviewers, with complete agreement 34 times and complete disagreement 6 times. Optimized sorting using anatomic similarity significantly reduces 4D CT motion artifacts compared to conventional phase or displacement based sorting. This improved sorting algorithm is a straightforward extension of the two most common 4D CT sorting algorithms.

  15. A setup for combined multiphoton laser scanning microscopic and multi-electrode patch clamp experiments on brain slices

    NASA Astrophysics Data System (ADS)

    Helm, P. Johannes; Reppen, Trond; Heggelund, Paul

    2009-02-01

    Multi Photon Laser Scanning Microscopy (MPLSM) appears today as one of the most powerful experimental tools in cellular neurophysiology, notably in studies of the functional dynamics of signal processing in single neurons. Simultaneous recording of fluorescence signals at high spatial and temporal resolution and electric signals by means of multi electrode patch clamp techniques have provided new paths for the systematic investigation of neuronal mechanisms. In particular, this approach has opened for direct studies of dendritic signal processing in neurons. We report about a setup optimized for simultaneous electrophysiological multi electrode patch clamp and multi photon laser scanning fluorescence microscopic experiments on brain slices. The microscopic system is based on a modified commercially available confocal scanning laser microscope (CLSM). From a technical and operational point of view, two developments are important: Firstly, in order to reduce the workload for the experimentalist, who in general is forced to concentrate on controlling the electrophysiological parameters during the recordings, a system of shutters has been installed together with dedicated electronic modules protecting the photo detectors against destructive light levels caused by erroneous opening or closing of microscopic light paths by the experimentalist. Secondly, the standard detection unit has been improved by installing the photomultiplier tubes (PMT) in a Peltier cooled thermal box shielding the detector from both room temperature and distortions caused by external electromagnetic fields. The electrophysiological system is based on an industrial standard multi patch clamp unit ergonomically arranged around the microscope stage. The electrophysiological and scanning processes can be time coordinated by standard trigger electronics.

  16. Investigating lithium-ion battery materials during overcharge-induced thermal runaway: an operando and multi-scale X-ray CT study.

    PubMed

    Finegan, Donal P; Scheel, Mario; Robinson, James B; Tjaden, Bernhard; Di Michiel, Marco; Hinds, Gareth; Brett, Dan J L; Shearing, Paul R

    2016-11-16

    Catastrophic failure of lithium-ion batteries occurs across multiple length scales and over very short time periods. A combination of high-speed operando tomography, thermal imaging and electrochemical measurements is used to probe the degradation mechanisms leading up to overcharge-induced thermal runaway of a LiCoO 2 pouch cell, through its interrelated dynamic structural, thermal and electrical responses. Failure mechanisms across multiple length scales are explored using a post-mortem multi-scale tomography approach, revealing significant morphological and phase changes in the LiCoO 2 electrode microstructure and location dependent degradation. This combined operando and multi-scale X-ray computed tomography (CT) technique is demonstrated as a comprehensive approach to understanding battery degradation and failure.

  17. Cost-effectiveness of 64-slice CT angiography compared to conventional coronary angiography based on a coverage with evidence development study in Ontario.

    PubMed

    Goeree, Ron; Blackhouse, Gord; Bowen, James M; O'Reilly, Daria; Sutherland, Simone; Hopkins, Robert; Chow, Benjamin; Freeman, Michael; Provost, Yves; Dennie, Carole; Cohen, Eric; Marcuzzi, Dan; Iwanochko, Robert; Moody, Alan; Paul, Narinder; Parker, John D

    2013-10-01

    Conventional coronary angiography (CCA) is the standard diagnostic for coronary artery disease (CAD), but multi-detector computed tomography coronary angiography (CTCA) is a non-invasive alternative. A multi-center coverage with evidence development study was undertaken and combined with an economic model to estimate the cost-effectiveness of CTCA followed by CCA vs CCA alone. Alternative assumptions were tested in patient scenario and sensitivity analyses. CCA was found to dominate CTCA, however, CTCA was relatively more cost-effective in females, in advancing age, in patients with lower pre-test probabilities of CAD, the higher the sensitivity of CTCA and the lower the probability of undergoing a confirmatory CCA following a positive CTCA. RESULTS were very sensitive to alternative patient populations and modeling assumptions. Careful consideration of patient characteristics, procedures to improve the diagnostic yield of CTCA and selective use of CCA following CTCA will impact whether CTCA is cost-effective or dominates CCA.

  18. Evaluation of radiographic, computed tomographic, and cadaveric anatomy of the head of boa constrictors.

    PubMed

    Banzato, Tommaso; Russo, Elisa; Di Toma, Anna; Palmisano, Giuseppe; Zotti, Alessandro

    2011-12-01

    To evaluate the radiographic, computed tomographic (CT), and cadaveric anatomy of the head of boa constrictors. 4 Boa constrictor imperator cadavers. Cadavers weighed 3.4 to 5.6 kg and had a body length ranging from 189 to 221 cm. Radiographic and CT images were obtained with a high-detail screen-film combination, and conventional CT was performed with a slice thickness of 1.5 mm. Radiographic images were obtained in ventrodorsal, dorsoventral, and left and right laterolateral recumbency; CT images were obtained with the animals positioned in ventral recumbency directly laying on a plastic support. At the end of the radiographic and CT imaging session, 2 heads were sectioned following a stratigraphic approach; the other 2, carefully maintained in the same position on the plastic support, were moved into a freezer (-20°C) until completely frozen and then sectioned into 3-mm slices, respecting the imaging protocol. The frozen sections were cleaned and then photographed on each side. Anatomic structures were identified and labeled on gross anatomic images and on the corresponding CT or radiographic image with the aid of available literature. Radiographic and CT images provided high detail for visualization of bony structures; soft tissues were not easily identified on radiographic and CT images. Results provide an atlas of stratigraphic and cross-sectional gross anatomy and radiographic and CT anatomy of the heads of boa constrictors that might be useful in the interpretation of any imaging modality in this species.

  19. Dose verification to cochlea during gamma knife radiosurgery of acoustic schwannoma using MOSFET dosimeter.

    PubMed

    Sharma, Sunil D; Kumar, Rajesh; Akhilesh, Philomina; Pendse, Anil M; Deshpande, Sudesh; Misra, Basant K

    2012-01-01

    Dose verification to cochlea using metal oxide semiconductor field effect transistor (MOSFET) dosimeter using a specially designed multi slice head and neck phantom during the treatment of acoustic schwannoma by Gamma Knife radiosurgery unit. A multi slice polystyrene head phantom was designed and fabricated for measurement of dose to cochlea during the treatment of the acoustic schwannoma. The phantom has provision to position the MOSFET dosimeters at the desired location precisely. MOSFET dosimeters of 0.2 mm x 0.2 mm x 0.5 μm were used to measure the dose to the cochlea. CT scans of the phantom with MOSFETs in situ were taken along with Leksell frame. The treatment plans of five patients treated earlier for acoustic schwannoma were transferred to the phantom. Dose and coordinates of maximum dose point inside the cochlea were derived. The phantom along with the MOSFET dosimeters was irradiated to deliver the planned treatment and dose received by cochlea were measured. The treatment planning system (TPS) estimated and measured dose to the cochlea were in the range of 7.4 - 8.4 Gy and 7.1 - 8 Gy, respectively. The maximum variation between TPS calculated and measured dose to cochlea was 5%. The measured dose values were found in good agreement with the dose values calculated using the TPS. The MOSFET dosimeter can be a suitable choice for routine dose verification in the Gamma Knife radiosurgery.

  20. CT and MRI slice separation evaluation by LabView developed software.

    PubMed

    Acri, Giuseppe; Testagrossa, Barbara; Sestito, Angela; Bonanno, Lilla; Vermiglio, Giuseppe

    2018-02-01

    The efficient use of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) equipment necessitates establishing adequate quality-control (QC) procedures. In particular, the accuracy of slice separation, during multislices acquisition, requires scan exploration of phantoms containing test objects. To simplify such procedures, a novel phantom and a computerised LabView-based procedure have been devised, enabling determination the midpoint of full width at half maximum (FWHM) in real time while the distance from the profile midpoint of two progressive images is evaluated and measured. The results were compared with those obtained by processing the same phantom images with commercial software. To validate the proposed methodology the Fisher test was conducted on the resulting data sets. In all cases, there was no statistically significant variation between the commercial procedure and the LabView one, which can be used on any CT and MRI diagnostic devices. Copyright © 2017. Published by Elsevier GmbH.

  1. [Anatomy of the skull base and the cranial nerves in slice imaging].

    PubMed

    Bink, A; Berkefeld, J; Zanella, F

    2009-07-01

    Computed tomography (CT) and magnetic resonance imaging (MRI) are suitable methods for examination of the skull base. Whereas CT is used to evaluate mainly bone destruction e.g. for planning surgical therapy, MRI is used to show pathologies in the soft tissue and bone invasion. High resolution and thin slice thickness are indispensible for both modalities of skull base imaging. Detailed anatomical knowledge is necessary even for correct planning of the examination procedures. This knowledge is a requirement to be able to recognize and interpret pathologies. MRI is the method of choice for examining the cranial nerves. The total path of a cranial nerve can be visualized by choosing different sequences taking into account the tissue surrounding this cranial nerve. This article summarizes examination methods of the skull base in CT and MRI, gives a detailed description of the anatomy and illustrates it with image examples.

  2. Interactive Simulation of Hardwood Log Veneer Slicing Using CT Images

    Treesearch

    Daniel L Schmoldt; Pei Li; Philip A. Araman

    1996-01-01

    Veneer producers must make critical processing decisions based solely on external examination of logs. Unlike sawlog breakdown, however, little research has investigated ways in which veneer logs can best be flitched and sliced for increased value. This gap exists largely due to the variety of ways in which veneer is produced and used and the variety of buyers that...

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahmood, U; Dauer, L; Erdi, Y

    Purpose: Our goal was to evaluate low contrast detectability (LCD) for abdominal CT protocols across two CT scanner manufacturers, while producing a similar noise texture and CTDIvol for acquired images. Methods: A CIRS tissue equivalent LCD phantom containing three columns of 7 spherical targets, ranging from 10 mm to 2.4 mm, that are 5, 10, and 20 HU below the background matrix (HUBB) was scanned using two a GE HD750 64 slice scanner and a Siemens Somatom Definition AS 64 slice scanner. Protocols were designed to deliver a CTDIvol of 12.26 mGy and images were reconstructed with FBP, ASIR andmore » Sapphire. Comparisons were made with those algorithms that had matching noise power spectrum peaks (NPS). NPS information was extracted from a previously published article that matched NPS peak frequencies across manufacturers by calculating the NPS from uniform phantom images reconstructed with several IR algorithms. Results: The minimum detectable lesion size in the 20 HUBB and 10 HUBB column was 6.3 mm, and 10 mm in the 5 HUBB column for the GE HD 750 scanner. The minimum detectable lesion size in the 20 HUBB column was 4.8 mm, in the 10 HUBB column, 9.5 mm, and the 5 HUBB column, 10 mm for the Siemens Somatom Definition AS. Conclusion: Reducing radiation dose while improving or maintaining LCD is possible with application of IR. However, there are several different IR algorithms, with each generating a different resolution and noise texture. In multi-manufacturer settings, matching only the CTDIvol between manufacturers may Result in a loss of clinically relevant information.« less

  4. Virtual tissue alignment and cutting plane definition – a new method to obtain optimal longitudinal histological sections

    PubMed Central

    Danz, J C; Habegger, M; Bosshardt, D D; Katsaros, C; Stavropoulos, A

    2014-01-01

    Histomorphometric evaluation of the buccal aspects of periodontal tissues in rodents requires reproducible alignment of maxillae and highly precise sections containing central sections of buccal roots; this is a cumbersome and technically sensitive process due to the small specimen size. The aim of the present report is to describe and analyze a method to transfer virtual sections of micro-computer tomographic (CT)-generated image stacks to the microtome for undecalcified histological processing and to describe the anatomy of the periodontium in rat molars. A total of 84 undecalcified sections of all buccal roots of seven untreated rats was analyzed. The accuracy of section coordinate transfer from virtual micro-CT slice to the histological slice, right–left side differences and the measurement error for linear and angular measurements on micro-CT and on histological micrographs were calculated using the Bland–Altman method, interclass correlation coefficient and the method of moments estimator. Also, manual alignment of the micro-CT-scanned rat maxilla was compared with multiplanar computer-reconstructed alignment. The supra alveolar rat anatomy is rather similar to human anatomy, whereas the alveolar bone is of compact type and the keratinized gingival epithelium bends apical to join the junctional epithelium. The high methodological standardization presented herein ensures retrieval of histological slices with excellent display of anatomical microstructures, in a reproducible manner, minimizes random errors, and thereby may contribute to the reduction of number of animals needed. PMID:24266502

  5. Evaluation of radiation dose of triple rule-out coronary angiography protocols with different scan length using 256-slice CT

    NASA Astrophysics Data System (ADS)

    Tsai, Chia-Jung; Lee, Jason J. S.; Chen, Liang-Kuang; Mok, Greta S. P.; Hsu, Shih-Ming; Wu, Tung-Hsin

    2011-10-01

    Triple rule-out coronary CT angiography (TRO-CTA) is a new approach for providing noninvasive visualization of coronary arteries with simultaneous evaluation of pulmonary arteries, thoracic aorta and other intrathoracic structures. The increasing use of TRO-CTA examination with longer scan length is associated with the concerns about radiation dose and their corresponding cancer risk. The purpose of this study is to evaluate organ dose and effective dose for the TRO-CTA examination with 2 scan lengths: TRO std and TRO ext, using 256-slice CT. TRO-CTA examinations were performed on a 256-slice CT scanner without ECG-based tube current modulation. Absorbed organ doses were measured using an anthropomorphic phantom and thermal-luminance dosimeters (TLDs). Effective dose was determined by taking a sum of the measured absorbed organ doses multiplied with the tissue weighting factor based on ICRP-103, and compared to that calculated using the dose-length product (DLP) method. We obtained high organ doses in the thyroid, esophagus, breast, heart and lung in both TRO-CTA protocols. Effective doses of the TRO std and TRO ext protocols with the phantom method were 26.37 and 42.49 mSv, while those with the DLP method were 19.68 and 38.96 mSv, respectively. Our quantitative dose information establishes a relationship between radiation dose and scanning length, and can provide a practical guidance to best clinical practice.

  6. SU-E-T-599: The Variation of Hounsfield Unit and Relative Electron Density Determination as a Function of KVp and Its Effect On Dose Calculation Accuracy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohl, A; Boer, S De

    Purpose: To investigate the differences in relative electron density for different energy (kVp) settings and the effect that these differences have on dose calculations. Methods: A Nuclear Associates 76-430 Mini CT QC Phantom with materials of known relative electron densities was imaged by one multi-slice (16) and one single-slice computed tomography (CT) scanner. The Hounsfield unit (HU) was recorded for each material with energies ranging from 80 to 140 kVp and a representative relative electron density (RED) curve was created. A 5 cm thick inhomogeneity was created in the treatment planning system (TPS) image at a depth of 5 cm.more » The inhomogeneity was assigned HU for various materials for each kVp calibration curve. The dose was then calculated with the analytical anisotropic algorithm (AAA) at points within and below the inhomogeneity and compared using the 80 kVp beam as a baseline. Results: The differences in RED values as a function of kVp showed the largest variations of 580 and 547 HU for the Aluminum and Bone materials; the smallest differences of 0.6 and 3.0 HU were observed for the air and lung inhomogeneities. The corresponding dose calculations for the different RED values assigned to the 5 cm thick slab revealed the largest differences inside the aluminum and bone inhomogeneities of 2.2 to 6.4% and 4.3 to 7.0% respectively. The dose differences beyond these two inhomogeneities were between 0.4 to 1.6% for aluminum and 1.9 to 2.2 % for bone. For materials with lower HU the calculated dose differences were less than 1.0%. Conclusion: For high CT number materials the dose differences in the phantom calculation as high as 7.0% are significant. This result may indicate that implementing energy specific RED curves can increase dose calculation accuracy.« less

  7. Diagnostic value of 64-slice spiral computed tomography imaging of the urinary tract during the excretory phase for urinary tract obstruction.

    PubMed

    Zhao, De-Li; Jia, Guang-Sheng; Chen, Peng; Liu, Xin-Ding; Shu, Sheng-Jie; Ling, Zai-Sheng; Fan, Ting-Ting; Shen, Xiu-Fen; Zhang, Jin-Ling

    2017-11-01

    The present study aimed to assess the diagnostic value of 64-slice spiral computed tomography (CT) imaging of the urinary tract during the excretory phase for urinary tract obstruction. CT imaging of the urinary tract during the excretory phase was performed in 46 patients that had been diagnosed with urinary tract obstruction by B-mode ultrasound imaging or clinical manifestations. It was demonstrated that out of the 46 patients, 18 had pelvic and ureteral calculi, 12 cases had congenital malformations, 3 had ureteral stricture caused by urinary tract infection and 13 cases had malignant tumors of the urinary tract. The average X-ray dose planned for the standard CT scan of the urinary tract group 1 was 14.11±5.45 mSv, while the actual X-ray dose administered for the CT scan during the excretory phase group 2 was 9.01±4.56 mSv. The difference between the two groups was statistically significant (t=15.36; P<0.01). The results of the present study indicate that CT scanning of the urinary tract during the excretory phase has a high diagnostic value for urinary tract obstruction.

  8. SU-E-I-26: The CT Compatibility of a Novel Direction Modulated Brachytherapy (DMBT) Tandem Applicator for Cervical Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzibak, A; Safigholi, H; Soliman, A

    2015-06-15

    Purpose: To examine CT metal image artifact from a novel direction-modulated brachytherapy (DMBT) tandem applicator (95% tungsten) for cervical cancer using a commercially available orthopedic metal artifact reduction (O-MAR) algorithm. Comparison to a conventional stainless steel applicator is also performed. Methods: Each applicator was placed in a water-filled phantom resembling the female pelvis and scanned in a Philips Brilliance 16-slice CT scanner using two pelvis protocols: a typical clinical protocol (120kVp, 16×0.75mm collimation, 0.692 pitch, 1.0s rotation, 350mm field of view (FOV), 600mAs, 1.5mm slices) and a protocol with a higher kVp and mAs setting useful for larger patients (140kVp,more » 16×0.75mm collimation, 0.688 pitch, 1.5s rotation, 350mm FOV, 870mAs, 1.5mm slices). Images of each tandem were acquired with and without the application of the O-MAR algorithm. Baseline scans of the phantom (no applicator) were also collected. CT numbers were quantified at distances from 5 to 30 mm away from the applicator’s edge (in increments of 5mm) using measurements at eight angles around the applicator, on three consecutive slices. Results: While the presence of both applicators degraded image quality, the DMBT applicator resulted in larger streaking artifacts and dark areas in the image compared to the stainless steel applicator. Application of the O-MAR algorithm improved all acquired images, both visually and quantitatively. The use of low and high kVp and mAs settings (120 kVp/600mAs and 140 kVp/870mAs) in conjunction with the O-MAR algorithm lead to similar CT numbers in the vicinity of the applicator and a similar reduction of the induced metal artifact. Conclusion: This work indicated that metal artifacts induced by the DMBT and the stainless steel applicator are greatly reduced when using the O-MAR algorithm, leading to better quality phantom images. The use of a high dose protocol provided similar improvements in metal artifacts compared to the clinical protocol.« less

  9. RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI

    PubMed Central

    Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187

  10. Automatic detection of left and right ventricles from CTA enables efficient alignment of anatomy with myocardial perfusion data.

    PubMed

    Piccinelli, Marina; Faber, Tracy L; Arepalli, Chesnal D; Appia, Vikram; Vinten-Johansen, Jakob; Schmarkey, Susan L; Folks, Russell D; Garcia, Ernest V; Yezzi, Anthony

    2014-02-01

    Accurate alignment between cardiac CT angiographic studies (CTA) and nuclear perfusion images is crucial for improved diagnosis of coronary artery disease. This study evaluated in an animal model the accuracy of a CTA fully automated biventricular segmentation algorithm, a necessary step for automatic and thus efficient PET/CT alignment. Twelve pigs with acute infarcts were imaged using Rb-82 PET and 64-slice CTA. Post-mortem myocardium mass measurements were obtained. Endocardial and epicardial myocardial boundaries were manually and automatically detected on the CTA and both segmentations used to perform PET/CT alignment. To assess the segmentation performance, image-based myocardial masses were compared to experimental data; the hand-traced profiles were used as a reference standard to assess the global and slice-by-slice robustness of the automated algorithm in extracting myocardium, LV, and RV. Mean distances between the automated and the manual 3D segmented surfaces were computed. Finally, differences in rotations and translations between the manual and automatic surfaces were estimated post-PET/CT alignment. The largest, smallest, and median distances between interactive and automatic surfaces averaged 1.2 ± 2.1, 0.2 ± 1.6, and 0.7 ± 1.9 mm. The average angular and translational differences in CT/PET alignments were 0.4°, -0.6°, and -2.3° about x, y, and z axes, and 1.8, -2.1, and 2.0 mm in x, y, and z directions. Our automatic myocardial boundary detection algorithm creates surfaces from CTA that are similar in accuracy and provide similar alignments with PET as those obtained from interactive tracing. Specific difficulties in a reliable segmentation of the apex and base regions will require further improvements in the automated technique.

  11. Validation of a measuring technique with computed tomography for cement penetration into trabecular bone underneath the tibial tray in total knee arthroplasty on a cadaver model

    PubMed Central

    2014-01-01

    Background In total knee arthroplasty (TKA), cement penetration between 3 and 5 mm beneath the tibial tray is required to prevent loosening of the tibia component. The objective of this study was to develop and validate a reliable in vivo measuring technique using CT imaging to assess cement distribution and penetration depth in the total area underneath a tibia prosthesis. Methods We defined the radiodensity ranges for trabecular tibia bone, polymethylmethacrylate (PMMA) cement and cement-penetrated trabecular bone and measured the percentages of cement penetration at various depths after cementing two tibia prostheses onto redundant femoral heads. One prosthesis was subsequently removed to examine the influence of the metal tibia prostheses on the quality of the CT images. The percentages of cement penetration in the CT slices were compared with percentages measured with photographs of the corresponding transversal slices. Results Trabecular bone and cement-penetrated trabecular bone had no overlap in quantitative scale of radio-density. There was no significant difference in mean HU values when measuring with or without the tibia prosthesis. The percentages of measured cement-penetrated trabecular bone in the CT slices of the specimen were within the range of percentages that could be expected based on the measurements with the photographs (p = 0.04). Conclusions CT scan images provide valid results in measuring the penetration and distribution of cement into trabecular bone underneath the tibia component of a TKA. Since the proposed method does not turn metal elements into artefacts, it enables clinicians to assess the width and density of the cement mantle in vivo and to compare the results of different cementing methods in TKA. PMID:25158996

  12. A general tool for the evaluation of spiral CT interpolation algorithms: revisiting the effect of pitch in multislice CT.

    PubMed

    Bricault, Ivan; Ferretti, Gilbert

    2005-01-01

    While multislice spiral computed tomography (CT) scanners are provided by all major manufacturers, their specific interpolation algorithms have been rarely evaluated. Because the results published so far relate to distinct particular cases and differ significantly, there are contradictory recommendations about the choice of pitch in clinical practice. In this paper, we present a new tool for the evaluation of multislice spiral CT z-interpolation algorithms, and apply it to the four-slice case. Our software is based on the computation of a "Weighted Radiation Profile" (WRP), and compares WRP to an expected ideal profile in terms of widening and heterogeneity. It provides a unique scheme for analyzing a large variety of spiral CT acquisition procedures. Freely chosen parameters include: number of detector rows, detector collimation, nominal slice width, helical pitch, and interpolation algorithm with any filter shape and width. Moreover, it is possible to study any longitudinal and off-isocenter positions. Theoretical and experimental results show that WRP, more than Slice Sensitivity Profile (SSP), provides a comprehensive characterization of interpolation algorithms. WRP analysis demonstrates that commonly "preferred helical pitches" are actually nonoptimal regarding the formerly distinguished z-sampling gap reduction criterion. It is also shown that "narrow filter" interpolation algorithms do not enable a general preferred pitch discussion, since they present poor properties with large longitudinal and off-center variations. In the more stable case of "wide filter" interpolation algorithms, SSP width or WRP widening are shown to be almost constant. Therefore, optimal properties should no longer be sought in terms of these criteria. On the contrary, WRP heterogeneity is related to variable artifact phenomena and can pertinently characterize optimal pitches. In particular, the exemplary interpolation properties of pitch = 1 "wide filter" mode are demonstrated.

  13. The use of maxillary sinus dimensions in gender determination: a thin-slice multidetector computed tomography assisted morphometric study.

    PubMed

    Ekizoglu, Oguzhan; Inci, Ercan; Hocaoglu, Elif; Sayin, Ibrahim; Kayhan, Fatma Tulin; Can, Ismail Ozgur

    2014-05-01

    Gender determination is an important step in identification. For gender determination, anthropometric evaluation is one of the main forensic evaluations. In the present study, morphometric analysis of maxillary sinuses was performed to determine gender. For morphometric analysis, coronal and axial paranasal sinus computed tomography (CT) scan with 1-mm slice thickness was used. For this study, 140 subjects (70 women and 70 men) were enrolled (age ranged between 18 and 63). The size of each subject's maxillary sinuses was measured in anteroposterior, transverse, cephalocaudal, and volume directions. In each measurement, the size of the maxillary sinus is significantly small in female gender (P < 0.001). When discrimination analysis was performed, the accuracy rate was detected as 80% for women and 74.3% for men with an overall rate of 77.15%. With the use of 1-mm slice thickness CT, morphometric analysis of maxillary sinuses will be helpful for gender determination.

  14. The MAGIC-5 CAD for nodule detection in low dose and thin slice lung CTs

    NASA Astrophysics Data System (ADS)

    Cerello, Piergiorgio; MAGIC-5 Collaboration

    2010-11-01

    Lung cancer is the leading cause of cancer-related mortality in developed countries. Only 10-15% of all men and women diagnosed with lung cancer live 5 years after the diagnosis. However, the 5-year survival rate for patients diagnosed in the early asymptomatic stage of the disease can reach 70%. Early-stage lung cancers can be diagnosed by detecting non-calcified small pulmonary nodules with computed tomography (CT). Computer-aided detection (CAD) could support radiologists in the analysis of the large amount of noisy images generated in screening programs, where low-dose and thin-slice settings are used. The MAGIC-5 project, funded by the Istituto Nazionale di Fisica Nucleare (INFN, Italy) and Ministero dell'Università e della Ricerca (MUR, Italy), developed a multi-method approach based on three CAD algorithms to be used in parallel with a merging of their results: the Channeler Ant Model (CAM), based on Virtual Ant Colonies, the Dot-Enhancement/Pleura Surface Normals/VBNA (DE-PSN-VBNA), and the Region Growing Volume Plateau (RGVP). Preliminary results show quite good performances, to be improved with the refining of the single algorithm and the added value of the results merging.

  15. Automated measurements of metabolic tumor volume and metabolic parameters in lung PET/CT imaging

    NASA Astrophysics Data System (ADS)

    Orologas, F.; Saitis, P.; Kallergi, M.

    2017-11-01

    Patients with lung tumors or inflammatory lung disease could greatly benefit in terms of treatment and follow-up by PET/CT quantitative imaging, namely measurements of metabolic tumor volume (MTV), standardized uptake values (SUVs) and total lesion glycolysis (TLG). The purpose of this study was the development of an unsupervised or partially supervised algorithm using standard image processing tools for measuring MTV, SUV, and TLG from lung PET/CT scans. Automated metabolic lesion volume and metabolic parameter measurements were achieved through a 5 step algorithm: (i) The segmentation of the lung areas on the CT slices, (ii) the registration of the CT segmented lung regions on the PET images to define the anatomical boundaries of the lungs on the functional data, (iii) the segmentation of the regions of interest (ROIs) on the PET images based on adaptive thresholding and clinical criteria, (iv) the estimation of the number of pixels and pixel intensities in the PET slices of the segmented ROIs, (v) the estimation of MTV, SUVs, and TLG from the previous step and DICOM header data. Whole body PET/CT scans of patients with sarcoidosis were used for training and testing the algorithm. Lung area segmentation on the CT slices was better achieved with semi-supervised techniques that reduced false positive detections significantly. Lung segmentation results agreed with the lung volumes published in the literature while the agreement between experts and algorithm in the segmentation of the lesions was around 88%. Segmentation results depended on the image resolution selected for processing. The clinical parameters, SUV (either mean or max or peak) and TLG estimated by the segmented ROIs and DICOM header data provided a way to correlate imaging data to clinical and demographic data. In conclusion, automated MTV, SUV, and TLG measurements offer powerful analysis tools in PET/CT imaging of the lungs. Custom-made algorithms are often a better approach than the manufacturer’s general analysis software at much lower cost. Relatively simple processing techniques could lead to customized, unsupervised or partially supervised methods that can successfully perform the desirable analysis and adapt to the specific disease requirements.

  16. Comparison of Two Electromagnetic Navigation Systems For CT-Guided Punctures: A Phantom Study.

    PubMed

    Putzer, D; Arco, D; Schamberger, B; Schanda, F; Mahlknecht, J; Widmann, G; Schullian, P; Jaschke, W; Bale, R

    2016-05-01

    We compared the targeting accuracy and reliability of two different electromagnetic navigation systems for manually guided punctures in a phantom. CT data sets of a gelatin filled plexiglass phantom were acquired with 1, 3, and 5 mm slice thickness. After paired-point registration of the phantom, a total of 480 navigated stereotactic needle insertions were performed manually using electromagnetic guidance with two different navigation systems (Medtronic Stealth Station: AxiEM; Philips: PercuNav). A control CT was obtained to measure the target positioning error between the planned and actual needle trajectory. Using the Philips PercuNav, the accomplished Euclidean distances were 4.42 ± 1.33 mm, 4.26 ± 1.32 mm, and 4.46 ± 1.56 mm at a slice thickness of 1, 3, and 5 mm, respectively. The mean lateral positional errors were 3.84 ± 1.59 mm, 3.84 ± 1.43 mm, and 3.81 ± 1.71 mm, respectively. Using the Medtronic Stealth Station AxiEM, the Euclidean distances were 3.86 ± 2.28 mm, 3.74 ± 2.1 mm, and 4.81 ± 2.07 mm at a slice thickness of 1, 3, and 5 mm, respectively. The mean lateral positional errors were 3.29 ± 1.52 mm, 3.16 ± 1.52 mm, and 3.93 ± 1.68 mm, respectively. Both electromagnetic navigation devices showed excellent results regarding puncture accuracy in a phantom model. The Medtronic Stealth Station AxiEM provided more accurate results in comparison to the Philips PercuNav for CT with 3 mm slice thickness. One potential benefit of electromagnetic navigation devices is the absence of visual contact between the instrument and the sensor system. Due to possible interference with metal objects, incorrect position sensing may occur. In contrast to the phantom study, patient movement including respiration has to be compensated for in the clinical setting. • Commercially available electromagnetic navigation systems have the potential to improve the therapeutic range for CT guided percutaneous procedures by comparing the needle placement accuracy on the basis of planning CT data sets with different slice thickness. Citation Format: • Putzer D, Arco D, Schamberger B et al. Comparison of Two Electromagnetic Navigation Systems For CT-Guided Punctures: A Phantom Study. Fortschr Röntgenstr 2016; 188: 470 - 478. © Georg Thieme Verlag KG Stuttgart · New York.

  17. Computed tomographic anatomy of the equine foot.

    PubMed

    Claerhoudt, S; Bergman, E H J; Saunders, J H

    2014-10-01

    This study describes a detailed computed tomographic reference of the normal equine foot. Ten forefeet of five adult cadavers, without evidence of orthopaedic disease, were used. Computed tomography (CT) was performed on all feet. Two-millimetre thick transverse slices were obtained, and sagittal and dorsal planes were reformatted. The CT images were matched with the corresponding anatomic slices. The phalanges and the distal sesamoid bone showed excellent detail. The extensor and flexor tendons (including their attachments) could be clearly evaluated. The collateral (sesamoidean) ligaments could be readily located, but were difficult to delineate at their proximal attachment. The distal digital annular ligament could only be distinguished from the deep digital flexor tendon proximal to the distal sesamoid bone, and its proximal attachment could be identified, but not its distal insertion. Small ligaments (impar ligament, chondrosesamoidean, chondrocoronal and chondrocompedal ligaments, axial and abaxial palmar ligaments of the proximal inter-phalangeal joint) were seen with difficulty and not at all slices. The joint capsules could not be delineated from the surrounding soft tissue structures. The lateral and medial proprius palmar digital artery and vein could be visualized occasionally on some slices. The ungular cartilages, corium and hoof wall layering were seen. The nerves, the articular and fibrocartilage of the distal sesamoid bone and the chondroungular ligament could not be assessed. Computed tomography of the equine foot can be of great value when results of radiography and ultrasonography are inconclusive. Images obtained in this study may serve as reference for CT of the equine foot. © 2013 Blackwell Verlag GmbH.

  18. Fast automatic delineation of cardiac volume of interest in MSCT images

    NASA Astrophysics Data System (ADS)

    Lorenz, Cristian; Lessick, Jonathan; Lavi, Guy; Bulow, Thomas; Renisch, Steffen

    2004-05-01

    Computed Tomography Angiography (CTA) is an emerging modality for assessing cardiac anatomy. The delineation of the cardiac volume of interest (VOI) is a pre-processing step for subsequent visualization or image processing. It serves the suppression of anatomic structures being not in the primary focus of the cardiac application, such as sternum, ribs, spinal column, descending aorta and pulmonary vasculature. These structures obliterate standard visualizations such as direct volume renderings or maximum intensity projections. In addition, outcome and performance of post-processing steps such as ventricle suppression, coronary artery segmentation or the detection of short and long axes of the heart can be improved. The structures being part of the cardiac VOI (coronary arteries and veins, myocardium, ventricles and atria) differ tremendously in appearance. In addition, there is no clear image feature associated with the contour (or better cut-surface) distinguishing between cardiac VOI and surrounding tissue making the automatic delineation of the cardiac VOI a difficult task. The presented approach locates in a first step chest wall and descending aorta in all image slices giving a rough estimate of the location of the heart. In a second step, a Fourier based active contour approach delineates slice-wise the border of the cardiac VOI. The algorithm has been evaluated on 41 multi-slice CT data-sets including cases with coronary stents and venous and arterial bypasses. The typical processing time amounts to 5-10s on a 1GHz P3 PC.

  19. Performance of cone beam computed tomography in comparison to conventional imaging techniques for the detection of bone invasion in oral cancer.

    PubMed

    Linz, C; Müller-Richter, U D A; Buck, A K; Mottok, A; Ritter, C; Schneider, P; Metzen, D; Heuschmann, P; Malzahn, U; Kübler, A C; Herrmann, K; Bluemel, C

    2015-01-01

    Detecting bone invasion in oral cancer is crucial for therapy planning and the prognosis. The present study evaluated cone beam computed tomography (CBCT) for detecting bone invasion in comparison to standard imaging techniques. A total of 197 patients with diagnoses of oral cancer underwent CBCT as part of preoperative staging between January 2007 and April 2013. The sensitivity, specificity, and accuracy of CBCT were compared with panoramic radiography (PR), multi-slice computed tomography (CT) or magnetic resonance imaging (MRI), and bone scintigraphy (BS) using McNemar's test. Histopathology and clinical follow-up served as references for the presence of bone invasion. CBCT and BS (84.8% and 89.3%, respectively), as well as CBCT and CT/MRI (83.2%), showed comparable accuracy (P = 0.188 and P = 0.771). CBCT was significantly superior to PR, which was reconstructed based on a CBCT dataset (74.1%, P = 0.002). In detecting bone invasion, CBCT was significantly more accurate than PR and was comparable to BS and CT/MRI. However, each method has certain advantages, and the best combination of imaging methods must be evaluated in prospective clinic trials. Copyright © 2014 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Diagnostic Accuracy of Computed Tomography Angiography as Compared to Conventional Angiography in Patients Undergoing Noncoronary Cardiac Surgery

    PubMed Central

    Joshi, Hasit; Shah, Ronak; Prajapati, Jayesh; Bhangdiya, Vipin; Shah, Jayal; Kandre, Yogini; Shah, Komal

    2016-01-01

    Objective: To compare the diagnostic accuracy of multi-slice computed tomography (MSCT) angiography with conventional angiography in patients undergoing major noncoronary cardiac surgeries. Materials and Methods: We studied fifty major noncoronary cardiac surgery patients scheduled for invasive coronary angiography, 29 (58%) female and 21 (42%) male. Inclusion criteria of the study were age of the patients ≥40 years, having low or intermediate probability of coronary artery disease (CAD), left ventricular ejection fraction (LVEF) >35%, and patient giving informed consent for undergoing MSCT and conventional coronary angiography. The patients with LVEF <35%, high pretest probability of CAD, and hemodynamically unstable were excluded from the study. Results: The diagnostic accuracy of CT coronary angiography was evaluated regarding true positive, true negative values. The overall sensitivity and specificity of CT angiography technique was 100% (95% confidence interval [CI]: 39.76%–100%) and 91.30% (95% CI: 79.21%–97.58%). The positive (50%; 95% CI: 15.70%–84.30%) and negative predictive values (100%; 95% CI: 91.59%–100%) of CT angiography were also fairly high in these patients. Conclusion: Our study suggests that this non-invasive technique may improve perioperative risk stratification in patients undegoing non-cardiac surgery. PMID:27867455

  1. SNR-weighted sinogram smoothing with improved noise-resolution properties for low-dose x-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Li, Tianfang; Wang, Jing; Wen, Junhai; Li, Xiang; Lu, Hongbing; Hsieh, Jiang; Liang, Zhengrong

    2004-05-01

    To treat the noise in low-dose x-ray CT projection data more accurately, analysis of the noise properties of the data and development of a corresponding efficient noise treatment method are two major problems to be addressed. In order to obtain an accurate and realistic model to describe the x-ray CT system, we acquired thousands of repeated measurements on different phantoms at several fixed scan angles by a GE high-speed multi-slice spiral CT scanner. The collected data were calibrated and log-transformed by the sophisticated system software, which converts the detected photon energy into sinogram data that satisfies the Radon transform. From the analysis of these experimental data, a nonlinear relation between mean and variance for each datum of the sinogram was obtained. In this paper, we integrated this nonlinear relation into a penalized likelihood statistical framework for a SNR (signal-to-noise ratio) adaptive smoothing of noise in the sinogram. After the proposed preprocessing, the sinograms were reconstructed with unapodized FBP (filtered backprojection) method. The resulted images were evaluated quantitatively, in terms of noise uniformity and noise-resolution tradeoff, with comparison to other noise smoothing methods such as Hanning filter and Butterworth filter at different cutoff frequencies. Significant improvement on noise and resolution tradeoff and noise property was demonstrated.

  2. A method for smoothing segmented lung boundary in chest CT images

    NASA Astrophysics Data System (ADS)

    Yim, Yeny; Hong, Helen

    2007-03-01

    To segment low density lung regions in chest CT images, most of methods use the difference in gray-level value of pixels. However, radiodense pulmonary vessels and pleural nodules that contact with the surrounding anatomy are often excluded from the segmentation result. To smooth lung boundary segmented by gray-level processing in chest CT images, we propose a new method using scan line search. Our method consists of three main steps. First, lung boundary is extracted by our automatic segmentation method. Second, segmented lung contour is smoothed in each axial CT slice. We propose a scan line search to track the points on lung contour and find rapidly changing curvature efficiently. Finally, to provide consistent appearance between lung contours in adjacent axial slices, 2D closing in coronal plane is applied within pre-defined subvolume. Our method has been applied for performance evaluation with the aspects of visual inspection, accuracy and processing time. The results of our method show that the smoothness of lung contour was considerably increased by compensating for pulmonary vessels and pleural nodules.

  3. Comparison of cross-sectional anatomy and computed tomography of the tarsus in horses.

    PubMed

    Raes, Els V; Bergman, Eric H J; van der Veen, Henk; Vanderperren, Katrien; Van der Vekens, Elke; Saunders, Jimmy H

    2011-09-01

    To compare computed tomography (CT) images of equine tarsi with cross-sectional anatomic slices and evaluate the potential of CT for imaging pathological tarsal changes in horses. 6 anatomically normal equine cadaveric hind limbs and 4 tarsi with pathological changes. Precontrast CT was performed on 3 equine tarsi; sagittal and dorsal reconstructions were made. In all limbs, postcontrast CT was performed after intra-articular contrast medium injection of the tarsocrural, centrodistal, and tarsometatarsal joints. Images were matched with corresponding anatomic slices. Four tarsi with pathological changes underwent CT examination. The tibia, talus, calcaneus, and central, fused first and second, third, and fourth tarsal bones were clearly visualized as well as the long digital extensor, superficial digital flexor, lateral digital flexor (with tarsal flexor retinaculum), gastrocnemius, peroneus tertius, and tibialis cranialis tendons and the long plantar ligament. The lateral digital extensor, medial digital flexor, split peroneus tertius, and tibialis cranialis tendons and collateral ligaments could be located but not always clearly identified. Some small tarsal ligaments were identifiable, including plantar, medial, interosseus, and lateral talocalcaneal ligaments; interosseus talocentral, centrodistal, and tarsometatarsal ligaments; proximal and distal plantar ligaments; and talometatarsal ligament. Parts of the articular cartilage could be assessed on postcontrast images. Lesions were detected in the 4 tarsi with pathological changes. CT of the tarsus is recommended when radiography and ultrasonography are inconclusive and during preoperative planning for treatment of complex fractures. Images from this study can serve as a CT reference, and CT of pathological changes was useful.

  4. 3D documentation and visualization of external injury findings by integration of simple photography in CT/MRI data sets (IprojeCT).

    PubMed

    Campana, Lorenzo; Breitbeck, Robert; Bauer-Kreuz, Regula; Buck, Ursula

    2016-05-01

    This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.

  5. Semi-automatic 3D lung nodule segmentation in CT using dynamic programming

    NASA Astrophysics Data System (ADS)

    Sargent, Dustin; Park, Sun Young

    2017-02-01

    We present a method for semi-automatic segmentation of lung nodules in chest CT that can be extended to general lesion segmentation in multiple modalities. Most semi-automatic algorithms for lesion segmentation or similar tasks use region-growing or edge-based contour finding methods such as level-set. However, lung nodules and other lesions are often connected to surrounding tissues, which makes these algorithms prone to growing the nodule boundary into the surrounding tissue. To solve this problem, we apply a 3D extension of the 2D edge linking method with dynamic programming to find a closed surface in a spherical representation of the nodule ROI. The algorithm requires a user to draw a maximal diameter across the nodule in the slice in which the nodule cross section is the largest. We report the lesion volume estimation accuracy of our algorithm on the FDA lung phantom dataset, and the RECIST diameter estimation accuracy on the lung nodule dataset from the SPIE 2016 lung nodule classification challenge. The phantom results in particular demonstrate that our algorithm has the potential to mitigate the disparity in measurements performed by different radiologists on the same lesions, which could improve the accuracy of disease progression tracking.

  6. A Java tool for dynamic web-based 3D visualization of anatomy and overlapping gene or protein expression patterns.

    PubMed

    Gerth, Victor E; Vize, Peter D

    2005-04-01

    The Gene Expression Viewer is a web-launched three-dimensional visualization tool, tailored to compare surface reconstructions of multi-channel image volumes generated by confocal microscopy or micro-CT.

  7. Toward accurate tooth segmentation from computed tomography images using a hybrid level set model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Yangzhou; Zhao, Qunfei; Xia, Zeyang, E-mail: zy.xia@siat.ac.cn, E-mail: jing.xiong@siat.ac.cn

    Purpose: A three-dimensional (3D) model of the teeth provides important information for orthodontic diagnosis and treatment planning. Tooth segmentation is an essential step in generating the 3D digital model from computed tomography (CT) images. The aim of this study is to develop an accurate and efficient tooth segmentation method from CT images. Methods: The 3D dental CT volumetric images are segmented slice by slice in a two-dimensional (2D) transverse plane. The 2D segmentation is composed of a manual initialization step and an automatic slice by slice segmentation step. In the manual initialization step, the user manually picks a starting slicemore » and selects a seed point for each tooth in this slice. In the automatic slice segmentation step, a developed hybrid level set model is applied to segment tooth contours from each slice. Tooth contour propagation strategy is employed to initialize the level set function automatically. Cone beam CT (CBCT) images of two subjects were used to tune the parameters. Images of 16 additional subjects were used to validate the performance of the method. Volume overlap metrics and surface distance metrics were adopted to assess the segmentation accuracy quantitatively. The volume overlap metrics were volume difference (VD, mm{sup 3}) and Dice similarity coefficient (DSC, %). The surface distance metrics were average symmetric surface distance (ASSD, mm), RMS (root mean square) symmetric surface distance (RMSSSD, mm), and maximum symmetric surface distance (MSSD, mm). Computation time was recorded to assess the efficiency. The performance of the proposed method has been compared with two state-of-the-art methods. Results: For the tested CBCT images, the VD, DSC, ASSD, RMSSSD, and MSSD for the incisor were 38.16 ± 12.94 mm{sup 3}, 88.82 ± 2.14%, 0.29 ± 0.03 mm, 0.32 ± 0.08 mm, and 1.25 ± 0.58 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the canine were 49.12 ± 9.33 mm{sup 3}, 91.57 ± 0.82%, 0.27 ± 0.02 mm, 0.28 ± 0.03 mm, and 1.06 ± 0.40 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the premolar were 37.95 ± 10.13 mm{sup 3}, 92.45 ± 2.29%, 0.29 ± 0.06 mm, 0.33 ± 0.10 mm, and 1.28 ± 0.72 mm, respectively; the VD, DSC, ASSD, RMSSSD, and MSSD for the molar were 52.38 ± 17.27 mm{sup 3}, 94.12 ± 1.38%, 0.30 ± 0.08 mm, 0.35 ± 0.17 mm, and 1.52 ± 0.75 mm, respectively. The computation time of the proposed method for segmenting CBCT images of one subject was 7.25 ± 0.73 min. Compared with two other methods, the proposed method achieves significant improvement in terms of accuracy. Conclusions: The presented tooth segmentation method can be used to segment tooth contours from CT images accurately and efficiently.« less

  8. [Diagnosis of the scaphoid bone : Fractures, nonunion, circulation, perfusion].

    PubMed

    Kahl, T; Razny, F K; Benter, J P; Mutig, K; Hegenscheid, K; Mutze, S; Eisenschenk, A

    2016-11-01

    The clinical relevance of scaphoid bone fractures is reflected by their high incidence, accounting for approximately 60 % among carpal fractures and for 2-3 % of all fractures. With adequate therapy most scaphoid bone fractures heal completely without complications. Insufficient immobilization or undiagnosed fractures increase the risk of nonunion and the development of pseudarthrosis.X-ray examination enables initial diagnosis of scaphoid fracture in 70-80 % of cases. Positive clinical symptoms by negative x‑ray results require further diagnostics by multi-slice spiral CT (MSCT) or MRI to exclude or confirm a fracture. In addition to the diagnosis and description of fractures MSCT is helpful for determining the stage of nonunion. Contrast enhanced MRI is the best method to assess the vitality of scaphoid fragments.

  9. Sensitivity and daily quality control of a mobile PET/CT scanner operating in 3-dimensional mode.

    PubMed

    Belakhlef, Abdelfatihe; Church, Clifford; Fraser, Ron; Lakhanpal, Suresh

    2007-12-01

    This study investigated the stability of the sensitivity of a mobile PET/CT scanner and tested a phantom experiment to improve on the daily quality control recommendations of the manufacturer. Unlike in-house scanners, mobile PET/CT devices are subjected to a harsher, continuously changing environment that can alter their performance. The parameter of sensitivity was investigated because it reflects directly on standardized uptake value, a key factor in cancer evaluation. A (68)Ge phantom of known activity concentration was scanned 6 times a month for 11 consecutive months using a mobile PET/CT scanner that operates in 3-dimensional mode only. The scans were acquired as 2 contiguous bed positions, with raw data obtained and reconstructed using parameters identical to those used for oncology patients, including CT-extracted attenuation coefficients and decay, scatter, geometry, and randoms corrections. After visual inspection of all reconstructed images, identical regions of interest were drawn on each image to obtain the activity concentration of individual slices. The original activity concentration was then decay-corrected to the scanning day, and the percentage sensitivity of the slice was calculated and graphed. The daily average sensitivity of the scanner, over 11 consecutive months, was also obtained and used to evaluate the stability of sensitivity. Our particular scanner showed a daily average sensitivity ranging from -8.6% to 6.5% except for one instance, when the sensitivity dropped by an unacceptable degree, 34.8%. Our 11-mo follow-up of a mobile PET/CT scanner demonstrated that its sensitivity remained within acceptable clinical limits except for one instance, when the scanner had to be serviced before patients could be imaged. To enhance our confidence in the uniformity of sensitivity across slices, we added a phantom scan to the daily quality control recommendations of the manufacturer.

  10. [Application of computed tomography (CT) examination for forensic medicine].

    PubMed

    Urbanik, Andrzej; Chrzan, Robert

    2013-01-01

    The aim of the study is to present a own experiences in usage of post mortem CT examination for forensic medicine. With the help of 16-slice CT scanner 181 corpses were examined. Obtained during acquisition imaging data are later developed with dedicated programmes. Analyzed images were extracted from axial sections, multiplanar reconstructions as well as 3D reconstructions. Gained information helped greatly when classical autopsy was performed by making it more accurate. A CT scan images recorded digitally enable to evaluate corpses at any time, despite processes of putrefaction or cremation. If possible CT examination should precede classical autopsy.

  11. Treatment response assessment of radiofrequency ablation for hepatocellular carcinoma: usefulness of virtual CT sonography with magnetic navigation.

    PubMed

    Minami, Yasunori; Kitai, Satoshi; Kudo, Masatoshi

    2012-03-01

    Virtual CT sonography using magnetic navigation provides cross sectional images of CT volume data corresponding to the angle of the transducer in the magnetic field in real-time. The purpose of this study was to clarify the value of this virtual CT sonography for treatment response of radiofrequency ablation for hepatocellular carcinoma. Sixty-one patients with 88 HCCs measuring 0.5-1.3 cm (mean±SD, 1.0±0.3 cm) were treated by radiofrequency ablation. For early treatment response, dynamic CT was performed 1-5 days (median, 2 days). We compared early treatment response between axial CT images and multi-angle CT images using virtual CT sonography. Residual tumor stains on axial CT images and multi-angle CT images were detected in 11.4% (10/88) and 13.6% (12/88) after the first session of RFA, respectively (P=0.65). Two patients were diagnosed as showing hyperemia enhancement after the initial radiofrequency ablation on axial CT images and showed local tumor progression shortly because of unnoticed residual tumors. Only virtual CT sonography with magnetic navigation retrospectively showed the residual tumor as circular enhancement. In safety margin analysis, 10 patients were excluded because of residual tumors. The safety margin more than 5 mm by virtual CT sonographic images and transverse CT images were determined in 71.8% (56/78) and 82.1% (64/78), respectively (P=0.13). The safety margin should be overestimated on axial CT images in 8 nodules. Virtual CT sonography with magnetic navigation was useful in evaluating the treatment response of radiofrequency ablation therapy for hepatocellular carcinoma. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Comparison of ring artifact removal methods using flat panel detector based CT images

    PubMed Central

    2011-01-01

    Background Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform. Method In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity test and then corrects the CT images by subtracting the artifact template vector from the uncorrected images. The second post-processing based correction technique performs median and mean filtering on the reconstructed images to produce the corrected images. Results The performances of the comparing algorithms have been tested by using both quantitative and perceptual measures. For quantitative analysis, two different numerical performance indices are chosen. On the other hand, different types of artifact patterns, e.g., single/band ring, artifacts from defective and mis-calibrated detector elements, rings in highly structural object and also in hard object, rings from different flat-panel detectors are analyzed to perceptually investigate the strength and weakness of the five methods. An investigation has been also carried out to compare the efficacy of these algorithms in correcting the volume images from a cone beam CT with the parameters determined from one particular slice. Finally, the capability of each correction technique in retaining the image information (e.g., small object at the iso-center) accurately in the corrected CT image has been also tested. Conclusions The results show that the performances of the algorithms are limited and none is fully suitable for correcting different types of ring artifacts without introducing processing distortion to the image structure. To achieve the diagnostic quality of the corrected slices a combination of the two approaches (sinogram- and post-processing) can be used. Also the comparing methods are not suitable for correcting the volume images from a cone beam flat-panel detector based CT. PMID:21846411

  13. 64-Slice multidetector row CT angiography of the abdomen: comparison of low versus high concentration iodinated contrast media in a porcine model

    PubMed Central

    Holalkere, N-S; Matthes, K; Kalva, S P; Brugge, W R; Sahani, D V

    2011-01-01

    Objective In this study we aimed to assess the image quality and degree of vascular enhancement using low-concentration contrast media (LCCM) (300 mg I ml–1) and high-concentration contrast media (HCCM) (370 mg I ml–1) on 64-slice multidetector row CT (MDCT) abdominal CT angiography (CTA). In addition, we aimed to study the feasibility of using HCCM with a reduced total iodine dose. Methods CTA of the abdomen on a 64-slice MDCT was performed on 15 anaesthetised pigs. Study pigs were divided into three groups of five each based on the iodine concentration and dose received: Group A (LCCM; 300 mg I ml–1), Group B (HCCM; 370 mg I ml–1) and Group C HCCM with 20% less iodine dose. The total iodine injected was kept constant (600 mg kg–1) in Groups A and B. Qualitative and quantitative analyses were performed to study and compare each group for image quality, visibility of the branch order of the superior mesenteric artery (SMA), artefacts, degree of enhancement in the aorta and main stem arteries and uniformity of enhancement in the aorta. Groups were compared using the analysis of variance test. Results The image quality of 64-slice MDCT angiography was excellent with a mean score of 4.63 and confident visualisation of the third to fifth order branches of the SMA in all groups. Group B demonstrated superior vascular enhancement, as compared with Groups A and C (p≤0.05). Uniform aortic enhancement was achieved with the use of LCCM and HCCM with 20% less iodine dose. Conclusion 64-slice MDCT angiography of the abdomen was of excellent quality. HCCM improves contrast enhancement and overall CTA image quality and allows the iodine dose to be reduced. PMID:21081582

  14. Correlative CT and anatomic study of the sciatic nerve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pech, P.; Haughton, V.

    1985-05-01

    Sciatica can be caused by numerous processes affecting the sciatic nerve or its components within the pelvis including tumors, infectious diseases, aneurysms, fractures, and endometriosis. The CT diagnosis of these causes of sciatica has not been emphasized. This study identified the course and appearance of the normal sciatic nerve in the pelvis by correlating CT and anatomic slices in cadavers. For purposes of discussion, the sciatic nerve complex is conveniently divided into three parts: presacral, muscular, and ischial. Each part is illustrated here by two cryosections with corresponding CT images.

  15. Multimode C-arm fluoroscopy, tomosynthesis, and cone-beam CT for image-guided interventions: from proof of principle to patient protocols

    NASA Astrophysics Data System (ADS)

    Siewerdsen, J. H.; Daly, M. J.; Bachar, G.; Moseley, D. J.; Bootsma, G.; Brock, K. K.; Ansell, S.; Wilson, G. A.; Chhabra, S.; Jaffray, D. A.; Irish, J. C.

    2007-03-01

    High-performance intraoperative imaging is essential to an ever-expanding scope of therapeutic procedures ranging from tumor surgery to interventional radiology. The need for precise visualization of bony and soft-tissue structures with minimal obstruction to the therapy setup presents challenges and opportunities in the development of novel imaging technologies specifically for image-guided procedures. Over the past ~5 years, a mobile C-arm has been modified in collaboration with Siemens Medical Solutions for 3D imaging. Based upon a Siemens PowerMobil, the device includes: a flat-panel detector (Varian PaxScan 4030CB); a motorized orbit; a system for geometric calibration; integration with real-time tracking and navigation (NDI Polaris); and a computer control system for multi-mode fluoroscopy, tomosynthesis, and cone-beam CT. Investigation of 3D imaging performance (noise-equivalent quanta), image quality (human observer studies), and image artifacts (scatter, truncation, and cone-beam artifacts) has driven the development of imaging techniques appropriate to a host of image-guided interventions. Multi-mode functionality presents a valuable spectrum of acquisition techniques: i.) fluoroscopy for real-time 2D guidance; ii.) limited-angle tomosynthesis for fast 3D imaging (e.g., ~10 sec acquisition of coronal slices containing the surgical target); and iii.) fully 3D cone-beam CT (e.g., ~30-60 sec acquisition providing bony and soft-tissue visualization across the field of view). Phantom and cadaver studies clearly indicate the potential for improved surgical performance - up to a factor of 2 increase in challenging surgical target excisions. The C-arm system is currently being deployed in patient protocols ranging from brachytherapy to chest, breast, spine, and head and neck surgery.

  16. Fat quantification and analysis of lung transplant patients on unenhanced chest CT images based on standardized anatomic space

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.; Wu, Caiyun; Christie, Jason; Lederer, David J.

    2016-03-01

    Chest fat estimation is important for identifying high-risk lung transplant candidates. In this paper, an approach to chest fat quantification based on a recently formulated concept of standardized anatomic space (SAS) is presented. The goal of this paper is to seek answers to the following questions related to chest fat quantification on single slice versus whole volume CT, which have not been addressed in the literature. What level of correlation exists between total chest fat volume and fat areas measured on single abdominal and thigh slices? What is the anatomic location in the chest where maximal correlation of fat area with fat volume can be expected? Do the components of subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) have the same area-to-volume correlative behavior or do they differ? The SAS approach includes two steps: calibration followed by transformation which will map the patient slice locations non-linearly to SAS. The optimal slice locations found for SAT and VAT based on SAS are different and at the mid-level of the T8 vertebral body for SAT and mid-level of the T7 vertebral body for VAT. Fat volume and area on optimal slices for SAT and VAT are correlated with Pearson correlation coefficients of 0.97 and 0.86, respectively. The correlation of chest fat volume with abdominal and thigh fat areas is weak to modest.

  17. Systems for Lung Volume Standardization during Static and Dynamic MDCT-based Quantitative Assessment of Pulmonary Structure and Function

    PubMed Central

    Fuld, Matthew K.; Grout, Randall; Guo, Junfeng; Morgan, John H.; Hoffman, Eric A.

    2013-01-01

    Rationale and Objectives Multidetector-row Computed Tomography (MDCT) has emerged as a tool for quantitative assessment of parenchymal destruction, air trapping (density metrics) and airway remodeling (metrics relating airway wall and lumen geometry) in chronic obstructive pulmonary disease (COPD) and asthma. Critical to the accuracy and interpretability of these MDCT-derived metrics is the assurance that the lungs are scanned during a breath-hold at a standardized volume. Materials and Methods A computer monitored turbine-based flow meter system was developed to control patient breath-holds and facilitate static imaging at fixed percentages of the vital capacity. Due to calibration challenges with gas density changes during multi-breath xenon-CT an alternative system was required. The design incorporated dual rolling seal pistons. Both systems were tested in a laboratory environment and human subject trials. Results The turbine-based system successfully controlled lung volumes in 32/37 subjects, having a linear relationship for CT measured air volume between repeated scans: for all scans, the mean and confidence interval of the differences (scan1-scan2) was −9 ml (−169, 151); for TLC alone 6 ml (−164, 177); for FRC alone, −23 ml (−172, 126). The dual-piston system successfully controlled lung volume in 31/41 subjects. Study failures related largely to subject non-compliance with verbal instruction and gas leaks around the mouthpiece. Conclusion We demonstrate the successful use of a turbine-based system for static lung volume control and demonstrate its inadequacies for dynamic xenon-CT studies. Implementation of a dual-rolling seal spirometer has been shown to adequately control lung volume for multi-breath wash-in xenon-CT studies. These systems coupled with proper patient coaching provide the tools for the use of CT to quantitate regional lung structure and function. The wash-in xenon-CT method for assessing regional lung function, while not necessarily practical for routine clinical studies, provides for a dynamic protocol against which newly emerging single breath, dual-energy xenon-CT measures can be validated. PMID:22555001

  18. Micro/nano-computed tomography technology for quantitative dynamic, multi-scale imaging of morphogenesis.

    PubMed

    Gregg, Chelsea L; Recknagel, Andrew K; Butcher, Jonathan T

    2015-01-01

    Tissue morphogenesis and embryonic development are dynamic events challenging to quantify, especially considering the intricate events that happen simultaneously in different locations and time. Micro- and more recently nano-computed tomography (micro/nanoCT) has been used for the past 15 years to characterize large 3D fields of tortuous geometries at high spatial resolution. We and others have advanced micro/nanoCT imaging strategies for quantifying tissue- and organ-level fate changes throughout morphogenesis. Exogenous soft tissue contrast media enables visualization of vascular lumens and tissues via extravasation. Furthermore, the emergence of antigen-specific tissue contrast enables direct quantitative visualization of protein and mRNA expression. Micro-CT X-ray doses appear to be non-embryotoxic, enabling longitudinal imaging studies in live embryos. In this chapter we present established soft tissue contrast protocols for obtaining high-quality micro/nanoCT images and the image processing techniques useful for quantifying anatomical and physiological information from the data sets.

  19. The use of CT density changes at internal tissue interfaces to correlate internal organ motion with an external surrogate

    NASA Astrophysics Data System (ADS)

    Gaede, Stewart; Carnes, Gregory; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-01-01

    The purpose of this paper is to describe a non-invasive method to monitor the motion of internal organs affected by respiration without using external markers or spirometry, to test the correlation with external markers, and to calculate any time shift between the datasets. Ten lung cancer patients were CT scanned with a GE LightSpeed Plus 4-Slice CT scanner operating in a ciné mode. We retrospectively reconstructed the raw CT data to obtain consecutive 0.5 s reconstructions at 0.1 s intervals to increase image sampling. We defined regions of interest containing tissue interfaces, including tumour/lung interfaces that move due to breathing on multiple axial slices and measured the mean CT number versus respiratory phase. Tumour motion was directly correlated with external marker motion, acquired simultaneously, using the sample coefficient of determination, r2. Only three of the ten patients showed correlation higher than r2 = 0.80 between tumour motion and external marker position. However, after taking into account time shifts (ranging between 0 s and 0.4 s) between the two data sets, all ten patients showed correlation better than r2 = 0.8. This non-invasive method for monitoring the motion of internal organs is an effective tool that can assess the use of external markers for 4D-CT imaging and respiratory-gated radiotherapy on a patient-specific basis.

  20. The use of CT density changes at internal tissue interfaces to correlate internal organ motion with an external surrogate.

    PubMed

    Gaede, Stewart; Carnes, Gregory; Yu, Edward; Van Dyk, Jake; Battista, Jerry; Lee, Ting-Yim

    2009-01-21

    The purpose of this paper is to describe a non-invasive method to monitor the motion of internal organs affected by respiration without using external markers or spirometry, to test the correlation with external markers, and to calculate any time shift between the datasets. Ten lung cancer patients were CT scanned with a GE LightSpeed Plus 4-Slice CT scanner operating in a ciné mode. We retrospectively reconstructed the raw CT data to obtain consecutive 0.5 s reconstructions at 0.1 s intervals to increase image sampling. We defined regions of interest containing tissue interfaces, including tumour/lung interfaces that move due to breathing on multiple axial slices and measured the mean CT number versus respiratory phase. Tumour motion was directly correlated with external marker motion, acquired simultaneously, using the sample coefficient of determination, r(2). Only three of the ten patients showed correlation higher than r(2) = 0.80 between tumour motion and external marker position. However, after taking into account time shifts (ranging between 0 s and 0.4 s) between the two data sets, all ten patients showed correlation better than r(2) = 0.8. This non-invasive method for monitoring the motion of internal organs is an effective tool that can assess the use of external markers for 4D-CT imaging and respiratory-gated radiotherapy on a patient-specific basis.

  1. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  2. Standardized anatomic space for abdominal fat quantification

    NASA Astrophysics Data System (ADS)

    Tong, Yubing; Udupa, Jayaram K.; Torigian, Drew A.

    2014-03-01

    The ability to accurately measure subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) from images is important for improved assessment and management of patients with various conditions such as obesity, diabetes mellitus, obstructive sleep apnea, cardiovascular disease, kidney disease, and degenerative disease. Although imaging and analysis methods to measure the volume of these tissue components have been developed [1, 2], in clinical practice, an estimate of the amount of fat is obtained from just one transverse abdominal CT slice typically acquired at the level of the L4-L5 vertebrae for various reasons including decreased radiation exposure and cost [3-5]. It is generally assumed that such an estimate reliably depicts the burden of fat in the body. This paper sets out to answer two questions related to this issue which have not been addressed in the literature. How does one ensure that the slices used for correlation calculation from different subjects are at the same anatomic location? At what anatomic location do the volumes of SAT and VAT correlate maximally with the corresponding single-slice area measures? To answer these questions, we propose two approaches for slice localization: linear mapping and non-linear mapping which is a novel learning based strategy for mapping slice locations to a standardized anatomic space so that same anatomic slice locations are identified in different subjects. We then study the volume-to-area correlations and determine where they become maximal. We demonstrate on 50 abdominal CT data sets that this mapping achieves significantly improved consistency of anatomic localization compared to current practice. Our results also indicate that maximum correlations are achieved at different anatomic locations for SAT and VAT which are both different from the L4-L5 junction commonly utilized.

  3. Multi-Coil Shimming of the Mouse Brain

    PubMed Central

    Juchem, Christoph; Brown, Peter B.; Nixon, Terence W.; McIntyre, Scott; Rothman, Douglas L.; de Graaf, Robin A.

    2011-01-01

    MR imaging and spectroscopy allow the non-invasive measurement of brain function and physiology, but excellent magnetic field homogeneity is required for meaningful results. The homogenization of the magnetic field distribution in the mouse brain (i.e. shimming) is a difficult task due to complex susceptibility-induced field distortions combined with the small size of the object. To date, the achievement of satisfactory whole brain shimming in the mouse remains a major challenge. The magnetic fields generated by a set of 48 circular coils (diameter 13 mm) that were arranged in a cylinder-shaped pattern of 32 mm diameter and driven with individual dynamic current ranges of ±1 A are shown to be capable of substantially reducing the field distortions encountered in the mouse brain at 9.4 Tesla. Static multi-coil shim fields allowed the reduction of the standard deviation of Larmor frequencies by 31% compared to second order spherical harmonics shimming and a 66% narrowing was achieved with the slice-specific application of the multi-coil shimming with a dynamic approach. For gradient echo imaging, multi-coil shimming minimized shim-related signal voids in the brain periphery and allowed overall signal gains of up to 51% compared to spherical harmonics shimming. PMID:21442653

  4. Computed Tomography of the Normal Bovine Tarsus.

    PubMed

    Hagag, U; Tawfiek, M; Brehm, W; Gerlach, K

    2016-12-01

    The objective of this study was to provide a detailed multiplanar computed tomographic (CT) anatomic reference for the bovine tarsus. The tarsal regions from twelve healthy adult cow cadavers were scanned in both soft and bone windows via a 16-slice multidetector CT scanner. Tarsi were frozen at -20 o C and sectioned to 10-mm-thick slices in transverse, dorsal and sagittal planes respecting the imaging protocol. The frozen sections were cleaned and then photographed. Anatomic structures were identified, labelled and compared with the corresponding CT images. The sagittal plane was indispensable for evaluation of bone contours, the dorsal plane was valuable in examination of the collateral ligaments, and both were beneficial for assessment of the tarsal joint articulations. CT images allowed excellent delineation between the cortex and medulla of bones, and the trabecular structure was clearly depicted. The tarsal soft tissues showed variable shades of grey, and the synovial fluid was the lowest attenuated structure. This study provided full assessment of the clinically relevant anatomic structures of the bovine tarsal joint. This technique may be of value when results from other diagnostic imaging techniques are indecisive. Images presented in this study should serve as a basic CT reference and assist in the interpretation of various bovine tarsal pathology. © 2016 Blackwell Verlag GmbH.

  5. Novel active contour model based on multi-variate local Gaussian distribution for local segmentation of MR brain images

    NASA Astrophysics Data System (ADS)

    Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong

    2017-12-01

    Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.

  6. Towards quantitative imaging: stability of fully automated nodule segmentation across varied dose levels and reconstruction parameters in a low-dose CT screening patient cohort

    NASA Astrophysics Data System (ADS)

    Wahi-Anwar, M. Wasil; Emaminejad, Nastaran; Hoffman, John; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.

    2018-02-01

    Quantitative imaging in lung cancer CT seeks to characterize nodules through quantitative features, usually from a region of interest delineating the nodule. The segmentation, however, can vary depending on segmentation approach and image quality, which can affect the extracted feature values. In this study, we utilize a fully-automated nodule segmentation method - to avoid reader-influenced inconsistencies - to explore the effects of varied dose levels and reconstruction parameters on segmentation. Raw projection CT images from a low-dose screening patient cohort (N=59) were reconstructed at multiple dose levels (100%, 50%, 25%, 10%), two slice thicknesses (1.0mm, 0.6mm), and a medium kernel. Fully-automated nodule detection and segmentation was then applied, from which 12 nodules were selected. Dice similarity coefficient (DSC) was used to assess the similarity of the segmentation ROIs of the same nodule across different reconstruction and dose conditions. Nodules at 1.0mm slice thickness and dose levels of 25% and 50% resulted in DSC values greater than 0.85 when compared to 100% dose, with lower dose leading to a lower average and wider spread of DSC values. At 0.6mm, the increased bias and wider spread of DSC values from lowering dose were more pronounced. The effects of dose reduction on DSC for CAD-segmented nodules were similar in magnitude to reducing the slice thickness from 1.0mm to 0.6mm. In conclusion, variation of dose and slice thickness can result in very different segmentations because of noise and image quality. However, there exists some stability in segmentation overlap, as even at 1mm, an image with 25% of the lowdose scan still results in segmentations similar to that seen in a full-dose scan.

  7. Acoustic property reconstruction of a neonate Yangtze finless porpoise's (Neophocaena asiaeorientalis) head based on CT imaging.

    PubMed

    Wei, Chong; Wang, Zhitao; Song, Zhongchang; Wang, Kexiong; Wang, Ding; Au, Whitlow W L; Zhang, Yu

    2015-01-01

    The reconstruction of the acoustic properties of a neonate finless porpoise's head was performed using X-ray computed tomography (CT). The head of the deceased neonate porpoise was also segmented across the body axis and cut into slices. The averaged sound velocity and density were measured, and the Hounsfield units (HU) of the corresponding slices were obtained from computed tomography scanning. A regression analysis was employed to show the linear relationships between the Hounsfield unit and both sound velocity and density of samples. Furthermore, the CT imaging data were used to compare the HU value, sound velocity, density and acoustic characteristic impedance of the main tissues in the porpoise's head. The results showed that the linear relationships between HU and both sound velocity and density were qualitatively consistent with previous studies on Indo-pacific humpback dolphins and Cuvier's beaked whales. However, there was no significant increase of the sound velocity and acoustic impedance from the inner core to the outer layer in this neonate finless porpoise's melon.

  8. A Novel Automated Method for Analyzing Cylindrical Computed Tomography Data

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Burke, E. R.; Rauser, R. W.; Martin, R. E.

    2011-01-01

    A novel software method is presented that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography. This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2-D sheets in the vertical direction in addition to volume rendering and normal plane views provided by traditional CT software. The method is based on interior and exterior surface edge detection and under proper conditions, is FULLY AUTOMATED and requires no input from the user except the correct voxel dimension from the CT scan. The software is available from NASA in 32- and 64-bit versions that can be applied to gigabyte-sized data sets, processing data either in random access memory or primarily on the computer hard drive. Please inquire with the presenting author if further interested. This software differentiates itself in total from other possible re-slicing software solutions due to complete automation and advanced processing and analysis capabilities.

  9. Dose measurements for dental cone-beam CT: a comparison with MSCT and panoramic imaging

    NASA Astrophysics Data System (ADS)

    Deman, P.; Atwal, P.; Duzenli, C.; Thakur, Y.; Ford, N. L.

    2014-06-01

    To date there is a lack of published information on appropriate methods to determine patient doses from dental cone-beam computed tomography (CBCT) equipment. The goal of this study is to apply and extend the methods recommended in the American Association of Physicists in Medicine (AAPM) Report 111 for CBCT equipment to characterize dose and effective dose for a range of dental imaging equipment. A protocol derived from the one proposed by Dixon et al (2010 Technical Report 111, American Association of Physicist in Medicine, MD, USA), was applied to dose measurements of multi-slice CT, dental CBCT (small and large fields of view (FOV)) and a dental panoramic system. The computed tomography dose index protocol was also performed on the MSCT to compare both methods. The dose distributions in a cylindrical polymethyl methacrylate phantom were characterized using a thimble ionization chamber and Gafchromic™ film (beam profiles). Gafchromic™ films were used to measure the dose distribution in an anthropomorphic phantom. A method was proposed to extend dose estimates to planes superior and inferior to the central plane. The dose normalized to 100 mAs measured in the center of the phantom for the large FOV dental CBCT (11.4 mGy/100 mAs) is two times lower than that of MSCT (20.7 mGy/100 mAs) for the same FOV, but approximately 15 times higher than for a panoramic system (0.6 mGy/100 mAs). The effective dose per scan (in clinical conditions) found for the dental CBCT are 167.60 ± 3.62, 61.30 ± 3.88 and 92.86 ± 7.76 mSv for the Kodak 9000 (fixed scan length of 3.7 cm), and the iCAT Next Generation for 6 cm and 13 cm scan lengths respectively. The method to extend the dose estimates from the central slice to superior and inferior slices indicates a good agreement between theory and measurement. The Gafchromic™ films provided useful beam profile data and 2D distributions of dose in phantom.

  10. Whole left ventricular functional assessment from two minutes free breathing multi-slice CINE acquisition

    NASA Astrophysics Data System (ADS)

    Usman, M.; Atkinson, D.; Heathfield, E.; Greil, G.; Schaeffter, T.; Prieto, C.

    2015-04-01

    Two major challenges in cardiovascular MRI are long scan times due to slow MR acquisition and motion artefacts due to respiratory motion. Recently, a Motion Corrected-Compressed Sensing (MC-CS) technique has been proposed for free breathing 2D dynamic cardiac MRI that addresses these challenges by simultaneously accelerating MR acquisition and correcting for any arbitrary motion in a compressed sensing reconstruction. In this work, the MC-CS framework is combined with parallel imaging for further acceleration, and is termed Motion Corrected Sparse SENSE (MC-SS). Validation of the MC-SS framework is demonstrated in eight volunteers and three patients for left ventricular functional assessment and results are compared with the breath-hold acquisitions as reference. A non-significant difference (P > 0.05) was observed in the volumetric functional measurements (end diastolic volume, end systolic volume, ejection fraction) and myocardial border sharpness values obtained with the proposed and gold standard methods. The proposed method achieves whole heart multi-slice coverage in 2 min under free breathing acquisition eliminating the time needed between breath-holds for instructions and recovery. This results in two-fold speed up of the total acquisition time in comparison to the breath-hold acquisition.

  11. Quantification of myocardial blood flow using dynamic 320-row multi-detector CT as compared with ¹⁵O-H₂O PET.

    PubMed

    Kikuchi, Yasuka; Oyama-Manabe, Noriko; Naya, Masanao; Manabe, Osamu; Tomiyama, Yuuki; Sasaki, Tsukasa; Katoh, Chietsugu; Kudo, Kohsuke; Tamaki, Nagara; Shirato, Hiroki

    2014-07-01

    This study introduces a method to calculate myocardium blood flow (MBF) and coronary flow reserve (CFR) using the relatively low-dose dynamic 320-row multi-detector computed tomography (MDCT), validates the method against (15)O-H₂O positron-emission tomography (PET) and assesses the CFRs of coronary artery disease (CAD) patients. Thirty-two subjects underwent both dynamic CT perfusion (CTP) and PET perfusion imaging at rest and during pharmacological stress. In 12 normal subjects (pilot group), the calculation method for MBF and CFR was established. In the other 13 normal subjects (validation group), MBF and CFR obtained by dynamic CTP and PET were compared. Finally, the CFRs obtained by dynamic CTP and PET were compared between the validation group and CAD patients (n = 7). Correlation between MBF of MDCT and PET was strong (r = 0.95, P < 0.0001). CFR showed good correlation between dynamic CTP and PET (r = 0.67, P = 0.0126). CFRCT in the CAD group (2.3 ± 0.8) was significantly lower than that in the validation group (5.2 ± 1.8) (P = 0.0011). We established a method for measuring MBF and CFR with the relatively low-dose dynamic MDCT. Lower CFR was well demonstrated in CAD patients by dynamic CTP. • MBF and CFR can be calculated using dynamic CTP with 320-row MDCT. • MBF and CFR showed good correlation between dynamic CTP and PET. • Lower CFR was well demonstrated in CAD patients by dynamic CTP.

  12. Metabolomics of Therapy Response in Preclinical Glioblastoma: A Multi-Slice MRSI-Based Volumetric Analysis for Noninvasive Assessment of Temozolomide Treatment

    PubMed Central

    Arias-Ramos, Nuria; Ferrer-Font, Laura; Lope-Piedrafita, Silvia; Mocioiu, Victor; Julià-Sapé, Margarida; Pumarola, Martí; Arús, Carles; Candiota, Ana Paula

    2017-01-01

    Glioblastoma (GBM) is the most common aggressive primary brain tumor in adults, with a short survival time even after aggressive therapy. Non-invasive surrogate biomarkers of therapy response may be relevant for improving patient survival. Previous work produced such biomarkers in preclinical GBM using semi-supervised source extraction and single-slice Magnetic Resonance Spectroscopic Imaging (MRSI). Nevertheless, GBMs are heterogeneous and single-slice studies could prevent obtaining relevant information. The purpose of this work was to evaluate whether a multi-slice MRSI approach, acquiring consecutive grids across the tumor, is feasible for preclinical models and may produce additional insight into therapy response. Nosological images were analyzed pixel-by-pixel and a relative responding volume, the Tumor Responding Index (TRI), was defined to quantify response. Heterogeneous response levels were observed and treated animals were ascribed to three arbitrary predefined groups: high response (HR, n = 2), TRI = 68.2 ± 2.8%, intermediate response (IR, n = 6), TRI = 41.1 ± 4.2% and low response (LR, n = 2), TRI = 13.4 ± 14.3%, producing therapy response categorization which had not been fully registered in single-slice studies. Results agreed with the multi-slice approach being feasible and producing an inverse correlation between TRI and Ki67 immunostaining. Additionally, ca. 7-day oscillations of TRI were observed, suggesting that host immune system activation in response to treatment could contribute to the responding patterns detected. PMID:28524099

  13. The impact of neurotechnology on rehabilitation.

    PubMed

    Berger, Theodore W; Gerhardt, Greg; Liker, Mark A; Soussou, Walid

    2008-01-01

    This paper present results of a multi-disciplinary project that is developing a microchip-based neural prosthesis for the hippocampus, a region of the brain responsible for the formation of long-term memories. Damage to the hippocampus is frequently associated with epilepsy, stroke, and dementia (Alzheimer's disease) and is considered to underlie the memory deficits related to these neurological conditions. The essential goals of the multi-laboratory effort include: (1) experimental study of neuron and neural network function--how does the hippocampus encode information? (2) formulation of biologically realistic models of neural system dynamics--can that encoding process be described mathematically to realize a predictive model of how the hippocampus responds to any event? (3) microchip implementation of neural system models--can the mathematical model be realized as a set of electronic circuits to achieve parallel processing, rapid computational speed, and miniaturization? and (4) creation of hybrid neuron-silicon interfaces-can structural and functional connections between electronic devices and neural tissue be achieved for long-term, bi-directional communication with the brain? By integrating solutions to these component problems, we are realizing a microchip-based model of hippocampal nonlinear dynamics that can perform the same function as part of the hippocampus. Through bi-directional communication with other neural tissue that normally provides the inputs and outputs to/from a damaged hippocampal area, the biomimetic model could serve as a neural prosthesis. A proof-of-concept will be presented in which the CA3 region of the hippocampal slice is surgically removed and is replaced by a microchip model of CA3 nonlinear dynamics--the "hybrid" hippocampal circuit displays normal physiological properties. How the work in brain slices is being extended to behaving animals also will be described.

  14. Charge-transfer dynamics and nonlocal dielectric permittivity tuned with metamaterial structures as solvent analogues

    NASA Astrophysics Data System (ADS)

    Lee, Kwang Jin; Xiao, Yiming; Woo, Jae Heun; Kim, Eunsun; Kreher, David; Attias, André-Jean; Mathevet, Fabrice; Ribierre, Jean-Charles; Wu, Jeong Weon; André, Pascal

    2017-07-01

    Charge transfer (CT) is a fundamental and ubiquitous mechanism in biology, physics and chemistry. Here, we evidence that CT dynamics can be altered by multi-layered hyperbolic metamaterial (HMM) substrates. Taking triphenylene:perylene diimide dyad supramolecular self-assemblies as a model system, we reveal longer-lived CT states in the presence of HMM structures, with both charge separation and recombination characteristic times increased by factors of 2.4 and 1.7--that is, relative variations of 140 and 73%, respectively. To rationalize these experimental results in terms of driving force, we successfully introduce image dipole interactions in Marcus theory. The non-local effect herein demonstrated is directly linked to the number of metal-dielectric pairs, can be formalized in the dielectric permittivity, and is presented as a solid analogue to local solvent polarity effects. This model and extra PH3T:PC60BM results show the generality of this non-local phenomenon and that a wide range of kinetic tailoring opportunities can arise from substrate engineering. This work paves the way toward the design of artificial substrates to control CT dynamics of interest for applications in optoelectronics and chemistry.

  15. Identifying the arterial input function from dynamic contrast-enhanced magnetic resonance images using an apex-seeking technique

    NASA Astrophysics Data System (ADS)

    Martel, Anne L.

    2004-04-01

    In order to extract quantitative information from dynamic contrast-enhanced MR images (DCE-MRI) it is usually necessary to identify an arterial input function. This is not a trivial problem if there are no major vessels present in the field of view. Most existing techniques rely on operator intervention or use various curve parameters to identify suitable pixels but these are often specific to the anatomical region or the acquisition method used. They also require the signal from several pixels to be averaged in order to improve the signal to noise ratio, however this introduces errors due to partial volume effects. We have described previously how factor analysis can be used to automatically separate arterial and venous components from DCE-MRI studies of the brain but although that method works well for single slice images through the brain when the blood brain barrier technique is intact, it runs into problems for multi-slice images with more complex dynamics. This paper will describe a factor analysis method that is more robust in such situations and is relatively insensitive to the number of physiological components present in the data set. The technique is very similar to that used to identify spectral end-members from multispectral remote sensing images.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, V; Zhang, J; Bruner, A

    Purpose: The AIRO Mobile CT system was recently introduced which overcomes the limitations from existing CT, CT fluoroscopy, and intraoperative O-arm. With an integrated table and a large diameter bore, the system is suitable for cranial, spine and trauma procedures, making it a highly versatile intraoperative imaging system. This study is to investigate radiation dose and image quality of the AIRO and compared with those from a routine CT scanner. Methods: Radiation dose was measured using a conventional 100mm pencil ionization chamber and CT polymethylmetacrylate (PMMA) body and head phantoms. Image quality was evaluated with a CATPHAN 500 phantom. Spatialmore » resolution, low contrast resolution (CNR), Modulation Transfer Function (MTF), and Normalized Noise Power Spectrum (NNPS) were analyzed. Results: Under identical technique conditions, radiation dose (mGy/mAs) from the AIRO mobile CT system (AIRO) is higher than that from a 64 slice CT scanner. MTFs show that both Soft and Standard filters of the AIRO system lost resolution quickly compared to the Sensation 64 slice CT. With the Standard kernel, the spatial resolutions of the AIRO system are 3lp/cm and 4lp/cm for the body and head FOVs, respectively. NNPSs show low frequency noise due to ring-like artifacts. Due to a higher dose in terms of mGy/mAs at both head and body FOV, CNR of the AIRO system is higher than that of the Siemens scanner. However detectability of the low contrast objects is poorer in the AIRO due to the presence of ring artifacts in the location of the targets. Conclusion: For image guided surgery applications, the AIRO has some advantages over a routine CT scanner due to its versatility, large bore size, and acceptable image quality. Our evaluation of the physical performance helps its future improvements.« less

  17. Automated segmentation of 3D anatomical structures on CT images by using a deep convolutional network based on end-to-end learning approach

    NASA Astrophysics Data System (ADS)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2017-02-01

    We have proposed an end-to-end learning approach that trained a deep convolutional neural network (CNN) for automatic CT image segmentation, which accomplished a voxel-wised multiple classification to directly map each voxel on 3D CT images to an anatomical label automatically. The novelties of our proposed method were (1) transforming the anatomical structures segmentation on 3D CT images into a majority voting of the results of 2D semantic image segmentation on a number of 2D-slices from different image orientations, and (2) using "convolution" and "deconvolution" networks to achieve the conventional "coarse recognition" and "fine extraction" functions which were integrated into a compact all-in-one deep CNN for CT image segmentation. The advantage comparing to previous works was its capability to accomplish real-time image segmentations on 2D slices of arbitrary CT-scan-range (e.g. body, chest, abdomen) and produced correspondingly-sized output. In this paper, we propose an improvement of our proposed approach by adding an organ localization module to limit CT image range for training and testing deep CNNs. A database consisting of 240 3D CT scans and a human annotated ground truth was used for training (228 cases) and testing (the remaining 12 cases). We applied the improved method to segment pancreas and left kidney regions, respectively. The preliminary results showed that the accuracies of the segmentation results were improved significantly (pancreas was 34% and kidney was 8% increased in Jaccard index from our previous results). The effectiveness and usefulness of proposed improvement for CT image segmentations were confirmed.

  18. Ultrafast dynamics of multi-exciton state coupled to coherent vibration in zinc chlorin aggregates for artificial photosynthesis.

    PubMed

    Shi, Tongchao; Liu, Zhengzheng; Miyatake, Tomohiro; Tamiaki, Hitoshi; Kobayashi, Takayoshi; Zhang, Zeyu; Du, Juan; Leng, Yuxin

    2017-11-27

    Ultrafast vibronic dynamics induced by the interaction of the Frenkel exciton with the coherent molecular vibrations in a layer-structured zinc chlorin aggregates prepared for artificial photosynthesis have been studied by 7.1 fs real-time vibrational spectroscopy with multi-spectrum detection. The fast decay of 100 ± 5fs is ascribed to the relaxation from the higher multi-exciton state (MES) to the one-exciton state, and the slow one of 863 ± 70fs is assigned to the relaxation from Q-exciton state to the dark nonfluorescent charge-transfer (CT) state, respectively. In addition, the wavelength dependences of the exciton-vibration coupling strength are found to follow the zeroth derivative of the transient absorption spectra of the exciton. It could be explained in term of the transition dipole moment modulated by dynamic intensity borrowing between the B transition and the Q transition through the vibronic interactions.

  19. Validation of an image registration and segmentation method to measure stent graft motion on ECG-gated CT using a physical dynamic stent graft model

    NASA Astrophysics Data System (ADS)

    Koenrades, Maaike A.; Struijs, Ella M.; Klein, Almar; Kuipers, Henny; Geelkerken, Robert H.; Slump, Cornelis H.

    2017-03-01

    The application of endovascular aortic aneurysm repair has expanded over the last decade. However, the long-term performance of stent grafts, in particular durable fixation and sealing to the aortic wall, remains the main concern of this treatment. The sealing and fixation are challenged at every heartbeat due to downward and radial pulsatile forces. Yet knowledge on cardiac-induced dynamics of implanted stent grafts is sparse, as it is not measured in routine clinical follow-up. Such knowledge is particularly relevant to perform fatigue tests, to predict failure in the individual patient and to improve stent graft designs. Using a physical dynamic stent graft model in an anthropomorphic phantom, we have evaluated the performance of our previously proposed segmentation and registration algorithm to detect periodic motion of stent grafts on ECG-gated (3D+t) CT data. Abdominal aortic motion profiles were simulated in two series of Gaussian based patterns with different amplitudes and frequencies. Experiments were performed on a 64-slice CT scanner with a helical scan protocol and retrospective gating. Motion patterns as estimated by our algorithm were compared to motion patterns obtained from optical camera recordings of the physical stent graft model in motion. Absolute errors of the patterns' amplitude were smaller than 0.28 mm. Even the motion pattern with an amplitude of 0.23 mm was measured, although the amplitude of motion was overestimated by the algorithm with 43%. We conclude that the algorithm performs well for measurement of stent graft motion in the mm and sub-mm range. This ultimately is expected to aid in patient-specific risk assessment and improving stent graft designs.

  20. TH-EF-BRA-08: A Novel Technique for Estimating Volumetric Cine MRI (VC-MRI) From Multi-Slice Sparsely Sampled Cine Images Using Motion Modeling and Free Form Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harris, W; Yin, F; Wang, C

    Purpose: To develop a technique to estimate on-board VC-MRI using multi-slice sparsely-sampled cine images, patient prior 4D-MRI, motion-modeling and free-form deformation for real-time 3D target verification of lung radiotherapy. Methods: A previous method has been developed to generate on-board VC-MRI by deforming prior MRI images based on a motion model(MM) extracted from prior 4D-MRI and a single-slice on-board 2D-cine image. In this study, free-form deformation(FD) was introduced to correct for errors in the MM when large anatomical changes exist. Multiple-slice sparsely-sampled on-board 2D-cine images located within the target are used to improve both the estimation accuracy and temporal resolution ofmore » VC-MRI. The on-board 2D-cine MRIs are acquired at 20–30frames/s by sampling only 10% of the k-space on Cartesian grid, with 85% of that taken at the central k-space. The method was evaluated using XCAT(computerized patient model) simulation of lung cancer patients with various anatomical and respirational changes from prior 4D-MRI to onboard volume. The accuracy was evaluated using Volume-Percent-Difference(VPD) and Center-of-Mass-Shift(COMS) of the estimated tumor volume. Effects of region-of-interest(ROI) selection, 2D-cine slice orientation, slice number and slice location on the estimation accuracy were evaluated. Results: VCMRI estimated using 10 sparsely-sampled sagittal 2D-cine MRIs achieved VPD/COMS of 9.07±3.54%/0.45±0.53mm among all scenarios based on estimation with ROI-MM-ROI-FD. The FD optimization improved estimation significantly for scenarios with anatomical changes. Using ROI-FD achieved better estimation than global-FD. Changing the multi-slice orientation to axial, coronal, and axial/sagittal orthogonal reduced the accuracy of VCMRI to VPD/COMS of 19.47±15.74%/1.57±2.54mm, 20.70±9.97%/2.34±0.92mm, and 16.02±13.79%/0.60±0.82mm, respectively. Reducing the number of cines to 8 enhanced temporal resolution of VC-MRI by 25% while maintaining the estimation accuracy. Estimation using slices sampled uniformly through the tumor achieved better accuracy than slices sampled non-uniformly. Conclusions: Preliminary studies showed that it is feasible to generate VC-MRI from multi-slice sparsely-sampled 2D-cine images for real-time 3D-target verification. This work was supported by the National Institutes of Health under Grant No. R01-CA184173 and a research grant from Varian Medical Systems.« less

  1. TH-EF-207A-04: A Dynamic Contrast Enhanced Cone Beam CT Technique for Evaluation of Renal Functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Z; Shi, J; Yang, Y

    Purpose: To develop a simple but robust method for the early detection and evaluation of renal functions using dynamic contrast enhanced cone beam CT technique. Methods: Experiments were performed on an integrated imaging and radiation research platform developed by our lab. Animals (n=3) were anesthetized with 20uL Ketamine/Xylazine cocktail, and then received 200uL injection of iodinated contrast agent Iopamidol via tail vein. Cone beam CT was acquired following contrast injection once per minute and up to 25 minutes. The cone beam CT was reconstructed with a dimension of 300×300×800 voxels of 130×130×130um voxel resolution. The middle kidney slices in themore » transvers and coronal planes were selected for image analysis. A double exponential function was used to fit the contrast enhanced signal intensity versus the time after contrast injection. Both pixel-based and region of interest (ROI)-based curve fitting were performed. Four parameters obtained from the curve fitting, namely the amplitude and flow constant for both contrast wash in and wash out phases, were investigated for further analysis. Results: Robust curve fitting was demonstrated for both pixel based (with R{sup 2}>0.8 for >85% pixels within the kidney contour) and ROI based (R{sup 2}>0.9 for all regions) analysis. Three different functional regions: renal pelvis, medulla and cortex, were clearly differentiated in the functional parameter map in the pixel based analysis. ROI based analysis showed the half-life T1/2 for contrast wash in and wash out phases were 0.98±0.15 and 17.04±7.16, 0.63±0.07 and 17.88±4.51, and 1.48±0.40 and 10.79±3.88 minutes for the renal pelvis, medulla and cortex, respectively. Conclusion: A robust method based on dynamic contrast enhanced cone beam CT and double exponential curve fitting has been developed to analyze the renal functions for different functional regions. Future study will be performed to investigate the sensitivity of this technique in the detection of radiation induced kidney dysfunction.« less

  2. Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.

    PubMed

    Wang, Jinke; Cheng, Yuanzhi; Guo, Changyong; Wang, Yadong; Tamura, Shinichi

    2016-05-01

    Propose a fully automatic 3D segmentation framework to segment liver on challenging cases that contain the low contrast of adjacent organs and the presence of pathologies from abdominal CT images. First, all of the atlases are weighted in the selected training datasets by calculating the similarities between the atlases and the test image to dynamically generate a subject-specific probabilistic atlas for the test image. The most likely liver region of the test image is further determined based on the generated atlas. A rough segmentation is obtained by a maximum a posteriori classification of probability map, and the final liver segmentation is produced by a shape-intensity prior level set in the most likely liver region. Our method is evaluated and demonstrated on 25 test CT datasets from our partner site, and its results are compared with two state-of-the-art liver segmentation methods. Moreover, our performance results on 10 MICCAI test datasets are submitted to the organizers for comparison with the other automatic algorithms. Using the 25 test CT datasets, average symmetric surface distance is [Formula: see text] mm (range 0.62-2.12 mm), root mean square symmetric surface distance error is [Formula: see text] mm (range 0.97-3.01 mm), and maximum symmetric surface distance error is [Formula: see text] mm (range 12.73-26.67 mm) by our method. Our method on 10 MICCAI test data sets ranks 10th in all the 47 automatic algorithms on the site as of July 2015. Quantitative results, as well as qualitative comparisons of segmentations, indicate that our method is a promising tool to improve the efficiency of both techniques. The applicability of the proposed method to some challenging clinical problems and the segmentation of the liver are demonstrated with good results on both quantitative and qualitative experimentations. This study suggests that the proposed framework can be good enough to replace the time-consuming and tedious slice-by-slice manual segmentation approach.

  3. Multi-slice ptychography with large numerical aperture multilayer Laue lenses

    DOE PAGES

    Ozturk, Hande; Yan, Hanfei; He, Yan; ...

    2018-05-09

    Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less

  4. Multi-slice ptychography with large numerical aperture multilayer Laue lenses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozturk, Hande; Yan, Hanfei; He, Yan

    Here, the highly convergent x-ray beam focused by multilayer Laue lenses with large numerical apertures is used as a three-dimensional (3D) probe to image layered structures with an axial separation larger than the depth of focus. Instead of collecting weakly scattered high-spatial-frequency signals, the depth-resolving power is provided purely by the intense central cone diverged from the focused beam. Using the multi-slice ptychography method combined with the on-the-fly scan scheme, two layers of nanoparticles separated by 10 μm are successfully reconstructed with 8.1 nm lateral resolution and with a dwell time as low as 0.05 s per scan point. Thismore » approach obtains high-resolution images with extended depth of field, which paves the way for multi-slice ptychography as a high throughput technique for high-resolution 3D imaging of thick samples.« less

  5. Volumetric quantification of lung nodules in CT with iterative reconstruction (ASiR and MBIR).

    PubMed

    Chen, Baiyu; Barnhart, Huiman; Richard, Samuel; Robins, Marthony; Colsher, James; Samei, Ehsan

    2013-11-01

    Volume quantifications of lung nodules with multidetector computed tomography (CT) images provide useful information for monitoring nodule developments. The accuracy and precision of the volume quantification, however, can be impacted by imaging and reconstruction parameters. This study aimed to investigate the impact of iterative reconstruction algorithms on the accuracy and precision of volume quantification with dose and slice thickness as additional variables. Repeated CT images were acquired from an anthropomorphic chest phantom with synthetic nodules (9.5 and 4.8 mm) at six dose levels, and reconstructed with three reconstruction algorithms [filtered backprojection (FBP), adaptive statistical iterative reconstruction (ASiR), and model based iterative reconstruction (MBIR)] into three slice thicknesses. The nodule volumes were measured with two clinical software (A: Lung VCAR, B: iNtuition), and analyzed for accuracy and precision. Precision was found to be generally comparable between FBP and iterative reconstruction with no statistically significant difference noted for different dose levels, slice thickness, and segmentation software. Accuracy was found to be more variable. For large nodules, the accuracy was significantly different between ASiR and FBP for all slice thicknesses with both software, and significantly different between MBIR and FBP for 0.625 mm slice thickness with Software A and for all slice thicknesses with Software B. For small nodules, the accuracy was more similar between FBP and iterative reconstruction, with the exception of ASIR vs FBP at 1.25 mm with Software A and MBIR vs FBP at 0.625 mm with Software A. The systematic difference between the accuracy of FBP and iterative reconstructions highlights the importance of extending current segmentation software to accommodate the image characteristics of iterative reconstructions. In addition, a calibration process may help reduce the dependency of accuracy on reconstruction algorithms, such that volumes quantified from scans of different reconstruction algorithms can be compared. The little difference found between the precision of FBP and iterative reconstructions could be a result of both iterative reconstruction's diminished noise reduction at the edge of the nodules as well as the loss of resolution at high noise levels with iterative reconstruction. The findings do not rule out potential advantage of IR that might be evident in a study that uses a larger number of nodules or repeated scans.

  6. Explosive Detection in Aviation Applications Using CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martz, H E; Crawford, C R

    2011-02-15

    CT scanners are deployed world-wide to detect explosives in checked and carry-on baggage. Though very similar to single- and dual-energy multi-slice CT scanners used today in medical imaging, some recently developed explosives detection scanners employ multiple sources and detector arrays to eliminate mechanical rotation of a gantry, photon counting detectors for spectral imaging, and limited number of views to reduce cost. For each bag scanned, the resulting reconstructed images are first processed by automated threat recognition algorithms to screen for explosives and other threats. Human operators review the images only when these automated algorithms report the presence of possible threats.more » The US Department of Homeland Security (DHS) has requirements for future scanners that include dealing with a larger number of threats, higher probability of detection, lower false alarm rates and lower operating costs. One tactic that DHS is pursuing to achieve these requirements is to augment the capabilities of the established security vendors with third-party algorithm developers. A third-party in this context refers to academics and companies other than the established vendors. DHS is particularly interested in exploring the model that has been used very successfully by the medical imaging industry, in which university researchers develop algorithms that are eventually deployed in commercial medical imaging equipment. The purpose of this paper is to discuss opportunities for third-parties to develop advanced reconstruction and threat detection algorithms.« less

  7. Short-term reproducibility of computed tomography-based lung density measurements in alpha-1 antitrypsin deficiency and smokers with emphysema.

    PubMed

    Shaker, S B; Dirksen, A; Laursen, L C; Maltbaek, N; Christensen, L; Sander, U; Seersholm, N; Skovgaard, L T; Nielsen, L; Kok-Jensen, A

    2004-07-01

    To study the short-term reproducibility of lung density measurements by multi-slice computed tomography (CT) using three different radiation doses and three reconstruction algorithms. Twenty-five patients with smoker's emphysema and 25 patients with alpha1-antitrypsin deficiency underwent 3 scans at 2-week intervals. Low-dose protocol was applied, and images were reconstructed with bone, detail, and soft algorithms. Total lung volume (TLV), 15th percentile density (PD-15), and relative area at -910 Hounsfield units (RA-910) were obtained from the images using Pulmo-CMS software. Reproducibility of PD-15 and RA-910 and the influence of radiation dose, reconstruction algorithm, and type of emphysema were then analysed. The overall coefficient of variation of volume adjusted PD-15 for all combinations of radiation dose and reconstruction algorithm was 3.7%. The overall standard deviation of volume-adjusted RA-910 was 1.7% (corresponding to a coefficient of variation of 6.8%). Radiation dose, reconstruction algorithm, and type of emphysema had no significant influence on the reproducibility of PD-15 and RA-910. However, bone algorithm and very low radiation dose result in overestimation of the extent of emphysema. Lung density measurement by CT is a sensitive marker for quantitating both subtypes of emphysema. A CT-protocol with radiation dose down to 16 mAs and soft or detail reconstruction algorithm is recommended.

  8. Effects of dose reduction on bone strength prediction using finite element analysis

    NASA Astrophysics Data System (ADS)

    Anitha, D.; Subburaj, Karupppasamy; Mei, Kai; Kopp, Felix K.; Foehr, Peter; Noel, Peter B.; Kirschke, Jan S.; Baum, Thomas

    2016-12-01

    This study aimed to evaluate the effect of dose reduction, by means of tube exposure reduction, on bone strength prediction from finite-element (FE) analysis. Fresh thoracic mid-vertebrae specimens (n = 11) were imaged, using multi-detector computed tomography (MDCT), at different intensities of X-ray tube exposures (80, 150, 220 and 500 mAs). Bone mineral density (BMD) was estimated from the mid-slice of each specimen from MDCT images. Differences in image quality and geometry of each specimen were measured. FE analysis was performed on all specimens to predict fracture load. Paired t-tests were used to compare the results obtained, using the highest CT dose (500 mAs) as reference. Dose reduction had no significant impact on FE-predicted fracture loads, with significant correlations obtained with reference to 500 mAs, for 80 mAs (R2  = 0.997, p < 0.001), 150 mAs (R2 = 0.998, p < 0.001) and 220 mAs (R2 = 0.987, p < 0.001). There were no significant differences in volume quantification between the different doses examined. CT imaging radiation dose could be reduced substantially to 64% with no impact on strength estimates obtained from FE analysis. Reduced CT dose will enable early diagnosis and advanced monitoring of osteoporosis and associated fracture risk.

  9. Radiation dose to patients and image quality evaluation from coronary 256-slice computed tomographic angiography

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Kuang; Wu, Tung-Hsin; Yang, Ching-Ching; Tsai, Chia-Jung; Lee, Jason J. S.

    2010-07-01

    The aim of this study is to assess radiation dose and the corresponding image quality from suggested CT protocols which depends on different mean heart rate and high heart rate variability by using 256-slice CT. Fifty consecutive patients referred for a cardiac CT examination were included in this study. All coronary computed tomographic angiography (CCTA) examinations were performed on a 256-slice CT scanner with one of five different protocols: retrospective ECG-gating (RGH) with full dose exposure in all R-R intervals (protocol A), RGH of 30-80% pulsing window with tube current modulation (B), RGH of 78±5% pulsing window with tube current modulation (C), prospective ECG-triggering (PGT) of 78% R-R interval with 5% padding window (D) and PGT of 78% R-R interval without padding window (E). Radiation dose parameters and image quality scoring were determined and compared. In this study, no significant differences were found in comparison on image quality of the five different protocols. Protocol A obtained the highest radiation dose comparing with those of protocols B, C, D and E by a factor of 1.6, 2.4, 2.5 and 4.3, respectively ( p<0.001), which were ranged between 2.7 and 11.8 mSv. The PGT could significantly reduce radiation dose delivered to patients, as compared to the RGH. However, the use of PGT has limitations and is only good in assessing cases with lower mean heart rate and stable heart rate variability. With higher mean heart rate and high heart rate variability circumstances, the RGH within 30-80% of R-R interval pulsing window is suggested as a feasible technique for assessing diagnostic performance.

  10. The influence of respiratory motion on CT image volume definition.

    PubMed

    Rodríguez-Romero, Ruth; Castro-Tejero, Pablo

    2014-04-01

    Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move known geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. 4DCT acquisitions provided volume and position accuracies within ± 3% and ± 2 mm for structure dimensions >2 cm, breath amplitude ≤ 15 mm, and breath period ≥ 3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath patterns of higher frequency and amplitude motion. Larger volume differences (>10%) and inconsistencies between the relative positions of objects were detected in image studies acquired without respiratory control. Increasing the 3DCT rotation period caused a higher distortion in structures without obtaining their envelope. Simulated data showed that the slice acquisition time should be at least twice the breath period to average object movement. Respiratory 4DCT images provide accurate volume and position of organs affected by breath motion detecting higher volume discrepancies as amplitude length or breath frequency are increased. For 3DCT acquisitions, a CT should be considered slow enough to include lesion envelope as long as the slice acquisition time exceeds twice the breathing period. If this requirement cannot be satisfied, a fast CT (along with breath-hold inhale and exhale CTs to estimate roughly the ITV) is recommended in order to minimize structure distortion. Even with an awareness of a patient's respiratory cycle, its coupling with 3DCT acquisition cannot be predicted since patient anatomy is not accurately known. © 2014 American Association of Physicists in Medicine.

  11. The influence of respiratory motion on CT image volume definition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodríguez-Romero, Ruth, E-mail: rrromero@salud.madrid.org; Castro-Tejero, Pablo, E-mail: pablo.castro@salud.madrid.org

    Purpose: Radiotherapy treatments are based on geometric and density information acquired from patient CT scans. It is well established that breathing motion during scan acquisition induces motion artifacts in CT images, which can alter the size, shape, and density of a patient's anatomy. The aim of this work is to examine and evaluate the impact of breathing motion on multislice CT imaging with respiratory synchronization (4DCT) and without it (3DCT). Methods: A specific phantom with a movable insert was used. Static and dynamic phantom acquisitions were obtained with a multislice CT. Four sinusoidal breath patterns were simulated to move knownmore » geometric structures longitudinally. Respiratory synchronized acquisitions (4DCT) were performed to generate images during inhale, intermediate, and exhale phases using prospective and retrospective techniques. Static phantom data were acquired in helical and sequential mode to define a baseline for each type of respiratory 4DCT technique. Taking into account the fact that respiratory 4DCT is not always available, 3DCT helical image studies were also acquired for several CT rotation periods. To study breath and acquisition coupling when respiratory 4DCT was not performed, the beginning of the CT image acquisition was matched with inhale, intermediate, or exhale respiratory phases, for each breath pattern. Other coupling scenarios were evaluated by simulating different phantom and CT acquisition parameters. Motion induced variations in shape and density were quantified by automatic threshold volume generation and Dice similarity coefficient calculation. The structure mass center positions were also determined to make a comparison with their theoretical expected position. Results: 4DCT acquisitions provided volume and position accuracies within ±3% and ±2 mm for structure dimensions >2 cm, breath amplitude ≤15 mm, and breath period ≥3 s. The smallest object (1 cm diameter) exceeded 5% volume variation for the breath patterns of higher frequency and amplitude motion. Larger volume differences (>10%) and inconsistencies between the relative positions of objects were detected in image studies acquired without respiratory control. Increasing the 3DCT rotation period caused a higher distortion in structures without obtaining their envelope. Simulated data showed that the slice acquisition time should be at least twice the breath period to average object movement. Conclusions: Respiratory 4DCT images provide accurate volume and position of organs affected by breath motion detecting higher volume discrepancies as amplitude length or breath frequency are increased. For 3DCT acquisitions, a CT should be considered slow enough to include lesion envelope as long as the slice acquisition time exceeds twice the breathing period. If this requirement cannot be satisfied, a fast CT (along with breath-hold inhale and exhale CTs to estimate roughly the ITV) is recommended in order to minimize structure distortion. Even with an awareness of a patient's respiratory cycle, its coupling with 3DCT acquisition cannot be predicted since patient anatomy is not accurately known.« less

  12. Multi-institutional MicroCT image comparison of image-guided small animal irradiators

    NASA Astrophysics Data System (ADS)

    Johnstone, Chris D.; Lindsay, Patricia; E Graves, Edward; Wong, Eugene; Perez, Jessica R.; Poirier, Yannick; Ben-Bouchta, Youssef; Kanesalingam, Thilakshan; Chen, Haijian; E Rubinstein, Ashley; Sheng, Ke; Bazalova-Carter, Magdalena

    2017-07-01

    To recommend imaging protocols and establish tolerance levels for microCT image quality assurance (QA) performed on conformal image-guided small animal irradiators. A fully automated QA software SAPA (small animal phantom analyzer) for image analysis of the commercial Shelley micro-CT MCTP 610 phantom was developed, in which quantitative analyses of CT number linearity, signal-to-noise ratio (SNR), uniformity and noise, geometric accuracy, spatial resolution by means of modulation transfer function (MTF), and CT contrast were performed. Phantom microCT scans from eleven institutions acquired with four image-guided small animal irradiator units (including the commercial PXi X-RAD SmART and Xstrahl SARRP systems) with varying parameters used for routine small animal imaging were analyzed. Multi-institutional data sets were compared using SAPA, based on which tolerance levels for each QA test were established and imaging protocols for QA were recommended. By analyzing microCT data from 11 institutions, we established image QA tolerance levels for all image quality tests. CT number linearity set to R 2  >  0.990 was acceptable in microCT data acquired at all but three institutions. Acceptable SNR  >  36 and noise levels  <55 HU were obtained at five of the eleven institutions, where failing scans were acquired with current-exposure time of less than 120 mAs. Acceptable spatial resolution (>1.5 lp mm-1 for MTF  =  0.2) was obtained at all but four institutions due to their large image voxel size used (>0.275 mm). Ten of the eleven institutions passed the set QA tolerance for geometric accuracy (<1.5%) and nine of the eleven institutions passed the QA tolerance for contrast (>2000 HU for 30 mgI ml-1). We recommend performing imaging QA with 70 kVp, 1.5 mA, 120 s imaging time, 0.20 mm voxel size, and a frame rate of 5 fps for the PXi X-RAD SmART. For the Xstrahl SARRP, we recommend using 60 kVp, 1.0 mA, 240 s imaging time, 0.20 mm voxel size, and 6 fps. These imaging protocols should result in high quality images that pass the set tolerance levels on all systems. Average SAPA computation time for complete QA analysis for a 0.20 mm voxel, 400 slice Shelley phantom microCT data set was less than 20 s. We present image quality assurance recommendations for image-guided small animal radiotherapy systems that can aid researchers in maintaining high image quality, allowing for spatially precise conformal dose delivery to small animals.

  13. Improved Follow-Up and Response Monitoring of Thoracic Cage Involvement in Multiple Myeloma Using a Novel CT Postprocessing Software: The Lessons We Learned.

    PubMed

    Bier, Georg; Mustafa, Deedar Farhad; Kloth, Christopher; Weisel, Katja; Ditt, Hendrik; Nikolaou, Konstantin; Horger, Marius

    2016-01-01

    The purpose of this study is to evaluate the benefit of using novel CT postprocessing software that generates unfolded rib images for more-accurate evaluation of multiple myeloma (MM) at follow-up, response monitoring, and visualization of treatment-related bone changes. Between January 2012 and February 2015, 40 consecutive patients with MM underwent repeated whole-body reduced-dose CT at our institution. The results were retrospectively evaluated and compared with established hematologic markers. Unfolded rib reformatted images were compared with 5- and 1-mm-thick slices with regard to bone changes, bone marrow attenuation, and bone sclerosis. Hematologic response categories at follow-up were complete response (CR; n = 2), very good partial response (VGPR; n = 1), partial response (PR; n = 9), stable disease (n = 9), and progressive disease (PD; n = 19). The number of lesions increased in 11 patients (all with PD), decreased in two patients (both with CR), and stayed unchanged in 27 patients. The size of the lesions increased in 14 patients (all with PD), decreased in five patients (two with CR, two with PR, and one with stable disease), and remained unchanged in 21 patients. There was a mean (± SD) difference of 27.99 ± 19.71 HU in bone marrow attenuation for patients with PD (p < 0.0001) and -31.24 ± 13.57 HU in the responders group (p = 0.002), whereas patients with stable disease showed stable bone marrow attenuation at follow-up (mean, -3.37 ± 10.55 HU). Increased bone sclerosis was detected in 12 patients (all of whom were receiving therapy). The sensitivity and specificity of unfolded rib images, 5-mm slices, and 1-mm slices were, respectively, 78.9% and 100%, 52.6% and 100%, and 63.2% and 100% for accurate bone response assessment; 100% and 95.2%, 94.74% and 42.9%, and 89.47% and 47.62% for bone marrow attenuation; and 100% and 100%, 58.3% and 100%, and 91.67% and 100% for sclerosis. For therapy response assessment, unfolded rib reading is more accurate than transverse CT slices.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacFarlane, Michael; Battista, Jerry; Chen, Jeff

    Purpose: To develop a radiotherapy dose tracking and plan evaluation technique using cone-beam computed tomography (CBCT) images. Methods: We developed a patient-specific method of calibrating CBCT image sets for dose calculation. The planning CT was first registered with the CBCT using deformable image registration (DIR). A scatter plot was generated between the CT numbers of the planning CT and CBCT for each slice. The CBCT calibration curve was obtained by least-square fitting of the data, and applied to each CBCT slice. The calibrated CBCT was then merged with original planning CT to extend the small field of view of CBCT.more » Finally, the treatment plan was copied to the merged CT for dose tracking and plan evaluation. The proposed patient-specific calibration method was also compared to two methods proposed in literature. To evaluate the accuracy of each technique, 15 head-and-neck patients requiring plan adaptation were arbitrarily selected from our institution. The original plan was calculated on each method’s data set, including a second planning CT acquired within 48 hours of the CBCT (serving as gold standard). Clinically relevant dose metrics and 3D gamma analysis of dose distributions were compared between the different techniques. Results: Compared to the gold standard of using planning CTs, the patient-specific CBCT calibration method was shown to provide promising results with gamma pass rates above 95% and average dose metric agreement within 2.5%. Conclusions: The patient-specific CBCT calibration method could potentially be used for on-line dose tracking and plan evaluation, without requiring a re-planning CT session.« less

  15. Cross-sectional anatomy, computed tomography and magnetic resonance imaging of the head of common dolphin (Delphinus delphis) and striped dolphin (Stenella coeruleoalba).

    PubMed

    Alonso-Farré, J M; Gonzalo-Orden, M; Barreiro-Vázquez, J D; Barreiro-Lois, A; André, M; Morell, M; Llarena-Reino, M; Monreal-Pawlowsky, T; Degollada, E

    2015-02-01

    Computed tomography (CT) and low-field magnetic resonance imaging (MRI) were used to scan seven by-caught dolphin cadavers, belonging to two species: four common dolphins (Delphinus delphis) and three striped dolphins (Stenella coeruleoalba). CT and MRI were obtained with the animals in ventral recumbency. After the imaging procedures, six dolphins were frozen at -20°C and sliced in the same position they were examined. Not only CT and MRI scans, but also cross sections of the heads were obtained in three body planes: transverse (slices of 1 cm thickness) in three dolphins, sagittal (5 cm thickness) in two dolphins and dorsal (5 cm thickness) in two dolphins. Relevant anatomical structures were identified and labelled on each cross section, obtaining a comprehensive bi-dimensional topographical anatomy guide of the main features of the common and the striped dolphin head. Furthermore, the anatomical cross sections were compared with their corresponding CT and MRI images, allowing an imaging identification of most of the anatomical features. CT scans produced an excellent definition of the bony and air-filled structures, while MRI allowed us to successfully identify most of the soft tissue structures in the dolphin's head. This paper provides a detailed anatomical description of the head structures of common and striped dolphins and compares anatomical cross sections with CT and MRI scans, becoming a reference guide for the interpretation of imaging studies. © 2014 Blackwell Verlag GmbH.

  16. Study of the scan uniformity from an i-CAT cone beam computed tomography dental imaging system.

    PubMed

    Bryant, J A; Drage, N A; Richmond, S

    2008-10-01

    As part of an ongoing programme to improve diagnosis and treatment planning relevant to implant placement, orthodontic treatment and dentomaxillofacial surgery, a study has been made of the spatial accuracy and density response of an i-CAT, a cone beam CT (CBCT) dental imaging system supplied by Imaging Sciences International Inc. Custom-made phantoms using acrylic sheet and water were used for measurements on spatial accuracy, density response and noise. The measurements were made over a period of several months on a clinical machine rather than on a machine dedicated to research. Measurements on a precision grid showed the spatial accuracy to be universally within the tolerance of +/-1 pixel. The density response and the noise in the data were found to depend strongly on the mass in the slice being scanned. The density response was subject to two effects. The first effect changes the whole slice uniformly and linearly depends on the total mass in the slice. The second effect exists when there is mass outside the field of view, dubbed the "exo-mass" effect. This effect lowers the measured CT number rapidly at the scan edge furthest from the exo-mass and raises it on the adjacent edge. The noise also depended quasi-linearly on the mass in the slice. Some general performance rules were drafted to describe these effects and a preliminary correction algorithm was constructed.

  17. Multi-slice MRI reveals heterogeneity in disease distribution along the length of muscle in Duchenne muscular dystrophy.

    PubMed

    Chrzanowski, Stephen M; Baligand, Celine; Willcocks, Rebecca J; Deol, Jasjit; Schmalfuss, Ilona; Lott, Donovan J; Daniels, Michael J; Senesac, Claudia; Walter, Glenn A; Vandenborne, Krista

    2017-09-01

    Duchenne muscular dystrophy (DMD) causes progressive pathologic changes to muscle secondary to a cascade of inflammation, lipid deposition, and fibrosis. Clinically, this manifests as progressive weakness, functional loss, and premature mortality. Though insult to whole muscle groups is well established, less is known about the relationship between intramuscular pathology and function. Differences of intramuscular heterogeneity across muscle length were assessed using an ordinal MRI grading scale in lower leg muscles of boys with DMD and correlated to patient's functional status. Cross sectional T 1 weighted MRI images with fat suppression were obtained from ambulatory boys with DMD. Six muscles (tibialis anterior, extensor digitorum longus, peroneus, soleus, medial and lateral gastrocnemii) were graded using an ordinal grading scale over 5 slice sections along the lower leg length. The scores from each slice were combined and results were compared to global motor function and age. Statistically greater differences of involvement were observed at the proximal ends of muscle compared to the midbellies. Multi-slice assessment correlated significantly to age and the Vignos functional scale, whereas single-slice assessment correlated to the Vignos functional scale only. Lastly, differential disease involvement of whole muscle groups and intramuscular heterogeneity were observed amongst similar age subjects. A multi-slice ordinal MRI grading scale revealed that muscles are not uniformly affected, with more advanced disease visible near the tendons in a primarily ambulatory population with DMD. A geographically comprehensive evaluation of the heterogeneously affected muscle in boys with DMD may more accurately assess disease involvement.

  18. SU-F-I-59: Quality Assurance Phantom for PET/CT Alignment and Attenuation Correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, T; Hamacher, K

    2016-06-15

    Purpose: This study utilizes a commercial PET/CT phantom to investigate two specific properties of a PET/CT system: the alignment accuracy of PET images with those from CT used for attenuation correction and the accuracy of this correction in PET images. Methods: A commercial PET/CT phantom consisting of three aluminum rods, two long central cylinders containing uniform activity, and attenuating materials such as air, water, bone and iodine contrast was scanned using a standard PET/CT protocol. Images reconstructed with 2 mm slice thickness and a 512 by 512 matrix were obtained. The center of each aluminum rod in the PET andmore » CT images was compared to evaluate alignment accuracy. ROIs were drawn on transaxial images of the central rods at each section of attenuating material to determine the corrected activity (in BQML). BQML values were graphed as a function of slice number to provide a visual representation of the attenuation-correction throughout the whole phantom. Results: Alignment accuracy is high between the PET and CT images. The maximum deviation between the two in the axial plane is less than 1.5 mm, which is less than the width of a single pixel. BQML values measured along different sections of the large central rods are similar among the different attenuating materials except iodine contrast. Deviation of BQML values in the air and bone sections from the water section is less than 1%. Conclusion: Accurate alignment of PET and CT images is critical to ensure proper calculation and application of CT-based attenuation correction. This study presents a simple and quick method to evaluate the two with a single acquisition. As the phantom also includes spheres of increasing diameter, this could serve as a straightforward means to annually evaluate the status of a modern PET/CT system.« less

  19. Hyaline cartilage thickness in radiographically normal cadaveric hips: comparison of spiral CT arthrographic and macroscopic measurements.

    PubMed

    Wyler, Annabelle; Bousson, Valérie; Bergot, Catherine; Polivka, Marc; Leveque, Eric; Vicaut, Eric; Laredo, Jean-Denis

    2007-02-01

    To assess spiral multidetector computed tomographic (CT) arthrography for the depiction of cartilage thickness in hips without cartilage loss, with evaluation of anatomic slices as the reference standard. Permission to perform imaging studies in cadaveric specimens of individuals who had willed their bodies to science was obtained from the institutional review board. Two independent observers measured the femoral and acetabular hyaline cartilage thickness of 12 radiographically normal cadaveric hips (from six women and five men; age range at death, 52-98 years; mean, 76.5 years) on spiral multidetector CT arthrographic reformations and on coronal anatomic slices. Regions of cartilage loss at gross or histologic examination were excluded. CT arthrographic and anatomic measurements in the coronal plane were compared by using Bland-Altman representation and a paired t test. Differences between mean cartilage thicknesses at the points of measurement were tested by means of analysis of variance. Interobserver and intraobserver reproducibilities were determined. At CT arthrography, mean cartilage thickness ranged from 0.32 to 2.53 mm on the femoral head and from 0.95 to 3.13 mm on the acetabulum. Observers underestimated cartilage thickness in the coronal plane by 0.30 mm +/- 0.52 (mean +/- standard error) at CT arthrography (P < .001) compared with the anatomic reference standard. Ninety-five percent of the differences between CT arthrography and anatomic values ranged from -1.34 to 0.74 mm. The difference between mean cartilage thicknesses at the different measurement points was significant for coronal spiral multidetector CT arthrography and anatomic measurement of the femoral head and acetabulum and for sagittal and transverse CT arthrography of the femoral head (P < .001). Changes in cartilage thickness from the periphery to the center of the joint ("gradients") were found by means of spiral multidetector CT arthrography and anatomic measurement. Spiral multidetector CT arthrography depicts cartilage thickness gradients in radiographically normal cadaveric hips. (c) RSNA, 2007.

  20. Effect of beam hardening on transmural myocardial perfusion quantification in myocardial CT imaging

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Levi, Jacob; Fares, Anas; Wu, Hao; Vembar, Mani; Dhanantwari, Amar; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    The detection of subendocardial ischemia exhibiting an abnormal transmural perfusion gradient (TPG) may help identify ischemic conditions due to micro-vascular dysfunction. We evaluated the effect of beam hardening (BH) artifacts on TPG quantification using myocardial CT perfusion (CTP). We used a prototype spectral detector CT scanner (Philips Healthcare) to acquire dynamic myocardial CTP scans in a porcine ischemia model with partial occlusion of the left anterior descending (LAD) coronary artery guided by pressure wire-derived fractional flow reserve (FFR) measurements. Conventional 120 kVp and 70 keV projection-based mono-energetic images were reconstructed from the same projection data and used to compute myocardial blood flow (MBF) using the Johnson-Wilson model. Under moderate LAD occlusion (FFR~0.7), we used three 5 mm short axis slices and divided the myocardium into three LAD segments and three remote segments. For each slice and each segment, we characterized TPG as the mean "endo-to-epi" transmural flow ratio (TFR). BH-induced hypoenhancement on the ischemic anterior wall at 120 kVp resulted in significantly lower mean TFR value as compared to the 70 keV TFR value (0.29+/-0.01 vs. 0.55+/-0.01 p<1e-05). No significant difference was measured between 120 kVp and 70 keV mean TFR values on segments moderately affected or unaffected by BH. In the entire ischemic LAD territory, 120 kVp mean endocardial flow was significantly reduced as compared to mean epicardial flow (15.80+/-10.98 vs. 40.85+/-23.44 ml/min/100g; p<1e-04). At 70 keV, BH was effectively minimized resulting in mean endocardial MBF of 40.85+/-15.3407 ml/min/100g vs. 74.09+/-5.07 ml/min/100g (p=0.0054) in the epicardium. We also found that BH artifact in the conventional 120 kVp images resulted in falsely reduced MBF measurements even under non-ischemic conditions.

  1. Coronary Stent Artifact Reduction with an Edge-Enhancing Reconstruction Kernel - A Prospective Cross-Sectional Study with 256-Slice CT.

    PubMed

    Tan, Stéphanie; Soulez, Gilles; Diez Martinez, Patricia; Larrivée, Sandra; Stevens, Louis-Mathieu; Goussard, Yves; Mansour, Samer; Chartrand-Lefebvre, Carl

    2016-01-01

    Metallic artifacts can result in an artificial thickening of the coronary stent wall which can significantly impair computed tomography (CT) imaging in patients with coronary stents. The objective of this study is to assess in vivo visualization of coronary stent wall and lumen with an edge-enhancing CT reconstruction kernel, as compared to a standard kernel. This is a prospective cross-sectional study involving the assessment of 71 coronary stents (24 patients), with blinded observers. After 256-slice CT angiography, image reconstruction was done with medium-smooth and edge-enhancing kernels. Stent wall thickness was measured with both orthogonal and circumference methods, averaging thickness from diameter and circumference measurements, respectively. Image quality was assessed quantitatively using objective parameters (noise, signal to noise (SNR) and contrast to noise (CNR) ratios), as well as visually using a 5-point Likert scale. Stent wall thickness was decreased with the edge-enhancing kernel in comparison to the standard kernel, either with the orthogonal (0.97 ± 0.02 versus 1.09 ± 0.03 mm, respectively; p<0.001) or the circumference method (1.13 ± 0.02 versus 1.21 ± 0.02 mm, respectively; p = 0.001). The edge-enhancing kernel generated less overestimation from nominal thickness compared to the standard kernel, both with the orthogonal (0.89 ± 0.19 versus 1.00 ± 0.26 mm, respectively; p<0.001) and the circumference (1.06 ± 0.26 versus 1.13 ± 0.31 mm, respectively; p = 0.005) methods. The edge-enhancing kernel was associated with lower SNR and CNR, as well as higher background noise (all p < 0.001), in comparison to the medium-smooth kernel. Stent visual scores were higher with the edge-enhancing kernel (p<0.001). In vivo 256-slice CT assessment of coronary stents shows that the edge-enhancing CT reconstruction kernel generates thinner stent walls, less overestimation from nominal thickness, and better image quality scores than the standard kernel.

  2. SU-E-T-541: Measurement of CT Density Model Variations and the Impact On the Accuracy of Monte Carlo (MC) Dose Calculation in Stereotactic Body Radiation Therapy for Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, H; Li, B; Behrman, R

    2015-06-15

    Purpose: To measure the CT density model variations between different CT scanners used for treatment planning and impact on the accuracy of MC dose calculation in lung SBRT. Methods: A Gammex electron density phantom (RMI 465) was scanned on two 64-slice CT scanners (GE LightSpeed VCT64) and a 16-slice CT (Philips Brilliance Big Bore CT). All three scanners had been used to acquire CT for CyberKnife lung SBRT treatment planning. To minimize the influences of beam hardening and scatter for improving reproducibility, three scans were acquired with the phantom rotated 120° between scans. The mean CT HU of each densitymore » insert, averaged over the three scans, was used to build the CT density models. For 14 patient plans, repeat MC dose calculations were performed by using the scanner-specific CT density models and compared to a baseline CT density model in the base plans. All dose re-calculations were done using the same plan beam configurations and MUs. Comparisons of dosimetric parameters included PTV volume covered by prescription dose, mean PTV dose, V5 and V20 for lungs, and the maximum dose to the closest critical organ. Results: Up to 50.7 HU variations in CT density models were observed over the baseline CT density model. For 14 patient plans examined, maximum differences in MC dose re-calculations were less than 2% in 71.4% of the cases, less than 5% in 85.7% of the cases, and 5–10% for 14.3% of the cases. As all the base plans well exceeded the clinical objectives of target coverage and OAR sparing, none of the observed differences led to clinically significant concerns. Conclusion: Marked variations of CT density models were observed for three different CT scanners. Though the differences can cause up to 5–10% differences in MC dose calculations, it was found that they caused no clinically significant concerns.« less

  3. Three-dimensional surface reconstruction for industrial computed tomography

    NASA Technical Reports Server (NTRS)

    Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.

    1985-01-01

    Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.

  4. Technical Note: FreeCT_ICD: An Open Source Implementation of a Model-Based Iterative Reconstruction Method using Coordinate Descent Optimization for CT Imaging Investigations.

    PubMed

    Hoffman, John M; Noo, Frédéric; Young, Stefano; Hsieh, Scott S; McNitt-Gray, Michael

    2018-06-01

    To facilitate investigations into the impacts of acquisition and reconstruction parameters on quantitative imaging, radiomics and CAD using CT imaging, we previously released an open source implementation of a conventional weighted filtered backprojection reconstruction called FreeCT_wFBP. Our purpose was to extend that work by providing an open-source implementation of a model-based iterative reconstruction method using coordinate descent optimization, called FreeCT_ICD. Model-based iterative reconstruction offers the potential for substantial radiation dose reduction, but can impose substantial computational processing and storage requirements. FreeCT_ICD is an open source implementation of a model-based iterative reconstruction method that provides a reasonable tradeoff between these requirements. This was accomplished by adapting a previously proposed method that allows the system matrix to be stored with a reasonable memory requirement. The method amounts to describing the attenuation coefficient using rotating slices that follow the helical geometry. In the initially-proposed version, the rotating slices are themselves described using blobs. We have replaced this description by a unique model that relies on tri-linear interpolation together with the principles of Joseph's method. This model offers an improvement in memory requirement while still allowing highly accurate reconstruction for conventional CT geometries. The system matrix is stored column-wise and combined with an iterative coordinate descent (ICD) optimization. The result is FreeCT_ICD, which is a reconstruction program developed on the Linux platform using C++ libraries and the open source GNU GPL v2.0 license. The software is capable of reconstructing raw projection data of helical CT scans. In this work, the software has been described and evaluated by reconstructing datasets exported from a clinical scanner which consisted of an ACR accreditation phantom dataset and a clinical pediatric thoracic scan. For the ACR phantom, image quality was comparable to clinical reconstructions as well as reconstructions using open-source FreeCT_wFBP software. The pediatric thoracic scan also yielded acceptable results. In addition, we did not observe any deleterious impact in image quality associated with the utilization of rotating slices. These evaluations also demonstrated reasonable tradeoffs in storage requirements and computational demands. FreeCT_ICD is an open-source implementation of a model-based iterative reconstruction method that extends the capabilities of previously released open source reconstruction software and provides the ability to perform vendor-independent reconstructions of clinically acquired raw projection data. This implementation represents a reasonable tradeoff between storage and computational requirements and has demonstrated acceptable image quality in both simulated and clinical image datasets. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Advancements in automated tissue segmentation pipeline for contrast-enhanced CT scans of adult and pediatric patients

    NASA Astrophysics Data System (ADS)

    Somasundaram, Elanchezhian; Kaufman, Robert; Brady, Samuel

    2017-03-01

    The development of a random forests machine learning technique is presented for fully-automated neck, chest, abdomen, and pelvis tissue segmentation of CT images using Trainable WEKA (Waikato Environment for Knowledge Analysis) Segmentation (TWS) plugin of FIJI (ImageJ, NIH). The use of a single classifier model to segment six tissue classes (lung, fat, muscle, solid organ, blood/contrast agent, bone) in the CT images is studied. An automated unbiased scheme to sample pixels from the training images and generate a balanced training dataset over the seven classes is also developed. Two independent training datasets are generated from a pool of 4 adult (>55 kg) and 3 pediatric patients (<=55 kg) with 7 manually contoured slices for each patient. Classifier training investigated 28 image filters comprising a total of 272 features. Highly correlated and insignificant features are eliminated using Correlated Feature Subset (CFS) selection with Best First Search (BFS) algorithms in WEKA. The 2 training models (from the 2 training datasets) had 74 and 71 input training features, respectively. The study also investigated the effect of varying the number of trees (25, 50, 100, and 200) in the random forest algorithm. The performance of the 2 classifier models are evaluated on inter-patient intra-slice, intrapatient inter-slice and inter-patient inter-slice test datasets. The Dice similarity coefficients (DSC) and confusion matrices are used to understand the performance of the classifiers across the tissue segments. The effect of number of features in the training input on the performance of the classifiers for tissue classes with less than optimal DSC values is also studied. The average DSC values for the two training models on the inter-patient intra-slice test data are: 0.98, 0.89, 0.87, 0.79, 0.68, and 0.84, for lung, fat, muscle, solid organ, blood/contrast agent, and bone, respectively. The study demonstrated that a robust segmentation accuracy for lung, muscle and fat tissue classes. For solid-organ, blood/contrast and bone, the performance of the segmentation pipeline improved significantly by using the advanced capabilities of WEKA. However, further improvements are needed to reduce the noise in the segmentation.

  6. Evaluation of efficacy of metal artefact reduction technique using contrast media in Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yusob, Diana; Zukhi, Jihan; Aziz Tajuddin, Abd; Zainon, Rafidah

    2017-05-01

    The aim of this study was to evaluate the efficacy of metal artefact reduction using contrasts media in Computed Tomography (CT) imaging. A water-based abdomen phantom of diameter 32 cm (adult body size) was fabricated using polymethyl methacrylate (PMMA) material. Three different contrast agents (iodine, barium and gadolinium) were filled in small PMMA tubes and placed inside a water-based PMMA adult abdomen phantom. The orthopedic metal screw was placed in each small PMMA tube separately. These two types of orthopedic metal screw (stainless steel and titanium alloy) were scanned separately. The orthopedic metal crews were scanned with single-energy CT at 120 kV and dual-energy CT at fast kV-switching between 80 kV and 140 kV. The scan modes were set automatically using the current modulation care4Dose setting and the scans were set at different pitch and slice thickness. The use of the contrast media technique on orthopedic metal screws were optimised by using pitch = 0.60 mm, and slice thickness = 5.0 mm. The use contrast media can reduce the metal streaking artefacts on CT image, enhance the CT images surrounding the implants, and it has potential use in improving diagnostic performance in patients with severe metallic artefacts. These results are valuable for imaging protocol optimisation in clinical applications.

  7. SU-C-207-01: Four-Dimensional Inverse Geometry Computed Tomography: Concept and Its Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K; Kim, D; Kim, T

    2015-06-15

    Purpose: In past few years, the inverse geometry computed tomography (IGCT) system has been developed to overcome shortcomings of a conventional computed tomography (CT) system such as scatter problem induced from large detector size and cone-beam artifact. In this study, we intend to present a concept of a four-dimensional (4D) IGCT system that has positive aspects above all with temporal resolution for dynamic studies and reduction of motion artifact. Methods: Contrary to conventional CT system, projection data at a certain angle in IGCT was a group of fractionated narrow cone-beam projection data, projection group (PG), acquired from multi-source array whichmore » have extremely short time gap of sequential operation between each of sources. At this, for 4D IGCT imaging, time-related data acquisition parameters were determined by combining multi-source scanning time for collecting one PG with conventional 4D CBCT data acquisition sequence. Over a gantry rotation, acquired PGs from multi-source array were tagged time and angle for 4D image reconstruction. Acquired PGs were sorted into 10 phase and image reconstructions were independently performed at each phase. Image reconstruction algorithm based upon filtered-backprojection was used in this study. Results: The 4D IGCT had uniform image without cone-beam artifact on the contrary to 4D CBCT image. In addition, the 4D IGCT images of each phase had no significant artifact induced from motion compared with 3D CT. Conclusion: The 4D IGCT image seems to give relatively accurate dynamic information of patient anatomy based on the results were more endurable than 3D CT about motion artifact. From this, it will be useful for dynamic study and respiratory-correlated radiation therapy. This work was supported by the Industrial R&D program of MOTIE/KEIT [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less

  8. Automated Voxel-Based Analysis of Volumetric Dynamic Contrast-Enhanced CT Data Improves Measurement of Serial Changes in Tumor Vascular Biomarkers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coolens, Catherine, E-mail: catherine.coolens@rmp.uhn.on.ca; Department of Radiation Oncology, University of Toronto, Toronto, Ontario; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario

    2015-01-01

    Objectives: Development of perfusion imaging as a biomarker requires more robust methodologies for quantification of tumor physiology that allow assessment of volumetric tumor heterogeneity over time. This study proposes a parametric method for automatically analyzing perfused tissue from volumetric dynamic contrast-enhanced (DCE) computed tomography (CT) scans and assesses whether this 4-dimensional (4D) DCE approach is more robust and accurate than conventional, region-of-interest (ROI)-based CT methods in quantifying tumor perfusion with preliminary evaluation in metastatic brain cancer. Methods and Materials: Functional parameter reproducibility and analysis of sensitivity to imaging resolution and arterial input function were evaluated in image sets acquired from amore » 320-slice CT with a controlled flow phantom and patients with brain metastases, whose treatments were planned for stereotactic radiation surgery and who consented to a research ethics board-approved prospective imaging biomarker study. A voxel-based temporal dynamic analysis (TDA) methodology was used at baseline, at day 7, and at day 20 after treatment. The ability to detect changes in kinetic parameter maps in clinical data sets was investigated for both 4D TDA and conventional 2D ROI-based analysis methods. Results: A total of 7 brain metastases in 3 patients were evaluated over the 3 time points. The 4D TDA method showed improved spatial efficacy and accuracy of perfusion parameters compared to ROI-based DCE analysis (P<.005), with a reproducibility error of less than 2% when tested with DCE phantom data. Clinically, changes in transfer constant from the blood plasma into the extracellular extravascular space (K{sub trans}) were seen when using TDA, with substantially smaller errors than the 2D method on both day 7 post radiation surgery (±13%; P<.05) and by day 20 (±12%; P<.04). Standard methods showed a decrease in K{sub trans} but with large uncertainty (111.6 ± 150.5) %. Conclusions: Parametric voxel-based analysis of 4D DCE CT data resulted in greater accuracy and reliability in measuring changes in perfusion CT-based kinetic metrics, which have the potential to be used as biomarkers in patients with metastatic brain cancer.« less

  9. Medical Image Segmentation by Combining Graph Cut and Oriented Active Appearance Models

    PubMed Central

    Chen, Xinjian; Udupa, Jayaram K.; Bağcı, Ulaş; Zhuge, Ying; Yao, Jianhua

    2017-01-01

    In this paper, we propose a novel 3D segmentation method based on the effective combination of the active appearance model (AAM), live wire (LW), and graph cut (GC). The proposed method consists of three main parts: model building, initialization, and segmentation. In the model building part, we construct the AAM and train the LW cost function and GC parameters. In the initialization part, a novel algorithm is proposed for improving the conventional AAM matching method, which effectively combines the AAM and LW method, resulting in Oriented AAM (OAAM). A multi-object strategy is utilized to help in object initialization. We employ a pseudo-3D initialization strategy, and segment the organs slice by slice via multi-object OAAM method. For the segmentation part, a 3D shape constrained GC method is proposed. The object shape generated from the initialization step is integrated into the GC cost computation, and an iterative GC-OAAM method is used for object delineation. The proposed method was tested in segmenting the liver, kidneys, and spleen on a clinical CT dataset and also tested on the MICCAI 2007 grand challenge for liver segmentation training dataset. The results show the following: (a) An overall segmentation accuracy of true positive volume fraction (TPVF) > 94.3%, false positive volume fraction (FPVF) < 0.2% can be achieved. (b) The initialization performance can be improved by combining AAM and LW. (c) The multi-object strategy greatly facilitates the initialization. (d) Compared to the traditional 3D AAM method, the pseudo 3D OAAM method achieves comparable performance while running 12 times faster. (e) The performance of proposed method is comparable to the state of the art liver segmentation algorithm. The executable version of 3D shape constrained GC with user interface can be downloaded from website http://xinjianchen.wordpress.com/research/. PMID:22311862

  10. Benefit from NASA

    NASA Image and Video Library

    2001-09-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images.

  11. A Higher-Order Neural Network Design for Improving Segmentation Performance in Medical Image Series

    NASA Astrophysics Data System (ADS)

    Selvi, Eşref; Selver, M. Alper; Güzeliş, Cüneyt; Dicle, Oǧuz

    2014-03-01

    Segmentation of anatomical structures from medical image series is an ongoing field of research. Although, organs of interest are three-dimensional in nature, slice-by-slice approaches are widely used in clinical applications because of their ease of integration with the current manual segmentation scheme. To be able to use slice-by-slice techniques effectively, adjacent slice information, which represents likelihood of a region to be the structure of interest, plays critical role. Recent studies focus on using distance transform directly as a feature or to increase the feature values at the vicinity of the search area. This study presents a novel approach by constructing a higher order neural network, the input layer of which receives features together with their multiplications with the distance transform. This allows higher-order interactions between features through the non-linearity introduced by the multiplication. The application of the proposed method to 9 CT datasets for segmentation of the liver shows higher performance than well-known higher order classification neural networks.

  12. Internal structures of scaffold-free 3D cell cultures visualized by synchrotron radiation-based micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Saldamli, Belma; Herzen, Julia; Beckmann, Felix; Tübel, Jutta; Schauwecker, Johannes; Burgkart, Rainer; Jürgens, Philipp; Zeilhofer, Hans-Florian; Sader, Robert; Müller, Bert

    2008-08-01

    Recently the importance of the third dimension in cell biology has been better understood, resulting in a re-orientation towards three-dimensional (3D) cultivation. Yet adequate tools for their morphological characterization have to be established. Synchrotron radiation-based micro computed tomography (SRμCT) allows visualizing such biological systems with almost isotropic micrometer resolution, non-destructively. We have applied SRμCT for studying the internal morphology of human osteoblast-derived, scaffold-free 3D cultures, termed histoids. Primary human osteoblasts, isolated from femoral neck spongy bone, were grown as 2D culture in non-mineralizing osteogenic medium until a rather thick, multi-cellular membrane was formed. This delicate system was intentionally released to randomly fold itself. The folded cell cultures were grown to histoids of cubic milli- or centimeter size in various combinations of mineralizing and non-mineralizing osteogenic medium for a total period of minimum 56 weeks. The SRμCT-measurements were performed in the absorption contrast mode at the beamlines BW 2 and W 2 (HASYLAB at DESY, Hamburg, Germany), operated by the GKSS-Research Center. To investigate the entire volume of interest several scans were performed under identical conditions and registered to obtain one single dataset of each sample. The histoids grown under different conditions exhibit similar external morphology of globular or ovoid shape. The SRμCT-examination revealed the distinctly different morphological structures inside the histoids. One obtains details of the histoids that permit to identify and select the most promising slices for subsequent histological characterization.

  13. Slice-thickness evaluation in CT and MRI: an alternative computerised procedure.

    PubMed

    Acri, G; Tripepi, M G; Causa, F; Testagrossa, B; Novario, R; Vermiglio, G

    2012-04-01

    The efficient use of computed tomography (CT) and magnetic resonance imaging (MRI) equipment necessitates establishing adequate quality-control (QC) procedures. In particular, the accuracy of slice thickness (ST) requires scan exploration of phantoms containing test objects (plane, cone or spiral). To simplify such procedures, a novel phantom and a computerised LabView-based procedure have been devised, enabling determination of full width at half maximum (FWHM) in real time. The phantom consists of a polymethyl methacrylate (PMMA) box, diagonally crossed by a PMMA septum dividing the box into two sections. The phantom images were acquired and processed using the LabView-based procedure. The LabView (LV) results were compared with those obtained by processing the same phantom images with commercial software, and the Fisher exact test (F test) was conducted on the resulting data sets to validate the proposed methodology. In all cases, there was no statistically significant variation between the two different procedures and the LV procedure, which can therefore be proposed as a valuable alternative to other commonly used procedures and be reliably used on any CT and MRI scanner.

  14. Treatment planning systems for external whole brain radiation therapy: With and without MLC (multi leaf collimator) optimization

    NASA Astrophysics Data System (ADS)

    Budiyono, T.; Budi, W. S.; Hidayanto, E.

    2016-03-01

    Radiation therapy for brain malignancy is done by giving a dose of radiation to a whole volume of the brain (WBRT) followed by a booster at the primary tumor with more advanced techniques. Two external radiation fields given from the right and left side. Because the shape of the head, there will be an unavoidable hotspot radiation dose of greater than 107%. This study aims to optimize planning of radiation therapy using field in field multi-leaf collimator technique. A study of 15 WBRT samples with CT slices is done by adding some segments of radiation in each field of radiation and delivering appropriate dose weighting using a TPS precise plan Elekta R 2.15. Results showed that this optimization a more homogeneous radiation on CTV target volume, lower dose in healthy tissue, and reduced hotspots in CTV target volume. Comparison results of field in field multi segmented MLC technique with standard conventional technique for WBRT are: higher average minimum dose (77.25% ± 0:47%) vs (60% ± 3:35%); lower average maximum dose (110.27% ± 0.26%) vs (114.53% ± 1.56%); lower hotspot volume (5.71% vs 27.43%); and lower dose on eye lenses (right eye: 9.52% vs 18.20%); (left eye: 8.60% vs 16.53%).

  15. Computed tomography has an important role in hollow viscus and mesenteric injuries after blunt abdominal trauma.

    PubMed

    Tan, Ker-Kan; Liu, Jody Zhiyang; Go, Tsung-Shyen; Vijayan, Appasamy; Chiu, Ming-Terk

    2010-05-01

    Computed tomographic (CT) scans have become invaluable in the management of patients with blunt abdominal trauma. No clear consensus exists on its role in hollow viscus injuries (HVI) and mesenteric injuries (MI). The aim of this study was to correlate operative findings of HVI and MI to findings on pre-operative CT. All patients treated for blunt abdominal trauma at Tan Tock Seng Hospital from January 2003 to January 2008 were reviewed. CT scans were only performed if the patients were haemodynamically stable and indicated. All scans were performed with intravenous contrast using a 4-slice CT scanner from 2003 to December 2004 and a 64-slice CT scanner from January 2005 onwards. All cases with documented HVI/MI that underwent both CT scans and exploratory laparotomy were analysed. Thirty-one patients formed the study group, with median age of 40 (range, 22-65) years and a significant male (83.9%) predominance. Vehicular-related incidents accounted for 67.7% of the injuries and the median Injury Severity Score (ISS) was 13 (4-50). The 2 commonest findings on CT scans were extra-luminal gas (35.5%) and free fluid without significant solid organ injuries (93.5%). During exploratory laparotomy, perforation of hollow viscus (51.6%) occurred more frequently than suspected from the initial CT findings of extra-luminal gas. Other notable findings included haemoperitoneum (64.5%), and mesenteric tears (67.7%). None of our patients with HVI and MI had a normal pre-operative CT scan. Our study suggests that patients with surgically confirmed HVI and MI found at laparotomy were very likely to have an abnormal pre-operative CT scan. Unexplained free fluid was a very common finding in blunt HVI/MI and is one major indication to consider exploratory laparotomy. (c) 2009 Elsevier Ltd. All rights reserved.

  16. SU-E-J-224: Using UTE and T1 Weighted Spin Echo Pulse Sequences for MR-Only Treatment Planning; Phantom Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H; Fatemi, A; Sahgal, A

    Purpose: Investigating a new approach in MRI based treatment planning using the combination of (Ultrashort Echo Time) UTE and T1 weighted spin echo pulse sequences to delineate air, bone and water (soft tissues) in generating pseudo CT images comparable with CT. Methods: A gel phantom containing chicken bones, ping pang balls filled with distilled water and air bubbles, was made. It scanned with MRI using UTE and 2D T1W SE pulse sequences with (in plane resolution= 0.53mm, slice thickness= 2 mm) and CT with (in plane resolution= 0.5 mm and slice thickness= 0.75mm) as a ground truth for geometrical accuracy.more » The UTE and T1W SE images were registered with CT using mutual information registration algorithm provided by Philips Pinnacle treatment planning system. The phantom boundaries were detected using Canny edge detection algorithm for CT, and MR images. The bone, air bubbles and water in ping pong balls were segmented from CT images using threshold 300HU, - 950HU and 0HU, respectively. These tissue inserts were automatically segmented from combined UTE and T1W SE images using edge detection and relative intensity histograms of the phantom. The obtained segmentations of air, bone and water inserts were evaluated with those obtained from CT. Results: Bone and air can be clearly differentiated in UTE images comparable to CT. Combining UTE and T1W SE images successfully segmented the air, bone and water. The maximum segmentation differences from combine MRI images (UTE and T1W SE) and CT are within 1.3 mm, 1.1mm for bone, air, respectively. The geometric distortion of UTE sequence is small less than 1 pixel (0.53 mm) of MR image resolution. Conclusion: Our approach indicates that MRI can be used solely for treatment planning and its quality is comparable with CT.« less

  17. A beam optics study of a modular multi-source X-ray tube for novel computed tomography applications

    NASA Astrophysics Data System (ADS)

    Walker, Brandon J.; Radtke, Jeff; Chen, Guang-Hong; Eliceiri, Kevin W.; Mackie, Thomas R.

    2017-10-01

    A modular implementation of a scanning multi-source X-ray tube is designed for the increasing number of multi-source imaging applications in computed tomography (CT). An electron beam array coupled with an oscillating magnetic deflector is proposed as a means for producing an X-ray focal spot at any position along a line. The preliminary multi-source model includes three thermionic electron guns that are deflected in tandem by a slowly varying magnetic field and pulsed according to a scanning sequence that is dependent on the intended imaging application. Particle tracking simulations with particle dynamics analysis software demonstrate that three 100 keV electron beams are laterally swept a combined distance of 15 cm over a stationary target with an oscillating magnetic field of 102 G perpendicular to the beam axis. Beam modulation is accomplished using 25 μs pulse widths to a grid electrode with a reverse gate bias of -500 V and an extraction voltage of +1000 V. Projected focal spot diameters are approximately 1 mm for 138 mA electron beams and the stationary target stays within thermal limits for the 14 kW module. This concept could be used as a research platform for investigating high-speed stationary CT scanners, for lowering dose with virtual fan beam formation, for reducing scatter radiation in cone-beam CT, or for other industrial applications.

  18. Multi-energy spectral CT: adding value in emergency body imaging.

    PubMed

    Punjabi, Gopal V

    2018-04-01

    Most vendors offer scanners capable of dual- or multi-energy computed tomography (CT) imaging. Advantages of multi-energy CT scanning include superior tissue characterization, detection of subtle iodine uptake differences, and opportunities to reduce contrast dose. However, utilization of this technology in the emergency department (ED) remains low. The purpose of this pictorial essay is to illustrate the value of multi-energy CT scanning in emergency body imaging.

  19. Investigation on location dependent detectability in cone beam CT images with uniform and anatomical backgrounds

    NASA Astrophysics Data System (ADS)

    Han, Minah; Baek, Jongduk

    2017-03-01

    We investigate location dependent lesion detectability of cone beam computed tomography images for different background types (i.e., uniform and anatomical), image planes (i.e., transverse and longitudinal) and slice thicknesses. Anatomical backgrounds are generated using a power law spectrum of breast anatomy, 1/f3. Spherical object with a 5mm diameter is used as a signal. CT projection data are acquired by the forward projection of uniform and anatomical backgrounds with and without the signal. Then, projection data are reconstructed using the FDK algorithm. Detectability is evaluated by a channelized Hotelling observer with dense difference-of-Gaussian channels. For uniform background, off-centered images yield higher detectability than iso-centered images for the transverse plane, while for the longitudinal plane, detectability of iso-centered and off-centered images are similar. For anatomical background, off-centered images yield higher detectability for the transverse plane, while iso-centered images yield higher detectability for the longitudinal plane, when the slice thickness is smaller than 1.9mm. The optimal slice thickness is 3.8mm for all tasks, and the transverse plane at the off-center (iso-center and off-center) produces the highest detectability for uniform (anatomical) background.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, P; Wang, J; Zhong, H

    Purpose: To evaluate the reproducibility of radiomics features by repeating computed tomographic (CT) scans in rectal cancer. To choose stable radiomics features for rectal cancer. Methods: 40 rectal cancer patients were enrolled in this study, each of whom underwent two CT scans within average 8.7 days (5 days to 17 days), before any treatment was delivered. The rectal gross tumor volume (GTV) was distinguished and segmented by an experienced oncologist in both CTs. Totally, more than 2000 radiomics features were defined in this study, which were divided into four groups (I: GLCM, II: GLRLM III: Wavelet GLCM and IV: Waveletmore » GLRLM). For each group, five types of features were extracted (Max slice: features from the largest slice of target images, Max value: features from all slices of target images and choose the maximum value, Min value: minimum value of features for all slices, Average value: average value of features for all slices, Matrix sum: all slices of target images translate into GLCM and GLRLM matrices and superpose all matrices, then extract features from the superposed matrix). Meanwhile a LOG (Laplace of Gauss) filter with different parameters was applied to these images. Concordance correlation coefficients (CCC) and inter-class correlation coefficients (ICC) were calculated to assess the reproducibility. Results: 403 radiomics features were extracted from each type of patients’ medical images. Features of average type are the most reproducible. Different filters have little effect for radiomics features. For the average type features, 253 out of 403 features (62.8%) showed high reproducibility (ICC≥0.8), 133 out of 403 features (33.0%) showed medium reproducibility (0.8≥ICC≥0.5) and 17 out of 403 features (4.2%) showed low reproducibility (ICC≥0.5). Conclusion: The average type radiomics features are the most stable features in rectal cancer. Further analysis of these features of rectal cancer can be warranted for treatment monitoring and prognosis prediction.« less

  1. Semiautomated hybrid algorithm for estimation of three-dimensional liver surface in CT using dynamic cellular automata and level-sets

    PubMed Central

    Dakua, Sarada Prasad; Abinahed, Julien; Al-Ansari, Abdulla

    2015-01-01

    Abstract. Liver segmentation continues to remain a major challenge, largely due to its intense complexity with surrounding anatomical structures (stomach, kidney, and heart), high noise level and lack of contrast in pathological computed tomography (CT) data. We present an approach to reconstructing the liver surface in low contrast CT. The main contributions are: (1) a stochastic resonance-based methodology in discrete cosine transform domain is developed to enhance the contrast of pathological liver images, (2) a new formulation is proposed to prevent the object boundary, resulting from the cellular automata method, from leaking into the surrounding areas of similar intensity, and (3) a level-set method is suggested to generate intermediate segmentation contours from two segmented slices distantly located in a subject sequence. We have tested the algorithm on real datasets obtained from two sources, Hamad General Hospital and medical image computing and computer-assisted interventions grand challenge workshop. Various parameters in the algorithm, such as w, Δt, z, α, μ, α1, and α2, play imperative roles, thus their values are precisely selected. Both qualitative and quantitative evaluation performed on liver data show promising segmentation accuracy when compared with ground truth data reflecting the potential of the proposed method. PMID:26158101

  2. The effect of head size/shape, miscentering, and bowtie filter on peak patient tissue doses from modern brain perfusion 256-slice CT: How can we minimize the risk for deterministic effects?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perisinakis, Kostas; Seimenis, Ioannis; Tzedakis, Antonis

    Purpose: To determine patient-specific absorbed peak doses to skin, eye lens, brain parenchyma, and cranial red bone marrow (RBM) of adult individuals subjected to low-dose brain perfusion CT studies on a 256-slice CT scanner, and investigate the effect of patient head size/shape, head position during the examination and bowtie filter used on peak tissue doses. Methods: The peak doses to eye lens, skin, brain, and RBM were measured in 106 individual-specific adult head phantoms subjected to the standard low-dose brain perfusion CT on a 256-slice CT scanner using a novel Monte Carlo simulation software dedicated for patient CT dosimetry. Peakmore » tissue doses were compared to corresponding thresholds for induction of cataract, erythema, cerebrovascular disease, and depression of hematopoiesis, respectively. The effects of patient head size/shape, head position during acquisition and bowtie filter used on resulting peak patient tissue doses were investigated. The effect of eye-lens position in the scanned head region was also investigated. The effect of miscentering and use of narrow bowtie filter on image quality was assessed. Results: The mean peak doses to eye lens, skin, brain, and RBM were found to be 124, 120, 95, and 163 mGy, respectively. The effect of patient head size and shape on peak tissue doses was found to be minimal since maximum differences were less than 7%. Patient head miscentering and bowtie filter selection were found to have a considerable effect on peak tissue doses. The peak eye-lens dose saving achieved by elevating head by 4 cm with respect to isocenter and using a narrow wedge filter was found to approach 50%. When the eye lies outside of the primarily irradiated head region, the dose to eye lens was found to drop to less than 20% of the corresponding dose measured when the eye lens was located in the middle of the x-ray beam. Positioning head phantom off-isocenter by 4 cm and employing a narrow wedge filter results in a moderate reduction of signal-to-noise ratio mainly to the peripheral region of the phantom. Conclusions: Despite typical peak doses to skin, eye lens, brain, and RBM from the standard low-dose brain perfusion 256-slice CT protocol are well below the corresponding thresholds for the induction of erythema, cataract, cerebrovascular disease, and depression of hematopoiesis, respectively, every effort should be made toward optimization of the procedure and minimization of dose received by these tissues. The current study provides evidence that the use of the narrower bowtie filter available may considerably reduce peak absorbed dose to all above radiosensitive tissues with minimal deterioration in image quality. Considerable reduction in peak eye-lens dose may also be achieved by positioning patient head center a few centimeters above isocenter during the exposure.« less

  3. Comparative 3D micro-CT and 2D histomorphometry analysis of dental implant osseointegration in the maxilla of minipigs.

    PubMed

    Bissinger, Oliver; Probst, Florian Andreas; Wolff, Klaus-Dietrich; Jeschke, Anke; Weitz, Jochen; Deppe, Herbert; Kolk, Andreas

    2017-04-01

    The bone implant contact (BIC) has traditionally been evaluated with histological methods. Thereupon, strong correlations of two-dimensional (2D) BIC have been detected between μCT and destructive histology. However, due to the high intra-sample variability in BIC values, one histological slice is not sufficient to represent 3D BIC. Therefore, our aim has been to correlate the averaged values of 3-4 histological sections to 3D μCT. Fifty-four implants inserted into the maxilla of 14 minipigs were evaluated. Two different time points were selected to assess the 3D BIC (distance to implant: 2-5 voxels), an inner ring (6-30 voxels) and an outer ring (55-100 voxels) using μCT (voxel size: 10 μm) and to correlate the values to histomorphometry. Strong correlations (p < 0.0001; 28 days, 56 days, total) were seen between μCT and histomorphometry concerning BIC (r = 0.84, r = 0.85, r = 0.83), the inner ring (r = 0.87, r = 0.87, r = 0.88) and the outer ring (r = 0.85, r = 0.85, r = 0.88). Closer to the implant, μCT values were higher compared with histomorphometry. Although 3-4 histological slices per implant seem to predict the 3D BIC, μCT might be advantageous because of its non-destructive 3D character. The healing time may not impact on the comparability. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Anterior center-edge angle on sagittal CT: a comparison of normal hips to dysplastic hips.

    PubMed

    Monazzam, Shafagh; Williams, Karly Ann; Shelton, Trevor J; Calafi, Arash; Haus, Brian M

    2018-05-01

    The anterior center-edge angle (ACEA) describes anterior acetabular coverage on false profile radiographs. Variability associated with pelvic tilt, radiographic projection, and identifying the true anterior edge, causes discrepancies in measuring an accurate ACEA. Computed tomography (CT) has the potential of improving the accuracy of ACEA. However, because the ACEA on sagittal CT has been shown to not be equivalent to ACEA on false profile radiographs, the normal range of ACEA on CT currently remains unknown and cannot reliably be used to determine over/under coverage. We therefore asked: what is the normal variation of ACEA corrected for pelvic tilt on sagittal CT and how does this compare to dysplastic hips? A retrospective review was conducted on patients 10-35 who underwent CT for non-orthopedic related issues and patients with known hip dysplasia. The ACEA was measured on a sagittal slice corresponding to the center of the femoral head on the axial slice and adjusted for pelvic tilt. A statistical comparison was then performed. A total of 320 normal patients and 22 patients with hip dysplasia were reviewed. The mean ACEA for all ages was 50° ± 8°, (range: 23-81º), with a larger mean ACEA for males (51°) than females (49°). The ACEA mean for dysplastic hips was 30° ± 11° with a statistically significant difference in mean from the normal hip group ( p < 0.0001). The ACEA can be reliably measured on sagittal CT and significantly differs from dysplastic hips. ACEA measurements above 66° or below 34° may represent anterior over and under coverage.

  5. An Indirect Method to Measure Abutment Screw Preload: A Pilot Study Based on Micro-CT Scanning.

    PubMed

    Rezende, Carlos Eduardo E; Griggs, Jason Alan; Duan, Yuanyuan; Mushashe, Amanda M; Nolasco, Gisele Maria Correr; Borges, Ana Flávia Sanches; Rubo, José Henrique

    2015-01-01

    This study aimed to measure the preload in different implant platform geometries based on micro-CT images. External hexagon (EH) implants and Morse Tapered (MT) implants (n=5) were used for the preload measurement. The abutment screws were scanned in micro-CT to obtain their virtual models, which were used to record their initial length. The abutments were screwed on the implant with a 20 Ncm torque and the set composed by implant, abutment screw and abutment were taken to the micro-CT scanner to obtain virtual slices of the specimens. These slices allowed the measurement of screw lengths after torque application and based on the screw elongation. Preload values were calculated using the Hooke's Law. The preloads of both groups were compared by independent t-test. Removal torque of each specimen was recorded. To evaluate the accuracy of the micro-CT technique, three rods with known lengths were scanned and the length of their virtual model was measured and compared with the original length. One rod was scanned four times to evaluate the measuring method variation. There was no difference between groups for preload (EH = 461.6 N and MT = 477.4 N), but the EH group showed higher removal torque values (13.8 ± 4.7 against 8.2 ± 3.6 N cm for MT group). The micro-CT technique showed a variability of 0.053% and repeatability showed an error of 0.23 to 0.28%. Within the limitations of this study, there was no difference between external hexagon and Morse taper for preload. The method using micro-CT may be considered for preload calculation.

  6. An evaluation of the Meditech M250 and a comparison with other CT scanners.

    PubMed

    Greensmith, R; Richardson, R B; Sargood, A J; Stevens, P H; Mackintosh, I P

    1985-11-01

    The Meditech M250 computerised tomography (CT) machine was evaluated during the first half of 1984. Measurements were made of noise, modulation transfer function, slice width, radiation dose profile, uniformity and linearity of CT number, effective photon energy and parameters relating to machine specification, such as pixel size and scan time. All breakdowns were logged to indicate machine reliability. A comparison with the established EMI CT1010 and CT5005 was made for noise, resolution and multislice radiation dose, as well as the dose efficiency or quality (Q) factor for both head and body modes of operation. The M250 was found to perform to its intended specification with an acceptable level of reliability.

  7. NOTE: Optimization of megavoltage CT scan registration settings for thoracic cases on helical tomotherapy

    NASA Astrophysics Data System (ADS)

    Woodford, Curtis; Yartsev, Slav; Van Dyk, Jake

    2007-08-01

    This study aims to investigate the settings that provide optimum registration accuracy when registering megavoltage CT (MVCT) studies acquired on tomotherapy with planning kilovoltage CT (kVCT) studies of patients with lung cancer. For each experiment, the systematic difference between the actual and planned positions of the thorax phantom was determined by setting the phantom up at the planning isocenter, generating and registering an MVCT study. The phantom was translated by 5 or 10 mm, MVCT scanned, and registration was performed again. A root-mean-square equation that calculated the residual error of the registration based on the known shift and systematic difference was used to assess the accuracy of the registration process. The phantom study results for 18 combinations of different MVCT/kVCT registration options are presented and compared to clinical registration data from 17 lung cancer patients. MVCT studies acquired with coarse (6 mm), normal (4 mm) and fine (2 mm) slice spacings could all be registered with similar residual errors. No specific combination of resolution and fusion selection technique resulted in a lower residual error. A scan length of 6 cm with any slice spacing registered with the full image fusion selection technique and fine resolution will result in a low residual error most of the time. On average, large corrections made manually by clinicians to the automatic registration values are infrequent. Small manual corrections within the residual error averages of the registration process occur, but their impact on the average patient position is small. Registrations using the full image fusion selection technique and fine resolution of 6 cm MVCT scans with coarse slices have a low residual error, and this strategy can be clinically used for lung cancer patients treated on tomotherapy. Automatic registration values are accurate on average, and a quick verification on a sagittal MVCT slice should be enough to detect registration outliers.

  8. Upgrade to iterative image reconstruction (IR) in abdominal MDCT imaging: a clinical study for detailed parameter optimization beyond vendor recommendations using the adaptive statistical iterative reconstruction environment (ASIR).

    PubMed

    Mueck, F G; Körner, M; Scherr, M K; Geyer, L L; Deak, Z; Linsenmaier, U; Reiser, M; Wirth, S

    2012-03-01

    To compare the image quality of dose-reduced 64-row abdominal CT reconstructed at different levels of adaptive statistical iterative reconstruction (ASIR) to full-dose baseline examinations reconstructed with filtered back-projection (FBP) in a clinical setting and upgrade situation. Abdominal baseline examinations (noise index NI = 29; LightSpeed VCT XT, GE) were intra-individually compared to follow-up studies on a CT with an ASIR option (NI = 43; Discovery HD750, GE), n = 42. Standard-kernel images were calculated with ASIR blendings of 0 - 100 % in slice and volume mode, respectively. Three experienced radiologists compared the image quality of these 567 sets to their corresponding full-dose baseline examination (- 2: diagnostically inferior, - 1: inferior, 0: equal, + 1: superior, + 2: diagnostically superior). Furthermore, a phantom was scanned. Statistical analysis used the Wilcoxon - the Mann-Whitney U-test and the intra-class correlation (ICC). The mean CTDIvol decreased from 19.7 ± 5.5 to 12.2 ± 4.7 mGy (p < 0.001). The ICC was 0.861. The total image quality of the dose-reduced ASIR studies was comparable to the baseline at ASIR 50 % in slice (p = 0.18) and ASIR 50 - 100 % in volume mode (p > 0.10). Volume mode performed 73 % slower than slice mode (p < 0.01). After the system upgrade, the vendor recommendation of ASIR 50 % in slice mode allowed for a dose reduction of 38 % in abdominal CT with comparable image quality and time expenditure. However, there is still further dose reduction potential for more complex reconstruction settings. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Detecting anomalous traders using multi-slice network analysis

    NASA Astrophysics Data System (ADS)

    Sun, Xiao-Qian; Shen, Hua-Wei; Cheng, Xue-Qi; Zhang, Yuqing

    2017-05-01

    Manipulation is an important issue for both developed and emerging stock markets. Many efforts have been made to detect manipulation in stock market. However, it is still an open problem to identify the fraudulent traders, especially when they collude with each other. In this paper, we focus on the problem of identifying anomalous traders using the transaction data of 8 manipulated stocks and 42 non-manipulated stocks during a one-year period. For each stock, we construct a multi-slice trading network to characterize the daily trading behavior and the cross-day participation of each trader. Comparing the multi-slice trading network of manipulated stocks and non-manipulated stocks with their randomized version, we find that manipulated stocks exhibit high number of trader pairs that trade with each other in multiple days and high deviation from randomized network at correlation between trading frequency and trading activity. These findings are effective at distinguishing manipulated stocks from non-manipulated ones and at identifying anomalous traders.

  10. Multi-signal FIB/SEM tomography

    NASA Astrophysics Data System (ADS)

    Giannuzzi, Lucille A.

    2012-06-01

    Focused ion beam (FIB) milling coupled with scanning electron microscopy (SEM) on the same platform enables 3D microstructural analysis of structures using FIB for serial sectioning and SEM for imaging. Since FIB milling is a destructive technique, the acquisition of multiple signals from each slice is desirable. The feasibility of collecting both an inlens backscattered electron (BSE) signal and an inlens secondary electron (SE) simultaneously from a single scan of the electron beam from each FIB slice is demonstrated. The simultaneous acquisition of two different SE signals from two different detectors (inlens vs. Everhart-Thornley (ET) detector) is also possible. Obtaining multiple signals from each FIB slice with one scan increases the acquisition throughput. In addition, optimization of microstructural and morphological information from the target is achieved using multi-signals. Examples of multi-signal FIB/SEM tomography from a dental implant will be provided where both material contrast from the bone/ceramic coating/Ti substrate phases and porosity in the ceramic coating will be characterized.

  11. Live imaging of mitosis in the developing mouse embryonic cortex.

    PubMed

    Pilaz, Louis-Jan; Silver, Debra L

    2014-06-04

    Although of short duration, mitosis is a complex and dynamic multi-step process fundamental for development of organs including the brain. In the developing cerebral cortex, abnormal mitosis of neural progenitors can cause defects in brain size and function. Hence, there is a critical need for tools to understand the mechanisms of neural progenitor mitosis. Cortical development in rodents is an outstanding model for studying this process. Neural progenitor mitosis is commonly examined in fixed brain sections. This protocol will describe in detail an approach for live imaging of mitosis in ex vivo embryonic brain slices. We will describe the critical steps for this procedure, which include: brain extraction, brain embedding, vibratome sectioning of brain slices, staining and culturing of slices, and time-lapse imaging. We will then demonstrate and describe in detail how to perform post-acquisition analysis of mitosis. We include representative results from this assay using the vital dye Syto11, transgenic mice (histone H2B-EGFP and centrin-EGFP), and in utero electroporation (mCherry-α-tubulin). We will discuss how this procedure can be best optimized and how it can be modified for study of genetic regulation of mitosis. Live imaging of mitosis in brain slices is a flexible approach to assess the impact of age, anatomy, and genetic perturbation in a controlled environment, and to generate a large amount of data with high temporal and spatial resolution. Hence this protocol will complement existing tools for analysis of neural progenitor mitosis.

  12. Recent developments in multi-wire fixed abrasive slicing technique (FAST). [for low cost silicon wafer production from ingots

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.; Smith, M. B.; Lynch, L. D.

    1982-01-01

    Slicing is an important processing step for all technologies based on the use of ingots. A comparison of the economics of three slicing techniques shows that the fixed abrasive slicing technique (FAST) is superior to the internal diameter (ID) and the multiblade slurry (MBS) techniques. Factors affecting contact length are discussed, taking into account kerf width, rocking angle, ingot size, and surface speed. Aspects of blade development are also considered. A high concentration of diamonds on wire has been obtained in wire packs usd for FAST slicing. The material removal rate was found to be directly proportional to the pressure at the diamond tips.

  13. [Study on the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome based on the three dimensional finite element model].

    PubMed

    Zhang, Ming-cai; Lü, Si-zhe; Cheng, Ying-wu; Gu, Li-xu; Zhan, Hong-sheng; Shi, Yin-yu; Wang, Xiang; Huang, Shi-rong

    2011-02-01

    To study the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome using three dimensional finite element model. A patient with cervical spondylosis was randomly chosen, who was male, 28 years old, and diagnosed as cervical vertebra semidislocation by dynamic and static palpation and X-ray, and scanned from C(1) to C(7) by 0.75 mm slice thickness of CT. Based on the CT data, the software was used to construct the three dimensional finite element model of cervical vertebra semidislocation (C(4)-C(6)). Based on the model,virtual manipulation was used to correct the vertebra semidislocation by the software, and the stress distribution was analyzed. The result of finite element analysis showed that the stress distribution of C(5-6) facet joint and intervertebral disc changed after virtual manipulation. The vertebra semidislocation leads to the abnormal stress distribution of facet joint and intervertebral disc.

  14. Report of improved performance in Talbot–Lau phase-contrast computed tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thomas, E-mail: thomas.weber@fau.de; Pelzer, Georg; Rieger, Jens

    Purpose: Many expectations have been raised since the use of conventional x-ray tubes on grating-based x-ray phase-contrast imaging. Despite a reported increase in contrast-to-noise ratio (CNR) in many publications, there is doubt on whether phase-contrast computed tomography (CT) is advantageous in clinical CT scanners in vivo. The aim of this paper is to contribute to this discussion by analyzing the performance of a phase-contrast CT laboratory setup. Methods: A phase-contrast CT performance analysis was done. Projection images of a phantom were recorded, and image slices were reconstructed using standard filtered back projection methods. The resulting image slices were analyzed bymore » determining the CNRs in the attenuation and phase image. These results were compared to analytically calculated expectations according to the already published phase-contrast CT performance analysis by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. There, a severe mistake was found leading to wrong predictions of the performance of phase-contrast CT. The error was corrected and with the new formulae, the experimentally obtained results matched the analytical calculations. Results: The squared ratios of the phase-contrast CNR and the attenuation CNR obtained in the authors’ experiment are five- to ten-fold higher than predicted by Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)]. The effective lateral spatial coherence length deduced outnumbers the already optimistic assumption of Raupach and Flohr [Med. Phys. 39, 4761–4774 (2012)] by a factor of 3. Conclusions: The authors’ results indicate that the assumptions made in former performance analyses are pessimistic. The break-even point, when phase-contrast CT outperforms attenuation CT, is within reach even with realistic, nonperfect gratings. Further improvements to state-of-the-art clinical CT scanners, like increasing the spatial resolution, could change the balance in favor of phase-contrast computed tomography even more. This could be done by, e.g., quantum-counting pixel detectors with four-fold smaller pixel pitches.« less

  15. Quantitative micro-CT based coronary artery profiling using interactive local thresholding and cylindrical coordinates.

    PubMed

    Panetta, Daniele; Pelosi, Gualtiero; Viglione, Federica; Kusmic, Claudia; Terreni, Marianna; Belcari, Nicola; Guerra, Alberto Del; Athanasiou, Lambros; Exarchos, Themistoklis; Fotiadis, Dimitrios I; Filipovic, Nenad; Trivella, Maria Giovanna; Salvadori, Piero A; Parodi, Oberdan

    2015-01-01

    Micro-CT is an established imaging technique for high-resolution non-destructive assessment of vascular samples, which is gaining growing interest for investigations of atherosclerotic arteries both in humans and in animal models. However, there is still a lack in the definition of micro-CT image metrics suitable for comprehensive evaluation and quantification of features of interest in the field of experimental atherosclerosis (ATS). A novel approach to micro-CT image processing for profiling of coronary ATS is described, providing comprehensive visualization and quantification of contrast agent-free 3D high-resolution reconstruction of full-length artery walls. Accelerated coronary ATS has been induced by high fat cholesterol-enriched diet in swine and left coronary artery (LCA) harvested en bloc for micro-CT scanning and histologic processing. A cylindrical coordinate system has been defined on the image space after curved multiplanar reformation of the coronary vessel for the comprehensive visualization of the main vessel features such as wall thickening and calcium content. A novel semi-automatic segmentation procedure based on 2D histograms has been implemented and the quantitative results validated by histology. The potentiality of attenuation-based micro-CT at low kV to reliably separate arterial wall layers from adjacent tissue as well as identify wall and plaque contours and major tissue components has been validated by histology. Morphometric indexes from histological data corresponding to several micro-CT slices have been derived (double observer evaluation at different coronary ATS stages) and highly significant correlations (R2 > 0.90) evidenced. Semi-automatic morphometry has been validated by double observer manual morphometry of micro-CT slices and highly significant correlations were found (R2 > 0.92). The micro-CT methodology described represents a handy and reliable tool for quantitative high resolution and contrast agent free full length coronary wall profiling, able to assist atherosclerotic vessels morphometry in a preclinical experimental model of coronary ATS and providing a link between in vivo imaging and histology.

  16. MO-F-CAMPUS-J-04: Tissue Segmentation-Based MR Electron Density Mapping Method for MR-Only Radiation Treatment Planning of Brain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, H; Lee, Y; Ruschin, M

    2015-06-15

    Purpose: Automatically derive electron density of tissues using MR images and generate a pseudo-CT for MR-only treatment planning of brain tumours. Methods: 20 stereotactic radiosurgery (SRS) patients’ T1-weighted MR images and CT images were retrospectively acquired. First, a semi-automated tissue segmentation algorithm was developed to differentiate tissues with similar MR intensities and large differences in electron densities. The method started with approximately 12 slices of manually contoured spatial regions containing sinuses and airways, then air, bone, brain, cerebrospinal fluid (CSF) and eyes were automatically segmented using edge detection and anatomical information including location, shape, tissue uniformity and relative intensity distribution.more » Next, soft tissues - muscle and fat were segmented based on their relative intensity histogram. Finally, intensities of voxels in each segmented tissue were mapped into their electron density range to generate pseudo-CT by linearly fitting their relative intensity histograms. Co-registered CT was used as a ground truth. The bone segmentations of pseudo-CT were compared with those of co-registered CT obtained by using a 300HU threshold. The average distances between voxels on external edges of the skull of pseudo-CT and CT in three axial, coronal and sagittal slices with the largest width of skull were calculated. The mean absolute electron density (in Hounsfield unit) difference of voxels in each segmented tissues was calculated. Results: The average of distances between voxels on external skull from pseudo-CT and CT were 0.6±1.1mm (mean±1SD). The mean absolute electron density differences for bone, brain, CSF, muscle and fat are 78±114 HU, and 21±8 HU, 14±29 HU, 57±37 HU, and 31±63 HU, respectively. Conclusion: The semi-automated MR electron density mapping technique was developed using T1-weighted MR images. The generated pseudo-CT is comparable to that of CT in terms of anatomical position of tissues and similarity of electron density assignment. This method can allow MR-only treatment planning.« less

  17. Ion wind generation and its application to drying of wild Ginger slices (Curcuma Xanthorhiza)

    NASA Astrophysics Data System (ADS)

    Sumariyah; Khuriati, Ainie; Fachriyah, Enny

    2018-05-01

    Temulawak or wild ginger is a herbal medicinal derived from lndonesia original. Wild ginger contains include an active compound as curcuminoid and antioxidant oleoresin components having a special quality to take care of health from various diseases. Drying is the important process to produce wild ginger (Curcuma xanthorrhiza) simplicia as raw material herbal medicine. In this study, has been dried of wild ginger using ion wind which yielded from corona discharge utilizing pin-multi ring concentred electrodes. Corona discharge was generated by using the fixed DC high voltage of 4,3 kV and drying was done at the distance between the fixed electrodes of 4 mm. Shaped of the five temulawak slices is a circle with a thickness of 2 mm and the diameter of 10 mm - 30 mm with 5 mm diameter interval. The sliced temulawak is placed just below the concentric multi-ring electrode and is 2 mm in distance. The wild ginger slices were dried with time varied 5-65 minutes with time interval 5 minutes. The researched result of drying of wild ginger slices obtained drying rate and shrinkage is inversely proportional to drying time.

  18. Multi-Spatiotemporal Patterns of Residential Burglary Crimes in Chicago: 2006-2016

    NASA Astrophysics Data System (ADS)

    Luo, J.

    2017-10-01

    This research attempts to explore the patterns of burglary crimes at multi-spatiotemporal scales in Chicago between 2006 and 2016. Two spatial scales are investigated that are census block and police beat area. At each spatial scale, three temporal scales are integrated to make spatiotemporal slices: hourly scale with two-hour time step from 12:00am to the end of the day; daily scale with one-day step from Sunday to Saturday within a week; monthly scale with one-month step from January to December. A total of six types of spatiotemporal slices will be created as the base for the analysis. Burglary crimes are spatiotemporally aggregated to spatiotemporal slices based on where and when they occurred. For each type of spatiotemporal slices with burglary occurrences integrated, spatiotemporal neighborhood will be defined and managed in a spatiotemporal matrix. Hot-spot analysis will identify spatiotemporal clusters of each type of spatiotemporal slices. Spatiotemporal trend analysis is conducted to indicate how the clusters shift in space and time. The analysis results will provide helpful information for better target policing and crime prevention policy such as police patrol scheduling regarding times and places covered.

  19. Benefit from NASA

    NASA Image and Video Library

    2001-01-01

    The high-tech art of digital signal processing (DSP) was pioneered at NASA's Jet Propulsion Laboratory (JPL) in the mid-1960s for use in the Apollo Lunar Landing Program. Designed to computer enhance pictures of the Moon, this technology became the basis for the Landsat Earth resources satellites and subsequently has been incorporated into a broad range of Earthbound medical and diagnostic tools. DSP is employed in advanced body imaging techniques including Computer-Aided Tomography, also known as CT and CATScan, and Magnetic Resonance Imaging (MRI). CT images are collected by irradiating a thin slice of the body with a fan-shaped x-ray beam from a number of directions around the body's perimeter. A tomographic (slice-like) picture is reconstructed from these multiple views by a computer. MRI employs a magnetic field and radio waves, rather than x-rays, to create images. In this photograph, a patient undergoes an open MRI.

  20. Monochromatic-beam-based dynamic X-ray microtomography based on OSEM-TV algorithm.

    PubMed

    Xu, Liang; Chen, Rongchang; Yang, Yiming; Deng, Biao; Du, Guohao; Xie, Honglan; Xiao, Tiqiao

    2017-01-01

    Monochromatic-beam-based dynamic X-ray computed microtomography (CT) was developed to observe evolution of microstructure inside samples. However, the low flux density results in low efficiency in data collection. To increase efficiency, reducing the number of projections should be a practical solution. However, it has disadvantages of low image reconstruction quality using the traditional filtered back projection (FBP) algorithm. In this study, an iterative reconstruction method using an ordered subset expectation maximization-total variation (OSEM-TV) algorithm was employed to address and solve this problem. The simulated results demonstrated that normalized mean square error of the image slices reconstructed by the OSEM-TV algorithm was about 1/4 of that by FBP. Experimental results also demonstrated that the density resolution of OSEM-TV was high enough to resolve different materials with the number of projections less than 100. As a result, with the introduction of OSEM-TV, the monochromatic-beam-based dynamic X-ray microtomography is potentially practicable for the quantitative and non-destructive analysis to the evolution of microstructure with acceptable efficiency in data collection and reconstructed image quality.

  1. Visual grading characteristics and ordinal regression analysis during optimisation of CT head examinations.

    PubMed

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2015-06-01

    To evaluate visual grading characteristics (VGC) and ordinal regression analysis during head CT optimisation as a potential alternative to visual grading assessment (VGA), traditionally employed to score anatomical visualisation. Patient images (n = 66) were obtained using current and optimised imaging protocols from two CT suites: a 16-slice scanner at the national Maltese centre for trauma and a 64-slice scanner in a private centre. Local resident radiologists (n = 6) performed VGA followed by VGC and ordinal regression analysis. VGC alone indicated that optimised protocols had similar image quality as current protocols. Ordinal logistic regression analysis provided an in-depth evaluation, criterion by criterion allowing the selective implementation of the protocols. The local radiology review panel supported the implementation of optimised protocols for brain CT examinations (including trauma) in one centre, achieving radiation dose reductions ranging from 24 % to 36 %. In the second centre a 29 % reduction in radiation dose was achieved for follow-up cases. The combined use of VGC and ordinal logistic regression analysis led to clinical decisions being taken on the implementation of the optimised protocols. This improved method of image quality analysis provided the evidence to support imaging protocol optimisation, resulting in significant radiation dose savings. • There is need for scientifically based image quality evaluation during CT optimisation. • VGC and ordinal regression analysis in combination led to better informed clinical decisions. • VGC and ordinal regression analysis led to dose reductions without compromising diagnostic efficacy.

  2. Statistical iterative reconstruction for streak artefact reduction when using multidetector CT to image the dento-alveolar structures.

    PubMed

    Dong, J; Hayakawa, Y; Kober, C

    2014-01-01

    When metallic prosthetic appliances and dental fillings exist in the oral cavity, the appearance of metal-induced streak artefacts is not avoidable in CT images. The aim of this study was to develop a method for artefact reduction using the statistical reconstruction on multidetector row CT images. Adjacent CT images often depict similar anatomical structures. Therefore, reconstructed images with weak artefacts were attempted using projection data of an artefact-free image in a neighbouring thin slice. Images with moderate and strong artefacts were continuously processed in sequence by successive iterative restoration where the projection data was generated from the adjacent reconstructed slice. First, the basic maximum likelihood-expectation maximization algorithm was applied. Next, the ordered subset-expectation maximization algorithm was examined. Alternatively, a small region of interest setting was designated. Finally, the general purpose graphic processing unit machine was applied in both situations. The algorithms reduced the metal-induced streak artefacts on multidetector row CT images when the sequential processing method was applied. The ordered subset-expectation maximization and small region of interest reduced the processing duration without apparent detriments. A general-purpose graphic processing unit realized the high performance. A statistical reconstruction method was applied for the streak artefact reduction. The alternative algorithms applied were effective. Both software and hardware tools, such as ordered subset-expectation maximization, small region of interest and general-purpose graphic processing unit achieved fast artefact correction.

  3. Low-dose CT for quantitative analysis in acute respiratory distress syndrome

    DTIC Science & Technology

    2013-08-31

    noise of scans performed at 140, 60, 15 and 7.5 mAs corresponded to 10, 16, 38 and 74 Hounsfield Units , respectively. Conclusions: A reduction of...slice of a series, total lung volume, total lung tissue mass and frequency distribution of lung CT numbers expressed in Hounsfield Units (HU) were...tomography; HU: Hounsfield units ; CTDIvol: volumetric computed tomography dose index; DLP: dose length product; E: effective dose; SD: standard deviation

  4. Small-animal CT: Its difference from, and impact on, clinical CT

    NASA Astrophysics Data System (ADS)

    Ritman, Erik L.

    2007-10-01

    For whole-body computed tomography (CT) images of small rodents, a voxel resolution of at least 10 -3 mm 3 is needed for scale-equivalence to that currently achieved in clinical CT scanners (˜1 mm 3) in adult humans. These "mini-CT" images generally require minutes rather than seconds to complete a scan. The radiation exposure resulting from these mini-CT scans, while higher than clinical CT scans, is below the level resulting in acute tissue damage. Hence, these scans are useful for performing clinical-type diagnostic and monitoring scans for animal models of disease and their response to treatment. "Micro-CT", with voxel size <10 -5 mm 3, has been useful for imaging isolated, intact organs at an almost cellular level of resolution. Micro-CT has the great advantage over traditional microscopic methods in that it generates detailed three-dimensional images in relatively large, opaque volumes such as an intact rodent heart or kidney. The radiation exposure needed in these scans results in acute tissue damage if used in living animals. Experience with micro-CT is contributing to exploration of new applications for clinical CT imaging by providing insights into different modes of X-ray image formation as follows: Spatial resolution should be sufficient to detect an individual Basic Functional Unit (BFU, the smallest collection of diverse cells, such as hepatic lobule, that behaves like the organ), which requires voxels ˜10 -3 mm 3 in volume, so that the BFUs can be counted. Contrast resolution sufficient to allow quantitation of: New microvascular growth, which manifests as increased tissue contrast due to X-ray contrast agent in those vessels' lumens during passage of injected contrast agent in blood. Impaired endothelial integrity which manifests as increased opacification and delayed washout of contrast from tissues. Discrimination of pathological accumulations of metals such as Fe and Ca, which occur in the arterial wall following hemorrhage or tissue damage. Micro-CT can also be used as a test bed for exploring the utility of several modes of X-ray image formation, such as the use of dual-energy X-ray subtraction, X-ray scatter, phase delay and refraction-based imaging for increasing the contrast amongst soft tissue components. With the recent commercial availability of high speed, multi-slice CT scanners which can be operated in dual-energy mode, some of these micro-CT scanner capabilities and insights are becoming implementable in those CT scanners. As a result, the potential diagnostic spectrum that can be addressed with those scanners is broadened considerably.

  5. Extraction of 3D Femur Neck Trabecular Bone Architecture from Clinical CT Images in Osteoporotic Evaluation: a Novel Framework.

    PubMed

    Sapthagirivasan, V; Anburajan, M; Janarthanam, S

    2015-08-01

    The early detection of osteoporosis risk enhances the lifespan and quality of life of an individual. A reasonable in-vivo assessment of trabecular bone strength at the proximal femur helps to evaluate the fracture risk and henceforth, to understand the associated structural dynamics on occurrence of osteoporosis. The main aim of our study was to develop a framework to automatically determine the trabecular bone strength from clinical femur CT images and thereby to estimate its correlation with BMD. All the 50 studied south Indian female subjects aged 30 to 80 years underwent CT and DXA measurements at right femur region. Initially, the original CT slices were intensified and active contour model was utilised for the extraction of the neck region. After processing through a novel process called trabecular enrichment approach (TEA), the three dimensional (3D) trabecular features were extracted. The extracted 3D trabecular features, such as volume fraction (VF), solidity of delta points (SDP) and boundness, demonstrated a significant correlation with femoral neck bone mineral density (r = 0.551, r = 0.432, r = 0.552 respectively) at p < 0.001. The higher area under the curve values of the extracted features (VF: 85.3 %; 95CI: 68.2-100 %, SDP: 82.1 %; 95CI: 65.1-98.9 % and boundness: 90.4 %; 95CI: 78.7-100 %) were observed. The findings suggest that the proposed framework with TEA method would be useful for spotting women vulnerable to osteoporotic risk.

  6. ANATOMICAL STUDY OF CRANIAL NERVE EMERGENCE AND SKULL FORAMINA IN THE HORSE USING MAGNETIC RESONANCE IMAGING AND COMPUTED TOMOGRAPHY.

    PubMed

    Gonçalves, Rita; Malalana, Fernando; McConnell, James Fraser; Maddox, Thomas

    2015-01-01

    For accurate interpretation of magnetic resonance (MR) images of the equine brain, knowledge of the normal cross-sectional anatomy of the brain and associated structures (such as the cranial nerves) is essential. The purpose of this prospective cadaver study was to describe and compare MRI and computed tomography (CT) anatomy of cranial nerves' origins and associated skull foramina in a sample of five horses. All horses were presented for euthanasia for reasons unrelated to the head. Heads were collected posteuthanasia and T2-weighted MR images were obtained in the transverse, sagittal, and dorsal planes. Thin-slice MR sequences were also acquired using transverse 3D-CISS sequences that allowed mutliplanar reformatting. Transverse thin-slice CT images were acquired and multiplanar reformatting was used to create comparative images. Magnetic resonance imaging consistently allowed visualization of cranial nerves II, V, VII, VIII, and XII in all horses. The cranial nerves III, IV, and VI were identifiable as a group despite difficulties in identification of individual nerves. The group of cranial nerves IX, X, and XI were identified in 4/5 horses although the region where they exited the skull was identified in all cases. The course of nerves II and V could be followed on several slices and the main divisions of cranial nerve V could be distinguished in all cases. In conclusion, CT allowed clear visualization of the skull foramina and occasionally the nerves themselves, facilitating identification of the nerves for comparison with MRI images. © 2015 American College of Veterinary Radiology.

  7. Micro computed tomography features of laryngeal fractures in a case of fatal manual strangulation.

    PubMed

    Fais, Paolo; Giraudo, Chiara; Viero, Alessia; Miotto, Diego; Bortolotti, Federica; Tagliaro, Franco; Montisci, Massimo; Cecchetto, Giovanni

    2016-01-01

    Cases of subtle fatal neck compression are often complicated by the lack of specificity of the post-mortem signs of asphyxia and by the lack of clear signs of neck compression. Herein we present a forensic case of a 45-year-old schizophrenic patient found on the floor of the bedroom of a psychiatric ward in cardiopulmonary arrest and who died after two days in a vegetative state. The deposition of the roommate of the deceased, who claimed responsibility for the killing of the victim by neck compression, was considered unreliable by the prosecutor. Autopsy, toxicological analyses, and multi-slice computed tomography (MSCT), micro computed tomography (micro-CT) and histology of the larynx complex were performed. Particularly, micro-CT analysis of the thyroid cartilage revealed the bilateral presence of ossified triticeous cartilages and the complete fragmentation of the right superior horn of the thyroid, but it additionally demonstrated a fracture on the contralateral superior horns, which was not clearly diagnosable at MSCT. On the basis of the evidence of intracartilaginous laryngeal hemorrhages and bilateral microfracture at the base of the superior horns of the larynx, the death was classified as a case of asphyxia due to manual strangulation. Micro-CT was confirmed as a useful tool in cases of subtle fatal neck compression, for the detection of minute laryngeal cartilage fractures, especially in complex cases with equivocal findings on MSCT. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Cartwheel projections of segmented pulmonary vasculature for the detection of pulmonary embolism

    NASA Astrophysics Data System (ADS)

    Kiraly, Atilla P.; Naidich, David P.; Novak, Carol L.

    2005-04-01

    Pulmonary embolism (PE) detection via contrast-enhanced computed tomography (CT) images is an increasingly important topic of research. Accurate identification of PE is of critical importance in determining the need for further treatment. However, current multi-slice CT scanners provide datasets typically containing 600 or more images per patient, making it desirable to have a visualization method to help radiologists focus directly on potential candidates that might otherwise have been overlooked. This is especially important when assessing the ability of CT to identify smaller, sub-segmental emboli. We propose a cartwheel projection approach to PE visualization that computes slab projections of the original data aided by vessel segmentation. Previous research on slab visualization for PE has utilized the entire volumetric dataset, requiring thin slabs and necessitating the use of maximum intensity projection (MIP). Our use of segmentation within the projection computation allows the use of thicker slabs than previous methods, as well as the ability to employ visualization variations that are only possible with segmentation. Following automatic segmentation of the pulmonary vessels, slabs may be rotated around the X-, Y- or Z-axis. These slabs are rendered by preferentially using voxels within the lung vessels. This effectively eliminates distracting information not relevant to diagnosis, lessening both the chance of overlooking a subtle embolus and minimizing time on spent evaluating false positives. The ability to employ thicker slabs means fewer images need to be evaluated, yielding a more efficient workflow.

  9. Accuracy in contouring of small and low contrast lesions: Comparison between diagnostic quality computed tomography scanner and computed tomography simulation scanner-A phantom study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, Yick Wing, E-mail: mpr@hksh.com; Wong, Wing Kei Rebecca; Yu, Siu Ki

    2012-01-01

    To evaluate the accuracy in detection of small and low-contrast regions using a high-definition diagnostic computed tomography (CT) scanner compared with a radiotherapy CT simulation scanner. A custom-made phantom with cylindrical holes of diameters ranging from 2-9 mm was filled with 9 different concentrations of contrast solution. The phantom was scanned using a 16-slice multidetector CT simulation scanner (LightSpeed RT16, General Electric Healthcare, Milwaukee, WI) and a 64-slice high-definition diagnostic CT scanner (Discovery CT750 HD, General Electric Healthcare). The low-contrast regions of interest (ROIs) were delineated automatically upon their full width at half maximum of the CT number profile inmore » Hounsfield units on a treatment planning workstation. Two conformal indexes, CI{sub in}, and CI{sub out}, were calculated to represent the percentage errors of underestimation and overestimation in the automated contours compared with their actual sizes. Summarizing the conformal indexes of different sizes and contrast concentration, the means of CI{sub in} and CI{sub out} for the CT simulation scanner were 33.7% and 60.9%, respectively, and 10.5% and 41.5% were found for the diagnostic CT scanner. The mean differences between the 2 scanners' CI{sub in} and CI{sub out} were shown to be significant with p < 0.001. A descending trend of the index values was observed as the ROI size increases for both scanners, which indicates an improved accuracy when the ROI size increases, whereas no observable trend was found in the contouring accuracy with respect to the contrast levels in this study. Images acquired by the diagnostic CT scanner allow higher accuracy on size estimation compared with the CT simulation scanner in this study. We recommend using a diagnostic CT scanner to scan patients with small lesions (<1 cm in diameter) for radiotherapy treatment planning, especially for those pending for stereotactic radiosurgery in which accurate delineation of small-sized, low-contrast regions is important for dose calculation.« less

  10. Dynamic simulation of motion effects in IMAT lung SBRT.

    PubMed

    Zou, Wei; Yin, Lingshu; Shen, Jiajian; Corradetti, Michael N; Kirk, Maura; Munbodh, Reshma; Fang, Penny; Jabbour, Salma K; Simone, Charles B; Yue, Ning J; Rengan, Ramesh; Teo, Boon-Keng Kevin

    2014-11-01

    Intensity modulated arc therapy (IMAT) has been widely adopted for Stereotactic Body Radiotherapy (SBRT) for lung cancer. While treatment dose is optimized and calculated on a static Computed Tomography (CT) image, the effect of the interplay between the target and linac multi-leaf collimator (MLC) motion is not well described and may result in deviations between delivered and planned dose. In this study, we investigated the dosimetric consequences of the inter-play effect on target and organs at risk (OAR) by simulating dynamic dose delivery using dynamic CT datasets. Fifteen stage I non-small cell lung cancer (NSCLC) patients with greater than 10 mm tumor motion treated with SBRT in 4 fractions to a dose of 50 Gy were retrospectively analyzed for this study. Each IMAT plan was initially optimized using two arcs. Simulated dynamic delivery was performed by associating the MLC leaf position, gantry angle and delivered beam monitor units (MUs) for each control point with different respiratory phases of the 4D-CT using machine delivery log files containing time stamps of the control points. Dose maps associated with each phase of the 4D-CT dose were calculated in the treatment planning system and accumulated using deformable image registration onto the exhale phase of the 4D-CT. The original IMAT plans were recalculated on the exhale phase of the CT for comparison with the dynamic simulation. The dose coverage of the PTV showed negligible variation between the static and dynamic simulation. There was less than 1.5% difference in PTV V95% and V90%. The average inter-fraction and cumulative dosimetric effects among all the patients were less than 0.5% for PTV V95% and V90% coverage and 0.8 Gy for the OARs. However, in patients where target is close to the organs, large variations were observed on great vessels and bronchus for as much as 4.9 Gy and 7.8 Gy. Limited variation in target dose coverage and OAR constraints were seen for each SBRT fraction as well as over all four fractions. Large dose variations were observed on critical organs in patients where these organs were closer to the target.

  11. 320-Row wide volume CT significantly reduces density heterogeneity observed in the descending aorta: comparisons with 64-row helical CT.

    PubMed

    Yamashiro, Tsuneo; Miyara, Tetsuhiro; Honda, Osamu; Kamiya, Ayano; Tanaka, Yuko; Murayama, Sadayuki

    2014-01-01

    The aim of this study was to compare density heterogeneity on wide volume (WV) scans with that on helical CT scans. 22 subjects underwent chest CT using 320-WV and 64-helical modes. Density heterogeneity of the descending aorta was evaluated quantitatively and qualitatively. At qualitative assessment, the heterogeneity was judged to be smaller on WV scans than on helical scans (p<0.0001). Mean changes in aortic density between two contiguous slices were 1.64 HU (3.40%) on WV scans and 2.29 HU (5.19%) on helical scans (p<0.0001). CT density of thoracic organs is more homogeneous and reliable on WV scans than on helical scans. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Computed tomography, anatomy and morphometry of the lower extremity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoogewoud, H.M.; Rager, G.; Burch, H.

    1989-01-01

    This book presents up-to-date information on CT imaging of the lower extremity. It includes an atlas correlating new, high-resolution CT scans with identical thin anatomical slices covering the lower extremity from the crista iliaca to the planta pedis. Additional figures, including CT arthrograms of the hip, knee and ankle, depict the anatomy in detail The technique and clinical relevance of CT measurements especially in orthopedic surgery are also clearly explained. Of special interest is the new method developed by the authors for assessing the coverage of the femoral head. The special morphometry software and a 3D program allowing representation inmore » space make it possible to precisely and accurately measure the coverage with normal CT scans of the hip.« less

  13. [Spiral CT angiography in practice].

    PubMed

    Pavcec, Zlatko; Zokalj, Ivan; Rumboldt, Zoran; Pal, Andrej; Saghir, Hussein; Ozretić, David; Latin, Branko; Perhoć, Zeljka; Marotti, Miljenko

    2005-01-01

    Incidence of vascular diseases and development of new radiologic techniques in the last three decades has given strong impuls for introduction of non-invasive vascular diagnostic methods. Thanks to the introduction of Doppler ultrasound, new types of computed tomography (CT) and magnetic resonance (MR) scanners, non-invasive vascular diagnostic methods are replacing conventional invasive (catheter) angiographic methods. Computed tomographic angiography (CTA) is a noninvasive vascular diagnostic method based on continuous scanning with CT scanner during intravenous application of contrast material. Performing of CTA is possible after introduction of spiral CT technique whose characteristics are short imaging time and volumetric data acquisition. The main goal of this article, based on our experiences, is to review the role of CTA, performed on single-slice CT scanner, in managment of patients with vascular pathology.

  14. What are the potential advantages and disadvantages of volumetric CT scanning?

    PubMed

    Voros, Szilard

    2009-01-01

    After the introduction and dissemination of 64-slice multislice computed tomography systems, cardiovascular CT has arrived at a crossroad, and different philosophies lead down different paths of technologic development. Increased number of detector rows in the z-axis led to the introduction of dynamic, volumetric scanning of the heart and allows for whole-organ imaging. Dynamic, volumetric "whole-organ" scanning significantly reduces image acquisition time; "single-beat whole-heart imaging" results in improved image quality and reduced radiation exposure and reduced contrast dose. It eliminates helical and pitch artifacts and allows for simultaneous imaging of the base and apex of the heart. Beyond coronary arterial luminal imaging, such innovations open up the opportunity for myocardial perfusion and viability imaging and coronary arterial plaque imaging. Dual-source technology with 2 x-ray tubes placed at 90-degree angles provides heart rate-independent temporal resolution and has the potential for tissue characterization on the basis of different attenuation values at different energy levels. Refined detector technology allows for improved low-contrast resolution and may be beneficial for more detailed evaluation of coronary arterial plaque composition. The clinical benefit of each of these technologies will have to be evaluated in carefully designed clinical trials and in everyday clinical practice. Such combined experience will probably show the relative benefit of each of these philosophies in different patient populations and in different clinical scenarios.

  15. Augmented Reality Robot-assisted Radical Prostatectomy: Preliminary Experience.

    PubMed

    Porpiglia, Francesco; Fiori, Cristian; Checcucci, Enrico; Amparore, Daniele; Bertolo, Riccardo

    2018-05-01

    To present our preliminary experience with augmented reality robot-assisted radical prostatectomy (AR-RARP). From June to August 2017, patients candidate to RARP were enrolled and underwent high-resolution multi-parametric magnetic resonance imaging (1-mm slices) according to dedicated protocol. The obtained three-dimensional (3D) reconstruction was integrated in the robotic console to perform AR-RARP. According to the staging at magnetic resonance imaging or reconstruction, in case of cT2 prostate cancer, intrafascial nerve sparing (NS) was performed: a mark was placed on the prostate capsule to indicate the virtual underlying intraprostatic lesion; in case of cT3, standard NS AR-RARP was scheduled with AR-guided biopsy at the level of suspected extracapsular extension (ECE). Prostate specimens were scanned to assess the 3D model concordance. Sixteen patients underwent intrafascial NS technique (cT2), whereas 14 underwent standard NS+ selective biopsy of suspected ECE (cT3). Final pathology confirmed clinical staging. Positive surgical margins' rate was 30% (no positive surgical margins in pT2). In patients whose intraprostatic lesions were marked, final pathology confirmed lesion location. In patients with suspected ECE, AR-guided selective biopsies confirmed the ECE location, with 11 of 14 biopsies (78%) positive for prostate cancer. Prostate specimens were scanned with finding of a good overlap. The mismatch between 3D reconstruction and scanning ranged from 1 to 5 mm. In 85% of the entire surface, the mismatch was <3 mm. In our preliminary experience, AR-RARP seems to be safe and effective. The accuracy of 3D reconstruction seemed to be promising. This technology has still limitations: the virtual models are manually oriented and rigid. Future collaborations with bioengineers will allow overcoming these limitations. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Tracheal Self-Expandable Metallic Stents: A Comparative Study of Three Different Stents in a Rabbit Model.

    PubMed

    Serrano, Carolina; Lostalé, Fernando; Rodríguez-Panadero, Francisco; Blas, Ignacio de; Laborda, Alicia; de Gregorio, Miguel Angel

    2016-03-01

    The objective of this study was to assess tracheal reactivity after the deployment of different self-expandable metal stents (SEMS). Forty female New Zealand rabbits were divided into four groups. Three groups received three different SEMS: steel (ST), nitinol (NiTi), or nitinol drug-eluting stent (DES); the fourth group was the control group (no stent). Stents were deployed percutaneously under fluoroscopic guidance. Animals were assessed by multi-slice, computed tomography (CT) scans, and tracheas were collected for anatomical pathology (AP) study. Data from CT and AP were statistically analyzed and correlated. The DES group had the longest stenosis (20.51±14.08mm vs. 5.84±12.43 and 6.57±6.54mm in NiTi and ST, respectively, day 30; P<.05), and higher granuloma formation on CT (50% of cases). The NiTi group showed the lowest grade of stenosis (2.86±6.91% vs. 11.28±13.98 and 15.54±25.95% in DES and ST, respectively; P<.05). The AP study revealed that the ST group developed intense proliferative reactivity compared to the other groups. In the DES group, a destructive response was observed in 70% of the animals, while the NiTi was the least reactive stent. CT was more effective in detecting wall thickening (positive correlation of 68.9%; P<.001) than granuloma (not significant). The ST group developed granulomas and significant stenosis. NiTi was the least reactive stent, while DES caused significant lesions that may be related to drug dosage. This type of DES stent is therefore not recommended for the treatment of tracheobronchial stenosis. Copyright © 2015 SEPAR. Published by Elsevier Espana. All rights reserved.

  17. Characterization of optically stimulated luminescence dosimeters and investigating their potential for estimating pediatric organ doses in multi-slice computed tomography

    NASA Astrophysics Data System (ADS)

    Al-Senan, Rani Mohammed

    Recent epidemiologic studies have shown a strong association between the relatively high doses of pediatric CT and the risk of cancer. Quantifying organ doses, as a measure of the risk, is commonly based on either direct anthropomorphic phantom measurements or Monte Carlo simulation. The major disadvantage in the phantom approach is its high cost especially that, for pediatric CT dosimetry, various phantom sizes are required to represent different age groups of children. On the other hand, Monte Carlo simulation, although not considered costly, requires validation by anthropomorphic phantom measurements. The aim of this project was to develop two methods of organ dose estimation in pediatric CT: 1) from the measured surface dose using optically stimulated luminescence dosimeters (OSLDs) and 2) by measuring the circumference of the body part being scanned as well as knowing the scan parameters. The project was based on a study proposed by the surgery department to monitor radiation exposure to children during their CT examination in the ER. A total of 200 pediatric patients were enrolled in this study which used OSLDs to monitor the doses. Specific aim 1 of this project was to characterize the OSLDs in the diagnostic energy range. Specific aim 2(a) was to find relationships between the patients' doses from OSLDs and both scan CTDI and the measured circumference. In specific aim 2(b) we carried out measurements using CTDI phantoms to investigate the relationships studied in specific aim 2(a). Specific aim 3 was to come up with models to estimate select organ doses from measuring surface dose or by using the circumference of the body part. To do this, pediatric examinations were simulated using a set of pediatric anthropomorphic phantoms in which doses of select organs were measured.

  18. Determination of differential cross sections and kinetic energy release of co-products from central sliced images in photo-initiated dynamic processes.

    PubMed

    Chen, Kuo-mei; Chen, Yu-wei

    2011-04-07

    For photo-initiated inelastic and reactive collisions, dynamic information can be extracted from central sliced images of state-selected Newton spheres of product species. An analysis framework has been established to determine differential cross sections and the kinetic energy release of co-products from experimental images. When one of the reactants exhibits a high recoil speed in a photo-initiated dynamic process, the present theory can be employed to analyze central sliced images from ion imaging or three-dimensional sliced fluorescence imaging experiments. It is demonstrated that the differential cross section of a scattering process can be determined from the central sliced image by a double Legendre moment analysis, for either a fixed or continuously distributed recoil speeds in the center-of-mass reference frame. Simultaneous equations which lead to the determination of the kinetic energy release of co-products can be established from the second-order Legendre moment of the experimental image, as soon as the differential cross section is extracted. The intensity distribution of the central sliced image, along with its outer and inner ring sizes, provide all the clues to decipher the differential cross section and the kinetic energy release of co-products.

  19. Ultrafast 3D balanced steady-state free precession MRI of the lung: Assessment of anatomic details in comparison to low-dose CT.

    PubMed

    Heye, Tobias; Sommer, Gregor; Miedinger, David; Bremerich, Jens; Bieri, Oliver

    2015-09-01

    To evaluate the anatomical details offered by a new single breath-hold ultrafast 3D balanced steady-state free precession (uf-bSSFP) sequence in comparison to low-dose chest computed tomography (CT). This was an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant prospective study. A total of 20 consecutive patients enrolled in a lung cancer screening trial underwent same-day low-dose chest CT and 1.5T MRI. The presence of pulmonary nodules and anatomical details on 1.9 mm isotropic uf-bSSFP images was compared to 2 mm lung window reconstructions by two readers. The number of branching points on six predefined pulmonary arteries and the distance between the most peripheral visible vessel segment to the pleural surface on thin slices and 50 mm maximum intensity projections (MIP) were assessed. Image quality and sharpness of the pulmonary vasculature were rated on a 5-point scale. The uf-bSSFP detection rate of pulmonary nodules (32 nodules visible on CT and MRI, median diameter 3.9 mm) was 45.5% with 21 false-positive findings (pooled data of both readers). Uf-bSSFP detected 71.2% of branching points visible on CT data. The mean distance between peripheral vasculature and pleural surface was 13.0 ± 4.2 mm (MRI) versus 8.5 ± 3.3 mm (CT) on thin slices and 8.6 ± 3.9 mm (MRI) versus 4.6 ± 2.5 mm (CT) on MIPs. Median image quality and sharpness were rated 4 each. Although CT is superior to MRI, uf-bSSFP imaging provides good anatomical details with sufficient image quality and sharpness obtainable in a single breath-hold covering the entire chest. © 2014 Wiley Periodicals, Inc.

  20. Dose uniformity analysis among ten 16-slice same-model CT scanners.

    PubMed

    Erdi, Yusuf Emre

    2012-01-01

    With the introduction of multislice scanners, computed tomographic (CT) dose optimization has become important. The patient-absorbed dose may differ among the scanners although they are the same type and model. To investigate the dose output variation of the CT scanners, we designed the study to analyze dose outputs of 10 same-model CT scanners using 3 clinical protocols. Ten GE Lightspeed (GE Healthcare, Waukesha, Wis) 16-slice scanners located at main campus and various satellite locations of our institution have been included in this study. All dose measurements were performed using poly (methyl methacrylate) (PMMA) head (diameter, 16 cm) and body (diameter, 32 cm) phantoms manufactured by Radcal (RadCal Corp, Monrovia, Calif) using a 9095 multipurpose analyzer with 10 × 9-3CT ion chamber both from the same manufacturer. Ion chamber is inserted into the peripheral and central axis locations and volume CT dose index (CTDIvol) is calculated as weighted average of doses at those locations. Three clinical protocol settings for adult head, high-resolution chest, and adult abdomen are used for dose measurements. We have observed up to 9.4% CTDIvol variation for the adult head protocol in which the largest variation occurred among the protocols. However, head protocol uses higher milliampere second values than the other 2 protocols. Most of the measured values were less than the system-stored CTDIvol values. It is important to note that reduction in dose output from tubes as they age is expected in addition to the intrinsic radiation output fluctuations of the same scanner. Although the same model CT scanners were used in this study, it is possible to see CTDIvol variation in standard patient scanning protocols of head, chest, and abdomen. The compound effect of the dose variation may be larger with higher milliampere and multiphase and multilocation CT scans.

  1. Applicability of three-dimensional imaging techniques in fetal medicine*

    PubMed Central

    Werner Júnior, Heron; dos Santos, Jorge Lopes; Belmonte, Simone; Ribeiro, Gerson; Daltro, Pedro; Gasparetto, Emerson Leandro; Marchiori, Edson

    2016-01-01

    Objective To generate physical models of fetuses from images obtained with three-dimensional ultrasound (3D-US), magnetic resonance imaging (MRI), and, occasionally, computed tomography (CT), in order to guide additive manufacturing technology. Materials and Methods We used 3D-US images of 31 pregnant women, including 5 who were carrying twins. If abnormalities were detected by 3D-US, both MRI and in some cases CT scans were then immediately performed. The images were then exported to a workstation in DICOM format. A single observer performed slice-by-slice manual segmentation using a digital high resolution screen. Virtual 3D models were obtained from software that converts medical images into numerical models. Those models were then generated in physical form through the use of additive manufacturing techniques. Results Physical models based upon 3D-US, MRI, and CT images were successfully generated. The postnatal appearance of either the aborted fetus or the neonate closely resembled the physical models, particularly in cases of malformations. Conclusion The combined use of 3D-US, MRI, and CT could help improve our understanding of fetal anatomy. These three screening modalities can be used for educational purposes and as tools to enable parents to visualize their unborn baby. The images can be segmented and then applied, separately or jointly, in order to construct virtual and physical 3D models. PMID:27818540

  2. Three-dimensional finite element modeling of a maxillary premolar tooth based on the micro-CT scanning: a detailed description.

    PubMed

    Huang, Zheng; Chen, Zhi

    2013-10-01

    This study describes the details of how to construct a three-dimensional (3D) finite element model of a maxillary first premolar tooth based on micro-CT data acquisition technique, MIMICS software and ANSYS software. The tooth was scanned by micro-CT, in which 1295 slices were obtained and then 648 slices were selected for modeling. The 3D surface mesh models of enamel and dentin were created by MIMICS (STL file). The solid mesh model was constructed by ANSYS. After the material properties and boundary conditions were set, a loading analysis was performed to demonstrate the applicableness of the resulting model. The first and third principal stresses were then evaluated. The results showed that the number of nodes and elements of the finite element model were 56 618 and 311801, respectively. The geometric form of the model was highly consistent with that of the true tooth, and the deviation between them was -0.28%. The loading analysis revealed the typical stress patterns in the contour map. The maximum compressive stress existed in the contact points and the maximum tensile stress existed in the deep fissure between the two cusps. It is concluded that by using the micro-CT and highly integrated software, construction of the 3D finite element model with high quality will not be difficult for clinical researchers.

  3. Lung fissure detection in CT images using global minimal paths

    NASA Astrophysics Data System (ADS)

    Appia, Vikram; Patil, Uday; Das, Bipul

    2010-03-01

    Pulmonary fissures separate human lungs into five distinct regions called lobes. Detection of fissure is essential for localization of the lobar distribution of lung diseases, surgical planning and follow-up. Treatment planning also requires calculation of the lobe volume. This volume estimation mandates accurate segmentation of the fissures. Presence of other structures (like vessels) near the fissure, along with its high variational probability in terms of position, shape etc. makes the lobe segmentation a challenging task. Also, false incomplete fissures and occurrence of diseases add to the complications of fissure detection. In this paper, we propose a semi-automated fissure segmentation algorithm using a minimal path approach on CT images. An energy function is defined such that the path integral over the fissure is the global minimum. Based on a few user defined points on a single slice of the CT image, the proposed algorithm minimizes a 2D energy function on the sagital slice computed using (a) intensity (b) distance of the vasculature, (c) curvature in 2D, (d) continuity in 3D. The fissure is the infimum energy path between a representative point on the fissure and nearest lung boundary point in this energy domain. The algorithm has been tested on 10 CT volume datasets acquired from GE scanners at multiple clinical sites. The datasets span through different pathological conditions and varying imaging artifacts.

  4. Fast parallel algorithm for slicing STL based on pipeline

    NASA Astrophysics Data System (ADS)

    Ma, Xulong; Lin, Feng; Yao, Bo

    2016-05-01

    In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.

  5. CT of the chest with model-based, fully iterative reconstruction: comparison with adaptive statistical iterative reconstruction.

    PubMed

    Ichikawa, Yasutaka; Kitagawa, Kakuya; Nagasawa, Naoki; Murashima, Shuichi; Sakuma, Hajime

    2013-08-09

    The recently developed model-based iterative reconstruction (MBIR) enables significant reduction of image noise and artifacts, compared with adaptive statistical iterative reconstruction (ASIR) and filtered back projection (FBP). The purpose of this study was to evaluate lesion detectability of low-dose chest computed tomography (CT) with MBIR in comparison with ASIR and FBP. Chest CT was acquired with 64-slice CT (Discovery CT750HD) with standard-dose (5.7 ± 2.3 mSv) and low-dose (1.6 ± 0.8 mSv) conditions in 55 patients (aged 72 ± 7 years) who were suspected of lung disease on chest radiograms. Low-dose CT images were reconstructed with MBIR, ASIR 50% and FBP, and standard-dose CT images were reconstructed with FBP, using a reconstructed slice thickness of 0.625 mm. Two observers evaluated the image quality of abnormal lung and mediastinal structures on a 5-point scale (Score 5 = excellent and score 1 = non-diagnostic). The objective image noise was also measured as the standard deviation of CT intensity in the descending aorta. The image quality score of enlarged mediastinal lymph nodes on low-dose MBIR CT (4.7 ± 0.5) was significantly improved in comparison with low-dose FBP and ASIR CT (3.0 ± 0.5, p = 0.004; 4.0 ± 0.5, p = 0.02, respectively), and was nearly identical to the score of standard-dose FBP image (4.8 ± 0.4, p = 0.66). Concerning decreased lung attenuation (bulla, emphysema, or cyst), the image quality score on low-dose MBIR CT (4.9 ± 0.2) was slightly better compared to low-dose FBP and ASIR CT (4.5 ± 0.6, p = 0.01; 4.6 ± 0.5, p = 0.01, respectively). There were no significant differences in image quality scores of visualization of consolidation or mass, ground-glass attenuation, or reticular opacity among low- and standard-dose CT series. Image noise with low-dose MBIR CT (11.6 ± 1.0 Hounsfield units (HU)) were significantly lower than with low-dose ASIR (21.1 ± 2.6 HU, p < 0.0005), low-dose FBP CT (30.9 ± 3.9 HU, p < 0.0005), and standard-dose FBP CT (16.6 ± 2.3 HU, p < 0.0005). MBIR shows greater potential than ASIR for providing diagnostically acceptable low-dose CT without compromising image quality. With radiation dose reduction of >70%, MBIR can provide equivalent lesion detectability of standard-dose FBP CT.

  6. Content Validity of Temporal Bone Models Printed Via Inexpensive Methods and Materials.

    PubMed

    Bone, T Michael; Mowry, Sarah E

    2016-09-01

    Computed tomographic (CT) scans of the 3-D printed temporal bone models will be within 15% accuracy of the CT scans of the cadaveric temporal bones. Previous studies have evaluated the face validity of 3-D-printed temporal bone models designed to train otolaryngology residents. The purpose of the study was to determine the content validity of temporal bone models printed using inexpensive printers and materials. Four cadaveric temporal bones were randomly selected and clinical temporal bone CT scans were obtained. Models were generated using previously described methods in acrylonitrile butadiene styrene (ABS) plastic using the Makerbot Replicator 2× and Hyrel printers. Models were radiographically scanned using the same protocol as the cadaveric bones. Four images from each cadaveric CT series and four corresponding images from the model CT series were selected, and voxel values were normalized to black or white. Scan slices were compared using PixelDiff software. Gross anatomic structures were evaluated in the model scans by four board certified otolaryngologists on a 4-point scale. Mean pixel difference between the cadaver and model scans was 14.25 ± 2.30% at the four selected CT slices. Mean cortical bone width difference and mean external auditory canal width difference were 0.58 ± 0.66 mm and 0.55 ± 0.46 mm, respectively. Expert raters felt the mastoid air cells were well represented (2.5 ± 0.5), while middle ear and otic capsule structures were not accurately rendered (all averaged <1.8). These results suggest that these models would be sufficient adjuncts to cadaver temporal bones for training residents in cortical mastoidectomies, but less effective for middle ear procedures.

  7. Feasibility of simultaneous PET/MR of the carotid artery: first clinical experience and comparison to PET/CT

    PubMed Central

    Ripa, Rasmus S; Knudsen, Andreas; Hag, Anne Mette F; Lebech, Anne-Mette; Loft, Annika; Keller, Sune H; Hansen, Adam E; von Benzon, Eric; Højgaard, Liselotte; Kjær, Andreas

    2013-01-01

    The study aimed at comparing PET/MR to PET/CT for imaging the carotid arteries in patients with known increased risk of atherosclerosis. Six HIV-positive men underwent sequential PET/MR and PET/CT of the carotid arteries after injection of 400 MBq of 18F-FDG. PET/MR was performed a median of 131 min after injection. Subsequently,PET/CT was performed. Regions of interest (ROI) were drawn slice by slice to include the carotid arteries and standardized uptake values (SUV) were calculated from both datasets independently. Quantitative comparison of 18F-FDG uptake revealed a high congruence between PET data acquired using the PET/MR system compared to the PET/CT system. The mean difference for SUVmean was -0.18 (p < 0.001) and -0.14 for SUVmax (p < 0.001) indicating a small but significant bias towards lower values using the PET/MR system. The 95% limits of agreement were -0.55 to 0.20 for SUVmean and -0.93 to 0.65 for SUVmax. The image quality of the PET/MR allowed for delineation of the carotid vessel wall. The correlations between 18F-FDG uptake from ROI including both vessel wall and vessel lumen to ROI including only the wall were strong (r = 0.98 for SUVmean and r = 1.00 for SUVmax) indicating that the luminal 18F-FDG content had minimal influence on the values. The study shows for the first time that simultaneous PET/MR of the carotid arteries is feasible in patients with increased risk of atherosclerosis. Quantification of 18F-FDG uptake correlated well between PET/MR and PET/CT despite difference in method of PET attenuation correction, reconstruction algorithm, and detector technology. PMID:23900769

  8. CT analysis of lung density changes in patients undergoing total body irradiation prior to bone marrow transplantation.

    PubMed

    Lee, J Y; Shank, B; Bonfiglio, P; Reid, A

    1984-10-01

    Sequential changes in lung density measured by CT are potentially sensitive and convenient monitors of lung abnormalities following total body irradiation (TBI). Methods have been developed to compare pre- and post-TBI CT of lung. The average local features of a cross-sectional lung slice are extracted from three peripheral regions of interest in the anterior, posterior, and lateral portions of the CT image. Also, density profiles across a specific region may be obtained. These may be compared first for verification of patient position and breathing status and then for changes between pre- and post-TBI. These may also be compared with radiation dose profiles through the lung. A preliminary study on 21 leukemia patients undergoing total body irradiation indicates the following: (a) Density gradients of patients' lungs in the antero-posterior direction show a marked heterogeneity before and after transplantation compared with normal lungs. The patients with departures from normal density gradients pre-TBI correlate with later pulmonary complications. (b) Measurements of average peripheral lung densities have demonstrated that the average lung density in the younger age group is substantially higher: pre-TBI, the average CT number (1,000 scale) is -638 +/- 39 Hounsfield unit (HU) for 0-10 years old and -739 +/- 53 HU for 21-40 years old. (c) Density profiles showed no post-TBI regional changes in lung density corresponding to the dose profile across the lung, so no differentiation of a radiation-specific effect has yet been possible. Computed tomographic density profiles in the antero-posterior direction are successfully used to verify positioning of the CT slice and the breathing level of the lung.

  9. The value of "liver windows" settings in the detection of small renal cell carcinomas on unenhanced computed tomography.

    PubMed

    Sahi, Kamal; Jackson, Stuart; Wiebe, Edward; Armstrong, Gavin; Winters, Sean; Moore, Ronald; Low, Gavin

    2014-02-01

    To assess if "liver window" settings improve the conspicuity of small renal cell carcinomas (RCC). Patients were analysed from our institution's pathology-confirmed RCC database that included the following: (1) stage T1a RCCs, (2) an unenhanced computed tomography (CT) abdomen performed ≤ 6 months before histologic diagnosis, and (3) age ≥ 17 years. Patients with multiple tumours, prior nephrectomy, von Hippel-Lindau disease, and polycystic kidney disease were excluded. The unenhanced CT was analysed, and the tumour locations were confirmed by using corresponding contrast-enhanced CT or magnetic resonance imaging studies. Representative single-slice axial, coronal, and sagittal unenhanced CT images were acquired in "soft tissue windows" (width, 400 Hounsfield unit (HU); level, 40 HU) and liver windows (width, 150 HU; level, 88 HU). In addition, single-slice axial, coronal, and sagittal unenhanced CT images of nontumourous renal tissue (obtained from the same cases) were acquired in soft tissue windows and liver windows. These data sets were randomized, unpaired, and were presented independently to 3 blinded radiologists for analysis. The presence or absence of suspicious findings for tumour was scored on a 5-point confidence scale. Eighty-three of 415 patients met the study criteria. Receiver operating characteristics (ROC) analysis, t test analysis, and kappa analysis were used. ROC analysis showed statistically superior diagnostic performance for liver windows compared with soft tissue windows (area under the curve of 0.923 vs 0.879; P = .0002). Kappa statistics showed "good" vs "moderate" agreement between readers for liver windows compared with soft tissue windows. Use of liver windows settings improves the detection of small RCCs on the unenhanced CT. Copyright © 2014 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  10. The Detection of Focal Liver Lesions Using Abdominal CT: A Comparison of Image Quality Between Adaptive Statistical Iterative Reconstruction V and Adaptive Statistical Iterative Reconstruction.

    PubMed

    Lee, Sangyun; Kwon, Heejin; Cho, Jihan

    2016-12-01

    To investigate image quality characteristics of abdominal computed tomography (CT) scans reconstructed with adaptive statistical iterative reconstruction V (ASIR-V) vs currently using applied adaptive statistical iterative reconstruction (ASIR). This institutional review board-approved study included 35 consecutive patients who underwent CT of the abdomen. Among these 35 patients, 27 with focal liver lesions underwent abdomen CT with a 128-slice multidetector unit using the following parameters: fixed noise index of 30, 1.25 mm slice thickness, 120 kVp, and a gantry rotation time of 0.5 seconds. CT images were analyzed depending on the method of reconstruction: ASIR (30%, 50%, and 70%) vs ASIR-V (30%, 50%, and 70%). Three radiologists independently assessed randomized images in a blinded manner. Imaging sets were compared to focal lesion detection numbers, overall image quality, and objective noise with a paired sample t test. Interobserver agreement was assessed with the intraclass correlation coefficient. The detection of small focal liver lesions (<10 mm) was significantly higher when ASIR-V was used when compared to ASIR (P <0.001). Subjective image noise, artifact, and objective image noise in liver were generally significantly better for ASIR-V compared to ASIR, especially in 50% ASIR-V. Image sharpness and diagnostic acceptability were significantly worse in 70% ASIR-V compared to various levels of ASIR. Images analyzed using 50% ASIR-V were significantly better than three different series of ASIR or other ASIR-V conditions at providing diagnostically acceptable CT scans without compromising image quality and in the detection of focal liver lesions. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  11. Development and performance evaluation of an experimental fine pitch detector multislice CT scanner.

    PubMed

    Imai, Yasuhiro; Nukui, Masatake; Ishihara, Yotaro; Fujishige, Takashi; Ogata, Kentaro; Moritake, Masahiro; Kurochi, Haruo; Ogata, Tsuyoshi; Yahata, Mitsuru; Tang, Xiangyang

    2009-04-01

    The authors have developed an experimental fine pitch detector multislice CT scanner with an ultrasmall focal spot x-ray tube and a high-density matrix detector through current CT technology. The latitudinal size of the x-ray tube focal spot was 0.4 mm. The detector dimension was 1824 channels (azimuthal direction) x 32 rows (longitudinal direction) at row width of 0.3125 mm, in which a thinner reflected separator surrounds each detector cell coupled with a large active area photodiode. They were mounted on a commercial 64-slice CT scanner gantry while the scan field of view (50 cm) and gantry rotation speed (0.35 s) can be maintained. The experimental CT scanner demonstrated the spatial resolution of 0.21-0.22 mm (23.8-22.7 lp/cm) with the acrylic slit phantom and in-plane 50%-MTF 9.0 lp/cm and 10%-MTF 22.0 lp/cm. In the longitudinal direction, it demonstrated the spatial resolution of 0.24 mm with the high-resolution insert of the CATPHAN phantom and 0.34 mm as the full width at half maximum of the slice sensitivity profile. In low-contrast detectability, 3 mm at 0.3% was visualized at the CTDI(vol) of 47.2 mGy. Two types of 2.75 mm diameter vessel phantoms with in-stent stenosis at 25%, 50%, and 75% stair steps were scanned, and the reconstructed images can clearly resolve the stenosis at each case. The experimental CT scanner provides high-resolution imaging while maintaining low-contrast detectability, demonstrating the potentiality for clinical applications demanding high spatial resolution, such as imaging of inner ear, lung, and bone, or low-contrast detectability, such as imaging of coronary artery.

  12. Radiation dose calculations for CT scans with tube current modulation using the approach to equilibrium function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinhua; Zhang, Da; Liu, Bob, E-mail: bliu7@mgh.harvard.edu

    2014-11-01

    Purpose: The approach to equilibrium function has been used previously to calculate the radiation dose to a shift-invariant medium undergoing CT scans with constant tube current [Li, Zhang, and Liu, Med. Phys. 39, 5347–5352 (2012)]. The authors have adapted this method to CT scans with tube current modulation (TCM). Methods: For a scan with variable tube current, the scan range was divided into multiple subscan ranges, each with a nearly constant tube current. Then the dose calculation algorithm presented previously was applied. For a clinical CT scan series that presented tube current per slice, the authors adopted an efficient approachmore » that computed the longitudinal dose distribution for one scan length equal to the slice thickness, which center was at z = 0. The cumulative dose at a specific point was a summation of the contributions from all slices and the overscan. Results: The dose calculations performed for a total of four constant and variable tube current distributions agreed with the published results of Dixon and Boone [Med. Phys. 40, 111920 (14pp.) (2013)]. For an abdomen/pelvis scan of an anthropomorphic phantom (model ATOM 701-B, CIRS, Inc., VA) on a GE Lightspeed Pro 16 scanner with 120 kV, N × T = 20 mm, pitch = 1.375, z axis current modulation (auto mA), and angular current modulation (smart mA), dose measurements were performed using two lines of optically stimulated luminescence dosimeters, one of which was placed near the phantom center and the other on the surface. Dose calculations were performed on the central and peripheral axes of a cylinder containing water, whose cross-sectional mass was about equal to that of the ATOM phantom in its abdominal region, and the results agreed with the measurements within 28.4%. Conclusions: The described method provides an effective approach that takes into account subject size, scan length, and constant or variable tube current to evaluate CT dose to a shift-invariant medium. For a clinical CT scan, dose calculations may be performed with a water-containing cylinder whose cross-sectional mass is equal to that of the subject. This method has the potential to substantially improve evaluations of patient dose from clinical CT scans, compared to CTDI{sub vol}, size-specific dose estimate (SSDE), or the dose evaluated for a TCM scan with a constant tube current equal to the average tube current of the TCM scan.« less

  13. D Modelling and Rapid Prototyping for Cardiovascular Surgical Planning - Two Case Studies

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Remondino, F.; Uccheddu, F.; Gallo, M.; Gerosa, G.

    2016-06-01

    In the last years, cardiovascular diagnosis, surgical planning and intervention have taken advantages from 3D modelling and rapid prototyping techniques. The starting data for the whole process is represented by medical imagery, in particular, but not exclusively, computed tomography (CT) or multi-slice CT (MCT) and magnetic resonance imaging (MRI). On the medical imagery, regions of interest, i.e. heart chambers, valves, aorta, coronary vessels, etc., are segmented and converted into 3D models, which can be finally converted in physical replicas through 3D printing procedure. In this work, an overview on modern approaches for automatic and semiautomatic segmentation of medical imagery for 3D surface model generation is provided. The issue of accuracy check of surface models is also addressed, together with the critical aspects of converting digital models into physical replicas through 3D printing techniques. A patient-specific 3D modelling and printing procedure (Figure 1), for surgical planning in case of complex heart diseases was developed. The procedure was applied to two case studies, for which MCT scans of the chest are available. In the article, a detailed description on the implemented patient-specific modelling procedure is provided, along with a general discussion on the potentiality and future developments of personalized 3D modelling and printing for surgical planning and surgeons practice.

  14. Effect of Noopept on Dynamics of Intracellular Calcium in Neurons of Cultured Rat Hippocampal Slices.

    PubMed

    Kolbaev, S N; Aleksandrova, O P; Sharonova, I N; Skrebitsky, V G

    2018-01-01

    A neuroprotective and nootropic drug Noopept increased the frequency of spontaneous calcium transients in neurons of CA1 radial layer in cultured rat hippocampal slices. In contrast, the drug exerted no significant effect on intracellular calcium concentration and its dynamics in neurons of hippocampal CA1 pyramidal layer.

  15. Accelerating Magnetic Resonance Fingerprinting (MRF) using t-Blipped Simultaneous Multi-Slice (SMS) acquisition

    PubMed Central

    Ye, Huihui; Ma, Dan; Jiang, Yun; Cauley, Stephen F.; Du, Yiping; Wald, Lawrence L.; Griswold, Mark A.; Setsompop, Kawin

    2015-01-01

    Purpose We incorporate Simultaneous Multi-Slice (SMS) acquisition into MR Fingerprinting (MRF) to accelerate the MRF acquisition. Methods The t-Blipped SMS-MRF method is achieved by adding a Gz blip before each data acquisition window and balancing it with a Gz blip of opposing polarity at the end of each TR. Thus the signal from different simultaneously excited slices are encoded with different phases without disturbing the signal evolution. Further, by varying the Gz blip area and/or polarity as a function of TR, the slices’ differential phase can also be made to vary as a function of time. For reconstruction of t-Blipped SMS-MRF data, we demonstrate a combined slice-direction SENSE and modified dictionary matching method. Results In Monte Carlo simulation, the parameter mapping from Multi-band factor (MB)=2 t-Blipped SMS-MRF shows good accuracy and precision when compared to results from reference conventional MRF data with concordance correlation coefficients (CCC) of 0.96 for T1 estimates and 0.90 for T2 estimates. For in vivo experiments, T1 and T2 maps from MB=2 t-Blipped SMS-MRF have a high agreement with ones from conventional MRF. Conclusions The MB=2 t-Blipped SMS-MRF acquisition/reconstruction method has been demonstrated and validated to provide more rapid parameter mapping in the MRF framework. PMID:26059430

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, T; Kearney, V; Liu, H

    Purpose: Dynamic tumor tracking or motion compensation techniques have proposed to modify beam delivery following lung tumor motion on the flight. Conventional treatment plan QA could be performed in advance since every delivery may be different. Markerless lung tumor tracking using beams eye view EPID images provides a best treatment evaluation mechanism. The purpose of this study is to improve the accuracy of the online markerless lung tumor motion tracking method. Methods: The lung tumor could be located on every frame of MV images during radiation therapy treatment by comparing with corresponding digitally reconstructed radiograph (DRR). A kV-MV CT correspondingmore » curve is applied on planning kV CT to generate MV CT images for patients in order to enhance the similarity between DRRs and MV treatment images. This kV-MV CT corresponding curve was obtained by scanning a same CT electron density phantom by a kV CT scanner and MV scanner (Tomotherapy) or MV CBCT. Two sets of MV DRRs were then generated for tumor and anatomy without tumor as the references to tracking the tumor on beams eye view EPID images. Results: Phantom studies were performed on a Varian TrueBeam linac. MV treatment images were acquired continuously during each treatment beam delivery at 12 gantry angles by iTools. Markerless tumor tracking was applied with DRRs generated from simulated MVCT. Tumors were tracked on every frame of images and compared with expected positions based on programed phantom motion. It was found that the average tracking error were 2.3 mm. Conclusion: This algorithm is capable of detecting lung tumors at complicated environment without implanting markers. It should be noted that the CT data has a slice thickness of 3 mm. This shows the statistical accuracy is better than the spatial accuracy. This project has been supported by a Varian Research Grant.« less

  17. Virtobot--a multi-functional robotic system for 3D surface scanning and automatic post mortem biopsy.

    PubMed

    Ebert, Lars Christian; Ptacek, Wolfgang; Naether, Silvio; Fürst, Martin; Ross, Steffen; Buck, Ursula; Weber, Stefan; Thali, Michael

    2010-03-01

    The Virtopsy project, a multi-disciplinary project that involves forensic science, diagnostic imaging, computer science, automation technology, telematics and biomechanics, aims to develop new techniques to improve the outcome of forensic investigations. This paper presents a new approach in the field of minimally invasive virtual autopsy for a versatile robotic system that is able to perform three-dimensional (3D) surface scans as well as post mortem image-guided soft tissue biopsies. The system consists of an industrial six-axis robot with additional extensions (i.e. a linear axis to increase working space, a tool-changing system and a dedicated safety system), a multi-slice CT scanner with equipment for angiography, a digital photogrammetry and 3D optical surface-scanning system, a 3D tracking system, and a biopsy end effector for automatic needle placement. A wax phantom was developed for biopsy accuracy tests. Surface scanning times were significantly reduced (scanning times cut in half, calibration three times faster). The biopsy module worked with an accuracy of 3.2 mm. Using the Virtobot, the surface-scanning procedure could be standardized and accelerated. The biopsy module is accurate enough for use in biopsies in a forensic setting. The Virtobot can be utilized for several independent tasks in the field of forensic medicine, and is sufficiently versatile to be adapted to different tasks in the future. (c) 2009 John Wiley & Sons, Ltd.

  18. Third version of vendor-specific model-based iterativereconstruction (Veo 3.0): evaluation of CT image quality in the abdomen using new noise reduction presets and varied slice optimization.

    PubMed

    Telesmanich, Morgan E; Jensen, Corey T; Enriquez, Jose L; Wagner-Bartak, Nicolaus A; Liu, Xinming; Le, Ott; Wei, Wei; Chandler, Adam G; Tamm, Eric P

    2017-08-01

    To qualitatively and quantitatively compare abdominal CT images reconstructed with a newversion of model-based iterative reconstruction (Veo 3.0; GE Healthcare Waukesha, WI) utilizing varied presetsof resolution preference, noise reduction and slice optimization. This retrospective study was approved by our Institutional Review Board and was Health Insurance Portability and Accountability Act compliant. The raw datafrom 30 consecutive patients who had undergone CT abdomen scanning were used to reconstructfour clinical presets of 3.75mm axial images using Veo 3.0: 5% resolution preference (RP05n), 5%noise reduction (NR05) and 40% noise reduction (NR40) with new 3.75mm "sliceoptimization," as well as one set using RP05 with conventional 0.625mm "slice optimization" (RP05c). The images were reviewed by two independent readers in a blinded, randomized manner using a 5-point Likert scale as well as a 5-point comparative scale. Multiple two-dimensional circular regions of interest were defined for noise and contrast-to-noise ratio measurements. Line profiles were drawn across the 7 lp cm -1 bar pattern of the Catphan 600 phantom for evaluation of spatial resolution. The NR05 image set was ranked as the best series in overall image quality (mean difference inrank 0.48, 95% CI [0.081-0.88], p = 0.01) and with specific reference to liver evaluation (meandifference 0.46, 95% CI [0.030-0.89], p = 0.03), when compared with the secondbest series ineach category. RP05n was ranked as the best for bone evaluation. NR40 was ranked assignificantly inferior across all assessed categories. Although the NR05 and RP05c image setshad nearly the same contrast-to-noise ratio and spatial resolution, NR05 was generally preferred. Image noise and spatial resolution increased along a spectrum with RP05n the highest and NR40the lowest. Compared to RP05n, the average noise was 21.01% lower for NR05, 26.88%lower for RP05c and 50.86% lower for NR40. Veo 3.0 clinical presets allow for selection of image noise and spatial resolution balance; for contrast-enhanced CT evaluation of the abdomen, the 5% noise reduction preset with 3.75 mm slice optimization (NR05) was generally ranked superior qualitatively and, relative to other series, was in the middle of the spectrum with reference to image noise and spatial resolution. Advances in knowledge: To our knowledge, this is the first study of Veo 3.0 noise reduction presets and varied slice optimization. This study provides insight into the behaviour of slice optimization and documents the degree of noise reduction and spatial resolution changes that users can expect across various Veo 3.0 clinical presets. These results provide important parameters to guide preset selection for both clinical and research purposes.

  19. Early bronchiectasis in cystic fibrosis detected by surveillance CT.

    PubMed

    Pillarisetti, Naveen; Linnane, Barry; Ranganathan, Sarath

    2010-08-01

    There is emerging evidence that cystic fibrosis lung disease begins early in infancy. Newborn screening allows early detection and surveillance of pulmonary disease and the possibility of early intervention in this life-shortening condition. We report two children with cystic fibrosis who underwent a comprehensive assessment from diagnosis that included measurement of lung function, limited-slice high-resolution CT and BAL performed annually. Early aggressive surveillance enabled significant lung disease and bronchiectasis to be detected during the first few years of life and led to a change in management, highlighting a clinical role for CT scanning during the preschool years in children with cystic fibrosis.

  20. Semiautomated hybrid algorithm for estimation of three-dimensional liver surface in CT using dynamic cellular automata and level-sets.

    PubMed

    Dakua, Sarada Prasad; Abinahed, Julien; Al-Ansari, Abdulla

    2015-04-01

    Liver segmentation continues to remain a major challenge, largely due to its intense complexity with surrounding anatomical structures (stomach, kidney, and heart), high noise level and lack of contrast in pathological computed tomography (CT) data. We present an approach to reconstructing the liver surface in low contrast CT. The main contributions are: (1) a stochastic resonance-based methodology in discrete cosine transform domain is developed to enhance the contrast of pathological liver images, (2) a new formulation is proposed to prevent the object boundary, resulting from the cellular automata method, from leaking into the surrounding areas of similar intensity, and (3) a level-set method is suggested to generate intermediate segmentation contours from two segmented slices distantly located in a subject sequence. We have tested the algorithm on real datasets obtained from two sources, Hamad General Hospital and medical image computing and computer-assisted interventions grand challenge workshop. Various parameters in the algorithm, such as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text], play imperative roles, thus their values are precisely selected. Both qualitative and quantitative evaluation performed on liver data show promising segmentation accuracy when compared with ground truth data reflecting the potential of the proposed method.

  1. SU-F-I-38: Patient Organ Specific Dose Assessment in Coronary CT Angiograph Using Voxellaized Volume Dose Index in Monte Carlo Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallal, Mohammadi Gh.; Riyahi, Alam N.; Graily, Gh.

    Purpose: Clinical use of multi detector computed tomography(MDCT) in diagnosis of diseases due to high speed in data acquisition and high spatial resolution is significantly increased. Regarding to the high radiation dose in CT and necessity of patient specific radiation risk assessment, the adoption of new method in the calculation of organ dose is completely required and necessary. In this study by introducing a conversion factor, patient organ dose in thorax region based on CT image data using MC system was calculated. Methods: The geometry of x-ray tube, inherent filter, bow tie filter and collimator were designed using EGSnrc/BEAMnrc MC-systemmore » component modules according to GE-Light-speed 64-slices CT-scanner geometry. CT-scan image of patient thorax as a specific phantom was voxellised with 6.25mm3 in voxel and 64×64×20 matrix size. Dose to thorax organ include esophagus, lung, heart, breast, ribs, muscle, spine, spinal cord with imaging technical condition of prospectively-gated-coronary CT-Angiography(PGT) as a step and shoot method, were calculated. Irradiation of patient specific phantom was performed using a dedicated MC-code as DOSXYZnrc with PGT-irradiation model. The ratio of organ dose value calculated in MC-method to the volume CT dose index(CTDIvol) reported by CT-scanner machine according to PGT radiation technique has been introduced as conversion factor. Results: In PGT method, CTDIvol was 10.6mGy and Organ Dose/CTDIvol conversion factor for esophagus, lung, heart, breast, ribs, muscle, spine and spinal cord were obtained as; 0.96, 1.46, 1.2, 3.28. 6.68. 1.35, 3.41 and 0.93 respectively. Conclusion: The results showed while, underestimation of patient dose was found in dose calculation based on CTDIvol, also dose to breast is higher than the other studies. Therefore, the method in this study can be used to provide the actual patient organ dose in CT imaging based on CTDIvol in order to calculation of real effective dose(ED) based on organ dose. This work has been supported by the research chancellor of tehran university of medical sciences(tums), school of medicine, Tehran, Iran.« less

  2. The effects of slice thickness and radiation dose level variations on computer-aided diagnosis (CAD) nodule detection performance in pediatric chest CT scans

    NASA Astrophysics Data System (ADS)

    Emaminejad, Nastaran; Lo, Pechin; Ghahremani, Shahnaz; Kim, Grace H.; Brown, Matthew S.; McNitt-Gray, Michael F.

    2017-03-01

    For pediatric oncology patients, CT scans are performed to assess treatment response and disease progression. CAD may be used to detect lung nodules which would reflect metastatic disease. The purpose of this study was to investigate the effects of reducing radiation dose and varying slice thickness on CAD performance in the detection of solid lung nodules in pediatric patients. The dataset consisted of CT scans of 58 pediatric chest cases, from which 7 cases had lung nodules detected by radiologist, and a total of 28 nodules were marked. For each case, the original raw data (sinogram data) was collected and a noise addition model was used to simulate reduced-dose scans of 50%, 25% and 10% of the original dose. In addition, the original and reduced-dose raw data were reconstructed at slice thicknesses of 1.5 and 3 mm using a medium sharp (B45) kernel; the result was eight datasets (4 dose levels x 2 thicknesses) for each case An in-house CAD tool was applied on all reconstructed scans, and results were compared with the radiologist's markings. Patient level mean sensitivities at 3mm thickness were 24%, 26%, 25%, 27%, and at 1.5 mm thickness were 23%, 29%, 35%, 36% for 10%, 25%, 50%, and 100% dose level, respectively. Mean FP numbers were 1.5, 0.9, 0.8, 0.7 at 3 mm and 11.4, 3.5, 2.8, 2.8 at 1.5 mm thickness for 10%, 25%, 50%, and 100% dose level respectively. CAD sensitivity did not change with dose level for 3mm thickness, but did change with dose for 1.5 mm. False Positives increased at low dose levels where noise values were high.

  3. Imaging of Herniated Discs of the Cervical Spine: Inter-Modality Differences between 64-Slice Multidetector CT and 1.5-T MRI

    PubMed Central

    Yi, Ji Sook; Han, Jong Kyu; Kim, Hyun-Joo

    2015-01-01

    Objective To assess inter-modality variability when evaluating cervical intervertebral disc herniation using 64-slice multidetector-row computed tomography (MDCT) and magnetic resonance imaging (MRI). Materials and Methods Three musculoskeletal radiologists independently reviewed cervical spine 1.5-T MRI and 64-slice MDCT data on C2-3 though C6-7 of 51 patients in the context of intervertebral disc herniation. Interobserver and inter-modality agreements were expressed as unweighted kappa values. Weighted kappa statistics were used to assess the extents of agreement in terms of the number of involved segments (NIS) in disc herniation and epicenter measurements collected using MDCT and MRI. Results The interobserver agreement rates upon evaluation of disc morphology by the three radiologists were in fair to moderate agreement (k = 0.39-0.53 for MDCT images; k = 0.45-0.56 for MRIs). When the disc morphology was categorized into two and four grades, the inter-modality agreement rates were moderate (k-value, 0.59) and substantial (k-value, 0.66), respectively. The inter-modality agreements for evaluations of the NIS (k-value, 0.78) and the epicenter (k-value, 0.79) were substantial. Also, the interobserver agreements for the NIS (CT; k-value, 0.85 and MRI; k-value, 0.88) and epicenter (CT; k-value, 0.74 and MRI; k-value, 0.70) evaluations by two readers were substantial. MDCT tended to underestimate the extent of herniated disc lesions compared with MRI. Conclusion Multidetector-row computed tomography and MRI showed a moderate-to-substantial degree of inter-modality agreement for the assessment of herniated cervical discs. MDCT images have a tendency to underestimate the anterior/posterior extent of the herniated disc compared with MRI. PMID:26175589

  4. Development and application of pulmonary structure-function registration methods: towards pulmonary image-guidance tools for improved airway targeted therapies and outcomes

    NASA Astrophysics Data System (ADS)

    Guo, Fumin; Pike, Damien; Svenningsen, Sarah; Coxson, Harvey O.; Drozd, John J.; Yuan, Jing; Fenster, Aaron; Parraga, Grace

    2014-03-01

    Objectives: We aimed to develop a way to rapidly generate multi-modality (MRI-CT) pulmonary imaging structurefunction maps using novel non-rigid image registration methods. This objective is part of our overarching goal to provide an image processing pipeline to generate pulmonary structure-function maps and guide airway-targeted therapies. Methods: Anatomical 1H and functional 3He MRI were acquired in 5 healthy asymptomatic ex-smokers and 7 ex-smokers with chronic obstructive pulmonary disease (COPD) at inspiration breath-hold. Thoracic CT was performed within ten minutes of MRI using the same breath-hold volume. Landmark-based affine registration methods previously validated for imaging of COPD, was based on corresponding fiducial markers located in both CT and 1H MRI coronal slices and compared with shape-based CT-MRI non-rigid registration. Shape-based CT-MRI registration was developed by first identifying the shapes of the lung cavities manually, and then registering the two shapes using affine and thin-plate spline algorithms. We compared registration accuracy using the fiducial localization error (FLE) and target registration error (TRE). Results: For landmark-based registration, the TRE was 8.4±5.3 mm for whole lung and 7.8±4.6 mm for the R and L lungs registered independently (p=0.4). For shape-based registration, the TRE was 8.0±4.6 mm for whole lung as compared to 6.9±4.4 mm for the R and L lung registered independently and this difference was significant (p=0.01). The difference for shape-based (6.9±4.4 mm) and landmark-based R and L lung registration (7.8±4.6 mm) was also significant (p=.04) Conclusion: Shape-based registration TRE was significantly improved compared to landmark-based registration when considering L and R lungs independently.

  5. Directional Multi-scale Modeling of High-Resolution Computed Tomography (HRCT) Lung Images for Diffuse Lung Disease Classification

    NASA Astrophysics Data System (ADS)

    Vo, Kiet T.; Sowmya, Arcot

    A directional multi-scale modeling scheme based on wavelet and contourlet transforms is employed to describe HRCT lung image textures for classifying four diffuse lung disease patterns: normal, emphysema, ground glass opacity (GGO) and honey-combing. Generalized Gaussian density parameters are used to represent the detail sub-band features obtained by wavelet and contourlet transforms. In addition, support vector machines (SVMs) with excellent performance in a variety of pattern classification problems are used as classifier. The method is tested on a collection of 89 slices from 38 patients, each slice of size 512x512, 16 bits/pixel in DICOM format. The dataset contains 70,000 ROIs of those slices marked by experienced radiologists. We employ this technique at different wavelet and contourlet transform scales for diffuse lung disease classification. The technique presented here has best overall sensitivity 93.40% and specificity 98.40%.

  6. Bias Field Inconsistency Correction of Motion-Scattered Multislice MRI for Improved 3D Image Reconstruction

    PubMed Central

    Kim, Kio; Habas, Piotr A.; Rajagopalan, Vidya; Scott, Julia A.; Corbett-Detig, James M.; Rousseau, Francois; Barkovich, A. James; Glenn, Orit A.; Studholme, Colin

    2012-01-01

    A common solution to clinical MR imaging in the presence of large anatomical motion is to use fast multi-slice 2D studies to reduce slice acquisition time and provide clinically usable slice data. Recently, techniques have been developed which retrospectively correct large scale 3D motion between individual slices allowing the formation of a geometrically correct 3D volume from the multiple slice stacks. One challenge, however, in the final reconstruction process is the possibility of varying intensity bias in the slice data, typically due to the motion of the anatomy relative to imaging coils. As a result, slices which cover the same region of anatomy at different times may exhibit different sensitivity. This bias field inconsistency can induce artifacts in the final 3D reconstruction that can impact both clinical interpretation of key tissue boundaries and the automated analysis of the data. Here we describe a framework to estimate and correct the bias field inconsistency in each slice collectively across all motion corrupted image slices. Experiments using synthetic and clinical data show that the proposed method reduces intensity variability in tissues and improves the distinction between key tissue types. PMID:21511561

  7. Prevalence of ligamentum arteriosum calcification on multi-section spiral CT and digital radiography.

    PubMed

    Hong, Gil-Sun; Goo, Hyun Woo; Song, Jae-Woo

    2012-06-01

    To investigate the prevalence of ligamentum arteriosum calcification (LAC) on multi-section spiral CT and digital radiography. Five hundred and eight children and 232 adults who performed multi-section chest CT were included in this study and were divided into nine age groups: A (0-5 years), B (6-10 years), C (11-15 years), D (16-20 years), E (21-30 years), F (31-40 years), G (41-50 years), H (51-60 years), and I (61-70 years). Two radiologists assessed the presence of LAC on axial and coronal CT images, defined as focal calcific density on both or on one plane with attenuation >100 Hounsfield unit. The prevalence of LAC on CT was compared between children and adults, and between unenhanced and enhanced CT in children. The prevalence of LAC on digital radiography was evaluated in 476 children. The prevalence of definite LAC on unenhanced multi-section CT was significantly higher in children (37.8 %) than in adults (11.2 %) (P < 0.001), with prevalences in groups: A through I of 35.8, 48.7, 35.1, 28.6, 25.0, 10.2, 15.5, 7.8, and 5.6 %, respectively. The prevalences of indeterminate LAC in age groups A-I on unenhanced multi-section CT were 4.5, 12.8, 8.1, 19.0, 0.0, 0.0, 0.0, 2.0, and 1.9 %. In children, the prevalence of LAC was significantly higher on unenhanced than on enhanced CT (37.8 vs. 16.4 %, P < 0.001). The prevalence of LAC on digital radiography was 3.6 % in children. LAC is frequently observed in children and adults on multi-section spiral CT, more frequently than previously reported. Compared with that on multi-section spiral CT, the prevalence of LAC on digital radiography is substantially low.

  8. Timeframe of socket cortication after tooth extraction: A retrospective radiographic study.

    PubMed

    Bertl, Kristina; Kukla, Edmund Benjamin; Albugami, Rajaa; Beck, Florian; Gahleitner, André; Stavropoulos, Andreas

    2018-01-01

    To assess the timeframe between tooth extraction and radiographically detectable socket cortication in humans. Two hundred and fifty patients with a CT scan ≤36 months after tooth extraction were included. First, three orthoradial multiplanar reconstruction slices, representing the major part of the extraction socket, were scored regarding the degree of bone healing as (i) healed, that is, complete/continuous cortication of the socket entrance, or (ii) non-healed. Thereafter, based on the results of all three slices, the stage of cortication of the extraction socket, as one unit, was classified as (i) non-corticated, that is, all three slices judged as non-healed, (ii) partially corticated, that is, 1 or 2 slices judged as non-healed, or (iii) completely corticated, that is, all three slices judged as healed. The possible effect of several independent parameters, that is, age, gender, timeframe between tooth extraction and CT scan, tooth type, extent of radiographic bone loss of the extracted tooth, tooth-gap type, smoking status, presence of any systemic disease, and medication intake, on cortication status was statistically evaluated. Three to 6 months after tooth extraction, 27% of the sockets were judged as non-corticated and 53% were judged as partially corticated. After 9-12 months, >80% of the sockets were corticated, while some incompletely corticated sockets were detected up to 15 months after extraction. Each additional month after tooth extraction contributed significantly to a higher likelihood of a more advanced stage of cortication, while radiographic bone loss ≥75% significantly prolonged cortication time; no other independent variable had a significant effect. The results indicate a considerably long timeframe until complete cortication of an extraction socket, that is, 3-6 months after tooth extraction 3 of 4 sockets were still not completely corticated, and only after 9-12 months, complete cortication was observed in about 80% of the sockets. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Medical Image Compression Using a New Subband Coding Method

    NASA Technical Reports Server (NTRS)

    Kossentini, Faouzi; Smith, Mark J. T.; Scales, Allen; Tucker, Doug

    1995-01-01

    A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is generalized and applied to medical image compression. In particular, the corresponding subband coder is used to encode Computed Tomography (CT) axial slice head images, where statistical dependencies between neighboring image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression performance. The subband coder features many advantages such as relatively low complexity and operation over a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder is relatively good, both objectively and subjectively.

  10. Improved attenuation correction for respiratory gated PET/CT with extended-duration cine CT: a simulation study

    NASA Astrophysics Data System (ADS)

    Zhang, Ruoqiao; Alessio, Adam M.; Pierce, Larry A.; Byrd, Darrin W.; Lee, Tzu-Cheng; De Man, Bruno; Kinahan, Paul E.

    2017-03-01

    Due to the wide variability of intra-patient respiratory motion patterns, traditional short-duration cine CT used in respiratory gated PET/CT may be insufficient to match the PET scan data, resulting in suboptimal attenuation correction that eventually compromises the PET quantitative accuracy. Thus, extending the duration of cine CT can be beneficial to address this data mismatch issue. In this work, we propose to use a long-duration cine CT for respiratory gated PET/CT, whose cine acquisition time is ten times longer than a traditional short-duration cine CT. We compare the proposed long-duration cine CT with the traditional short-duration cine CT through numerous phantom simulations with 11 respiratory traces measured during patient PET/CT scans. Experimental results show that, the long-duration cine CT reduces the motion mismatch between PET and CT by 41% and improves the overall reconstruction accuracy by 42% on average, as compared to the traditional short-duration cine CT. The long-duration cine CT also reduces artifacts in PET images caused by misalignment and mismatch between adjacent slices in phase-gated CT images. The improvement in motion matching between PET and CT by extending the cine duration depends on the patient, with potentially greater benefits for patients with irregular breathing patterns or larger diaphragm movements.

  11. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    PubMed Central

    Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711

  12. Non-invasive detection of aortic and coronary atherosclerosis in homozygous familial hypercholesterolemia by 64 slice multi-detector row computed tomography angiography

    USDA-ARS?s Scientific Manuscript database

    Homozygous familial hypercholesterolemia (HoFH) is a rare disorder characterized by the early onset of atherosclerosis, often at the ostia of coronary arteries. In this study we document for the first time that aortic and coronary atherosclerosis can be detected using 64 slice multiple detector row ...

  13. TU-AB-207A-03: Image Quality, Dose, and Clinical Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, F.

    Practicing medical physicists are often time charged with the tasks of evaluating and troubleshooting complex image quality issues related to CT scanners. This course will equip them with a solid and practical understanding of common CT imaging chain and its major components with emphasis on acquisition physics and hardware, reconstruction, artifacts, image quality, dose, and advanced clinical applications. The core objective is to explain the effects of these major system components on the image quality. This course will not focus on the rapid-changing advanced technologies given the two-hour time limit, but the fundamental principles discussed in this course may facilitatemore » better understanding of those more complicated technologies. The course will begin with an overview of CT acquisition physics and geometry. X-ray tube and CT detector are important acquisition hardware critical to the overall image quality. Each of these two subsystems consists of several major components. An in-depth description of the function and failure modes of these components will be provided. Examples of artifacts related to these failure modes will be presented: off-focal radiation, tube arcing, heel effect, oil bubble, offset drift effect, cross-talk effect, and bad pixels. The fundamentals of CT image reconstruction will first be discussed on an intuitive level. Approaches that do not require rigorous derivation of mathematical formulations will be presented. This is followed by a detailed derivation of the Fourier slice theorem: the foundation of the FBP algorithm. FBP for parallel-beam, fan-beam, and cone-beam geometries will be discussed. To address the issue of radiation dose related to x-ray CT, recent advances in iterative reconstruction, their advantages, and clinical applications will also be described. Because of the nature of fundamental physics and mathematics, limitations in data acquisition, and non-ideal conditions of major system components, image artifact often arise in the reconstructed images. Because of the limited scope of this course, only major imaging artifacts, their appearance, and possible mitigation and corrections will be discussed. Assessment of the performance of a CT scanner is a complicated subject. Procedures to measure common image quality metrics such as high contrast spatial resolution, low contrast detectability, and slice profile will be described. The reason why these metrics used for FBP may not be sufficient for statistical iterative reconstruction will be explained. Optimizing radiation dose requires comprehension of CT dose metrics. This course will briefly describe various dose metrics, and interaction with acquisition parameters and patient habitus. CT is among the most frequently used imaging tools due to its superior image quality, easy to operate, and a broad range of applications. This course will present several interesting CT applications such as a mobile CT unit on an ambulance for stroke patients, low dose lung cancer screening, and single heartbeat cardiac CT. Learning Objectives: Understand the function and impact of major components of X-ray tube on the image quality. Understand the function and impact of major components of CT detector on the image quality. Be familiar with the basic procedure of CT image reconstruction. Understand the effect of image reconstruction on CT image quality and artifacts. Understand the root causes of common CT image artifacts. Be familiar with image quality metrics especially high and low contrast resolution, noise power spectrum, slice sensitivity profile, etc. Understand why basic image quality metrics used for FBP may not be sufficient to characterize the performance of advanced iterative reconstruction. Be familiar with various CT dose metrics and their interaction with acquisition parameters. New development in advanced CT clinical applications. JH: Employee of GE Healthcare. FD: No disclosure.; J. Hsieh, Jiang Hsieh is an employee of GE Healthcare.« less

  14. Dynamic volume vs respiratory correlated 4DCT for motion assessment in radiation therapy simulation.

    PubMed

    Coolens, Catherine; Bracken, John; Driscoll, Brandon; Hope, Andrew; Jaffray, David

    2012-05-01

    Conventional (i.e., respiratory-correlated) 4DCT exploits the repetitive nature of breathing to provide an estimate of motion; however, it has limitations due to binning artifacts and irregular breathing in actual patient breathing patterns. The aim of this work was to evaluate the accuracy and image quality of a dynamic volume, CT approach (4D(vol)) using a 320-slice CT scanner to minimize these limitations, wherein entire image volumes are acquired dynamically without couch movement. This will be compared to the conventional respiratory-correlated 4DCT approach (RCCT). 4D(vol) CT was performed and characterized on an in-house, programmable respiratory motion phantom containing multiple geometric and morphological "tumor" objects over a range of regular and irregular patient breathing traces obtained from 3D fluoroscopy and compared to RCCT. The accuracy of volumetric capture and breathing displacement were evaluated and compared with the ground truth values and with the results reported using RCCT. A motion model was investigated to validate the number of motion samples needed to obtain accurate motion probability density functions (PDF). The impact of 4D image quality on this accuracy was then investigated. Dose measurements using volumetric and conventional scan techniques were also performed and compared. Both conventional and dynamic volume 4DCT methods were capable of estimating the programmed displacement of sinusoidal motion, but patient breathing is known to not be regular, and obvious differences were seen for realistic, irregular motion. The mean RCCT amplitude error averaged at 4 mm (max. 7.8 mm) whereas the 4D(vol) CT error stayed below 0.5 mm. Similarly, the average absolute volume error was lower with 4D(vol) CT. Under irregular breathing, the 4D(vol) CT method provides a close description of the motion PDF (cross-correlation 0.99) and is able to track each object, whereas the RCCT method results in a significantly different PDF from the ground truth, especially for smaller tumors (cross-correlation ranging between 0.04 and 0.69). For the protocols studied, the dose measurements were higher in the 4D(vol) CT method (40%), but it was shown that significant mAs reductions can be achieved by a factor of 4-5 while maintaining image quality and accuracy. 4D(vol) CT using a scanner with a large cone-angle is a promising alternative for improving the accuracy with which respiration-induced motion can be characterized, particularly for patients with irregular breathing motion. This approach also generates 4DCT image data with a reduced total scan time compared to a RCCT scan, without the need for image binning or external respiration signals within the 16 cm scan length. Scan dose can be made comparable to RCCT by optimization of the scan parameters. In addition, it provides the possibility of measuring breathing motion for more than one breathing cycle to assess stability and obtain a more accurate motion PDF, which is currently not feasible with the conventional RCCT approach.

  15. SU-E-I-25: Determining Tube Current, Tube Voltage and Pitch Suitable for Low- Dose Lung Screening CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, K; Matthews, K

    2014-06-01

    Purpose: The quality of a computed tomography (CT) image and the dose delivered during its acquisition depend upon the acquisition parameters used. Tube current, tube voltage, and pitch are acquisition parameters that potentially affect image quality and dose. This study investigated physicians' abilities to characterize small, solid nodules in low-dose CT images for combinations of current, voltage and pitch, for three CT scanner models. Methods: Lung CT images was acquired of a Data Spectrum anthropomorphic torso phantom with various combinations of pitch, tube current, and tube voltage; this phantom was used because acrylic beads of various sizes could be placedmore » within the lung compartments to simulate nodules. The phantom was imaged on two 16-slice scanners and a 64-slice scanner. The acquisition parameters spanned a range of estimated CTDI levels; the CTDI estimates from the acquisition software were verified by measurement. Several experienced radiologists viewed the phantom lung CT images and noted nodule location, size and shape, as well as the acceptability of overall image quality. Results: Image quality for assessment of nodules was deemed unsatisfactory for all scanners at 80 kV (any tube current) and at 35 mA (any tube voltage). Tube current of 50 mA or more at 120 kV resulted in similar assessments from all three scanners. Physician-measured sphere diameters were closer to actual diameters for larger spheres, higher tube current, and higher kV. Pitch influenced size measurements less for larger spheres than for smaller spheres. CTDI was typically overestimated by the scanner software compared to measurement. Conclusion: Based on this survey of acquisition parameters, a low-dose CT protocol of 120 kV, 50 mA, and pitch of 1.4 is recommended to balance patient dose and acceptable image quality. For three models of scanners, this protocol resulted in estimated CTDIs from 2.9–3.6 mGy.« less

  16. Dose reduction for abdominal and pelvic MDCT after change to graduated weight-based protocol for selecting quality reference tube current, peak kilovoltage, and slice collimation.

    PubMed

    Herts, Brian R; Baker, Mark E; Obuchowski, Nancy; Primak, Andrew; Schneider, Erika; Rhana, Harpreet; Dong, Frank

    2013-06-01

    The purpose of this article is to determine the decrease in volume CT dose index (CTDI(vol)) and dose-length product (DLP) achieved by switching from fixed quality reference tube current protocols with automatic tube current modulation to protocols adjusting the quality reference tube current, slice collimation, and peak kilovoltage according to patient weight. All adult patients who underwent CT examinations of the abdomen or abdomen and pelvis during 2010 using weight-based protocols who also underwent a CT examination in 2008 or 2009 using fixed quality reference tube current protocols were identified from the radiology information system. Protocol pages were electronically retrieved, and the CT model, examination date, scan protocol, CTDI(vol), and DLP were extracted from the DICOM header or by optical character recognition. There were 15,779 scans with dose records for 2700 patients. Changes in CTDI(vol) and DLP were compared only between examinations of the same patient and same CT system model for examinations performed in 2008 or 2009 and those performed in 2010. The final analysis consisted of 1117 comparisons in 1057 patients, and 1209 comparisons in 988 patients for CTDI(vol) and DLP, respectively. The change to a weight-based protocol resulted in a statistically significant reduction in CTDI(vol) and DLP on three MDCT system models (p < 0.001). The largest average CTDI(vol) decrease was 13.9%, and the largest average DLP decrease was 16.1% on a 64-MDCT system. Both the CTDI(vol) and DLP decreased the most for patients who weighed less than 250 lb (112.5 kg). Adjusting the CT protocol by selecting parameters according to patient weight is a viable method for reducing CT radiation dose. The largest reductions occurred in the patients weighing less than 250 lb.

  17. Do magnetic resonance imaging and computed tomography provide equivalent measures of rotator cuff muscle size in glenohumeral osteoarthritis?

    PubMed

    Chalmers, Peter N; Beck, Lindsay; Stertz, Irene; Aleem, Alexander; Keener, Jay D; Henninger, Heath B; Tashjian, Robert Z

    2018-05-10

    Rotator cuff muscle volume is associated with outcomes after cuff repair and total shoulder arthroplasty. Muscle area on select magnetic resonance imaging (MRI) slices has been shown to be a surrogate for muscle volume. The purpose of this study was to determine whether computed tomography (CT) provides an equivalent measurement of cuff muscle area to a previously validated MRI measurement. We included 30 patients before they were undergoing total shoulder arthroplasty with both preoperative CT and MRI scans performed within 30 days of one another at 1 institution using a consistent protocol. We reoriented CT sagittal and MRI sagittal T1 series orthogonal to the scapular plane. On both CT and MRI scans, we measured the area of the supraspinatus, infraspinatus-teres minor, and subscapularis on 2 standardized slices as previously described. We calculated intraclass correlation coefficients and mean differences. For the 30 subjects included, when MRI and CT were compared, the mean intraclass correlation coefficients were 0.989 (95% confidence interval [CI], 0.976-0.995) for the supraspinatus, 0.978 (95% CI, 0.954-0.989) for the infraspinatus-teres minor, and 0.977 (95% CI, 0.952-0.989) for the subscapularis. The mean differences were 0.2 cm 2 (95% CI, 0.0-0.4 cm 2 ) for the supraspinatus (P = .052), 0.8 cm 2 (95% CI, 0.1-1.4 cm 2 ) for the infraspinatus-teres minor (P = .029), and -0.3 cm 2 (95% CI, -1.2 to 0.5 cm 2 ) for the subscapularis (P = .407). CT provides nearly equivalent measures of cuff muscle area to an MRI technique with previously validated reliability and accuracy. While CT underestimates the infraspinatus area as compared with MRI, the difference is less than 1 cm 2 and thus likely clinically insignificant. Copyright © 2018 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Comparing SUV values of images at PET-CT console and the RT planning console using identical dataset of a study phantom.

    PubMed

    Munshi, Anusheel; Paul, Sayan; Sarkar, Biplab; Bala, Pinkey; Ganesh, Tharmar; Sen, Ishita B; Pant, Vineet; Mohanti, Bidhu K

    2016-01-01

    The use of positron emission tomography (PET) for radiotherapy planning purposes has become increasingly important in the last few years.In the current study, we compared the SUV values of images at the PET CT console to the SUV values obtained at the RT planning workstation. The PET-CT cylindrical body phantom was filled with a uniform 18F solution of 5.3. ± 0.27 kBq/mL radioactivity concentration. PET-CT scans were performed on a16 slice Time of Flight system. On a single day, the three consecutive scans were done at three time points 15 minutes apart to generate time points image data sets titled T1, T2, and T3. SUV calculations were performed by drawing region of interest. (ROI) encompassing the entire hot spot on each slice on the PET-CT console and the iPlan workstation. Minimum SUV, Maximum SUV and the Mean SUV were recorded. Statistical analysis was done using the SPSS software. (SPSS Inc.) (Version 18). The absolute difference in average max SUV values i.e. Max (PET-CT) - Max (iPlan) for the time points T1, T2 and T3 were -0.168 (SD 0.175), -0.172 (SD 0.172) and -0.178 (SD 0.169). The difference in the minimum SUV values were -0.513 (SD 0.428), -0.311 (SD 0.358) and -0.303 (SD 0.322), respectively. Finally, the difference in the mean SUV values were -0.107 (SD 0.040), -0.096 (SD 0.067) and -0.072 (SD 0.044), respectively. Our study found out that the average difference in the two systems for maximum SUV values was < 0.2 absolute units.Our study suggests good reproducibility of SUV between the two systems. The relevance of these findings would be of seminal importance in current and future SUV-based PET-CT-based contouring in treatment planning systems.

  19. Validation of a DIXON-based fat quantification technique for the measurement of visceral fat using a CT-based reference standard.

    PubMed

    Heckman, Katherine M; Otemuyiwa, Bamidele; Chenevert, Thomas L; Malyarenko, Dariya; Derstine, Brian A; Wang, Stewart C; Davenport, Matthew S

    2018-06-27

    The purpose of the study is to determine whether a novel semi-automated DIXON-based fat quantification algorithm can reliably quantify visceral fat using a CT-based reference standard. This was an IRB-approved retrospective cohort study of 27 subjects who underwent abdominopelvic CT within 7 days of proton density fat fraction (PDFF) mapping on a 1.5T MRI. Cross-sectional visceral fat area per slice (cm 2 ) was measured in blinded fashion in each modality at intervertebral disc levels from T12 to L4. CT estimates were obtained using a previously published semi-automated computational image processing system that sums pixels with attenuation - 205 to - 51 HU. MR estimates were obtained using two novel semi-automated DIXON-based fat quantification algorithms that measure visceral fat area by spatially regularizing non-uniform fat-only signal intensity or de-speckling PDFF 2D images and summing pixels with PDFF ≥ 50%. Pearson's correlations and Bland-Altman analyses were performed. Visceral fat area per slice ranged from 9.2 to 429.8 cm 2 for MR and from 1.6 to 405.5 cm 2 for CT. There was a strong correlation between CT and MR methods in measured visceral fat area across all studied vertebral body levels (r = 0.97; n = 101 observations); the least (r = 0.93) correlation was at T12. Bland-Altman analysis revealed a bias of 31.7 cm 2 (95% CI [- 27.1]-90.4 cm 2 ), indicating modestly higher visceral fat assessed by MR. MR- and CT-based visceral fat quantification are highly correlated and have good cross-modality reliability, indicating that visceral fat quantification by either method can yield a stable and reliable biomarker.

  20. Liver Volumetry Plug and Play: Do It Yourself with ImageJ

    PubMed Central

    Dello, Simon A. W. G.; van Dam, Ronald M.; Slangen, Jules J. G.; van de Poll, Marcel C. G.; Bemelmans, Marc H. A.; Greve, Jan Willem W. M.; Beets-Tan, Regina G. H.; Wigmore, Stephen J.

    2007-01-01

    Background A small remnant liver volume is an important risk factor for posthepatectomy liver failure and can be predicted accurately by computed tomography (CT) volumetry using radiologic image analysis software. Unfortunately, this software is expensive and usually requires support by a radiologist. ImageJ is a freely downloadable image analysis software package developed by the National Institute of Health (NIH) and brings liver volumetry to the surgeon’s desktop. We aimed to assess the accuracy of ImageJ for hepatic CT volumetry. Methods ImageJ was downloaded from http://www.rsb.info.nih.gov/ij/. Preoperative CT scans of 15 patients who underwent liver resection for colorectal cancer liver metastases were retrospectively analyzed. Scans were opened in ImageJ; and the liver, all metastases, and the intended parenchymal transection line were manually outlined on each slice. The area of each selected region, metastasis, resection specimen, and remnant liver was multiplied by the slice thickness to calculate volume. Volumes of virtual liver resection specimens measured with ImageJ were compared with specimen weights and calculated volumes obtained during pathology examination after resection. Results There was an excellent correlation between the volumes calculated with ImageJ and the actual measured weights of the resection specimens (r² = 0.98, p < 0.0001). The weight/volume ratio amounted to 0.88 ± 0.04 (standard error) and was in agreement with our earlier findings using CT-linked radiologic software. Conclusion ImageJ can be used for accurate hepatic CT volumetry on a personal computer. This application brings CT volumetry to the surgeon’s desktop at no expense and is particularly useful in cases of tertiary referred patients, who already have a proper CT scan on CD-ROM from the referring institution. Most likely the discrepancy between volume and weight results from exsanguination of the liver after resection. PMID:17726630

  1. Pulmonary Venous Anatomy Imaging with Low-Dose, Prospectively ECG-Triggered, High-Pitch 128-Slice Dual Source Computed Tomography

    PubMed Central

    Thai, Wai-ee; Wai, Bryan; Lin, Kaity; Cheng, Teresa; Heist, E. Kevin; Hoffmann, Udo; Singh, Jagmeet; Truong, Quynh A.

    2012-01-01

    Background Efforts to reduce radiation from cardiac computed tomography (CT) are essential. Using a prospectively triggered, high-pitch dual source CT (DSCT) protocol, we aim to determine the radiation dose and image quality (IQ) in patients undergoing pulmonary vein (PV) imaging. Methods and Results In 94 patients (61±9 years, 71% male) who underwent 128-slice DSCT (pitch 3.4), radiation dose and IQ were assessed and compared between 69 patients in sinus rhythm (SR) and 25 in atrial fibrillation (AF). Radiation dose was compared in a subset of 19 patients with prior retrospective or prospectively triggered CT PV scans without high-pitch. In a subset of 18 patients with prior magnetic resonance imaging (MRI) for PV assessment, PV anatomy and scan duration were compared to high-pitch CT. Using the high-pitch protocol, total effective radiation dose was 1.4 [1.3, 1.9] mSv, with no difference between SR and AF (1.4 vs 1.5 mSv, p=0.22). No high-pitch CT scans were non-diagnostic or had poor IQ. Radiation dose was reduced with high-pitch (1.6 mSv) compared to standard protocols (19.3 mSv, p<0.0001). This radiation dose reduction was seen with SR (1.5 vs 16.7 mSv, p<0.0001) but was more profound with AF (1.9 vs 27.7 mSv, p=0.039). There was excellent agreement of PV anatomy (kappa 0.84, p<0.0001), and a shorter CT scan duration (6 minutes) compared to MRI (41 minutes, p<0.0001). Conclusions Using a high-pitch DSCT protocol, PV imaging can be performed with minimal radiation dose, short scan acquisition, and excellent IQ in patients with SR or AF. This protocol highlights the success of new cardiac CT technology to minimize radiation exposure, giving clinicians a new low-dose imaging alternative to assess PV anatomy. PMID:22586259

  2. Comparison of ultrasonography, radiography and a single computed tomography slice for the identification of fluid within the tympanic bulla of rabbit cadavers.

    PubMed

    King, A M; Posthumus, J; Hammond, G; Sullivan, M

    2012-08-01

    Evaluation of the tympanic bulla (TB) in cases of otitis media in the rabbit can be a diagnostic challenge, although a feature often associated with the condition is the accumulation of fluid or material within the TB. Randomly selected TB from 40 rabbit cadavers were filled with a water-based, water-soluble jelly lubricant. A dorsoventral radiograph and single computed tomography (CT) slice were taken followed by an ultrasound (US) examination. Image interpretation was performed by blinded operators. The content of each TB was determined (fluid or gas) using each technique and the cadavers were frozen and sectioned for confirmation. CT was the most accurate diagnostic method, but US produced better results than radiography. Given the advantages of US over the other imaging techniques, the results suggest that further work is warranted to determine US applications in the evaluation of the rabbit TB and clinical cases of otitis media in this species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. SU-F-J-161: Prostate Contouring in Patients with Bilateral Hip Prostheses: Impact of Using Artifact-Reduced CT Images and MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elzibak, A; Loblaw, A; Morton, G

    Purpose: To investigate the usefulness of metal artifact reduction in CT images of patients with bilateral hip prostheses (BHP) for contouring the prostate and determine if the inclusion of MR images provides additional benefits. Methods: Five patients with BHP were CT scanned using our clinical protocol (140kV, 300mAs, 3mm slices, 1.5mm increment, Philips Medical Systems, OH). Images were reconstructed with the orthopaedic metal artifact reduction (O-MAR) algorithm. MRI scanning was then performed (1.5T, GE Healthcare, WI) with a flat table-top (T{sub 2}-weighted, inherent body coil, FRFSE, 3mm slices with 0mm gap). All images were transferred to Pinnacle (Version 9.2, Philipsmore » Medical Systems). For each patient, two data sets were produced: one containing the O-MAR-corrected CT images and another containing fused MRI and O-MAR-corrected CT images. Four genito-urinary radiation oncologists contoured the prostate of each patient on the O-MAR-corrected CT data. Two weeks later, they contoured the prostate on the fused data set, blinded to all other contours. During each contouring session, the oncologists reported their confidence in the contours (1=very confident, 3=not confident) and the contouring difficulty that they experienced (1=really easy, 4=very challenging). Prostate volumes were computed from the contours and the conformity index was used to evaluate inter-observer variability. Results: Larger prostate volumes were found on the O-MAR-corrected CT set than on the fused set (p< 0.05, median=36.9cm{sup 3} vs. 26.63 cm{sup 3}). No significant differences were noted in the inter-observer variability between the two data sets (p=0.3). Contouring difficulty decreased with the addition of MRI (p<0.05) while the radiation oncologists reported more confidence in their contours when MRI was fused with the O-MAR-corrected CT data (p<0.05). Conclusion: This preliminary work demonstrated that, while O-MAR correction to CT images improves visualization of anatomy, the addition of MRI enhanced the oncologists’ confidence in contouring the prostate in patients with BHP.« less

  4. Comparison of synchrotron radiation and conventional x-ray microcomputed tomography for assessing trabecular bone microarchitecture of human femoral heads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chappard, Christine; Basillais, Armelle; Benhamou, Laurent

    Microcomputed tomography ({mu}CT) produces three-dimensional (3D) images of trabecular bone. We compared conventional {mu}CT (C{mu}CT) with a polychromatic x-ray cone beam to synchrotron radiation (SR) {mu}CT with a monochromatic parallel beam for assessing trabecular bone microarchitecture of 14 subchondral femoral head specimens from patients with osteoarthritis (n=10) or osteoporosis (n=4). SR{mu}CT images with a voxel size of 10.13 {mu}m were reconstructed from 900 2D radiographic projections (angular step, 0.2 deg. ). C{mu}CT images with a voxel size of 10.77 {mu}m were reconstructed from 205, 413, and 825 projections obtained using angular steps of 0.9 deg., 0.45 deg., and 0.23 deg.,more » respectively. A single threshold was used to binarize the images. We computed bone volume/tissue volume (BV/TV), bone surface/bone volume (BS/BV), trabecular number (Tb.N), trabecular thickness (Tb.Th and Tb.Th*), trabecular spacing (Tb.Sp), degree of anisotropy (DA), and Euler density. With the 0.9 deg. angular step, all C{mu}CT values were significantly different from SR{mu}CT values. With the 0.23 deg. and 0.45 deg. rotation steps, BV/TV, Tb.Th, and BS/BV by C{mu}CT differed significantly from the values by SR{mu}CT. The error due to slice matching (visual site matching {+-}10 slices) was within 1% for most parameters. Compared to SR{mu}CT, BV/TV, Tb.Sp, and Tb.Th by C{mu}CT were underestimated, whereas Tb.N and Tb.Th* were overestimated. A Bland and Altman plot showed no bias for Tb.N or DA. Bias was -0.8{+-}1.0%, +5.0{+-}1.1 {mu}m, -5.9{+-}6.3 {mu}m, and -5.7{+-}29.1 {mu}m for BV/TV, Tb.Th*, Tb.Th, and Tb.Sp, respectively, and the differences did not vary over the range of values. Although systematic differences were noted between SR{mu}CT and C{mu}CT values, correlations between the techniques were high and the differences would probably not change the discrimination between study groups. C{mu}CT provides a reliable 3D assessment of human defatted bone when working at the 0.23 deg. or 0.45 deg. rotation step; the 0.9 deg. rotation step may be insufficiently accurate for morphological bone analysis.« less

  5. WE-G-18C-07: Accelerated Water/fat Separation in MRI for Radiotherapy Planning Using Multi-Band Imaging Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crijns, S; Stemkens, B; Sbrizzi, A

    Purpose: Dixon sequences are used to characterize disease processes, obtain good fat or water separation in cases where fat suppression fails and to obtain pseudo-CT datasets. Dixon's method uses at least two images acquired with different echo times and thus requires prolonged acquisition times. To overcome associated problems (e.g., for DCE/cine-MRI), we propose to use a method for water/fat separation based on spectrally selective RF pulses. Methods: Two alternating RF pulses were used, that imposes a fat selective phase cycling over the phase encoding lines, which results in a spatial shift for fat in the reconstructed image, identical to thatmore » in CAIPIRINHA. Associated aliasing artefacts were resolved using the encoding power of a multi-element receiver array, analogous to SENSE. In vivo measurements were performed on a 1.5T clinical MR-scanner in a healthy volunteer's legs, using a four channel receiver coil. Gradient echo images were acquired with TE/TR = 2.3/4.7ms, flip angle 20°, FOV 45×22.5cm{sup 2}, matrix 480×216, slice thickness 5mm. Dixon images were acquired with TE,1/TE,2/TR=2.2/4.6/7ms. All image reconstructions were done in Matlab using the ReconFrame toolbox (Gyrotools, Zurich, CH). Results: RF pulse alternation yields a fat image offset from the water image. Hence the water and fat images fold over, which is resolved using in-plane SENSE reconstruction. Using the proposed technique, we achieved excellent water/fat separation comparable to Dixon images, while acquiring images at only one echo time. Conclusion: The proposed technique yields both inphase water and fat images at arbitrary echo times and requires only one measurement, thereby shortening the acquisition time by a factor 2. In future work the technique may be extended to a multi-band water/fat separation sequence that is able to achieve single point water/fat separation in multiple slices at once and hence yields higher speed-up factors.« less

  6. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ2 value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ2 value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  7. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz

    2015-04-29

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest valuemore » of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.« less

  8. Combined multi-kernel head computed tomography images optimized for depicting both brain parenchyma and bone.

    PubMed

    Takagi, Satoshi; Nagase, Hiroyuki; Hayashi, Tatsuya; Kita, Tamotsu; Hayashi, Katsumi; Sanada, Shigeru; Koike, Masayuki

    2014-01-01

    The hybrid convolution kernel technique for computed tomography (CT) is known to enable the depiction of an image set using different window settings. Our purpose was to decrease the number of artifacts in the hybrid convolution kernel technique for head CT and to determine whether our improved combined multi-kernel head CT images enabled diagnosis as a substitute for both brain (low-pass kernel-reconstructed) and bone (high-pass kernel-reconstructed) images. Forty-four patients with nondisplaced skull fractures were included. Our improved multi-kernel images were generated so that pixels of >100 Hounsfield unit in both brain and bone images were composed of CT values of bone images and other pixels were composed of CT values of brain images. Three radiologists compared the improved multi-kernel images with bone images. The improved multi-kernel images and brain images were identically displayed on the brain window settings. All three radiologists agreed that the improved multi-kernel images on the bone window settings were sufficient for diagnosing skull fractures in all patients. This improved multi-kernel technique has a simple algorithm and is practical for clinical use. Thus, simplified head CT examinations and fewer images that need to be stored can be expected.

  9. Targeting of deep-brain structures in nonhuman primates using MR and CT Images

    NASA Astrophysics Data System (ADS)

    Chen, Antong; Hines, Catherine; Dogdas, Belma; Bone, Ashleigh; Lodge, Kenneth; O'Malley, Stacey; Connolly, Brett; Winkelmann, Christopher T.; Bagchi, Ansuman; Lubbers, Laura S.; Uslaner, Jason M.; Johnson, Colena; Renger, John; Zariwala, Hatim A.

    2015-03-01

    In vivo gene delivery in central nervous systems of nonhuman primates (NHP) is an important approach for gene therapy and animal model development of human disease. To achieve a more accurate delivery of genetic probes, precise stereotactic targeting of brain structures is required. However, even with assistance from multi-modality 3D imaging techniques (e.g. MR and CT), the precision of targeting is often challenging due to difficulties in identification of deep brain structures, e.g. the striatum which consists of multiple substructures, and the nucleus basalis of meynert (NBM), which often lack clear boundaries to supporting anatomical landmarks. Here we demonstrate a 3D-image-based intracranial stereotactic approach applied toward reproducible intracranial targeting of bilateral NBM and striatum of rhesus. For the targeting we discuss the feasibility of an atlas-based automatic approach. Delineated originally on a high resolution 3D histology-MR atlas set, the NBM and the striatum could be located on the MR image of a rhesus subject through affine and nonrigid registrations. The atlas-based targeting of NBM was compared with the targeting conducted manually by an experienced neuroscientist. Based on the targeting, the trajectories and entry points for delivering the genetic probes to the targets could be established on the CT images of the subject after rigid registration. The accuracy of the targeting was assessed quantitatively by comparison between NBM locations obtained automatically and manually, and finally demonstrated qualitatively via post mortem analysis of slices that had been labelled via Evan Blue infusion and immunohistochemistry.

  10. Relationship Between the Lateral Center-Edge Angle and 3-Dimensional Acetabular Coverage.

    PubMed

    Wylie, James D; Kapron, Ashley L; Peters, Christopher L; Aoki, Stephen K; Maak, Travis G

    2017-04-01

    The lateral center-edge angle (LCEA) is an important measurement in understanding acetabular morphology and has had multiple interpretations. Misunderstanding of the LCEA and its relationship with acetabular 3-dimensional (3D) morphology may result in misdiagnosis and poor outcomes. To determine the discrepancy between bone-edge and sourcil-edge LCEA measurements on anteroposterior (AP) radiographs and to determine the 3D anatomic location of the sourcil-edge and bone-edge LCEA measurements. Cohort study (diagnosis); Level of evidence, 2. The LCEA was measured on radiographs to both the sourcil-edge and bone-edge on AP images of 60 symptomatic hips. On computed tomography (CT), coronal slices producing an LCEA matching the magnitude of each AP LCEA were identified. These coronal slices were mapped to a sagittal image of the acetabulum, which was divided into a standard clockface (3 = anterior, 12 = superior). We identified clockface locations corresponding to the AP sourcil-edge and bone-edge LCEA measurements. Paired t tests identified differences in magnitude and location of the bone and sourcil LCEAs. Limits of agreement were calculated for the differences between measures. Intraclass correlation coefficients (ICCs) assessed inter- and intraobserver repeatability. On the AP radiographs, the bone-edge LCEA was a mean 4.7° (95% CI, -4.0° to 13.3°) greater than the sourcil-edge LCEA ( P < .001). On CT, the sagittal clockface location of the sourcil-edge LCEA was more anterior compared with the sagittal clockface location of the maximum bone-edge LCEA (1:03 ± 0:42 vs 12:06 ± 0:30, respectively; P < .001). In hips with a difference >5° between sourcil-edge and bone-edge measurements, the coronal CT slice corresponding to the sourcil-edge LCEA was significantly more anterior (1:26 ± 0:35) than the CT slice corresponding to the bone-edge LCEA (11:46 ± 0:29; P < .001). This significant difference was similar in location but less pronounced in hips with a difference ≤5°: the sourcil-edge LCEA occurred at 12:50 ± 0:40, while the bone-edge LCEA occurred at 12:00 ± 0:11 ( P < .001). Interobserver repeatability was excellent for all LCEA and clockface location measurements (all ICCs >0.82). The sourcil-edge LCEA represents anterosuperior acetabular coverage while the bone-edge LCEA represents superior/lateral coverage. This information can be used in preoperative evaluation of and perioperative planning for hip preservation procedures.

  11. 3T MRI and 128-slice dual-source CT cisternography images of the cranial nerves a brief pictorial review for clinicians.

    PubMed

    Roldan-Valadez, Ernesto; Martinez-Anda, Jaime J; Corona-Cedillo, Roberto

    2014-01-01

    There is a broad community of health sciences professionals interested in the anatomy of the cranial nerves (CNs): specialists in neurology, neurosurgery, radiology, otolaryngology, ophthalmology, maxillofacial surgery, radiation oncology, and emergency medicine, as well as other related fields. Advances in neuroimaging using high-resolution images from computed tomography (CT) and magnetic resonance (MR) have made highly-detailed visualization of brain structures possible, allowing normal findings to be routinely assessed and nervous system pathology to be detected. In this article we present an integrated perspective of the normal anatomy of the CNs established by radiologists and neurosurgeons in order to provide a practical imaging review, which combines 128-slice dual-source multiplanar images from CT cisternography and 3T MR curved reconstructed images. The information about the CNs includes their origin, course (with emphasis on the cisternal segments and location of the orifices at the skull base transmitting them), function, and a brief listing of the most common pathologies affecting them. The scope of the article is clinical anatomy; readers will find specialized texts presenting detailed information about particular topics. Our aim in this article is to provide a helpful reference for understanding the complex anatomy of the cranial nerves. Copyright © 2013 Wiley Periodicals, Inc.

  12. Four-Dimensional Magnetic Resonance Imaging Using Axial Body Area as Respiratory Surrogate: Initial Patient Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Juan; School of Information Science and Engineering, Shandong University, Jinan, Shandong; Cai, Jing

    Purpose: To evaluate the feasibility of a retrospective binning technique for 4-dimensional magnetic resonance imaging (4D-MRI) using body area (BA) as a respiratory surrogate. Methods and Materials: Seven patients with hepatocellular carcinoma (4 of 7) or liver metastases (3 of 7) were enrolled in an institutional review board-approved prospective study. All patients were simulated with both computed tomography (CT) and MRI to acquire 3-dimensinal and 4D images for treatment planning. Multiple-slice multiple-phase cine-MR images were acquired in the axial plane for 4D-MRI reconstruction. Image acquisition time per slice was set to 10-15 seconds. Single-slice 2-dimensinal cine-MR images were also acquiredmore » across the center of the tumor in orthogonal planes. Tumor motion trajectories from 4D-MRI, cine-MRI, and 4D-CT were analyzed in the superior–inferior (SI), anterior–posterior (AP), and medial–lateral (ML) directions, respectively. Their correlation coefficients (CC) and differences in tumor motion amplitude were determined. Tumor-to-liver contrast-to-noise ratio (CNR) was measured and compared between 4D-CT, 4D-MRI, and conventional T2-weighted fast spin echo MRI. Results: The means (±standard deviations) of CC comparing 4D-MRI with cine-MRI were 0.97 ± 0.03, 0.97 ± 0.02, and 0.99 ± 0.04 in SI, AP, and ML directions, respectively. The mean differences were 0.61 ± 0.17 mm, 0.32 ± 0.17 mm, and 0.14 ± 0.06 mm in SI, AP, and ML directions, respectively. The means of CC comparing 4D-MRI and 4D-CT were 0.95 ± 0.02, 0.94 ± 0.02, and 0.96 ± 0.02 in SI, AP, and ML directions, respectively. The mean differences were 0.74 ± 0.02 mm, 0.33 ± 0.13 mm, and 0.18 ± 0.07 mm in SI, AP, and ML directions, respectively. The mean tumor-to-tissue CNRs were 2.94 ± 1.51, 19.44 ± 14.63, and 39.47 ± 20.81 in 4D-CT, 4D-MRI, and T2-weighted MRI, respectively. Conclusions: The preliminary evaluation of our 4D-MRI technique results in oncologic patients demonstrates its potential usefulness to accurately measure tumor respiratory motion with improved tumor CNR compared with 4D-CT.« less

  13. Non-homogeneous updates for the iterative coordinate descent algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Zhou; Thibault, Jean-Baptiste; Bouman, Charles A.; Sauer, Ken D.; Hsieh, Jiang

    2007-02-01

    Statistical reconstruction methods show great promise for improving resolution, and reducing noise and artifacts in helical X-ray CT. In fact, statistical reconstruction seems to be particularly valuable in maintaining reconstructed image quality when the dosage is low and the noise is therefore high. However, high computational cost and long reconstruction times remain as a barrier to the use of statistical reconstruction in practical applications. Among the various iterative methods that have been studied for statistical reconstruction, iterative coordinate descent (ICD) has been found to have relatively low overall computational requirements due to its fast convergence. This paper presents a novel method for further speeding the convergence of the ICD algorithm, and therefore reducing the overall reconstruction time for statistical reconstruction. The method, which we call nonhomogeneous iterative coordinate descent (NH-ICD) uses spatially non-homogeneous updates to speed convergence by focusing computation where it is most needed. Experimental results with real data indicate that the method speeds reconstruction by roughly a factor of two for typical 3D multi-slice geometries.

  14. SU-E-T-480: Radiobiological Dose Comparison of Single Fraction SRS, Multi-Fraction SRT and Multi-Stage SRS of Large Target Volumes Using the Linear-Quadratic Formula

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, C; Hrycushko, B; Jiang, S

    2014-06-01

    Purpose: To compare the radiobiological effect on large tumors and surrounding normal tissues from single fraction SRS, multi-fractionated SRT, and multi-staged SRS treatment. Methods: An anthropomorphic head phantom with a centrally located large volume target (18.2 cm{sup 3}) was scanned using a 16 slice large bore CT simulator. Scans were imported to the Multiplan treatment planning system where a total prescription dose of 20Gy was used for a single, three staged and three fractionated treatment. Cyber Knife treatment plans were inversely optimized for the target volume to achieve at least 95% coverage of the prescription dose. For the multistage plan,more » the target was segmented into three subtargets having similar volume and shape. Staged plans for individual subtargets were generated based on a planning technique where the beam MUs of the original plan on the total target volume are changed by weighting the MUs based on projected beam lengths within each subtarget. Dose matrices for each plan were export in DICOM format and used to calculate equivalent dose distributions in 2Gy fractions using an alpha beta ratio of 10 for the target and 3 for normal tissue. Results: Singe fraction SRS, multi-stage plan and multi-fractionated SRT plans had an average 2Gy dose equivalent to the target of 62.89Gy, 37.91Gy and 33.68Gy, respectively. The normal tissue within 12Gy physical dose region had an average 2Gy dose equivalent of 29.55Gy, 16.08Gy and 13.93Gy, respectively. Conclusion: The single fraction SRS plan had the largest predicted biological effect for the target and the surrounding normal tissue. The multi-stage treatment provided for a more potent biologically effect on target compared to the multi-fraction SRT treatments with less biological normal tissue than single-fraction SRS treatment.« less

  15. Effects of RF profile on precision of quantitative T2 mapping using dual-echo steady-state acquisition.

    PubMed

    Wu, Pei-Hsin; Cheng, Cheng-Chieh; Wu, Ming-Long; Chao, Tzu-Cheng; Chung, Hsiao-Wen; Huang, Teng-Yi

    2014-01-01

    The dual echo steady-state (DESS) sequence has been shown successful in achieving fast T2 mapping with good precision. Under-estimation of T2, however, becomes increasingly prominent as the flip angle decreases. In 3D DESS imaging, therefore, the derived T2 values would become a function of the slice location in the presence of non-ideal slice profile of the excitation RF pulse. Furthermore, the pattern of slice-dependent variation in T2 estimates is dependent on the RF pulse waveform. Multi-slice 2D DESS imaging provides better inter-slice consistency, but the signal intensity is subject to integrated effects of within-slice distribution of the actual flip angle. Consequently, T2 measured using 2D DESS is prone to inaccuracy even at the designated flip angle of 90°. In this study, both phantom and human experiments demonstrate the above phenomena in good agreement with model prediction. © 2013.

  16. On the usefulness of gradient information in multi-objective deformable image registration using a B-spline-based dual-dynamic transformation model: comparison of three optimization algorithms

    NASA Astrophysics Data System (ADS)

    Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2015-03-01

    The use of gradient information is well-known to be highly useful in single-objective optimization-based image registration methods. However, its usefulness has not yet been investigated for deformable image registration from a multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient information analytically, while still being able to account for large deformations. Within the multi-objective framework, we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multiobjective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradientonly algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multiobjective optimization-based deformable image registration can indeed be beneficial

  17. Volumetric Medical Image Coding: An Object-based, Lossy-to-lossless and Fully Scalable Approach

    PubMed Central

    Danyali, Habibiollah; Mertins, Alfred

    2011-01-01

    In this article, an object-based, highly scalable, lossy-to-lossless 3D wavelet coding approach for volumetric medical image data (e.g., magnetic resonance (MR) and computed tomography (CT)) is proposed. The new method, called 3DOBHS-SPIHT, is based on the well-known set partitioning in the hierarchical trees (SPIHT) algorithm and supports both quality and resolution scalability. The 3D input data is grouped into groups of slices (GOS) and each GOS is encoded and decoded as a separate unit. The symmetric tree definition of the original 3DSPIHT is improved by introducing a new asymmetric tree structure. While preserving the compression efficiency, the new tree structure allows for a small size of each GOS, which not only reduces memory consumption during the encoding and decoding processes, but also facilitates more efficient random access to certain segments of slices. To achieve more compression efficiency, the algorithm only encodes the main object of interest in each 3D data set, which can have any arbitrary shape, and ignores the unnecessary background. The experimental results on some MR data sets show the good performance of the 3DOBHS-SPIHT algorithm for multi-resolution lossy-to-lossless coding. The compression efficiency, full scalability, and object-based features of the proposed approach, beside its lossy-to-lossless coding support, make it a very attractive candidate for volumetric medical image information archiving and transmission applications. PMID:22606653

  18. Low-Dose CT of the Paranasal Sinuses: Minimizing X-Ray Exposure with Spectral Shaping.

    PubMed

    Wuest, Wolfgang; May, Matthias; Saake, Marc; Brand, Michael; Uder, Michael; Lell, Michael

    2016-11-01

    Shaping the energy spectrum of the X-ray beam has been shown to be beneficial in low-dose CT. This study's aim was to investigate dose and image quality of tin filtration at 100 kV for pre-operative planning in low-dose paranasal CT imaging in a large patient cohort. In a prospective trial, 129 patients were included. 64 patients were randomly assigned to the study protocol (100 kV with additional tin filtration, 150mAs, 192x0.6-mm slice collimation) and 65 patients to the standard low-dose protocol (100 kV, 50mAs, 128 × 0.6-mm slice collimation). To assess the image quality, subjective parameters were evaluated using a five-point scale. This scale was applied on overall image quality and contour delineation of critical anatomical structures. All scans were of diagnostic image quality. Bony structures were of good diagnostic image quality in both groups, soft tissues were of sufficient diagnostic image quality in the study group because of a high level of noise. Radiation exposure was very low in both groups, but significantly lower in the study group (CTDI vol 1.2 mGy vs. 4.4 mGy, p < 0.001). Spectral optimization (tin filtration at 100 kV) allows for visualization of the paranasal sinus with sufficient image quality at a very low radiation exposure. • Spectral optimization (tin filtration) is beneficial to low-dose parasinus CT • Tin filtration at 100 kV yields sufficient image quality for pre-operative planning • Diagnostic parasinus CT can be performed with an effective dose <0.05 mSv.

  19. Image Fusion for Radiosurgery, Neurosurgery and Hypofractionated Radiotherapy.

    PubMed

    Inoue, Hiroshi K; Nakajima, Atsushi; Sato, Hiro; Noda, Shin-Ei; Saitoh, Jun-Ichi; Suzuki, Yoshiyuki

    2015-03-01

    Precise target detection is essential for radiosurgery, neurosurgery and hypofractionated radiotherapy because treatment results and complication rates are related to accuracy of the target definition. In skull base tumors and tumors around the optic pathways, exact anatomical evaluation of cranial nerves are important to avoid adverse effects on these structures close to lesions. Three-dimensional analyses of structures obtained with MR heavy T2-images and image fusion with CT thin-sliced sections are desirable to evaluate fine structures during radiosurgery and microsurgery. In vascular lesions, angiography is most important for evaluations of whole structures from feeder to drainer, shunt, blood flow and risk factors of bleeding. However, exact sites and surrounding structures in the brain are not shown on angiography. True image fusions of angiography, MR images and CT on axial planes are ideal for precise target definition. In malignant tumors, especially recurrent head and neck tumors, biologically active areas of recurrent tumors are main targets of radiosurgery. PET scan is useful for quantitative evaluation of recurrences. However, the examination is not always available at the time of radiosurgery. Image fusion of MR diffusion images with CT is always available during radiosurgery and useful for the detection of recurrent lesions. All images are fused and registered on thin sliced CT sections and exactly demarcated targets are planned for treatment. Follow-up images are also able to register on this CT. Exact target changes, including volume, are possible in this fusion system. The purpose of this review is to describe the usefulness of image fusion for 1) skull base, 2) vascular, 3) recurrent target detection, and 4) follow-up analyses in radiosurgery, neurosurgery and hypofractionated radiotherapy.

  20. Image Fusion for Radiosurgery, Neurosurgery and Hypofractionated Radiotherapy

    PubMed Central

    Nakajima, Atsushi; Sato, Hiro; Noda, Shin-ei; Saitoh, Jun-ichi; Suzuki, Yoshiyuki

    2015-01-01

    Precise target detection is essential for radiosurgery, neurosurgery and hypofractionated radiotherapy because treatment results and complication rates are related to accuracy of the target definition. In skull base tumors and tumors around the optic pathways, exact anatomical evaluation of cranial nerves are important to avoid adverse effects on these structures close to lesions. Three-dimensional analyses of structures obtained with MR heavy T2-images and image fusion with CT thin-sliced sections are desirable to evaluate fine structures during radiosurgery and microsurgery. In vascular lesions, angiography is most important for evaluations of whole structures from feeder to drainer, shunt, blood flow and risk factors of bleeding. However, exact sites and surrounding structures in the brain are not shown on angiography. True image fusions of angiography, MR images and CT on axial planes are ideal for precise target definition. In malignant tumors, especially recurrent head and neck tumors, biologically active areas of recurrent tumors are main targets of radiosurgery. PET scan is useful for quantitative evaluation of recurrences. However, the examination is not always available at the time of radiosurgery. Image fusion of MR diffusion images with CT is always available during radiosurgery and useful for the detection of recurrent lesions. All images are fused and registered on thin sliced CT sections and exactly demarcated targets are planned for treatment. Follow-up images are also able to register on this CT. Exact target changes, including volume, are possible in this fusion system. The purpose of this review is to describe the usefulness of image fusion for 1) skull base, 2) vascular, 3) recurrent target detection, and 4) follow-up analyses in radiosurgery, neurosurgery and hypofractionated radiotherapy. PMID:26180676

  1. Comparison of tomographic and colonoscopic diagnoses in the presence of colonic wall thickening

    PubMed Central

    İnce, Ali Tüzün; Baysal, Birol; Kayar, Yusuf; Arabacı, Elif; Bilgin, Mehmet; Hamdard, Jamshid; Yay, Adnan; Şentürk, Hakan

    2014-01-01

    Introduction and objective: Colonic wall thickening is a common condition in a number of benignant and malignant diseases. This study investigated the accuracy of radiological diagnoses in patients diagnosed with colonic wall thickening using multislice CT (MDCT). Materials and Method: Files of patients with colonic wall thickening diagnosed with 64-slice MDCT were reviewed retrospectively. The colonoscopy results of these patients were grouped under neoplastic process (cancer and adenomatous polyp), inflammatory bowel disease (IBD), diverticulitis and other etiology (nonspecific events, ischemic colitis, solitary rectal ulcer, external compression, secondary to volvulus and radiotherapy), and the results were statistically evaluated. p values < 0.05 were considered statistically significant. Results: The study was performed on 505 files (290 males [57.4%], 215 females [42.6%], mean age: 49.15 ± 18.4 years). CT and colonoscopic diagnoses were reviewed and the following CT to colonoscopy ratios was observed: neoplastic process: 44.4% vs. 40.2%; IBD: 42.4% vs. 42.4%; diverticulitis: 4% vs. 4.2%; other etiology: 9.3% vs. 3.2%. Colonoscopy failed to identify pathology in 9.9% of the patients. The sensitivity, specificity, PPV, NPV and accuracy of CT were 95.6%, 90.4%, 87.1%, 96.8% and 92.4%, respectively, in detecting neoplastic processes; 97.2%, 97.9%, 97.2%, 97.9% and 97.6%, respectively, in detecting IBD; 90.5%, 99.8%, 95%, 99.6% and 99.4%, respectively, in detecting diverticulitis, and 50%, 96,7%, 62.5%, 94.6% and 92%, respectively, in detecting other etiology. Conclusion: While, accuracy of 64 slice-CT in diagnosing colonic wall thickenings secondary especially to neoplastic processes, IBD and diverticulitis was significantly higher, but differential diagnosis is challenging in pathologies due to other etiologies. PMID:25550962

  2. Sensitivity and specificity of the hyperdense artery sign for arterial obstruction in acute ischemic stroke.

    PubMed

    Mair, Grant; Boyd, Elena V; Chappell, Francesca M; von Kummer, Rüdiger; Lindley, Richard I; Sandercock, Peter; Wardlaw, Joanna M

    2015-01-01

    In acute ischemic stroke, the hyperdense artery sign (HAS) on noncontrast computed tomography (CT) is thought to represent intraluminal thrombus and, therefore, is a surrogate of arterial obstruction. We sought to assess the accuracy of HAS as a marker of arterial obstruction by thrombus. The Third International Stroke Trial (IST-3) was a randomized controlled trial testing the use of intravenous thrombolysis for acute ischemic stroke in patients who did not clearly meet the prevailing license criteria. Some participating IST-3 centers routinely performed CT or MR angiography at baseline. One reader assessed all relevant scans independently, blinded to all other data; we checked observer reliability. We combined IST-3 data with a systematic review and meta-analysis of all studies that assessed the accuracy of HAS using angiography (any modality). IST-3 had 273 patients with baseline CT or MR angiography and was the largest study of HAS accuracy. The meta-analysis (n=902+273=1175, including IST-3) found sensitivity and specificity of HAS for arterial obstruction on angiography to be 52% and 95%, respectively. HAS was more commonly identified in proximal than distal arteries (47% versus 37%; P=0.015), and its sensitivity increased with thinner CT slices (r=-0.73; P=0.001). Neither extent of obstruction nor time after stroke influenced HAS accuracy. When present in acute ischemic stroke, HAS indicates a high likelihood of arterial obstruction, but its absence indicates only a 50/50 chance of normal arterial patency. Thin-slice CT improves sensitivity of HAS detection. http://www.controlled-trials.com/ISRCTN25765518. Unique identifier: ISRCTN25765518. © 2014 American Heart Association, Inc.

  3. Respiratory-gated segment reconstruction for radiation treatment planning using 256-slice CT-scanner during free breathing

    NASA Astrophysics Data System (ADS)

    Mori, Shinichiro; Endo, Masahiro; Kohno, Ryosuke; Minohara, Shinichi; Kohno, Kazutoshi; Asakura, Hiroshi; Fujiwara, Hideaki; Murase, Kenya

    2005-04-01

    The conventional respiratory-gated CT scan technique includes anatomic motion induced artifacts due to the low temporal resolution. They are a significant source of error in radiotherapy treatment planning for the thorax and upper abdomen. Temporal resolution and image quality are important factors to minimize planning target volume margin due to the respiratory motion. To achieve high temporal resolution and high signal-to-noise ratio, we developed a respiratory gated segment reconstruction algorithm and adapted it to Feldkamp-Davis-Kress algorithm (FDK) with a 256-detector row CT. The 256-detector row CT could scan approximately 100 mm in the cranio-caudal direction with 0.5 mm slice thickness in one rotation. Data acquisition for the RS-FDK relies on the assistance of the respiratory sensing system by a cine scan mode (table remains stationary). We evaluated RS-FDK in phantom study with the 256-detector row CT and compared it with full scan (FS-FDK) and HS-FDK results with regard to volume accuracy and image noise, and finally adapted the RS-FDK to an animal study. The RS-FDK gave a more accurate volume than the others and it had the same signal-to-noise ratio as the FS-FDK. In the animal study, the RS-FDK visualized the clearest edges of the liver and pulmonary vessels of all the algorithms. In conclusion, the RS-FDK algorithm has a capability of high temporal resolution and high signal-to-noise ratio. Therefore it will be useful when combined with new radiotherapy techniques including image guided radiation therapy (IGRT) and 4D radiation therapy.

  4. SU-F-R-39: Effects of Radiation Dose Reduction On Renal Cell Carcinoma Discrimination Using Multi-Phasic CT Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wahi-Anwar, M; Young, S; Lo, P

    Purpose: A method to discriminate different types of renal cell carcinoma (RCC) was developed using attenuation values observed in multiphasic contrast-enhanced CT. This work evaluates the sensitivity of this RCC discrimination task at different CT radiation dose levels. Methods: We selected 5 cases of kidney lesion patients who had undergone four-phase CT scans covering the abdomen to the lilac crest. Through an IRB-approved study, the scans were conducted on 64-slice CT scanners (Definition AS/Definition Flash, Siemens Healthcare) using automatic tube-current modulation (TCM). The protocol included an initial baseline unenhanced scan, followed by three post-contrast injection phases. CTDIvol (32 cm phantom)more » measured between 9 to 35 mGy for any given phase. As a preliminary study, we limited the scope to the cortico-medullary phase—shown previously to be the most discriminative phase. A previously validated method was used to simulate a reduced dose acquisition via adding noise to raw CT sinogram data, emulating corresponding images at simulated doses of 50%, 25%, and 10%. To discriminate the lesion subtype, ROIs were placed in the most enhancing region of the lesion. The mean HU value of an ROI was extracted and used to discriminate to the worst-case RCC subtype, ranked in the order of clear cell, papillary, chromophobe and the benign oncocytoma. Results: Two patients exhibited a change of worst case RCC subtype between original and simulated scans, at 25% and 10% doses. In one case, the worst-case RCC subtype changed from oncocytoma to chromophobe at 10% and 25% doses, while the other case changed from oncocytoma to clear cell at 10% dose. Conclusion: Based on preliminary results from an initial cohort of 5 patients, worst-case RCC subtypes remained constant at all simulated dose levels except for 2 patients. Further study conducted on more patients will be needed to confirm our findings. Institutional research agreement, Siemens Healthcare; Past recipient, research grant support, Siemens Healthcare; Consultant, Toshiba America Medical Systems; Consultant, Samsung Electronics; NIH Grant Support from: U01 CA181156.« less

  5. Reproducibility of CT bone densitometry: operator versus automated ROI definition.

    PubMed

    Louis, O; Luypaert, R; Kalender, W; Osteaux, M

    1988-05-01

    Intrasubject reproducibility with repeated determination of vertebral mineral density from a given set of CT images was investigated. The region of interest (ROI) in 10 patient scans was selected by four independent operators either manually or with an automated procedure separating cortical and spongeous bone, the operators being requested to interact in ROI selection. The mean intrasubject variation was found to be much lower with the automated process (0.3 to 0.6%) than with the conventional method (2.5 to 5.2%). In a second study, 10 patients were examined twice to determine the reproducibility of CT slice selection by the operator. The errors were of the same order of magnitude as in ROI selection.

  6. Vertebral Hemangioma Mimicking Bone Metastasis in 68Ga-PSMA Ligand PET/CT.

    PubMed

    Artigas, Carlos; Otte, François-Xavier; Lemort, Marc; van Velthoven, Roland; Flamen, Patrick

    2017-05-01

    Ga-PSMA PET/CT was performed in a 68-year-old man to evaluate recurrent prostate cancer due to elevated serum prostate-specific antigen level. Images showed a focal uptake in the prostatic gland, suggesting local relapse, and an intense uptake in the 12th thoracic vertebra, with no morphological abnormalities in CT slices. In order to confirm extraprostatic disease and before radiotherapy planning, a full-spine MRI was performed, resulting with the morphological pattern of a vertebral hemangioma. Hystological analysis confirmed the local relapse in the prostate. No radiotherapy treatment was given to the vertebra, and after 1 year of follow-up without systemic treatment, prostate-specific antigen is still undetectable.

  7. Spatiotemporal Visualization of Time-Series Satellite-Derived CO2 Flux Data Using Volume Rendering and Gpu-Based Interpolation on a Cloud-Driven Digital Earth

    NASA Astrophysics Data System (ADS)

    Wu, S.; Yan, Y.; Du, Z.; Zhang, F.; Liu, R.

    2017-10-01

    The ocean carbon cycle has a significant influence on global climate, and is commonly evaluated using time-series satellite-derived CO2 flux data. Location-aware and globe-based visualization is an important technique for analyzing and presenting the evolution of climate change. To achieve realistic simulation of the spatiotemporal dynamics of ocean carbon, a cloud-driven digital earth platform is developed to support the interactive analysis and display of multi-geospatial data, and an original visualization method based on our digital earth is proposed to demonstrate the spatiotemporal variations of carbon sinks and sources using time-series satellite data. Specifically, a volume rendering technique using half-angle slicing and particle system is implemented to dynamically display the released or absorbed CO2 gas. To enable location-aware visualization within the virtual globe, we present a 3D particlemapping algorithm to render particle-slicing textures onto geospace. In addition, a GPU-based interpolation framework using CUDA during real-time rendering is designed to obtain smooth effects in both spatial and temporal dimensions. To demonstrate the capabilities of the proposed method, a series of satellite data is applied to simulate the air-sea carbon cycle in the China Sea. The results show that the suggested strategies provide realistic simulation effects and acceptable interactive performance on the digital earth.

  8. Ripple artifact reduction using slice overlap in slice encoding for metal artifact correction.

    PubMed

    den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens

    2015-01-01

    Multispectral imaging (MSI) significantly reduces metal artifacts. Yet, especially in techniques that use gradient selection, such as slice encoding for metal artifact correction (SEMAC), a residual ripple artifact may be prominent. Here, an analysis is presented of the ripple artifact and of slice overlap as an approach to reduce the artifact. The ripple artifact was analyzed theoretically to clarify its cause. Slice overlap, conceptually similar to spectral bin overlap in multi-acquisition with variable resonances image combination (MAVRIC), was achieved by reducing the selection gradient and, thus, increasing the slice profile width. Time domain simulations and phantom experiments were performed to validate the analyses and proposed solution. Discontinuities between slices are aggravated by signal displacement in the frequency encoding direction in areas with deviating B0. Specifically, it was demonstrated that ripple artifacts appear only where B0 varies both in-plane and through-plane. Simulations and phantom studies of metal implants confirmed the efficacy of slice overlap to reduce the artifact. The ripple artifact is an important limitation of gradient selection based MSI techniques, and can be understood using the presented simulations. At a scan-time penalty, slice overlap effectively addressed the artifact, thereby improving image quality near metal implants. © 2014 Wiley Periodicals, Inc.

  9. Electrohydrodynamic (edh) drying of ginger slices (zingiber officinale)

    NASA Astrophysics Data System (ADS)

    Sumariyah; Khuriati, Ainie; Fachriyah, Enny

    2018-05-01

    Electrohydrodynamic (EHD) flow or ion wind of corona discharges has been generated utilizing pin-multi ring concentred electrodes. The pin was made of stainless steel with a tip diameter of 0.018 mm. The multi-ring constructed electrodes by a metal material connected to each other and each ring has a diameter of 24 mm, 16 mm and 8 mm in the same width and thickness is 4 mm and 1 mm. EHD was generated by using a DC high voltage of 5 kV. Pin as an active electrode of corona discharge and multi-ring concentric electrodes as a collector and passive electrodes. The ion wind or EHD flow is produced through changes in voltage and distance between electrodes. The ionic wind generated system outputs through multi-ring concentric electrodes which will further dry the sample. A circle ginger slices as a sample with a diameter of 26 mm with a thickness of 2 mm. The drying is done at the distance between the fixed electrodes of 4 mm and the varied voltages are 1.2 kV, 1.4 kV, and 1.6 kV. The sample drying time varied 30 minutes, 60 minutes, 90 minutes, 120 minutes and 150 minutes. The result of drying the sample at a fixed voltage is obtained moisture of ginger slices decreased with increased drying time.

  10. Dose reduction assessment in dynamic CT myocardial perfusion imaging in a porcine balloon-induced-ischemia model

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2014-03-01

    We investigated the use of an advanced hybrid iterative reconstruction (IR) technique (iDose4, Philips Health- care) for low dose dynamic myocardial CT perfusion (CTP) imaging. A porcine model was created to mimic coronary stenosis through partial occlusion of the left anterior descending (LAD) artery with a balloon catheter. The severity of LAD occlusion was adjusted with FFR measurements. Dynamic CT images were acquired at end-systole (45% R-R) using a multi-detector CT (MDCT) scanner. Various corrections were applied to the acquired scans to reduce motion and imaging artifacts. Absolute myocardial blood flow (MBF) was computed with a deconvolution-based approach using singular value decomposition (SVD). We compared a high and a low dose radiation protocol corresponding to two different tube-voltage/tube-current combinations (80kV p/100mAs and 120kV p/150mAs). The corresponding radiation doses for these protocols are 7.8mSv and 34.3mSV , respectively. The images were reconstructed using conventional FBP and three noise-reduction strengths of the IR method, iDose. Flow contrast-to-noise ratio, CNRf, as obtained from MBF maps, was used to quantitatively evaluate the effect of reconstruction on contrast between normal and ischemic myocardial tissue. Preliminary results showed that the use of iDose to reconstruct low dose images provide better or comparable CNRf to that of high dose images reconstructed with FBP, suggesting significant dose savings. CNRf was improved with the three used levels of iDose compared to FBP for both protocols. When using the entire 4D dynamic sequence for MBF computation, a 77% dose reduction was achieved, while considering only half the scans (i.e., every other heart cycle) allowed even further dose reduction while maintaining relatively higher CNRf.

  11. Cardiac tissue slices: preparation, handling, and successful optical mapping.

    PubMed

    Wang, Ken; Lee, Peter; Mirams, Gary R; Sarathchandra, Padmini; Borg, Thomas K; Gavaghan, David J; Kohl, Peter; Bollensdorff, Christian

    2015-05-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands ("fibers") in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. Copyright © 2015 the American Physiological Society.

  12. Cardiac tissue slices: preparation, handling, and successful optical mapping

    PubMed Central

    Wang, Ken; Lee, Peter; Mirams, Gary R.; Sarathchandra, Padmini; Borg, Thomas K.; Gavaghan, David J.; Kohl, Peter

    2015-01-01

    Cardiac tissue slices are becoming increasingly popular as a model system for cardiac electrophysiology and pharmacology research and development. Here, we describe in detail the preparation, handling, and optical mapping of transmembrane potential and intracellular free calcium concentration transients (CaT) in ventricular tissue slices from guinea pigs and rabbits. Slices cut in the epicardium-tangential plane contained well-aligned in-slice myocardial cell strands (“fibers”) in subepicardial and midmyocardial sections. Cut with a high-precision slow-advancing microtome at a thickness of 350 to 400 μm, tissue slices preserved essential action potential (AP) properties of the precutting Langendorff-perfused heart. We identified the need for a postcutting recovery period of 36 min (guinea pig) and 63 min (rabbit) to reach 97.5% of final steady-state values for AP duration (APD) (identified by exponential fitting). There was no significant difference between the postcutting recovery dynamics in slices obtained using 2,3-butanedione 2-monoxime or blebistatin as electromechanical uncouplers during the cutting process. A rapid increase in APD, seen after cutting, was caused by exposure to ice-cold solution during the slicing procedure, not by tissue injury, differences in uncouplers, or pH-buffers (bicarbonate; HEPES). To characterize intrinsic patterns of CaT, AP, and conduction, a combination of multipoint and field stimulation should be used to avoid misinterpretation based on source-sink effects. In summary, we describe in detail the preparation, mapping, and data analysis approaches for reproducible cardiac tissue slice-based investigations into AP and CaT dynamics. PMID:25595366

  13. A fully automated multi-modal computer aided diagnosis approach to coronary calcium scoring of MSCT images

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Ferns, Gordon; Giles, John; Lewis, Emma

    2012-03-01

    Inter- and intra- observer variability is a problem often faced when an expert or observer is tasked with assessing the severity of a disease. This issue is keenly felt in coronary calcium scoring of patients suffering from atherosclerosis where in clinical practice, the observer must identify firstly the presence, followed by the location of candidate calcified plaques found within the coronary arteries that may prevent oxygenated blood flow to the heart muscle. However, it can be difficult for a human observer to differentiate calcified plaques that are located in the coronary arteries from those found in surrounding anatomy such as the mitral valve or pericardium. In addition to the benefits to scoring accuracy, the use of fast, low dose multi-slice CT imaging to perform the cardiac scan is capable of acquiring the entire heart within a single breath hold. Thus exposing the patient to lower radiation dose, which for a progressive disease such as atherosclerosis where multiple scans may be required, is beneficial to their health. Presented here is a fully automated method for calcium scoring using both the traditional Agatston method, as well as the volume scoring method. Elimination of the unwanted regions of the cardiac image slices such as lungs, ribs, and vertebrae is carried out using adaptive heart isolation. Such regions cannot contain calcified plaques but can be of a similar intensity and their removal will aid detection. Removal of both the ascending and descending aortas, as they contain clinical insignificant plaques, is necessary before the final calcium scores are calculated and examined against ground truth scores of three averaged expert observer results. The results presented here are intended to show the feasibility and requirement for an automated scoring method to reduce the subjectivity and reproducibility error inherent with manual clinical calcium scoring.

  14. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: Cone/ring artifact correction and multiple GPU implementation

    PubMed Central

    Yan, Hao; Wang, Xiaoyu; Shi, Feng; Bai, Ti; Folkerts, Michael; Cervino, Laura; Jiang, Steve B.; Jia, Xun

    2014-01-01

    Purpose: Compressed sensing (CS)-based iterative reconstruction (IR) techniques are able to reconstruct cone-beam CT (CBCT) images from undersampled noisy data, allowing for imaging dose reduction. However, there are a few practical concerns preventing the clinical implementation of these techniques. On the image quality side, data truncation along the superior–inferior direction under the cone-beam geometry produces severe cone artifacts in the reconstructed images. Ring artifacts are also seen in the half-fan scan mode. On the reconstruction efficiency side, the long computation time hinders clinical use in image-guided radiation therapy (IGRT). Methods: Image quality improvement methods are proposed to mitigate the cone and ring image artifacts in IR. The basic idea is to use weighting factors in the IR data fidelity term to improve projection data consistency with the reconstructed volume. In order to improve the computational efficiency, a multiple graphics processing units (GPUs)-based CS-IR system was developed. The parallelization scheme, detailed analyses of computation time at each step, their relationship with image resolution, and the acceleration factors were studied. The whole system was evaluated in various phantom and patient cases. Results: Ring artifacts can be mitigated by properly designing a weighting factor as a function of the spatial location on the detector. As for the cone artifact, without applying a correction method, it contaminated 13 out of 80 slices in a head-neck case (full-fan). Contamination was even more severe in a pelvis case under half-fan mode, where 36 out of 80 slices were affected, leading to poorer soft tissue delineation and reduced superior–inferior coverage. The proposed method effectively corrects those contaminated slices with mean intensity differences compared to FDK results decreasing from ∼497 and ∼293 HU to ∼39 and ∼27 HU for the full-fan and half-fan cases, respectively. In terms of efficiency boost, an overall 3.1 × speedup factor has been achieved with four GPU cards compared to a single GPU-based reconstruction. The total computation time is ∼30 s for typical clinical cases. Conclusions: The authors have developed a low-dose CBCT IR system for IGRT. By incorporating data consistency-based weighting factors in the IR model, cone/ring artifacts can be mitigated. A boost in computational efficiency is achieved by multi-GPU implementation. PMID:25370645

  15. Towards the clinical implementation of iterative low-dose cone-beam CT reconstruction in image-guided radiation therapy: Cone/ring artifact correction and multiple GPU implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hao, E-mail: steve.jiang@utsouthwestern.edu, E-mail: xun.jia@utsouthwestern.edu; Shi, Feng; Jiang, Steve B.

    Purpose: Compressed sensing (CS)-based iterative reconstruction (IR) techniques are able to reconstruct cone-beam CT (CBCT) images from undersampled noisy data, allowing for imaging dose reduction. However, there are a few practical concerns preventing the clinical implementation of these techniques. On the image quality side, data truncation along the superior–inferior direction under the cone-beam geometry produces severe cone artifacts in the reconstructed images. Ring artifacts are also seen in the half-fan scan mode. On the reconstruction efficiency side, the long computation time hinders clinical use in image-guided radiation therapy (IGRT). Methods: Image quality improvement methods are proposed to mitigate the conemore » and ring image artifacts in IR. The basic idea is to use weighting factors in the IR data fidelity term to improve projection data consistency with the reconstructed volume. In order to improve the computational efficiency, a multiple graphics processing units (GPUs)-based CS-IR system was developed. The parallelization scheme, detailed analyses of computation time at each step, their relationship with image resolution, and the acceleration factors were studied. The whole system was evaluated in various phantom and patient cases. Results: Ring artifacts can be mitigated by properly designing a weighting factor as a function of the spatial location on the detector. As for the cone artifact, without applying a correction method, it contaminated 13 out of 80 slices in a head-neck case (full-fan). Contamination was even more severe in a pelvis case under half-fan mode, where 36 out of 80 slices were affected, leading to poorer soft tissue delineation and reduced superior–inferior coverage. The proposed method effectively corrects those contaminated slices with mean intensity differences compared to FDK results decreasing from ∼497 and ∼293 HU to ∼39 and ∼27 HU for the full-fan and half-fan cases, respectively. In terms of efficiency boost, an overall 3.1 × speedup factor has been achieved with four GPU cards compared to a single GPU-based reconstruction. The total computation time is ∼30 s for typical clinical cases. Conclusions: The authors have developed a low-dose CBCT IR system for IGRT. By incorporating data consistency-based weighting factors in the IR model, cone/ring artifacts can be mitigated. A boost in computational efficiency is achieved by multi-GPU implementation.« less

  16. A survey of program slicing for software engineering

    NASA Technical Reports Server (NTRS)

    Beck, Jon

    1993-01-01

    This research concerns program slicing which is used as a tool for program maintainence of software systems. Program slicing decreases the level of effort required to understand and maintain complex software systems. It was first designed as a debugging aid, but it has since been generalized into various tools and extended to include program comprehension, module cohesion estimation, requirements verification, dead code elimination, and maintainence of several software systems, including reverse engineering, parallelization, portability, and reuse component generation. This paper seeks to address and define terminology, theoretical concepts, program representation, different program graphs, developments in static slicing, dynamic slicing, and semantics and mathematical models. Applications for conventional slicing are presented, along with a prognosis of future work in this field.

  17. Computer Aided Detection of Breast Masses in Digital Tomosynthesis

    DTIC Science & Technology

    2008-06-01

    the suspicious CAD location were extracted. For the second set, 256x256 ROIs representing the - 8 - summed slab of 5 slices (5 mm) were extracted...region hotelling observer, digital tomosynthesis, multi-slice CAD algorithms, biopsy 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18...developing computer-aided detection ( CAD ) tools for mammography. Although these tools have shown promise in identifying calcifications, detecting

  18. Automated Slicing for a Multi-Axis Metal Deposition System (Preprint)

    DTIC Science & Technology

    2006-09-01

    experimented with different materials like H13 tool steel to build the part. Following the same slicing and scanning toolpath result, there is a geometric...and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly computationally...geometry reasoning and analysis tool -centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly

  19. Breath-hold imaging of the coronary arteries using Quiescent-Interval Slice-Selective (QISS) magnetic resonance angiography: pilot study at 1.5 Tesla and 3 Tesla.

    PubMed

    Edelman, Robert R; Giri, S; Pursnani, A; Botelho, M P F; Li, W; Koktzoglou, I

    2015-11-23

    Coronary magnetic resonance angiography (MRA) is usually obtained with a free-breathing navigator-gated 3D acquisition. Our aim was to develop an alternative breath-hold approach that would allow the coronary arteries to be evaluated in a much shorter time and without risk of degradation by respiratory motion artifacts. For this purpose, we implemented a breath-hold, non-contrast-enhanced, quiescent-interval slice-selective (QISS) 2D technique. Sequence performance was compared at 1.5 and 3 Tesla using both radial and Cartesian k-space trajectories. The left coronary circulation was imaged in six healthy subjects and two patients with coronary artery disease. Breath-hold QISS was compared with T2-prepared 2D balanced steady-state free-precession (bSSFP) and free-breathing, navigator-gated 3D bSSFP. Approximately 10 2.1-mm thick slices were acquired in a single ~20-s breath-hold using two-shot QISS. QISS contrast-to-noise ratio (CNR) was 1.5-fold higher at 3 Tesla than at 1.5 Tesla. Cartesian QISS provided the best coronary-to-myocardium CNR, whereas radial QISS provided the sharpest coronary images. QISS image quality exceeded that of free-breathing 3D coronary MRA with few artifacts at either field strength. Compared with T2-prepared 2D bSSFP, multi-slice capability was not restricted by the specific absorption rate at 3 Tesla and pericardial fluid signal was better suppressed. In addition to depicting the coronary arteries, QISS could image intra-cardiac structures, pericardium, and the aortic root in arbitrary slice orientations. Breath-hold QISS is a simple, versatile, and time-efficient method for coronary MRA that provides excellent image quality at both 1.5 and 3 Tesla. Image quality exceeded that of free-breathing, navigator-gated 3D MRA in a much shorter scan time. QISS also allowed rapid multi-slice bright-blood, diastolic phase imaging of the heart, which may have complementary value to multi-phase cine imaging. We conclude that, with further clinical validation, QISS might provide an efficient alternative to commonly used free-breathing coronary MRA techniques.

  20. Dynamic CT myocardial perfusion imaging: detection of ischemia in a porcine model with FFR verification

    NASA Astrophysics Data System (ADS)

    Fahmi, Rachid; Eck, Brendan L.; Vembar, Mani; Bezerra, Hiram G.; Wilson, David L.

    2014-03-01

    Dynamic cardiac CT perfusion (CTP) is a high resolution, non-invasive technique for assessing myocardial blood ow (MBF), which in concert with coronary CT angiography enable CT to provide a unique, comprehensive, fast analysis of both coronary anatomy and functional ow. We assessed perfusion in a porcine model with and without coronary occlusion. To induce occlusion, each animal underwent left anterior descending (LAD) stent implantation and angioplasty balloon insertion. Normal ow condition was obtained with balloon completely de ated. Partial occlusion was induced by balloon in ation against the stent with FFR used to assess the extent of occlusion. Prospective ECG-triggered partial scan images were acquired at end systole (45% R-R) using a multi-detector CT (MDCT) scanner. Images were reconstructed using FBP and a hybrid iterative reconstruction (iDose4, Philips Healthcare). Processing included: beam hardening (BH) correction, registration of image volumes using 3D cubic B-spline normalized mutual-information, and spatio-temporal bilateral ltering to reduce partial scan artifacts and noise variation. Absolute blood ow was calculated with a deconvolutionbased approach using singular value decomposition (SVD). Arterial input function was estimated from the left ventricle (LV) cavity. Regions of interest (ROIs) were identi ed in healthy and ischemic myocardium and compared in normal and occluded conditions. Under-perfusion was detected in the correct LAD territory and ow reduction agreed well with FFR measurements. Flow was reduced, on average, in LAD territories by 54%.

Top