Dynamics analysis of the fast-slow hydro-turbine governing system with different time-scale coupling
NASA Astrophysics Data System (ADS)
Zhang, Hao; Chen, Diyi; Wu, Changzhi; Wang, Xiangyu
2018-01-01
Multi-time scales modeling of hydro-turbine governing system is crucial in precise modeling of hydropower plant and provides support for the stability analysis of the system. Considering the inertia and response time of the hydraulic servo system, the hydro-turbine governing system is transformed into the fast-slow hydro-turbine governing system. The effects of the time-scale on the dynamical behavior of the system are analyzed and the fast-slow dynamical behaviors of the system are investigated with different time-scale. Furthermore, the theoretical analysis of the stable regions is presented. The influences of the time-scale on the stable region are analyzed by simulation. The simulation results prove the correctness of the theoretical analysis. More importantly, the methods and results of this paper provide a perspective to multi-time scales modeling of hydro-turbine governing system and contribute to the optimization analysis and control of the system.
Exploring RNA structure and dynamics through enhanced sampling simulations.
Mlýnský, Vojtěch; Bussi, Giovanni
2018-04-01
RNA function is intimately related to its structural dynamics. Molecular dynamics simulations are useful for exploring biomolecular flexibility but are severely limited by the accessible timescale. Enhanced sampling methods allow this timescale to be effectively extended in order to probe biologically relevant conformational changes and chemical reactions. Here, we review the role of enhanced sampling techniques in the study of RNA systems. We discuss the challenges and promises associated with the application of these methods to force-field validation, exploration of conformational landscapes and ion/ligand-RNA interactions, as well as catalytic pathways. Important technical aspects of these methods, such as the choice of the biased collective variables and the analysis of multi-replica simulations, are examined in detail. Finally, a perspective on the role of these methods in the characterization of RNA dynamics is provided. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin
Our work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH 3NH 3PbI 3) perovskite thin film allows us to simplify the dataset consisting of a 68 time-resolved images into 4 decay associated amplitude maps. Furthermore, these maps provide a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. Thismore » approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.« less
Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions.
Delaforge, Elise; Milles, Sigrid; Huang, Jie-Rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J; Blackledge, Martin
2016-01-01
Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.
Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions
Delaforge, Elise; Milles, Sigrid; Huang, Jie-rong; Bouvier, Denis; Jensen, Malene Ringkjøbing; Sattler, Michael; Hart, Darren J.; Blackledge, Martin
2016-01-01
Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales. PMID:27679800
NASA Astrophysics Data System (ADS)
Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; Xiao, Kai; Ma, Ying-Zhong
2016-03-01
This work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps (DAAMs) that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH3NH3PbI3) perovskite thin film allows us to simplify the data set comprising 68 time-resolved images into four DAAMs. These maps offer a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. This approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics.
Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone
2016-10-05
Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics.
Pre-eruptive magmatic processes re-timed using a non-isothermal approach to magma chamber dynamics
Petrone, Chiara Maria; Bugatti, Giuseppe; Braschi, Eleonora; Tommasini, Simone
2016-01-01
Constraining the timescales of pre-eruptive magmatic processes in active volcanic systems is paramount to understand magma chamber dynamics and the triggers for volcanic eruptions. Temporal information of magmatic processes is locked within the chemical zoning profiles of crystals but can be accessed by means of elemental diffusion chronometry. Mineral compositional zoning testifies to the occurrence of substantial temperature differences within magma chambers, which often bias the estimated timescales in the case of multi-stage zoned minerals. Here we propose a new Non-Isothermal Diffusion Incremental Step model to take into account the non-isothermal nature of pre-eruptive processes, deconstructing the main core-rim diffusion profiles of multi-zoned crystals into different isothermal steps. The Non-Isothermal Diffusion Incremental Step model represents a significant improvement in the reconstruction of crystal lifetime histories. Unravelling stepwise timescales at contrasting temperatures provides a novel approach to constraining pre-eruptive magmatic processes and greatly increases our understanding of magma chamber dynamics. PMID:27703141
Doughty, Benjamin; Simpson, Mary Jane; Yang, Bin; ...
2016-02-16
Our work aims to simplify multi-dimensional femtosecond transient absorption microscopy (TAM) data into decay associated amplitude maps that describe the spatial distributions of dynamical processes occurring on various characteristic timescales. Application of this method to TAM data obtained from a model methyl-ammonium lead iodide (CH 3NH 3PbI 3) perovskite thin film allows us to simplify the dataset consisting of a 68 time-resolved images into 4 decay associated amplitude maps. Furthermore, these maps provide a simple means to visualize the complex electronic excited-state dynamics in this system by separating distinct dynamical processes evolving on characteristic timescales into individual spatial images. Thismore » approach provides new insight into subtle aspects of ultrafast relaxation dynamics associated with excitons and charge carriers in the perovskite thin film, which have recently been found to coexist at spatially distinct locations.« less
A Machine Learns to Predict the Stability of Tightly Packed Planetary Systems
NASA Astrophysics Data System (ADS)
Tamayo, Daniel; Silburt, Ari; Valencia, Diana; Menou, Kristen; Ali-Dib, Mohamad; Petrovich, Cristobal; Huang, Chelsea X.; Rein, Hanno; van Laerhoven, Christa; Paradise, Adiv; Obertas, Alysa; Murray, Norman
2016-12-01
The requirement that planetary systems be dynamically stable is often used to vet new discoveries or set limits on unconstrained masses or orbital elements. This is typically carried out via computationally expensive N-body simulations. We show that characterizing the complicated and multi-dimensional stability boundary of tightly packed systems is amenable to machine-learning methods. We find that training an XGBoost machine-learning algorithm on physically motivated features yields an accurate classifier of stability in packed systems. On the stability timescale investigated (107 orbits), it is three orders of magnitude faster than direct N-body simulations. Optimized machine-learning classifiers for dynamical stability may thus prove useful across the discipline, e.g., to characterize the exoplanet sample discovered by the upcoming Transiting Exoplanet Survey Satellite. This proof of concept motivates investing computational resources to train algorithms capable of predicting stability over longer timescales and over broader regions of phase space.
Martins-Costa, Marilia T C; Ruiz-López, Manuel F
2017-04-15
We report an enhanced sampling technique that allows to reach the multi-nanosecond timescale in quantum mechanics/molecular mechanics molecular dynamics simulations. The proposed technique, called horsetail sampling, is a specific type of multiple molecular dynamics approach exhibiting high parallel efficiency. It couples a main simulation with a large number of shorter trajectories launched on independent processors at periodic time intervals. The technique is applied to study hydrogen peroxide at the water liquid-vapor interface, a system of considerable atmospheric relevance. A total simulation time of a little more than 6 ns has been attained for a total CPU time of 5.1 years representing only about 20 days of wall-clock time. The discussion of the results highlights the strong influence of the solvation effects at the interface on the structure and the electronic properties of the solute. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Temporal scaling and spatial statistical analyses of groundwater level fluctuations
NASA Astrophysics Data System (ADS)
Sun, H.; Yuan, L., Sr.; Zhang, Y.
2017-12-01
Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.
ISM simulations: an overview of models
NASA Astrophysics Data System (ADS)
de Avillez, M. A.; Breitschwerdt, D.; Asgekar, A.; Spitoni, E.
2015-03-01
Until recently the dynamical evolution of the interstellar medium (ISM) was simulated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.
Evidence of strategic periodicities in collective conflict dynamics.
Dedeo, Simon; Krakauer, David; Flack, Jessica
2011-09-07
We analyse the timescales of conflict decision-making in a primate society. We present evidence for multiple, periodic timescales associated with social decision-making and behavioural patterns. We demonstrate the existence of periodicities that are not directly coupled to environmental cycles or known ultraridian mechanisms. Among specific biological and socially defined demographic classes, periodicities span timescales between hours and days. Our results indicate that these periodicities are not driven by exogenous or internal regularities but are instead driven by strategic responses to social interaction patterns. Analyses also reveal that a class of individuals, playing a critical functional role, policing, have a signature timescale of the order of 1 h. We propose a classification of behavioural timescales analogous to those of the nervous system, with high frequency, or α-scale, behaviour occurring on hour-long scales, through to multi-hour, or β-scale, behaviour, and, finally γ periodicities observed on a timescale of days.
Multiple time-scales and the developmental dynamics of social systems
Flack, Jessica C.
2012-01-01
To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the ‘coarseness’ of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems. PMID:22641819
Multiple time-scales and the developmental dynamics of social systems.
Flack, Jessica C
2012-07-05
To build a theory of social complexity, we need to understand how aggregate social properties arise from individual interaction rules. Here, I review a body of work on the developmental dynamics of pigtailed macaque social organization and conflict management that provides insight into the mechanistic causes of multi-scale social systems. In this model system coarse-grained, statistical representations of collective dynamics are more predictive of the future state of the system than the constantly in-flux behavioural patterns at the individual level. The data suggest that individuals can perceive and use these representations for strategical decision-making. As an interaction history accumulates the coarse-grained representations consolidate. This constrains individual behaviour and provides the foundations for new levels of organization. The time-scales on which these representations change impact whether the consolidating higher-levels can be modified by individuals and collectively. The time-scales appear to be a function of the 'coarseness' of the representations and the character of the collective dynamics over which they are averages. The data suggest that an advantage of multiple timescales is that they allow social systems to balance tradeoffs between predictability and adaptability. I briefly discuss the implications of these findings for cognition, social niche construction and the evolution of new levels of organization in biological systems.
Lu, Chun-Yaung; Voter, Arthur F; Perez, Danny
2014-01-28
Deposition of solid material from solution is ubiquitous in nature. However, due to the inherent complexity of such systems, this process is comparatively much less understood than deposition from a gas or vacuum. Further, the accurate atomistic modeling of such systems is computationally expensive, therefore leaving many intriguing long-timescale phenomena out of reach. We present an atomistic/continuum hybrid method for extending the simulation timescales of dynamics at solid/liquid interfaces. We demonstrate the method by simulating the deposition of Ag on Ag (001) from solution with a significant speedup over standard MD. The results reveal specific features of diffusive deposition dynamics, such as a dramatic increase in the roughness of the film.
Six-Degree-of-Freedom Trajectory Optimization Utilizing a Two-Timescale Collocation Architecture
NASA Technical Reports Server (NTRS)
Desai, Prasun N.; Conway, Bruce A.
2005-01-01
Six-degree-of-freedom (6DOF) trajectory optimization of a reentry vehicle is solved using a two-timescale collocation methodology. This class of 6DOF trajectory problems are characterized by two distinct timescales in their governing equations, where a subset of the states have high-frequency dynamics (the rotational equations of motion) while the remaining states (the translational equations of motion) vary comparatively slowly. With conventional collocation methods, the 6DOF problem size becomes extraordinarily large and difficult to solve. Utilizing the two-timescale collocation architecture, the problem size is reduced significantly. The converged solution shows a realistic landing profile and captures the appropriate high-frequency rotational dynamics. A large reduction in the overall problem size (by 55%) is attained with the two-timescale architecture as compared to the conventional single-timescale collocation method. Consequently, optimum 6DOF trajectory problems can now be solved efficiently using collocation, which was not previously possible for a system with two distinct timescales in the governing states.
NASA Astrophysics Data System (ADS)
Donner, R. V.; Potirakis, S. M.; Barbosa, S. M.; Matos, J. A. O.; Pereira, A. J. S. C.; Neves, L. J. P. F.
2015-05-01
The presence or absence of long-range correlations in the environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor radon concentrations from Coimbra, Portugal, each of which spans several weeks of continuous measurements at a high temporal resolution of five minutes.Our results reveal that at the study site, radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between some hours and one day) arising from marked periodic components, and (iii) low-frequency variability indicating a true long-range dependent process. In the presence of such multi-scale variability, common estimators of long-range memory in time series are prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics.
Molecular dynamics simulations using temperature-enhanced essential dynamics replica exchange.
Kubitzki, Marcus B; de Groot, Bert L
2007-06-15
Today's standard molecular dynamics simulations of moderately sized biomolecular systems at full atomic resolution are typically limited to the nanosecond timescale and therefore suffer from limited conformational sampling. Efficient ensemble-preserving algorithms like replica exchange (REX) may alleviate this problem somewhat but are still computationally prohibitive due to the large number of degrees of freedom involved. Aiming at increased sampling efficiency, we present a novel simulation method combining the ideas of essential dynamics and REX. Unlike standard REX, in each replica only a selection of essential collective modes of a subsystem of interest (essential subspace) is coupled to a higher temperature, with the remainder of the system staying at a reference temperature, T(0). This selective excitation along with the replica framework permits efficient approximate ensemble-preserving conformational sampling and allows much larger temperature differences between replicas, thereby considerably enhancing sampling efficiency. Ensemble properties and sampling performance of the method are discussed using dialanine and guanylin test systems, with multi-microsecond molecular dynamics simulations of these test systems serving as references.
Parallel Multi-Step/Multi-Rate Integration of Two-Time Scale Dynamic Systems
NASA Technical Reports Server (NTRS)
Chang, Johnny T.; Ploen, Scott R.; Sohl, Garett. A,; Martin, Bryan J.
2004-01-01
Increasing demands on the fidelity of simulations for real-time and high-fidelity simulations are stressing the capacity of modern processors. New integration techniques are required that provide maximum efficiency for systems that are parallelizable. However many current techniques make assumptions that are at odds with non-cascadable systems. A new serial multi-step/multi-rate integration algorithm for dual-timescale continuous state systems is presented which applies to these systems, and is extended to a parallel multi-step/multi-rate algorithm. The superior performance of both algorithms is demonstrated through a representative example.
NASA Astrophysics Data System (ADS)
Ono, Junichi; Takada, Shoji; Saito, Shinji
2015-06-01
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchical conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, Junichi; Takada, Shoji; Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502
2015-06-07
An analytical method based on a three-time correlation function and the corresponding two-dimensional (2D) lifetime spectrum is developed to elucidate the time-dependent couplings between the multi-timescale (i.e., hierarchical) conformational dynamics in heterogeneous systems such as proteins. In analogy with 2D NMR, IR, electronic, and fluorescence spectroscopies, the waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra can provide a quantitative description of the dynamical correlations between the conformational motions with different lifetimes. The present method is applied to intrinsic conformational changes of substrate-free adenylate kinase (AKE) using long-time coarse-grained molecular dynamics simulations. It is found that the hierarchicalmore » conformational dynamics arise from the intra-domain structural transitions among conformational substates of AKE by analyzing the one-time correlation functions and one-dimensional lifetime spectra for the donor-acceptor distances corresponding to single-molecule Förster resonance energy transfer experiments with the use of the principal component analysis. In addition, the complicated waiting-time dependence of the off-diagonal peaks in the 2D lifetime spectra for the donor-acceptor distances is attributed to the fact that the time evolution of the couplings between the conformational dynamics depends upon both the spatial and temporal characters of the system. The present method is expected to shed light on the biological relationship among the structure, dynamics, and function.« less
Engineering dynamical control of cell fate switching using synthetic phospho-regulons
Gordley, Russell M.; Williams, Reid E.; Bashor, Caleb J.; Toettcher, Jared E.; Yan, Shude; Lim, Wendell A.
2016-01-01
Many cells can sense and respond to time-varying stimuli, selectively triggering changes in cell fate only in response to inputs of a particular duration or frequency. A common motif in dynamically controlled cells is a dual-timescale regulatory network: although long-term fate decisions are ultimately controlled by a slow-timescale switch (e.g., gene expression), input signals are first processed by a fast-timescale signaling layer, which is hypothesized to filter what dynamic information is efficiently relayed downstream. Directly testing the design principles of how dual-timescale circuits control dynamic sensing, however, has been challenging, because most synthetic biology methods have focused solely on rewiring transcriptional circuits, which operate at a single slow timescale. Here, we report the development of a modular approach for flexibly engineering phosphorylation circuits using designed phospho-regulon motifs. By then linking rapid phospho-feedback with slower downstream transcription-based bistable switches, we can construct synthetic dual-timescale circuits in yeast in which the triggering dynamics and the end-state properties of the ON state can be selectively tuned. These phospho-regulon tools thus open up the possibility to engineer cells with customized dynamical control. PMID:27821768
Laner, Monika; Horta, Bruno A C; Hünenberger, Philippe H
2015-02-01
The occurrence of long-timescale motions in glycerol-1-monopalmitate (GMP) lipid bilayers is investigated based on previously reported 600 ns molecular dynamics simulations of a 2×8×8 GMP bilayer patch in the temperature range 302-338 K, performed at three different hydration levels, or in the presence of the cosolutes methanol or trehalose at three different concentrations. The types of long-timescale motions considered are: (i) the possible phase transitions; (ii) the precession of the relative collective tilt-angle of the two leaflets in the gel phase; (iii) the trans-gauche isomerization of the dihedral angles within the lipid aliphatic tails; and (iv) the flipping of single lipids across the two leaflets. The results provide a picture of GMP bilayers involving a rich spectrum of events occurring on a wide range of timescales, from the 100-ps range isomerization of single dihedral angles, via the 100-ns range of tilt precession motions, to the multi-μs range of phase transitions and lipid-flipping events. Copyright © 2014 Elsevier Inc. All rights reserved.
Direct Measure of Radiative and Dynamical Properties of an Exoplanet Atmosphere
NASA Astrophysics Data System (ADS)
de Wit, Julien; Lewis, Nikole K.; Langton, Jonathan; Laughlin, Gregory; Deming, Drake; Batygin, Konstantin; Fortney, Jonathan J.
2016-04-01
Two decades after the discovery of 51 Peg b, the formation processes and atmospheres of short-period gas giants remain poorly understood. Observations of eccentric systems provide key insights on those topics as they can illuminate how a planet’s atmosphere responds to changes in incident flux. We report here the analysis of multi-day multi-channel photometry of the eccentric (e∼ 0.93) hot Jupiter HD 80606 b obtained with the Spitzer Space Telescope. The planet’s extreme eccentricity combined with the long coverage and exquisite precision of new periastron-passage observations allow us to break the degeneracy between the radiative and dynamical timescales of HD 80606 b’s atmosphere and constrain its global thermal response. Our analysis reveals that the atmospheric layers probed heat rapidly (∼4 hr radiative timescale) from \\lt 500 to 1400 K as they absorb ∼ 20% of the incoming stellar flux during the periastron passage, while the planet’s rotation period is {93}-35+85 hr, which exceeds the predicted pseudo-synchronous period (40 hr).
A Statistical Description of Neural Ensemble Dynamics
Long, John D.; Carmena, Jose M.
2011-01-01
The growing use of multi-channel neural recording techniques in behaving animals has produced rich datasets that hold immense potential for advancing our understanding of how the brain mediates behavior. One limitation of these techniques is they do not provide important information about the underlying anatomical connections among the recorded neurons within an ensemble. Inferring these connections is often intractable because the set of possible interactions grows exponentially with ensemble size. This is a fundamental challenge one confronts when interpreting these data. Unfortunately, the combination of expert knowledge and ensemble data is often insufficient for selecting a unique model of these interactions. Our approach shifts away from modeling the network diagram of the ensemble toward analyzing changes in the dynamics of the ensemble as they relate to behavior. Our contribution consists of adapting techniques from signal processing and Bayesian statistics to track the dynamics of ensemble data on time-scales comparable with behavior. We employ a Bayesian estimator to weigh prior information against the available ensemble data, and use an adaptive quantization technique to aggregate poorly estimated regions of the ensemble data space. Importantly, our method is capable of detecting changes in both the magnitude and structure of correlations among neurons missed by firing rate metrics. We show that this method is scalable across a wide range of time-scales and ensemble sizes. Lastly, the performance of this method on both simulated and real ensemble data is used to demonstrate its utility. PMID:22319486
NASA Astrophysics Data System (ADS)
Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.
2017-12-01
The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.
NASA Astrophysics Data System (ADS)
Brault, Marc-Olivier; Matthews, Damon; Mysak, Lawrence
2016-04-01
The chemical erosion of carbonate and silicate rocks is a key process in the global carbon cycle and, through its coupling with calcium carbonate deposition in the ocean, is the primary sink of carbon on geologic timescales. The dynamic interdependence of terrestrial weathering rates with atmospheric temperature and carbon dioxide concentrations is crucial to the regulation of Earth's climate over multi-millennial timescales. However any attempts to develop a modeling context for terrestrial weathering as part of a dynamic climate system are limited, mostly because of the difficulty in adapting the multi-millennial timescales of the implied negative feedback mechanism with those of the atmosphere and ocean. Much of the earlier work on this topic is therefore based on box-model approaches, abandoning spatial variability for the sake of computational efficiency and the possibility to investigate the impact of weathering on climate change over time frames much longer than those allowed by traditional climate system models. As a result we still have but a rudimentary understanding of the chemical weathering feedback mechanism and its effects on ocean biogeochemistry and atmospheric CO2. Here, we introduce a spatially-explicit, rock weathering model into the University of Victoria Earth System Climate Model (UVic ESCM). We use a land map which takes into account a number of different rock lithologies, changes in sea level, as well as an empirical model of the temperature and NPP dependency of weathering rates for the different rock types. We apply this new model to the last deglacial period (c. 21000BP to 13000BP) as well as a future climate change scenario (c. 1800AD to 6000AD+), comparing the results of our 2-D version of the weathering feedback mechanism to simulations using only the box-model parameterizations of Meissner et al. [2012]. These simulations reveal the importance of two-dimensional factors (i.e., changes in sea level and rock type distribution) in the role of the weathering negative feedback mechanism on multi-millennial timescales.
NASA Astrophysics Data System (ADS)
Zunz, Violette; Goosse, Hugues; Dubinkina, Svetlana
2015-04-01
In this study, we assess systematically the impact of different initialisation procedures on the predictability of the sea ice in the Southern Ocean. These initialisation strategies are based on three data assimilation methods: the nudging, the particle filter with sequential importance resampling and the nudging proposal particle filter. An Earth system model of intermediate complexity is used to perform hindcast simulations in a perfect model approach. The predictability of the Antarctic sea ice at interannual to multi-decadal timescales is estimated through two aspects: the spread of the hindcast ensemble, indicating the uncertainty of the ensemble, and the correlation between the ensemble mean and the pseudo-observations, used to assess the accuracy of the prediction. Our results show that at decadal timescales more sophisticated data assimilation methods as well as denser pseudo-observations used to initialise the hindcasts decrease the spread of the ensemble. However, our experiments did not clearly demonstrate that one of the initialisation methods systematically provides with a more accurate prediction of the sea ice in the Southern Ocean than the others. Overall, the predictability at interannual timescales is limited to 3 years ahead at most. At multi-decadal timescales, the trends in sea ice extent computed over the time period just after the initialisation are clearly better correlated between the hindcasts and the pseudo-observations if the initialisation takes into account the pseudo-observations. The correlation reaches values larger than 0.5 in winter. This high correlation has likely its origin in the slow evolution of the ocean ensured by its strong thermal inertia, showing the importance of the quality of the initialisation below the sea ice.
From seconds to months: an overview of multi-scale dynamics of mobile telephone calls
NASA Astrophysics Data System (ADS)
Saramäki, Jari; Moro, Esteban
2015-06-01
Big Data on electronic records of social interactions allow approaching human behaviour and sociality from a quantitative point of view with unforeseen statistical power. Mobile telephone Call Detail Records (CDRs), automatically collected by telecom operators for billing purposes, have proven especially fruitful for understanding one-to-one communication patterns as well as the dynamics of social networks that are reflected in such patterns. We present an overview of empirical results on the multi-scale dynamics of social dynamics and networks inferred from mobile telephone calls. We begin with the shortest timescales and fastest dynamics, such as burstiness of call sequences between individuals, and "zoom out" towards longer temporal and larger structural scales, from temporal motifs formed by correlated calls between multiple individuals to long-term dynamics of social groups. We conclude this overview with a future outlook.
NASA Astrophysics Data System (ADS)
Pagano, E. V.; Acosta, L.; Auditore, L.; Cap, T.; Cardella, G.; Colonna, M.; De Filippo, E.; Geraci, E.; Gnoffo, B.; Lanzalone, G.; Maiolino, C.; Martorana, N.; Pagano, A.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifiro’, A.; Trimarchi, M.; Siwek-Wilczynska, K.
2018-05-01
In nuclear reactions at Fermi energies two and multi particles intensity interferometry correlation methods are powerful tools in order to pin down the characteristic time scale of the emission processes. In this paper we summarize an improved application of the fragment-fragment correlation function in the specific physics case of heavy projectile-like (PLF) binary massive splitting in two fragments of intermediate mass(IMF). Results are shown for the reverse kinematics reaction 124 Sn+64 Ni at 35 AMeV that has been investigated by using the forward part of CHIMERA multi-detector. The analysis was performed as a function of the charge asymmetry of the observed couples of IMF. We show a coexistence of dynamical and statistical components as a function of the charge asymmetry. Transport CoMD simulations are compared with the data in order to pin down the timescale of the fragments production and the relevant ingredients of the in medium effective interaction used in the transport calculations.
Systematic methods for defining coarse-grained maps in large biomolecules.
Zhang, Zhiyong
2015-01-01
Large biomolecules are involved in many important biological processes. It would be difficult to use large-scale atomistic molecular dynamics (MD) simulations to study the functional motions of these systems because of the computational expense. Therefore various coarse-grained (CG) approaches have attracted rapidly growing interest, which enable simulations of large biomolecules over longer effective timescales than all-atom MD simulations. The first issue in CG modeling is to construct CG maps from atomic structures. In this chapter, we review the recent development of a novel and systematic method for constructing CG representations of arbitrarily complex biomolecules, in order to preserve large-scale and functionally relevant essential dynamics (ED) at the CG level. In this ED-CG scheme, the essential dynamics can be characterized by principal component analysis (PCA) on a structural ensemble, or elastic network model (ENM) of a single atomic structure. Validation and applications of the method cover various biological systems, such as multi-domain proteins, protein complexes, and even biomolecular machines. The results demonstrate that the ED-CG method may serve as a very useful tool for identifying functional dynamics of large biomolecules at the CG level.
Wind-Friendly Flexible Ramping Product Design in Multi-Timescale Power System Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Mingjian; Zhang, Jie; Wu, Hongyu
With increasing wind power penetration in the electricity grid, system operators are recognizing the need for additional flexibility, and some are implementing new ramping products as a type of ancillary service. However, wind is generally thought of as causing the need for ramping services, not as being a potential source for the service. In this paper, a multi-timescale unit commitment and economic dispatch model is developed to consider the wind power ramping product (WPRP). An optimized swinging door algorithm with dynamic programming is applied to identify and forecast wind power ramps (WPRs). Designed as positive characteristics of WPRs, the WPRPmore » is then integrated into the multi-timescale dispatch model that considers new objective functions, ramping capacity limits, active power limits, and flexible ramping requirements. Numerical simulations on the modified IEEE 118-bus system show the potential effectiveness of WPRP in increasing the economic efficiency of power system operations with high levels of wind power penetration. It is found that WPRP not only reduces the production cost by using less ramping reserves scheduled by conventional generators, but also possibly enhances the reliability of power system operations. Moreover, wind power forecasts play an important role in providing high-quality WPRP service.« less
Predicting Instability Timescales in Closely-Packed Planetary Systems
NASA Astrophysics Data System (ADS)
Tamayo, Daniel; Hadden, Samuel; Hussain, Naireen; Silburt, Ari; Gilbertson, Christian; Rein, Hanno; Menou, Kristen
2018-04-01
Many of the multi-planet systems discovered around other stars are maximally packed. This implies that simulations with masses or orbital parameters too far from the actual values will destabilize on short timescales; thus, long-term dynamics allows one to constrain the orbital architectures of many closely packed multi-planet systems. A central challenge in such efforts is the large computational cost of N-body simulations, which preclude a full survey of the high-dimensional parameter space of orbital architectures allowed by observations. I will present our recent successes in training machine learning models capable of reliably predicting orbital stability a million times faster than N-body simulations. By engineering dynamically relevant features that we feed to a gradient-boosted decision tree algorithm (XGBoost), we are able to achieve a precision and recall of 90% on a holdout test set of N-body simulations. This opens a wide discovery space for characterizing new exoplanet discoveries and for elucidating how orbital architectures evolve through time as the next generation of spaceborne exoplanet surveys prepare for launch this year.
A blended continuous–discontinuous finite element method for solving the multi-fluid plasma model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sousa, E.M., E-mail: sousae@uw.edu; Shumlak, U., E-mail: shumlak@uw.edu
The multi-fluid plasma model represents electrons, multiple ion species, and multiple neutral species as separate fluids that interact through short-range collisions and long-range electromagnetic fields. The model spans a large range of temporal and spatial scales, which renders the model stiff and presents numerical challenges. To address the large range of timescales, a blended continuous and discontinuous Galerkin method is proposed, where the massive ion and neutral species are modeled using an explicit discontinuous Galerkin method while the electrons and electromagnetic fields are modeled using an implicit continuous Galerkin method. This approach is able to capture large-gradient ion and neutralmore » physics like shock formation, while resolving high-frequency electron dynamics in a computationally efficient manner. The details of the Blended Finite Element Method (BFEM) are presented. The numerical method is benchmarked for accuracy and tested using two-fluid one-dimensional soliton problem and electromagnetic shock problem. The results are compared to conventional finite volume and finite element methods, and demonstrate that the BFEM is particularly effective in resolving physics in stiff problems involving realistic physical parameters, including realistic electron mass and speed of light. The benefit is illustrated by computing a three-fluid plasma application that demonstrates species separation in multi-component plasmas.« less
Microsecond protein dynamics observed at the single-molecule level
NASA Astrophysics Data System (ADS)
Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei
2015-07-01
How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape.
Microsecond protein dynamics observed at the single-molecule level
Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei
2015-01-01
How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767
NASA Astrophysics Data System (ADS)
Donner, Reik V.; Potirakis, Stelios M.; Barbosa, Susana M.; Matos, Jose A. O.
2015-04-01
The presence or absence of long-range correlations in environmental radioactivity fluctuations has recently attracted considerable interest. Among a multiplicity of practically relevant applications, identifying and disentangling the environmental factors controlling the variable concentrations of the radioactive noble gas Radon is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we present a critical re-assessment of a multiplicity of complementary methods that have been previously applied for evaluating the presence of long-range correlations and fractal scaling in environmental Radon variations with a particular focus on the specific properties of the underlying time series. As an illustrative case study, we subsequently re-analyze two high-frequency records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements at a high temporal resolution of five minutes. Our results reveal that at the study site, Radon concentrations exhibit complex multi-scale dynamics with qualitatively different properties at different time-scales: (i) essentially white noise in the high-frequency part (up to time-scales of about one hour), (ii) spurious indications of a non-stationary, apparently long-range correlated process (at time scales between hours and one day) arising from marked periodic components probably related to tidal frequencies, and (iii) low-frequency variability indicating a true long-range dependent process, which might be dominated by a response to meteorological drivers. In the presence of such multi-scale variability, common estimators of long-range memory in time series are necessarily prone to fail if applied to the raw data without previous separation of time-scales with qualitatively different dynamics. We emphasize that similar properties can be found in other types of geophysical time series (for example, tide gauge records), calling for a careful application of time series analysis tools when studying such data.
Detection of timescales in evolving complex systems
Darst, Richard K.; Granell, Clara; Arenas, Alex; Gómez, Sergio; Saramäki, Jari; Fortunato, Santo
2016-01-01
Most complex systems are intrinsically dynamic in nature. The evolution of a dynamic complex system is typically represented as a sequence of snapshots, where each snapshot describes the configuration of the system at a particular instant of time. This is often done by using constant intervals but a better approach would be to define dynamic intervals that match the evolution of the system’s configuration. To this end, we propose a method that aims at detecting evolutionary changes in the configuration of a complex system, and generates intervals accordingly. We show that evolutionary timescales can be identified by looking for peaks in the similarity between the sets of events on consecutive time intervals of data. Tests on simple toy models reveal that the technique is able to detect evolutionary timescales of time-varying data both when the evolution is smooth as well as when it changes sharply. This is further corroborated by analyses of several real datasets. Our method is scalable to extremely large datasets and is computationally efficient. This allows a quick, parameter-free detection of multiple timescales in the evolution of a complex system. PMID:28004820
Tian, Xing; Rowland, Jess; Poeppel, David
2017-01-01
Natural sounds convey perceptually relevant information over multiple timescales, and the necessary extraction of multi-timescale information requires the auditory system to work over distinct ranges. The simplest hypothesis suggests that temporal modulations are encoded in an equivalent manner within a reasonable intermediate range. We show that the human auditory system selectively and preferentially tracks acoustic dynamics concurrently at 2 timescales corresponding to the neurophysiological theta band (4–7 Hz) and gamma band ranges (31–45 Hz) but, contrary to expectation, not at the timescale corresponding to alpha (8–12 Hz), which has also been found to be related to auditory perception. Listeners heard synthetic acoustic stimuli with temporally modulated structures at 3 timescales (approximately 190-, approximately 100-, and approximately 30-ms modulation periods) and identified the stimuli while undergoing magnetoencephalography recording. There was strong intertrial phase coherence in the theta band for stimuli of all modulation rates and in the gamma band for stimuli with corresponding modulation rates. The alpha band did not respond in a similar manner. Classification analyses also revealed that oscillatory phase reliably tracked temporal dynamics but not equivalently across rates. Finally, mutual information analyses quantifying the relation between phase and cochlear-scaled correlations also showed preferential processing in 2 distinct regimes, with the alpha range again yielding different patterns. The results support the hypothesis that the human auditory system employs (at least) a 2-timescale processing mode, in which lower and higher perceptual sampling scales are segregated by an intermediate temporal regime in the alpha band that likely reflects different underlying computations. PMID:29095816
Ge, Hao; Qian, Hong
2011-01-01
A theory for an non-equilibrium phase transition in a driven biochemical network is presented. The theory is based on the chemical master equation (CME) formulation of mesoscopic biochemical reactions and the mathematical method of large deviations. The large deviations theory provides an analytical tool connecting the macroscopic multi-stability of an open chemical system with the multi-scale dynamics of its mesoscopic counterpart. It shows a corresponding non-equilibrium phase transition among multiple stochastic attractors. As an example, in the canonical phosphorylation–dephosphorylation system with feedback that exhibits bistability, we show that the non-equilibrium steady-state (NESS) phase transition has all the characteristics of classic equilibrium phase transition: Maxwell construction, a discontinuous first-derivative of the ‘free energy function’, Lee–Yang's zero for a generating function and a critical point that matches the cusp in nonlinear bifurcation theory. To the biochemical system, the mathematical analysis suggests three distinct timescales and needed levels of description. They are (i) molecular signalling, (ii) biochemical network nonlinear dynamics, and (iii) cellular evolution. For finite mesoscopic systems such as a cell, motions associated with (i) and (iii) are stochastic while that with (ii) is deterministic. Both (ii) and (iii) are emergent properties of a dynamic biochemical network. PMID:20466813
Multiple time step integrators in ab initio molecular dynamics.
Luehr, Nathan; Markland, Thomas E; Martínez, Todd J
2014-02-28
Multiple time-scale algorithms exploit the natural separation of time-scales in chemical systems to greatly accelerate the efficiency of molecular dynamics simulations. Although the utility of these methods in systems where the interactions are described by empirical potentials is now well established, their application to ab initio molecular dynamics calculations has been limited by difficulties associated with splitting the ab initio potential into fast and slowly varying components. Here we present two schemes that enable efficient time-scale separation in ab initio calculations: one based on fragment decomposition and the other on range separation of the Coulomb operator in the electronic Hamiltonian. We demonstrate for both water clusters and a solvated hydroxide ion that multiple time-scale molecular dynamics allows for outer time steps of 2.5 fs, which are as large as those obtained when such schemes are applied to empirical potentials, while still allowing for bonds to be broken and reformed throughout the dynamics. This permits computational speedups of up to 4.4x, compared to standard Born-Oppenheimer ab initio molecular dynamics with a 0.5 fs time step, while maintaining the same energy conservation and accuracy.
Mignolet, B; Gijsbertsen, A; Vrakking, M J J; Levine, R D; Remacle, F
2011-05-14
The attosecond time-scale electronic dynamics induced by an ultrashort laser pulse is computed using a multi configuration time dependent approach in ABCU (C(10)H(19)N), a medium size polyatomic molecule with a rigid cage geometry. The coupling between the electronic states induced by the strong pulse is included in the many electron Hamiltonian used to compute the electron dynamics. We show that it is possible to implement control of the electron density stereodynamics in this medium size molecule by varying the characteristics of the laser pulse, for example by polarizing the electric field either along the N-C axis of the cage, or in the plane perpendicular to it. The excitation produces an oscillatory, non-stationary, electronic state that exhibits localization of the electron density in different parts of the molecule both during and after the pulse. The coherent oscillations of the non-stationary electronic state are also demonstrated through the alternation of the dipole moment of the molecule.
Effects of fire frequency on long-term development of an oak-hickory forest in Missouri, U.S.A.
Benjamin O. Knapp; Michael A. Hullinger; John M. Kabrick
2017-01-01
Repeated prescribed burning over long timescales has some predictable effects on forest structure and composition, but multi-decadal patterns of stand dynamics and successional change with different fire frequencies have rarely been described. We used longitudinal data from a prescribed burning study conducted over a 63-year period to quantify stand structure (stem...
Ng, Gene-Hua Crystal; Bedford, David R.; Miller, David M.
2015-01-01
The perennial shrub Larrea tridentata is widely successful in North American warm deserts but is also susceptible to climatic perturbations. Understanding its response to rainfall variability requires consideration of multiple timescales. We examine intra-annual to multi-year relationships using model simulations of soil moisture and vegetation growth over 50 years in the Mojave National Preserve in southeastern California (USA). Ecohydrological model parameters are conditioned on field and remote sensing data using an ensemble Kalman filter. Although no specific periodicities were detected in the rainfall record, simulated leaf-area-index exhibits multi-year dynamics that are driven by multi-year (∼3-years) rains, but with up to a 1-year delay in peak response. Within a multi-year period, Larrea tridentata is more sensitive to winter rains than summer. In the most active part of the root zone (above ∼80 cm), >1-year average soil moisture drives vegetation growth, but monthly average soil moisture is controlled by root uptake. Moisture inputs reach the lower part of the root zone (below ∼80 cm) infrequently, but once there they can persist over a year to help sustain plant growth. Parameter estimates highlight efficient plant physiological properties facilitating persistent growth and high soil hydraulic conductivity allowing deep soil moisture stores. We show that soil moisture as an ecological indicator is complicated by bidirectional interactions with vegetation that depend on timescale and depth. Under changing climate, Larrea tridentata will likely be relatively resilient to shorter-term moisture variability but will exhibit higher sensitivity to shifts in seasonal to multi-year moisture inputs.
A Two-Timescale Discretization Scheme for Collocation
NASA Technical Reports Server (NTRS)
Desai, Prasun; Conway, Bruce A.
2004-01-01
The development of a two-timescale discretization scheme for collocation is presented. This scheme allows a larger discretization to be utilized for smoothly varying state variables and a second finer discretization to be utilized for state variables having higher frequency dynamics. As such. the discretization scheme can be tailored to the dynamics of the particular state variables. In so doing. the size of the overall Nonlinear Programming (NLP) problem can be reduced significantly. Two two-timescale discretization architecture schemes are described. Comparison of results between the two-timescale method and conventional collocation show very good agreement. Differences of less than 0.5 percent are observed. Consequently. a significant reduction (by two-thirds) in the number of NLP parameters and iterations required for convergence can be achieved without sacrificing solution accuracy.
NASA Astrophysics Data System (ADS)
Ramaswamy, V.; Chen, J. H.; Delworth, T. L.; Knutson, T. R.; Lin, S. J.; Murakami, H.; Vecchi, G. A.
2017-12-01
Damages from catastrophic tropical storms such as the 2017 destructive hurricanes compel an acceleration of scientific advancements to understand the genesis, underlying mechanisms, frequency, track, intensity, and landfall of these storms. The advances are crucial to provide improved early information for planners and responders. We discuss the development and utilization of a global modeling capability based on a novel atmospheric dynamical core ("Finite-Volume Cubed Sphere or FV3") which captures the realism of the recent tropical storms and is a part of the NOAA Next-Generation Global Prediction System. This capability is also part of an emerging seamless modeling system at NOAA/ Geophysical Fluid Dynamics Laboratory for simulating the frequency of storms on seasonal and longer timescales with high fidelity e.g., Atlantic hurricane frequency over the past decades. In addition, the same modeling system has also been employed to evaluate the nature of projected storms on the multi-decadal scales under the influence of anthropogenic factors such as greenhouse gases and aerosols. The seamless modeling system thus facilitates research into and the predictability of severe tropical storms across diverse timescales of practical interest to several societal sectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Guorong; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026
The dynamics of pyrrole excited at wavelengths in the range 242-217 nm are studied using a combination of time-resolved photoelectron spectroscopy and wavepacket propagations performed using the multi-configurational time-dependent Hartree method. Excitation close to the origin of pyrrole’s electronic spectrum, at 242 and 236 nm, is found to result in an ultrafast decay of the system from the ionization window on a single timescale of less than 20 fs. This behaviour is explained fully by assuming the system to be excited to the A{sub 2}(πσ{sup ∗}) state, in accord with previous experimental and theoretical studies. Excitation at shorter wavelengths hasmore » previously been assumed to result predominantly in population of the bright A{sub 1}(ππ{sup ∗}) and B{sub 2}(ππ{sup ∗}) states. We here present time-resolved photoelectron spectra at a pump wavelength of 217 nm alongside detailed quantum dynamics calculations that, together with a recent reinterpretation of pyrrole’s electronic spectrum [S. P. Neville and G. A. Worth, J. Chem. Phys. 140, 034317 (2014)], suggest that population of the B{sub 1}(πσ{sup ∗}) state (hitherto assumed to be optically dark) may occur directly when pyrrole is excited at energies in the near UV part of its electronic spectrum. The B{sub 1}(πσ{sup ∗}) state is found to decay on a timescale of less than 20 fs by both N-H dissociation and internal conversion to the A{sub 2}(πσ{sup ∗}) state.« less
Chamberland, Simon; Yang, Helen H; Pan, Michael M; Evans, Stephen W; Guan, Sihui; Chavarha, Mariya; Yang, Ying; Salesse, Charleen; Wu, Haodi; Wu, Joseph C; Clandinin, Thomas R; Toth, Katalin; Lin, Michael Z; St-Pierre, François
2017-07-27
Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila . These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision.
NASA Astrophysics Data System (ADS)
Lao, Jiashun; Nie, He; Jiang, Yonghong
2018-06-01
This paper employs SBW proposed by Baker and Wurgler (2006) to investigate the nonlinear asymmetric Granger causality between investor sentiment and stock returns for US economy while considering different time-scales. The wavelet method is utilized to decompose time series of investor sentiment and stock returns at different time-scales to focus on the local analysis of different time horizons of investors. The linear and nonlinear asymmetric Granger methods are employed to examine the Granger causal relationship on similar time-scales. We find evidence of strong bilateral linear and nonlinear asymmetric Granger causality between longer-term investor sentiment and stock returns. Furthermore, we observe the positive nonlinear causal relationship from stock returns to investor sentiment and the negative nonlinear causal relationship from investor sentiment to stock returns.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.
The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. While considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here in this paper, we examine the importance of substrate dynamics in the cleavage of Kunitz-BPTI protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4 Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals amore » dramatic conformational change in the substrate upon proteolysis. Using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning three orders of magnitude, we identify global and local dynamic features of substrates on the ns-μs timescale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substratelike and product-like states, linking substrate dynamics on the ns-μs timescale with large collective substrate motions on the much slower timescale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.« less
Heath, Joel P.; Gilchrist, H. Grant; Ydenberg, Ronald C.
2010-01-01
To maximize fitness, animals must respond to a variety of processes that operate at different rates or timescales. Appropriate decisions could therefore involve complex interactions among these processes. For example, eiders wintering in the arctic sea ice must consider locomotion and physiology of diving for benthic invertebrates, digestive processing rate and a nonlinear decrease in profitability of diving as currents increase over the tidal cycle. Using a multi-scale dynamic modelling approach and continuous field observations of individuals, we demonstrate that the strategy that maximizes long-term energy gain involves resting during the most profitable foraging period (slack currents). These counterintuitive foraging patterns are an adaptive trade-off between multiple overlapping rate processes and cannot be explained by classical rate-maximizing optimization theory, which only considers a single timescale and predicts a constant rate of foraging. By reducing foraging and instead digesting during slack currents, eiders structure their activity in order to maximize long-term energetic gain over an entire tide cycle. This study reveals how counterintuitive patterns and a complex functional response can result from a simple trade-off among several overlapping rate processes, emphasizing the necessity of a multi-scale approach for understanding adaptive routines in the wild and evaluating mechanisms in ecological time series. PMID:20504814
Allnér, Olof; Foloppe, Nicolas; Nilsson, Lennart
2015-01-22
Molecular dynamics simulations of E. coli glutaredoxin1 in water have been performed to relate the dynamical parameters and entropy obtained in NMR relaxation experiments, with results extracted from simulated trajectory data. NMR relaxation is the most widely used experimental method to obtain data on dynamics of proteins, but it is limited to relatively short timescales and to motions of backbone amides or in some cases (13)C-H vectors. By relating the experimental data to the all-atom picture obtained in molecular dynamics simulations, valuable insights on the interpretation of the experiment can be gained. We have estimated the internal dynamics and their timescales by calculating the generalized order parameters (O) for different time windows. We then calculate the quasiharmonic entropy (S) and compare it to the entropy calculated from the NMR-derived generalized order parameter of the amide vectors. Special emphasis is put on characterizing dynamics that are not expressed through the motions of the amide group. The NMR and MD methods suffer from complementary limitations, with NMR being restricted to local vectors and dynamics on a timescale determined by the rotational diffusion of the solute, while in simulations, it may be difficult to obtain sufficient sampling to ensure convergence of the results. We also evaluate the amount of sampling obtained with molecular dynamics simulations and how it is affected by the length of individual simulations, by clustering of the sampled conformations. We find that two structural turns act as hinges, allowing the α helix between them to undergo large, long timescale motions that cannot be detected in the time window of the NMR dipolar relaxation experiments. We also show that the entropy obtained from the amide vector does not account for correlated motions of adjacent residues. Finally, we show that the sampling in a total of 100 ns molecular dynamics simulation can be increased by around 50%, by dividing the trajectory into 10 replicas with different starting velocities.
Timescale analysis of rule-based biochemical reaction networks
Klinke, David J.; Finley, Stacey D.
2012-01-01
The flow of information within a cell is governed by a series of protein-protein interactions that can be described as a reaction network. Mathematical models of biochemical reaction networks can be constructed by repetitively applying specific rules that define how reactants interact and what new species are formed upon reaction. To aid in understanding the underlying biochemistry, timescale analysis is one method developed to prune the size of the reaction network. In this work, we extend the methods associated with timescale analysis to reaction rules instead of the species contained within the network. To illustrate this approach, we applied timescale analysis to a simple receptor-ligand binding model and a rule-based model of Interleukin-12 (IL-12) signaling in näive CD4+ T cells. The IL-12 signaling pathway includes multiple protein-protein interactions that collectively transmit information; however, the level of mechanistic detail sufficient to capture the observed dynamics has not been justified based upon the available data. The analysis correctly predicted that reactions associated with JAK2 and TYK2 binding to their corresponding receptor exist at a pseudo-equilibrium. In contrast, reactions associated with ligand binding and receptor turnover regulate cellular response to IL-12. An empirical Bayesian approach was used to estimate the uncertainty in the timescales. This approach complements existing rank- and flux-based methods that can be used to interrogate complex reaction networks. Ultimately, timescale analysis of rule-based models is a computational tool that can be used to reveal the biochemical steps that regulate signaling dynamics. PMID:21954150
Statistical link between external climate forcings and modes of ocean variability
NASA Astrophysics Data System (ADS)
Malik, Abdul; Brönnimann, Stefan; Perona, Paolo
2017-07-01
In this study we investigate statistical link between external climate forcings and modes of ocean variability on inter-annual (3-year) to centennial (100-year) timescales using de-trended semi-partial-cross-correlation analysis technique. To investigate this link we employ observations (AD 1854-1999), climate proxies (AD 1600-1999), and coupled Atmosphere-Ocean-Chemistry Climate Model simulations with SOCOL-MPIOM (AD 1600-1999). We find robust statistical evidence that Atlantic multi-decadal oscillation (AMO) has intrinsic positive correlation with solar activity in all datasets employed. The strength of the relationship between AMO and solar activity is modulated by volcanic eruptions and complex interaction among modes of ocean variability. The observational dataset reveals that El Niño southern oscillation (ENSO) has statistically significant negative intrinsic correlation with solar activity on decadal to multi-decadal timescales (16-27-year) whereas there is no evidence of a link on a typical ENSO timescale (2-7-year). In the observational dataset, the volcanic eruptions do not have a link with AMO on a typical AMO timescale (55-80-year) however the long-term datasets (proxies and SOCOL-MPIOM output) show that volcanic eruptions have intrinsic negative correlation with AMO on inter-annual to multi-decadal timescales. The Pacific decadal oscillation has no link with solar activity, however, it has positive intrinsic correlation with volcanic eruptions on multi-decadal timescales (47-54-year) in reconstruction and decadal to multi-decadal timescales (16-32-year) in climate model simulations. We also find evidence of a link between volcanic eruptions and ENSO, however, the sign of relationship is not consistent between observations/proxies and climate model simulations.
NASA Astrophysics Data System (ADS)
Roelofs, Freek; Johnson, Michael D.; Shiokawa, Hotaka; Doeleman, Sheperd S.; Falcke, Heino
2017-09-01
General relativistic magnetohydrodynamic (GRMHD) simulations of accretion disks and jets associated with supermassive black holes show variability on a wide range of timescales. On timescales comparable to or longer than the gravitational timescale {t}G={GM}/{c}3, variation may be dominated by orbital dynamics of the inhomogeneous accretion flow. Turbulent evolution within the accretion disk is expected on timescales comparable to the orbital period, typically an order of magnitude larger than t G . For Sgr A*, t G is much shorter than the typical duration of a VLBI experiment, enabling us to study this variability within a single observation. Closure phases, the sum of interferometric visibility phases on a triangle of baselines, are particularly useful for studying this variability. In addition to a changing source structure, variations in observed closure phase can also be due to interstellar scattering, thermal noise, and the changing geometry of projected baselines over time due to Earth rotation. We present a metric that is able to distinguish the latter two from intrinsic or scattering variability. This metric is validated using synthetic observations of GRMHD simulations of Sgr A*. When applied to existing multi-epoch EHT data of Sgr A*, this metric shows that the data are most consistent with source models containing intrinsic variability from source dynamics, interstellar scattering, or a combination of those. The effects of black hole inclination, orientation, spin, and morphology (disk or jet) on the expected closure phase variability are also discussed.
Kayode, Olumide; Wang, Ruiying; Pendlebury, Devon F.; ...
2016-11-03
The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. While considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here in this paper, we examine the importance of substrate dynamics in the cleavage of Kunitz-BPTI protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4 Å crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals amore » dramatic conformational change in the substrate upon proteolysis. Using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning three orders of magnitude, we identify global and local dynamic features of substrates on the ns-μs timescale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substratelike and product-like states, linking substrate dynamics on the ns-μs timescale with large collective substrate motions on the much slower timescale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.« less
Reduction of Large Dynamical Systems by Minimization of Evolution Rate
NASA Technical Reports Server (NTRS)
Girimaji, Sharath S.
1999-01-01
Reduction of a large system of equations to a lower-dimensional system of similar dynamics is investigated. For dynamical systems with disparate timescales, a criterion for determining redundant dimensions and a general reduction method based on the minimization of evolution rate are proposed.
The Formation of Galactic Bulges
NASA Astrophysics Data System (ADS)
Carollo, C. Marcella; Ferguson, Henry C.; Wyse, Rosemary F. G.
2000-03-01
Part I. Introduction: What are galactic bulges?; Part II. The Epoch of Bulge Formation: Origin of bulges; Deep sub-mm surveys: High-z ULIRGs and the formation of spheroids; Ages and metallicities for stars in the galactic bulge; Integrated stellar populations of bulges: First results; HST-NICMOS observations of galactic bulges: Ages and dust; Inside-out bulge formation and the origin of the Hubble sequence; Part III. The Timescales of Bulge Formation: Constraints on the bulge formation timescale from stellar populations; Bulge building with mergers and winds; Role of winds, starbursts, and activity in bulge formation; Dynamical timescales of bulge formation; Part IV. Physical Processes in Bulge Formation: the role of bars for secular bulge formation; Bars and boxy/peanut-shaped bulges: an observational point of view; Boxy- and peanut-shaped bulges; A new class of bulges; The role of secondary bars in bulge formation; Radial transport of molecular gas to the nuclei of spiral galaxies; Dynamical evolution of bulge shapes; Two-component stellar systems: Phase-space constraints; Central NGC 2146 - a firehose-type bending instability?; Bulge formation: the role of the multi-phase ISM; Global evolution of a self-gravitating multi-phase ISM in the central kpc region of galaxies; Part V. Bulge Phenomenology: Bulge-disk decomposition of spiral galaxies in the near-infrared; The triaxial bulge of NGC 1371; The bulge-disk orthogonal decoupling in galaxies: NGC 4698 and NGC 4672; The kinematics and the origin of the ionized gas in NGC 4036; Optically thin thermal plasma in the galactic bulge; X-ray properties of bulges; The host galaxies of radio-loud AGN; The centers of radio-loud early-type galaxies with HST; Central UV spikes in two galactic spheroids; Conference summary: where do we stand?
NASA Astrophysics Data System (ADS)
Walsh, A. J.; Ruth, A. A.; Gash, E. W.; Mansfield, M. W. D.
2013-08-01
The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamics of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a sink. The wall conditions (which could not be quantitatively characterized) have a profound influence on the dynamics of the system and on its slow return to an equilibrium state.
Simulating shock-bubble interactions at water-gelatin interfaces
NASA Astrophysics Data System (ADS)
Adami, Stefan; Kaiser, Jakob; Bermejo-Moreno, Ivan; Adams, Nikolaus
2016-11-01
Biomedical problems are often driven by fluid dynamics, as in vivo organisms are usually composed of or filled with fluids that (strongly) affected their physics. Additionally, fluid dynamical effects can be used to enhance certain phenomena or destroy organisms. As examples, we highlight the benign potential of shockwave-driven kidney-stone lithotripsy or sonoporation (acoustic cavitation of microbubbles) to improve drug delivery into cells. During the CTR SummerProgram 2016 we have performed axisymmetric three-phase simulations of a shock hitting a gas bubble in water near a gelatin interface mimicking the fundamental process during sonoporation. We used our multi-resolution finite volume method with sharp interface representation (level-set), WENO-5 shock capturing and interface scale-separation and compared the results with a diffuse-interface method. Qualitatively our simulation results agree well with the reference. Due to the interface treatment the pressure profiles are sharper in our simulations and bubble collapse dynamics are predicted at shorter time-scales. Validation with free-field collapse (Rayleigh collapse) shows very good agreement. The project leading to this application has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement No 667483).
NASA Astrophysics Data System (ADS)
Qin, Qubin; Shen, Jian
2017-09-01
Although both local processes (photosynthesis, respiration, grazing, and settling), and transport processes (advective transport and diffusive transport) significantly affect local phytoplankton dynamics, it is difficult to separate their contributions and to investigate the relative importance of each process to the local variability of phytoplankton biomass over different timescales. A method of using the transport rate is introduced to quantify the contribution of transport processes. By combining the time-varying transport rate and high-frequency observed chlorophyll a data, we can explicitly examine the impact of local and transport processes on phytoplankton biomass over a range of timescales from hourly to annually. For the Upper James River, results show that the relative importance of local and transport processes differs on different timescales. Local processes dominate phytoplankton variability on daily to weekly timescales, whereas the contribution of transport processes increases on seasonal to annual timescales and reaches equilibrium with local processes. With the use of the transport rate and high-frequency chlorophyll a data, a method similar to the open water oxygen method for metabolism is also presented to estimate phytoplankton primary production.
Adaptive dynamics on an environmental gradient that changes over a geological time-scale.
Fortelius, Mikael; Geritz, Stefan; Gyllenberg, Mats; Toivonen, Jaakko
2015-07-07
The standard adaptive dynamics framework assumes two timescales, i.e. fast population dynamics and slow evolutionary dynamics. We further assume a third timescale, which is even slower than the evolutionary timescale. We call this the geological timescale and we assume that slow climatic change occurs within this timescale. We study the evolution of our model population over this very slow geological timescale with bifurcation plots of the standard adaptive dynamics framework. The bifurcation parameter being varied describes the abiotic environment that changes over the geological timescale. We construct evolutionary trees over the geological timescale and observe both gradual phenotypic evolution and punctuated branching events. We concur with the established notion that branching of a monomorphic population on an environmental gradient only happens when the gradient is not too shallow and not too steep. However, we show that evolution within the habitat can produce polymorphic populations that inhabit steep gradients. What is necessary is that the environmental gradient at some point in time is such that the initial branching of the monomorphic population can occur. We also find that phenotypes adapted to environments in the middle of the existing environmental range are more likely to branch than phenotypes adapted to extreme environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Arciniega-Ceballos, A.; Spina, L.; Scheu, B.; Dingwell, D. B.
2015-12-01
We have investigated the dynamics of Newtonian fluids with viscosities (10-1000 Pa s; corresponding to mafic to intermediate silicate melts) during slow decompression, in a Plexiglas shock tube. As an analogue fluid we used silicon oil saturated with Argon gas for 72 hours. Slow decompression, dropping from 10 MPa to ambient pressure, acts as the excitation mechanism, initiating several processes with their own distinct timescales. The evolution of this multi-timescale phenomenon generates complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit. Correlation analysis of these time series with the associated high-speed imaging enables characterization of distinct phases of the dynamics of these viscous fluids and the extraction of the time and the frequency characteristics of the individual processes. We have identified fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution in space. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the system. Our observations point to the great potential of this experimental approach in the understanding of volcanic processes and volcanic seismicity.
Computational Models of Protein Kinematics and Dynamics: Beyond Simulation
Gipson, Bryant; Hsu, David; Kavraki, Lydia E.; Latombe, Jean-Claude
2016-01-01
Physics-based simulation represents a powerful method for investigating the time-varying behavior of dynamic protein systems at high spatial and temporal resolution. Such simulations, however, can be prohibitively difficult or lengthy for large proteins or when probing the lower-resolution, long-timescale behaviors of proteins generally. Importantly, not all questions about a protein system require full space and time resolution to produce an informative answer. For instance, by avoiding the simulation of uncorrelated, high-frequency atomic movements, a larger, domain-level picture of protein dynamics can be revealed. The purpose of this review is to highlight the growing body of complementary work that goes beyond simulation. In particular, this review focuses on methods that address kinematics and dynamics, as well as those that address larger organizational questions and can quickly yield useful information about the long-timescale behavior of a protein. PMID:22524225
Multi-level molecular modelling for plasma medicine
NASA Astrophysics Data System (ADS)
Bogaerts, Annemie; Khosravian, Narjes; Van der Paal, Jonas; Verlackt, Christof C. W.; Yusupov, Maksudbek; Kamaraj, Balu; Neyts, Erik C.
2016-02-01
Modelling at the molecular or atomic scale can be very useful for obtaining a better insight in plasma medicine. This paper gives an overview of different atomic/molecular scale modelling approaches that can be used to study the direct interaction of plasma species with biomolecules or the consequences of these interactions for the biomolecules on a somewhat longer time-scale. These approaches include density functional theory (DFT), density functional based tight binding (DFTB), classical reactive and non-reactive molecular dynamics (MD) and united-atom or coarse-grained MD, as well as hybrid quantum mechanics/molecular mechanics (QM/MM) methods. Specific examples will be given for three important types of biomolecules, present in human cells, i.e. proteins, DNA and phospholipids found in the cell membrane. The results show that each of these modelling approaches has its specific strengths and limitations, and is particularly useful for certain applications. A multi-level approach is therefore most suitable for obtaining a global picture of the plasma-biomolecule interactions.
Using multi-resolution proxies to assess ENSO impacts on the mean state of the tropical Pacific.
NASA Astrophysics Data System (ADS)
Karamperidou, C.; Conroy, J. L.
2016-12-01
Observations and model simulations indicate that the relationship between ENSO and the mean state of the tropical Pacific is a two-way interaction. On one hand, a strong zonal SST gradient (dSST) in the Pacific (colder cold tongue) increases the potential intensity of upcoming ENSO events and may lead to increased ENSO variance. On the other hand, in a period of increased ENSO activity, large events can warm the cold tongue at decadal scales via residual heating, and thus lead to reduced zonal SST gradient (ENSO rectification mechanism). The short length of the observational record hinders our ability to confidently evaluate which mechanism dominates in each period, and whether it is sensitive to external climate forcing. This question is effectively a question of interaction between two timescales: interannual and decadal. Paleoclimate proxies of different resolutions can help elucidate this question, since they can be independent records of variability in these separate timescales. Here, we use coral proxies of ENSO variability from across the Pacific and multi-proxy records of dSST at longer timescales. Proxies, models, and observations indicate that in periods of increased ENSO activity, dSST is negatively correlated with ENSO variance at decadal timescales, indicating that strong ENSO events may affect the decadal mean state via warming the cold tongue. Using climate model simulations we attribute this effect to residual nonlinear dynamical heating, thus supporting the ENSO rectification mechanism. On the contrary, in periods without strong events, ENSO variance and dSST are positively correlated, which indicates that the primary mechanism at work is the effect of the mean state on ENSO. Our analysis also quantitatively identifies the regions where paleoclimate proxies are needed in order to reduce the existing uncertainties in ENSO-mean state interactions. Hence, this study is a synthesis of observations, model simulations and paleoclimate proxy evidence guided by the fundamental and open question of multi-scale interactions in the tropical Pacific, and illustrates the need for multi-resolution paleoclimate proxies and their potential uses.
Using dynamic mode decomposition for real-time background/foreground separation in video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kutz, Jose Nathan; Grosek, Jacob; Brunton, Steven
The technique of dynamic mode decomposition (DMD) is disclosed herein for the purpose of robustly separating video frames into background (low-rank) and foreground (sparse) components in real-time. Foreground/background separation is achieved at the computational cost of just one singular value decomposition (SVD) and one linear equation solve, thus producing results orders of magnitude faster than robust principal component analysis (RPCA). Additional techniques, including techniques for analyzing the video for multi-resolution time-scale components, and techniques for reusing computations to allow processing of streaming video in real time, are also described herein.
Multi-scale variability and long-range memory in indoor Radon concentrations from Coimbra, Portugal
NASA Astrophysics Data System (ADS)
Donner, Reik V.; Potirakis, Stelios; Barbosa, Susana
2014-05-01
The presence or absence of long-range correlations in the variations of indoor Radon concentrations has recently attracted considerable interest. As a radioactive gas naturally emitted from the ground in certain geological settings, understanding environmental factors controlling Radon concentrations and their dynamics is important for estimating its effect on human health and the efficiency of possible measures for reducing the corresponding exposition. In this work, we re-analyze two high-resolution records of indoor Radon concentrations from Coimbra, Portugal, each of which spans several months of continuous measurements. In order to evaluate the presence of long-range correlations and fractal scaling, we utilize a multiplicity of complementary methods, including power spectral analysis, ARFIMA modeling, classical and multi-fractal detrended fluctuation analysis, and two different estimators of the signals' fractal dimensions. Power spectra and fluctuation functions reveal some complex behavior with qualitatively different properties on different time-scales: white noise in the high-frequency part, indications of some long-range correlated process dominating time scales of several hours to days, and pronounced low-frequency variability associated with tidal and/or meteorological forcing. In order to further decompose these different scales of variability, we apply two different approaches. On the one hand, applying multi-resolution analysis based on the discrete wavelet transform allows separately studying contributions on different time scales and characterize their specific correlation and scaling properties. On the other hand, singular system analysis (SSA) provides a reconstruction of the essential modes of variability. Specifically, by considering only the first leading SSA modes, we achieve an efficient de-noising of our environmental signals, highlighting the low-frequency variations together with some distinct scaling on sub-daily time-scales resembling the properties of a long-range correlated process.
NASA Astrophysics Data System (ADS)
Zunz, Violette; Goosse, Hugues; Dubinkina, Svetlana
2014-05-01
In this study, we assess systematically the impact of different initialisation procedures on the predictability of the sea ice in the Southern Ocean. These initialisation strategies are based on three data assimilation methods: the nudging, the particle filter with sequential resampling and the nudging proposal particle filter. An Earth-system model of intermediate complexity has been used to perform hindcast simulations in a perfect model approach. The predictability of the Southern Ocean sea ice is estimated through two aspects: the spread of the hindcast ensemble, indicating the uncertainty on the ensemble, and the correlation between the ensemble mean and the pseudo-observations, used to assess the accuracy of the prediction. Our results show that, at decadal timescales, more sophisticated data assimilation methods as well as denser pseudo-observations used to initialise the hindcasts decrease the spread of the ensemble but improve only slightly the accuracy of the prediction of the sea ice in the Southern Ocean. Overall, the predictability at interannual timescales is limited, at most, to three years ahead. At multi-decadal timescales, there is a clear improvement of the correlation of the trend in sea ice extent between the hindcasts and the pseudo-observations if the initialisation takes into account the pseudo-observations. The correlation reaches values larger than 0.5 and is due to the inertia of the ocean, showing the importance of the quality of the initialisation below the sea ice.
Timescales of Coherent Dynamics in the Light Harvesting Complex 2 (LH2) of Rhodobacter sphaeroides.
Fidler, Andrew F; Singh, Ved P; Long, Phillip D; Dahlberg, Peter D; Engel, Gregory S
2013-05-02
The initial dynamics of energy transfer in the light harvesting complex 2 from Rhodobacter sphaeroides were investigated with polarization controlled two-dimensional spectroscopy. This method allows only the coherent electronic motions to be observed revealing the timescale of dephasing among the excited states. We observe persistent coherence among all states and assign ensemble dephasing rates for the various coherences. A simple model is utilized to connect the spectroscopic transitions to the molecular structure, allowing us to distinguish coherences between the two rings of chromophores and coherences within the rings. We also compare dephasing rates between excited states to dephasing rates between the ground and excited states, revealing that the coherences between excited states dephase on a slower timescale than coherences between the ground and excited states.
Chamberland, Simon; Yang, Helen H; Pan, Michael M; Evans, Stephen W; Guan, Sihui; Chavarha, Mariya; Yang, Ying; Salesse, Charleen; Wu, Haodi; Wu, Joseph C; Clandinin, Thomas R; Toth, Katalin; Lin, Michael Z; St-Pierre, François
2017-01-01
Monitoring voltage dynamics in defined neurons deep in the brain is critical for unraveling the function of neuronal circuits but is challenging due to the limited performance of existing tools. In particular, while genetically encoded voltage indicators have shown promise for optical detection of voltage transients, many indicators exhibit low sensitivity when imaged under two-photon illumination. Previous studies thus fell short of visualizing voltage dynamics in individual neurons in single trials. Here, we report ASAP2s, a novel voltage indicator with improved sensitivity. By imaging ASAP2s using random-access multi-photon microscopy, we demonstrate robust single-trial detection of action potentials in organotypic slice cultures. We also show that ASAP2s enables two-photon imaging of graded potentials in organotypic slice cultures and in Drosophila. These results demonstrate that the combination of ASAP2s and fast two-photon imaging methods enables detection of neural electrical activity with subcellular spatial resolution and millisecond-timescale precision. DOI: http://dx.doi.org/10.7554/eLife.25690.001 PMID:28749338
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; Hurk, B. V. D.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2017-12-01
Here we demonstrate, for the first time, that the implementation of a realistic representation of vegetation in Earth System Models (ESMs) can significantly improve climate simulation and prediction across multiple time-scales. The effective sub-grid vegetation fractional coverage vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the surface resistance to evapotranspiration, albedo, roughness lenght, and soil field capacity. To adequately represent this effect in the EC-Earth ESM, we included an exponential dependence of the vegetation cover on the Leaf Area Index.By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal (2-4 months) and weather (4 days) time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation-cover consistently correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.Above results are discussed in a peer-review paper just being accepted for publication on Climate Dynamics (Alessandri et al., 2017; doi:10.1007/s00382-017-3766-y).
The Resilience of Kepler Multi-systems to Stellar Obliquity
NASA Astrophysics Data System (ADS)
Spalding, Christopher; Marx, Noah W.; Batygin, Konstantin
2018-04-01
The Kepler mission and its successor K2 have brought forth a cascade of transiting planets. Many of these planetary systems exhibit multiple transiting members. However, a large fraction possesses only a single transiting planet. This high abundance of singles, dubbed the "Kepler Dichotomy," has been hypothesized to arise from significant mutual inclinations between orbits in multi-planet systems. Alternatively, the single-transiting population truly possesses no other planets in the system, but the true origin of the overabundance of single systems remains unresolved. In this work, we propose that planetary systems typically form with a coplanar, multiple-planetary architecture, but that quadrupolar gravitational perturbations from their rapidly-rotating host star subsequently disrupt this primordial coplanarity. We demonstrate that, given sufficient stellar obliquity, even systems beginning with 2 planetary constituents are susceptible to dynamical instability soon after planet formation, as a result of the stellar quadrupole moment. This mechanism stands as a widespread, yet poorly explored pathway toward planetary system instability. Moreover, by requiring that observed multi-systems remain coplanar on Gyr timescales, we are able to place upper limits on the stellar obliquity in systems such as K2-38 (obliquity < 20 degrees), where other methods of measuring spin-orbit misalignment are not currently available.
2012-01-01
Background It is well known that the deterministic dynamics of biochemical reaction networks can be more easily studied if timescale separation conditions are invoked (the quasi-steady-state assumption). In this case the deterministic dynamics of a large network of elementary reactions are well described by the dynamics of a smaller network of effective reactions. Each of the latter represents a group of elementary reactions in the large network and has associated with it an effective macroscopic rate law. A popular method to achieve model reduction in the presence of intrinsic noise consists of using the effective macroscopic rate laws to heuristically deduce effective probabilities for the effective reactions which then enables simulation via the stochastic simulation algorithm (SSA). The validity of this heuristic SSA method is a priori doubtful because the reaction probabilities for the SSA have only been rigorously derived from microscopic physics arguments for elementary reactions. Results We here obtain, by rigorous means and in closed-form, a reduced linear Langevin equation description of the stochastic dynamics of monostable biochemical networks in conditions characterized by small intrinsic noise and timescale separation. The slow-scale linear noise approximation (ssLNA), as the new method is called, is used to calculate the intrinsic noise statistics of enzyme and gene networks. The results agree very well with SSA simulations of the non-reduced network of elementary reactions. In contrast the conventional heuristic SSA is shown to overestimate the size of noise for Michaelis-Menten kinetics, considerably under-estimate the size of noise for Hill-type kinetics and in some cases even miss the prediction of noise-induced oscillations. Conclusions A new general method, the ssLNA, is derived and shown to correctly describe the statistics of intrinsic noise about the macroscopic concentrations under timescale separation conditions. The ssLNA provides a simple and accurate means of performing stochastic model reduction and hence it is expected to be of widespread utility in studying the dynamics of large noisy reaction networks, as is common in computational and systems biology. PMID:22583770
NASA Astrophysics Data System (ADS)
Molero, B.; Leroux, D. J.; Richaume, P.; Kerr, Y. H.; Merlin, O.; Cosh, M. H.; Bindlish, R.
2018-01-01
We conduct a novel comprehensive investigation that seeks to prove the connection between spatial scales and timescales in surface soil moisture (SM) within the satellite footprint ( 50 km). Modeled and measured point series at Yanco and Little Washita in situ networks are first decomposed into anomalies at timescales ranging from 0.5 to 128 days, using wavelet transforms. Then, their degree of spatial representativeness is evaluated on a per-timescale basis by comparison to large spatial scale data sets (the in situ spatial average, SMOS, AMSR2, and ECMWF). Four methods are used for this: temporal stability analysis (TStab), triple collocation (TC), percentage of correlated areas (CArea), and a new proposed approach that uses wavelet-based correlations (WCor). We found that the mean of the spatial representativeness values tends to increase with the timescale but so does their dispersion. Locations exhibit poor spatial representativeness at scales below 4 days, while either very good or poor representativeness at seasonal scales. Regarding the methods, TStab cannot be applied to the anomaly series due to their multiple zero-crossings, and TC is suitable for week and month scales but not for other scales where data set cross-correlations are found low. In contrast, WCor and CArea give consistent results at all timescales. WCor is less sensitive to the spatial sampling density, so it is a robust method that can be applied to sparse networks (one station per footprint). These results are promising to improve the validation and downscaling of satellite SM series and the optimization of SM networks.
JESTR: Jupiter Exploration Science in the Time Regime
NASA Technical Reports Server (NTRS)
Noll, Keith S.; Simon-Miller, A. A.; Wong, M. H.; Choi, D. S.
2012-01-01
Solar system objects are inherently time-varying with changes that occur on timescales ranging from seconds to years. For all planets other than the Earth, temporal coverage of atmospheric phenomena is limited and sparse. Many important atmospheric phenomena, especially those related to atmospheric dynamics, can be studied in only very limited ways with current data. JESTR is a mission concept that would remedy this gap in our exploration of the solar system by ncar-continuous imaging and spectral monitoring of Jupiter over a multi-year mission lifetime.
Discovery of a Similar to 5 Day Characteristic Timescale in the Kepler Power Spectrum of Zw 229-15
NASA Technical Reports Server (NTRS)
Edelson, R.; Vaughan, S.; Malkan, M.; Kelly, B. C.; Smith, K. L.; Boyd, P. T.; Mushotzky, R.
2014-01-01
We present time series analyses of the full Kepler dataset of Zw 229- 15. This Kepler light curve- with a baseline greater than three years, composed of virtually continuous, evenly sampled 30-minute measurements - is unprecedented in its quality and precision. We utilize two methods of power spectral analysis to investigate the optical variability and search for evidence of a bend frequency associated with a characteristic optical variability timescale. Each method yields similar results. The first interpolates across data gaps to use the standard Fourier periodogram. The second, using the CARMA-based time-domain modeling technique of Kelly et al., does not need evenly-sampled data. Both methods find excess power at high frequencies that may be due to Kepler instrumental effects. More importantly both also show strong bends (delta alpha is approx. 2) at timescales of approx. 5 days, a feature similar to those seen in the X-ray PSDs of AGN but never before in the optical. This observed approx. 5 day timescale may be associated with one of several physical processes potentially responsible for the variability. A plausible association could be made with light -crossing, dynamical or thermal timescales, depending on the assumed value of the accretion disk size and on unobserved disk parameters such as alpha and H¬R. This timescale is not consistent with the viscous timescale, which would be years in a approx. 10(exp7) solar mass AGN such as Zw 229- 15. However there must be a second bend on long (& 1 year) timescales, and that feature could be associated with the viscous timescale.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edelson, R.; Smith, K. L.; Mushotzky, R.
We present time series analyses of the full Kepler data set of Zw 229–15. This Kepler light curve—with a baseline greater than 3 yr, composed of virtually continuous, evenly sampled 30 minute measurements—is unprecedented in its quality and precision. We utilize two methods of power spectral analysis to investigate the optical variability and search for evidence of a bend frequency associated with a characteristic optical variability timescale. Each method yields similar results. The first interpolates across data gaps to use the standard Fourier periodogram. The second, using the CARMA-based time-domain modeling technique of Kelly et al., does not need evenlymore » sampled data. Both methods find excess power at high frequencies that may be due to Kepler instrumental effects. More importantly, both also show strong bends (Δα ∼ 2) at timescales of ∼5 days, a feature similar to those seen in the X-ray power spectral densities of active galactic nuclei (AGNs) but never before in the optical. This observed ∼5 day timescale may be associated with one of several physical processes potentially responsible for the variability. A plausible association could be made with light-crossing dynamical or thermal timescales depending on the assumed value of the accretion disk size and on unobserved disk parameters such as α and H/R. This timescale is not consistent with the viscous timescale, which would be years in a ∼10{sup 7} M {sub ☉} AGN such as Zw 229–15. However, there must be a second bend on long (≳ 1 yr) timescales and that feature could be associated with the viscous timescale.« less
NASA Astrophysics Data System (ADS)
Han, W.; Stammer, D.; Meehl, G. A.; Hu, A.; Sienz, F.
2016-12-01
Sea level varies on decadal and multi-decadal timescales over the Indian Ocean. The variations are not spatially uniform, and can deviate considerably from the global mean sea level rise (SLR) due to various geophysical processes. One of these processes is the change of ocean circulation, which can be partly attributed to natural internal modes of climate variability. Over the Indian Ocean, the most influential climate modes on decadal and multi-decadal timescales are the Interdecadal Pacific Oscillation (IPO) and decadal variability of the Indian Ocean dipole (IOD). Here, we first analyze observational datasets to investigate the impacts of IPO and IOD on spatial patterns of decadal and interdecadal (hereafter decal) sea level variability & multi-decadal trend over the Indian Ocean since the 1950s, using a new statistical approach of Bayesian Dynamical Linear regression Model (DLM). The Bayesian DLM overcomes the limitation of "time-constant (static)" regression coefficients in conventional multiple linear regression model, by allowing the coefficients to vary with time and therefore measuring "time-evolving (dynamical)" relationship between climate modes and sea level. For the multi-decadal sea level trend since the 1950s, our results show that climate modes and non-climate modes (the part that cannot be explained by climate modes) have comparable contributions in magnitudes but with different spatial patterns, with each dominating different regions of the Indian Ocean. For decadal variability, climate modes are the major contributors for sea level variations over most region of the tropical Indian Ocean. The relative importance of IPO and decadal variability of IOD, however, varies spatially. For example, while IOD decadal variability dominates IPO in the eastern equatorial basin (85E-100E, 5S-5N), IPO dominates IOD in causing sea level variations in the tropical southwest Indian Ocean (45E-65E, 12S-2S). To help decipher the possible contribution of external forcing to the multi-decadal sea level trend and decadal variability, we also analyze the model outputs from NCAR's Community Earth System Model (CESM) Large Ensemble Experiments, and compare the results with our observational analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, A. J.; Gash, E. W.; Mansfield, M. W. D.
The extinction spectra of static naphthalene and static biphenylene vapor, each buffered with a noble gas at room temperature, were measured as a function of time in the region between 390 and 850 nm after UV multi-photon laser photolysis at 308 nm. Employing incoherent broadband cavity enhanced absorption spectroscopy (IBBCEAS), the spectra were found to be unstructured with a general lack of isolated features suggesting that the extinction was not solely based on absorption but was in fact dominated by scattering from particles formed in the photolysis of the respective polycyclic aromatic hydrocarbon. Following UV multi-photon photolysis, the extinction dynamicsmore » of the static (unstirred) closed gas-phase system exhibits extraordinary quasi-periodic and complex oscillations with periods ranging from seconds to many minutes, persisting for up to several hours. Depending on buffer gas type and pressure, several types of dynamical responses could be generated (classified as types I, II, and III). They were studied as a function of temperature and chamber volume for different experimental conditions and possible explanations for the oscillations are discussed. A conclusive model for the observed phenomena has not been established. However, a number of key hypotheses have made based on the measurements in this publication: (a) Following the multi-photon UV photolysis of naphthalene (or biphenylene), particles are formed on a timescale not observable using IBBCEAS. (b) The observed temporal behavior cannot be described on basis of a chemical reaction scheme alone. (c) The pressure dependence of the system's responses is due to transport phenomena of particles in the chamber. (d) The size distribution and the refractive indices of particles are time dependent and evolve on a timescale of minutes to hours. The rate of particle coagulation, involving coalescent growth and particle agglomeration, affects the observed oscillations. (e) The walls of the chamber act as a sink. The wall conditions (which could not be quantitatively characterized) have a profound influence on the dynamics of the system and on its slow return to an equilibrium state.« less
Galbraith, M C E; Smeenk, C T L; Reitsma, G; Marciniak, A; Despré, V; Mikosch, J; Zhavoronkov, N; Vrakking, M J J; Kornilov, O; Lépine, F
2017-08-02
Unraveling ultrafast dynamical processes in highly excited molecular species has an impact on our understanding of chemical processes such as combustion or the chemical composition of molecular clouds in the universe. In this article we use short (<7 fs) XUV pulses to produce excited cationic states of benzene molecules and probe their dynamics using few-cycle VIS/NIR laser pulses. The excited states produced by the XUV pulses lie in an especially complex spectral region where multi-electronic effects play a dominant role. We show that very fast τ ≈ 20 fs nonadiabatic processes dominate the relaxation of these states, in agreement with the timescale expected for most excited cationic states in benzene. In the CH 3 + fragmentation channel of the doubly ionized benzene cation we identify pathways that involve structural rearrangement and proton migration to a specific carbon atom. Further, we observe non-trivial transient behavior in this fragment channel, which can be interpreted either in terms of propagation of the nuclear wavepacket in the initially excited electronic state of the cation or as a two-step electronic relaxation via an intermediate state.
Tan, Jin; Zhang, Yingchen
2017-02-02
With increasing penetrations of wind generation on electric grids, wind power plants (WPPs) are encouraged to provide frequency ancillary services (FAS); however, it is a challenge to ensure that variable wind generation can reliably provide these ancillary services. This paper proposes using a battery energy storage system (BESS) to ensure the WPPs' commitment to FAS. This method also focuses on reducing the BESS's size and extending its lifetime. In this paper, a state-machine-based coordinated control strategy is developed to utilize a BESS to support the obliged FAS of a WPP (including both primary and secondary frequency control). This method takesmore » into account the operational constraints of the WPP (e.g., real-time reserve) and the BESS (e.g., state of charge [SOC], charge and discharge rate) to provide reliable FAS. Meanwhile, an adaptive SOC-feedback control is designed to maintain SOC at the optimal value as much as possible and thus reduce the size and extend the lifetime of the BESS. In conclusion, the effectiveness of the control strategy is validated with an innovative, multi-area, interconnected power system simulation platform that can mimic realistic power systems operation and control by simulating real-time economic dispatch, regulating reserve scheduling, multi-area automatic generation control, and generators' dynamic response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Jin; Zhang, Yingchen
With increasing penetrations of wind generation on electric grids, wind power plants (WPPs) are encouraged to provide frequency ancillary services (FAS); however, it is a challenge to ensure that variable wind generation can reliably provide these ancillary services. This paper proposes using a battery energy storage system (BESS) to ensure the WPPs' commitment to FAS. This method also focuses on reducing the BESS's size and extending its lifetime. In this paper, a state-machine-based coordinated control strategy is developed to utilize a BESS to support the obliged FAS of a WPP (including both primary and secondary frequency control). This method takesmore » into account the operational constraints of the WPP (e.g., real-time reserve) and the BESS (e.g., state of charge [SOC], charge and discharge rate) to provide reliable FAS. Meanwhile, an adaptive SOC-feedback control is designed to maintain SOC at the optimal value as much as possible and thus reduce the size and extend the lifetime of the BESS. In conclusion, the effectiveness of the control strategy is validated with an innovative, multi-area, interconnected power system simulation platform that can mimic realistic power systems operation and control by simulating real-time economic dispatch, regulating reserve scheduling, multi-area automatic generation control, and generators' dynamic response.« less
ENSO related variability in the Southern Hemisphere, 1948-2000
NASA Astrophysics Data System (ADS)
Ribera, Pedro; Mann, Michael E.
2003-01-01
The spatiotemporal evolution of Southern Hemisphere climate variability is diagnosed based on the use of the NCEP reanalysis (1948-2000) dataset. Using the MTM-SVD analysis method, significant narrowband variability is isolated from the multi-variate dataset. It is found that the ENSO signal exhibits statistically significant behavior at quasiquadrennial (3-6 yr) timescales for the full time-period. A significant quasibiennial (2-3 yr) timescales emerges only for the latter half of period. Analyses of the spatial evolution of the two reconstructed signals shed additional light on linkages between low and high-latitude Southern Hemisphere climate anomalies.
Conformational dynamics and ligand binding in the multi-domain protein PDC109.
Kim, Hyun Jin; Choi, Moo Young; Kim, Hyung J; Llinás, Miguel
2010-02-18
PDC109 is a modular multi-domain protein with two fibronectin type II (Fn2) repeats joined by a linker. It plays a major role in bull sperm binding to the oviductal epithelium through its interactions with phosphorylcholines (PhCs), a head group of sperm cell membrane lipids. The crystal structure of the PDC109-PhC complex shows that each PhC binds to the corresponding Fn2 domain, while the two domains are on the same face of the protein. Long timescale explicit solvent molecular dynamics (MD) simulations of PDC109, in the presence and absence of PhC, suggest that PhC binding strongly correlates with the relative orientation of choline-phospholipid binding sites of the two Fn2 domains; unless the two domains tightly bind PhCs, they tend to change their relative orientation by deforming the flexible linker. The effective PDC109-PhC association constant of 28 M(-1), estimated from their potential of mean force is consistent with the experimental result. Principal component analysis of the long timescale MD simulations was compared to the significantly less expensive normal mode analysis of minimized structures. The comparison indicates that difference between relative domain motions of PDC109 with bound and unbound PhC is captured by the first principal component in the principal component analysis as well as the three lowest normal modes in the normal mode analysis. The present study illustrates the use of detailed MD simulations to clarify the energetics of specific ligand-domain interactions revealed by a static crystallographic model, as well as their influence on relative domain motions in a multi-domain protein.
Predicting Precession Rates from Secular Dynamics for Extra-solar Multi-planet Systems
NASA Astrophysics Data System (ADS)
Van Laerhoven, Christa
2015-12-01
Considering the secular dynamics of multi-planet systems provides substantial insight into the interactions between planets in those systems. Secular interactions are those that don't involve knowing where a planet is along its orbit, and they dominate when planets are not involved in mean motion resonances. These interactions exchange angular momentum among the planets, evolving their eccentricities and inclinations. To second order in the planets' eccentricities and inclinations, the eccentricity and inclination perturbations are decoupled. Given the right variable choice, the relevant differential equations are linear and thus the eccentricity and inclination behaviors can be described as a sum of eigenmodes. Since the underlying structure of the secular eigenmodes can be calculated using only the planets' masses and semi-major axes, one can elucidate the eccentricity and inclination behavior of planets in exoplanet systems even without knowing the planets' current eccentricities and inclinations. I have calculated both the eccentricity and inclination secular eigenmodes for the population of known multi-planet systems whose planets have well determined masses and periods and have used this to predict what range of pericenter precession (and nodal regression) rates the planets may have. One might have assumed that in any given system the planets with shorter periods would have faster precession rates, but I show that this is not necessarily the case. Planets that are 'loners' have narrow ranges of possible precession rates, while planets that are 'groupies' can have a wider range of possible precession rates. Several planets are expected to undergo significant precession on few-year timescales and many planets (though not the majority of planets) will undergo significant precession on decade timescales.
NASA Astrophysics Data System (ADS)
Carrillo, Carlos M.; Castro, Christopher L.; Chang, Hsin-I.; Luong, Thang M.
2017-12-01
This investigation evaluates whether there is coherency in warm and cool season precipitation at the low-frequency scale that may be responsible for multi-year droughts in the US Southwest. This low-frequency climate variability at the decadal scale and longer is studied within the context of a twentieth-century reanalysis (20CR) and its dynamically-downscaled version (DD-20CR). A spectral domain matrix methods technique (Multiple-Taper-Method Singular Value Decomposition) is applied to these datasets to identify statistically significant spatiotemporal precipitation patterns for the cool (November-April) and warm (July-August) seasons. The low-frequency variability in the 20CR is evaluated by exploring global to continental-scale spatiotemporal variability in moisture flux convergence (MFC) to the occurrence of multiyear droughts and pluvials in Central America, as this region has a demonstrated anti-phase relationship in low-frequency climate variability with northern Mexico and the southwestern US By using the MFC in lieu of precipitation, this study reveals that the 20CR is able to resolve well the low-frequency, multiyear climate variability. In the context of the DD-20CR, multiyear droughts and pluvials in the southwestern US (in the early twentieth century) are significantly related to this low-frequency climate variability. The precipitation anomalies at these low-frequency timescales are in phase between the cool and warm seasons, consistent with the concept of dual-season drought as has been suggested in tree ring studies.
Doshi, Urmi; Hamelberg, Donald
2015-05-01
Accelerated molecular dynamics (aMD) has been proven to be a powerful biasing method for enhanced sampling of biomolecular conformations on general-purpose computational platforms. Biologically important long timescale events that are beyond the reach of standard molecular dynamics can be accessed without losing the detailed atomistic description of the system in aMD. Over other biasing methods, aMD offers the advantages of tuning the level of acceleration to access the desired timescale without any advance knowledge of the reaction coordinate. Recent advances in the implementation of aMD and its applications to small peptides and biological macromolecules are reviewed here along with a brief account of all the aMD variants introduced in the last decade. In comparison to the original implementation of aMD, the recent variant in which all the rotatable dihedral angles are accelerated (RaMD) exhibits faster convergence rates and significant improvement in statistical accuracy of retrieved thermodynamic properties. RaMD in conjunction with accelerating diffusive degrees of freedom, i.e. dual boosting, has been rigorously tested for the most difficult conformational sampling problem, protein folding. It has been shown that RaMD with dual boosting is capable of efficiently sampling multiple folding and unfolding events in small fast folding proteins. RaMD with the dual boost approach opens exciting possibilities for sampling multiple timescales in biomolecules. While equilibrium properties can be recovered satisfactorily from aMD-based methods, directly obtaining dynamics and kinetic rates for larger systems presents a future challenge. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
Integrated description of protein dynamics from room-temperature X-ray crystallography and NMR
Fenwick, R. Bryn; van den Bedem, Henry; Fraser, James S.; Wright, Peter E.
2014-01-01
Detailed descriptions of atomic coordinates and motions are required for an understanding of protein dynamics and their relation to molecular recognition, catalytic function, and allostery. Historically, NMR relaxation measurements have played a dominant role in the determination of the amplitudes and timescales (picosecond–nanosecond) of bond vector fluctuations, whereas high-resolution X-ray diffraction experiments can reveal the presence of and provide atomic coordinates for multiple, weakly populated substates in the protein conformational ensemble. Here we report a hybrid NMR and X-ray crystallography analysis that provides a more complete dynamic picture and a more quantitative description of the timescale and amplitude of fluctuations in atomic coordinates than is obtainable from the individual methods alone. Order parameters (S2) were calculated from single-conformer and multiconformer models fitted to room temperature and cryogenic X-ray diffraction data for dihydrofolate reductase. Backbone and side-chain order parameters derived from NMR relaxation experiments are in excellent agreement with those calculated from the room-temperature single-conformer and multiconformer models, showing that the picosecond timescale motions observed in solution occur also in the crystalline state. These motions are quenched in the crystal at cryogenic temperatures. The combination of NMR and X-ray crystallography in iterative refinement promises to provide an atomic resolution description of the alternate conformational substates that are sampled through picosecond to nanosecond timescale fluctuations of the protein structure. The method also provides insights into the structural heterogeneity of nonmethyl side chains, aromatic residues, and ligands, which are less commonly analyzed by NMR relaxation measurements. PMID:24474795
Block Preconditioning to Enable Physics-Compatible Implicit Multifluid Plasma Simulations
NASA Astrophysics Data System (ADS)
Phillips, Edward; Shadid, John; Cyr, Eric; Miller, Sean
2017-10-01
Multifluid plasma simulations involve large systems of partial differential equations in which many time-scales ranging over many orders of magnitude arise. Since the fastest of these time-scales may set a restrictively small time-step limit for explicit methods, the use of implicit or implicit-explicit time integrators can be more tractable for obtaining dynamics at time-scales of interest. Furthermore, to enforce properties such as charge conservation and divergence-free magnetic field, mixed discretizations using volume, nodal, edge-based, and face-based degrees of freedom are often employed in some form. Together with the presence of stiff modes due to integrating over fast time-scales, the mixed discretization makes the required linear solves for implicit methods particularly difficult for black box and monolithic solvers. This work presents a block preconditioning strategy for multifluid plasma systems that segregates the linear system based on discretization type and approximates off-diagonal coupling in block diagonal Schur complement operators. By employing multilevel methods for the block diagonal subsolves, this strategy yields algorithmic and parallel scalability which we demonstrate on a range of problems.
NASA Astrophysics Data System (ADS)
Nogueira, Miguel
2018-02-01
Spectral analysis of global-mean precipitation, P, evaporation, E, precipitable water, W, and surface temperature, Ts, revealed significant variability from sub-daily to multi-decadal time-scales, superposed on high-amplitude diurnal and yearly peaks. Two distinct regimes emerged from a transition in the spectral exponents, β. The weather regime covering time-scales < 10 days with β ≥ 1; and the macroweather regime extending from a few months to a few decades with 0 <β <1. Additionally, the spectra showed a generally good statistical agreement amongst several different model- and satellite-based datasets. Detrended cross-correlation analysis (DCCA) revealed three important results which are robust across all datasets: (1) Clausius-Clapeyron (C-C) relationship is the dominant mechanism of W non-periodic variability at multi-year time-scales; (2) C-C is not the dominant control of W, P or E non-periodic variability at time-scales below about 6 months, where the weather regime is approached and other mechanisms become important; (3) C-C is not a dominant control for P or E over land throughout the entire time-scale range considered. Furthermore, it is suggested that the atmosphere and oceans start to act as a single coupled system at time-scales > 1-2 years, while at time-scales < 6 months they are not the dominant drivers of each other. For global-ocean and full-globe averages, ρDCCA showed large spread of the C-C importance for P and E variability amongst different datasets at multi-year time-scales, ranging from negligible (< 0.3) to high ( 0.6-0.8) values. Hence, state-of-the-art climate datasets have significant uncertainties in the representation of macroweather precipitation and evaporation variability and its governing mechanisms.
NASA Astrophysics Data System (ADS)
Gilbertson, Steve
The observation and control of dynamics in atomic and molecular targets requires the use of laser pulses with duration less than the characteristic timescale of the process which is to be manipulated. For electron dynamics, this time scale is on the order of attoseconds where 1 attosecond = 10 -18 seconds. In order to generate pulses on this time scale, different gating methods have been proposed. The idea is to extract or "gate" a single pulse from an attosecond pulse train and switch off all the other pulses. While previous methods have had some success, they are very difficult to implement and so far very few labs have access to these unique light sources. The purpose of this work is to introduce a new method, called double optical gating (DOG), and to demonstrate its effectiveness at generating high contrast single isolated attosecond pulses from multi-cycle lasers. First, the method is described in detail and is investigated in the spectral domain. The resulting attosecond pulses produced are then temporally characterized through attosecond streaking. A second method of gating, called generalized double optical gating (GDOG), is also introduced. This method allows attosecond pulse generation directly from a carrier-envelope phase un-stabilized laser system for the first time. Next the methods of DOG and GDOG are implemented in attosecond applications like high flux pulses and extreme broadband spectrum generation. Finally, the attosecond pulses themselves are used in experiments. First, an attosecond/femtosecond cross correlation is used for characterization of spatial and temporal properties of femtosecond pulses. Then, an attosecond pump, femtosecond probe experiment is conducted to observe and control electron dynamics in helium for the first time.
On the stability of motion of N-body systems: a geometric approach.
NASA Astrophysics Data System (ADS)
El-Zant, A. A.
1997-10-01
Much of standard galaxy dynamics rests on the implicit assumption that the corresponding N-body problem is (near) integrable. This notion although leading to great simplification is by no means a fact. In particular, this assumption is unlikely to be satisfied for systems which display chaotic behaviour which manifests itself on short time-scales and for most initial conditions. It is therefore important to develop and test methods that can characterize this kind of behaviour in realistic situations. We examine here a method, pioneered by Krylov (1950, Studies on the Foundation of statistical Physics. Publ AN SSSR, Leningrad Eng. Trans. Princeton University Press. 1980) and first introduced to gravitational systems by Gurzadyan & Savvidy (1984SPhD...29..520G, 1986A&A...160..203G). It involves a metric on the configuration manifold which is then used to find local quantification of the divergence of trajectories and therefore appears to be suitable for short time characterization of chaotic behaviour. We present results of high precision N-body simulations of the dynamics of systems of 231 point particles over a few dynamical times. The Ricci (or mean) curvature is calculated along the trajectories. Once fluctuations due to close encounters are removed this quantity is found to be almost always negative and therefore all systems studied display local instability to random perturbations along their trajectories. However it is found that when significant softening is present the Ricci curvature is no longer negative. This suggests that smoothing significantly changes the structure of the 6N phase space of gravitational systems and casts doubts on the continuity of the transition from the large-N limit to the continuum limit. From the value of the negative curvature, evolution time-scales of systems displaying clear instabilities (for example collective instabilities or violent relaxation) are derived. We compare the predictions obtained from these calculations with the time-scales of the observed spatial evolution of the different systems and deduce that this is fairly well described. In all cases the results based on calculations of the scalar curvature qualitatively agree. These results suggest that future applications of these methods to realistic systems may be useful in characterizing their stability properties. One has to be careful however in relating the time-scales obtained to the time-scales of energy relaxation since different dynamical quantities may relax at different rates.
NASA Astrophysics Data System (ADS)
Taousser, Fatima; Defoort, Michael; Djemai, Mohamed
2016-01-01
This paper investigates the consensus problem for linear multi-agent system with fixed communication topology in the presence of intermittent communication using the time-scale theory. Since each agent can only obtain relative local information intermittently, the proposed consensus algorithm is based on a discontinuous local interaction rule. The interaction among agents happens at a disjoint set of continuous-time intervals. The closed-loop multi-agent system can be represented using mixed linear continuous-time and linear discrete-time models due to intermittent information transmissions. The time-scale theory provides a powerful tool to combine continuous-time and discrete-time cases and study the consensus protocol under a unified framework. Using this theory, some conditions are derived to achieve exponential consensus under intermittent information transmissions. Simulations are performed to validate the theoretical results.
Nutrient responses to ecosystem disturbances from annual to multi-millennial timescales
B. Buma
2014-01-01
The Novus Network annual meeting was held at H. J. Andrews Experimental Forest in Oregon, USA, from 22 May to 24 May 2013. The topic was: âNutrient responses to ecosystem disturbances from annual to multi-millennial timescalesâ. The 2013 workshop brought together 28 researchers from 21 institutions spread across three continents. The participants â 17 faculty members,...
Tropical rainforests dominate multi-decadal variability of the global carbon cycle
NASA Astrophysics Data System (ADS)
Zhang, X.; Wang, Y. P.; Peng, S.; Rayner, P. J.; Silver, J.; Ciais, P.; Piao, S.; Zhu, Z.; Lu, X.; Zheng, X.
2017-12-01
Recent studies find that inter-annual variability of global atmosphere-to-land CO2 uptake (NBP) is dominated by semi-arid ecosystems. However, the NBP variations at decadal to multi-decadal timescales are still not known. By developing a basic theory for the role of net primary production (NPP) and heterotrophic respiration (Rh) on NBP and applying it to 100-year simulations of terrestrial ecosystem models forced by observational climate, we find that tropical rainforests dominate the multi-decadal variability of global NBP (48%) rather than the semi-arid lands (35%). The NBP variation at inter-annual timescales is almost 90% contributed by NPP, but across longer timescales is progressively controlled by Rh that constitutes the response from the NPP-derived soil carbon input (40%) and the response of soil carbon turnover rates to climate variability (60%). The NBP variations of tropical rainforests is modulated by the ENSO and the PDO through their significant influences on temperature and precipitation at timescales of 2.5-7 and 25-50 years, respectively. This study highlights the importance of tropical rainforests on the multi-decadal variability of global carbon cycle, suggesting that we need to carefully differentiate the effect of NBP long-term fluctuations associated with ocean-related climate modes on the long-term trend in land sink.
A sensitivity study of fast outlet glaciers to short timescale cyclical perturbations
NASA Astrophysics Data System (ADS)
Aykutlug, E.; Dupont, T. K.
2015-01-01
The dynamic response of outlet glaciers on short (annual to decadal) timescales is affected by various external forcings, such as basal or oceanic conditions. Understanding the sensitivity of the dynamic response to such forcings can help assess more accurate ice volume projections. In this work, we investigate the spatiotemporal sensitivity of outlet glaciers to fast cyclical forcings using a one-dimensional depth and width-averaged heuristic model. Our results indicate that even on such short timescales, nonlinearities in ice dynamics may lead to an asymmetric response, despite the forcing functions being symmetric around each reference value. Results also show that such short-timescale effects become more pronounced as glaciers become closer to flotation. While being qualitatively similar for both downsloping and upsloping bed geometries, the results indicate higher sensitivity for upsloping ("West Antarctica-like") beds. The range in asymmetric response for different configurations motivate parameterizing or including short-timescale effects in models while investigating the dynamic behavior of outlet glaciers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yulei; Liu, Jian, E-mail: jliuphy@ustc.edu.cn; Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026
In this paper, the secular full-orbit simulations of runaway electrons with synchrotron radiation in tokamak fields are carried out using a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different dynamical timescales spanning 11 orders. In the small timescale, i.e., the characteristic timescale imposed by Lorentz force, the severely deformed helical trajectory of energetic runaway electron is witnessed. A qualitative analysis of the neoclassical scattering, a kind of collisionless pitch-angle scattering phenomena, is provided when considering the coupling between the rotation of momentum vector and the background magnetic field. In large timescale up to 1 s,more » it is found that the initial condition of runaway electrons in phase space globally influences the pitch-angle scattering, the momentum evolution, and the loss-gain ratio of runaway energy evidently. However, the initial value has little impact on the synchrotron energy limit. It is also discovered that the parameters of tokamak device, such as the toroidal magnetic field, the loop voltage, the safety factor profile, and the major radius, can modify the synchrotron energy limit and the strength of neoclassical scattering. The maximum runaway energy is also proved to be lower than the synchrotron limit when the magnetic field ripple is considered.« less
NASA Astrophysics Data System (ADS)
Kushima, A.; Eapen, J.; Li, Ju; Yip, S.; Zhu, T.
2011-08-01
Atomistic simulation methods are known for timescale limitations in resolving slow dynamical processes. Two well-known scenarios of slow dynamics are viscous relaxation in supercooled liquids and creep deformation in stressed solids. In both phenomena the challenge to theory and simulation is to sample the transition state pathways efficiently and follow the dynamical processes on long timescales. We present a perspective based on the biased molecular simulation methods such as metadynamics, autonomous basin climbing (ABC), strain-boost and adaptive boost simulations. Such algorithms can enable an atomic-level explanation of the temperature variation of the shear viscosity of glassy liquids, and the relaxation behavior in solids undergoing creep deformation. By discussing the dynamics of slow relaxation in two quite different areas of condensed matter science, we hope to draw attention to other complex problems where anthropological or geological-scale time behavior can be simulated at atomic resolution and understood in terms of micro-scale processes of molecular rearrangements and collective interactions. As examples of a class of phenomena that can be broadly classified as materials ageing, we point to stress corrosion cracking and cement setting as opportunities for atomistic modeling and simulations.
Gravity-induced dynamics of a squirmer microswimmer in wall proximity
NASA Astrophysics Data System (ADS)
Rühle, Felix; Blaschke, Johannes; Kuhr, Jan-Timm; Stark, Holger
2018-02-01
We perform hydrodynamic simulations using the method of multi-particle collision dynamics and a theoretical analysis to study a single squirmer microswimmer at high Péclet number, which moves in a low Reynolds number fluid and under gravity. The relevant parameters are the ratio α of swimming to bulk sedimentation velocity and the squirmer type β. The combination of self-propulsion, gravitational force, hydrodynamic interactions with the wall, and thermal noise leads to a surprisingly diverse behavior. At α > 1 we observe cruising states, while for α < 1 the squirmer resides close to the bottom wall with the motional state determined by stable fixed points in height and orientation. They strongly depend on the squirmer type β. While neutral squirmers permanently float above the wall with upright orientation, pullers float for α larger than a threshold value {α }th} and are pinned to the wall below {α }th}. In contrast, pushers slide along the wall at lower heights, from which thermal orientational fluctuations drive them into a recurrent floating state with upright orientation, where they remain on the timescale of orientational persistence.
Bamberger, Katharine T
2016-03-01
The use of intensive longitudinal methods (ILM)-rapid in situ assessment at micro timescales-can be overlaid on RCTs and other study designs in applied family research. Particularly, when done as part of a multiple timescale design-in bursts over macro timescales-ILM can advance the study of the mechanisms and effects of family interventions and processes of family change. ILM confers measurement benefits in accurately assessing momentary and variable experiences and captures fine-grained dynamic pictures of time-ordered processes. Thus, ILM allows opportunities to investigate new research questions about intervention effects on within-subject (i.e., within-person, within-family) variability (i.e., dynamic constructs) and about the time-ordered change process that interventions induce in families and family members beginning with the first intervention session. This paper discusses the need and rationale for applying ILM to family intervention evaluation, new research questions that can be addressed with ILM, example research using ILM in the related fields of basic family research and the evaluation of individual-based interventions. Finally, the paper touches on practical challenges and considerations associated with ILM and points readers to resources for the application of ILM.
Watching hydrogen-bond dynamics in a β-turn by transient two-dimensional infrared spectroscopy
NASA Astrophysics Data System (ADS)
Kolano, Christoph; Helbing, Jan; Kozinski, Mariusz; Sander, Wolfram; Hamm, Peter
2006-11-01
X-ray crystallography and nuclear magnetic resonance measurements provide us with atomically resolved structures of an ever-growing number of biomolecules. These static structural snapshots are important to our understanding of biomolecular function, but real biomolecules are dynamic entities that often exploit conformational changes and transient molecular interactions to perform their tasks. Nuclear magnetic resonance methods can follow such structural changes, but only on millisecond timescales under non-equilibrium conditions. Time-resolved X-ray crystallography has recently been used to monitor the photodissociation of CO from myoglobin on a subnanosecond timescale, yet remains challenging to apply more widely. In contrast, two-dimensional infrared spectroscopy, which maps vibrational coupling between molecular groups and hence their relative positions and orientations, is now routinely used to study equilibrium processes on picosecond timescales. Here we show that the extension of this method into the non-equilibrium regime allows us to observe in real time in a short peptide the weakening of an intramolecular hydrogen bond and concomitant opening of a β-turn. We find that the rate of this process is two orders of magnitude faster than the `folding speed limit' established for contact formation between protein side chains.
Hashemi Kamangar, Somayeh Sadat; Moradimanesh, Zahra; Mokhtari, Setareh; Bakouie, Fatemeh
2018-06-11
A developmental process can be described as changes through time within a complex dynamic system. The self-organized changes and emergent behaviour during development can be described and modeled as a dynamical system. We propose a dynamical system approach to answer the main question in human cognitive development i.e. the changes during development happens continuously or in discontinuous stages. Within this approach there is a concept; the size of time scales, which can be used to address the aforementioned question. We introduce a framework, by considering the concept of time-scale, in which "fast" and "slow" is defined by the size of time-scales. According to our suggested model, the overall pattern of development can be seen as one continuous function, with different time-scales in different time intervals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, G., E-mail: gchen@lanl.gov; Chacón, L.; Leibs, C.A.
2014-02-01
A recent proof-of-principle study proposes an energy- and charge-conserving, nonlinearly implicit electrostatic particle-in-cell (PIC) algorithm in one dimension [9]. The algorithm in the reference employs an unpreconditioned Jacobian-free Newton–Krylov method, which ensures nonlinear convergence at every timestep (resolving the dynamical timescale of interest). Kinetic enslavement, which is one key component of the algorithm, not only enables fully implicit PIC as a practical approach, but also allows preconditioning the kinetic solver with a fluid approximation. This study proposes such a preconditioner, in which the linearized moment equations are closed with moments computed from particles. Effective acceleration of the linear GMRES solvemore » is demonstrated, on both uniform and non-uniform meshes. The algorithm performance is largely insensitive to the electron–ion mass ratio. Numerical experiments are performed on a 1D multi-scale ion acoustic wave test problem.« less
Middleton, L. Robert; Tarver, Jacob D.; Cordaro, Joseph; ...
2016-11-10
Melt state dynamics for a series of strictly linear polyethylenes with precisely spaced associating functional groups were investigated. The periodic pendant acrylic acid groups form hydrogen-bonded acid aggregates within the polyethylene (PE) matrix. The dynamics of these nanoscale heterogeneous morphologies were investigated from picosecond to nanosecond timescales by both quasi-elastic neutron scattering (QENS) measurements and fully atomistic molecular dynamics (MD) simulations. Two dynamic processes were observed. The faster dynamic processes which occur at the picosecond timescales are compositionally insensitive and indicative of spatially restricted local motions. The slower dynamic processes are highly composition dependent and indicate the structural relaxation ofmore » the polymer backbone. Higher acid contents, or shorter PE spacers between pendant acid groups, slow the structural relaxation timescale and increase the stretching parameter (β) of the structural relaxation. Additionally, the dynamics of specific hydrogen atom positions along the backbone correlate structural heterogeneity imposed by the associating acid groups with a mobility gradient along the polymer backbone. At time intervals (<2 ns), the mean-squared displacements for the four methylene groups closest to the acid groups are up to 10 times smaller than those of methylene groups further from the acid groups. At longer timescales acid aggregates rearrange and the chain dynamics of the slow, near-aggregate regions and the faster bridge regions converge, implying a characteristic timescale for the passage of chains between aggregates. As a result, the characterization of the nanoscale chain dynamics in these associating polymer systems both provides validation of simulation force fields and provides understanding of heterogeneous chain dynamics in associating polymers.« less
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul
2016-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning retrospective predictions at the decadal (5-years), seasonal and sub-seasonal time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and sub-seasonal time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Catalano, F.; De Felice, M.; van den Hurk, B.; Doblas-Reyes, F. J.; Boussetta, S.; Balsamo, G.; Miller, P. A.
2016-12-01
The European consortium earth system model (EC-Earth; http://www.ec-earth.org) has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-08-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (twentieth century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2 m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
NASA Astrophysics Data System (ADS)
Alessandri, Andrea; Catalano, Franco; De Felice, Matteo; Van Den Hurk, Bart; Doblas Reyes, Francisco; Boussetta, Souhail; Balsamo, Gianpaolo; Miller, Paul A.
2017-04-01
The EC-Earth earth system model has been recently developed to include the dynamics of vegetation. In its original formulation, vegetation variability is simply operated by the Leaf Area Index (LAI), which affects climate basically by changing the vegetation physiological resistance to evapotranspiration. This coupling has been found to have only a weak effect on the surface climate modeled by EC-Earth. In reality, the effective sub-grid vegetation fractional coverage will vary seasonally and at interannual time-scales in response to leaf-canopy growth, phenology and senescence. Therefore it affects biophysical parameters such as the albedo, surface roughness and soil field capacity. To adequately represent this effect in EC-Earth, we included an exponential dependence of the vegetation cover on the LAI. By comparing two sets of simulations performed with and without the new variable fractional-coverage parameterization, spanning from centennial (20th Century) simulations and retrospective predictions to the decadal (5-years), seasonal and weather time-scales, we show for the first time a significant multi-scale enhancement of vegetation impacts in climate simulation and prediction over land. Particularly large effects at multiple time scales are shown over boreal winter middle-to-high latitudes over Canada, West US, Eastern Europe, Russia and eastern Siberia due to the implemented time-varying shadowing effect by tree-vegetation on snow surfaces. Over Northern Hemisphere boreal forest regions the improved representation of vegetation cover tends to correct the winter warm biases, improves the climate change sensitivity, the decadal potential predictability as well as the skill of forecasts at seasonal and weather time-scales. Significant improvements of the prediction of 2m temperature and rainfall are also shown over transitional land surface hot spots. Both the potential predictability at decadal time-scale and seasonal-forecasts skill are enhanced over Sahel, North American Great Plains, Nordeste Brazil and South East Asia, mainly related to improved performance in the surface evapotranspiration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Middleton, L. Robert; Tarver, Jacob D.; Cordaro, Joseph
Melt state dynamics for a series of strictly linear polyethylenes with precisely spaced associating functional groups were investigated. The periodic pendant acrylic acid groups form hydrogen-bonded acid aggregates within the polyethylene (PE) matrix. The dynamics of these nanoscale heterogeneous morphologies were investigated from picosecond to nanosecond timescales by both quasi-elastic neutron scattering (QENS) measurements and fully atomistic molecular dynamics (MD) simulations. Two dynamic processes were observed. The faster dynamic processes which occur at the picosecond timescales are compositionally insensitive and indicative of spatially restricted local motions. The slower dynamic processes are highly composition dependent and indicate the structural relaxation ofmore » the polymer backbone. Higher acid contents, or shorter PE spacers between pendant acid groups, slow the structural relaxation timescale and increase the stretching parameter (β) of the structural relaxation. Additionally, the dynamics of specific hydrogen atom positions along the backbone correlate structural heterogeneity imposed by the associating acid groups with a mobility gradient along the polymer backbone. At time intervals (<2 ns), the mean-squared displacements for the four methylene groups closest to the acid groups are up to 10 times smaller than those of methylene groups further from the acid groups. At longer timescales acid aggregates rearrange and the chain dynamics of the slow, near-aggregate regions and the faster bridge regions converge, implying a characteristic timescale for the passage of chains between aggregates. As a result, the characterization of the nanoscale chain dynamics in these associating polymer systems both provides validation of simulation force fields and provides understanding of heterogeneous chain dynamics in associating polymers.« less
Phase stability and dynamics of entangled polymer-nanoparticle composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.
Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales,more » where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.« less
Schörner, Mario; Beyer, Sebastian Reinhardt; Southall, June; Cogdell, Richard J; Köhler, Jürgen
2015-11-05
The light harvesting complex LH2 is a chromoprotein that is an ideal system for studying protein dynamics via the spectral fluctuations of the emission of its intrinsic chromophores. We have immobilized these complexes in a polymer film and studied the fluctuations of the fluorescence intensity from individual complexes over 9 orders of magnitude in time. Combining time-tagged detection of single photons with a change-point analysis has allowed the unambigeous identification of the various intensity levels due to the huge statistical basis of the data set. We propose that the observed intensity level fluctuations reflect conformational changes of the protein backbone that might be a precursor of the mechanism from which nonphotochemical quenching of higher plants has evolved.
Resolving biomolecular motion and interactions by R2 and R1ρ relaxation dispersion NMR.
Walinda, Erik; Morimoto, Daichi; Sugase, Kenji
2018-04-26
Among the tools of structural biology, NMR spectroscopy is unique in that it not only derives a static three-dimensional structure, but also provides an atomic-level description of the local fluctuations and global dynamics around this static structure. A battery of NMR experiments is now available to probe the motions of proteins and nucleic acids over the whole biologically relevant timescale from picoseconds to hours. Here we focus on one of these methods, relaxation dispersion, which resolves dynamics on the micro- to millisecond timescale. Key biological processes that occur on this timescale include enzymatic catalysis, ligand binding, and local folding. In other words, relaxation-dispersion-resolved dynamics are often closely related to the function of the molecule and therefore highly interesting to the structural biochemist. With an astounding sensitivity of ∼0.5%, the method detects low-population excited states that are invisible to any other biophysical method. The kinetics of the exchange between the ground state and excited states are quantified in the form of the underlying exchange rate, while structural information about the invisible excited state is obtained in the form of its chemical shift. Lastly, the population of the excited state can be derived. This diversity in the information that can be obtained makes relaxation dispersion an excellent method to study the detailed mechanisms of conformational transitions and molecular interactions. Here we describe the two branches of relaxation dispersion, R 2 and R 1ρ , discussing their applicability, similarities, and differences, as well as recent developments in pulse sequence design and data processing. Copyright © 2018 Elsevier Inc. All rights reserved.
2017-02-13
3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2016-0161 12. DISTRIBUTION / AVAILABILITY...RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSW/David Cardimona 1 cy 22 Approved for public release; distribution is unlimited. ... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0161 TR-2016-0161 ATOMISTIC- AND MESO-SCALE COMPUTATIONAL SIMULATIONS FOR DEVELOPING MULTI-TIMESCALE THEORY FOR
Atlantic multi-decadal oscillation covaries with Agulhas leakage
Biastoch, Arne; Durgadoo, Jonathan V.; Morrison, Adele K.; van Sebille, Erik; Weijer, Wilbert; Griffies, Stephen M.
2015-01-01
The interoceanic transfer of seawater between the Indian Ocean and the Atlantic, ‘Agulhas leakage', forms a choke point for the overturning circulation in the global ocean. Here, by combining output from a series of high-resolution ocean and climate models with in situ and satellite observations, we construct a time series of Agulhas leakage for the period 1870–2014. The time series demonstrates the impact of Southern Hemisphere westerlies on decadal timescales. Agulhas leakage shows a correlation with the Atlantic Multi-decadal Oscillation on multi-decadal timescales; the former leading by 15 years. This is relevant for climate in the North Atlantic. PMID:26656850
Atlantic multi-decadal oscillation covaries with Agulhas leakage
Biastoch, Arne; Durgadoo, Jonathan V.; Morrison, Adele K.; ...
2015-12-10
The interoceanic transfer of seawater between the Indian Ocean and the Atlantic, ‘Agulhas leakage’, forms a choke point for the overturning circulation in the global ocean. Here, by combining output from a series of high-resolution ocean and climate models with in situ and satellite observations, we construct a time series of Agulhas leakage for the period 1870–2014. The time series demonstrates the impact of Southern Hemisphere westerlies on decadal timescales. Agulhas leakage shows a correlation with the Atlantic Multi-decadal Oscillation on multi-decadal timescales; the former leading by 15 years. Lastly, this is relevant for climate in the North Atlantic.
Intracellular Pressure Dynamics in Blebbing Cells
Strychalski, Wanda; Guy, Robert D.
2016-01-01
Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in three-dimensional environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the pressure-driven flow of cytosol toward the area of detachment and local expansion of the cell membrane. Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model of the cytoplasm that leads to slow pressure equilibration when compared to the timescale of bleb expansion. A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the interactions among the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model results quantify the relationship among cytoplasmic rheology, pressure, and bleb expansion dynamics, and provide a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances from bleb initiation propagate faster than the timescale of bleb expansion and that pressure equilibrates slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics explain the apparent discrepancy in the interpretation of experimental results. PMID:26958893
Bias correction of surface downwelling longwave and shortwave radiation for the EWEMBI dataset
NASA Astrophysics Data System (ADS)
Lange, Stefan
2018-05-01
Many meteorological forcing datasets include bias-corrected surface downwelling longwave and shortwave radiation (rlds and rsds). Methods used for such bias corrections range from multi-year monthly mean value scaling to quantile mapping at the daily timescale. An additional downscaling is necessary if the data to be corrected have a higher spatial resolution than the observational data used to determine the biases. This was the case when EartH2Observe (E2OBS; Calton et al., 2016) rlds and rsds were bias-corrected using more coarsely resolved Surface Radiation Budget (SRB; Stackhouse Jr. et al., 2011) data for the production of the meteorological forcing dataset EWEMBI (Lange, 2016). This article systematically compares various parametric quantile mapping methods designed specifically for this purpose, including those used for the production of EWEMBI rlds and rsds. The methods vary in the timescale at which they operate, in their way of accounting for physical upper radiation limits, and in their approach to bridging the spatial resolution gap between E2OBS and SRB. It is shown how temporal and spatial variability deflation related to bilinear interpolation and other deterministic downscaling approaches can be overcome by downscaling the target statistics of quantile mapping from the SRB to the E2OBS grid such that the sub-SRB-grid-scale spatial variability present in the original E2OBS data is retained. Cross validations at the daily and monthly timescales reveal that it is worthwhile to take empirical estimates of physical upper limits into account when adjusting either radiation component and that, overall, bias correction at the daily timescale is more effective than bias correction at the monthly timescale if sampling errors are taken into account.
Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales
Sheen, K. L.; Smith, D. M.; Dunstone, N. J.; Eade, R.; Rowell, D. P.; Vellinga, M.
2017-01-01
Summer rainfall in the Sahel region of Africa exhibits one of the largest signals of climatic variability and with a population reliant on agricultural productivity, the Sahel is particularly vulnerable to major droughts such as occurred in the 1970s and 1980s. Rainfall levels have subsequently recovered, but future projections remain uncertain. Here we show that Sahel rainfall is skilfully predicted on inter-annual and multi-year (that is, >5 years) timescales and use these predictions to better understand the driving mechanisms. Moisture budget analysis indicates that on multi-year timescales, a warmer north Atlantic and Mediterranean enhance Sahel rainfall through increased meridional convergence of low-level, externally sourced moisture. In contrast, year-to-year rainfall levels are largely determined by the recycling rate of local moisture, regulated by planetary circulation patterns associated with the El Niño-Southern Oscillation. Our findings aid improved understanding and forecasting of Sahel drought, paramount for successful adaptation strategies in a changing climate. PMID:28541288
Mapping Conformational Dynamics of Proteins Using Torsional Dynamics Simulations
Gangupomu, Vamshi K.; Wagner, Jeffrey R.; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan
2013-01-01
All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein’s experimentally established conformational substates. Conformational transition of calmodulin from the Ca2+-bound to the Ca2+-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in proteins. PMID:23663843
Mapping conformational dynamics of proteins using torsional dynamics simulations.
Gangupomu, Vamshi K; Wagner, Jeffrey R; Park, In-Hee; Jain, Abhinandan; Vaidehi, Nagarajan
2013-05-07
All-atom molecular dynamics simulations are widely used to study the flexibility of protein conformations. However, enhanced sampling techniques are required for simulating protein dynamics that occur on the millisecond timescale. In this work, we show that torsional molecular dynamics simulations enhance protein conformational sampling by performing conformational search in the low-frequency torsional degrees of freedom. In this article, we use our recently developed torsional-dynamics method called Generalized Newton-Euler Inverse Mass Operator (GNEIMO) to study the conformational dynamics of four proteins. We investigate the use of the GNEIMO method in simulations of the conformationally flexible proteins fasciculin and calmodulin, as well as the less flexible crambin and bovine pancreatic trypsin inhibitor. For the latter two proteins, the GNEIMO simulations with an implicit-solvent model reproduced the average protein structural fluctuations and sample conformations similar to those from Cartesian simulations with explicit solvent. The application of GNEIMO with replica exchange to the study of fasciculin conformational dynamics produced sampling of two of this protein's experimentally established conformational substates. Conformational transition of calmodulin from the Ca(2+)-bound to the Ca(2+)-free conformation occurred readily with GNEIMO simulations. Moreover, the GNEIMO method generated an ensemble of conformations that satisfy about half of both short- and long-range interresidue distances obtained from NMR structures of holo to apo transitions in calmodulin. Although unconstrained all-atom Cartesian simulations have failed to sample transitions between the substates of fasciculin and calmodulin, GNEIMO simulations show the transitions in both systems. The relatively short simulation times required to capture these long-timescale conformational dynamics indicate that GNEIMO is a promising molecular-dynamics technique for studying domain motion in proteins. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Guo, Tongqing; Chen, Hao; Lu, Zhiliang
2018-05-01
Aiming at extremely large deformation, a novel predictor-corrector-based dynamic mesh method for multi-block structured grid is proposed. In this work, the dynamic mesh generation is completed in three steps. At first, some typical dynamic positions are selected and high-quality multi-block grids with the same topology are generated at those positions. Then, Lagrange interpolation method is adopted to predict the dynamic mesh at any dynamic position. Finally, a rapid elastic deforming technique is used to correct the small deviation between the interpolated geometric configuration and the actual instantaneous one. Compared with the traditional methods, the results demonstrate that the present method shows stronger deformation ability and higher dynamic mesh quality.
NASA Astrophysics Data System (ADS)
Chadwick, Robin; Grimes, David
2010-05-01
Rainfall monitoring over Africa is crucial for a variety of humanitarian and agricultural purposes, and satellites have been used for some time to provide real-time rainfall estimates over the region. Several recent applications of satellite rainfall estimates, such as flash-flood warning systems and crop-yield models, require accurate rainfall totals at daily timescales or below. Multi-spectral Meteosat Second Generation (MSG) data provide information on cloud properties such as optical depth and cloud particle size and phase. These parameters are all relevant to the probability of rainfall occurring from a cloud and the likely intensity of that rainfall, so the use of MSG data should lead to improved satellite rainfall estimates. An artificial neural network (ANN) using multi-spectral inputs from MSG has been trained to provide daily rainfall estimates over Ethiopia, using daily rain-gauge data for calibration. Although ANN methods have previously been applied to the problem of producing rainfall estimates from multi-spectral satellite data, in general precipitation radar data have been used for calibration. The advantage of using rain-gauge data is that gauges are far more widespread over Africa than radar networks, so this method can be easily transferred and if necessary re-calibrated in different climatological regions of the continent. The ANN estimates have been validated against independent Ethiopian gauge data at a variety of time and space scales. The ANN shows an improvement in accuracy at daily timescale when compared to rainfall estimates from the TAMSAT algorithm, which uses only single channel MSG data.
Johnston, Jennifer M.
2014-01-01
The majority of biological processes mediated by G Protein-Coupled Receptors (GPCRs) take place on timescales that are not conveniently accessible to standard molecular dynamics (MD) approaches, notwithstanding the current availability of specialized parallel computer architectures, and efficient simulation algorithms. Enhanced MD-based methods have started to assume an important role in the study of the rugged energy landscape of GPCRs by providing mechanistic details of complex receptor processes such as ligand recognition, activation, and oligomerization. We provide here an overview of these methods in their most recent application to the field. PMID:24158803
Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model.
Sisto, Aaron; Stross, Clem; van der Kamp, Marc W; O'Connor, Michael; McIntosh-Smith, Simon; Johnson, Graham T; Hohenstein, Edward G; Manby, Fred R; Glowacki, David R; Martinez, Todd J
2017-06-14
We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail - enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibrating our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck-Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850 ) between 650-1050 fs, and B800 population decay (τ 800→ ) between 10-50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.
Cortez, Michael H; Ellner, Stephen P
2010-11-01
The accumulation of evidence that ecologically important traits often evolve at the same time and rate as ecological dynamics (e.g., changes in species' abundances or spatial distributions) has outpaced theory describing the interplay between ecological and evolutionary processes with comparable timescales. The disparity between experiment and theory is partially due to the high dimensionality of models that include both evolutionary and ecological dynamics. Here we show how the theory of fast-slow dynamical systems can be used to reduce model dimension, and we use that body of theory to study a general predator-prey system exhibiting fast evolution in either the predator or the prey. Our approach yields graphical methods with predictive power about when new and unique dynamics (e.g., completely out-of-phase oscillations and cryptic dynamics) can arise in ecological systems exhibiting fast evolution. In addition, we derive analytical expressions for determining when such behavior arises and how evolution affects qualitative properties of the ecological dynamics. Finally, while the theory requires a separation of timescales between the ecological and evolutionary processes, our approach yields insight into systems where the rates of those processes are comparable and thus is a step toward creating a general ecoevolutionary theory.
Large-scale atomistic calculations of clusters in intense x-ray pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Phay J.; Knight, Chris
Here, we present the methodology of our recently developed Monte-Carlo/ Molecular-Dynamics method for studying the fundamental ultrafast dynamics induced by high-fluence, high-intensity x-ray free electron laser (XFEL) pulses in clusters. The quantum nature of the initiating ionization process is accounted for by a Monte Carlo method to calculate probabilities of electronic transitions, including photo absorption, inner-shell relaxation, photon scattering, electron collision and recombination dynamics, and thus track the transient electronic configurations explicitly. The freed electrons and ions are followed by classical particle trajectories using a molecular dynamics algorithm. These calculations reveal the surprising role of electron-ion recombination processes that leadmore » to the development of nonuniform spatial charge density profiles in x-ray excited clusters over femtosecond timescales. In the high-intensity limit, it is important to include the recombination dynamics in the calculated scattering response even for a 2- fs pulse. We also demonstrate that our numerical codes and algorithms can make e!cient use of the computational power of massively parallel supercomputers to investigate the intense-field dynamics in systems with increasing complexity and size at the ultrafast timescale and in non-linear x-ray interaction regimes. In particular, picosecond trajectories of XFEL clusters with attosecond time resolution containing millions of particles can be e!ciently computed on upwards of 262,144 processes.« less
Large-scale atomistic calculations of clusters in intense x-ray pulses
Ho, Phay J.; Knight, Chris
2017-04-28
Here, we present the methodology of our recently developed Monte-Carlo/ Molecular-Dynamics method for studying the fundamental ultrafast dynamics induced by high-fluence, high-intensity x-ray free electron laser (XFEL) pulses in clusters. The quantum nature of the initiating ionization process is accounted for by a Monte Carlo method to calculate probabilities of electronic transitions, including photo absorption, inner-shell relaxation, photon scattering, electron collision and recombination dynamics, and thus track the transient electronic configurations explicitly. The freed electrons and ions are followed by classical particle trajectories using a molecular dynamics algorithm. These calculations reveal the surprising role of electron-ion recombination processes that leadmore » to the development of nonuniform spatial charge density profiles in x-ray excited clusters over femtosecond timescales. In the high-intensity limit, it is important to include the recombination dynamics in the calculated scattering response even for a 2- fs pulse. We also demonstrate that our numerical codes and algorithms can make e!cient use of the computational power of massively parallel supercomputers to investigate the intense-field dynamics in systems with increasing complexity and size at the ultrafast timescale and in non-linear x-ray interaction regimes. In particular, picosecond trajectories of XFEL clusters with attosecond time resolution containing millions of particles can be e!ciently computed on upwards of 262,144 processes.« less
NASA Astrophysics Data System (ADS)
Herath, Narmada; Del Vecchio, Domitilla
2018-03-01
Biochemical reaction networks often involve reactions that take place on different time scales, giving rise to "slow" and "fast" system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In this paper, we consider stochastic dynamics of biochemical reaction networks modeled using the Linear Noise Approximation (LNA). Under time-scale separation conditions, we obtain a reduced-order LNA that approximates both the slow and fast variables in the system. We mathematically prove that the first and second moments of this reduced-order model converge to those of the full system as the time-scale separation becomes large. These mathematical results, in particular, provide a rigorous justification to the accuracy of LNA models derived using the stochastic total quasi-steady state approximation (tQSSA). Since, in contrast to the stochastic tQSSA, our reduced-order model also provides approximations for the fast variable stochastic properties, we term our method the "stochastic tQSSA+". Finally, we demonstrate the application of our approach on two biochemical network motifs found in gene-regulatory and signal transduction networks.
Cycles, scaling and crossover phenomenon in length of the day (LOD) time series
NASA Astrophysics Data System (ADS)
Telesca, Luciano
2007-06-01
The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.
NASA Astrophysics Data System (ADS)
Pellouchoud, Lenson; Reed, Evan
2014-03-01
With continual improvements in ultrafast optical spectroscopy and new multi-scale methods for simulating chemistry for hundreds of picoseconds, the opportunity is beginning to exist to connect experiments with simulations on the same timescale. We compute the optical properties of the liquid phase energetic material nitromethane (CH3NO2) for the first 100 picoseconds behind the front of a simulated shock at 6.5km/s, close to the experimentally observed detonation shock speed. We utilize molecular dynamics trajectories computed using the multi-scale shock technique (MSST) for time-resolved optical spectrum calculations based on both linear response time-dependent DFT (TDDFT) and the Kubo-Greenwood (KG) formula within Kohn-Sham DFT. We find that TDDFT predicts optical conductivities 25-35% lower than KG-based values and provides better agreement with the experimentally measured index of refraction of unreacted nitromethane. We investigate the influence of electronic temperature on the KG spectra and find no significant effect at optical wavelengths. With all methods, the spectra evolve non-monotonically in time as shock-induced chemistry takes place. We attribute the time-resolved absorption at optical wavelengths to time-dependent populations of molecular decomposition products, including NO, CNO, CNOH, H2O, and larger molecules. Supported by NASA Space Technology Research Fellowship (NSTRF) #NNX12AM48H.
Long-time atomistic simulations with the Parallel Replica Dynamics method
NASA Astrophysics Data System (ADS)
Perez, Danny
Molecular Dynamics (MD) -- the numerical integration of atomistic equations of motion -- is a workhorse of computational materials science. Indeed, MD can in principle be used to obtain any thermodynamic or kinetic quantity, without introducing any approximation or assumptions beyond the adequacy of the interaction potential. It is therefore an extremely powerful and flexible tool to study materials with atomistic spatio-temporal resolution. These enviable qualities however come at a steep computational price, hence limiting the system sizes and simulation times that can be achieved in practice. While the size limitation can be efficiently addressed with massively parallel implementations of MD based on spatial decomposition strategies, allowing for the simulation of trillions of atoms, the same approach usually cannot extend the timescales much beyond microseconds. In this article, we discuss an alternative parallel-in-time approach, the Parallel Replica Dynamics (ParRep) method, that aims at addressing the timescale limitation of MD for systems that evolve through rare state-to-state transitions. We review the formal underpinnings of the method and demonstrate that it can provide arbitrarily accurate results for any definition of the states. When an adequate definition of the states is available, ParRep can simulate trajectories with a parallel speedup approaching the number of replicas used. We demonstrate the usefulness of ParRep by presenting different examples of materials simulations where access to long timescales was essential to access the physical regime of interest and discuss practical considerations that must be addressed to carry out these simulations. Work supported by the United States Department of Energy (U.S. DOE), Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division.
Galindo-Murillo, Rodrigo; Roe, Daniel R.; Cheatham, Thomas E.
2014-01-01
Background The structure and dynamics of DNA are critically related to its function. Molecular dynamics (MD) simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. Methods MD simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale MD performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. Results These MD simulations —including one of the longest simulations of DNA published to date at ~44 μs—surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1–5 μs timescale. Conclusions We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. General Significance With access to large-scale GPU resources or the specialized MD engine “Anton” it is possibly for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. PMID:25219455
Multi-decadal Variability of the Indian Monsoon Rainfall for the last 14 kyr
NASA Astrophysics Data System (ADS)
Panmei, C.; Pothuri, D.
2017-12-01
Precise reconstruction of Indian monsoon fluctuation events and variability trends over the last 14 kyr has great implications for understanding the dynamics and possible forcing/feedback mechanisms associated with it. We have carried out high-resolution Indian monsoon variability studies of multi-decadal to sub-centennial timescales for the past 14 kyr through oxygen isotopes and Mg/Ca-derived sea surface temperatures (SST) from a western Bay of Bengal sediment core MD 161/17, using planktonic foraminifera Globigerinoides ruber. Indian summer monsoon (ISM) intensity was low during the Younger Dryas (YD) as evidenced by enriched δ18Osw coincides with a striking warming of 1.5°C. We observed ISM intensification from 12-9 kyr, followed by a milder period from 9-7.2 kyr. ISM gradually weakened from 7.2-2.5 kyr, after which there were two very prominent shifts in both ISM and SST; abrupt decrease at 2.4 kyr and increase at 1.4 kyr for ISM, while SST exhibited opposite trend. The contrasting trend continued from 1.4 kyr to the present wherein ISM precipitation has been decreasing and SST has been increasing. In addition, spectral analysis was done using Redfit and the ISM precipitation records reveal statistically significant periodicities at 2118, 411, 344, 144, 101 and 90 yrs. Furthermore, we compared our results with other existing records from the Northern Indian Ocean and adjacent regions, and found that the records share similarities suggesting regional dynamics being expressed coherently. Our results suggest that ISM precipitation and warming/cooling of the Northern Indian Ocean is directly associated with the southward/northward shift of the Intertropical Convergence Zone, which in turn is influenced by Atlantic Meridional Overturning Circulation, North Atlantic climate, and solar insolation interplaying differently at different timescales.
NASA Astrophysics Data System (ADS)
Lea, J. M.; Mair, D. W. F.; Nick, F. M.; Rea, B. R.; van As, D.; Morlighem, M.; Nienow, P. W.; Weidick, A.
2014-11-01
Many tidewater glaciers in Greenland are known to have undergone significant retreat during the last century following their Little Ice Age maxima. Where it is possible to reconstruct glacier change over this period, they provide excellent records for comparison to climate records, as well as calibration/validation for numerical models. These glacier change records therefore allow for tests of numerical models that seek to simulate tidewater glacier behaviour over multi-decadal to centennial timescales. Here we present a detailed record of behaviour from Kangiata Nunaata Sermia (KNS), SW Greenland, between 1859 and 2012, and compare it against available oceanographic and atmospheric temperature data between 1871 and 2012. We also use these records to evaluate the ability of a well-established one-dimensional flow-band model to replicate behaviour for the observation period. The record of terminus change demonstrates that KNS has advanced/retreated in phase with atmosphere and ocean climate anomalies averaged over multi-annual to decadal timescales. Results from an ensemble of model runs demonstrate that observed dynamics can be replicated. Model runs that provide a reasonable match to observations always require a significant atmospheric forcing component, but do not necessarily require an oceanic forcing component. Although the importance of oceanic forcing cannot be discounted, these results demonstrate that changes in atmospheric forcing are likely to be a primary driver of the terminus fluctuations of KNS from 1859 to 2012. We propose that the detail and length of the record presented makes KNS an ideal site for model validation exercises investigating links between climate, calving rates, and tidewater glacier dynamics.
Dynamic correlations at different time-scales with empirical mode decomposition
NASA Astrophysics Data System (ADS)
Nava, Noemi; Di Matteo, T.; Aste, Tomaso
2018-07-01
We introduce a simple approach which combines Empirical Mode Decomposition (EMD) and Pearson's cross-correlations over rolling windows to quantify dynamic dependency at different time scales. The EMD is a tool to separate time series into implicit components which oscillate at different time-scales. We apply this decomposition to intraday time series of the following three financial indices: the S&P 500 (USA), the IPC (Mexico) and the VIX (volatility index USA), obtaining time-varying multidimensional cross-correlations at different time-scales. The correlations computed over a rolling window are compared across the three indices, across the components at different time-scales and across different time lags. We uncover a rich heterogeneity of interactions, which depends on the time-scale and has important lead-lag relations that could have practical use for portfolio management, risk estimation and investment decisions.
Wang, Yangyang; Rubin, Jonathan E
2017-12-01
Neural networks generate a variety of rhythmic activity patterns, often involving different timescales. One example arises in the respiratory network in the pre-Bötzinger complex of the mammalian brainstem, which can generate the eupneic rhythm associated with normal respiration as well as recurrent low-frequency, large-amplitude bursts associated with sighing. Two competing hypotheses have been proposed to explain sigh generation: the recruitment of a neuronal population distinct from the eupneic rhythm-generating subpopulation or the reconfiguration of activity within a single population. Here, we consider two recent computational models, one of which represents each of the hypotheses. We use methods of dynamical systems theory, such as fast-slow decomposition, averaging, and bifurcation analysis, to understand the multiple-timescale mechanisms underlying sigh generation in each model. In the course of our analysis, we discover that a third timescale is required to generate sighs in both models. Furthermore, we identify the similarities of the underlying mechanisms in the two models and the aspects in which they differ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
Kravitz, Ben; MacMartin, Douglas G.; Rasch, Philip J.; ...
2017-02-17
We introduce system identification techniques to climate science wherein multiple dynamic input–output relationships can be simultaneously characterized in a single simulation. This method, involving multiple small perturbations (in space and time) of an input field while monitoring output fields to quantify responses, allows for identification of different timescales of climate response to forcing without substantially pushing the climate far away from a steady state. We use this technique to determine the steady-state responses of low cloud fraction and latent heat flux to heating perturbations over 22 regions spanning Earth's oceans. We show that the response characteristics are similar to thosemore » of step-change simulations, but in this new method the responses for 22 regions can be characterized simultaneously. Moreover, we can estimate the timescale over which the steady-state response emerges. The proposed methodology could be useful for a wide variety of purposes in climate science, including characterization of teleconnections and uncertainty quantification to identify the effects of climate model tuning parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deb, Marwan, E-mail: marwan.deb@ipcms.unistra.fr; Vomir, Mircea; Rehspringer, Jean-Luc
Controlling the magnetization dynamics on the femtosecond timescale is of fundamental importance for integrated opto-spintronic devices. For industrial perspectives, it requires to develop simple growth techniques for obtaining large area magneto-optical materials having a high amplitude ultrafast Faraday or Kerr response. Here we report on optical pump probe studies of light induced spin dynamics in high quality bismuth doped iron garnet polycrystalline film prepared by the spin coating method. We demonstrate an ultrafast non-thermal optical control of the spin dynamics using both circularly and linearly polarized pulses.
Long-term influence of asteroids on planet longitudes and chaotic dynamics of the solar system
NASA Astrophysics Data System (ADS)
Woillez, E.; Bouchet, F.
2017-11-01
Over timescales much longer than an orbital period, the solar system exhibits large-scale chaotic behavior and can thus be viewed as a stochastic dynamical system. The aim of the present paper is to compare different sources of stochasticity in the solar system. More precisely we studied the importance of the long term influence of asteroids on the chaotic dynamics of the solar system. We show that the effects of asteroids on planets is similar to a white noise process, when those effects are considered on a timescale much larger than the correlation time τϕ ≃ 104 yr of asteroid trajectories. We computed the timescale τe after which the effects of the stochastic evolution of the asteroids lead to a loss of information for the initial conditions of the perturbed Laplace-Lagrange secular dynamics. The order of magnitude of this timescale is precisely determined by theoretical argument, and we find that τe ≃ 104 Myr. Although comparable to the full main-sequence lifetime of the sun, this timescale is considerably longer than the Lyapunov time τI ≃ 10 Myr of the solar system without asteroids. This shows that the external sources of chaos arise as a small perturbation in the stochastic secular behavior of the solar system, rather due to intrinsic chaos.
Multi-year predictability of climate, drought, and wildfire in southwestern North America.
Chikamoto, Yoshimitsu; Timmermann, Axel; Widlansky, Matthew J; Balmaseda, Magdalena A; Stott, Lowell
2017-07-26
Past severe droughts over North America have led to massive water shortages and increases in wildfire frequency. Triggering sources for multi-year droughts in this region include randomly occurring atmospheric blocking patterns, ocean impacts on atmospheric circulation, and climate's response to anthropogenic radiative forcings. A combination of these sources translates into a difficulty to predict the onset and length of such droughts on multi-year timescales. Here we present results from a new multi-year dynamical prediction system that exhibits a high degree of skill in forecasting wildfire probabilities and drought for 10-23 and 10-45 months lead time, which extends far beyond the current seasonal prediction activities for southwestern North America. Using a state-of-the-art earth system model along with 3-dimensional ocean data assimilation and by prescribing the external radiative forcings, this system simulates the observed low-frequency variability of precipitation, soil water, and wildfire probabilities in close agreement with observational records and reanalysis data. The underlying source of multi-year predictability can be traced back to variations of the Atlantic/Pacific sea surface temperature gradient, external radiative forcings, and the low-pass filtering characteristics of soils.
NASA Technical Reports Server (NTRS)
Lau, K. M.; Weng, Heng-Yi
1999-01-01
A growing number of evidence indicates that there are coherent patterns of variability in sea surface temperature (SST) anomaly not only at interannual timescales, but also at decadal-to-inter-decadal timescale and beyond. The multi-scale variabilities of SST anomaly have shown great impacts on climate. In this work, we analyze multiple timescales contained in the globally averaged SST anomaly with and their possible relationship with the summer and winter rainfall in the United States over the past four decades.
Ultrafast structural molecular dynamics investigated with 2D infrared spectroscopy methods.
Kraack, Jan Philip
2017-10-25
Ultrafast, multi-dimensional infrared (IR) spectroscopy has been advanced in recent years to a versatile analytical tool with a broad range of applications to elucidate molecular structure on ultrafast timescales, and it can be used for samples in a many different environments. Following a short and general introduction on the benefits of 2D IR spectroscopy, the first part of this chapter contains a brief discussion on basic descriptions and conceptual considerations of 2D IR spectroscopy. Outstanding classical applications of 2D IR are used afterwards to highlight the strengths and basic applicability of the method. This includes the identification of vibrational coupling in molecules, characterization of spectral diffusion dynamics, chemical exchange of chemical bond formation and breaking, as well as dynamics of intra- and intermolecular energy transfer for molecules in bulk solution and thin films. In the second part, several important, recently developed variants and new applications of 2D IR spectroscopy are introduced. These methods focus on (i) applications to molecules under two- and three-dimensional confinement, (ii) the combination of 2D IR with electrochemistry, (iii) ultrafast 2D IR in conjunction with diffraction-limited microscopy, (iv) several variants of non-equilibrium 2D IR spectroscopy such as transient 2D IR and 3D IR, and (v) extensions of the pump and probe spectral regions for multi-dimensional vibrational spectroscopy towards mixed vibrational-electronic spectroscopies. In light of these examples, the important open scientific and conceptual questions with regard to intra- and intermolecular dynamics are highlighted. Such questions can be tackled with the existing arsenal of experimental variants of 2D IR spectroscopy to promote the understanding of fundamentally new aspects in chemistry, biology and materials science. The final part of the chapter introduces several concepts of currently performed technical developments, which aim at exploiting 2D IR spectroscopy as an analytical tool. Such developments embrace the combination of 2D IR spectroscopy and plasmonic spectroscopy for ultrasensitive analytics, merging 2D IR spectroscopy with ultra-high-resolution microscopy (nanoscopy), future variants of transient 2D IR methods, or 2D IR in conjunction with microfluidics. It is expected that these techniques will allow for groundbreaking research in many new areas of natural sciences.
NASA Astrophysics Data System (ADS)
Binder, Robert; Lauvergnat, David; Burghardt, Irene
2018-06-01
We report on high-dimensional quantum dynamical simulations of photoinduced exciton migration in a single-chain oligothiophene segment, in view of elucidating the controversial nature of the elementary exciton transport steps in semiconducting polymers. A novel first-principles parametrized Frenkel J aggregate Hamiltonian is employed that goes significantly beyond the standard Frenkel-Holstein Hamiltonian. Departing from a nonequilibrium state created by photoexcitation, these simulations provide evidence of an ultrafast two-timescale process at low temperatures, involving exciton-polaron formation within tens of femtoseconds (fs), followed by torsional relaxation on an ˜400 fs timescale. The second step is the driving force for exciton migration, as initial conjugation breaks are removed by dynamical planarization. The quantum coherent nature of the elementary exciton migration step is consistent with experimental observations highlighting the correlated and vibrationally coherent nature of the dynamics on ultrafast timescales.
Binder, Robert; Lauvergnat, David; Burghardt, Irene
2018-06-01
We report on high-dimensional quantum dynamical simulations of photoinduced exciton migration in a single-chain oligothiophene segment, in view of elucidating the controversial nature of the elementary exciton transport steps in semiconducting polymers. A novel first-principles parametrized Frenkel J aggregate Hamiltonian is employed that goes significantly beyond the standard Frenkel-Holstein Hamiltonian. Departing from a nonequilibrium state created by photoexcitation, these simulations provide evidence of an ultrafast two-timescale process at low temperatures, involving exciton-polaron formation within tens of femtoseconds (fs), followed by torsional relaxation on an ∼400 fs timescale. The second step is the driving force for exciton migration, as initial conjugation breaks are removed by dynamical planarization. The quantum coherent nature of the elementary exciton migration step is consistent with experimental observations highlighting the correlated and vibrationally coherent nature of the dynamics on ultrafast timescales.
NASA Astrophysics Data System (ADS)
Yoon, J.; Zeng, N.; Mariotti, A.; Swenson, S.
2007-12-01
In an approach termed the P-E-R (or simply PER) method, we apply the basin water budget equation to diagnose the long-term variability of the total terrestrial water storage (TWS). The key input variables are observed precipitation (P) and runoff (R), and estimated evaporation (E). Unlike typical offline land-surface model estimate where only atmospheric variables are used as input, the direct use of observed runoff in the PER method imposes an important constraint on the diagnosed TWS. Although there lack basin-scale observations of evaporation, the tendency of E to have significantly less variability than the difference between precipitation and runoff (P-R) minimizes the uncertainties originating from estimated evaporation. Compared to the more traditional method using atmospheric moisture convergence (MC) minus R (MCR method), the use of observed precipitation in PER method is expected to lead to general improvement, especially in regions atmospheric radiosonde data are too sparse to constrain the atmospheric model analyzed MC such as in the remote tropics. TWS was diagnosed using the PER method for the Amazon (1970-2006) and the Mississippi Basin (1928-2006), and compared with MCR method, land-surface model and reanalyses, and NASA's GRACE satellite gravity data. The seasonal cycle of diagnosed TWS over the Amazon is about 300 mm. The interannual TWS variability in these two basins are 100-200 mm, but multi-dacadal changes can be as large as 600-800 mm. Major droughts such as the Dust Bowl period had large impact with water storage depleted by 500 mm over a decade. Within the short period 2003-2006 when GRACE data was available, PER and GRACE show good agreement both for seasonal cycle and interannual variability, providing potential to cross-validate each other. In contrast, land-surface model results are significantly smaller than PER and GRACE, especially towards longer timescales. While we currently lack independent means to verify these long-term changes, simple error analysis using 3 precipitation datasets and 3 evaporation estimates suggest that the multi-decadal amplitude can be uncertain up to a factor of 2, while the agreement is high on interannual timescales. The large TWS variability implies the remarkable capacity of land-surface in storing and taking up water that may be under-represented in models. The results also suggest the existence of water storage memories on multi-year time scales, significantly longer than typically assumed seasonal timescales associated with surface soil moisture.
Functional Dynamics of Hexameric Helicase Probed by Hydrogen Exchange and Simulation
Radou, Gaël; Dreyer, Frauke N.; Tuma, Roman; Paci, Emanuele
2014-01-01
The biological function of large macromolecular assemblies depends on their structure and their dynamics over a broad range of timescales; for this reason, it is a significant challenge to investigate these assemblies using conventional experimental techniques. One of the most promising experimental techniques is hydrogen-deuterium exchange detected by mass spectrometry. Here, we describe to our knowledge a new computational method for quantitative interpretation of deuterium exchange kinetics and apply it to a hexameric viral helicase P4 that unwinds and translocates RNA into a virus capsid at the expense of ATP hydrolysis. Room-temperature dynamics probed by a hundred nanoseconds of all-atom molecular dynamics simulations is sufficient to predict the exchange kinetics of most sequence fragments and provide a residue-level interpretation of the low-resolution experimental results. The strategy presented here is also a valuable tool to validate experimental data, e.g., assignments, and to probe mechanisms that cannot be observed by x-ray crystallography, or that occur over timescales longer than those that can be realistically simulated, such as the opening of the hexameric ring. PMID:25140434
The Exoplanet Migration Timescale from K2 Young Clusters
NASA Astrophysics Data System (ADS)
Rizzuto, Aaron
A significant fraction of exoplanets orbit within 0.1 AU of their host star, with periods of <20 days. The discovery of these close-in planets has defied conventional models of planet formation and evolution based on our own solar system. It is widely accepted that these close-in planets did not form in such close proximity to their host stars (both rocky planets and hot Jupiters), but rather that dynamical or interactive processes caused them to migrate inwards from larger orbital semimajor axes and periods. There are multiple planet migration scenarios proposed in the literature, though it is unclear how much of the known planet population is attributable to each mechanism. Planetary migration models can be loosely divided into two categories: disk-driven migration and dynamical migration. Disk migration occurs over the lifetime of the protoplanetary disk (<5 Myr), while migration involving dynamical multi-body interactions operates on timescales of 100 Myr to 1Gyr, a lengthier process than disk migration. The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key ages. Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the <120 Myr Pleiades cluster, to the ,600-800 Myr Hyades and Praesepe clusters. Upcoming data from more recent campaigns include the 2Myr Taurus region and significantly more Upper Scorpius members in C13 and 15. The frequency, orbital properties, and compositions of the exoplanet population in these samples of different age, with careful treatment of detection completeness, distinguish these scenarios of exoplanet migration as their host stars are settling onto the main sequence. We have pioneered efforts to identify transiting exoplanets in the K2 data for young clusters and moving groups, and have developed a new, highly complete, detrending algorithm for rotational induced variability that is commonly seen in the light curves of young, active stars (Rizzuto et al. in prep). We have identified 11 candidate planets in Praesepe, Hyades, Upper Sco, and the Pleiades using these methods, the first of which has now been published with follow-up (Mann et al. 2016abc; Gaidos et al. 2016). This sample of detected planet candidates gives a promising first indication of the timescale over which planet migration occurs, favoring dynamical multi-body processes. However, because rotational activity in young stars makes detection of exoplanet transits more difficult for the younger clusters (e.g, Upper Sco, Pleiades), to robustly prove that these frequencies are true representations of the short-period planet occurrence rate at different PMS ages will require robust determination of detection limits in these highly variable young-star lightcurves. We propose to address the question of planet migration with a uniform injection-recovery test of young cluster members, to robustly measure the detectability of planets of differing size and orbit. This will involve detrending the light curve data of instrumental and rotational systematics, injecting a synthetic transit signature from a grid of planetary and orbital parameters, reversing the detrending, and then executing our transit search pipeline (which is tuned for highly active young stars) and mapping the recovery rate as a function of planet parameters for every individual light curve. With this map of detectability as a function of planet properties for each light curve and a full program of detected exoplanet follow-up, we can then directly confirm any change in the occurrence rates of close-in (P<20 day) planets with cluster age and identify the most significant migration mechanism.
NASA Astrophysics Data System (ADS)
Shi, Jian; Yan, Qing; Wang, Huijun
2018-04-01
Precipitation/humidity proxies are widely used to reconstruct the historical East Asian summer monsoon (EASM) variations based on the assumption that summer precipitation over eastern China is closely and stably linked to the strength of EASM. However, whether the observed EASM-precipitation relationship (e.g., increased precipitation with a stronger EASM) was stable throughout the past remains unclear. In this study, we used model outputs from the Paleoclimate Modelling Intercomparison Project Phase III and Community Earth System Model to investigate the stability of the EASM-precipitation relationship over the last millennium on different timescales. The model results indicate that the EASM strength (defined as the regionally averaged meridional wind) was enhanced in the Medieval Climate Anomaly (MCA; ˜ 950-1250 AD), during which there was increased precipitation over eastern China, and weakened during the Little Ice Age (LIA; ˜ 1500-1800 AD), during which there was decreased precipitation, consistent with precipitation/humidity proxies. However, the simulated EASM-precipitation relationship is only stable on a centennial and longer timescale and is unstable on a shorter timescale. The nonstationary short-timescale EASM-precipitation relationship broadly exhibits a multi-decadal periodicity, which may be attributed to the internal variability of the climate system and has no significant correlation to external forcings. Our results have implications for understanding the discrepancy among various EASM proxies on a multi-decadal timescale and highlight the need to rethink reconstructed decadal EASM variations based on precipitation/humidity proxies.
Accessible methods for the dynamic time-scale decomposition of biochemical systems.
Surovtsova, Irina; Simus, Natalia; Lorenz, Thomas; König, Artjom; Sahle, Sven; Kummer, Ursula
2009-11-01
The growing complexity of biochemical models asks for means to rationally dissect the networks into meaningful and rather independent subnetworks. Such foregoing should ensure an understanding of the system without any heuristics employed. Important for the success of such an approach is its accessibility and the clarity of the presentation of the results. In order to achieve this goal, we developed a method which is a modification of the classical approach of time-scale separation. This modified method as well as the more classical approach have been implemented for time-dependent application within the widely used software COPASI. The implementation includes different possibilities for the representation of the results including 3D-visualization. The methods are included in COPASI which is free for academic use and available at www.copasi.org. irina.surovtsova@bioquant.uni-heidelberg.de Supplementary data are available at Bioinformatics online.
Disentangling Random Motion and Flow in a Complex Medium
Koslover, Elena F.; Chan, Caleb K.; Theriot, Julie A.
2016-01-01
We describe a technique for deconvolving the stochastic motion of particles from large-scale fluid flow in a dynamic environment such as that found in living cells. The method leverages the separation of timescales to subtract out the persistent component of motion from single-particle trajectories. The mean-squared displacement of the resulting trajectories is rescaled so as to enable robust extraction of the diffusion coefficient and subdiffusive scaling exponent of the stochastic motion. We demonstrate the applicability of the method for characterizing both diffusive and fractional Brownian motion overlaid by flow and analytically calculate the accuracy of the method in different parameter regimes. This technique is employed to analyze the motion of lysosomes in motile neutrophil-like cells, showing that the cytoplasm of these cells behaves as a viscous fluid at the timescales examined. PMID:26840734
A numerical method for electro-kinetic flow with deformable fluid interfaces
NASA Astrophysics Data System (ADS)
Booty, Michael; Ma, Manman; Siegel, Michael
2013-11-01
We consider two-phase flow of ionic fluids whose motion is driven by an imposed electric field. At a fluid interface, a screening cloud of ions develops and forms an electro-chemical double layer or Debye layer. The imposed field acts on this induced charge distribution, resulting in a strong slip flow near the interface. We formulate a ``hybrid'' or multiscale numerical method in the thin Debye layer limit that incorporates an asymptotic analysis of the electrostatic potential and fluid dynamics in the Debye layer into a boundary integral solution of the full moving boundary problem. Results of the method are presented that show time-dependent deformation and steady state drop interface shapes when the timescale for charge-up of the Debye layer is either much less than or comparable to the timescale of the flow.
Sandia Dynamic Materials Program Strategic Plan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flicker, Dawn Gustine; Benage, John F.; Desjarlais, Michael P.
2017-05-01
Materials in nuclear and conventional weapons can reach multi-megabar pressures and 1000s of degree temperatures on timescales ranging from microseconds to nanoseconds. Understanding the response of complex materials under these conditions is important for designing and assessing changes to nuclear weapons. In the next few decades, a major concern will be evaluating the behavior of aging materials and remanufactured components. The science to enable the program to underwrite decisions quickly and confidently on use, remanufacturing, and replacement of these materials will be critical to NNSA’s new Stockpile Responsiveness Program. Material response is also important for assessing the risks posed bymore » adversaries or proliferants. Dynamic materials research, which refers to the use of high-speed experiments to produce extreme conditions in matter, is an important part of NNSA’s Stockpile Stewardship Program.« less
Kaiser, A; Wiemann, C; Cramm, S; Schneider, C M
2009-08-05
The study of magnetodynamics using stroboscopic time-resolved x-ray photoemission electron microscopy (TR-XPEEM) involves an intrinsic timescale provided by the pulse structure of the synchrotron radiation. In the usual multi-bunch operation mode, the time span between two subsequent light pulses is too short to allow a relaxation of the system into the ground state before the next pump-probe cycle starts. Using a deflection gating mechanism described in this paper we are able to pick the photoemission signal resulting from selected light pulses. Thus, PEEM measurements can be carried out in a flexible timing scheme with longer delays between two light pulses. Using this technique, the magnetodynamics of both Permalloy and iron structures have been investigated. The differences in the dynamic response on a short magnetic field pulse are discussed with respect to the magnetocrystalline anisotropy.
Persistence and memory timescales in root-zone soil moisture dynamics
Khaled Ghannam; Taro Nakai; Athanasios Paschalis; Andrew C. Oishi; Ayumi Kotani; Yasunori Igarashi; Tomo' omi Kumagai; Gabriel G. Katul
2016-01-01
The memory timescale that characterizes root-zone soil moisture remains the dominant measure in seasonal forecasts of land-climate interactions. This memory is a quasi-deterministic timescale associated with the losses (e.g., evapotranspiration) from the soil column and is often interpreted as persistence in soil moisture states. Persistence, however,...
Holocene Multi-Decadal to Millennial-Scale Hydrologic Variability on the South American Altiplano
NASA Astrophysics Data System (ADS)
Fritz, S. C.; Baker, P. A.; Ekdahl, E.; Burns, S.
2006-12-01
On orbital timescales, lacustrine sediment records in the tropical central Andes show massive changes in lake level due to mechanisms related to global-scale drivers, varying at precessional timescales. Here we use stable isotopic and diatom records from two lakes in the Lake Titicaca drainage basin to reconstruct multi- decadal to millennial scale precipitation variability during the last 7000 to 8000 years. The records are tightly coupled at multi-decadal to millennial scales with each other and with lake-level fluctuations in Lake Titicaca, indicating that the lakes are recording a regional climate signal. A quantitative reconstruction of precipitation from stable isotopic data indicates that the central Andes underwent significant wet to dry alternations at multi- centennial frequencies with an amplitude of 30 to 40% of total precipitation. A strong millennial-scale component, similar in duration to periods of increased ice rafted debris flux in the North Atlantic, is observed in both lake records, suggesting that tropical North Atlantic sea-surface temperature (SST) variability may partly control regional precipitation. No clear relationship is evident between these records and the inferred ENSO history from Lago Pallcacocha in the northern tropical Andes. In the instrumental period, regional precipitation variability on inter-annual timescales is clearly influenced by Pacific modes; for example, most El Ninos produce dry and warm conditions in this part of the central Andes. However, on longer timescales, the control of tropical Pacific modes is less clear. Our reconstructions suggest that the cold intervals of the Holocene Bond events are periods of increased precipitation in the central Andes, thus indicating an anti-phasing of precipitation variation in the southern tropics of South America relative to the Northern Hemisphere monsoon region.
Robust Dynamic Multi-objective Vehicle Routing Optimization Method.
Guo, Yi-Nan; Cheng, Jian; Luo, Sha; Gong, Dun-Wei
2017-03-21
For dynamic multi-objective vehicle routing problems, the waiting time of vehicle, the number of serving vehicles, the total distance of routes were normally considered as the optimization objectives. Except for above objectives, fuel consumption that leads to the environmental pollution and energy consumption was focused on in this paper. Considering the vehicles' load and the driving distance, corresponding carbon emission model was built and set as an optimization objective. Dynamic multi-objective vehicle routing problems with hard time windows and randomly appeared dynamic customers, subsequently, were modeled. In existing planning methods, when the new service demand came up, global vehicle routing optimization method was triggered to find the optimal routes for non-served customers, which was time-consuming. Therefore, robust dynamic multi-objective vehicle routing method with two-phase is proposed. Three highlights of the novel method are: (i) After finding optimal robust virtual routes for all customers by adopting multi-objective particle swarm optimization in the first phase, static vehicle routes for static customers are formed by removing all dynamic customers from robust virtual routes in next phase. (ii)The dynamically appeared customers append to be served according to their service time and the vehicles' statues. Global vehicle routing optimization is triggered only when no suitable locations can be found for dynamic customers. (iii)A metric measuring the algorithms' robustness is given. The statistical results indicated that the routes obtained by the proposed method have better stability and robustness, but may be sub-optimum. Moreover, time-consuming global vehicle routing optimization is avoided as dynamic customers appear.
Multiscale molecular dynamics simulations of rotary motor proteins.
Ekimoto, Toru; Ikeguchi, Mitsunori
2018-04-01
Protein functions require specific structures frequently coupled with conformational changes. The scale of the structural dynamics of proteins spans from the atomic to the molecular level. Theoretically, all-atom molecular dynamics (MD) simulation is a powerful tool to investigate protein dynamics because the MD simulation is capable of capturing conformational changes obeying the intrinsically structural features. However, to study long-timescale dynamics, efficient sampling techniques and coarse-grained (CG) approaches coupled with all-atom MD simulations, termed multiscale MD simulations, are required to overcome the timescale limitation in all-atom MD simulations. Here, we review two examples of rotary motor proteins examined using free energy landscape (FEL) analysis and CG-MD simulations. In the FEL analysis, FEL is calculated as a function of reaction coordinates, and the long-timescale dynamics corresponding to conformational changes is described as transitions on the FEL surface. Another approach is the utilization of the CG model, in which the CG parameters are tuned using the fluctuation matching methodology with all-atom MD simulations. The long-timespan dynamics is then elucidated straightforwardly by using CG-MD simulations.
A multi-state trajectory method for non-adiabatic dynamics simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Guohua, E-mail: taogh@pkusz.edu.cn
2016-03-07
A multi-state trajectory approach is proposed to describe nuclear-electron coupled dynamics in nonadiabatic simulations. In this approach, each electronic state is associated with an individual trajectory, among which electronic transition occurs. The set of these individual trajectories constitutes a multi-state trajectory, and nuclear dynamics is described by one of these individual trajectories as the system is on the corresponding state. The total nuclear-electron coupled dynamics is obtained from the ensemble average of the multi-state trajectories. A variety of benchmark systems such as the spin-boson system have been tested and the results generated using the quasi-classical version of the method showmore » reasonably good agreement with the exact quantum calculations. Featured in a clear multi-state picture, high efficiency, and excellent numerical stability, the proposed method may have advantages in being implemented to realistic complex molecular systems, and it could be straightforwardly applied to general nonadiabatic dynamics involving multiple states.« less
Biogeochemical Cycling and Sea Ice Dynamics in the Bering Sea across the Mid-Pleistocene Transition
NASA Astrophysics Data System (ADS)
Detlef, H.; Sosdian, S. M.; Belt, S. T.; Smik, L.; Lear, C. H.; Hall, I. R.; Kender, S.; Leng, M. J.; Husum, K.; Cabedo-Sanz, P.
2017-12-01
Today the Bering Sea is characterized by high primary productivity (PP) along the eastern shelf, maintained by CO2 and nutrient rich upwelled deep waters and nutrient release during spring sea ice melting. As such, low oxygen concentrations are pervasive in mid-depth waters. Changes in ventilation and export productivity in the past have been shown to impact this oxygen minimum zone. On glacial/interglacial (G/IG) timescales sea ice formation plays a pivotal role on intermediate water ventilation with evidence pointing to the formation of North Pacific Intermediate Water (NPIW) in the Bering Sea during Pleistocene glacial intervals. In addition, sea ice plays a significant role in both long- and short-term climate change via associated feedback mechanisms. Thus, records of sea ice dynamics and biogeochemical cycling in the Bering Sea are necessary to fully understand the interaction between PP, circulation patterns, and past G/IG climates with potential implications for the North Pacific carbon cycle. Here we use a multi-proxy approach to study sea ice dynamics and bottom water oxygenation, across three intervals prior to, across, and after the Mid-Pleistocene Transition (MPT, 1.2-0.7 Ma) from International Ocean Discovery Program Site U1343. The MPT, most likely driven by internal climate mechanisms, is ideal to study changes in sea ice dynamics and sedimentary redox conditions on orbital timescales and to investigate the implications for associated feedback mechanisms. The sea ice record, based on various biomarkers, including IP25, shows substantial increase in sea ice extent across the MPT and the occurrence of a late-glacial/deglacial sea ice spike, with consequences for glacial NPIW formation and land glacier retreat via the temperature-precipitation feedback. U/Mn of foraminiferal authigenic coatings, a novel proxy for bottom water oxygenation, also shows distinct variability on G/IG timescales across the MPT, most likely a result of PP and water mass changes in relation to sea ice dynamics. Additional records of benthic foraminiferal assemblages and biogenic opal accumulation rates further elucidate the influence of PP on U/Mn, which can help to investigate the strength of NPIW formation along the eastern Bering slope, important for CO2 outgassing and abyssal North Pacific carbon storage.
Cao, Lushuai; Krönke, Sven; Vendrell, Oriol; Schmelcher, Peter
2013-10-07
We develop the multi-layer multi-configuration time-dependent Hartree method for bosons (ML-MCTDHB), a variational numerically exact ab initio method for studying the quantum dynamics and stationary properties of general bosonic systems. ML-MCTDHB takes advantage of the permutation symmetry of identical bosons, which allows for investigations of the quantum dynamics from few to many-body systems. Moreover, the multi-layer feature enables ML-MCTDHB to describe mixed bosonic systems consisting of arbitrary many species. Multi-dimensional as well as mixed-dimensional systems can be accurately and efficiently simulated via the multi-layer expansion scheme. We provide a detailed account of the underlying theory and the corresponding implementation. We also demonstrate the superior performance by applying the method to the tunneling dynamics of bosonic ensembles in a one-dimensional double well potential, where a single-species bosonic ensemble of various correlation strengths and a weakly interacting two-species bosonic ensemble are considered.
Atomistic non-adiabatic dynamics of the LH2 complex with a GPU-accelerated ab initio exciton model
Sisto, Aaron; Stross, Clem; van der Kamp, Marc W.; ...
2017-03-28
We recently outlined an efficient multi-tiered parallel ab initio excitonic framework that utilizes time dependent density functional theory (TDDFT) to calculate ground and excited state energies and gradients of large supramolecular complexes in atomistic detail – enabling us to undertake non-adiabatic simulations which explicitly account for the coupled anharmonic vibrational motion of all the constituent atoms in a supramolecular system. Here we apply that framework to the 27 coupled bacterio-chlorophyll-a chromophores which make up the LH2 complex, using it to compute an on-the-fly nonadiabatic surface-hopping (SH) trajectory of electronically excited LH2. Part one of this article is focussed on calibratingmore » our ab initio exciton Hamiltonian using two key parameters: a shift δ, which corrects for the error in TDDFT vertical excitation energies; and an effective dielectric constant ε, which describes the average screening of the transition-dipole coupling between chromophores. Using snapshots obtained from equilibrium molecular dynamics simulations (MD) of LH2, we tune the values of both δ and ε through fitting to the thermally broadened experimental absorption spectrum, giving a linear absorption spectrum that agrees reasonably well with experiment. In part two of this article, we construct a time-resolved picture of the coupled vibrational and excitation energy transfer (EET) dynamics in the sub-picosecond regime following photo-excitation. Assuming Franck–Condon excitation of a narrow eigenstate band centred at 800 nm, we use surface hopping to follow a single nonadiabatic dynamics trajectory within the full eigenstate manifold. Consistent with experimental data, this trajectory gives timescales for B800→B850 population transfer (τ B800→B850) between 650–1050 fs, and B800 population decay (τ 800→) between 10–50 fs. The dynamical picture that emerges is one of rapidly fluctuating LH2 eigenstates that are delocalized over multiple chromophores and undergo frequent crossing on a femtosecond timescale as a result of the atomic vibrations of the constituent chromophores. The eigenstate fluctuations arise from disorder that is driven by vibrational dynamics with multiple characteristic timescales. The scalability of our ab initio excitonic computational framework across massively parallel architectures opens up the possibility of addressing a wide range of questions, including how specific dynamical motions impact both the pathways and efficiency of electronic energy-transfer within large supramolecular systems.« less
Parmar, Jyotsana J; Das, Dibyendu; Padinhateeri, Ranjith
2016-02-29
It is being increasingly realized that nucleosome organization on DNA crucially regulates DNA-protein interactions and the resulting gene expression. While the spatial character of the nucleosome positioning on DNA has been experimentally and theoretically studied extensively, the temporal character is poorly understood. Accounting for ATPase activity and DNA-sequence effects on nucleosome kinetics, we develop a theoretical method to estimate the time of continuous exposure of binding sites of non-histone proteins (e.g. transcription factors and TATA binding proteins) along any genome. Applying the method to Saccharomyces cerevisiae, we show that the exposure timescales are determined by cooperative dynamics of multiple nucleosomes, and their behavior is often different from expectations based on static nucleosome occupancy. Examining exposure times in the promoters of GAL1 and PHO5, we show that our theoretical predictions are consistent with known experiments. We apply our method genome-wide and discover huge gene-to-gene variability of mean exposure times of TATA boxes and patches adjacent to TSS (+1 nucleosome region); the resulting timescale distributions have non-exponential tails. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Spencer, T J; Hidalgo-Bastida, L A; Cartmell, S H; Halliday, I; Care, C M
2013-04-01
Computer simulations can potentially be used to design, predict, and inform properties for tissue engineering perfusion bioreactors. In this work, we investigate the flow properties that result from a particular poly-L-lactide porous scaffold and a particular choice of perfusion bioreactor vessel design used in bone tissue engineering. We also propose a model to investigate the dynamic seeding properties such as the homogeneity (or lack of) of the cellular distribution within the scaffold of the perfusion bioreactor: a pre-requisite for the subsequent successful uniform growth of a viable bone tissue engineered construct. Flows inside geometrically complex scaffolds have been investigated previously and results shown at these pore scales. Here, it is our aim to show accurately that through the use of modern high performance computers that the bioreactor device scale that encloses a scaffold can affect the flows and stresses within the pores throughout the scaffold which has implications for bioreactor design, control, and use. Central to this work is that the boundary conditions are derived from micro computed tomography scans of both a device chamber and scaffold in order to avoid generalizations and uncertainties. Dynamic seeding methods have also been shown to provide certain advantages over static seeding methods. We propose here a novel coupled model for dynamic seeding accounting for flow, species mass transport and cell advection-diffusion-attachment tuned for bone tissue engineering. The model highlights the timescale differences between different species suggesting that traditional homogeneous porous flow models of transport must be applied with caution to perfusion bioreactors. Our in silico data illustrate the extent to which these experiments have the potential to contribute to future design and development of large-scale bioreactors. Copyright © 2012 Wiley Periodicals, Inc.
Jolivet, Renaud; Coggan, Jay S.; Allaman, Igor; Magistretti, Pierre J.
2015-01-01
Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain’s metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging. PMID:25719367
Jolivet, Renaud; Coggan, Jay S; Allaman, Igor; Magistretti, Pierre J
2015-02-01
Glucose is the main energy substrate in the adult brain under normal conditions. Accumulating evidence, however, indicates that lactate produced in astrocytes (a type of glial cell) can also fuel neuronal activity. The quantitative aspects of this so-called astrocyte-neuron lactate shuttle (ANLS) are still debated. To address this question, we developed a detailed biophysical model of the brain's metabolic interactions. Our model integrates three modeling approaches, the Buxton-Wang model of vascular dynamics, the Hodgkin-Huxley formulation of neuronal membrane excitability and a biophysical model of metabolic pathways. This approach provides a template for large-scale simulations of the neuron-glia-vasculature (NGV) ensemble, and for the first time integrates the respective timescales at which energy metabolism and neuronal excitability occur. The model is constrained by relative neuronal and astrocytic oxygen and glucose utilization, by the concentration of metabolites at rest and by the temporal dynamics of NADH upon activation. These constraints produced four observations. First, a transfer of lactate from astrocytes to neurons emerged in response to activity. Second, constrained by activity-dependent NADH transients, neuronal oxidative metabolism increased first upon activation with a subsequent delayed astrocytic glycolysis increase. Third, the model correctly predicted the dynamics of extracellular lactate and oxygen as observed in vivo in rats. Fourth, the model correctly predicted the temporal dynamics of tissue lactate, of tissue glucose and oxygen consumption, and of the BOLD signal as reported in human studies. These findings not only support the ANLS hypothesis but also provide a quantitative mathematical description of the metabolic activation in neurons and glial cells, as well as of the macroscopic measurements obtained during brain imaging.
Non-radiative relaxation dynamics of pyrrole following excitation in the range 249.5-200 nm
NASA Astrophysics Data System (ADS)
Kirkby, Oliver M.; Parkes, Michael A.; Neville, Simon P.; Worth, Graham A.; Fielding, Helen H.
2017-09-01
The non-radiative relaxation dynamics of pyrrole have been investigated using time-resolved photoelectron spectroscopy and quantum dynamics simulations. Following excitation of the A2 (11 πσ∗) state, we observe population flow out of the Franck-Condon region on a ≲ 50 fs timescale. Following excitation of the B2 (21 ππ∗) state, we observe population being transferred to the A2 (11 πσ∗) state on a <50 fs timescale and subsequently out of the Franck-Condon region, also on a <50 fs timescale. Quantum dynamics calculations suggest that population is transferred from the B2 (21 ππ∗) state through the A2 (1 π 3pz) state to the B1 (21 πσ∗) state before being transferred to the A2 (11 πσ∗) state.
Enhanced Molecular Dynamics Methods Applied to Drug Design Projects.
Ziada, Sonia; Braka, Abdennour; Diharce, Julien; Aci-Sèche, Samia; Bonnet, Pascal
2018-01-01
Nobel Laureate Richard P. Feynman stated: "[…] everything that living things do can be understood in terms of jiggling and wiggling of atoms […]." The importance of computer simulations of macromolecules, which use classical mechanics principles to describe atom behavior, is widely acknowledged and nowadays, they are applied in many fields such as material sciences and drug discovery. With the increase of computing power, molecular dynamics simulations can be applied to understand biological mechanisms at realistic timescales. In this chapter, we share our computational experience providing a global view of two of the widely used enhanced molecular dynamics methods to study protein structure and dynamics through the description of their characteristics, limits and we provide some examples of their applications in drug design. We also discuss the appropriate choice of software and hardware. In a detailed practical procedure, we describe how to set up, run, and analyze two main molecular dynamics methods, the umbrella sampling (US) and the accelerated molecular dynamics (aMD) methods.
Smith, Jason F.; Pillai, Ajay; Chen, Kewei; Horwitz, Barry
2012-01-01
Analysis of directionally specific or causal interactions between regions in functional magnetic resonance imaging (fMRI) data has proliferated. Here we identify six issues with existing effective connectivity methods that need to be addressed. The issues are discussed within the framework of linear dynamic systems for fMRI (LDSf). The first concerns the use of deterministic models to identify inter-regional effective connectivity. We show that deterministic dynamics are incapable of identifying the trial-to-trial variability typically investigated as the marker of connectivity while stochastic models can capture this variability. The second concerns the simplistic (constant) connectivity modeled by most methods. Connectivity parameters of the LDSf model can vary at the same timescale as the input data. Further, extending LDSf to mixtures of multiple models provides more robust connectivity variation. The third concerns the correct identification of the network itself including the number and anatomical origin of the network nodes. Augmentation of the LDSf state space can identify additional nodes of a network. The fourth concerns the locus of the signal used as a “node” in a network. A novel extension LDSf incorporating sparse canonical correlations can select most relevant voxels from an anatomically defined region based on connectivity. The fifth concerns connection interpretation. Individual parameter differences have received most attention. We present alternative network descriptors of connectivity changes which consider the whole network. The sixth concerns the temporal resolution of fMRI data relative to the timescale of the inter-regional interactions in the brain. LDSf includes an “instantaneous” connection term to capture connectivity occurring at timescales faster than the data resolution. The LDS framework can also be extended to statistically combine fMRI and EEG data. The LDSf framework is a promising foundation for effective connectivity analysis. PMID:22279430
Multi-timescale sediment responses across a human impacted river-estuary system
NASA Astrophysics Data System (ADS)
Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng
2018-05-01
Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.
Choy, Meng S; Li, Yang; Machado, Luciana E S F; Kunze, Micha B A; Connors, Christopher R; Wei, Xingyu; Lindorff-Larsen, Kresten; Page, Rebecca; Peti, Wolfgang
2017-02-16
Protein function originates from a cooperation of structural rigidity, dynamics at different timescales, and allostery. However, how these three pillars of protein function are integrated is still only poorly understood. Here we show how these pillars are connected in Protein Tyrosine Phosphatase 1B (PTP1B), a drug target for diabetes and cancer that catalyzes the dephosphorylation of numerous substrates in essential signaling pathways. By combining new experimental and computational data on WT-PTP1B and ≥10 PTP1B variants in multiple states, we discovered a fundamental and evolutionarily conserved CH/π switch that is critical for positioning the catalytically important WPD loop. Furthermore, our data show that PTP1B uses conformational and dynamic allostery to regulate its activity. This shows that both conformational rigidity and dynamics are essential for controlling protein activity. This connection between rigidity and dynamics at different timescales is likely a hallmark of all enzyme function. Copyright © 2017 Elsevier Inc. All rights reserved.
Annually resolved North Atlantic marine climate over the last millennium
NASA Astrophysics Data System (ADS)
Reynolds, D. J.; Scourse, J. D.; Halloran, P. R.; Nederbragt, A. J.; Wanamaker, A. D.; Butler, P. G.; Richardson, C. A.; Heinemeier, J.; Eiríksson, J.; Knudsen, K. L.; Hall, I. R.
2016-12-01
Owing to the lack of absolutely dated oceanographic information before the modern instrumental period, there is currently significant debate as to the role played by North Atlantic Ocean dynamics in previous climate transitions (for example, Medieval Climate Anomaly-Little Ice Age, MCA-LIA). Here we present analyses of a millennial-length, annually resolved and absolutely dated marine δ18O archive. We interpret our record of oxygen isotope ratios from the shells of the long-lived marine bivalve Arctica islandica (δ18O-shell), from the North Icelandic shelf, in relation to seawater density variability and demonstrate that solar and volcanic forcing coupled with ocean circulation dynamics are key drivers of climate variability over the last millennium. During the pre-industrial period (AD 1000-1800) variability in the sub-polar North Atlantic leads changes in Northern Hemisphere surface air temperatures at multi-decadal timescales, indicating that North Atlantic Ocean dynamics played an active role in modulating the response of the atmosphere to solar and volcanic forcing.
Gerc, Amy J.; Diepold, Andreas; Trunk, Katharina; Porter, Michael; Rickman, Colin; Armitage, Judith P.; Stanley-Wall, Nicola R.; Coulthurst, Sarah J.
2015-01-01
Summary The Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches. PMID:26387948
NASA Astrophysics Data System (ADS)
Walter, Nathan; Zhang, Yang
Nucleation and crystal growth are understood to be activated processes involving the crossing of free-energy barriers. Attempts to capture the entire crystallization process over long timescales with molecular dynamic simulations have met major obstacles because of molecular dynamics' temporal constraints. Herein, we circumvent this temporal limitation by using a brutal-force, metadynamics-like, adaptive basin-climbing algorithm and directly sample the free-energy landscape of a model liquid Argon. The algorithm biases the system to evolve from an amorphous liquid like structure towards an FCC crystal through inherent structure, and then traces back the energy barriers. Consequently, the sampled timescale is macroscopically long. We observe that the formation of a crystal involves two processes, each with a unique temperature-dependent energy barrier. One barrier corresponds to the crystal nucleus formation; the other barrier corresponds to the crystal growth. We find the two processes dominate in different temperature regimes. Compared to other computation techniques, our method requires no assumptions about the shape or chemical potential of the critical crystal nucleus. The success of this method is encouraging for studying the crystallization of more complex
A Multiscale Survival Process for Modeling Human Activity Patterns.
Zhang, Tianyang; Cui, Peng; Song, Chaoming; Zhu, Wenwu; Yang, Shiqiang
2016-01-01
Human activity plays a central role in understanding large-scale social dynamics. It is well documented that individual activity pattern follows bursty dynamics characterized by heavy-tailed interevent time distributions. Here we study a large-scale online chatting dataset consisting of 5,549,570 users, finding that individual activity pattern varies with timescales whereas existing models only approximate empirical observations within a limited timescale. We propose a novel approach that models the intensity rate of an individual triggering an activity. We demonstrate that the model precisely captures corresponding human dynamics across multiple timescales over five orders of magnitudes. Our model also allows extracting the population heterogeneity of activity patterns, characterized by a set of individual-specific ingredients. Integrating our approach with social interactions leads to a wide range of implications.
High-frequency microrheology reveals cytoskeleton dynamics in living cells
NASA Astrophysics Data System (ADS)
Rigato, Annafrancesca; Miyagi, Atsushi; Scheuring, Simon; Rico, Felix
2017-08-01
Living cells are viscoelastic materials, dominated by an elastic response on timescales longer than a millisecond. On shorter timescales, the dynamics of individual cytoskeleton filaments are expected to emerge, but active microrheology measurements on cells accessing this regime are scarce. Here, we develop high-frequency microrheology experiments to probe the viscoelastic response of living cells from 1 Hz to 100 kHz. We report the viscoelasticity of different cell types under cytoskeletal drug treatments. On previously inaccessible short timescales, cells exhibit rich viscoelastic responses that depend on the state of the cytoskeleton. Benign and malignant cancer cells revealed remarkably different scaling laws at high frequencies, providing a unique mechanical fingerprint. Microrheology over a wide dynamic range--up to the frequency characterizing the molecular components--provides a mechanistic understanding of cell mechanics.
NASA Astrophysics Data System (ADS)
Piersanti, M.; Alberti, T.; Lepreti, F.; Vecchio, A.; Villante, U.; Carbone, V.; Waters, C. L.
2015-12-01
We use high latitude ULF wave power in the range 2-7 mHz (Pc5 geomagnetic micropulsations), solar wind speed and dynamic pressure, and relativistic magnetospheric electron flux (E > 0.6 MeV), in the period January - September 2008, in order to detect typical periodicities and physical mechanisms involved into the solar wind-magnetosphere coupling during the declining phase of the 23th solar cycle. Using the Empirical Mode Decomposition (EMD) and applying a statistical test and cross-correlation analysis,we investigate the timescales and the physical mechanisms involved into the solar wind-magnetosphere coupling.Summarizing, we obtain the following results:1. We note the existence of two different timescales into the four datasets which are related to the short-term dynamics, with a characteristic timescale τ<3 days, and to the longer timescale dynamics, with a timescale between 7 and 80 days. The short-term variations could be related to the fluctuations around a characteristic mean value, while longer timescales dynamics can be associated with solar rotational periodicity and mechanisms regarding the occurrence of high-speed streams and corotating interaction regions but also with stream-stream interactions and synodic solar rotation.2. The cross-correlation analysis highlights the relevant role of the dynamical coupling between solar wind and magnetosphere via pressure balance and direct transfer of compressional waves into the magnetosphere. Moreover, it shows that the Kelvin-Helmholtz instability is not the primary source of geomagnetic ultra-low frequency wave activity. These results are in agreement with previous works [Engebretson et al, 1998].3. The cross-correlation coefficient between Pc5 wave power and relativistic electron flux longscale reconstructions shows that Pc5 wave activity leads enhancements in magnetospheric electron flux to relativistic energy with a characteristic time delay of about 54 hours, which is in agreement with the lag of about 2 days found by [Mann et al., 2004].
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahn, Surl-Hee; Grate, Jay W.; Darve, Eric F.
Molecular dynamics (MD) simulations are useful in obtaining thermodynamic and kinetic properties of bio-molecules but are limited by the timescale barrier, i.e., we may be unable to efficiently obtain properties because we need to run microseconds or longer simulations using femtoseconds time steps. While there are several existing methods to overcome this timescale barrier and efficiently sample thermodynamic and/or kinetic properties, problems remain in regard to being able to sample un- known systems, deal with high-dimensional space of collective variables, and focus the computational effort on slow timescales. Hence, a new sampling method, called the “Concurrent Adaptive Sampling (CAS) algorithm,”more » has been developed to tackle these three issues and efficiently obtain conformations and pathways. The method is not constrained to use only one or two collective variables, unlike most reaction coordinate-dependent methods. Instead, it can use a large number of collective vari- ables and uses macrostates (a partition of the collective variable space) to enhance the sampling. The exploration is done by running a large number of short simula- tions, and a clustering technique is used to accelerate the sampling. In this paper, we introduce the new methodology and show results from two-dimensional models and bio-molecules, such as penta-alanine and triazine polymer« less
Relating the dynamics of climatological and hydrological droughts in semiarid Botswana
NASA Astrophysics Data System (ADS)
Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.
2018-06-01
Dynamics of droughts have been an associated feature of climate variability particularly in semiarid regions which impact on the response of hydrological systems. This study attempts to determine drought timescale that is suitable for monitoring the effects of drought on hydrological systems which can then be used to assess the long term persistence or reversion and forecasts of the dynamics. Based on this, climatological and hydrological drought indices characterized by Standardized precipitation evapotranspiration index (SPEI) and Standardized flow index (SFI) respectively have been determined using monthly rainfall, temperature and flow data from two major river systems. The association between climatological and hydrological droughts in Botswana has been investigated using these river systems namely: Okavango that is predominantly a storage type and Limpopo which is non-storage for a period of 1975-2014. Dynamics of climatological and hydrological droughts are showing trends towards drying conditions at both river systems. It was also observed that hydrological droughts lag climatological droughts by 7 months in Limpopo and 6 months in Okavango river systems respectively. Analyses of the association between climatic and flow indices indicate that the degree of association becomes stronger with increasing timescale at the Okavango river system. However in the Limpopo river system, it was observed that high timescales of 18- and 24-months were not useful in drought monitoring. 15-months timescale was identified to best monitor drought dynamics at both locations. Therefore SPEIs and SFIs computed at 15-months timescale have been used to assess the variability and long term persistence in drought dynamics through rescaled range analysis (R/S). H-coefficients of 0.06 and 0.08 resulted for Limpopo and Okavango respectively. These H-coefficients being significantly less than 0.5 is an indication of high variability and suggests a change in dynamics from the existing conditions in these river systems. To forecast possible changes, the nonlinear autoregressive with exogenous input (NARX) artificial neural network model has been used. Results from this model agree with those of the R/S and projects generally dry conditions for the next 40 months. Results from this study are helpful not only in choosing a proper timescale but also in evaluating the futuristic drought dynamics necessary for water resources planning and management.
A mixing timescale model for TPDF simulations of turbulent premixed flames
Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.; ...
2017-02-06
Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive scalar mixing across different flame regimes are appropriately accounted for.« less
A mixing timescale model for TPDF simulations of turbulent premixed flames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuron, Michael; Ren, Zhuyin; Hawkes, Evatt R.
Transported probability density function (TPDF) methods are an attractive modeling approach for turbulent flames as chemical reactions appear in closed form. However, molecular micro-mixing needs to be modeled and this modeling is considered a primary challenge for TPDF methods. In the present study, a new algebraic mixing rate model for TPDF simulations of turbulent premixed flames is proposed, which is a key ingredient in commonly used molecular mixing models. The new model aims to properly account for the transition in reactive scalar mixing rate behavior from the limit of turbulence-dominated mixing to molecular mixing behavior in flamelets. An a priorimore » assessment of the new model is performed using direct numerical simulation (DNS) data of a lean premixed hydrogen–air jet flame. The new model accurately captures the mixing timescale behavior in the DNS and is found to be a significant improvement over the commonly used constant mechanical-to-scalar mixing timescale ratio model. An a posteriori TPDF study is then performed using the same DNS data as a numerical test bed. The DNS provides the initial conditions and time-varying input quantities, including the mean velocity, turbulent diffusion coefficient, and modeled scalar mixing rate for the TPDF simulations, thus allowing an exclusive focus on the mixing model. Here, the new mixing timescale model is compared with the constant mechanical-to-scalar mixing timescale ratio coupled with the Euclidean Minimum Spanning Tree (EMST) mixing model, as well as a laminar flamelet closure. It is found that the laminar flamelet closure is unable to properly capture the mixing behavior in the thin reaction zones regime while the constant mechanical-to-scalar mixing timescale model under-predicts the flame speed. Furthermore, the EMST model coupled with the new mixing timescale model provides the best prediction of the flame structure and flame propagation among the models tested, as the dynamics of reactive scalar mixing across different flame regimes are appropriately accounted for.« less
NASA Astrophysics Data System (ADS)
Balaji, V.; Benson, Rusty; Wyman, Bruce; Held, Isaac
2016-10-01
Climate models represent a large variety of processes on a variety of timescales and space scales, a canonical example of multi-physics multi-scale modeling. Current hardware trends, such as Graphical Processing Units (GPUs) and Many Integrated Core (MIC) chips, are based on, at best, marginal increases in clock speed, coupled with vast increases in concurrency, particularly at the fine grain. Multi-physics codes face particular challenges in achieving fine-grained concurrency, as different physics and dynamics components have different computational profiles, and universal solutions are hard to come by. We propose here one approach for multi-physics codes. These codes are typically structured as components interacting via software frameworks. The component structure of a typical Earth system model consists of a hierarchical and recursive tree of components, each representing a different climate process or dynamical system. This recursive structure generally encompasses a modest level of concurrency at the highest level (e.g., atmosphere and ocean on different processor sets) with serial organization underneath. We propose to extend concurrency much further by running more and more lower- and higher-level components in parallel with each other. Each component can further be parallelized on the fine grain, potentially offering a major increase in the scalability of Earth system models. We present here first results from this approach, called coarse-grained component concurrency, or CCC. Within the Geophysical Fluid Dynamics Laboratory (GFDL) Flexible Modeling System (FMS), the atmospheric radiative transfer component has been configured to run in parallel with a composite component consisting of every other atmospheric component, including the atmospheric dynamics and all other atmospheric physics components. We will explore the algorithmic challenges involved in such an approach, and present results from such simulations. Plans to achieve even greater levels of coarse-grained concurrency by extending this approach within other components, such as the ocean, will be discussed.
The Exoplant Migration Timescale from K2 Young Clusters
NASA Astrophysics Data System (ADS)
Rizzuto, Aaron C.; Mann, Andrew; Kraus, Adam L.; Ireland, Michael
2017-01-01
Planetary Migration models for close-in exoplanets(a < 0.1 AU, P < 20 days) can be loosely divided into three categories: Disk-driven migration, binary-star planet interaction, and planet-planet interaction. Disk migration, occurs over the lifetime of the protoplanetary disk (<5 Myr), while migration involving dynamical multi-body interactions operate on timescales of ~100’s of Myr to ~1Gyr, a lengthier process than disk migration. It is unclear which of these is the dominating mechanism.The K2 mission has measured planet formation timescales and migration pathways by sampling groups of stars at key pre-main-sequence ages: Over the past 10 campaigns, multiple groups of young stars have been observed by K2, ranging from the 10 Myr Upper Scorpius OB association, through the ˜120 Myr Pleiades, the ˜600-800 Myr Hyades and Praesepe moving groups, to the original Kepler Field. The frequency, orbital and compositional properties of the exoplanet population in these samples of different age, with careful treatment of detection completeness, will be sufficient to address the question of exoplanet migration as their host stars are settling onto the main sequence.We will present the initial results of a program to directly address the question of planet migration with a uniform injection-recovery tests on a new K2 detrending pipeline that is optimized for the particular case of young, rotationally variable stars in K2 to robustly measure the detectability of planets of differing size and orbit. Initial results point towards a migration timescale of 200-700 Myr, which is consistent with the slower planet-planet scattering or Kozai migration models.
Timescales for exploratory tactical behaviour in football small-sided games.
Ric, Angel; Hristovski, Robert; Gonçalves, Bruno; Torres, Lorena; Sampaio, Jaime; Torrents, Carlota
2016-09-01
The aim of this study was to identify the dynamics of tactical behaviour emerging on different timescales in football small-sided games and to quantify short- and long-term exploratory behaviour according to the number of opponents. Two teams of four professional male footballers played small-sided games against two different teams with a variable number of opponents (3, 5 and 7). Data were collected using a combination of systematic observation and a non-differential global positioning system (15 Hz). The temporal diversity and structural flexibility of the players were determined by calculating the dynamic overlap order parameter q, entropy and trapping strength. Analysis of the exploratory dynamics revealed two different timescales, forming a different metastable landscape of action for each constraint. Fast dynamics lasted on average a few seconds and consisted of changes in tactical patterns. The long timescale corresponded to the shared tasks of offence and defence lasting tens of seconds. The players' tactical diversity decreased with an increasing number of opponents, especially in defence. Manipulating numerical imbalance is likely to promote changes in the diversity, unpredictability and flexibility of tactical solutions. The fact that the temporally nested structure of constraints shaped the emergence of tactical behaviour provides a new rationale for practice task design. The manipulation of numerical imbalance on the timescale of a few tens of seconds, on which the exploratory behaviour of players saturates, may help coaches to optimise the exploratory efficiency of the small-sided games.
Continuous Timescale Long-Short Term Memory Neural Network for Human Intent Understanding
Yu, Zhibin; Moirangthem, Dennis S.; Lee, Minho
2017-01-01
Understanding of human intention by observing a series of human actions has been a challenging task. In order to do so, we need to analyze longer sequences of human actions related with intentions and extract the context from the dynamic features. The multiple timescales recurrent neural network (MTRNN) model, which is believed to be a kind of solution, is a useful tool for recording and regenerating a continuous signal for dynamic tasks. However, the conventional MTRNN suffers from the vanishing gradient problem which renders it impossible to be used for longer sequence understanding. To address this problem, we propose a new model named Continuous Timescale Long-Short Term Memory (CTLSTM) in which we inherit the multiple timescales concept into the Long-Short Term Memory (LSTM) recurrent neural network (RNN) that addresses the vanishing gradient problem. We design an additional recurrent connection in the LSTM cell outputs to produce a time-delay in order to capture the slow context. Our experiments show that the proposed model exhibits better context modeling ability and captures the dynamic features on multiple large dataset classification tasks. The results illustrate that the multiple timescales concept enhances the ability of our model to handle longer sequences related with human intentions and hence proving to be more suitable for complex tasks, such as intention recognition. PMID:28878646
The allosteric communication pathways in KIX domain of CBP.
Palazzesi, Ferruccio; Barducci, Alessandro; Tollinger, Martin; Parrinello, Michele
2013-08-27
Allosteric regulation plays an important role in a myriad of biomacromolecular processes. Specifically, in a protein, the process of allostery refers to the transmission of a local perturbation, such as ligand binding, to a distant site. Decades after the discovery of this phenomenon, models built on static images of proteins are being reconsidered with the knowledge that protein dynamics plays an important role in its function. Molecular dynamics simulations are a valuable tool for studying complex biomolecular systems, providing an atomistic description of their structure and dynamics. Unfortunately, their predictive power has been limited by the complexity of the biomolecule free-energy surface and by the length of the allosteric timescale (in the order of milliseconds). In this work, we are able to probe the origins of the allosteric changes that transcription factor mixed lineage leukemia (MLL) causes to the interactions of KIX domain of CREB-binding protein (CBP) with phosphorylated kinase inducible domain (pKID), by combing all-atom molecular dynamics with enhanced sampling methods recently developed in our group. We discuss our results in relation to previous NMR studies. We also develop a general simulations protocol to study allosteric phenomena and many other biological processes that occur in the micro/milliseconds timescale.
Spatial evolutionary epidemiology of spreading epidemics
2016-01-01
Most spatial models of host–parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. PMID:27798295
Spatial evolutionary epidemiology of spreading epidemics.
Lion, S; Gandon, S
2016-10-26
Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-strain epidemiological model, we use a combination of spatial moment equations and quantitative genetics to analyse the dynamics of mean transmission and virulence in the population. A key insight of our approach is that, even in the absence of long-term evolutionary consequences, spatial structure can affect the short-term evolution of pathogens because of the build-up of spatial differentiation in mean virulence. We show that spatial differentiation is driven by a balance between epidemiological and genetic effects, and this quantity is related to the effect of kin competition discussed in previous studies of parasite evolution in spatially structured host populations. Our analysis can be used to understand and predict the transient evolutionary dynamics of pathogens and the emergence of spatial patterns of phenotypic variation. © 2016 The Author(s).
Towards an eco-phylogenetic framework for infectious disease ecology.
Fountain-Jones, Nicholas M; Pearse, William D; Escobar, Luis E; Alba-Casals, Ana; Carver, Scott; Davies, T Jonathan; Kraberger, Simona; Papeş, Monica; Vandegrift, Kurt; Worsley-Tonks, Katherine; Craft, Meggan E
2018-05-01
Identifying patterns and drivers of infectious disease dynamics across multiple scales is a fundamental challenge for modern science. There is growing awareness that it is necessary to incorporate multi-host and/or multi-parasite interactions to understand and predict current and future disease threats better, and new tools are needed to help address this task. Eco-phylogenetics (phylogenetic community ecology) provides one avenue for exploring multi-host multi-parasite systems, yet the incorporation of eco-phylogenetic concepts and methods into studies of host pathogen dynamics has lagged behind. Eco-phylogenetics is a transformative approach that uses evolutionary history to infer present-day dynamics. Here, we present an eco-phylogenetic framework to reveal insights into parasite communities and infectious disease dynamics across spatial and temporal scales. We illustrate how eco-phylogenetic methods can help untangle the mechanisms of host-parasite dynamics from individual (e.g. co-infection) to landscape scales (e.g. parasite/host community structure). An improved ecological understanding of multi-host and multi-pathogen dynamics across scales will increase our ability to predict disease threats. © 2017 Cambridge Philosophical Society.
OWL representation of the geologic timescale implementing stratigraphic best practice
NASA Astrophysics Data System (ADS)
Cox, S. J.
2011-12-01
The geologic timescale is a cornerstone of the earth sciences. Versions are available from many sources, with the following being of particular interest: (i) The official International Stratigraphic Chart (ISC) is maintained by the International Commission for Stratigraphy (ICS), following principles developed over the last 40 years. ICS provides the data underlying the chart as part of a specialized software package, and the chart itself as a PDF using the standard colours; (ii) ITC Enschede has developed a representation of the timescale as a thesaurus in SKOS, used in a Web Map Service delivery system; (iii) JPL's SWEET ontology includes a geologic timescale. This takes full advantage of the capabilities of OWL. However, each of these has limitations - The ISC falls down because of incompatibility with web technologies; - While SKOS supports multilingual labelling, SKOS does not adequately support timescale semantics, in particular since it does not include ordering relationships; - The SWEET version (as of version 2) is not fully aligned to the model used by ICS, in particular not recognizing the role of the Global Boundary Stratotype Sections and Point (GSSP). Furthermore, it is distributed as static documents, rather than through a dynamic API using SPARQL. The representation presented in this paper overcomes all of these limitations as follows: - the timescale model is formulated as an OWL ontology - the ontology is directly derived from the UML representation of the ICS best practice proposed by Cox & Richard [2005], and subsequently included as the Geologic Timescale package in GeoSciML (http://www.geosciml.org); this includes links to GSSPs as per the ICS process - key properties in the ontology are also asserted to be subProperties of SKOS properties (topConcept and broader/narrower relations) in order to support SKOS-based queries; SKOS labelling is used to support multi-lingual naming and synonyms - the International Stratigraphic Chart is implemented as a set of instances of classes from the ontology, and published through a SPARQL end-point - the elements of the Stratigraphic chart are linked to the corresponding elements in SWEET (Raskin et al., 2011) and DBpedia to support traceability between different commonly accessed representations. The ontology builds on standard geospatial information models, including the Observations and Measurements model (ISO 19156), and GeoSciML. This allows the ages given in the chart to be linked to the evidence basis found in the associated GeoSciML features.
NASA Astrophysics Data System (ADS)
Niu, Jun; Chen, Ji; Wang, Keyi; Sivakumar, Bellie
2017-08-01
This paper examines the multi-scale streamflow variability responses to precipitation over 16 headwater catchments in the Pearl River basin, South China. The long-term daily streamflow data (1952-2000), obtained using a macro-scale hydrological model, the Variable Infiltration Capacity (VIC) model, and a routing scheme, are studied. Temporal features of streamflow variability at 10 different timescales, ranging from 6 days to 8.4 years, are revealed with the Haar wavelet transform. The principal component analysis (PCA) is performed to categorize the headwater catchments with the coherent modes of multi-scale wavelet spectra. The results indicate that three distinct modes, with different variability distributions at small timescales and seasonal scales, can explain 95% of the streamflow variability. A large majority of the catchments (i.e. 12 out of 16) exhibit consistent mode feature on multi-scale variability throughout three sub-periods (1952-1968, 1969-1984, and 1985-2000). The multi-scale streamflow variability responses to precipitation are identified to be associated with the regional flood and drought tendency over the headwater catchments in southern China.
Aoun, Bachir; Pellegrini, Eric; Trapp, Marcus; Natali, Francesca; Cantù, Laura; Brocca, Paola; Gerelli, Yuri; Demé, Bruno; Marek Koza, Michael; Johnson, Mark; Peters, Judith
2016-04-01
Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.
Optimization of fixed-range trajectories for supersonic transport aircraft
NASA Astrophysics Data System (ADS)
Windhorst, Robert Dennis
1999-11-01
This thesis develops near-optimal guidance laws that generate minimum fuel, time, or direct operating cost fixed-range trajectories for supersonic transport aircraft. The approach uses singular perturbation techniques to time-scale de-couple the equations of motion into three sets of dynamics, two of which are analyzed in the main body of this thesis and one of which is analyzed in the Appendix. The two-point-boundary-value-problems obtained by application of the maximum principle to the dynamic systems are solved using the method of matched asymptotic expansions. Finally, the two solutions are combined using the matching principle and an additive composition rule to form a uniformly valid approximation of the full fixed-range trajectory. The approach is used on two different time-scale formulations. The first holds weight constant, and the second allows weight and range dynamics to propagate on the same time-scale. Solutions for the first formulation are only carried out to zero order in the small parameter, while solutions for the second formulation are carried out to first order. Calculations for a HSCT design were made to illustrate the method. Results show that the minimum fuel trajectory consists of three segments: a minimum fuel energy-climb, a cruise-climb, and a minimum drag glide. The minimum time trajectory also has three segments: a maximum dynamic pressure ascent, a constant altitude cruise, and a maximum dynamic pressure glide. The minimum direct operating cost trajectory is an optimal combination of the two. For realistic costs of fuel and flight time, the minimum direct operating cost trajectory is very similar to the minimum fuel trajectory. Moreover, the HSCT has three local optimum cruise speeds, with the globally optimum cruise point at the highest allowable speed, if range is sufficiently long. The final range of the trajectory determines which locally optimal speed is best. Ranges of 500 to 6,000 nautical miles, subsonic and supersonic mixed flight, and varying fuel efficiency cases are analyzed. Finally, the payload-range curve of the HSCT design is determined.
GMLC Extreme Event Modeling -- Slow-Dynamics Models for Renewable Energy Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkali, M.; Min, L.
The need for slow dynamics models of renewable resources in cascade modeling essentially arises from the challenges associated with the increased use of solar and wind electric power. Indeed, the main challenge is that the power produced by wind and sunlight is not consistent; thus, renewable energy resources tend to have variable output power on many different timescales, including the timescales that a cascade unfolds.
The dominant role of Arctic surface buoyancy fluxes for AMOC slow-down on multi-decadal timescales
NASA Astrophysics Data System (ADS)
Fedorov, A. V.; Sevellec, F.
2016-12-01
One of the most dramatic consequences of the ongoing climate change is the reduction in the Arctic sea ice cover observed over the past few decades. This sea ice loss increases net heat flux into the ocean and at the same time exposes the ocean to additional freshwater flux from the atmosphere. These two effects imply positive anomalies in surface buoyancy fluxes over the Arctic ocean. In this study we estimate the sensitivity of the Atlantic Meridional Overturning Circulation (AMOC) to global changes in surface buoyancy forcing, especially in the context of changes in the Arctic. We find that, whereas on decadal timescale the subpolar region (especially east and south of Greenland) is the primarily driver of AMOC weakening due to positive buoyancy fluxes, on multidecadal timescales (longer than 20 years) it is the Arctic region that largely controls the AMOC slow-down. On timescales close to one century surface buoyancy fluxes over the Arctic ocean are nearly twice as effective for weakening the AMOC than those in the subpolar North Atlantic. We also find that the anomalous surface buoyancy fluxes in the Arctic can efficiently weaken poleward heat transport in the North Atlantic on a basin scale (i.e., between 25oN and 50oN). We conclude that such remote control of the AMOC intensity and heat transport by the Arctic ocean is a robust feature of climate change on multi-decadal timescales.
Decoding the spatial signatures of multi-scale climate variability - a climate network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.
2017-12-01
During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.
Theoretical approaches for dynamical ordering of biomolecular systems.
Okumura, Hisashi; Higashi, Masahiro; Yoshida, Yuichiro; Sato, Hirofumi; Akiyama, Ryo
2018-02-01
Living systems are characterized by the dynamic assembly and disassembly of biomolecules. The dynamical ordering mechanism of these biomolecules has been investigated both experimentally and theoretically. The main theoretical approaches include quantum mechanical (QM) calculation, all-atom (AA) modeling, and coarse-grained (CG) modeling. The selected approach depends on the size of the target system (which differs among electrons, atoms, molecules, and molecular assemblies). These hierarchal approaches can be combined with molecular dynamics (MD) simulation and/or integral equation theories for liquids, which cover all size hierarchies. We review the framework of quantum mechanical/molecular mechanical (QM/MM) calculations, AA MD simulations, CG modeling, and integral equation theories. Applications of these methods to the dynamical ordering of biomolecular systems are also exemplified. The QM/MM calculation enables the study of chemical reactions. The AA MD simulation, which omits the QM calculation, can follow longer time-scale phenomena. By reducing the number of degrees of freedom and the computational cost, CG modeling can follow much longer time-scale phenomena than AA modeling. Integral equation theories for liquids elucidate the liquid structure, for example, whether the liquid follows a radial distribution function. These theoretical approaches can analyze the dynamic behaviors of biomolecular systems. They also provide useful tools for exploring the dynamic ordering systems of biomolecules, such as self-assembly. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017 Elsevier B.V. All rights reserved.
Dynamic XRD, Shock and Static Compression of CaF2
NASA Astrophysics Data System (ADS)
Kalita, Patricia; Specht, Paul; Root, Seth; Sinclair, Nicholas; Schuman, Adam; White, Melanie; Cornelius, Andrew; Smith, Jesse; Sinogeikin, Stanislav
2017-06-01
The high-pressure behavior of CaF2 is probed with x-ray diffraction (XRD) combined with both dynamic compression, using a two-stage light gas gun, and static compression, using diamond anvil cells. We use XRD to follow the unfolding of a shock-driven, fluorite to cotunnite phase transition, on the timescale of nanoseconds. The dynamic behavior of CaF2 under shock loading is contrasted with that under static compression. This work leverages experimental capabilities at the Advanced Photon Source: dynamic XRD and shock experiments at the Dynamic Compression Sector, as well as XRD and static compression in diamond anvil cell at the High-Pressure Collaborative Access Team. These experiments and cross-platform comparisons, open the door to an unprecedented understanding of equations of state and phase transitions at the microstructural level and at different time scales and will ultimately improve our capability to simulate the behavior of materials at extreme conditions. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Population shuffling between ground and high energy excited states
Sabo, T Michael; Trent, John O; Lee, Donghan
2015-01-01
Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a “top-down” temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche− rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. PMID:26316263
Population shuffling between ground and high energy excited states.
Sabo, T Michael; Trent, John O; Lee, Donghan
2015-11-01
Stochastic processes powered by thermal energy lead to protein motions traversing time-scales from picoseconds to seconds. Fundamental to protein functionality is the utilization of these dynamics for tasks such as catalysis, folding, and allostery. A hierarchy of motion is hypothesized to connect and synergize fast and slow dynamics toward performing these essential activities. Population shuffling predicts a "top-down" temporal hierarchy, where slow time-scale conformational interconversion leads to a shuffling of the free energy landscape for fast time-scale events. Until now, population shuffling was only applied to interconverting ground states. Here, we extend the framework of population shuffling to be applicable for a system interconverting between low energy ground and high energy excited states, such as the SH3 domain mutants G48M and A39V/N53P/V55L from the Fyn tyrosine kinase, providing another tool for accessing the structural dynamics of high energy excited states. Our results indicate that the higher energy gauche - rotameric state for the leucine χ2 dihedral angle contributes significantly to the distribution of rotameric states in both the major and minor forms of the SH3 domain. These findings are corroborated with unrestrained molecular dynamics (MD) simulations on both the major and minor states of the SH3 domain demonstrating high correlations between experimental and back-calculated leucine χ2 rotameric populations. Taken together, we demonstrate how fast time-scale rotameric side-chain population distributions can be extracted from slow time-scale conformational exchange data further extending the scope and the applicability of the population shuffling model. © 2015 The Protein Society.
Stochastic simulation of enzyme-catalyzed reactions with disparate timescales.
Barik, Debashis; Paul, Mark R; Baumann, William T; Cao, Yang; Tyson, John J
2008-10-01
Many physiological characteristics of living cells are regulated by protein interaction networks. Because the total numbers of these protein species can be small, molecular noise can have significant effects on the dynamical properties of a regulatory network. Computing these stochastic effects is made difficult by the large timescale separations typical of protein interactions (e.g., complex formation may occur in fractions of a second, whereas catalytic conversions may take minutes). Exact stochastic simulation may be very inefficient under these circumstances, and methods for speeding up the simulation without sacrificing accuracy have been widely studied. We show that the "total quasi-steady-state approximation" for enzyme-catalyzed reactions provides a useful framework for efficient and accurate stochastic simulations. The method is applied to three examples: a simple enzyme-catalyzed reaction where enzyme and substrate have comparable abundances, a Goldbeter-Koshland switch, where a kinase and phosphatase regulate the phosphorylation state of a common substrate, and coupled Goldbeter-Koshland switches that exhibit bistability. Simulations based on the total quasi-steady-state approximation accurately capture the steady-state probability distributions of all components of these reaction networks. In many respects, the approximation also faithfully reproduces time-dependent aspects of the fluctuations. The method is accurate even under conditions of poor timescale separation.
Kastner, Kevin W; Izaguirre, Jesús A
2016-10-01
Octopamine receptors (OARs) perform key biological functions in invertebrates, making this class of G-protein coupled receptors (GPCRs) worth considering for insecticide development. However, no crystal structures and very little research exists for OARs. Furthermore, GPCRs are large proteins, are suspended in a lipid bilayer, and are activated on the millisecond timescale, all of which make conventional molecular dynamics (MD) simulations infeasible, even if run on large supercomputers. However, accelerated Molecular Dynamics (aMD) simulations can reduce this timescale to even hundreds of nanoseconds, while running the simulations on graphics processing units (GPUs) would enable even small clusters of GPUs to have processing power equivalent to hundreds of CPUs. Our results show that aMD simulations run on GPUs can successfully obtain the active and inactive state conformations of a GPCR on this reduced timescale. Furthermore, we discovered a potential alternate active-state agonist-binding position in the octopamine receptor which has yet to be observed and may be a novel GPCR agonist-binding position. These results demonstrate that a complex biological system with an activation process on the millisecond timescale can be successfully simulated on the nanosecond timescale using a simple computing system consisting of a small number of GPUs. Proteins 2016; 84:1480-1489. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
A Non-Gaussian Stock Price Model: Options, Credit and a Multi-Timescale Memory
NASA Astrophysics Data System (ADS)
Borland, L.
We review a recently proposed model of stock prices, based on astatistical feedback model that results in a non-Gaussian distribution of price changes. Applications to option pricing and the pricing of debt is discussed. A generalization to account for feedback effects over multiple timescales is also presented. This model reproduces most of the stylized facts (ie statistical anomalies) observed in real financial markets.
Research a Novel Integrated and Dynamic Multi-object Trade-Off Mechanism in Software Project
NASA Astrophysics Data System (ADS)
Jiang, Weijin; Xu, Yuhui
Aiming at practical requirements of present software project management and control, the paper presented to construct integrated multi-object trade-off model based on software project process management, so as to actualize integrated and dynamic trade-oil of the multi-object system of project. Based on analyzing basic principle of dynamic controlling and integrated multi-object trade-off system process, the paper integrated method of cybernetics and network technology, through monitoring on some critical reference points according to the control objects, emphatically discussed the integrated and dynamic multi- object trade-off model and corresponding rules and mechanism in order to realize integration of process management and trade-off of multi-object system.
Orbital dynamics of multi-planet systems with eccentricity diversity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Stephen R.; Raymond, Sean N., E-mail: skane@sfsu.edu
2014-04-01
Since exoplanets were detected using the radial velocity method, they have revealed a diverse distribution of orbital configurations. Among these are planets in highly eccentric orbits (e > 0.5). Most of these systems consist of a single planet but several have been found to also contain a longer period planet in a near-circular orbit. Here we use the latest Keplerian orbital solutions to investigate four known systems which exhibit this extreme eccentricity diversity; HD 37605, HD 74156, HD 163607, and HD 168443. We place limits on the presence of additional planets in these systems based on the radial velocity residuals.more » We show that the two known planets in each system exchange angular momentum through secular oscillations of their eccentricities. We calculate the amplitude and timescale for these eccentricity oscillations and associated periastron precession. We further demonstrate the effect of mutual orbital inclinations on the amplitude of high-frequency eccentricity oscillations. Finally, we discuss the implications of these oscillations in the context of possible origin scenarios for unequal eccentricities.« less
A Review of Enhanced Sampling Approaches for Accelerated Molecular Dynamics
NASA Astrophysics Data System (ADS)
Tiwary, Pratyush; van de Walle, Axel
Molecular dynamics (MD) simulations have become a tool of immense use and popularity for simulating a variety of systems. With the advent of massively parallel computer resources, one now routinely sees applications of MD to systems as large as hundreds of thousands to even several million atoms, which is almost the size of most nanomaterials. However, it is not yet possible to reach laboratory timescales of milliseconds and beyond with MD simulations. Due to the essentially sequential nature of time, parallel computers have been of limited use in solving this so-called timescale problem. Instead, over the years a large range of statistical mechanics based enhanced sampling approaches have been proposed for accelerating molecular dynamics, and accessing timescales that are well beyond the reach of the fastest computers. In this review we provide an overview of these approaches, including the underlying theory, typical applications, and publicly available software resources to implement them.
The Arctic Predictability and Prediction on Seasonal-to-Interannual TimEscales (APPOSITE) data set
NASA Astrophysics Data System (ADS)
Day, J. J.; Tietsche, S.; Collins, M.; Goessling, H. F.; Guemas, V.; Guillory, A.; Hurlin, W. J.; Ishii, M.; Keeley, S. P. E.; Matei, D.; Msadek, R.; Sigmond, M.; Tatebe, H.; Hawkins, E.
2015-10-01
Recent decades have seen significant developments in seasonal-to-interannual timescale climate prediction capabilities. However, until recently the potential of such systems to predict Arctic climate had not been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Inter-annual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre) and an update of the project's results. Although designed to address Arctic predictability, this data set could also be used to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño Southern Oscillation.
Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, J. R.; Department of Physics, State University of New York, University at Buffalo, Buffalo, New York 14260; Delikanli, S.
2016-06-13
We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated withmore » these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.« less
NASA Technical Reports Server (NTRS)
Baker, D. N.; Jaynes, A. N.; Li, X.; Henderson, M. G.; Kanekal, S. G.; Reeves, G. D.; Spence, H. E.; Claudepierre, S. G.; Fennell, J. F.; Hudson, M. K.
2014-01-01
The dual-spacecraft Van Allen Probes mission has provided a new window into mega electron volt (MeV) particle dynamics in the Earth's radiation belts. Observations (up to E (is) approximately 10MeV) show clearly the behavior of the outer electron radiation belt at different timescales: months-long periods of gradual inward radial diffusive transport and weak loss being punctuated by dramatic flux changes driven by strong solar wind transient events. We present analysis of multi-MeV electron flux and phase space density (PSD) changes during March 2013 in the context of the first year of Van Allen Probes operation. This March period demonstrates the classic signatures both of inward radial diffusive energization and abrupt localized acceleration deep within the outer Van Allen zone (L (is) approximately 4.0 +/- 0.5). This reveals graphically that both 'competing' mechanisms of multi-MeV electron energization are at play in the radiation belts, often acting almost concurrently or at least in rapid succession.
Nano-structuring of multi-layer material by single x-ray vortex pulse with femtosecond duration
NASA Astrophysics Data System (ADS)
Kohmura, Yoshiki; Zhakhovsky, Vasily; Takei, Dai; Suzuki, Yoshio; Takeuchi, Akihisa; Inoue, Ichiro; Inubushi, Yuichi; Inogamov, Nail; Ishikawa, Tetsuya; Yabashi, Makina
2018-03-01
A narrow zero-intensity spot arising from an x-ray vortex has huge potential for future applications such as nanoscopy and nanofabrication. We here present an X-ray Free Electron Laser (XFEL) experiment with a focused vortex wavefront which generated high aspect ratio nanoneedles on a Cr/Au multi-layer (ML) specimen. A sharp needle with a typical width and height of 310 and 600 nm was formed with a high occurrence rate at the center of a 7.71 keV x-ray vortex on this ML specimen, respectively. The observed width exceeds the diffraction limit, and the smallest structures ever reported using an intense-XFEL ablation were fabricated. We found that the elemental composition of the nanoneedles shows a significant difference from that of the unaffected area of Cr/Au ML. All these results are well explained by the molecular dynamics simulations, leading to the elucidation of the needle formation mechanism on an ultra-fast timescale.
Lagrangian analysis of multi-satellite data in support of open ocean Marine Protected Area design
NASA Astrophysics Data System (ADS)
Della Penna, Alice; Koubbi, Philippe; Cotté, Cedric; Bon, Cécile; Bost, Charles-André; d'Ovidio, Francesco
2017-06-01
Compared to ecosystem conservation in territorial seas, protecting the open ocean has peculiar geopolitical, economic and scientific challenges. One of the major obstacle is defining the boundary of an open ocean Marine Protected Area (MPA). In contrast to coastal ecosystems, which are mostly constrained by topographic structures fixed in time, the life of marine organisms in the open ocean is entrained by fluid dynamical structures like eddies and fronts, whose lifetime occurs on ecologically-relevant timescales. The position of these highly dynamical structures can vary interannually by hundreds of km, and so too will regions identified as ecologically relevant such as the foraging areas of marine predators. Thus, the expected foraging locations suggested from tracking data cannot be directly extrapolated beyond the year in which the data were collected. Here we explore the potential of Lagrangian methods applied to multisatellite data as a support tool for a MPA proposal by focusing on the Crozet archipelago oceanic area (Indian Sector of the Southern Ocean). By combining remote sensing with biologging information from a key marine top predator (Eudyptes chrysolophus, or Macaroni penguin) of the Southern Ocean foodweb, we identify a highly dynamic branch of the Subantarctic front as a foraging hotspot. By tracking this feature in historical satellite data (1993-2012) we are able to extrapolate the position of this foraging ground beyond the years in which tracking data are available and study its spatial variability.
Chaotic dynamics of Comet 1P/Halley: Lyapunov exponent and survival time expectancy
NASA Astrophysics Data System (ADS)
Muñoz-Gutiérrez, M. A.; Reyes-Ruiz, M.; Pichardo, B.
2015-03-01
The orbital elements of Comet Halley are known to a very high precision, suggesting that the calculation of its future dynamical evolution is straightforward. In this paper we seek to characterize the chaotic nature of the present day orbit of Comet Halley and to quantify the time-scale over which its motion can be predicted confidently. In addition, we attempt to determine the time-scale over which its present day orbit will remain stable. Numerical simulations of the dynamics of test particles in orbits similar to that of Comet Halley are carried out with the MERCURY 6.2 code. On the basis of these we construct survival time maps to assess the absolute stability of Halley's orbit, frequency analysis maps to study the variability of the orbit, and we calculate the Lyapunov exponent for the orbit for variations in initial conditions at the level of the present day uncertainties in our knowledge of its orbital parameters. On the basis of our calculations of the Lyapunov exponent for Comet Halley, the chaotic nature of its motion is demonstrated. The e-folding time-scale for the divergence of initially very similar orbits is approximately 70 yr. The sensitivity of the dynamics on initial conditions is also evident in the self-similarity character of the survival time and frequency analysis maps in the vicinity of Halley's orbit, which indicates that, on average, it is unstable on a time-scale of hundreds of thousands of years. The chaotic nature of Halley's present day orbit implies that a precise determination of its motion, at the level of the present-day observational uncertainty, is difficult to predict on a time-scale of approximately 100 yr. Furthermore, we also find that the ejection of Halley from the Solar system or its collision with another body could occur on a time-scale as short as 10 000 yr.
Time scales of biogeochemical and organismal responses to individual precipitation events
NASA Astrophysics Data System (ADS)
von Fischer, J. C.; Angert, A. L.; Augustine, D. J.; Brown, C.; Dijkstra, F. A.; Derner, J. D.; Hufbauer, R. A.; Fierer, N.; Milchunas, D. G.; Moore, J. C.; Steltzer, H.; Wallenstein, M. D.
2010-12-01
In temperate grasslands, spatial and intra-annual variability in the activity of plants and microbes are structured by patterns in the precipitation regime. While the effects of total annual precipitation have been well-explored, the ecological dynamics associated with individual precipitation events have not. Rainfall events induce a short-term pulse of soil respiration that may or may not be followed by stimulation of plant photosynthetic activity and growth. Because the underlying heterotrophic and autotrophic responses are interactive, respond over unique timescales and are sensitive to precipitation magnitude, it remains difficult to predict the hydrologic effects on net CO2 exchange. To develop a better mechanistic understanding of these processes, we conducted a synthetic, multi-investigator experiment to characterize the ecosystem responses to rainfall events of different sizes. Our work was conducted on the Shortgrass Steppe (SGS) LTER site over 7 days in June 2009, using 1cm and 2cm rainfall events, with controls and each treatment replicated 5 times in 2m x 2m plots. Our observations revealed both expected responses of plant activity and soil respiration, and surprising patterns in microbial enzyme activity and soil fauna population densities. Coupled with observed dynamics in 15N partitioning and kinetics, our findings provide empirical timescales for the complex ecological interactions that underlie the ecosystem responses to rainfall events. These results can be used to inform a new generation of ecosystem simulation models to more explicitly consider the time lags and interactions of different functional groups.
A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval
NASA Astrophysics Data System (ADS)
Takbiri, Zeinab; Ebtehaj, Ardeshir M.; Foufoula-Georgiou, Efi
2017-06-01
We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products.
Bamberger, Katharine T.
2015-01-01
The use of intensive longitudinal methods (ILM)—rapid in situ assessment at micro timescales—can be overlaid on RCTs and other study designs in applied family research. Especially when done as part of a multiple timescale design—in bursts over macro timescales, ILM can advance the study of the mechanisms and effects of family interventions and processes of family change. ILM confers measurement benefits in accurately assessing momentary and variable experiences and captures fine-grained dynamic pictures of time-ordered processes. Thus, ILM allows opportunities to investigate new research questions about intervention effects on within-subject (i.e., within-person, within-family) variability (i.e., dynamic constructs) and about the time-ordered change process that interventions induce in families and family members beginning with the first intervention session. This paper discusses the need and rationale for applying ILM to intervention evaluation, new research questions that can be addressed with ILM, example research using ILM in the related fields of basic family research and the evaluation of individual-based (rather than family-based) interventions. Finally, the paper touches on practical challenges and considerations associated with ILM and points readers to resources for the application of ILM. PMID:26541560
A new heterogeneous asynchronous explicit-implicit time integrator for nonsmooth dynamics
NASA Astrophysics Data System (ADS)
Fekak, Fatima-Ezzahra; Brun, Michael; Gravouil, Anthony; Depale, Bruno
2017-07-01
In computational structural dynamics, particularly in the presence of nonsmooth behavior, the choice of the time-step and the time integrator has a critical impact on the feasibility of the simulation. Furthermore, in some cases, as in the case of a bridge crane under seismic loading, multiple time-scales coexist in the same problem. In that case, the use of multi-time scale methods is suitable. Here, we propose a new explicit-implicit heterogeneous asynchronous time integrator (HATI) for nonsmooth transient dynamics with frictionless unilateral contacts and impacts. Furthermore, we present a new explicit time integrator for contact/impact problems where the contact constraints are enforced using a Lagrange multiplier method. In other words, the aim of this paper consists in using an explicit time integrator with a fine time scale in the contact area for reproducing high frequency phenomena, while an implicit time integrator is adopted in the other parts in order to reproduce much low frequency phenomena and to optimize the CPU time. In a first step, the explicit time integrator is tested on a one-dimensional example and compared to Moreau-Jean's event-capturing schemes. The explicit algorithm is found to be very accurate and the scheme has generally a higher order of convergence than Moreau-Jean's schemes and provides also an excellent energy behavior. Then, the two time scales explicit-implicit HATI is applied to the numerical example of a bridge crane under seismic loading. The results are validated in comparison to a fine scale full explicit computation. The energy dissipated in the implicit-explicit interface is well controlled and the computational time is lower than a full-explicit simulation.
NASA Astrophysics Data System (ADS)
Zhang, Yunpeng; Ho, Siu-lau; Fu, Weinong
2018-05-01
This paper proposes a dynamic multi-level optimal design method for power transformer design optimization (TDO) problems. A response surface generated by second-order polynomial regression analysis is updated dynamically by adding more design points, which are selected by Shifted Hammersley Method (SHM) and calculated by finite-element method (FEM). The updating stops when the accuracy requirement is satisfied, and optimized solutions of the preliminary design are derived simultaneously. The optimal design level is modulated through changing the level of error tolerance. Based on the response surface of the preliminary design, a refined optimal design is added using multi-objective genetic algorithm (MOGA). The effectiveness of the proposed optimal design method is validated through a classic three-phase power TDO problem.
Single-shot ultrafast tomographic imaging by spectral multiplexing
NASA Astrophysics Data System (ADS)
Matlis, N. H.; Axley, A.; Leemans, W. P.
2012-10-01
Computed tomography has profoundly impacted science, medicine and technology by using projection measurements scanned over multiple angles to permit cross-sectional imaging of an object. The application of computed tomography to moving or dynamically varying objects, however, has been limited by the temporal resolution of the technique, which is set by the time required to complete the scan. For objects that vary on ultrafast timescales, traditional scanning methods are not an option. Here we present a non-scanning method capable of resolving structure on femtosecond timescales by using spectral multiplexing of a single laser beam to perform tomographic imaging over a continuous range of angles simultaneously. We use this technique to demonstrate the first single-shot ultrafast computed tomography reconstructions and obtain previously inaccessible structure and position information for laser-induced plasma filaments. This development enables real-time tomographic imaging for ultrafast science, and offers a potential solution to the challenging problem of imaging through scattering surfaces.
NASA Astrophysics Data System (ADS)
De Filippo, E.; Pagano, A.; Russotto, P.; Amorini, F.; Anzalone, A.; Auditore, L.; Baran, V.; Berceanu, I.; Borderie, B.; Bougault, R.; Bruno, M.; Cap, T.; Cardella, G.; Cavallaro, S.; Chatterjee, M. B.; Chbihi, A.; Colonna, M.; D'Agostino, M.; Dayras, R.; Di Toro, M.; Frankland, J.; Galichet, E.; Gawlikowicz, W.; Geraci, E.; Grzeszczuk, A.; Guazzoni, P.; Kowalski, S.; La Guidara, E.; Lanzalone, G.; Lanzanò, G.; Le Neindre, N.; Lombardo, I.; Maiolino, C.; Papa, M.; Piasecki, E.; Pirrone, S.; Płaneta, R.; Politi, G.; Pop, A.; Porto, F.; Rivet, M. F.; Rizzo, F.; Rosato, E.; Schmidt, K.; Siwek-Wilczyńska, K.; Skwira-Chalot, I.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Wieleczko, J. P.; Wilczyński, J.; Zetta, L.; Zipper, W.
2012-07-01
We present a new experimental method to correlate the isotopic composition of intermediate mass fragments (IMF) emitted at midrapidity in semiperipheral collisions with the emission timescale: IMFs emitted in the early stage of the reaction show larger values of
Multi-scale correlations in different futures markets
NASA Astrophysics Data System (ADS)
Bartolozzi, M.; Mellen, C.; di Matteo, T.; Aste, T.
2007-07-01
In the present work we investigate the multiscale nature of the correlations for high frequency data (1 min) in different futures markets over a period of two years, starting on the 1st of January 2003 and ending on the 31st of December 2004. In particular, by using the concept of local Hurst exponent, we point out how the behaviour of this parameter, usually considered as a benchmark for persistency/antipersistency recognition in time series, is largely time-scale dependent in the market context. These findings are a direct consequence of the intrinsic complexity of a system where trading strategies are scale-adaptive. Moreover, our analysis points out different regimes in the dynamical behaviour of the market indices under consideration.
A network of molecular switches controls the activation of the two-component response regulator NtrC
NASA Astrophysics Data System (ADS)
Vanatta, Dan K.; Shukla, Diwakar; Lawrenz, Morgan; Pande, Vijay S.
2015-06-01
Recent successes in simulating protein structure and folding dynamics have demonstrated the power of molecular dynamics to predict the long timescale behaviour of proteins. Here, we extend and improve these methods to predict molecular switches that characterize conformational change pathways between the active and inactive state of nitrogen regulatory protein C (NtrC). By employing unbiased Markov state model-based molecular dynamics simulations, we construct a dynamic picture of the activation pathways of this key bacterial signalling protein that is consistent with experimental observations and predicts new mutants that could be used for validation of the mechanism. Moreover, these results suggest a novel mechanistic paradigm for conformational switching.
Gain and refractive index dynamics in p-doped InAs quantum dash semiconductor optical amplifiers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komolibus, Katarzyna; Tyndall National Institute, University College Cork, Cork T12 R5CP; Piwonski, Tomasz, E-mail: tomasz.piwonski@tyndall.ie
The ultrafast carrier dynamics in a p-doped dash-in-a-well structure at 1.5 μm is experimentally investigated. An analysis of the timescales related to carrier relaxation and escape processes as well as the “dynamical” linewidth enhancement factor is presented and compared with results obtained from similar un-doped materials. Intentional p-doping of the active region results in an enhancement of the intermediate timescale of the gain dynamics associated with phonon-assisted electron capture and a reduction of the α-factor due to increased differential gain.
NASA Astrophysics Data System (ADS)
Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin; Li, Huiyan; Che, Yanqiu
2017-06-01
Spike-frequency adaptation (SFA) mediated by various adaptation currents, such as voltage-gated K+ current (IM), Ca2+-gated K+ current (IAHP), or Na+-activated K+ current (IKNa), exists in many types of neurons, which has been shown to effectively shape their information transmission properties on slow timescales. Here we use conductance-based models to investigate how the activation of three adaptation currents regulates the threshold voltage for action potential (AP) initiation during the course of SFA. It is observed that the spike threshold gets depolarized and the rate of membrane depolarization (dV/dt) preceding AP is reduced as adaptation currents reduce firing rate. It is indicated that the presence of inhibitory adaptation currents enables the neuron to generate a dynamic threshold inversely correlated with preceding dV/dt on slower timescales than fast dynamics of AP generation. By analyzing the interactions of ionic currents at subthreshold potentials, we find that the activation of adaptation currents increase the outward level of net membrane current prior to AP initiation, which antagonizes inward Na+ to result in a depolarized threshold and lower dV/dt from one AP to the next. Our simulations demonstrate that the threshold dynamics on slow timescales is a secondary effect caused by the activation of adaptation currents. These findings have provided a biophysical interpretation of the relationship between adaptation currents and spike threshold.
Multi-Scale Scattering Transform in Music Similarity Measuring
NASA Astrophysics Data System (ADS)
Wang, Ruobai
Scattering transform is a Mel-frequency spectrum based, time-deformation stable method, which can be used in evaluating music similarity. Compared with Dynamic time warping, it has better performance in detecting similar audio signals under local time-frequency deformation. Multi-scale scattering means to combine scattering transforms of different window lengths. This paper argues that, multi-scale scattering transform is a good alternative of dynamic time warping in music similarity measuring. We tested the performance of multi-scale scattering transform against other popular methods, with data designed to represent different conditions.
Multi-field plasma sandpile model in tokamaks and applications
NASA Astrophysics Data System (ADS)
Peng, X. D.; Xu, J. Q.
2016-08-01
A multi-field sandpile model of tokamak plasmas is formulated for the first time to simulate the dynamic process with interaction between avalanche events on the fast/micro time-scale and diffusive transports on the slow/macro time-scale. The main characteristics of the model are that both particle and energy avalanches of sand grains are taken into account simultaneously. New redistribution rules of a sand-relaxing process are defined according to the transport properties of special turbulence which allows the uphill particle transport. Applying the model, we first simulate the steady-state plasma profile self-sustained by drift wave turbulences in the Ohmic discharge of a tokamak. A scaling law as f = a q0 b + c for the relation of both center-density n ( 0 ) and electron (ion) temperatures T e ( 0 ) ( T i ( 0 ) ) with the center-safety-factor q 0 is found. Then interesting work about the nonlocal transport phenomenon observed in tokamak experiments proceeds. It is found that the core electron temperature increases rapidly in response to the edge cold pulse and inversely it decreases in response to the edge heat pulse. The results show that the nonlocal response of core electron temperature depending on the amplitudes of background plasma density and temperature is more remarkable in a range of gas injection rate. Analyses indicate that the avalanche transport caused by plasma drift instabilities with thresholds is a possible physical mechanism for the nonlocal transport in tokamaks. It is believed that the model is capable of being applied to more extensive questions occurring in the transport field.
A solar cycle dependence of nonlinearity in magnetospheric activity
NASA Astrophysics Data System (ADS)
Johnson, Jay R.; Wing, Simon
2005-04-01
The nonlinear dependencies inherent to the historical Kp data stream (1932-2003) are examined using mutual information and cumulant-based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original Kp data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maxima. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to 1 week. Because the solar wind driver variables, VBs, and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics, suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.
Lattice-level measurement of material strength with LCLS during ultrafast dynamic compression
NASA Astrophysics Data System (ADS)
Milathianaki, Despina; Boutet, Sebastien; Ratner, Daniel; White, William; Williams, Garth; Gleason, Arianna; Swift, Damian; Higginbotham, Andrew; Wark, Justin
2013-10-01
An in-depth understanding of the stress-strain behavior of materials during ultrafast dynamic compression requires experiments that offer in-situ observation of the lattice at the pertinent temporal and spatial scales. To date, the lattice response under extreme strain-rate conditions (>108 s-1) has been inferred predominantly from continuum-level measurements and multi-million atom molecular dynamics simulations. Several time-resolved x-ray diffraction experiments have captured important information on plasticity kinetics, while limited to nanosecond timescales due to the lack of high brilliance ultrafast x-ray sources. Here we present experiments at LCLS combining ultrafast laser-shocks and serial femtosecond x-ray diffraction. The high spectral brightness (~1012 photons per pulse, ΔE/E = 0.2%) and subpicosecond temporal resolution (<100 fs pulsewidth) of the LCLS x-ray free electron laser allow investigations that link simulations and experiments at the fundamental temporal and spatial scales for the first time. We present movies of the lattice undergoing rapid shock-compression, composed by a series of single femtosecond x-ray snapshots, demonstrating the transient behavior while successfully decoupling the elastic and plastic response in polycrystalline Cu.
NASA Astrophysics Data System (ADS)
Kondo, Toru; Pinnola, Alberta; Chen, Wei Jia; Dall'Osto, Luca; Bassi, Roberto; Schlau-Cohen, Gabriela S.
2017-08-01
In oxygenic photosynthesis, light harvesting is regulated to safely dissipate excess energy and prevent the formation of harmful photoproducts. Regulation is known to be necessary for fitness, but the molecular mechanisms are not understood. One challenge has been that ensemble experiments average over active and dissipative behaviours, preventing identification of distinct states. Here, we use single-molecule spectroscopy to uncover the photoprotective states and dynamics of the light-harvesting complex stress-related 1 (LHCSR1) protein, which is responsible for dissipation in green algae and moss. We discover the existence of two dissipative states. We find that one of these states is activated by pH and the other by carotenoid composition, and that distinct protein dynamics regulate these states. Together, these two states enable the organism to respond to two types of intermittency in solar intensity—step changes (clouds and shadows) and ramp changes (sunrise), respectively. Our findings reveal key control mechanisms underlying photoprotective dissipation, with implications for increasing biomass yields and developing robust solar energy devices.
A heuristic method for consumable resource allocation in multi-class dynamic PERT networks
NASA Astrophysics Data System (ADS)
Yaghoubi, Saeed; Noori, Siamak; Mazdeh, Mohammad Mahdavi
2013-06-01
This investigation presents a heuristic method for consumable resource allocation problem in multi-class dynamic Project Evaluation and Review Technique (PERT) networks, where new projects from different classes (types) arrive to system according to independent Poisson processes with different arrival rates. Each activity of any project is operated at a devoted service station located in a node of the network with exponential distribution according to its class. Indeed, each project arrives to the first service station and continues its routing according to precedence network of its class. Such system can be represented as a queuing network, while the discipline of queues is first come, first served. On the basis of presented method, a multi-class system is decomposed into several single-class dynamic PERT networks, whereas each class is considered separately as a minisystem. In modeling of single-class dynamic PERT network, we use Markov process and a multi-objective model investigated by Azaron and Tavakkoli-Moghaddam in 2007. Then, after obtaining the resources allocated to service stations in every minisystem, the final resources allocated to activities are calculated by the proposed method.
Do nuclei move on an attosecond timescale in strong-field photodissociation?
NASA Astrophysics Data System (ADS)
Esry, B. D.
2017-04-01
Without the ready availability of single attosecond pulses with sufficient energy to perform pump-probe experiments, the push to measure electronic dynamics on its natural timescale of attoseconds has enlisted less direct measurements. Photoionization ``time delays'', in particular, have been measured and calculated to be on the attosecond timescale and thus have attracted considerable attention. The ultimate goal of such attosecond-scale measurements is the molecular movie - i.e., making movies of the electronic motion during chemical reactions. It has been universally assumed, however, that any measured attosecond timescales in observables relate exclusively to electronic dynamics, even during a reaction which necessarily includes nuclear motion. I will explore some of the limits of this assumption and highlight a few specific cases where it fails, emphasizing in the process that phases should be favored over ``time delays''. Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy.
Can we use Earth Observations to improve monthly water level forecasts?
NASA Astrophysics Data System (ADS)
Slater, L. J.; Villarini, G.
2017-12-01
Dynamical-statistical hydrologic forecasting approaches benefit from different strengths in comparison with traditional hydrologic forecasting systems: they are computationally efficient, can integrate and `learn' from a broad selection of input data (e.g., General Circulation Model (GCM) forecasts, Earth Observation time series, teleconnection patterns), and can take advantage of recent progress in machine learning (e.g. multi-model blending, post-processing and ensembling techniques). Recent efforts to develop a dynamical-statistical ensemble approach for forecasting seasonal streamflow using both GCM forecasts and changing land cover have shown promising results over the U.S. Midwest. Here, we use climate forecasts from several GCMs of the North American Multi Model Ensemble (NMME) alongside 15-minute stage time series from the National River Flow Archive (NRFA) and land cover classes extracted from the European Space Agency's Climate Change Initiative 300 m annual Global Land Cover time series. With these data, we conduct systematic long-range probabilistic forecasting of monthly water levels in UK catchments over timescales ranging from one to twelve months ahead. We evaluate the improvement in model fit and model forecasting skill that comes from using land cover classes as predictors in the models. This work opens up new possibilities for combining Earth Observation time series with GCM forecasts to predict a variety of hazards from space using data science techniques.
NASA Astrophysics Data System (ADS)
Belof, Jonathan; Orlikowski, Daniel; Wu, Christine; McLaughlin, Keith
2013-06-01
Shock and ramp compression experiments are allowing us to probe condensed matter under extreme conditions where phase transitions and other non-equilibrium aspects can now be directly observed, but first principles simulation of kinetics remains a challenge. A multi-scale approach is presented here, with non-equilibrium statistical mechanical quantities calculated by molecular dynamics (MD) and then leveraged to inform a classical nucleation and growth kinetics model at the hydrodynamic scale. Of central interest is the free energy barrier for the formation of a critical nucleus, with direct NEMD presenting the challenge of relatively long timescales necessary to resolve nucleation. Rather than attempt to resolve the time-dependent nucleation sequence directly, the methodology derived here is built upon the non-equilibrium work theorem in order to bias the formation of a critical nucleus and thus construct the nucleation and growth rates. Having determined these kinetic terms from MD, a hydrodynamics implementation of Kolmogorov-Johnson-Mehl-Avrami (KJMA) kinetics and metastabilty is applied to the dynamic compressive freezing of water and compared with recent ramp compression experiments [Dolan et al., Nature (2007)] Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Fouvry, J.-B.; Pichon, C.; Chavanis, P.-H.
2018-01-01
A discrete self-gravitating quasi-Keplerian razor-thin axisymmetric stellar disc orbiting a massive black hole sees its orbital structure diffuse on secular timescales as a result of a self-induced resonant relaxation. In the absence of collective effects, such a process is described by the recently derived inhomogeneous multi-mass degenerate Landau equation. Relying on Gauss' method, we computed the associated drift and diffusion coefficients to characterise the properties of the resonant relaxation of razor-thin discs. For a disc-like configuration in our Galactic centre, we showed how this secular diffusion induces an adiabatic distortion of orbits and estimate the typical timescale of resonant relaxation. When considering a disc composed of multiple masses similarly distributed, we have illustrated how the population of lighter stars will gain eccentricity, driving it closer to the central black hole, provided the distribution function increases with angular momentum. The kinetic equation recovers as well the quenching of the resonant diffusion of a test star in the vicinity of the black hole (the "Schwarzschild barrier") as a result of the divergence of the relativistic precessions. The dual stochastic Langevin formulation yields consistent results and offers a versatile framework in which to incorporate other stochastic processes.
NASA Astrophysics Data System (ADS)
Swinburne, Thomas D.; Perez, Danny
2018-05-01
A massively parallel method to build large transition rate matrices from temperature-accelerated molecular dynamics trajectories is presented. Bayesian Markov model analysis is used to estimate the expected residence time in the known state space, providing crucial uncertainty quantification for higher-scale simulation schemes such as kinetic Monte Carlo or cluster dynamics. The estimators are additionally used to optimize where exploration is performed and the degree of temperature acceleration on the fly, giving an autonomous, optimal procedure to explore the state space of complex systems. The method is tested against exactly solvable models and used to explore the dynamics of C15 interstitial defects in iron. Our uncertainty quantification scheme allows for accurate modeling of the evolution of these defects over timescales of several seconds.
Kang, Hyun Gu; Dingwell, Jonathan B.
2016-01-01
Age-related gait changes may be due to the loss of complexity in the neuromuscular system. This theory is disputed due to inconsistent results from single-scale analyses. Also, behavioral adaptations may confound these changes. We examined whether EMG dynamics during gait is less complex in older adults over a range of timescales using the multiscale entropy method, and whether slower walking attenuates this effect. Surface EMG was measured from the left vastus lateralis (VL), biceps femoris (BF), gastrocnemius (GA), and tibialis anterior (TA) in 17 young and 18 older adults as they walked on a treadmill for 5 minutes at 0.8x-1.2x of preferred speed. Sample entropy (SE) and the complexity index (CI) of the EMG signals were calculated after successive coarse-graining to extract dynamics at timescales of 27 to 270 Hz, with m = 2 and r = 0.15 SD. SE and CI were lower across the timescales in older adults in VL and BF, but higher in GA (all p<0.001); these results held for VL and GA even after accounting for longer EMG burst durations in older adults. CI was higher during slower walking speed in VL and BF (p<0.001). Results were mostly similar for m = 3 and r = 0.01–0.35. Smaller r was more sensitive to age-related differences. The decrease in complexity with aging in the timescales studied was limited to proximal muscles, particularly VL. The increase in GA may be driven by other factors. Walking slower may reflect a behavioral adaptation that allows the nervous system to function with greater complexity. PMID:27570974
An Estimation of the Logarithmic Timescale in Ergodic Dynamics
NASA Astrophysics Data System (ADS)
Gomez, Ignacio S.
An estimation of the logarithmic timescale in quantum systems having an ergodic dynamics in the semiclassical limit, is presented. The estimation is based on an extension of the Krieger’s finite generator theorem for discretized σ-algebras and using the time rescaling property of the Kolmogorov-Sinai entropy. The results are in agreement with those obtained in the literature but with a simpler mathematics and within the context of the ergodic theory. Moreover, some consequences of the Poincaré’s recurrence theorem are also explored.
Adaptive Equilibrium Regulation: A Balancing Act in Two Timescales
Boker, Steven M.
2015-01-01
An equilibrium involves a balancing of forces. Just as one maintains upright posture in standing or walking, many self-regulatory and interpersonal behaviors can be framed as a balancing act between an ever changing environment and within-person processes. The emerging balance between person and environment, the equilibria, are dynamic and adaptive in response to development and learning. A distinction is made between equilibrium achieved solely due to a short timescale balancing of forces and a longer timescale preferred equilibrium which we define as a state towards which the system slowly adapts. Together, these are developed into a framework that this article calls Adaptive Equilibrium Regulation (ÆR), which separates a regulatory process into two timescales: a faster regulation that automatically balances forces and a slower timescale adaptation process that reconfigures the fast regulation so as to move the system towards its preferred equilibrium when an environmental force persists over the longer timescale. This way of thinking leads to novel models for the interplay between multiple timescales of behavior, learning, and development. PMID:27066197
Bogren, Sara; Fornara, Andrea; Ludwig, Frank; del Puerto Morales, Maria; Steinhoff, Uwe; Fougt Hansen, Mikkel; Kazakova, Olga; Johansson, Christer
2015-01-01
This study presents classification of different magnetic single- and multi-core particle systems using their measured dynamic magnetic properties together with their nanocrystal and particle sizes. The dynamic magnetic properties are measured with AC (dynamical) susceptometry and magnetorelaxometry and the size parameters are determined from electron microscopy and dynamic light scattering. Using these methods, we also show that the nanocrystal size and particle morphology determines the dynamic magnetic properties for both single- and multi-core particles. The presented results are obtained from the four year EU NMP FP7 project, NanoMag, which is focused on standardization of analysis methods for magnetic nanoparticles. PMID:26343639
NASA Astrophysics Data System (ADS)
Kluber, Alexander; Hayre, Robert; Cox, Daniel
2012-02-01
Motivated by the need to find beta-structure aggregation nuclei for the polyQ diseases such as Huntington's, we have undertaken a search for length dependent structure in model polyglutamine proteins. We use the Onufriev-Bashford-Case (OBC) generalized Born implicit solvent GPU based AMBER11 molecular dynamics with the parm96 force field coupled with a replica exchange method to characterize monomeric strands of polyglutamine as a function of chain length and temperature. This force field and solvation method has been shown among other methods to accurately reproduce folded metastability in certain small peptides, and to yield accurately de novo folded structures in a millisecond time-scale protein. Using GPU molecular dynamics we can sample out into the microsecond range. Additionally, explicit solvent runs will be used to verify results from the implicit solvent runs. We will assess order using measures of secondary structure and hydrogen bond content.
Bordbar, Aarash; Palsson, Bernhard O.
2016-01-01
Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein’s structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism. PMID:27467583
Mih, Nathan; Brunk, Elizabeth; Bordbar, Aarash; Palsson, Bernhard O
2016-07-01
Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein's structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism.
Theory of chaotic orbital variations confirmed by Cretaceous geological evidence
NASA Astrophysics Data System (ADS)
Ma, Chao; Meyers, Stephen R.; Sageman, Bradley B.
2017-02-01
Variations in the Earth’s orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.
Modelling airway smooth muscle passive length adaptation via thick filament length distributions
Donovan, Graham M.
2013-01-01
We present a new model of airway smooth muscle (ASM), which surrounds and constricts every airway in the lung and thus plays a central role in the airway constriction associated with asthma. This new model of ASM is based on an extension of sliding filament/crossbridge theory, which explicitly incorporates the length distribution of thick sliding filaments to account for a phenomenon known as dynamic passive length adaptation; the model exhibits good agreement with experimental data for ASM force–length behaviour across multiple scales. Principally these are (nonlinear) force–length loops at short timescales (seconds), parabolic force–length curves at medium timescales (minutes) and length adaptation at longer timescales. This represents a significant improvement on the widely-used cross-bridge models which work so well in or near the isometric regime, and may have significant implications for studies which rely on crossbridge or other dynamic airway smooth muscle models, and thus both airway and lung dynamics. PMID:23721681
Theory of chaotic orbital variations confirmed by Cretaceous geological evidence.
Ma, Chao; Meyers, Stephen R; Sageman, Bradley B
2017-02-22
Variations in the Earth's orbit and spin vector are a primary control on insolation and climate; their recognition in the geological record has revolutionized our understanding of palaeoclimate dynamics, and has catalysed improvements in the accuracy and precision of the geological timescale. Yet the secular evolution of the planetary orbits beyond 50 million years ago remains highly uncertain, and the chaotic dynamical nature of the Solar System predicted by theoretical models has yet to be rigorously confirmed by well constrained (radioisotopically calibrated and anchored) geological data. Here we present geological evidence for a chaotic resonance transition associated with interactions between the orbits of Mars and the Earth, using an integrated radioisotopic and astronomical timescale from the Cretaceous Western Interior Basin of what is now North America. This analysis confirms the predicted chaotic dynamical behaviour of the Solar System, and provides a constraint for refining numerical solutions for insolation, which will enable a more precise and accurate geological timescale to be produced.
Slow Cortical Dynamics and the Accumulation of Information over Long Timescales
Honey, Christopher J.; Thesen, Thomas; Donner, Tobias H.; Silbert, Lauren J.; Carlson, Chad E.; Devinsky, Orrin; Doyle, Werner K.; Rubin, Nava; Heeger, David J.; Hasson, Uri
2012-01-01
SUMMARY Making sense of the world requires us to process information over multiple timescales. We sought to identify brain regions that accumulate information over short and long timescales and to characterize the distinguishing features of their dynamics. We recorded electrocorticographic (ECoG) signals from individuals watching intact and scrambled movies. Within sensory regions, fluctuations of high-frequency (64–200 Hz) power reliably tracked instantaneous low-level properties of the intact and scrambled movies. Within higher order regions, the power fluctuations were more reliable for the intact movie than the scrambled movie, indicating that these regions accumulate information over relatively long time periods (several seconds or longer). Slow (<0.1 Hz) fluctuations of high-frequency power with time courses locked to the movies were observed throughout the cortex. Slow fluctuations were relatively larger in regions that accumulated information over longer time periods, suggesting a connection between slow neuronal population dynamics and temporally extended information processing. PMID:23083743
Early Events in the Folding of an Amphipathic Peptide A Multi- Nanosecond Molecular Dynamics Study
NASA Technical Reports Server (NTRS)
Chipot, Christophe; Maigret, Bernard; Pohorille, Andrew
1999-01-01
Folding of the capped LQQLLQQLLQL peptide is investigated at the water-hexane interface by molecular dynamics simulations over 161.5 nanoseconds. Initially placed in the aqueous phase as a beta-strand, the peptide rapidly adsorbs to the interface, where it adopts an amphipathic conformation. The marginal presence of non-amphipathic structures throughout the complete trajectory indicate- that the corresponding conformations are strongly disfavored at the interface. It is further suggestive that folding in an interfacial environment proceeds through a pathway of successive amphipathic intermediates. The energetic and entropic penalties involved in the conformational changes along this pathway markedly increase the folding time-scales of LQQLLQQLLQL, explaining why the alpha-helix, the hypothesized lowest free energy structure for a sequence with a hydrophobic periodicity of 3.6, has not been reached yet. The formation of a type I beta-turn at the end of the simulation confirms the importance of such motifs as initiation sites allowing the peptide to coalesce towards a secondary structure.
Pesce, Luca; Calandrini, Vania; Marjault, Henri-Baptiste; Lipper, Colin H; Rossetti, Gulia; Mittler, Ron; Jennings, Patricia A; Bauer, Andreas; Nechushtai, Rachel; Carloni, Paolo
2017-11-30
The NEET proteins are a novel family of iron-sulfur proteins characterized by an unusual three cysteine and one histidine coordinated [2Fe-2S] cluster. Aberrant cluster release, facilitated by the breakage of the Fe-N bond, is implicated in a variety of human diseases, including cancer. Here, the molecular dynamics in the multi-microsecond timescale, along with quantum chemical calculations, on two representative members of the family (the human NAF-1 and mitoNEET proteins), show that the loss of the cluster is associated with a dramatic decrease in secondary and tertiary structure. In addition, the calculations provide a mechanism for cluster release and clarify, for the first time, crucial differences existing between the two proteins, which are reflected in the experimentally observed difference in the pH-dependent cluster reactivity. The reliability of our conclusions is established by an extensive comparison with the NMR data of the solution proteins, in part measured in this work.
Analytical model for atomic resonant attosecond transient absorption
NASA Astrophysics Data System (ADS)
Cariker, C.; Kjellson, T.; Lindroth, E.; Argenti, L.
2017-04-01
Recent advancements in ultrafast laser technology have made it possible to probe electron dynamics in highly excited atomic states that autoionize on a femtosecond timescale, thus giving insight into the dynamics of Auger decay and its interference with the continuum. These experiments provide a stringent test for time-resolved analytical models of autoionization. Here we present a finite-pulse, multi-photon perturbative model which is used in conjunction with ab-initio structure calculations to predict the attosecond transient absorption spectrum (ATAS) of an atom above the ionization threshold. We apply this model to compute the ATAS of argon in the vicinity of the 3s-1 4 p resonance as a function of the time delay between an extreme ultraviolet (XUV) and an infrared (IR) pulse, as well as of the angle between their polarization. We show that by modulating the parameters of the IR pulse it is possible to control the dipolar coupling between neighboring states and hence the lineshape of the 3s-1 4 p resonance. NSF Grant No. 1607588.
Amp: A modular approach to machine learning in atomistic simulations
NASA Astrophysics Data System (ADS)
Khorshidi, Alireza; Peterson, Andrew A.
2016-10-01
Electronic structure calculations, such as those employing Kohn-Sham density functional theory or ab initio wavefunction theories, have allowed for atomistic-level understandings of a wide variety of phenomena and properties of matter at small scales. However, the computational cost of electronic structure methods drastically increases with length and time scales, which makes these methods difficult for long time-scale molecular dynamics simulations or large-sized systems. Machine-learning techniques can provide accurate potentials that can match the quality of electronic structure calculations, provided sufficient training data. These potentials can then be used to rapidly simulate large and long time-scale phenomena at similar quality to the parent electronic structure approach. Machine-learning potentials usually take a bias-free mathematical form and can be readily developed for a wide variety of systems. Electronic structure calculations have favorable properties-namely that they are noiseless and targeted training data can be produced on-demand-that make them particularly well-suited for machine learning. This paper discusses our modular approach to atomistic machine learning through the development of the open-source Atomistic Machine-learning Package (Amp), which allows for representations of both the total and atom-centered potential energy surface, in both periodic and non-periodic systems. Potentials developed through the atom-centered approach are simultaneously applicable for systems with various sizes. Interpolation can be enhanced by introducing custom descriptors of the local environment. We demonstrate this in the current work for Gaussian-type, bispectrum, and Zernike-type descriptors. Amp has an intuitive and modular structure with an interface through the python scripting language yet has parallelizable fortran components for demanding tasks; it is designed to integrate closely with the widely used Atomic Simulation Environment (ASE), which makes it compatible with a wide variety of commercial and open-source electronic structure codes. We finally demonstrate that the neural network model inside Amp can accurately interpolate electronic structure energies as well as forces of thousands of multi-species atomic systems.
Maintaining Balance: The Increasing Role of Energy Storage for Renewable Integration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stenclik, Derek; Denholm, Paul; Chalamala, Babu
For nearly a century, global power systems have focused on three key functions: to generate, transmit, and distribute electricity as a real-time commodity. Physics requires that electricity generation always be in real-time balance with load, despite variability in load on timescales ranging from sub-second disturbances to multi-year trends. With the increasing role of variable generation from wind and solar, retirements of fossil fuel-based generation, and a changing consumer demand profile, grid operators are using new methods to maintain this balance.
Maintaining Balance: The Increasing Role of Energy Storage for Renewable Integration
Stenclik, Derek; Denholm, Paul; Chalamala, Babu
2017-10-17
For nearly a century, global power systems have focused on three key functions: to generate, transmit, and distribute electricity as a real-time commodity. Physics requires that electricity generation always be in real-time balance with load, despite variability in load on timescales ranging from sub-second disturbances to multi-year trends. With the increasing role of variable generation from wind and solar, retirements of fossil fuel-based generation, and a changing consumer demand profile, grid operators are using new methods to maintain this balance.
Computational Approaches to Simulation and Analysis of Large Conformational Transitions in Proteins
NASA Astrophysics Data System (ADS)
Seyler, Sean L.
In a typical living cell, millions to billions of proteins--nanomachines that fluctuate and cycle among many conformational states--convert available free energy into mechanochemical work. A fundamental goal of biophysics is to ascertain how 3D protein structures encode specific functions, such as catalyzing chemical reactions or transporting nutrients into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations) to large conformational transition timescales in, and beyond, the millisecond regime (e.g., glucose transport across a phospholipid bilayer). Actual transition events are fast but rare, occurring orders of magnitude faster than typical metastable equilibrium waiting times. Equilibrium molecular dynamics (EqMD) can capture atomistic detail and solute-solvent interactions, but even microseconds of sampling attainable nowadays still falls orders of magnitude short of transition timescales, especially for large systems, rendering observations of such "rare events" difficult or effectively impossible. Advanced path-sampling methods exploit reduced physical models or biasing to produce plausible transitions while balancing accuracy and efficiency, but quantifying their accuracy relative to other numerical and experimental data has been challenging. Indeed, new horizons in elucidating protein function necessitate that present methodologies be revised to more seamlessly and quantitatively integrate a spectrum of methods, both numerical and experimental. In this dissertation, experimental and computational methods are put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example. We introduce Path Similarity Analysis (PSA)--an integrative computational framework developed to quantify transition path similarity. PSA not only reliably distinguished AdK transitions by the originating method, but also traced pathway differences between two methods back to charge-charge interactions (neglected by the stereochemical model, but not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD flexible fitting to produce viable structural models and infer a plausible transport mechanism. Conforming to the theme of integration, a short compendium of an exploratory project--developing a hybrid atomistic-continuum method--is presented, including initial results and a novel fluctuating hydrodynamics model and corresponding numerical code.
Partial cooperative unfolding in proteins as observed by hydrogen exchange mass spectrometry
Engen, John R.; Wales, Thomas E.; Chen, Shugui; Marzluff, Elaine M.; Hassell, Kerry M.; Weis, David D.; Smithgall, Thomas E.
2013-01-01
Many proteins do not exist in a single rigid conformation. Protein motions, or dynamics, exist and in many cases are important for protein function. The analysis of protein dynamics relies on biophysical techniques that can distinguish simultaneously existing populations of molecules and their rates of interconversion. Hydrogen exchange (HX) detected by mass spectrometry (MS) is contributing to our understanding of protein motions by revealing unfolding and dynamics on a wide timescale, ranging from seconds to hours to days. In this review we discuss HX MS-based analyses of protein dynamics, using our studies of multi-domain kinases as examples. Using HX MS, we have successfully probed protein dynamics and unfolding in the isolated SH3, SH2 and kinase domains of the c-Src and Abl kinase families, as well as the role of inter- and intra-molecular interactions in the global control of kinase function. Coupled with high-resolution structural information, HX MS has proved to be a powerful and versatile tool for the analysis of the conformational dynamics in these kinase systems, and has provided fresh insight regarding the regulatory control of these important signaling proteins. HX MS studies of dynamics are applicable not only to the proteins we illustrate here, but to a very wide range of proteins and protein systems, and should play a role in both classification of and greater understanding of the prevalence of protein motion. PMID:23682200
Toward understanding dynamic annealing processes in irradiated ceramics
NASA Astrophysics Data System (ADS)
Myers, Michael Thomas
High energy particle irradiation inevitably generates defects in solids in the form of collision cascades. The ballistic formation and thermalization of cascades occur rapidly and are believed to be reasonably well understood. However, knowledge of the evolution of defects after damage cascade thermalization, referred to as dynamic annealing, is quite limited. Unraveling the mechanisms associated with dynamic an- nealing is crucial since such processes play an important role in the formation of stable post-irradiation disorder in ion-beam-processed semiconductors and determines the "radiation tolerance" of many nuclear materials. The purpose of this dissertation is to further our understanding of the processes involved in dynamic annealing. In order to achieve this, two main tasks are undertaken. First, the effects of dynamic annealing are investigated in ZnO, a technologically relevant material that exhibits very high dynamic defect annealing at room temper- ature. Such high dynamic annealing leads to unusual defect accumulation in heavy ion bombarded ZnO. Through this work, the puzzling features that were observed more than a decade ago in ion-channeling spectra have finally been explained. We show that the presence of a polar surface substantially alters damage accumulation. Non-polar surface terminations of ZnO are shown to exhibit enhanced dynamic an- nealing compared to polar surface terminated ZnO. Additionally, we demonstrate one method to reduce radiation damage in polar surface terminated ZnO by means of a surface modification. These results advance our efforts in the long-sought-after goal of understanding complex radiation damage processes in ceramics. Second, a pulsed-ion-beam method is developed and demonstrated in the case of Si as a prototypical non-metallic target. Such a method is shown to be a novel experimental technique for direct extraction of dynamic annealing parameters. The relaxation times and effective diffusion lengths of mobile defects during the dynamic annealing process play a vital role in damage accumulation. We demonstrate that these parameters dominate the formation of stable post-irradiation disorder. In Si, a defect lifetime of ˜ 6 ms and a characteristic defect diffusion length of ˜ 30 nm are measured. These results should nucleate future pulsed-beam studies of dynamic defect interaction processes in technologically relevant materials. In particular, un- derstanding length- and time-scales of defect interactions are essential for extending laboratory findings to nuclear material lifetimes and to the time-scales of geological storage of nuclear waste.
NASA Astrophysics Data System (ADS)
Chapman, S. C.; Stainforth, D. A.; Watkins, N. W.
2017-12-01
One of the benchmarks of global climate models (GCMs) is that their slow, decadal or longer timescale variations in past changes in Global Mean Temperature (GMT) track each other [1] and the observed GMT reasonably closely. However, the different GCMs tend to generate GMT time-series which have absolute values that are offset with respect to each other by as much as 3 degrees [2]. Subtracting these offsets, or rebasing, is an integral part of comparisons between observed past GMT and the GMT anomalies generated by ensembles of GCMs. We will formalize how rebasing introduces constraints in how the GCMs are related to each other. The GMT of a given GCM is a macroscopic reduced variable that tracks a subset of the full information contained in the time evolving solution of that GCM. If the GMT slow timescale dynamics of different GCMs is to a good approximation the same subject to a linear translation, then the phenomenology captured by this dynamics is essentially linear. Feedbacks in the different models when expressed through GMT are then to leading order linear. It then follows that a linear energy balance evolution equation for GMT is sufficient to reproduce the slow timescale GMT dynamics, given the appropriate effective heat capacity and feedback parameters. As a consequence, the GMT timeseries future projections generated by the GCMs may underestimate the impact of, and uncertainty in, the outcomes of future forcing scenarios. The offset subtraction procedure identifies a slow time-scale dynamics in model generated GMT. Fluctuations on much faster timescales do not typically track each other from one GCM to another, with the exception of major forcing events such as volcanic eruptions. This suggests that the GMT time-series can be decomposed into a slow and fast timescale which naturally leads to stochastic reduced energy balance models for GMT. [1] IPCC Chapter 9 P743 and fig 9.8, IPCC TS.1 [2] see e.g. [Mauritsen et al., Tuning the Climate of a Global Model, Journal of Advances in Modelling Earth Systems, 2012]4, IPCC SPM.6
Data-driven train set crash dynamics simulation
NASA Astrophysics Data System (ADS)
Tang, Zhao; Zhu, Yunrui; Nie, Yinyu; Guo, Shihui; Liu, Fengjia; Chang, Jian; Zhang, Jianjun
2017-02-01
Traditional finite element (FE) methods are arguably expensive in computation/simulation of the train crash. High computational cost limits their direct applications in investigating dynamic behaviours of an entire train set for crashworthiness design and structural optimisation. On the contrary, multi-body modelling is widely used because of its low computational cost with the trade-off in accuracy. In this study, a data-driven train crash modelling method is proposed to improve the performance of a multi-body dynamics simulation of train set crash without increasing the computational burden. This is achieved by the parallel random forest algorithm, which is a machine learning approach that extracts useful patterns of force-displacement curves and predicts a force-displacement relation in a given collision condition from a collection of offline FE simulation data on various collision conditions, namely different crash velocities in our analysis. Using the FE simulation results as a benchmark, we compared our method with traditional multi-body modelling methods and the result shows that our data-driven method improves the accuracy over traditional multi-body models in train crash simulation and runs at the same level of efficiency.
Tropical cloud feedbacks and natural variability of climate
NASA Technical Reports Server (NTRS)
Miller, R. L.; Del Genio, A. D.
1994-01-01
Simulations of natural variability by two general circulation models (GCMs) are examined. One GCM is a sector model, allowing relatively rapid integration without simplification of the model physics, which would potentially exclude mechanisms of variability. Two mechanisms are found in which tropical surface temperature and sea surface temperature (SST) vary on interannual and longer timescales. Both are related to changes in cloud cover that modulate SST through the surface radiative flux. Over the equatorial ocean, SST and surface temperature vary on an interannual timescale, which is determined by the magnitude of the associated cloud cover anomalies. Over the subtropical ocean, variations in low cloud cover drive SST variations. In the sector model, the variability has no preferred timescale, but instead is characterized by a 'red' spectrum with increasing power at longer periods. In the terrestrial GCM, SST variability associated with low cloud anomalies has a decadal timescale and is the dominant form of global temperature variability. Both GCMs are coupled to a mixed layer ocean model, where dynamical heat transports are prescribed, thus filtering out El Nino-Southern Oscillation (ENSO) and thermohaline circulation variability. The occurrence of variability in the absence of dynamical ocean feedbacks suggests that climatic variability on long timescales can arise from atmospheric processes alone.
Effective stability against superradiance of Kerr black holes with synchronised hair
NASA Astrophysics Data System (ADS)
Degollado, Juan Carlos; Herdeiro, Carlos A. R.; Radu, Eugen
2018-06-01
Kerr black holes with synchronised hair [1,2] are a counter example to the no hair conjecture, in General Relativity minimally coupled to simple matter fields (with mass μ) obeying all energy conditions. Since these solutions have, like Kerr, an ergoregion it has been a lingering possibility that they are afflicted by the superradiant instability, the same process that leads to their dynamical formation from Kerr. A recent breakthrough [3] confirmed this instability and computed the corresponding timescales for a sample of solutions. We discuss how these results and other observations support two conclusions: 1) starting from the Kerr limit, the increase of hair for fixed coupling μM (where M is the BH mass) increases the timescale of the instability; 2) there are hairy solutions for which this timescale, for astrophysical black hole masses, is larger than the age of the Universe. The latter conclusion introduces the limited, but physically relevant concept of effective stability. The former conclusion, allows us to identify an astrophysically viable domain of such effectively stable hairy black holes, occurring, conservatively, for Mμ ≲ 0.25. These are hairy BHs that form dynamically, from the superradiant instability of Kerr, within an astrophysical timescale, but whose own superradiant instability occurs only in a cosmological timescale.
NASA Astrophysics Data System (ADS)
Fang, Keyan; Cook, Edward; Guo, Zhengtang; Chen, Deliang; Ou, Tinghai; Zhao, Yan
2018-02-01
Oceanic and atmospheric patterns play a crucial role in modulating climate variability from interannual to multi-decadal timescales by causing large-scale co-varying climate changes. The brevity of the existing instrumental records hinders the ability to recognize climate patterns before the industrial era, which can be alleviated using proxies. Unfortunately, proxy based reconstructions of oceanic and atmospheric modes of the past millennia often have modest agreements with each other before the instrumental period, raising questions about the robustness of the reconstructions. To ensure the stability of climate signals in proxy data through time, we first identified tree-ring datasets from distant regions containing coherent variations in Asia and North America, and then interpreted their climate information. We found that the multi-decadal covarying climate patterns of the middle and high latitudinal regions around the northern Pacific Ocean agreed quite well with the climate reconstructions of the tropical and southern Pacific areas. This indicates a synchronous variability at the multi-decadal timescale of the past 430 years for the entire Pacific Ocean. This pattern is closely linked to the dominant mode of the Pacific sea surface temperature (SST) after removing the warming trend. This Pacific multi-decadal SST variability resembles the Interdecadal Pacific Oscillation.
Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emerson, Joanne B.; Andrade, Karen; Thomas, Brian C.
The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007–2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75–95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clusteredmore » regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system.« less
Virus-Host and CRISPR Dynamics in Archaea-Dominated Hypersaline Lake Tyrrell, Victoria, Australia
Emerson, Joanne B.; Andrade, Karen; Thomas, Brian C.; ...
2013-01-01
The study of natural archaeal assemblages requires community context, namely, a concurrent assessment of the dynamics of archaeal, bacterial, and viral populations. Here, we use filter size-resolved metagenomic analyses to report the dynamics of 101 archaeal and bacterial OTUs and 140 viral populations across 17 samples collected over different timescales from 2007–2010 from Australian hypersaline Lake Tyrrell (LT). All samples were dominated by Archaea (75–95%). Archaeal, bacterial, and viral populations were found to be dynamic on timescales of months to years, and different viral assemblages were present in planktonic, relative to host-associated (active and provirus) size fractions. Analyses of clusteredmore » regularly interspaced short palindromic repeat (CRISPR) regions indicate that both rare and abundant viruses were targeted, primarily by lower abundance hosts. Although very few spacers had hits to the NCBI nr database or to the 140 LT viral populations, 21% had hits to unassembled LT viral concentrate reads. This suggests local adaptation to LT-specific viruses and/or undersampling of haloviral assemblages in public databases, along with successful CRISPR-mediated maintenance of viral populations at abundances low enough to preclude genomic assembly. This is the first metagenomic report evaluating widespread archaeal dynamics at the population level on short timescales in a hypersaline system.« less
Generalized Green's function molecular dynamics for canonical ensemble simulations
NASA Astrophysics Data System (ADS)
Coluci, V. R.; Dantas, S. O.; Tewary, V. K.
2018-05-01
The need of small integration time steps (˜1 fs) in conventional molecular dynamics simulations is an important issue that inhibits the study of physical, chemical, and biological systems in real timescales. Additionally, to simulate those systems in contact with a thermal bath, thermostating techniques are usually applied. In this work, we generalize the Green's function molecular dynamics technique to allow simulations within the canonical ensemble. By applying this technique to one-dimensional systems, we were able to correctly describe important thermodynamic properties such as the temperature fluctuations, the temperature distribution, and the velocity autocorrelation function. We show that the proposed technique also allows the use of time steps one order of magnitude larger than those typically used in conventional molecular dynamics simulations. We expect that this technique can be used in long-timescale molecular dynamics simulations.
Quantum spin dynamics at terahertz frequencies in 2D hole gases and improper ferroelectrics
NASA Astrophysics Data System (ADS)
Lloyd-Hughes, J.
2015-08-01
Terahertz time-domain spectroscopy permits the excitations of novel materials to be examined with exquisite precision. Improper ferroelectric materials such as cupric oxide (CuO) exhibit complex magnetic ground states. CuO is antiferromagnetic below 213K, but has an incommensurate cycloidal magnetic phase between 213K and 230K. Remarkably, the cycloidal magnetic phase drives ferroelectricity, where the material becomes polar. Such improper multiferroics are of great contemporary interest, as a better understanding of the science of magnetoelectric materials may lead to their application in actuators, sensors and solid state memories. Improper multiferroics also have novel quasiparticle excitations: electromagnons form when spin-waves become electric-dipole active. By examining the dynamic response of spins as they interact with THz radiation we gain insights into the underlying physics of multi-ferroics. In contrast to improper ferroelectrics, where magnetism drives structural inversion asymmetry (SIA), two-dimensional electronic systems can exhibit non-degenerate spin states as a consequence of SIA created by strain and/or electric fields. We identify and explore the influence of the Rashba spin-orbit interaction upon cyclotron resonance at terahertz frequencies in high-mobility 2D hole gases in germanium quantum wells. An enhanced Rashba spin-orbit interaction can be linked to the strain of the quantum well, while a time-frequency decomposition method permitted the dynamical formation and decay of spin-split cyclotron resonances to be tracked on picosecond timescales. Long spin-decoherence times concurrent with high hole mobilities highlight the potential of Ge quantum wells in spintronics.
NASA Astrophysics Data System (ADS)
Radu, Ilie
2012-02-01
Revealing the ultimate speed limit at which magnetic order can be controlled, is a fundamental challenge of modern magnetism having far reaching implications for the magnetic recording industry [1]. Exchange interaction is the strongest force in magnetism, being ultimately responsible for ferromagnetic or antiferromagnetic spin order. How do spins react after being optically excited on a timescale of or even faster than the exchange interaction? Here, we demonstrate that femtosecond (fs) measurements of ferrimagnetic and ferromagnetic alloys using X-ray magnetic circular dichroism provide revolutionary new insights into the problem of ultrafast magnetism on timescales pertinent to the exchange interaction. In particular, we show that upon fs optical excitation the ultrafast spin reversal of GdFeCo - a material with antiferromagnetic coupling of spins - occurs via a transient ferromagnetic state [2]. The latter emerges due to different dynamics of the Gd and Fe magnetic moments: Gd switches within 1.5 ps while it takes only 300 fs for Fe. Thus, by using a single fs laser pulse one can force the spin system to evolve via an energetically unfavorable way and temporarily switch from an antiferromagnetic to a ferromagnetic type of ordering. In order to understand whether the observation of this temporarily decoupled and element-specific dynamics is a general phenomenon or just something strictly related to the case of ferrimagnetic GdFeCo, we have investigated the demagnetization of the archetypal ferromagnetic NiFe alloys. Essentially, we observe the same distinct magnetization dynamics of the constituent magnetic moments: Ni demagnetizes within ˜300 fs being much faster than the demagnetization of Fe of ˜800 fs. This distinct demagnetization behavior leads to an apparent decoupling of the Fe and Ni magnetic moments on a few hundreds of fs time scale, despite the strong exchange interaction of 260meV (˜16 fs) that couples them. These observations supported by atomistic simulations, present a novel concept of manipulating magnetic order on different classes of magnetic materials on timescales of the exchange interaction [3]. [4pt] [1] A. Kirilyuk, A.V. Kimel and Th. Rasing, Rev. Mod. Phys. 82, 2731 (2010). [0pt] [2] I. Radu et al., Nature 472, 205 (2011). [0pt] [3] I. Radu et al., submitted (2011).
A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay R; Wing, Simon
2005-03-08
The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solarmore » minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.« less
Stochastic Multi-Timescale Power System Operations With Variable Wind Generation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hongyu; Krad, Ibrahim; Florita, Anthony
This paper describes a novel set of stochastic unit commitment and economic dispatch models that consider stochastic loads and variable generation at multiple operational timescales. The stochastic model includes four distinct stages: stochastic day-ahead security-constrained unit commitment (SCUC), stochastic real-time SCUC, stochastic real-time security-constrained economic dispatch (SCED), and deterministic automatic generation control (AGC). These sub-models are integrated together such that they are continually updated with decisions passed from one to another. The progressive hedging algorithm (PHA) is applied to solve the stochastic models to maintain the computational tractability of the proposed models. Comparative case studies with deterministic approaches are conductedmore » in low wind and high wind penetration scenarios to highlight the advantages of the proposed methodology, one with perfect forecasts and the other with current state-of-the-art but imperfect deterministic forecasts. The effectiveness of the proposed method is evaluated with sensitivity tests using both economic and reliability metrics to provide a broader view of its impact.« less
Calculation of Rate Spectra from Noisy Time Series Data
Voelz, Vincent A.; Pande, Vijay S.
2011-01-01
As the resolution of experiments to measure folding kinetics continues to improve, it has become imperative to avoid bias that may come with fitting data to a predetermined mechanistic model. Towards this end, we present a rate spectrum approach to analyze timescales present in kinetic data. Computing rate spectra of noisy time series data via numerical discrete inverse Laplace transform is an ill-conditioned inverse problem, so a regularization procedure must be used to perform the calculation. Here, we show the results of different regularization procedures applied to noisy multi-exponential and stretched exponential time series, as well as data from time-resolved folding kinetics experiments. In each case, the rate spectrum method recapitulates the relevant distribution of timescales present in the data, with different priors on the rate amplitudes naturally corresponding to common biases toward simple phenomenological models. These results suggest an attractive alternative to the “Occam’s razor” philosophy of simply choosing models with the fewest number of relaxation rates. PMID:22095854
Reconstructing multi-mode networks from multivariate time series
NASA Astrophysics Data System (ADS)
Gao, Zhong-Ke; Yang, Yu-Xuan; Dang, Wei-Dong; Cai, Qing; Wang, Zhen; Marwan, Norbert; Boccaletti, Stefano; Kurths, Jürgen
2017-09-01
Unveiling the dynamics hidden in multivariate time series is a task of the utmost importance in a broad variety of areas in physics. We here propose a method that leads to the construction of a novel functional network, a multi-mode weighted graph combined with an empirical mode decomposition, and to the realization of multi-information fusion of multivariate time series. The method is illustrated in a couple of successful applications (a multi-phase flow and an epileptic electro-encephalogram), which demonstrate its powerfulness in revealing the dynamical behaviors underlying the transitions of different flow patterns, and enabling to differentiate brain states of seizure and non-seizure.
Centennial-scale Holocene climate variations amplified by Antarctic Ice Sheet discharge
NASA Astrophysics Data System (ADS)
Bakker, Pepijn; Clark, Peter U.; Golledge, Nicholas R.; Schmittner, Andreas; Weber, Michael E.
2017-01-01
Proxy-based indicators of past climate change show that current global climate models systematically underestimate Holocene-epoch climate variability on centennial to multi-millennial timescales, with the mismatch increasing for longer periods. Proposed explanations for the discrepancy include ocean-atmosphere coupling that is too weak in models, insufficient energy cascades from smaller to larger spatial and temporal scales, or that global climate models do not consider slow climate feedbacks related to the carbon cycle or interactions between ice sheets and climate. Such interactions, however, are known to have strongly affected centennial- to orbital-scale climate variability during past glaciations, and are likely to be important in future climate change. Here we show that fluctuations in Antarctic Ice Sheet discharge caused by relatively small changes in subsurface ocean temperature can amplify multi-centennial climate variability regionally and globally, suggesting that a dynamic Antarctic Ice Sheet may have driven climate fluctuations during the Holocene. We analysed high-temporal-resolution records of iceberg-rafted debris derived from the Antarctic Ice Sheet, and performed both high-spatial-resolution ice-sheet modelling of the Antarctic Ice Sheet and multi-millennial global climate model simulations. Ice-sheet responses to decadal-scale ocean forcing appear to be less important, possibly indicating that the future response of the Antarctic Ice Sheet will be governed more by long-term anthropogenic warming combined with multi-centennial natural variability than by annual or decadal climate oscillations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuwahara, Tomotaka, E-mail: tomotaka.phys@gmail.com; WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577; Mori, Takashi
2016-04-15
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian onmore » the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.« less
Galindo-Murillo, Rodrigo; Roe, Daniel R; Cheatham, Thomas E
2015-05-01
The structure and dynamics of DNA are critically related to its function. Molecular dynamics simulations augment experiment by providing detailed information about the atomic motions. However, to date the simulations have not been long enough for convergence of the dynamics and structural properties of DNA. Molecular dynamics simulations performed with AMBER using the ff99SB force field with the parmbsc0 modifications, including ensembles of independent simulations, were compared to long timescale molecular dynamics performed with the specialized Anton MD engine on the B-DNA structure d(GCACGAACGAACGAACGC). To assess convergence, the decay of the average RMSD values over longer and longer time intervals was evaluated in addition to assessing convergence of the dynamics via the Kullback-Leibler divergence of principal component projection histograms. These molecular dynamics simulations-including one of the longest simulations of DNA published to date at ~44μs-surprisingly suggest that the structure and dynamics of the DNA helix, neglecting the terminal base pairs, are essentially fully converged on the ~1-5μs timescale. We can now reproducibly converge the structure and dynamics of B-DNA helices, omitting the terminal base pairs, on the μs time scale with both the AMBER and CHARMM C36 nucleic acid force fields. Results from independent ensembles of simulations starting from different initial conditions, when aggregated, match the results from long timescale simulations on the specialized Anton MD engine. With access to large-scale GPU resources or the specialized MD engine "Anton" it is possible for a variety of molecular systems to reproducibly and reliably converge the conformational ensemble of sampled structures. This article is part of a Special Issue entitled: Recent developments of molecular dynamics. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Kasprak, A.; Brasington, J.; Hafen, K.; Wheaton, J. M.
2015-12-01
Numerical models that predict channel evolution through time are an essential tool for investigating processes that occur over timescales which render field observation intractable. However, available morphodynamic models generally take one of two approaches to the complex problem of computing morphodynamics, resulting in oversimplification of the relevant physics (e.g. cellular models) or faithful, yet computationally intensive, representations of the hydraulic and sediment transport processes at play. The practical implication of these approaches is that river scientists must often choose between unrealistic results, in the case of the former, or computational demands that render modeling realistic spatiotemporal scales of channel evolution impossible. Here we present a new modeling framework that operates at the timescale of individual competent flows (e.g. floods), and uses a highly-simplified sediment transport routine that moves volumes of material according to morphologically-derived characteristic transport distances, or path lengths. Using this framework, we have constructed an open-source morphodynamic model, termed MoRPHED, which is here applied, and its validity investigated, at timescales ranging from a single event to a decade on two braided rivers in the UK and New Zealand. We do not purport that MoRPHED is the best, nor even an adequate, tool for modeling braided river dynamics at this range of timescales. Rather, our goal in this research is to explore the utility, feasibility, and sensitivity of an event-scale, path-length-based modeling framework for predicting braided river dynamics. To that end, we further explore (a) which processes are naturally emergent and which must be explicitly parameterized in the model, (b) the sensitivity of the model to the choice of particle travel distance, and (c) whether an event-scale model timestep is adequate for producing braided channel dynamics. The results of this research may inform techniques for future morphodynamic modeling that seeks to maximize computational resources while modeling fluvial dynamics at the timescales of change.
A dynamic multi-scale Markov model based methodology for remaining life prediction
NASA Astrophysics Data System (ADS)
Yan, Jihong; Guo, Chaozhong; Wang, Xing
2011-05-01
The ability to accurately predict the remaining life of partially degraded components is crucial in prognostics. In this paper, a performance degradation index is designed using multi-feature fusion techniques to represent deterioration severities of facilities. Based on this indicator, an improved Markov model is proposed for remaining life prediction. Fuzzy C-Means (FCM) algorithm is employed to perform state division for Markov model in order to avoid the uncertainty of state division caused by the hard division approach. Considering the influence of both historical and real time data, a dynamic prediction method is introduced into Markov model by a weighted coefficient. Multi-scale theory is employed to solve the state division problem of multi-sample prediction. Consequently, a dynamic multi-scale Markov model is constructed. An experiment is designed based on a Bently-RK4 rotor testbed to validate the dynamic multi-scale Markov model, experimental results illustrate the effectiveness of the methodology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holliday, Michael; Camilloni, Carlo; Armstrong, Geoffrey S.
2015-05-26
Thermophilic proteins have found extensive use in research and industrial applications due to their high stability and functionality at elevated temperatures while simultaneously providing valuable insight into our understanding of protein folding, stability, dynamics, and function. Cyclophilins, a ubiquitously expressed family of peptidyl-prolyl isomerases with a range of biological functions and disease associations, have been utilized both for conferring stress tolerances and in exploring the link between conformational dynamics and enzymatic function. To date, however, no active thermophilic cyclophilin has been fully biophysically characterized. Here, we determine the structure of a thermophilic cyclophilin (GeoCyp) from Geobacillus kaustophilus, characterize its dynamicmore » motions over several timescales using an array of methodologies that include chemical shift-based methods and relaxation experiments over a range of temperatures, and measure catalytic activity over a range of temperatures in order to compare structure, dynamics, and function to a mesophilic counterpart, human Cyclophilin A (CypA). Unlike most thermophile/mesophile pairs, GeoCyp catalysis is not substantially impaired at low temperatures as compared to CypA, retaining ~70% of the activity of its mesophilic counterpart. Examination of substrate-bound ensembles reveals a mechanism by which the two cyclophilins may have adapted to their environments through altering dynamic loop motions and a critical residue that acts as a clamp to regulate substrate binding differentially in CypA and GeoCyp. Despite subtle differences in conformational movements, dynamics over fast (ps-ns) and slow (μs) timescales are largely conserved between the two proteins.« less
Quantifying the Spatial and Temporal Properties of Microbursts with Multi-spacecraft Missions
NASA Astrophysics Data System (ADS)
Shumko, M.; Turner, D. L.; Sample, J. G.; O'Brien, T. P., III; Claudepierre, S. G.; Fennell, J. F.; Johnson, A.; Blake, J. B.; Agapitov, O. V.; Crew, A. B.; Klumpar, D. M.; Spence, H. E.
2017-12-01
The outer electron Van Allen radiation belt is highly variable, and is at times, depleted on the order of one day or less. One loss mechanism potentially capable of depleting the belts on such timescales is electron microbursts, a sporadic and sudden burst of electrons, routinely observed in Low Earth Orbit (LEO). To quantify their contribution to radiation belt electron loss, their spatio-temporal morphology must be well characterized and constrained. These properties can be investigated by multi-spacecraft missions e.g. Focused Investigations of Relativistic Electron Burst Intensity, Range, and Dynamics (FIREBIRD-II), AeroCube 6 (AC6) and the Van Allen Probes (VAP). We present results of microburst scale sizes derived using FIREBIRD-II and AC-6 CubeSats pairs. In addition, we present results of a conjunction between AC6 and VAP at L 5. Lower band chorus was observed by the EMFISIS instrument, while microbursts were observed with its MagEIS instrument, and AC6 in LEO. We believe that this MagEIS observation is the first known measurement of an electron microburst outside of LEO.
NASA Astrophysics Data System (ADS)
Chapman, Sandra; Stainforth, David; Watkins, Nicholas
2017-04-01
Global mean temperature (GMT) provides a simple means of benchmarking a broad ensemble of global climate models (GCMs) against past observed GMT which in turn provide headline assessments of the consequences of possible future forcing scenarios. The slow variations of past changes in GMT seen in different GCMs track each other [1] and the observed GMT reasonably closely. However, the different GCMs tend to generate GMT time-series which have absolute values that are offset with respect to each other [2]. Subtracting these offsets is an integral part of comparisons between ensembles of GCMs and observed past GMT. We will discuss how this constrains how the GCMs are related to each other. The GMT of a given GCM is a macroscopic reduced variable that tracks a subset of the full information contained in the time evolving solution of that GCM. If the GMT slow timescale dynamics of different GCMs is to a good approximation the same, subject to a linear translation, then the phenomenology captured by this dynamics is essentially linear; any feedback is to leading order linear in GMT. It then follows that a linear energy balance evolution equation for GMT is sufficient to reproduce the slow timescale GMT dynamics, provided that the appropriate effective heat capacity and feedback parameters are known. As a consequence, the GCM's GMT timeseries may underestimate the impact of, and uncertainty in, the outcomes of future forcing scenarios. The offset subtraction procedure identifies a slow time-scale dynamics in model generated GMT. Fluctuations on much faster timescales do not typically track each other from one GCM to another, with the exception of major forcing events such as volcanic eruptions. This suggests that the GMT time-series can be decomposed into a slow and fast timescale which naturally leads to stochastic reduced energy balance models for GMT. [1] IPCC Chapter 9 P743 and fig 9.8,IPCC TS.1 [2] see e.g. [Mauritsen et al., Tuning the Climate of a Global Model, Journal of Advances in Modelling Earth Systems, 2012] 4, IPCC SPM.6
Di Paola, Cono; P. Brodholt, John
2016-01-01
Knowledge of the melting properties of materials, especially at extreme pressure conditions, represents a long-standing scientific challenge. For instance, there is currently considerable uncertainty over the melting temperatures of the high-pressure mantle mineral, bridgmanite (MgSiO3-perovskite), with current estimates of the melting T at the base of the mantle ranging from 4800 K to 8000 K. The difficulty with experimentally measuring high pressure melting temperatures has motivated the use of ab initio methods, however, melting is a complex multi-scale phenomenon and the timescale for melting can be prohibitively long. Here we show that a combination of empirical and ab-initio molecular dynamics calculations can be used to successfully predict the melting point of multicomponent systems, such as MgSiO3 perovskite. We predict the correct low-pressure melting T, and at high-pressure we show that the melting temperature is only 5000 K at 120 GPa, a value lower than nearly all previous estimates. In addition, we believe that this strategy is of general applicability and therefore suitable for any system under physical conditions where simpler models fail. PMID:27444854
Advancing working and learning through critical action research: creativity and constraints.
Bellman, Loretta; Bywood, Catherine; Dale, Susan
2003-12-01
Continuous professional development is an essential component within many health care 'Learning Organisations'. The paper describes the first phase of an initiative to develop a professional practice development framework for nurses in an NHS general hospital. The project was undertaken within a critical action research methodology. A tripartite arrangement between the hospital, a university and professional nursing organisation enabled clinical, educational and research support for the nurses (co-researchers) engaged in the project. Initial challenges were from some managers, educationalists and the ethics committee who did not appear to understand the action research process. A multi-method approach to data collection was undertaken to capture the change process from different stakeholders' perceptions. Triangulation of the data was undertaken. Despite organisational constraints, transformational leadership and peer support enabled the co-researchers to identify and initiate three patient-focused initiatives. The change process for the co-researchers included: enlightening personal journey, exploring the research-practice gap, enhancing personal and professional knowledge, evolving cultural change and collaborative working, empowering and disempowering messages. A hospital merger and corporate staff changes directly impacted on the project. A more flexible time-scale and longer term funding are required to enable continuity for trust-wide projects undertaken in dynamic clinical settings.
NASA Astrophysics Data System (ADS)
Wang, Yujie; Zhang, Xu; Liu, Chang; Pan, Rui; Chen, Zonghai
2018-06-01
The power capability and maximum charge and discharge energy are key indicators for energy management systems, which can help the energy storage devices work in a suitable area and prevent them from over-charging and over-discharging. In this work, a model based power and energy assessment approach is proposed for the lithium-ion battery and supercapacitor hybrid system. The model framework of the lithium-ion battery and supercapacitor hybrid system is developed based on the equivalent circuit model, and the model parameters are identified by regression method. Explicit analyses of the power capability and maximum charge and discharge energy prediction with multiple constraints are elaborated. Subsequently, the extended Kalman filter is employed for on-board power capability and maximum charge and discharge energy prediction to overcome estimation error caused by system disturbance and sensor noise. The charge and discharge power capability, and the maximum charge and discharge energy are quantitatively assessed under both the dynamic stress test and the urban dynamometer driving schedule. The maximum charge and discharge energy prediction of the lithium-ion battery and supercapacitor hybrid system with different time scales are explored and discussed.
NASA Astrophysics Data System (ADS)
Wu, A. S.; Na, W.-J.; Yu, W.-R.; Byun, J.-H.; Chou, T.-W.
2012-11-01
A major challenge in the damage assessment of materials under dynamic, high strain rate loading lies in the inability to apply most health monitoring methodologies to the analysis and evaluation of damage incurred on short timescales. Here, we present a resistance-based sensing method utilizing an electrically conductive carbon nanotube film in a fiberglass/vinyl ester composite. This method reveals that applied strain and damage in the form of matrix cracking and delamination give rise to electrical resistance increases across the composite specimen; these can be measured in real-time during high strain rate loading. Damage within the composite specimens is confirmed through pre- and post-mortem x-ray micro computed tomography imaging.
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Schallhorn, Paul
1998-01-01
This paper describes a finite volume computational thermo-fluid dynamics method to solve for Navier-Stokes equations in conjunction with energy equation and thermodynamic equation of state in an unstructured coordinate system. The system of equations have been solved by a simultaneous Newton-Raphson method and compared with several benchmark solutions. Excellent agreements have been obtained in each case and the method has been found to be significantly faster than conventional Computational Fluid Dynamic(CFD) methods and therefore has the potential for implementation in Multi-Disciplinary analysis and design optimization in fluid and thermal systems. The paper also describes an algorithm of design optimization based on Newton-Raphson method which has been recently tested in a turbomachinery application.
NASA Astrophysics Data System (ADS)
Liguori, Giovanni; Di Lorenzo, Emanuele; Cabos, William
2017-02-01
Changes in surface heat fluxes affect several climate processes controlling the Mediterranean climate. These include the winter formation of deep waters, which is the primary driver of the Mediterranean Sea overturning circulation. Previous studies that characterize the spatial and temporal variability of surface heat flux anomalies over the basin reveal the existence of two statistically dominant patterns of variability: a monopole of uniform sign and an east-west dipole of opposite signs. In this work, we use the 12 regional climate model ensemble from the EU-FP6 ENSEMBLES project to diagnose the large-scale atmospheric processes that control the variability of heat fluxes over the Mediterranean Sea from interannual to decadal timescales (here defined as timescales > 6 year). Our findings suggest that while the monopole structure captures variability in the winter-to-winter domain-average net heat flux, the dipole pattern tracks changes in the Mediterranean climate that are connected to the East Atlantic/Western Russia (EA/WR) atmospheric teleconnection pattern. Furthermore, while the monopole exhibits significant differences in the spatial structure across the multi-model ensemble, the dipole pattern is very robust and more clearly identifiable in the anomaly maps of individual years. A heat budget analysis of the dipole pattern reveals that changes in winds associated with the EA/WR pattern exert dominant control through both a direct effect on the latent heat flux (i.e., wind speed) and an indirect effect through specific humidity (e.g., wind advection). A simple reconstruction of the heat flux variability over the deep-water formation regions of the Gulf of Lion and the Aegean Sea reveals that the combination of the monopole and dipole time series explains over 90 % of the heat flux variance in these regions. Given the important role that surface heat flux anomalies play in deep-water formation and the regional climate, improving our knowledge on the dynamics controlling the leading modes of heat flux variability may enhance our predictability of the climate of the Mediterranean area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Abhijit; Voter, Arthur
2009-01-01
We develop a variation of the temperature accelerated dynamics (TAD) method, called the p-TAD method, that efficiently generates an on-the-fly kinetic Monte Carlo (KMC) process catalog with control over the accuracy of the catalog. It is assumed that transition state theory is valid. The p-TAD method guarantees that processes relevant at the timescales of interest to the simulation are present in the catalog with a chosen confidence. A confidence measure associated with the process catalog is derived. The dynamics is then studied using the process catalog with the KMC method. Effective accuracy of a p-TAD calculation is derived when amore » KMC catalog is reused for conditions different from those the catalog was originally generated for. Different KMC catalog generation strategies that exploit the features of the p-TAD method and ensure higher accuracy and/or computational efficiency are presented. The accuracy and the computational requirements of the p-TAD method are assessed. Comparisons to the original TAD method are made. As an example, we study dynamics in sub-monolayer Ag/Cu(110) at the time scale of seconds using the p-TAD method. It is demonstrated that the p-TAD method overcomes several challenges plaguing the conventional KMC method.« less
Atlantic and Pacific Influences on Mesoamerican Climate Over the Past Millennium (Invited)
NASA Astrophysics Data System (ADS)
Stahle, D. W.; Burnette, D. J.; Villanueva, J.; Cleaveland, M. K.
2010-12-01
Montezuma baldcypress (Taxodium mucronatum) trees in Queretaro have been used to develop the first exactly dated millennium-long tree-ring chronology in central Mexico. The chronology is sensitive to both precipitation and temperature, and has been used to reconstruct the Palmer Drought Severity Index (PDSI) for June from AD 771-2008 for a large sector of Mesoamerica (most of central and southern Mexico). Fourier-transform spectral analyses of the 1,238-year long reconstruction indicate strong concentrations of variance at frequencies associated with the El Nino/Southern Oscillation (ENSO; representing over 14% of the total reconstructed variance between periods of 4.5 and 5.5 years), and at multi-decadal frequencies potentially associated with the Atlantic Multidecadal Oscillation (AMO; representing over 10% of the total variance between periods of 50 and 75 years). Weaker but statistically significant concentrations of variance are also detected with the Multi-Taper Method of spectral analysis at subdecadal timescales potentially linked with the North Atlantic Oscillation (NAO; 7.5 years) and at timescales possibly associated with the Pacific Decadal Oscillation (~33 years). The reconstruction is significantly correlated with sea surface temperatures (SST) in the ENSO cold tongue region from 1871-2008 (during the boreal cool season, DJFM), and this SST correlation strengthens in the 20th Century (1931-2008). Summer drought tends to develop over central Mexico during El Nino events, and the record warm events observed in 1983 and 1998 were associated with the two most extremely dry June PDSI conditions in the past 1,238 years (reconstructed ranks 1 and 2 for 1983 and 1998, respectively). The reconstruction is also significantly correlated with SSTs over the tropical North Atlantic, and is coherent with long instrument-based indices of the NAO at periods near 7.5 years, but only during the 20th century. The June PDSI reconstruction is coherent (P<0.05) with a 600-year long tree-ring reconstruction of the NAO at multidecadal timescales (50 to 70-years) during a 200-year episode in the 16th and 17th centuries. The reconstruction indicates more severe and sustained droughts over Mesoamerica before AD 1600, as has been reconstructed previously for western North America. The existence and timing of the Terminal Classic Drought at AD 900 is confirmed with the new reconstruction, which also documents megadroughts during the decline of the Toltec state at Tula and during the rise and fall of the Aztec imperial state in the Valley of Mexico. The long June PDSI reconstruction provides an interesting new paleoclimate framework for the analysis of Mesoamerican climate dynamics and cultural change.
A fast numerical scheme for causal relativistic hydrodynamics with dissipation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamoto, Makoto, E-mail: takamoto@tap.scphys.kyoto-u.ac.jp; Inutsuka, Shu-ichiro
2011-08-01
Highlights: {yields} We have developed a new multi-dimensional numerical scheme for causal relativistic hydrodynamics with dissipation. {yields} Our new scheme can calculate the evolution of dissipative relativistic hydrodynamics faster and more effectively than existing schemes. {yields} Since we use the Riemann solver for solving the advection steps, our method can capture shocks very accurately. - Abstract: In this paper, we develop a stable and fast numerical scheme for relativistic dissipative hydrodynamics based on Israel-Stewart theory. Israel-Stewart theory is a stable and causal description of dissipation in relativistic hydrodynamics although it includes relaxation process with the timescale for collision of constituentmore » particles, which introduces stiff equations and makes practical numerical calculation difficult. In our new scheme, we use Strang's splitting method, and use the piecewise exact solutions for solving the extremely short timescale problem. In addition, since we split the calculations into inviscid step and dissipative step, Riemann solver can be used for obtaining numerical flux for the inviscid step. The use of Riemann solver enables us to capture shocks very accurately. Simple numerical examples are shown. The present scheme can be applied to various high energy phenomena of astrophysics and nuclear physics.« less
Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry
NASA Astrophysics Data System (ADS)
Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek
Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.
Dynamic stall reattachment revisited
NASA Astrophysics Data System (ADS)
Mulleners, Karen
2017-11-01
Dynamic stall on pitching airfoils is an important practical problem that affects for example rotary wing aircraft and wind turbines. It also comprises a number of interesting fundamental fluid dynamical phenomena such as unsteady flow separation, vortex formation and shedding, unsteady flow reattachment, and dynamic hysteresis. Following up on past efforts focussing on the separation development, we now revisited the flow reattachment or stall recovery process. Experimental time-resolved velocity field and surface pressure data for a two-dimensional sinusoidally pitching airfoil with various reduced frequencies was analysed using different Eulerian, Lagrangian, and modal decomposition methods. This complementary analysis resulted in the identification of the chain of events that play a role in the flow reattachment process, a detailed description of that role, and characterisation of the individual events by the governing time-scales and flow features.
Microsecond kinetics in model single- and double-stranded amylose polymers.
Sattelle, Benedict M; Almond, Andrew
2014-05-07
Amylose, a component of starch with increasing biotechnological significance, is a linear glucose polysaccharide that self-organizes into single- and double-helical assemblies. Starch granule packing, gelation and inclusion-complex formation result from finely balanced macromolecular kinetics that have eluded precise experimental quantification. Here, graphics processing unit (GPU) accelerated multi-microsecond aqueous simulations are employed to explore conformational kinetics in model single- and double-stranded amylose. The all-atom dynamics concur with prior X-ray and NMR data while surprising and previously overlooked microsecond helix-coil, glycosidic linkage and pyranose ring exchange are hypothesized. In a dodecasaccharide, single-helical collapse was correlated with linkages and rings transitioning from their expected syn and (4)C1 chair conformers. The associated microsecond exchange rates were dependent on proximity to the termini and chain length (comparing hexa- and trisaccharides), while kinetic features of dodecasaccharide linkage and ring flexing are proposed to be a good model for polymers. Similar length double-helices were stable on microsecond timescales but the parallel configuration was sturdier than the antiparallel equivalent. In both, tertiary organization restricted local chain dynamics, implying that simulations of single amylose strands cannot be extrapolated to dimers. Unbiased multi-microsecond simulations of amylose are proposed as a valuable route to probing macromolecular kinetics in water, assessing the impact of chemical modifications on helical stability and accelerating the development of new biotechnologies.
Elastically driven intermittent microscopic dynamics in soft solids
NASA Astrophysics Data System (ADS)
Bouzid, Mehdi; Colombo, Jader; Barbosa, Lucas Vieira; Del Gado, Emanuela
2017-06-01
Soft solids with tunable mechanical response are at the core of new material technologies, but a crucial limit for applications is their progressive aging over time, which dramatically affects their functionalities. The generally accepted paradigm is that such aging is gradual and its origin is in slower than exponential microscopic dynamics, akin to the ones in supercooled liquids or glasses. Nevertheless, time- and space-resolved measurements have provided contrasting evidence: dynamics faster than exponential, intermittency and abrupt structural changes. Here we use 3D computer simulations of a microscopic model to reveal that the timescales governing stress relaxation, respectively, through thermal fluctuations and elastic recovery are key for the aging dynamics. When thermal fluctuations are too weak, stress heterogeneities frozen-in upon solidification can still partially relax through elastically driven fluctuations. Such fluctuations are intermittent, because of strong correlations that persist over the timescale of experiments or simulations, leading to faster than exponential dynamics.
Atmospheric Science Data Center
2014-05-15
... Image NASA's Multi-angle Imaging SpectroRadiometer (MISR) captured these images and cloud-top height retrievals of Hurricane ... especially on the 24 to 48 hour timescale vital for disaster planning. To improve the operational models used to make hurricane ...
Multi-time scale control of demand flexibility in smart distribution networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte
This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less
Multi-time scale control of demand flexibility in smart distribution networks
Bhattarai, Bishnu; Myers, Kurt; Bak-Jensen, Birgitte; ...
2017-01-01
This study presents a multi-timescale control strategy to deploy demand flexibilities of electric vehicles (EV) for providing system balancing and local congestion management by simultaneously ensuring economic benefits to participating actors. First, the EV charging problem from consumer, aggregator, and grid operator’s perspective is investigated. A hierarchical control architecture (HCA) comprising scheduling, coordinative, and adaptive layers is then designed to realize their coordinative goal. This is realized by integrating a multi-time scale control, which works from a day-ahead scheduling up to real-time adaptive control. The performance of the developed method is investigated with high EV penetration in a typical distributionmore » network. The simulation results demonstrates that HCA exploit EV flexibility to solve grid unbalancing and congestions with simultaneous maximization of economic benefits by ensuring EV participation to day-ahead, balancing, and regulation markets. For the given network configuration and pricing structure, HCA ensures the EV owners to get paid up to 5 times the cost they were paying without control.« less
Williams, G Jackson; Lee, Sooheyong; Walko, Donald A; Watson, Michael A; Jo, Wonhuyk; Lee, Dong Ryeol; Landahl, Eric C
2016-12-22
Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of the crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.
Williams, G. Jackson; Lee, Sooheyong; Walko, Donald A.; ...
2016-12-22
Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of themore » crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, G. Jackson; Lee, Sooheyong; Walko, Donald A.
Nonlinear optical phenomena in semiconductors present several fundamental problems in modern optics that are of great importance for the development of optoelectronic devices. In particular, the details of photo-induced lattice dynamics at early time-scales prior to carrier recombination remain poorly understood. We demonstrate the first integrated measurements of both optical and structural, material-dependent quantities while also inferring the bulk impulsive strain profile by using high spatial-resolution time-resolved x-ray scattering (TRXS) on bulk crystalline gallium arsenide. Our findings reveal distinctive laser-fluence dependent crystal lattice responses, which are not described by previous TRXS experiments or models. The initial linear expansion of themore » crystal upon laser excitation stagnates at a laser fluence corresponding to the saturation of the free carrier density before resuming expansion in a third regime at higher fluences where two-photon absorption becomes dominant. Our interpretations of the lattice dynamics as nonlinear optical effects are confirmed by numerical simulations and by additional measurements in an n-type semiconductor that allows higher-order nonlinear optical processes to be directly observed as modulations of x-ray diffraction lineshapes.« less
Wavepacket dynamics and the multi-configurational time-dependent Hartree approach
NASA Astrophysics Data System (ADS)
Manthe, Uwe
2017-06-01
Multi-configurational time-dependent Hartree (MCTDH) based approaches are efficient, accurate, and versatile methods for high-dimensional quantum dynamics simulations. Applications range from detailed investigations of polyatomic reaction processes in the gas phase to high-dimensional simulations studying the dynamics of condensed phase systems described by typical solid state physics model Hamiltonians. The present article presents an overview of the different areas of application and provides a comprehensive review of the underlying theory. The concepts and guiding ideas underlying the MCTDH approach and its multi-mode and multi-layer extensions are discussed in detail. The general structure of the equations of motion is highlighted. The representation of the Hamiltonian and the correlated discrete variable representation (CDVR), which provides an efficient multi-dimensional quadrature in MCTDH calculations, are discussed. Methods which facilitate the calculation of eigenstates, the evaluation of correlation functions, and the efficient representation of thermal ensembles in MCTDH calculations are described. Different schemes for the treatment of indistinguishable particles in MCTDH calculations and recent developments towards a unified multi-layer MCTDH theory for systems including bosons and fermions are discussed.
Danube Delta Coastline Dynamics in the Last 160 Years
NASA Astrophysics Data System (ADS)
Tătui, Florin; Vespremeanu-Stroe, Alfred; Constantinescu, Ştefan; Zăinescu, Florin
2017-04-01
Wave-dominated deltaic coasts depend on the balance between wave climate and sediment supply, which controls the medium and long-term shoreline evolution. Interestingly, the common plan shapes of the wave-dominated lobes impose different wave exposures and longshore sediment transport magnitudes on the lobe flanks, characterized by ever changing aspects which make these sandy coasts some of the most mobile world coastlines. The Danube Delta coast consists of approximately 220 km (both Romanian and Ukrainian sectors) of tideless, medium-energy low-lying sandy beaches interrupted by multiple river mouths and, sometimes, by engineering structures (Sulina jetties and Midia harbour). The objective of this study is to examine and explain the factors which have driven the Danube Delta coastline dynamics at multi-annual to multi-decadal and centennial time-scales. Our analysis is based on multiple shorelines extracted from historical and modern maps (since mid-19th century), recent medium to high resolution satellite images (since 1984), aerial photos (since 1969), GPS surveys (available after 1990) and LIDAR data (2011), which were comparatively analysed by means of GIS techniques. Nowadays, more than half ( 55%) of the Romanian Danube Delta shoreline (disposed in five littoral cells) is affected by erosion. The present coastline configuration is the result of the long-term evolution of this deltaic coast. Depending on the temporal and spatial scales taken into consideration, different driving forces changed the leading role in the dynamics of Danube Delta shoreline in the last 160 years. At centennial time-scale, the threefold decrease of Danube sediment discharge in the last century (especially after 1950, as a result of dams` construction in the Danube watershed) explains the significantly higher shoreline migration rates and area changes between 1856 and 1961/1979 in comparison with the subsequent period, especially along the accumulative sectors. For the Chilia prograding lobe, this resulted in the decrease with more than 75% of the progradation rates and with approximately 90% of the corresponding area change rates, marking its transition, since mid-20th century, from fluvial-dominated morphology to wave-influenced aspect and behaviour. Also, since the beginning of the 20th century, the asymmetric Sf. Gheorghe lobe (the other active lobe of the Danube), experienced dramatic changes of its millennial prograding pattern expressed by the complete cessation of the updrift coastal progradation and the prevalence of erosion in front of the river mouth, whose sediments are feeding far-positioned downdrift depocentres. These changes are reflected by the recent (1930s-present) river mouth dynamics, characterized by cessation of its long-term seaward expansion in favour of downdrift migration, indicating the transition of the Sf. Gheorghe mouth from an asymmetric to a deflected wave-influenced delta morphology. At multi-decadal scale, different modes of climate variability (e.g. North Atlantic Oscillation) control the storminess variations along the Danube Delta coast. Hence, active storminess during 1961-1979 time interval determined very high shoreline dynamics, with two-three times higher shoreline migration rates than afterwards, when a decrease in storminess favoured less dynamic coastlines (on both prograding and erosive sectors). At inter-annual scale, waterline mobility is influenced by storm regime and river floods. Our findings should support the sustainable coastal management and planning, providing a better understanding of past and present coastal processes along the Danube Delta coast.
Multi-time scale energy management of wind farms based on comprehensive evaluation technology
NASA Astrophysics Data System (ADS)
Xu, Y. P.; Huang, Y. H.; Liu, Z. J.; Wang, Y. F.; Li, Z. Y.; Guo, L.
2017-11-01
A novel energy management of wind farms is proposed in this paper. Firstly, a novel comprehensive evaluation system is proposed to quantify economic properties of each wind farm to make the energy management more economical and reasonable. Then, a combination of multi time-scale schedule method is proposed to develop a novel energy management. The day-ahead schedule optimizes unit commitment of thermal power generators. The intraday schedule is established to optimize power generation plan for all thermal power generating units, hydroelectric generating sets and wind power plants. At last, the power generation plan can be timely revised in the process of on-line schedule. The paper concludes with simulations conducted on a real provincial integrated energy system in northeast China. Simulation results have validated the proposed model and corresponding solving algorithms.
Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models
NASA Astrophysics Data System (ADS)
Lindner, Benjamin; Yi, Zheng; Prinz, Jan-Hendrik; Smith, Jeremy C.; Noé, Frank
2013-11-01
The dynamics of complex molecules can be directly probed by inelastic neutron scattering experiments. However, many of the underlying dynamical processes may exist on similar timescales, which makes it difficult to assign processes seen experimentally to specific structural rearrangements. Here, we show how Markov models can be used to connect structural changes observed in molecular dynamics simulation directly to the relaxation processes probed by scattering experiments. For this, a conformational dynamics theory of dynamical neutron and X-ray scattering is developed, following our previous approach for computing dynamical fingerprints of time-correlation functions [F. Noé, S. Doose, I. Daidone, M. Löllmann, J. Chodera, M. Sauer, and J. Smith, Proc. Natl. Acad. Sci. U.S.A. 108, 4822 (2011)]. Markov modeling is used to approximate the relaxation processes and timescales of the molecule via the eigenvectors and eigenvalues of a transition matrix between conformational substates. This procedure allows the establishment of a complete set of exponential decay functions and a full decomposition into the individual contributions, i.e., the contribution of every atom and dynamical process to each experimental relaxation process.
Neural dynamic optimization for control systems. I. Background.
Seong, C Y; Widrow, B
2001-01-01
The paper presents neural dynamic optimization (NDO) as a method of optimal feedback control for nonlinear multi-input-multi-output (MIMO) systems. The main feature of NDO is that it enables neural networks to approximate the optimal feedback solution whose existence dynamic programming (DP) justifies, thereby reducing the complexities of computation and storage problems of the classical methods such as DP. This paper mainly describes the background and motivations for the development of NDO, while the two other subsequent papers of this topic present the theory of NDO and demonstrate the method with several applications including control of autonomous vehicles and of a robot arm, respectively.
Neural dynamic optimization for control systems.III. Applications.
Seong, C Y; Widrow, B
2001-01-01
For pt.II. see ibid., p. 490-501. The paper presents neural dynamic optimization (NDO) as a method of optimal feedback control for nonlinear multi-input-multi-output (MIMO) systems. The main feature of NDO is that it enables neural networks to approximate the optimal feedback solution whose existence dynamic programming (DP) justifies, thereby reducing the complexities of computation and storage problems of the classical methods such as DP. This paper demonstrates NDO with several applications including control of autonomous vehicles and of a robot-arm, while the two other companion papers of this topic describes the background for the development of NDO and present the theory of the method, respectively.
Neural dynamic optimization for control systems.II. Theory.
Seong, C Y; Widrow, B
2001-01-01
The paper presents neural dynamic optimization (NDO) as a method of optimal feedback control for nonlinear multi-input-multi-output (MIMO) systems. The main feature of NDO is that it enables neural networks to approximate the optimal feedback solution whose existence dynamic programming (DP) justifies, thereby reducing the complexities of computation and storage problems of the classical methods such as DP. This paper mainly describes the theory of NDO, while the two other companion papers of this topic explain the background for the development of NDO and demonstrate the method with several applications including control of autonomous vehicles and of a robot arm, respectively.
Dynamic analysis of space structures including elastic, multibody, and control behavior
NASA Technical Reports Server (NTRS)
Pinson, Larry; Soosaar, Keto
1989-01-01
The problem is to develop analysis methods, modeling stategies, and simulation tools to predict with assurance the on-orbit performance and integrity of large complex space structures that cannot be verified on the ground. The problem must incorporate large reliable structural models, multi-body flexible dynamics, multi-tier controller interaction, environmental models including 1g and atmosphere, various on-board disturbances, and linkage to mission-level performance codes. All areas are in serious need of work, but the weakest link is multi-body flexible dynamics.
Lindert, Steffen; Kekenes-Huskey, Peter M; McCammon, J Andrew
2012-10-17
Troponin (Tn) is an important regulatory protein in the thin-filament complex of cardiomyocytes. Calcium binding to the troponin C (TnC) subunit causes a change in its dynamics that leads to the transient opening of a hydrophobic patch on TnC's surface, to which a helix of another subunit, troponin I (TnI), binds. This process initiates contraction, making it an important target for studies investigating the detailed molecular processes that underlie contraction. Here we use microsecond-timescale Anton molecular dynamics simulations to investigate the dynamics and kinetics of the opening transition of the TnC hydrophobic patch. Free-energy differences for opening are calculated for wild-type Ca(2+)-bound TnC (∼8 kcal/mol), V44Q Ca(2+)-bound TnC (3.2 kcal/mol), E40A Ca(2+)-bound TnC (∼12 kcal/mol), and wild-type apo TnC (∼20 kcal/mol). These results suggest that the mutations have a profound impact on the frequency with which the hydrophobic patch presents to TnI. In addition, these simulations corroborate that cardiac wild-type TnC does not open on timescales relevant to contraction without calcium being bound. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Multi-timescale data assimilation for atmosphere–ocean state estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steiger, Nathan; Hakim, Gregory
2016-06-24
Paleoclimate proxy data span seasonal to millennial timescales, and Earth's climate system has both high- and low-frequency components. Yet it is currently unclear how best to incorporate multiple timescales of proxy data into a single reconstruction framework and to also capture both high- and low-frequency components of reconstructed variables. Here we present a data assimilation approach that can explicitly incorporate proxy data at arbitrary timescales. The principal advantage of using such an approach is that it allows much more proxy data to inform a climate reconstruction, though there can be additional benefits. Through a series of offline data-assimilation-based pseudoproxy experiments,more » we find that atmosphere–ocean states are most skillfully reconstructed by incorporating proxies across multiple timescales compared to using proxies at short (annual) or long (~ decadal) timescales alone. Additionally, reconstructions that incorporate long-timescale pseudoproxies improve the low-frequency components of the reconstructions relative to using only high-resolution pseudoproxies. We argue that this is because time averaging high-resolution observations improves their covariance relationship with the slowly varying components of the coupled-climate system, which the data assimilation algorithm can exploit. These results are consistent across the climate models considered, despite the model variables having very different spectral characteristics. Furthermore, our results also suggest that it may be possible to reconstruct features of the oceanic meridional overturning circulation based on atmospheric surface temperature proxies, though here we find such reconstructions lack spectral power over a broad range of frequencies.« less
NASA Astrophysics Data System (ADS)
Hawkins, Ed; Day, Jonny; Tietsche, Steffen
2016-04-01
Recent years have seen significant developments in seasonal-to-interannual timescale climate prediction capabilities. However, until recently the potential of such systems to predict Arctic climate had not been assessed. We describe a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Inter-annual TimEscales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to inter-annual timescales. Here we provide a summary and update of the project's results which include: (1) quantifying the predictability of Arctic climate, especially sea ice; (2) the state-dependence of this predictability, finding that extreme years are potentially more predictable than neutral years; (3) analysing a spring 'predictability barrier' to skillful forecasts; (4) initial sea ice thickness information provides much of the skill for summer forecasts; (5) quantifying the sources of error growth and uncertainty in Arctic predictions. The dataset is now publicly available.
NASA Astrophysics Data System (ADS)
Taha, Ahmad Fayez
Transportation networks, wearable devices, energy systems, and the book you are reading now are all ubiquitous cyber-physical systems (CPS). These inherently uncertain systems combine physical phenomena with communication, data processing, control and optimization. Many CPSs are controlled and monitored by real-time control systems that use communication networks to transmit and receive data from systems modeled by physical processes. Existing studies have addressed a breadth of challenges related to the design of CPSs. However, there is a lack of studies on uncertain CPSs subject to dynamic unknown inputs and cyber-attacks---an artifact of the insertion of communication networks and the growing complexity of CPSs. The objective of this dissertation is to create secure, computational foundations for uncertain CPSs by establishing a framework to control, estimate and optimize the operation of these systems. With major emphasis on power networks, the dissertation deals with the design of secure computational methods for uncertain CPSs, focusing on three crucial issues---(1) cyber-security and risk-mitigation, (2) network-induced time-delays and perturbations and (3) the encompassed extreme time-scales. The dissertation consists of four parts. In the first part, we investigate dynamic state estimation (DSE) methods and rigorously examine the strengths and weaknesses of the proposed routines under dynamic attack-vectors and unknown inputs. In the second part, and utilizing high-frequency measurements in smart grids and the developed DSE methods in the first part, we present a risk mitigation strategy that minimizes the encountered threat levels, while ensuring the continual observability of the system through available, safe measurements. The developed methods in the first two parts rely on the assumption that the uncertain CPS is not experiencing time-delays, an assumption that might fail under certain conditions. To overcome this challenge, networked unknown input observers---observers/estimators for uncertain CPSs---are designed such that the effect of time-delays and cyber-induced perturbations are minimized, enabling secure DSE and risk mitigation in the first two parts. The final part deals with the extreme time-scales encompassed in CPSs, generally, and smart grids, specifically. Operational decisions for long time-scales can adversely affect the security of CPSs for faster time-scales. We present a model that jointly describes steady-state operation and transient stability by combining convex optimal power flow with semidefinite programming formulations of an optimal control problem. This approach can be jointly utilized with the aforementioned parts of the dissertation work, considering time-delays and DSE. The research contributions of this dissertation furnish CPS stakeholders with insights on the design and operation of uncertain CPSs, whilst guaranteeing the system's real-time safety. Finally, although many of the results of this dissertation are tailored to power systems, the results are general enough to be applied for a variety of uncertain CPSs.
Nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting
NASA Astrophysics Data System (ADS)
Abed, I.; Kacem, N.; Bouhaddi, N.; Bouazizi, M. L.
2016-04-01
We investigate the nonlinear dynamics of magnetically coupled beams for multi-modal vibration energy harvesting. A multi-physics model for the proposed device is developed taking into account geometric and magnetic nonlinearities. The coupled nonlinear equations of motion are solved using the Galerkin discretization coupled with the harmonic balance method and the asymptotic numerical method. Several numerical simulations have been performed showing that the expected performances of the proposed vibration energy harvester are significantly promising with up to 130 % in term of bandwidth and up to 60 μWcm-3g-2 in term of normalized harvested power.
Novoderezhkin, Vladimir I.; Doust, Alexander B.; Curutchet, Carles; Scholes, Gregory D.; van Grondelle, Rienk
2010-01-01
Abstract We model the spectra and excitation dynamics in the phycobiliprotein antenna complex PE545 isolated from the unicellular photosynthetic cryptophyte algae Rhodomonas CS24. The excitonic couplings between the eight bilins are calculated using the CIS/6-31G method. The site energies are extracted from a simultaneous fit of the absorption, circular dichroism, fluorescence, and excitation anisotropy spectra together with the transient absorption kinetics using the modified Redfield approach. Quantitative fit of the data enables us to assign the eight exciton components of the spectra and build up the energy transfer picture including pathways and timescales of energy relaxation, thus allowing a visualization of excitation dynamics within the complex. PMID:20643051
Extending the Applicability of Exact Nuclear Overhauser Enhancements to Large Proteins and RNA.
Nichols, Parker; Born, Alexandra; Henen, Morkos; Strotz, Dean; Chi, Celestine N; Güntert, Peter; Vögeli, Beat Rolf
2018-06-08
Distance-dependent NOEs are one of the most popular and important experimental restraints for calculating NMR structures. Despite this, they are mostly employed as semi-quantitative upper distance bounds, which discards a wealth of information that is encoded in the cross-relaxation rate constant. Information that is lost includes exact distances between protons and dynamics that occur on the sub-millisecond time-scale. Our recently introduced exact measurement of the NOE (eNOE) requires little additional experimental effort relative to other NMR observables. So far, we have used eNOEs to calculate multi-state ensembles of proteins up to ~150 residues. Here, we briefly revisit the eNOE methodology and present two new directions for the use of eNOEs: Applications to large proteins and RNA. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Subtle Monte Carlo Updates in Dense Molecular Systems.
Bottaro, Sandro; Boomsma, Wouter; E Johansson, Kristoffer; Andreetta, Christian; Hamelryck, Thomas; Ferkinghoff-Borg, Jesper
2012-02-14
Although Markov chain Monte Carlo (MC) simulation is a potentially powerful approach for exploring conformational space, it has been unable to compete with molecular dynamics (MD) in the analysis of high density structural states, such as the native state of globular proteins. Here, we introduce a kinetic algorithm, CRISP, that greatly enhances the sampling efficiency in all-atom MC simulations of dense systems. The algorithm is based on an exact analytical solution to the classic chain-closure problem, making it possible to express the interdependencies among degrees of freedom in the molecule as correlations in a multivariate Gaussian distribution. We demonstrate that our method reproduces structural variation in proteins with greater efficiency than current state-of-the-art Monte Carlo methods and has real-time simulation performance on par with molecular dynamics simulations. The presented results suggest our method as a valuable tool in the study of molecules in atomic detail, offering a potential alternative to molecular dynamics for probing long time-scale conformational transitions.
Peng, Zhouhua; Wang, Dan; Wang, Wei; Liu, Lu
2015-11-01
This paper investigates the containment control problem of networked autonomous underwater vehicles in the presence of model uncertainty and unknown ocean disturbances. A predictor-based neural dynamic surface control design method is presented to develop the distributed adaptive containment controllers, under which the trajectories of follower vehicles nearly converge to the dynamic convex hull spanned by multiple reference trajectories over a directed network. Prediction errors, rather than tracking errors, are used to update the neural adaptation laws, which are independent of the tracking error dynamics, resulting in two time-scales to govern the entire system. The stability property of the closed-loop network is established via Lyapunov analysis, and transient property is quantified in terms of L2 norms of the derivatives of neural weights, which are shown to be smaller than the classical neural dynamic surface control approach. Comparative studies are given to show the substantial improvements of the proposed new method. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Castellanos, Aaron; Harp, G.
2014-01-01
The Allen Telescope Array (ATA) is a 42 radio dish array located in Hat Creek, CA and is used to search for traces of Extraterrestrial Intelligence (SETI) and to study the interstellar medium. The ATA has taken multi-epoch measurements of the Galactic Center 6667 MHz) and the intraday variable Blazar 0716+714 (1 & 3MHz) and are imaged on 10 second timescales to search for intensity fluctuations on timescales 10s and beyond. We utilize software developed and focused on antenna system temperatures to minimize Radio Frequency Interference (RFI) in order to enhance calibration and signal variability. We will discuss potential radio bursts from the Galactic Center, possibly originating from the descent of the gas cloud G2 into the Galactic Center.
Structure and dynamics of proflavine association around DNA.
Sasikala, Wilbee D; Mukherjee, Arnab
2016-04-21
Proflavine is a small molecule that intercalates into DNA and, thereby, acts as an anticancer agent. Intercalation of proflavine is shown to be a two-step process in which the first step is believed to be the formation of a pre-intercalative outside bound state. Experimental studies so far have been unable to capture the nature of the outside bound state. However, the sub-millisecond timescale observed in fluorescence kinetic experiments is often attributed to the binding of proflavine outside of DNA. Here, we have performed molecular dynamics simulations with multiple proflavine molecules to study the structure and dynamics of the formation of the outside bound state of DNA at different ion concentrations. We observed that the timescale of the outside bound state formation is, at least, five orders of magnitude faster (in nanoseconds) than the experimentally reported timescale (sub-milliseconds) attributed to binding outside DNA. Moreover, we also observed the stacked arrangement of proflavine all around DNA, which is different from the experimentally predicted stacking arrangement perpendicular to the helical axis of DNA in the close vicinity of the phosphate groups. This study, therefore, provides insight into the molecular structure and dynamics of the pre-intercalative outside bound state and will help in understanding the overall intercalation mechanism.
Controllability of multiplex, multi-time-scale networks
NASA Astrophysics Data System (ADS)
Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.
2016-09-01
The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified model, we provide crucial insight into disentangling how our ability to control real interacting complex systems is affected by a variety of sources of complexity.
Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M
2014-02-01
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use (13) C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Copyright © 2013 Wiley Periodicals, Inc.
Multiscale Behavior of Viscous Fluids Dynamics: Experimental Observations
NASA Astrophysics Data System (ADS)
Arciniega-Ceballos, Alejandra; Spina, Laura; Scheu, Bettina; Dingwell, Donald B.
2016-04-01
The dynamics of Newtonian fluids with viscosities of mafic to intermediate silicate melts (10-1000 Pa s) during slow decompression present multi-time scale processes. To observe these processes we have performed several experiments on silicon oil saturated with Argon gas for 72 hours, in a Plexiglas autoclave. The slow decompression, dropping from 10 MPa to ambient pressure, acting as the excitation mechanism, triggered several processes with their own distinct timescales. These processes generate complex non-stationary microseismic signals, which have been recorded with 7 high-dynamic piezoelectric sensors located along the conduit flanked by high-speed video recordings. The analysis in time and frequency of these time series and their correlation with the associated high-speed imaging enables the characterization of distinct phases and the extraction of the individual processes during the evolution of decompression of these viscous fluids. We have observed fluid-solid elastic interaction, degassing, fluid mass expansion and flow, bubble nucleation, growth, coalescence and collapse, foam building and vertical wagging. All these processes (in fine and coarse scales) are sequentially coupled in time, occur within specific pressure intervals, and exhibit a localized distribution along the conduit. Their coexistence and interactions constitute the stress field and driving forces that determine the dynamics of the conduit system. Our observations point to the great potential of this experimental approach in the understanding of volcanic conduit dynamics and volcanic seismicity.
NASA Astrophysics Data System (ADS)
Poirier, Clément; Tessier, Bernadette; Chaumillon, Éric; Bertin, Xavier; Fruergaard, Mikkel; Mouazé, Dominique; Noël, Suzanne; Weill, Pierre; Wöppelmann, Guy
2017-03-01
Present-day coastal barriers represent around 15% of the world's oceanic shorelines, and play an important role as early warning indicators of environmental change. Among them, wave-dominated barriers are dynamic landforms that tend to migrate landward in response to storms and sea-level change. High rates of sediment supply can locally offset the global retrogradation trend, providing valuable records of past environmental change occurring on transgressive coasts. However, geochronological control limits the temporal resolution of such records to millennial or centennial timescales, and the decadal or even faster response of wave-built barriers to historical climate changes is therefore poorly understood. In this study, we show that shoreline dynamics of sand spits reconstructed from old cartographic documents has been synchronous on both margins of the North Atlantic Ocean since about 1800 CE. Spit growth accelerated drastically during three periods lasting about 15 years, characterised by positive North Atlantic Oscillation (NAO) and negative East Atlantic-West Russia (EA-WR) atmospheric circulation patterns. These changes are in phase with periods of increased volcanic activity. We use a high-resolution wave hindcast (1948-2014 CE) in a reference area to confirm the association between NAO and EA-WR as a proxy for offshore and nearshore wave height and for associated longshore sediment transport (LST) involved in spit growth. A 24-month lagged correlation between sediment transport and volcanic aerosol optical thickness (concentration of ashes in the atmosphere) is observed, suggesting that spit shoreline dynamics at the decadal timescale is partially forced by external climate drivers via cascading effects on atmospheric circulation patterns and wave climate. Our results imply that NAO variability alone is not sufficient to understand the evolution of wave-built coastal environments. The associated sediment record can be used to reconstruct multi-decadal variability of other climate patterns.
Building a Bridge to Deep Time: Sedimentary Systems Across Timescales
NASA Astrophysics Data System (ADS)
Romans, B.; Castelltort, S.; Covault, J. A.; Walsh, J. P.
2013-12-01
It is increasingly important to understand the complex and interdependent processes associated with sediment production, transport, and deposition at timescales relevant to civilization (annual to millennial). However, predicting the response of sedimentary systems to global environmental change across a range of timescales remains a significant challenge. For example, a significant increase in global average temperature at the Paleocene-Eocene boundary (55.8 Ma) is interpreted to have occurred over millennial timescales; however, the specific response of sedimentary systems (e.g., timing and magnitude of sediment flux variability in river systems) to that forcing is debated. Thus, using such environmental perturbations recorded in sedimentary archives as analogs for ongoing/future global change requires improved approaches to bridging across time. Additionally, the ability to bridge timescales is critical for addressing other questions about sedimentary system behavior, including signal propagation and signal versus ';noise' in the record. The geologic record provides information that can be used to develop a comprehensive understanding of process-response behavior at multiple timescales. The geomorphic ';snapshot' of present-day erosional and depositional landscapes can be examined to reconstruct the history of processes that created the observable configurations. Direct measurement and monitoring of active processes are used to constrain conceptual and numerical models and develop sedimentary system theory. But real-time observations of active Earth-surface processes are limited to the very recent, and how such processes integrate over longer timescales to transform into strata remains unknown. At longer timescales (>106 yr), the stratigraphic record is the only vestige of ancient sedimentary systems. Stratigraphic successions contain a complex record of sediment deposition and preservation, as well as the detrital material that originated in long since denuded orogenic belts. Moreover, as the timescale of the duration of the process-response behavior and/or system age increase, additional aspects must be considered (e.g., significant tectonic regime change, rare but significant events, non-periodic global change, etc.). In this presentation we discuss several examples of sedimentary system analysis at different timescales with the goal of highlighting various approaches at one timescale and how they can (or cannot) be applied for questions at different timescales. Examples include: (1) brief review of decadal to centennial sediment budgets; (2) land-to-sea sediment budget reconstructions from southern California at millennial to multi-millennial timescales, and (3) sedimentary system response to climatic and tectonic forcings at ≥105 yr timescales.
Time series modeling of human operator dynamics in manual control tasks
NASA Technical Reports Server (NTRS)
Biezad, D. J.; Schmidt, D. K.
1984-01-01
A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency responses of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that has not been previously modeled to demonstrate the strengths of the method.
Time Series Modeling of Human Operator Dynamics in Manual Control Tasks
NASA Technical Reports Server (NTRS)
Biezad, D. J.; Schmidt, D. K.
1984-01-01
A time-series technique is presented for identifying the dynamic characteristics of the human operator in manual control tasks from relatively short records of experimental data. Control of system excitation signals used in the identification is not required. The approach is a multi-channel identification technique for modeling multi-input/multi-output situations. The method presented includes statistical tests for validity, is designed for digital computation, and yields estimates for the frequency response of the human operator. A comprehensive relative power analysis may also be performed for validated models. This method is applied to several sets of experimental data; the results are discussed and shown to compare favorably with previous research findings. New results are also presented for a multi-input task that was previously modeled to demonstrate the strengths of the method.
Numerical integration and optimization of motions for multibody dynamic systems
NASA Astrophysics Data System (ADS)
Aguilar Mayans, Joan
This thesis considers the optimization and simulation of motions involving rigid body systems. It does so in three distinct parts, with the following topics: optimization and analysis of human high-diving motions, efficient numerical integration of rigid body dynamics with contacts, and motion optimization of a two-link robot arm using Finite-Time Lyapunov Analysis. The first part introduces the concept of eigenpostures, which we use to simulate and analyze human high-diving motions. Eigenpostures are used in two different ways: first, to reduce the complexity of the optimal control problem that we solve to obtain such motions, and second, to generate an eigenposture space to which we map existing real world motions to better analyze them. The benefits of using eigenpostures are showcased through different examples. The second part reviews an extensive list of integration algorithms used for the integration of rigid body dynamics. We analyze the accuracy and stability of the different integrators in the three-dimensional space and the rotation space SO(3). Integrators with an accuracy higher than first order perform more efficiently than integrators with first order accuracy, even in the presence of contacts. The third part uses Finite-time Lyapunov Analysis to optimize motions for a two-link robot arm. Finite-Time Lyapunov Analysis diagnoses the presence of time-scale separation in the dynamics of the optimized motion and provides the information and methodology for obtaining an accurate approximation to the optimal solution, avoiding the complications that timescale separation causes for alternative solution methods.
Solar System Chaos and its climatic and biogeochemical consequences
NASA Astrophysics Data System (ADS)
Ikeda, M.; Tada, R.; Ozaki, K.; Olsen, P. E.
2017-12-01
Insolation changes caused by changes in Earth's orbital parameters are the main driver of climatic variations, whose pace has been used for astronomically-calibrated geologic time scales of high accuracy to understand Earth system dynamics. However, the astrophysical models beyond several tens of million years ago have large uncertainty due to chaotic behavior of the Solar System, and its impact on amplitude modulation of multi-Myr-scale orbital variations and consequent climate changes has become the subject of debate. Here we show the geologic constraints on the past chaotic behavior of orbital cycles from early Mesozoic monsoon-related records; the 30-Myr-long lake level records of the lacustrine sequence in Newark-Hartford basins (North America) and 70-Myr-long biogenic silica (BSi) burial flux record of pelagic deep-sea chert sequence in Inuyama area (Japan). BSi burial flux of chert could be considered as proportional to the dissolved Si (DSi) input from chemical weathering on timescales longer than the residence time of DSi ( 100 kyr), because chert could represent a major sink for oceanic dissolved silica (Ikeda et al., 2017).These geologic records show multi-Myr cycles with similar frequency modulations of eccentricity solution of astronomical model La2010d (Laskar et al., 2011) compared with other astronomical solutions, but not exactly same. Our geologic records provide convincing evidence for the past chaotic dynamical behaviour of the Solar System and new and challenging additional constraints for astrophysical models. In addition, we find that ˜10 Myr cycle detected in monsoon proxies and their amplitude modulation of ˜2 Myr cycle may be related to the amplitude modulation of ˜2 Myr eccentricity cycle through non-linear process(es) of Earth system dynamics, suggesting possible impact of the chaotic behavior of Solar planets on climate change. Further impact of multi-Myr orbital cycles on global biogeochemical cycles will be discussed.
The Decadal Climate Prediction Project (DCPP) contribution to CMIP6
Boer, George J.; Smith, Douglas M.; Cassou, Christophe; ...
2016-01-01
The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al., 2016) and to the WCRP Grand Challenge on Near Term Climate Predictionmore » (Kushnir et al., 2016). The DCPP consists of three components. Component A comprises the production and analysis of an extensive archive of retrospective forecasts to be used to assess and understand historical decadal prediction skill, as a basis for improvements in all aspects of end-to-end decadal prediction, and as a basis for forecasting on annual to decadal timescales. Component B undertakes ongoing production, analysis and dissemination of experimental quasi-real-time multi-model forecasts as a basis for potential operational forecast production. Component C involves the organization and coordination of case studies of particular climate shifts and variations, both natural and naturally forced (e.g. the “hiatus”, volcanoes), including the study of the mechanisms that determine these behaviours. Furthermore, groups are invited to participate in as many or as few of the components of the DCPP, each of which are separately prioritized, as are of interest to them.The Decadal Climate Prediction Project addresses a range of scientific issues involving the ability of the climate system to be predicted on annual to decadal timescales, the skill that is currently and potentially available, the mechanisms involved in long timescale variability, and the production of forecasts of benefit to both science and society.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boer, George J.; Smith, Douglas M.; Cassou, Christophe
The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al., 2016) and to the WCRP Grand Challenge on Near Term Climate Predictionmore » (Kushnir et al., 2016). The DCPP consists of three components. Component A comprises the production and analysis of an extensive archive of retrospective forecasts to be used to assess and understand historical decadal prediction skill, as a basis for improvements in all aspects of end-to-end decadal prediction, and as a basis for forecasting on annual to decadal timescales. Component B undertakes ongoing production, analysis and dissemination of experimental quasi-real-time multi-model forecasts as a basis for potential operational forecast production. Component C involves the organization and coordination of case studies of particular climate shifts and variations, both natural and naturally forced (e.g. the “hiatus”, volcanoes), including the study of the mechanisms that determine these behaviours. Furthermore, groups are invited to participate in as many or as few of the components of the DCPP, each of which are separately prioritized, as are of interest to them.The Decadal Climate Prediction Project addresses a range of scientific issues involving the ability of the climate system to be predicted on annual to decadal timescales, the skill that is currently and potentially available, the mechanisms involved in long timescale variability, and the production of forecasts of benefit to both science and society.« less
NASA Astrophysics Data System (ADS)
Charnoz, Sébastien; Michaut, Chloé
2015-11-01
It is thought that the Moon accreted from the protolunar disk that was assembled after the last giant impact on Earth. Due to its high temperature, the protolunar disk may act as a thermochemical reactor in which the material is processed before being incorporated into the Moon. Outstanding issues like devolatilisation and istotopic evolution are tied to the disk evolution, however its lifetime, dynamics and thermodynamics are unknown. Here, we numerically explore the long term viscous evolution of the protolunar disk using a one dimensional model where the different phases (vapor and condensed) are vertically stratified. Viscous heating, radiative cooling, phase transitions and gravitational instability are accounted for whereas Moon's accretion is not considered for the moment. The viscosity of the gas, liquid and solid phases dictates the disk evolution. We find that (1) the vapor condenses into liquid in ∼10 years, (2) a large fraction of the disk mass flows inward forming a hot and compact liquid disk between 1 and 1.7 Earth's radii, a region where the liquid is gravitationally stable and can accumulate, (3) the disk finally solidifies in 103 to 105 years. Viscous heating is never balanced by radiative cooling. If the vapor phase is abnormally viscous, due to magneto-rotational instability for instance, most of the disk volatile components are transported to Earth leaving a disk enriched in refractory elements. This opens a way to form a volatile-depleted Moon and would suggest that the missing Moon's volatiles are buried today into the Earth. The disk cooling timescale may be long enough to allow for planet/disk isotopic equilibration. However large uncertainties on the disk physics remain because of the complexity of its multi-phased structure.
Least-rattling feedback from strong time-scale separation
NASA Astrophysics Data System (ADS)
Chvykov, Pavel; England, Jeremy
2018-03-01
In most interacting many-body systems associated with some "emergent phenomena," we can identify subgroups of degrees of freedom that relax on dramatically different time scales. Time-scale separation of this kind is particularly helpful in nonequilibrium systems where only the fast variables are subjected to external driving; in such a case, it may be shown through elimination of fast variables that the slow coordinates effectively experience a thermal bath of spatially varying temperature. In this paper, we investigate how such a temperature landscape arises according to how the slow variables affect the character of the driven quasisteady state reached by the fast variables. Brownian motion in the presence of spatial temperature gradients is known to lead to the accumulation of probability density in low-temperature regions. Here, we focus on the implications of attraction to low effective temperature for the long-term evolution of slow variables. After quantitatively deriving the temperature landscape for a general class of overdamped systems using a path-integral technique, we then illustrate in a simple dynamical system how the attraction to low effective temperature has a fine-tuning effect on the slow variable, selecting configurations that bring about exceptionally low force fluctuation in the fast-variable steady state. We furthermore demonstrate that a particularly strong effect of this kind can take place when the slow variable is tuned to bring about orderly, integrable motion in the fast dynamics that avoids thermalizing energy absorbed from the drive. We thus point to a potentially general feedback mechanism in multi-time-scale active systems, that leads to the exploration of slow variable space, as if in search of fine tuning for a "least-rattling" response in the fast coordinates.
NASA Astrophysics Data System (ADS)
Seftigen, Kristina; Goosse, Hugues; Klein, Francois; Chen, Deliang
2017-12-01
The integration of climate proxy information with general circulation model (GCM) results offers considerable potential for deriving greater understanding of the mechanisms underlying climate variability, as well as unique opportunities for out-of-sample evaluations of model performance. In this study, we combine insights from a new tree-ring hydroclimate reconstruction from Scandinavia with projections from a suite of forced transient simulations of the last millennium and historical intervals from the CMIP5 and PMIP3 archives. Model simulations and proxy reconstruction data are found to broadly agree on the modes of atmospheric variability that produce droughts-pluvials in the region. Despite these dynamical similarities, large differences between simulated and reconstructed hydroclimate time series remain. We find that the GCM-simulated multi-decadal and/or longer hydroclimate variability is systematically smaller than the proxy-based estimates, whereas the dominance of GCM-simulated high-frequency components of variability is not reflected in the proxy record. Furthermore, the paleoclimate evidence indicates in-phase coherencies between regional hydroclimate and temperature on decadal timescales, i.e., sustained wet periods have often been concurrent with warm periods and vice versa. The CMIP5-PMIP3 archive suggests, however, out-of-phase coherencies between the two variables in the last millennium. The lack of adequate understanding of mechanisms linking temperature and moisture supply on longer timescales has serious implications for attribution and prediction of regional hydroclimate changes. Our findings stress the need for further paleoclimate data-model intercomparison efforts to expand our understanding of the dynamics of hydroclimate variability and change, to enhance our ability to evaluate climate models, and to provide a more comprehensive view of future drought and pluvial risks.
Constrained Analysis of Fluorescence Anisotropy Decay:Application to Experimental Protein Dynamics
Feinstein, Efraim; Deikus, Gintaras; Rusinova, Elena; Rachofsky, Edward L.; Ross, J. B. Alexander; Laws, William R.
2003-01-01
Hydrodynamic properties as well as structural dynamics of proteins can be investigated by the well-established experimental method of fluorescence anisotropy decay. Successful use of this method depends on determination of the correct kinetic model, the extent of cross-correlation between parameters in the fitting function, and differences between the timescales of the depolarizing motions and the fluorophore's fluorescence lifetime. We have tested the utility of an independently measured steady-state anisotropy value as a constraint during data analysis to reduce parameter cross correlation and to increase the timescales over which anisotropy decay parameters can be recovered accurately for two calcium-binding proteins. Mutant rat F102W parvalbumin was used as a model system because its single tryptophan residue exhibits monoexponential fluorescence intensity and anisotropy decay kinetics. Cod parvalbumin, a protein with a single tryptophan residue that exhibits multiexponential fluorescence decay kinetics, was also examined as a more complex model. Anisotropy decays were measured for both proteins as a function of solution viscosity to vary hydrodynamic parameters. The use of the steady-state anisotropy as a constraint significantly improved the precision and accuracy of recovered parameters for both proteins, particularly for viscosities at which the protein's rotational correlation time was much longer than the fluorescence lifetime. Thus, basic hydrodynamic properties of larger biomolecules can now be determined with more precision and accuracy by fluorescence anisotropy decay. PMID:12524313
When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches
Muñoz, Victor; Cerminara, Michele
2016-01-01
Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico. All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. PMID:27574021
An adaptive multi-level simulation algorithm for stochastic biological systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lester, C., E-mail: lesterc@maths.ox.ac.uk; Giles, M. B.; Baker, R. E.
2015-01-14
Discrete-state, continuous-time Markov models are widely used in the modeling of biochemical reaction networks. Their complexity often precludes analytic solution, and we rely on stochastic simulation algorithms (SSA) to estimate system statistics. The Gillespie algorithm is exact, but computationally costly as it simulates every single reaction. As such, approximate stochastic simulation algorithms such as the tau-leap algorithm are often used. Potentially computationally more efficient, the system statistics generated suffer from significant bias unless tau is relatively small, in which case the computational time can be comparable to that of the Gillespie algorithm. The multi-level method [Anderson and Higham, “Multi-level Montemore » Carlo for continuous time Markov chains, with applications in biochemical kinetics,” SIAM Multiscale Model. Simul. 10(1), 146–179 (2012)] tackles this problem. A base estimator is computed using many (cheap) sample paths at low accuracy. The bias inherent in this estimator is then reduced using a number of corrections. Each correction term is estimated using a collection of paired sample paths where one path of each pair is generated at a higher accuracy compared to the other (and so more expensive). By sharing random variables between these paired paths, the variance of each correction estimator can be reduced. This renders the multi-level method very efficient as only a relatively small number of paired paths are required to calculate each correction term. In the original multi-level method, each sample path is simulated using the tau-leap algorithm with a fixed value of τ. This approach can result in poor performance when the reaction activity of a system changes substantially over the timescale of interest. By introducing a novel adaptive time-stepping approach where τ is chosen according to the stochastic behaviour of each sample path, we extend the applicability of the multi-level method to such cases. We demonstrate the efficiency of our method using a number of examples.« less
The relationship between two fast/slow analysis techniques for bursting oscillations
Teka, Wondimu; Tabak, Joël; Bertram, Richard
2012-01-01
Bursting oscillations in excitable systems reflect multi-timescale dynamics. These oscillations have often been studied in mathematical models by splitting the equations into fast and slow subsystems. Typically, one treats the slow variables as parameters of the fast subsystem and studies the bifurcation structure of this subsystem. This has key features such as a z-curve (stationary branch) and a Hopf bifurcation that gives rise to a branch of periodic spiking solutions. In models of bursting in pituitary cells, we have recently used a different approach that focuses on the dynamics of the slow subsystem. Characteristic features of this approach are folded node singularities and a critical manifold. In this article, we investigate the relationships between the key structures of the two analysis techniques. We find that the z-curve and Hopf bifurcation of the two-fast/one-slow decomposition are closely related to the voltage nullcline and folded node singularity of the one-fast/two-slow decomposition, respectively. They become identical in the double singular limit in which voltage is infinitely fast and calcium is infinitely slow. PMID:23278052
The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor.
Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-Ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji
2018-03-05
The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes.
Chavent, Matthieu; Duncan, Anna L; Sansom, Mark Sp
2016-10-01
Molecular dynamics simulations provide a computational tool to probe membrane proteins and systems at length scales ranging from nanometers to close to a micrometer, and on microsecond timescales. All atom and coarse-grained simulations may be used to explore in detail the interactions of membrane proteins and specific lipids, yielding predictions of lipid binding sites in good agreement with available structural data. Building on the success of protein-lipid interaction simulations, larger scale simulations reveal crowding and clustering of proteins, resulting in slow and anomalous diffusional dynamics, within realistic models of cell membranes. Current methods allow near atomic resolution simulations of small membrane organelles, and of enveloped viruses to be performed, revealing key aspects of their structure and functionally important dynamics. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Simplification of reversible Markov chains by removal of states with low equilibrium occupancy.
Ullah, Ghanim; Bruno, William J; Pearson, John E
2012-10-21
We present a practical method for simplifying Markov chains on a potentially large state space when detailed balance holds. A simple and transparent technique is introduced to remove states with low equilibrium occupancy. The resulting system has fewer parameters. The resulting effective rates between the remaining nodes give dynamics identical to the original system's except on very fast timescales. This procedure amounts to using separation of timescales to neglect small capacitance nodes in a network of resistors and capacitors. We illustrate the technique by simplifying various reaction networks, including transforming an acyclic four-node network to a three-node cyclic network. For a reaction step in which a ligand binds, the law of mass action implies a forward rate proportional to ligand concentration. The effective rates in the simplified network are found to be rational functions of ligand concentration. Copyright © 2012 Elsevier Ltd. All rights reserved.
Perspectives for short timescale variability studies with Gaia
NASA Astrophysics Data System (ADS)
Roelens, M.; Eyer, L.; Mowlavi, N.; Lecoeur-Taïbi, I.; Rimoldini, L.; Blanco-Cuaresma, S.; Palaversa, L.; Süveges, M.; Charnas, J.; Wevers, T.
2017-12-01
We assess the potential of Gaia for detecting and characterizing short timescale variables, i.e. at timescale from a few seconds to a dozen hours, through extensive light-curve simulations for various short timescale variable types, including both periodic and non-periodic variability. We evidence that the variogram analysis applied to Gaia photometry should enable to detect such fast variability phenomena, down to amplitudes of a few millimagnitudes, with limited contamination from longer timescale variables or constant sources. This approach also gives valuable information on the typical timescale(s) of the considered variation, which could complement results of classical period search methods, and help prepare ground-based follow-up of the Gaia short timescale candidates.
Epidemicity thresholds for water-borne and water-related diseases.
Mari, Lorenzo; Casagrandi, Renato; Rinaldo, Andrea; Gatto, Marino
2018-06-14
Determining the conditions that favor pathogen establishment in a host community is key to disease control and eradication. However, focusing on long-term dynamics alone may lead to an underestimation of the threats imposed by outbreaks triggered by short-term transient phenomena. Achieving an effective epidemiological response thus requires to look at different timescales, each of which may be endowed with specific management objectives. In this work we aim to determine epidemicity thresholds for some prototypical examples of water-borne and water-related diseases, a diverse family of infections transmitted either directly through water infested with pathogens or by vectors whose lifecycles are closely associated with water. From a technical perspective, while conditions for endemicity are determined via stability analysis, epidemicity thresholds are defined through generalized reactivity analysis, a recently proposed method that allows the study of the short-term instability properties of ecological systems. Understanding the drivers of water-borne and water-related disease dynamics over timescales that may be relevant to epidemic and/or endemic transmission is a challenge of the utmost importance, as large portions of the developing world are still struggling with the burden imposed by these infections. Copyright © 2018 Elsevier Ltd. All rights reserved.
Rajasethupathy, Priyamvada; Ferenczi, Emily; Deisseroth, Karl
2017-01-01
Current optogenetic methodology enables precise inhibition or excitation of neural circuits, spanning timescales as needed from the acute (milliseconds) to the chronic (many days or more), for experimental modulation of network activity and animal behavior. Such broad temporal versatility, unique to optogenetic control, is particularly powerful when combined with brain activity measurements that span both acute and chronic timescales as well. This enables, for instance, the study of adaptive circuit dynamics across the intact brain, and tuning interventions to match activity patterns naturally observed during behavior in the same individual. Although the impact of this approach has been greater on basic research than on clinical translation, it is natural to ask if specific neural circuit activity patterns discovered to be involved in controlling adaptive or maladaptive behaviors could become targets for treatment of neuropsychiatric diseases. Here we consider the landscape of such ideas related to therapeutic targeting of circuit dynamics, taking note of developments not only in optical but also in ultrasonic, magnetic, and thermal methods. We note the recent emergence of first-in-kind optogenetically-guided clinical outcomes, as well as opportunities related to the integration of interventions and readouts spanning diverse circuit-physiology, molecular, and behavioral modalities. PMID:27104976
Kappel, Kalli; Miao, Yinglong; McCammon, J Andrew
2015-11-01
Elucidating the detailed process of ligand binding to a receptor is pharmaceutically important for identifying druggable binding sites. With the ability to provide atomistic detail, computational methods are well poised to study these processes. Here, accelerated molecular dynamics (aMD) is proposed to simulate processes of ligand binding to a G-protein-coupled receptor (GPCR), in this case the M3 muscarinic receptor, which is a target for treating many human diseases, including cancer, diabetes and obesity. Long-timescale aMD simulations were performed to observe the binding of three chemically diverse ligand molecules: antagonist tiotropium (TTP), partial agonist arecoline (ARc) and full agonist acetylcholine (ACh). In comparison with earlier microsecond-timescale conventional MD simulations, aMD greatly accelerated the binding of ACh to the receptor orthosteric ligand-binding site and the binding of TTP to an extracellular vestibule. Further aMD simulations also captured binding of ARc to the receptor orthosteric site. Additionally, all three ligands were observed to bind in the extracellular vestibule during their binding pathways, suggesting that it is a metastable binding site. This study demonstrates the applicability of aMD to protein-ligand binding, especially the drug recognition of GPCRs.
Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR.
Knight, Michael J; Pell, Andrew J; Bertini, Ivano; Felli, Isabella C; Gonnelli, Leonardo; Pierattelli, Roberta; Herrmann, Torsten; Emsley, Lyndon; Pintacuda, Guido
2012-07-10
We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.
Kinematic validation of a quasi-geostrophic model for the fast dynamics in the Earth's outer core
NASA Astrophysics Data System (ADS)
Maffei, S.; Jackson, A.
2017-09-01
We derive a quasi-geostrophic (QG) system of equations suitable for the description of the Earth's core dynamics on interannual to decadal timescales. Over these timescales, rotation is assumed to be the dominant force and fluid motions are strongly invariant along the direction parallel to the rotation axis. The diffusion-free, QG system derived here is similar to the one derived in Canet et al. but the projection of the governing equations on the equatorial disc is handled via vertical integration and mass conservation is applied to the velocity field. Here we carefully analyse the properties of the resulting equations and we validate them neglecting the action of the Lorentz force in the momentum equation. We derive a novel analytical solution describing the evolution of the magnetic field under these assumptions in the presence of a purely azimuthal flow and an alternative formulation that allows us to numerically solve the evolution equations with a finite element method. The excellent agreement we found with the analytical solution proves that numerical integration of the QG system is possible and that it preserves important physical properties of the magnetic field. Implementation of magnetic diffusion is also briefly considered.
Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics.
La Spina, G; Burton, M; De' Michieli Vitturi, M; Arzilli, F
2016-12-12
Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1-2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism.
Role of syn-eruptive plagioclase disequilibrium crystallization in basaltic magma ascent dynamics
La Spina, G.; Burton, M.; de' Michieli Vitturi, M.; Arzilli, F.
2016-01-01
Timescales of magma ascent in conduit models are typically assumed to be much longer than crystallization and gas exsolution for basaltic eruptions. However, it is now recognized that basaltic magmas may rise fast enough for disequilibrium processes to play a key role on the ascent dynamics. The quantification of the characteristic times for crystallization and exsolution processes are fundamental to our understanding of such disequilibria and ascent dynamics. Here we use observations from Mount Etna's 2001 eruption and a magma ascent model to constrain timescales for crystallization and exsolution processes. Our results show that plagioclase reaches equilibrium in 1–2 h, whereas ascent times were <1 h. Using these new constraints on disequilibrium plagioclase crystallization we also reproduce observed crystal abundances for different basaltic eruptions. The strong relation between magma ascent rate and disequilibrium crystallization and exsolution plays a key role in controlling eruption dynamics in basaltic volcanism. PMID:27941750
Bousserez, Nicolas; Henze, Daven K.; Rooney, Brigitte; ...
2016-05-20
The success of future geostationary (GEO) satellite observation missions depends on our ability to design instruments that address their key scientific objectives. Here, an Observation System Simulation Experiment (OSSE) is performed to quantify the constraints on methane (CH 4) emissions in North America obtained from shortwave infrared (SWIR), thermal infrared (TIR), and multi-spectral (SWIR+TIR) measurements in geostationary orbit and from future SWIR low-Earth orbit (LEO) measurements. Furthermore, we used an efficient stochastic algorithm to compute the information content of the inverted emissions at high spatial resolution (0.5° × 0.7°) in a variational framework using the GEOS-Chem chemistry-transport model and itsmore » adjoint. Our results show that at sub-weekly timescales, SWIR measurements in GEO orbit can constrain about twice as many independent flux patterns than in LEO orbit, with a degree of freedom for signal (DOF) for the inversion of 266 and 115, respectively. Comparisons between TIR GEO and SWIR LEO configurations reveal that poor boundary layer sensitivities for the TIR measurements cannot be compensated for by the high spatiotemporal sampling of a GEO orbit. The benefit of a multi-spectral instrument compared to current SWIR products in a GEO context is shown for sub-weekly timescale constraints, with an increase in the DOF of about 50 % for a 3-day inversion. Our results further suggest that both the SWIR and multi-spectral measurements on GEO orbits could almost fully resolve CH 4 fluxes at a spatial resolution of at least 100 km × 100 km over source hotspots (emissions > 4 × 10 5 kg day -1). The sensitivity of the optimized emission scaling factors to typical errors in boundary and initial conditions can reach 30 and 50 % for the SWIR GEO or SWIR LEO configurations, respectively, while it is smaller than 5 % in the case of a multi-spectral GEO system. Our results demonstrate that multi-spectral measurements from a geostationary satellite platform would address the need for higher spatiotemporal constraints on CH 4 emissions while greatly mitigating the impact of inherent uncertainties in source inversion methods on the inferred fluxes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bousserez, Nicolas; Henze, Daven K.; Rooney, Brigitte
The success of future geostationary (GEO) satellite observation missions depends on our ability to design instruments that address their key scientific objectives. Here, an Observation System Simulation Experiment (OSSE) is performed to quantify the constraints on methane (CH 4) emissions in North America obtained from shortwave infrared (SWIR), thermal infrared (TIR), and multi-spectral (SWIR+TIR) measurements in geostationary orbit and from future SWIR low-Earth orbit (LEO) measurements. Furthermore, we used an efficient stochastic algorithm to compute the information content of the inverted emissions at high spatial resolution (0.5° × 0.7°) in a variational framework using the GEOS-Chem chemistry-transport model and itsmore » adjoint. Our results show that at sub-weekly timescales, SWIR measurements in GEO orbit can constrain about twice as many independent flux patterns than in LEO orbit, with a degree of freedom for signal (DOF) for the inversion of 266 and 115, respectively. Comparisons between TIR GEO and SWIR LEO configurations reveal that poor boundary layer sensitivities for the TIR measurements cannot be compensated for by the high spatiotemporal sampling of a GEO orbit. The benefit of a multi-spectral instrument compared to current SWIR products in a GEO context is shown for sub-weekly timescale constraints, with an increase in the DOF of about 50 % for a 3-day inversion. Our results further suggest that both the SWIR and multi-spectral measurements on GEO orbits could almost fully resolve CH 4 fluxes at a spatial resolution of at least 100 km × 100 km over source hotspots (emissions > 4 × 10 5 kg day -1). The sensitivity of the optimized emission scaling factors to typical errors in boundary and initial conditions can reach 30 and 50 % for the SWIR GEO or SWIR LEO configurations, respectively, while it is smaller than 5 % in the case of a multi-spectral GEO system. Our results demonstrate that multi-spectral measurements from a geostationary satellite platform would address the need for higher spatiotemporal constraints on CH 4 emissions while greatly mitigating the impact of inherent uncertainties in source inversion methods on the inferred fluxes.« less
Multi-site precipitation downscaling using a stochastic weather generator
NASA Astrophysics Data System (ADS)
Chen, Jie; Chen, Hua; Guo, Shenglian
2018-03-01
Statistical downscaling is an efficient way to solve the spatiotemporal mismatch between climate model outputs and the data requirements of hydrological models. However, the most commonly-used downscaling method only produces climate change scenarios for a specific site or watershed average, which is unable to drive distributed hydrological models to study the spatial variability of climate change impacts. By coupling a single-site downscaling method and a multi-site weather generator, this study proposes a multi-site downscaling approach for hydrological climate change impact studies. Multi-site downscaling is done in two stages. The first stage involves spatially downscaling climate model-simulated monthly precipitation from grid scale to a specific site using a quantile mapping method, and the second stage involves the temporal disaggregating of monthly precipitation to daily values by adjusting the parameters of a multi-site weather generator. The inter-station correlation is specifically considered using a distribution-free approach along with an iterative algorithm. The performance of the downscaling approach is illustrated using a 10-station watershed as an example. The precipitation time series derived from the National Centers for Environment Prediction (NCEP) reanalysis dataset is used as the climate model simulation. The precipitation time series of each station is divided into 30 odd years for calibration and 29 even years for validation. Several metrics, including the frequencies of wet and dry spells and statistics of the daily, monthly and annual precipitation are used as criteria to evaluate the multi-site downscaling approach. The results show that the frequencies of wet and dry spells are well reproduced for all stations. In addition, the multi-site downscaling approach performs well with respect to reproducing precipitation statistics, especially at monthly and annual timescales. The remaining biases mainly result from the non-stationarity of NCEP precipitation. Overall, the proposed approach is efficient for generating multi-site climate change scenarios that can be used to investigate the spatial variability of climate change impacts on hydrology.
Bridging the Timescales of Single-Cell and Population Dynamics
NASA Astrophysics Data System (ADS)
Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya
2018-04-01
How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.
Kraus, Tamara E.C.; Bergamaschi, Brian A.; Downing, Bryan D.
2017-07-11
Executive SummaryThis report is the first in a series of three reports that provide information about high-frequency (HF) nutrient and biogeochemical monitoring in the Sacramento–San Joaquin Delta of northern California (Delta). This first report provides an introduction to the reasons for and fundamental concepts behind collecting HF measurements, and describes the benefits associated with a real-time, continuous, HF, multi-parameter water quality monitoring station network that is co-located with flow stations. It then provides examples of how HF nutrient measurements have improved our understating of nutrient sources and cycling in aquatic systems worldwide, followed by specific examples from the Delta. These examples describe the ways in which HF instrumentation may be used for both fixed-station and spatial assessments. The overall intent of this document is to describe how HF measurements currently (2017) are being used in the Delta to examine the relationship between nutrient concentrations, nutrient cycling, and aquatic habitat conditions.The second report in the series (Downing and others, 2017) summarizes information about HF nutrient and associated biogeochemical monitoring in the northern Delta. The report synthesizes data available from the nutrient and water quality monitoring network currently operated by the U.S. Geological Survey in this ecologically important region of the Delta. In the report, we present and discuss the available data at various timescales—first, at the monthly, seasonal, and inter-annual timescales; and, second, for comparison, at the tidal and event (for example, storms, reservoir releases, phytoplankton blooms) timescales. As expected, we determined that there is substantial variability in nitrate concentrations at short timescales within hours, but also significant variability at longer timescales such as months or years. This multi-scale, high variability affects calculation of fluxes and loads, indicating that HF monitoring is necessary for understanding and assessing flux-based processes and outcomes in tidal environments, such as the Delta.The third report in the series (Bergamaschi and others, 2017) provides information about how to design HF nutrient and biogeochemical monitoring for assessment of nutrient inputs and dynamics in the Delta. The report provides background, principles, and considerations for designing an HF nutrient-monitoring network for the Sacramento–San Joaquin Delta to address high-priority, nutrient-management questions. The report starts with high-priority management questions to be addressed, continues with questions and considerations that place demands and constraints on network design, discusses the principles applicable to network design, and concludes with the presentation of three example nutrient‑monitoring network designs for the Delta. For the three example networks, we assess how they would address high-priority questions identified by the Delta Regional Monitoring Program (Delta Regional Monitoring Program Technical Advisory Committee, 2015).
Park, Gibeom; Tani, Jun
2015-12-01
The current study presents neurorobotics experiments on acquisition of skills for "communicable congruence" with human via learning. A dynamic neural network model which is characterized by its multiple timescale dynamics property was utilized as a neuromorphic model for controlling a humanoid robot. In the experimental task, the humanoid robot was trained to generate specific sequential movement patterns as responding to various sequences of imperative gesture patterns demonstrated by the human subjects by following predefined compositional semantic rules. The experimental results showed that (1) the adopted MTRNN can achieve generalization by learning in the lower feature perception level by using a limited set of tutoring patterns, (2) the MTRNN can learn to extract compositional semantic rules with generalization in its higher level characterized by slow timescale dynamics, (3) the MTRNN can develop another type of cognitive capability for controlling the internal contextual processes as situated to on-going task sequences without being provided with cues for explicitly indicating task segmentation points. The analysis on the dynamic property developed in the MTRNN via learning indicated that the aforementioned cognitive mechanisms were achieved by self-organization of adequate functional hierarchy by utilizing the constraint of the multiple timescale property and the topological connectivity imposed on the network configuration. These results of the current research could contribute to developments of socially intelligent robots endowed with cognitive communicative competency similar to that of human. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gagné, Donald; Narayanan, Chitra; Bafna, Khushboo; Charest, Laurie-Anne; Agarwal, Pratul K; Doucet, Nicolas
2017-10-01
Eight active canonical members of the pancreatic-like ribonuclease A (RNase A) superfamily have been identified in human. All structural homologs share similar RNA-degrading functions, while also cumulating other various biological activities in different tissues. The functional homologs eosinophil-derived neurotoxin (EDN, or RNase 2) and eosinophil cationic protein (ECP, or RNase 3) are known to be expressed and secreted by eosinophils in response to infection, and have thus been postulated to play an important role in host defense and inflammatory response. We recently initiated the biophysical and dynamical investigation of several vertebrate RNase homologs and observed that clustering residue dynamics appear to be linked with the phylogeny and biological specificity of several members. Here we report the 1 H, 13 C and 15 N backbone resonance assignments of human EDN (RNase 2) and its molecular dynamics simulation on the microsecond timescale, providing means to pursue this comparative atomic-scale functional and dynamical analysis by NMR and computation over multiple time frames.
Carmena, Jose M.
2016-01-01
Much progress has been made in brain-machine interfaces (BMI) using decoders such as Kalman filters and finding their parameters with closed-loop decoder adaptation (CLDA). However, current decoders do not model the spikes directly, and hence may limit the processing time-scale of BMI control and adaptation. Moreover, while specialized CLDA techniques for intention estimation and assisted training exist, a unified and systematic CLDA framework that generalizes across different setups is lacking. Here we develop a novel closed-loop BMI training architecture that allows for processing, control, and adaptation using spike events, enables robust control and extends to various tasks. Moreover, we develop a unified control-theoretic CLDA framework within which intention estimation, assisted training, and adaptation are performed. The architecture incorporates an infinite-horizon optimal feedback-control (OFC) model of the brain’s behavior in closed-loop BMI control, and a point process model of spikes. The OFC model infers the user’s motor intention during CLDA—a process termed intention estimation. OFC is also used to design an autonomous and dynamic assisted training technique. The point process model allows for neural processing, control and decoder adaptation with every spike event and at a faster time-scale than current decoders; it also enables dynamic spike-event-based parameter adaptation unlike current CLDA methods that use batch-based adaptation on much slower adaptation time-scales. We conducted closed-loop experiments in a non-human primate over tens of days to dissociate the effects of these novel CLDA components. The OFC intention estimation improved BMI performance compared with current intention estimation techniques. OFC assisted training allowed the subject to consistently achieve proficient control. Spike-event-based adaptation resulted in faster and more consistent performance convergence compared with batch-based methods, and was robust to parameter initialization. Finally, the architecture extended control to tasks beyond those used for CLDA training. These results have significant implications towards the development of clinically-viable neuroprosthetics. PMID:27035820
Chatterjee, Gourab; Singh, Prashant Kumar; Robinson, A P L; Blackman, D; Booth, N; Culfa, O; Dance, R J; Gizzi, L A; Gray, R J; Green, J S; Koester, P; Kumar, G Ravindra; Labate, L; Lad, Amit D; Lancaster, K L; Pasley, J; Woolsey, N C; Rajeev, P P
2017-08-21
The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10 20 W/cm 2 . The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.
Aoki, Kenichi; Feldman, Marcus W.
2013-01-01
The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change – coevolutionary, two-timescale, and information decay – are compared and shown to sometimes yield contradictory results. The so-called Rogers’ paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers’ paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. PMID:24211681
Aoki, Kenichi; Feldman, Marcus W
2014-02-01
The theoretical literature from 1985 to the present on the evolution of learning strategies in variable environments is reviewed, with the focus on deterministic dynamical models that are amenable to local stability analysis, and on deterministic models yielding evolutionarily stable strategies. Individual learning, unbiased and biased social learning, mixed learning, and learning schedules are considered. A rapidly changing environment or frequent migration in a spatially heterogeneous environment favors individual learning over unbiased social learning. However, results are not so straightforward in the context of learning schedules or when biases in social learning are introduced. The three major methods of modeling temporal environmental change--coevolutionary, two-timescale, and information decay--are compared and shown to sometimes yield contradictory results. The so-called Rogers' paradox is inherent in the two-timescale method as originally applied to the evolution of pure strategies, but is often eliminated when the other methods are used. Moreover, Rogers' paradox is not observed for the mixed learning strategies and learning schedules that we review. We believe that further theoretical work is necessary on learning schedules and biased social learning, based on models that are logically consistent and empirically pertinent. Copyright © 2013 Elsevier Inc. All rights reserved.
On the UV/Optical Variation in NGC 5548: New Evidence Against the Reprocessing Diagram
NASA Astrophysics Data System (ADS)
Zhu, Fei-Fan; Wang, Jun-Xian; Cai, Zhen-Yi; Sun, Yu-Han; Sun, Mou-Yuan; Zhang, Ji-Xian
2018-06-01
The reprocessing scenario is widely adopted in literature to explain the observed tight inter-band correlation and short lags in the UV/optical variations of active galactic nuclei (AGNs). In this work we look into the color variability of the famous Seyfert galaxy NGC 5548 with high-quality Swift multi-band UV/optical light curves. We find the color variation of NGC 5548 is clearly timescale-dependent, in a way that it is more prominent on shorter timescales. This is similar to that previously detected in quasar samples, but for the first time in an individual AGN. We show that while a reprocessing model with strict assumptions on the driving source and the disk size can apparently match the observed light curves and inter-band lags, it fails to reproduce the observed timescale dependency in the color variation. Such discrepancy raises a severe challenge to, and can hardly be reconciled under the widely accepted reprocessing diagram. It also demonstrates that the timescale dependency of the color variation is uniquely powerful in probing the physics behind AGN UV/optical variations.
Simultaneous multi-headed imager geometry calibration method
Tran, Vi-Hoa [Newport News, VA; Meikle, Steven Richard [Penshurst, AU; Smith, Mark Frederick [Yorktown, VA
2008-02-19
A method for calibrating multi-headed high sensitivity and high spatial resolution dynamic imaging systems, especially those useful in the acquisition of tomographic images of small animals. The method of the present invention comprises: simultaneously calibrating two or more detectors to the same coordinate system; and functionally correcting for unwanted detector movement due to gantry flexing.
NASA Astrophysics Data System (ADS)
Létourneau, Danny; Bédard, Mikaël; Cabana, Jérôme; Lefebvre, Andrée; Lehoux, Jean-Guy; Lavigne, Pierre
2016-06-01
START domain proteins are conserved α/β helix-grip fold that play a role in the non-vesicular and intracellular transport of lipids and sterols. The mechanism and conformational changes permitting the entry of the ligand into their buried binding sites is not well understood. Moreover, their functions and the identification of cognate ligands is still an active area of research. Here, we report the solution structure of STARD6 and the characterization of its backbone dynamics on multiple time-scales through 15N spin-relaxation and amide exchange studies. We reveal for the first time the presence of concerted fluctuations in the Ω1 loop and the C-terminal helix on the microsecond-millisecond time-scale that allows for the opening of the binding site and ligand entry. We also report that STARD6 binds specifically testosterone. Our work represents a milestone for the study of ligand binding mechanism by other START domains and the elucidation of the biological function of STARD6.
Aliev, Abil E; Kulke, Martin; Khaneja, Harmeet S; Chudasama, Vijay; Sheppard, Tom D; Lanigan, Rachel M
2014-01-01
We propose a new approach for force field optimizations which aims at reproducing dynamics characteristics using biomolecular MD simulations, in addition to improved prediction of motionally averaged structural properties available from experiment. As the source of experimental data for dynamics fittings, we use 13C NMR spin-lattice relaxation times T1 of backbone and sidechain carbons, which allow to determine correlation times of both overall molecular and intramolecular motions. For structural fittings, we use motionally averaged experimental values of NMR J couplings. The proline residue and its derivative 4-hydroxyproline with relatively simple cyclic structure and sidechain dynamics were chosen for the assessment of the new approach in this work. Initially, grid search and simplexed MD simulations identified large number of parameter sets which fit equally well experimental J couplings. Using the Arrhenius-type relationship between the force constant and the correlation time, the available MD data for a series of parameter sets were analyzed to predict the value of the force constant that best reproduces experimental timescale of the sidechain dynamics. Verification of the new force-field (termed as AMBER99SB-ILDNP) against NMR J couplings and correlation times showed consistent and significant improvements compared to the original force field in reproducing both structural and dynamics properties. The results suggest that matching experimental timescales of motions together with motionally averaged characteristics is the valid approach for force field parameter optimization. Such a comprehensive approach is not restricted to cyclic residues and can be extended to other amino acid residues, as well as to the backbone. Proteins 2014; 82:195–215. © 2013 Wiley Periodicals, Inc. PMID:23818175
NASA Astrophysics Data System (ADS)
Wang, Huihui; Bokarev, Sergey I.; Aziz, Saadullah G.; Kühn, Oliver
2017-08-01
Recent developments in attosecond spectroscopy yield access to the correlated motion of electrons on their intrinsic timescales. Spin-flip dynamics is usually considered in the context of valence electronic states, where spin-orbit coupling is weak and processes related to the electron spin are usually driven by nuclear motion. However, for core-excited states, where the core-hole has a nonzero angular momentum, spin-orbit coupling is strong enough to drive spin-flips on a much shorter timescale. Using density matrix-based time-dependent restricted active space configuration interaction including spin-orbit coupling, we address an unprecedentedly short spin-crossover for the example of L-edge (2p→3d) excited states of a prototypical Fe(II) complex. This process occurs on a timescale, which is faster than that of Auger decay (∼4 fs) treated here explicitly. Modest variations of carrier frequency and pulse duration can lead to substantial changes in the spin-state yield, suggesting its control by soft X-ray light.
Yu, Hua-Gen
2015-01-28
We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer Lanczos method, for computing vibrational energies and dipole transition intensities of polyatomic molecules without any dynamics approximation. The multi-layer Lanczos method is developed by using a few advanced techniques including the guided spectral transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue generation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian at the total angular momentum J = 0 is represented in a set of orthogonal polyspherical coordinates so that the large amplitude motions of vibrations are naturally described. In particular, the algorithm is general and problem-independent. An applicationmore » is illustrated by calculating the infrared vibrational dipole transition spectrum of CH₄ based on the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison with experiments is made. The algorithm is also applicable for Raman polarizability active spectra.« less
An attentive multi-camera system
NASA Astrophysics Data System (ADS)
Napoletano, Paolo; Tisato, Francesco
2014-03-01
Intelligent multi-camera systems that integrate computer vision algorithms are not error free, and thus both false positive and negative detections need to be revised by a specialized human operator. Traditional multi-camera systems usually include a control center with a wall of monitors displaying videos from each camera of the network. Nevertheless, as the number of cameras increases, switching from a camera to another becomes hard for a human operator. In this work we propose a new method that dynamically selects and displays the content of a video camera from all the available contents in the multi-camera system. The proposed method is based on a computational model of human visual attention that integrates top-down and bottom-up cues. We believe that this is the first work that tries to use a model of human visual attention for the dynamic selection of the camera view of a multi-camera system. The proposed method has been experimented in a given scenario and has demonstrated its effectiveness with respect to the other methods and manually generated ground-truth. The effectiveness has been evaluated in terms of number of correct best-views generated by the method with respect to the camera views manually generated by a human operator.
Interactive natural language acquisition in a multi-modal recurrent neural architecture
NASA Astrophysics Data System (ADS)
Heinrich, Stefan; Wermter, Stefan
2018-01-01
For the complex human brain that enables us to communicate in natural language, we gathered good understandings of principles underlying language acquisition and processing, knowledge about sociocultural conditions, and insights into activity patterns in the brain. However, we were not yet able to understand the behavioural and mechanistic characteristics for natural language and how mechanisms in the brain allow to acquire and process language. In bridging the insights from behavioural psychology and neuroscience, the goal of this paper is to contribute a computational understanding of appropriate characteristics that favour language acquisition. Accordingly, we provide concepts and refinements in cognitive modelling regarding principles and mechanisms in the brain and propose a neurocognitively plausible model for embodied language acquisition from real-world interaction of a humanoid robot with its environment. In particular, the architecture consists of a continuous time recurrent neural network, where parts have different leakage characteristics and thus operate on multiple timescales for every modality and the association of the higher level nodes of all modalities into cell assemblies. The model is capable of learning language production grounded in both, temporal dynamic somatosensation and vision, and features hierarchical concept abstraction, concept decomposition, multi-modal integration, and self-organisation of latent representations.
NASA Astrophysics Data System (ADS)
Hixson, J.; Ward, A. S.; Schmadel, N.
2015-12-01
The exchange of water and solutes across the stream-hyporheic-riparian-hillslope continuum is controlled by the interaction of dynamic hydrological processes with the underlying geological setting. Our current understanding of exchange processes is primarily based on field observations collected during baseflow conditions, with few studies considering time-variable stream-aquifer interactions during storm events. We completed ten sets of four in-stream tracer slug injections during and after a large storm event in a headwater catchment at the H.J. Andrews Experimental Forest, Oregon. The injections were performed in three adjacent 50-meter study reaches, enabling comparison of spatial heterogeneity in transport processes. Reach-scale data demonstrate apparent trends with discharge in both transient storage and long-term storage (commonly "channel water balance"). Comparison of flowpath-scale observations from a network of monitoring wells to reach-scale observations showed that the advective timescale changed with discharge making it difficult to infer process from simple, reach-scale tracer studies. Overall, our results highlight the opportunities and challenges for interpretation of multi-scale solute tracer data along the stream-hyporheic-riparian-hillslope continuum.
Optimized planning methodologies of ASON implementation
NASA Astrophysics Data System (ADS)
Zhou, Michael M.; Tamil, Lakshman S.
2005-02-01
Advanced network planning concerns effective network-resource allocation for dynamic and open business environment. Planning methodologies of ASON implementation based on qualitative analysis and mathematical modeling are presented in this paper. The methodology includes method of rationalizing technology and architecture, building network and nodal models, and developing dynamic programming for multi-period deployment. The multi-layered nodal architecture proposed here can accommodate various nodal configurations for a multi-plane optical network and the network modeling presented here computes the required network elements for optimizing resource allocation.
Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, D. S.; Shevliakova, E.; Malyshev, S.
Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. HBut, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDLmore » ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. In addition, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.« less
Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models
NASA Astrophysics Data System (ADS)
Ward, D. S.; Shevliakova, E.; Malyshev, S.; Lamarque, J.-F.; Wittenberg, A. T.
2016-12-01
Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. However, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDL ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. Additionally, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.
The Evolution of Quasar C IV and Si IV Broad Absorption Lines over Multi-year Timescales
NASA Astrophysics Data System (ADS)
Gibson, Robert R.; Brandt, W. N.; Gallagher, S. C.; Hewett, Paul C.; Schneider, Donald P.
2010-04-01
We investigate the variability of C IV λ1549 broad absorption line (BAL) troughs over rest-frame timescales of up to ≈7 yr in 14 quasars at redshifts z >~ 2.1. For nine sources at sufficiently high redshift, we also compare the C IV and Si IV λ1400 absorption variation. We compare shorter and longer term variability using spectra from up to four different epochs per source and find complex patterns of variation in the sample overall. The scatter in the change of absorption equivalent width (EW), ΔEW, increases with the time between observations. BALs do not, in general, strengthen or weaken monotonically, and variation observed over shorter (lsimmonths) timescales is not predictive of multi-year variation. We find no evidence for asymmetry in the distribution of ΔEW that would indicate that BALs form and decay on different timescales, and we constrain the typical BAL lifetime to be gsim30 yr. The BAL absorption for one source, LBQS 0022+0150, has weakened and may now be classified as a mini-BAL. Another source, 1235+1453, shows evidence of variable, blue continuum emission that is relatively unabsorbed by the BAL outflow. C IV and Si IV BAL shape changes are related in at least some sources. Given their high velocities, BAL outflows apparently traverse large spatial regions and may interact with parsec-scale structures such as an obscuring torus. Assuming BAL outflows are launched from a rotating accretion disk, notable azimuthal symmetry is required in the outflow to explain the relatively small changes observed in velocity structure over times up to 7 yr.
Variability of fire emissions on interannual to multi-decadal timescales in two Earth System models
Ward, D. S.; Shevliakova, E.; Malyshev, S.; ...
2016-12-02
Connections between wildfires and modes of variability in climate are sought as a means for predicting fire activity on interannual to multi-decadal timescales. Several fire drivers, such as temperature and local drought index, have been shown to vary on these timescales, and analysis of tree-ring data suggests covariance between fires and climate oscillation indices in some regions. HBut, the shortness of the satellite record of global fire events limits investigations on larger spatial scales. Here we explore the interplay between climate variability and wildfire emissions with the preindustrial long control numerical experiments and historical ensembles of CESM1 and the NOAA/GFDLmore » ESM2Mb. We find that interannual variability in fires is underpredicted in both Earth System models (ESMs) compared to present day fire emission inventories. Modeled fire emissions respond to the El Niño/southern oscillation (ENSO) and Pacific decadal oscillation (PDO) with increases in southeast Asia and boreal North America emissions, and decreases in southern North America and Sahel emissions, during the ENSO warm phase in both ESMs, and the PDO warm phase in CESM1. In addition, CESM1 produces decreases in boreal northern hemisphere fire emissions for the warm phase of the Atlantic Meridional Oscillation. Through analysis of the long control simulations, we show that the 20th century trends in both ESMs are statistically significant, meaning that the signal of anthropogenic activity on fire emissions over this time period is detectable above the annual to decadal timescale noise. However, the trends simulated by the two ESMs are of opposite sign (CESM1 decreasing, ESM2Mb increasing), highlighting the need for improved understanding, proxy observations, and modeling to resolve this discrepancy.« less
Ramanathan, Arvind; Savol, Andrej J.; Agarwal, Pratul K.; Chennubhotla, Chakra S.
2012-01-01
Biomolecular simulations at milli-second and longer timescales can provide vital insights into functional mechanisms. Since post-simulation analyses of such large trajectory data-sets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (PLoS One 6(1): e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this paper, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD - a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on micro-second time-scale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three sub-domains (LID, CORE and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. PMID:22733562
Convective dynamics and chemical disequilibrium in the atmospheres of substellar objects
NASA Astrophysics Data System (ADS)
Bordwell, Baylee; Brown, Benjamin P.; Oishi, Jeffrey S.
2017-11-01
The thousands of substellar objects now known provide a unique opportunity to test our understanding of atmospheric dynamics across a range of environments. The chemical timescales of certain species transition from being much shorter than the dynamical timescales to being much longer than them at a point in the atmosphere known as the quench point. This transition leads to a state of dynamical disequilibrium, the effects of which can be used to probe the atmospheric dynamics of these objects. Unfortunately, due to computational constraints, models that inform the interpretation of these observations are run at dynamical parameters which are far from realistic values. In this study, we explore the behavior of a disequilibrium chemical process with increasingly realistic planetary conditions, to quantify the effects of the approximations used in current models. We simulate convection in 2-D, plane-parallel, polytropically-stratified atmospheres, into which we add reactive passive tracers that explore disequilibrium behavior. We find that as we increase the Rayleigh number, and thus achieve more realistic planetary conditions, the behavior of these tracers does not conform to the classical predictions of disequilibrium chemistry.
Multi exposure image fusion algorithm based on YCbCr space
NASA Astrophysics Data System (ADS)
Yang, T. T.; Fang, P. Y.
2018-05-01
To solve the problem that scene details and visual effects are difficult to be optimized in high dynamic image synthesis, we proposes a multi exposure image fusion algorithm for processing low dynamic range images in YCbCr space, and weighted blending of luminance and chromatic aberration components respectively. The experimental results show that the method can retain color effect of the fused image while balancing details of the bright and dark regions of the high dynamic image.
Long, Hai; Chang, Christopher H.; King, Paul W.; Ghirardi, Maria L.; Kim, Kwiseon
2008-01-01
The [FeFe] hydrogenase from the green alga Chlamydomonas reinhardtii can catalyze the reduction of protons to hydrogen gas using electrons supplied from photosystem I and transferred via ferredoxin. To better understand the association of the hydrogenase and the ferredoxin, we have simulated the process over multiple timescales. A Brownian dynamics simulation method gave an initial thorough sampling of the rigid-body translational and rotational phase spaces, and the resulting trajectories were used to compute the occupancy and free-energy landscapes. Several important hydrogenase-ferredoxin encounter complexes were identified from this analysis, which were then individually simulated using atomistic molecular dynamics to provide more details of the hydrogenase and ferredoxin interaction. The ferredoxin appeared to form reasonable complexes with the hydrogenase in multiple orientations, some of which were good candidates for inclusion in a transition state ensemble of configurations for electron transfer. PMID:18621810
NASA Astrophysics Data System (ADS)
Parsons, Todd L.; Rogers, Tim
2017-10-01
Systems composed of large numbers of interacting agents often admit an effective coarse-grained description in terms of a multidimensional stochastic dynamical system, driven by small-amplitude intrinsic noise. In applications to biological, ecological, chemical and social dynamics it is common for these models to posses quantities that are approximately conserved on short timescales, in which case system trajectories are observed to remain close to some lower-dimensional subspace. Here, we derive explicit and general formulae for a reduced-dimension description of such processes that is exact in the limit of small noise and well-separated slow and fast dynamics. The Michaelis-Menten law of enzyme-catalysed reactions, and the link between the Lotka-Volterra and Wright-Fisher processes are explored as a simple worked examples. Extensions of the method are presented for infinite dimensional systems and processes coupled to non-Gaussian noise sources.
Crisanti, A; Leuzzi, L; Paoluzzi, M
2011-09-01
The interrelation of dynamic processes active on separated time-scales in glasses and viscous liquids is investigated using a model displaying two time-scale bifurcations both between fast and secondary relaxation and between secondary and structural relaxation. The study of the dynamics allows for predictions on the system relaxation above the temperature of dynamic arrest in the mean-field approximation, that are compared with the outcomes of the equations of motion directly derived within the Mode Coupling Theory (MCT) for under-cooled viscous liquids. By varying the external thermodynamic parameters, a wide range of phenomenology can be represented, from a very clear separation of structural and secondary peak in the susceptibility loss to excess wing structures.
Charge transport network dynamics in molecular aggregates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Nicholas E.; Chen, Lin X.; Ratner, Mark A.
2016-07-20
Due to the nonperiodic nature of charge transport in disordered systems, generating insight into static charge transport networks, as well as analyzing the network dynamics, can be challenging. Here, we apply time-dependent network analysis to scrutinize the charge transport networks of two representative molecular semiconductors: a rigid n-type molecule, perylenediimide, and a flexible p-type molecule, bBDT(TDPP)2. Simulations reveal the relevant timescale for local transfer integral decorrelation to be ~100 fs, which is shown to be faster than that of a crystalline morphology of the same molecule. Using a simple graph metric, global network changes are observed over timescales competitive withmore » charge carrier lifetimes. These insights demonstrate that static charge transport networks are qualitatively inadequate, whereas average networks often overestimate network connectivity. Finally, a simple methodology for tracking dynamic charge transport properties is proposed.« less
Finite element simulation of the gating mechanism of mechanosensitive ion channels
NASA Astrophysics Data System (ADS)
Bavi, Navid; Qin, Qinghua; Martinac, Boris
2013-08-01
In order to eliminate limitations of existing experimental or computational methods (such as patch-clamp technique or molecular dynamic analysis) a finite element (FE) model for multi length-scale and time-scale investigation on the gating mechanism of mechanosensitive (MS) ion channels has been established. Gating force value (from typical patch clamping values) needed to activate Prokaryotic MS ion channels was applied as tensional force to the FE model of the lipid bilayer. Making use of the FE results, we have discussed the effects of the geometrical and the material properties of the Escherichia coli MscL mechanosensitive ion channel opening in relation to the membrane's Young's modulus (which will vary depending on the cell type or cholesterol density in an artificial membrane surrounding the MscL ion channel). The FE model has shown that when the cell membrane stiffens the required channel activation force increases considerably. This is in agreement with experimental results taken from the literature. In addition, the present study quantifies the relationship between the membrane stress distribution around a `hole' for modeling purposes and the stress concentration in the place transmembrane proteins attached to the hole by applying an appropriate mesh refinement as well as well defining contact condition in these areas.
Oxide Interfaces: emergent structure and dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, Roy
This Final Report describes the scientific accomplishments that have been achieved with support from grant DE-FG02-06ER46273 during the period 6/1/2012– 5/31/2016. The overall goals of this program were focused on the behavior of epitaxial oxide heterostructures at atomic length scales (Ångstroms), and correspondingly short time-scales (fs -ns). The results contributed fundamentally to one of the currently most active frontiers in condensed matter physics research, namely to better understand the intricate relationship between charge, lattice, orbital and spin degrees of freedom that are exhibited by complex oxide heterostructures. The findings also contributed towards an important technological goal which was to achievemore » a better basic understanding of structural and electronic correlations so that the unusual properties of complex oxides can be exploited for energy-critical applications. Specific research directions included: probing the microscopic behavior of epitaxial interfaces and buried layers; novel materials structures that emerge from ionic and electronic reconfiguration at epitaxial interfaces; ultrahigh-resolution mapping of the atomic structure of heterointerfaces using synchrotron-based x-ray surface scattering, including direct methods of phase retrieval; using ultrafast lasers to study the effects of transient strain on coherent manipulation of multi-ferroic order parameters; and investigating structural ordering and relaxation processes in real-time.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico
2013-12-01
We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noisemore » introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.« less
The Dynamic Photometric Stereo Method Using a Multi-Tap CMOS Image Sensor †
Yoda, Takuya; Nagahara, Hajime; Taniguchi, Rin-ichiro; Kagawa, Keiichiro; Yasutomi, Keita; Kawahito, Shoji
2018-01-01
The photometric stereo method enables estimation of surface normals from images that have been captured using different but known lighting directions. The classical photometric stereo method requires at least three images to determine the normals in a given scene. However, this method cannot be applied to dynamic scenes because it is assumed that the scene remains static while the required images are captured. In this work, we present a dynamic photometric stereo method for estimation of the surface normals in a dynamic scene. We use a multi-tap complementary metal-oxide-semiconductor (CMOS) image sensor to capture the input images required for the proposed photometric stereo method. This image sensor can divide the electrons from the photodiode from a single pixel into the different taps of the exposures and can thus capture multiple images under different lighting conditions with almost identical timing. We implemented a camera lighting system and created a software application to enable estimation of the normal map in real time. We also evaluated the accuracy of the estimated surface normals and demonstrated that our proposed method can estimate the surface normals of dynamic scenes. PMID:29510599
NASA Astrophysics Data System (ADS)
Nguyen, T. P.; Pham, D. T.; Ngo, K. T.
2018-04-01
Reducing vibration in structures under lateral load always attracts many researchers in during pastime, hence the mainly purpose of paper analyzes effectiveness of multiple-tuned liquid dampers for reducing dynamic responses of structures under ground acceleration of earthquakes. In this study, the multi-tuned liquid damper with slat screens (M-TLDWSS) is considered in detail for analyzing dynamic response of multi-degrees of freedom structure due to earthquake, which is more different previous studies. Then, the general equation of motion of the structure and M-TLDWSS under ground acceleration of earthquake is established based on dynamic balance of principle and solved by numerical method in the time domain. The effects of characteristic parameters of M-TLDWSS on dynamic response of the structure are investigated. The results obtained in this study demonstrate that the M-TLDWSS has significantly effectiveness for reducing dynamic response of the structure.
NASA Astrophysics Data System (ADS)
Frello, T.; Andersen, N. H.; Madsen, J.; Ka¨ll, M.; von Zimmermann, M.; Schmidt, O.; Poulsen, H. F.; Schneider, J. R.; Wolf, Th.
1997-08-01
The dynamics of the ortho-II oxygen structure in a high purity YBa 2Cu 3O 6+ x single crystal with x=0.50 has been studied by neutron and by X-ray diffraction with a photon energy of 100 keV. Our data show that the oxygen order develops on two different time-scales, one of the order of seconds and a much slower of the order of weeks and months. The mechanism dominating the slow time-scale is related to oxygen diffusion, while the fast mechanism may result from a temperature-dependent change in the average oxygen chain length.
NASA Astrophysics Data System (ADS)
Ciprini, S.; Takalo, L. O.; Tosti, G.; Raiteri, C. M.; Fiorucci, M.; Villata, M.; Nucciarelli, G.; Lanteri, L.; Nilsson, K.; Ros, J. A.
2007-05-01
Aims:New data and results on the optical behavior of the prominent blazar PKS 0735+178 (also known as OI 158, S3 0735+17, DA 237, 1ES 0735+178, 3EG J0737+1721) are presented, through the most continuous BVRI data available in the period 1994-2004 (about 500 nights of observations). In addition, the whole historical light curve, and a new photometric calibration of comparison stars in the field of this source are reported. Methods: Several methods for time series analysis of sparse data sets are developed, adapted, and applied to the reconstructed historical light curve and to each observing season of our unpublished optical database on PKS 0735+178. Optical spectral indexes are calculated from the multi-band observations and studied on long-term (years) durations as well. For the first time in this source, variability modes, characteristic timescales, and the signal power spectrum are explored and identified over 3 decades in time with sufficient statistics. The novel investigation of mid-term optical scales (days, weeks), could be also applied and compared to blazar gamma-ray light curves that will be provided, on the same timescales, by the forthcoming GLAST observatory. Results: In the last 10 years the optical emission of PKS 0735+178 exhibited a rather achromatic behavior and a variability mode resembling the shot-noise. The source was at an intermediate or low brightness level, showing a mild flaring activity and a superimposition/succession of rapid and slower flares, without extraordinary and isolated outbursts, but, at any rate, characterized by one major active phase in 2001. Several mid-term scales of variability were found, the more common falling into duration intervals of about 27-28 days, 50-56 days and 76-79 days. Rapid variability in the historical light curve appears to be modulated by a general, slower, and rather oscillating temporal trend, where typical amplitudes of about 4.5, 8.5, and 11-13 years can be identified. This spectral and temporal analysis, accompanying our data publication, suggests the occurrence of distinctive signatures at mid-term durations that can likely be of transitory nature. On the other hand the possible pseudo-cyclical or multi-component modulations at long times could be more stable, recurrent and correlated to the bimodal radio flux behavior and the twisted radio structure observed over several years in this blazar.
NASA Astrophysics Data System (ADS)
Day, Jonathan J.; Tietsche, Steffen; Collins, Mat; Goessling, Helge F.; Guemas, Virginie; Guillory, Anabelle; Hurlin, William J.; Ishii, Masayoshi; Keeley, Sarah P. E.; Matei, Daniela; Msadek, Rym; Sigmond, Michael; Tatebe, Hiroaki; Hawkins, Ed
2016-06-01
Recent decades have seen significant developments in climate prediction capabilities at seasonal-to-interannual timescales. However, until recently the potential of such systems to predict Arctic climate had rarely been assessed. This paper describes a multi-model predictability experiment which was run as part of the Arctic Predictability and Prediction On Seasonal to Interannual Timescales (APPOSITE) project. The main goal of APPOSITE was to quantify the timescales on which Arctic climate is predictable. In order to achieve this, a coordinated set of idealised initial-value predictability experiments, with seven general circulation models, was conducted. This was the first model intercomparison project designed to quantify the predictability of Arctic climate on seasonal to interannual timescales. Here we present a description of the archived data set (which is available at the British Atmospheric Data Centre), an assessment of Arctic sea ice extent and volume predictability estimates in these models, and an investigation into to what extent predictability is dependent on the initial state. The inclusion of additional models expands the range of sea ice volume and extent predictability estimates, demonstrating that there is model diversity in the potential to make seasonal-to-interannual timescale predictions. We also investigate whether sea ice forecasts started from extreme high and low sea ice initial states exhibit higher levels of potential predictability than forecasts started from close to the models' mean state, and find that the result depends on the metric. Although designed to address Arctic predictability, we describe the archived data here so that others can use this data set to assess the predictability of other regions and modes of climate variability on these timescales, such as the El Niño-Southern Oscillation.
Hydrologically-driven crustal stresses and seismicity in the New Madrid Seismic Zone.
Craig, Timothy J; Chanard, Kristel; Calais, Eric
2017-12-15
The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or 'stable' plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load.
Multiscale investigation of chemical interference in proteins
NASA Astrophysics Data System (ADS)
Samiotakis, Antonios; Homouz, Dirar; Cheung, Margaret S.
2010-05-01
We developed a multiscale approach (MultiSCAAL) that integrates the potential of mean force obtained from all-atomistic molecular dynamics simulations with a knowledge-based energy function for coarse-grained molecular simulations in better exploring the energy landscape of a small protein under chemical interference such as chemical denaturation. An excessive amount of water molecules in all-atomistic molecular dynamics simulations often negatively impacts the sampling efficiency of some advanced sampling techniques such as the replica exchange method and it makes the investigation of chemical interferences on protein dynamics difficult. Thus, there is a need to develop an effective strategy that focuses on sampling structural changes in protein conformations rather than solvent molecule fluctuations. In this work, we address this issue by devising a multiscale simulation scheme (MultiSCAAL) that bridges the gap between all-atomistic molecular dynamics simulation and coarse-grained molecular simulation. The two key features of this scheme are the Boltzmann inversion and a protein atomistic reconstruction method we previously developed (SCAAL). Using MultiSCAAL, we were able to enhance the sampling efficiency of proteins solvated by explicit water molecules. Our method has been tested on the folding energy landscape of a small protein Trp-cage with explicit solvent under 8M urea using both the all-atomistic replica exchange molecular dynamics and MultiSCAAL. We compared computational analyses on ensemble conformations of Trp-cage with its available experimental NOE distances. The analysis demonstrated that conformations explored by MultiSCAAL better agree with the ones probed in the experiments because it can effectively capture the changes in side-chain orientations that can flip out of the hydrophobic pocket in the presence of urea and water molecules. In this regard, MultiSCAAL is a promising and effective sampling scheme for investigating chemical interference which presents a great challenge when modeling protein interactions in vivo.
NASA Astrophysics Data System (ADS)
Aksenov, A. G.; Chechetkin, V. M.
2018-04-01
Most of the energy released in the gravitational collapse of the cores of massive stars is carried away by neutrinos. Neutrinos play a pivotal role in explaining core-collape supernovae. Currently, mathematical models of the gravitational collapse are based on multi-dimensional gas dynamics and thermonuclear reactions, while neutrino transport is considered in a simplified way. Multidimensional gas dynamics is used with neutrino transport in the flux-limited diffusion approximation to study the role of multi-dimensional effects. The possibility of large-scale convection is discussed, which is interesting both for explaining SN II and for setting up observations to register possible high-energy (≳10MeV) neutrinos from the supernova. A new multi-dimensional, multi-temperature gas dynamics method with neutrino transport is presented.
Experimental alluvial fan evolution: Channel dynamics, slope controls, and shoreline growth
NASA Astrophysics Data System (ADS)
Reitz, Meredith D.; Jerolmack, Douglas J.
2012-06-01
River deltas and alluvial fans have channelization and deposition dynamics that are not entirely understood, but which dictate the evolution of landscapes of great social, economic, and ecologic value. Our lack of a process-based understanding of fan dynamics hampers our ability to construct accurate prediction and hazard models, leaving these regions vulnerable. Here we describe the growth of a series of experimental alluvial fans composed of a noncohesive grain mixture bimodal in size and density. We impose conditions that simulate a gravel/sand fan prograding into a static basin with constant water and sediment influx, and the resulting fans display realistic channelization and avulsion dynamics. We find that we can describe the dynamics of our fans in terms of a few processes: (1) an avulsion sequence with a timescale dictated by mass conservation between incoming flux and deposit volume; (2) a tendency for flow to reoccupy former channel paths; and (3) bistable slopes corresponding to separate entrainment and deposition conditions for grains. Several important observations related to these processes are: an avulsion timescale that increases with time and decreases with sediment feed rate; fan lobes that grow in a self-similar, quasi-radial pattern; and channel geometry that is adjusted to the threshold entrainment stress. We propose that the formation of well-defined channels in noncohesive fans is a transient phenomenon resulting from incision following avulsion, and can be directly described with dual transport thresholds. We present a fairly complete, process-based description of the mechanics of avulsion and its resulting timescale on our fans. Because the relevant dynamics depend only on threshold transport conditions and conservation of mass, we show how results may be directly applied to field-scale systems.
Ramsey method for Auger-electron interference induced by an attosecond twin pulse
NASA Astrophysics Data System (ADS)
Buth, Christian; Schafer, Kenneth J.
2015-02-01
We examine the archetype of an interference experiment for Auger electrons: two electron wave packets are launched by inner-shell ionizing a krypton atom using two attosecond light pulses with a variable time delay. This setting is an attosecond realization of the Ramsey method of separated oscillatory fields. Interference of the two ejected Auger-electron wave packets is predicted, indicating that the coherence between the two pulses is passed to the Auger electrons. For the detection of the interference pattern an accurate coincidence measurement of photo- and Auger electrons is necessary. The method allows one to control inner-shell electron dynamics on an attosecond timescale and represents a sensitive indicator for decoherence.
Solid H2 in the interstellar medium
NASA Astrophysics Data System (ADS)
Füglistaler, A.; Pfenniger, D.
2018-06-01
Context. Condensation of H2 in the interstellar medium (ISM) has long been seen as a possibility, either by deposition on dust grains or thanks to a phase transition combined with self-gravity. H2 condensation might explain the observed low efficiency of star formation and might help to hide baryons in spiral galaxies. Aims: Our aim is to quantify the solid fraction of H2 in the ISM due to a phase transition including self-gravity for different densities and temperatures in order to use the results in more complex simulations of the ISM as subgrid physics. Methods: We used molecular dynamics simulations of fluids at different temperatures and densities to study the formation of solids. Once the simulations reached a steady state, we calculated the solid mass fraction, energy increase, and timescales. By determining the power laws measured over several orders of magnitude, we extrapolated to lower densities the higher density fluids that can be simulated with current computers. Results: The solid fraction and energy increase of fluids in a phase transition are above 0.1 and do not follow a power law. Fluids out of a phase transition are still forming a small amount of solids due to chance encounters of molecules. The solid mass fraction and energy increase of these fluids are linearly dependent on density and can easily be extrapolated. The timescale is below one second, the condensation can be considered instantaneous. Conclusions: The presence of solid H2 grains has important dynamic implications on the ISM as they may be the building blocks for larger solid bodies when gravity is included. We provide the solid mass fraction, energy increase, and timescales for high density fluids and extrapolation laws for lower densities.
When fast is better: protein folding fundamentals and mechanisms from ultrafast approaches.
Muñoz, Victor; Cerminara, Michele
2016-09-01
Protein folding research stalled for decades because conventional experiments indicated that proteins fold slowly and in single strokes, whereas theory predicted a complex interplay between dynamics and energetics resulting in myriad microscopic pathways. Ultrafast kinetic methods turned the field upside down by providing the means to probe fundamental aspects of folding, test theoretical predictions and benchmark simulations. Accordingly, experimentalists could measure the timescales for all relevant folding motions, determine the folding speed limit and confirm that folding barriers are entropic bottlenecks. Moreover, a catalogue of proteins that fold extremely fast (microseconds) could be identified. Such fast-folding proteins cross shallow free energy barriers or fold downhill, and thus unfold with minimal co-operativity (gradually). A new generation of thermodynamic methods has exploited this property to map folding landscapes, interaction networks and mechanisms at nearly atomic resolution. In parallel, modern molecular dynamics simulations have finally reached the timescales required to watch fast-folding proteins fold and unfold in silico All of these findings have buttressed the fundamentals of protein folding predicted by theory, and are now offering the first glimpses at the underlying mechanisms. Fast folding appears to also have functional implications as recent results connect downhill folding with intrinsically disordered proteins, their complex binding modes and ability to moonlight. These connections suggest that the coupling between downhill (un)folding and binding enables such protein domains to operate analogically as conformational rheostats. © 2016 The Author(s).
Fundamental structures of dynamic social networks.
Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune
2016-09-06
Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision.
Fundamental structures of dynamic social networks
Sekara, Vedran; Stopczynski, Arkadiusz; Lehmann, Sune
2016-01-01
Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection unnecessary. Starting from 5-min time slices, we uncover dynamic social structures expressed on multiple timescales. On the hourly timescale, we find that gatherings are fluid, with members coming and going, but organized via a stable core of individuals. Each core represents a social context. Cores exhibit a pattern of recurring meetings across weeks and months, each with varying degrees of regularity. Taken together, these findings provide a powerful simplification of the social network, where cores represent fundamental structures expressed with strong temporal and spatial regularity. Using this framework, we explore the complex interplay between social and geospatial behavior, documenting how the formation of cores is preceded by coordination behavior in the communication networks and demonstrating that social behavior can be predicted with high precision. PMID:27555584
Lee, Chiho; Son, Hyewon; Park, Sungnam
2015-07-21
Two-dimensional infrared (2DIR) spectroscopy, which has been proven to be an excellent experimental method for studying thermally-driven chemical processes, was successfully used to investigate the acid dissociation equilibrium of HN3 in methanol (CH3OH) and dimethyl sulfoxide (DMSO) for the first time. Our 2DIR experimental results indicate that the acid-base equilibrium occurs on picosecond timescales in CH3OH but that it occurs on much longer timescales in DMSO. Our results imply that the different timescales of the acid-base equilibrium originate from different proton transfer mechanisms between the acidic (HN3) and basic (N3(-)) species in CH3OH and DMSO. In CH3OH, the acid-base equilibrium is assisted by the surrounding CH3OH molecules which can directly donate H(+) to N3(-) and accept H(+) from HN3 and the proton migrates through the hydrogen-bonded chain of CH3OH. On the other hand, the acid-base equilibrium in DMSO occurs through the mutual diffusion of HN3 and N3(-) or direct proton transfer. Our 2DIR experimental results corroborate different proton transfer mechanisms in the acid-base equilibrium in protic (CH3OH) and aprotic (DMSO) solvents.
Energy Efficient Real-Time Scheduling Using DPM on Mobile Sensors with a Uniform Multi-Cores
Kim, Youngmin; Lee, Chan-Gun
2017-01-01
In wireless sensor networks (WSNs), sensor nodes are deployed for collecting and analyzing data. These nodes use limited energy batteries for easy deployment and low cost. The use of limited energy batteries is closely related to the lifetime of the sensor nodes when using wireless sensor networks. Efficient-energy management is important to extending the lifetime of the sensor nodes. Most effort for improving power efficiency in tiny sensor nodes has focused mainly on reducing the power consumed during data transmission. However, recent emergence of sensor nodes equipped with multi-cores strongly requires attention to be given to the problem of reducing power consumption in multi-cores. In this paper, we propose an energy efficient scheduling method for sensor nodes supporting a uniform multi-cores. We extend the proposed T-Ler plane based scheduling for global optimal scheduling of a uniform multi-cores and multi-processors to enable power management using dynamic power management. In the proposed approach, processor selection for a scheduling and mapping method between the tasks and processors is proposed to efficiently utilize dynamic power management. Experiments show the effectiveness of the proposed approach compared to other existing methods. PMID:29240695
Tensor-based dynamic reconstruction method for electrical capacitance tomography
NASA Astrophysics Data System (ADS)
Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.
2017-03-01
Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.
NASA Astrophysics Data System (ADS)
Pizzini, Stefania; Vogel, Jan; Bonfim, Marlio; Fontaine, Alain
Many synchrotron radiation techniques have been developed in the last 15 years for studying the magnetic properties of thin-film materials. The most attractive properties of synchrotron radiation are its energy tunability and its time structure. The first property allows measurements in resonant conditions at an absorption edge of each of the magnetic elements constituting the probed sample, and the latter allows time-resolved measurements on subnanosecond timescales. In this review, we introduce some of the synchrotron-based techniques used for magnetic investigations. We then describe in detail X-ray magnetic circular dichroism (XMCD) and how time-resolved XMCD studies can be carried out in the pump-probe mode. Finally, we illustrate some applications to magnetization reversal dynamics in spin valves and tunnel junctions, using fast magnetic field pulses applied along the easy magnetization axis of the samples. Thanks to the element-selectivity of X-ray absorption spectroscopy, the magnetization dynamics of the soft (Permalloy) and the hard (cobalt) layers can be studied independently. In the case of spin valves, this allowed us to show that two magnetic layers that are strongly coupled in a static regime can become uncoupled on nanosecond timescales.Present address: Universidade Federal do Paraná, Centro Politécnico CP 19011, Curitiba - PR CEP 81531-990, Brazil
NASA Astrophysics Data System (ADS)
Mason, Cody C.; Romans, Brian W.
2018-06-01
Environmental changes within erosional catchments of sediment routing systems are predicted to modulate sediment transfer dynamics. However, empirical and numerical models that predict such phenomena are difficult to test in natural systems over multi-millennial timescales. Tectonic boundary conditions and climate history in the Panamint Range, California, are relatively well-constrained by existing low-temperature thermochronology and regional multi-proxy paleoclimate studies, respectively. Catchment-fan systems present there minimize sediment storage and recycling, offering an excellent natural laboratory to test models of climate-sedimentary dynamics. We used stratigraphic characterization and cosmogenic radionuclides (CRNs; 26Al and 10Be) in the Pleasant Canyon complex (PCC), a linked catchment-fan system, to examine the effects of Pleistocene high-magnitude, high-frequency climate change on CRN-derived denudation rates and sediment flux in a high-relief, unglaciated catchment-fan system. Calculated 26Al/10Be burial ages from 13 samples collected in an ∼180 m thick outcropping stratigraphic succession range from ca. 1.55 ± 0.22 Ma in basal strata, to ca. 0.36 ± 0.18-0.52 ± 0.20 Ma within the uppermost part of the succession. The mean long-term CRN-derived paleodenudation rate, 36 ± 8 mm/kyr (1σ), is higher than the modern rate of 24 ± 0.6 mm/kyr from Pleasant Canyon, and paleodenudation rates during the middle Pleistocene display some high-frequency variability in the high end (up to 54 ± 10 mm/kyr). The highest CRN-derived denudation rates are associated with stratigraphic evidence for increased precipitation during glacial-pluvial events after the middle Pleistocene transition (post ca. 0.75 Ma), suggesting 100 kyr Milankovitch periodicity could drive the observed variability. We investigated the potential for non-equilibrium sedimentary processes, i.e. increased landslides or sediment storage/recycling, to influence apparent paleodenudation rates; end-member mixing models suggest that a mixture of >50% low-CRN-concentration sediment from landslides is required to produce the largest observed increase in paleodenudation rate. The overall pattern of CRN-derived burial ages, paleodenudation rates, and stratigraphic facies suggests Milankovitch timescale climate transitions drive variability in catchment denudation rates and sediment flux, or alternatively that climate transitions affect sedimentary process regimes that result in measurable variability of CRN concentrations in unglaciated catchment-fan systems.
NASA Astrophysics Data System (ADS)
Underwood, David Frederick
Femtosecond fluorescence upconversion spectroscopy is a technique that allows the unambiguous determination of the excited state dynamics of an analyte. Combining this method with the use of tunable laser excitation, the exciton dynamics in semiconducting nanocrystals (NC's) of cadmium selenide (CdSe) have been determined, devoid of the complications arising from more common spectroscopic methods such as pump-probe. The results of this investigation were used to construct a model to fully describe the three-level system comprising of the valence and conduction bands and surface states, which have been calculated by others to lie mid-gap in energy. Smaller NC's showed faster decay components due to increased interaction between the exciton and surface states. The deep trap emission, which has never before been measured by ultrafast fluorescence techniques, shows a rapid rise time (˜2 ps), which is attributed to surface selenium dangling bonds relaxing to the valence band and radiatively combining with the photo-generated hole. The band edge fluorescence decays as the deep trap emission grows in, inherently coupling the two processes. An experiment which measured the dependence of the excitation energy showed that increased energy imparted to the NC's resulted in increased rise times, yielding the timescales for exciton relaxation through the valence and conduction band states to the lowest emitting state. Surface-oxidized and normally-passivated NC's display the same decay dynamics in time but differ in relative amplitude; the latter point agrees with steady-state measurements. The rotational anisotrophy of the NC's was measured and agrees with previous pump-probe data. Upconversion on the red and blue sides of the static fluorescence spectrum showed no discernable differences, which is either and inherent limitation of the experimental apparatus, or the possibility that lower-lying triplet states are populated on a timescale below the instrument resolution.
NASA Astrophysics Data System (ADS)
Spokoyny, Boris M.
Ultrafast spectroscopy offers an unprecedented view on the dynamic nature of chemical reactions. From charge transfer in semiconductors to folding and isomerization of proteins, these all important processes can now be monitored and in some instances even controlled on real, physical timescales. One of the biggest challenges of ultrafast science is the incredible energetic complexity of most systems. It is not uncommon to encounter macromolecules or materials with absorption spectra spanning significant portions of the visible spectrum. Monitoring a multitude of electronic and vibrational transitions, all dynamically interacting with each other on femtosecond timescales poses a truly daunting experimental task. The first part of this thesis deals with the development of a novel Two-Dimensional Electronic Spectroscopy (2DES) and its associated, advanced detection methodologies. Owing to its ultra-broadband implementation, this technique enables us to monitor femtosecond chemical dynamics that span the energetic landscape of the entire visible spectrum. In order to demonstrate the utility of our method, we apply it to two laser dye molecules, IR-144 and Cresyl Violet. Variation of photophysical properties on a microscopic scale in either man-made or naturally occurring systems can have profound implications on how we understand their macroscopic properties. Recently, inorganic hybrid perovskites have been tapped as the next generation solar energy harvesting materials. Their remarkable properties include low exciton binding energy, low exciton recombination rates and long carrier diffusion lengths. Nevertheless, considerable variability in device properties made with nearly identical preparation methods has puzzled the community. In the second part of this thesis we use non-linear pump probe microscopy to study the heterogeneous nature of femtosecond carrier dynamics in thin film perovskites. We show that the local morphology of the perovskite thin films has a profound influence on the underlying photophysics, opening new avenues for further optimization of device performance.
Computational fluid dynamics modelling in cardiovascular medicine
Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P
2016-01-01
This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019
Efficient Radiative Transfer for Dynamically Evolving Stratified Atmospheres
NASA Astrophysics Data System (ADS)
Judge, Philip G.
2017-12-01
We present a fast multi-level and multi-atom non-local thermodynamic equilibrium radiative transfer method for dynamically evolving stratified atmospheres, such as the solar atmosphere. The preconditioning method of Rybicki & Hummer (RH92) is adopted. But, pressed for the need of speed and stability, a “second-order escape probability” scheme is implemented within the framework of the RH92 method, in which frequency- and angle-integrals are carried out analytically. While minimizing the computational work needed, this comes at the expense of numerical accuracy. The iteration scheme is local, the formal solutions for the intensities are the only non-local component. At present the methods have been coded for vertical transport, applicable to atmospheres that are highly stratified. The probabilistic method seems adequately fast, stable, and sufficiently accurate for exploring dynamical interactions between the evolving MHD atmosphere and radiation using current computer hardware. Current 2D and 3D dynamics codes do not include this interaction as consistently as the current method does. The solutions generated may ultimately serve as initial conditions for dynamical calculations including full 3D radiative transfer. The National Center for Atmospheric Research is sponsored by the National Science Foundation.
Chandrasekhar's dynamical friction and non-extensive statistics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Silva, J.M.; Lima, J.A.S.; De Souza, R.E.
2016-05-01
The motion of a point like object of mass M passing through the background potential of massive collisionless particles ( m || M ) suffers a steady deceleration named dynamical friction. In his classical work, Chandrasekhar assumed a Maxwellian velocity distribution in the halo and neglected the self gravity of the wake induced by the gravitational focusing of the mass M . In this paper, by relaxing the validity of the Maxwellian distribution due to the presence of long range forces, we derive an analytical formula for the dynamical friction in the context of the q -nonextensive kinetic theory. Inmore » the extensive limiting case ( q = 1), the classical Gaussian Chandrasekhar result is recovered. As an application, the dynamical friction timescale for Globular Clusters spiraling to the galactic center is explicitly obtained. Our results suggest that the problem concerning the large timescale as derived by numerical N -body simulations or semi-analytical models can be understood as a departure from the standard extensive Maxwellian regime as measured by the Tsallis nonextensive q -parameter.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eads, Calley N.; Bandak, Dmytro; Neupane, Mahesh R.
Strong quantum confinement effects lead to striking new physics in two-dimensional materials such as graphene or transition metal dichalcogenides. While spectroscopic fingerprints of such quantum confinement have been demonstrated widely, the consequences for carrier dynamics are at present less clear, particularly on ultrafast timescales. This is important for tailoring, probing, and understanding spin and electron dynamics in layered and two-dimensional materials even in cases where the desired bandgap engineering has been achieved. Here in this paper we show by means of core–hole clock spectroscopy that SnS 2 exhibits spindependent attosecond charge delocalization times (τ deloc) for carriers confined within amore » layer, τ deloc < 400 as, whereas interlayer charge delocalization is dynamically quenched in excess of a factor of 10, τ deloc > 2.7 fs. These layer decoupling dynamics are a direct consequence of strongly anisotropic screening established within attoseconds, and demonstrate that important two-dimensional characteristics are also present in bulk crystals of van der Waalslayered materials, at least on ultrafast timescales.« less
NASA Astrophysics Data System (ADS)
Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji
2016-04-01
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.
NASA Astrophysics Data System (ADS)
Belloni, Diogo; Kroupa, Pavel; Rocha-Pinto, Helio J.; Giersz, Mirek
2018-03-01
In order to allow a better understanding of the origin of Galactic field populations, dynamical equivalence of stellar-dynamical systems has been postulated by Kroupa and Belloni et al. to allow mapping of solutions of the initial conditions of embedded clusters such that they yield, after a period of dynamical processing, the Galactic field population. Dynamically equivalent systems are defined to initially and finally have the same distribution functions of periods, mass ratios and eccentricities of binary stars. Here, we search for dynamically equivalent clusters using the MOCCA code. The simulations confirm that dynamically equivalent solutions indeed exist. The result is that the solution space is next to identical to the radius-mass relation of Marks & Kroupa, ( r_h/pc )= 0.1^{+0.07}_{-0.04} ( M_ecl/M_{⊙} )^{0.13± 0.04}. This relation is in good agreement with the oIMF. This is achieved by applying a similar procedurebserved density of molecular cloud clumps. According to the solutions, the time-scale to reach dynamical equivalence is about 0.5 Myr which is, interestingly, consistent with the lifetime of ultra-compact H II regions and the time-scale needed for gas expulsion to be active in observed very young clusters as based on their dynamical modelling.
STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Milliseconds to Years
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Ray, P. S.; Maccarone, T; Chakrabarty, D.; Gendreau, K.; Arzoumanian, Z.; Jenke, P.; Ballantyne, D.; Bozzo, E.; Brandt, S.;
2018-01-01
We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER [1], with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT [2], to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis. For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained
STROBE-X: X-Ray Timing Spectroscopy on Dynamical Timescales from Microseconds to Years
NASA Technical Reports Server (NTRS)
Wilson-Hodge, Colleen A.; Ray, P. S.; Gendreau, K.; Arzoumanian, Z.; Chakrabarty, D.; Remillard, R.; Feroci, M.; Maccarone, T.; Wood, K.; Jenke, P.
2017-01-01
We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with approx. 20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained.
STROBE-X: X-ray Timing & Spectroscopy on Dynamical Timescales from Microseconds to Years
NASA Astrophysics Data System (ADS)
Wilson-Hodge, Colleen A.; Ray, Paul S.; Gendreau, Keith; Chakrabarty, Deepto; Feroci, Marco; Maccarone, Thomas J.; Arzoumanian, Zaven; Remillard, Ronald A.; Wood, Kent; Griffith, Christopher; Jenke, Peter
2017-08-01
We describe a probe-class mission concept that provides an unprecedented view of the X-ray sky, performing timing and 0.2-30 keV spectroscopy over timescales from microseconds to years. The Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) comprises three primary instruments. The first uses an array of lightweight optics (3-m focal length) that concentrate incident photons onto solid state detectors with CCD-level (85-130 eV) energy resolution, 100 ns time resolution, and low background rates to cover the 0.2-12 keV band. This technology is scaled up from NICER, with enhanced optics to take advantage of the longer focal length of STROBE-X. The second uses large-area collimated silicon drift detectors, developed for ESA's LOFT, to cover the 2-30 keV band. These two instruments each provide an order of magnitude improvement in effective area compared with its predecessor (NICER and RXTE, respectively). Finally, a sensitive sky monitor triggers pointed observations, provides high duty cycle, high time resolution, high spectral resolution monitoring of the X-ray sky with ~20 times the sensitivity of the RXTE ASM, and enables multi-wavelength and multi-messenger studies on a continuous, rather than scanning basis.For the first time, the broad coverage provides simultaneous study of thermal components, non-thermal components, iron lines, and reflection features from a single platform for accreting black holes at all scales. The enormous collecting area allows detailed studies of the dense matter equation of state using both thermal emission from rotation-powered pulsars and harder emission from X-ray burst oscillations. The combination of the wide-field monitor and the sensitive pointed instruments enables observations of potential electromagnetic counterparts to LIGO and neutrino events. Additional extragalactic science, such as high quality spectroscopy of clusters of galaxies and unprecedented timing investigations of active galactic nuclei, is also obtained.
A Multi-Cycle Q-Modulation for Dynamic Optimization of Inductive Links.
Lee, Byunghun; Yeon, Pyungwoo; Ghovanloo, Maysam
2016-08-01
This paper presents a new method, called multi-cycle Q-modulation, which can be used in wireless power transmission (WPT) to modulate the quality factor (Q) of the receiver (Rx) coil and dynamically optimize the load impedance to maximize the power transfer efficiency (PTE) in two-coil links. A key advantage of the proposed method is that it can be easily implemented using off-the-shelf components without requiring fast switching at or above the carrier frequency, which is more suitable for integrated circuit design. Moreover, the proposed technique does not need any sophisticated synchronization between the power carrier and Q-modulation switching pulses. The multi-cycle Q-modulation is analyzed theoretically by a lumped circuit model, and verified in simulation and measurement using an off-the-shelf prototype. Automatic resonance tuning (ART) in the Rx, combined with multi-cycle Q-modulation helped maximizing PTE of the inductive link dynamically in the presence of environmental and loading variations, which can otherwise significantly degrade the PTE in multi-coil settings. In the prototype conventional 2-coil link, the proposed method increased the power amplifier (PA) plus inductive link efficiency from 4.8% to 16.5% at ( R L = 1 kΩ, d 23 = 3 cm), and from 23% to 28.2% at ( R L = 100 Ω, d 23 = 3 cm) after 11% change in the resonance capacitance, while delivering 168.1 mW to the load (PDL).
Santoso, Yusdi; Kapanidis, Achillefs N.
2009-01-01
Gel electrophoresis is a standard biochemical technique used for separating biomolecules on the basis of size and charge. Despite the use of gels in early single-molecule experiments, gel electrophoresis has not been widely adopted for single-molecule fluorescence spectroscopy. We present a novel method that combines gel electrophoresis and single-molecule fluorescence spectroscopy to simultaneously purify and analyze biomolecules in a gel matrix. Our method, in-gel ALEX, uses non-denaturing gels to purify biomolecular complexes of interest from free components, aggregates, and non-specific complexes. The gel matrix also slows down translational diffusion of molecules, giving rise to long, high-resolution time traces without surface immobilization, which allow extended observations of conformational dynamics in a biologically friendly environment. We demonstrated the compatibility of this method with different types of single molecule spectroscopy techniques, including confocal detection and fluorescence-correlation spectroscopy. We demonstrated that in-gel ALEX can be used to study conformational dynamics at the millisecond timescale; by studying a DNA hairpin in gels, we directly observed fluorescence fluctuations due to conformational interconversion between folded and unfolded states. Our method is amenable to the addition of small molecules that can alter the equilibrium and dynamic properties of the system. In-gel ALEX will be a versatile tool for studying structures and dynamics of complex biomolecules and their assemblies. PMID:19863108
Scales of convective activity in the MJO (Invited)
NASA Astrophysics Data System (ADS)
Houze, R.
2013-12-01
One of the results of the Dynamics of the Madden-Julian Oscillation (MJO) field experiment (DYNAMO) is the realization that an active period of the MJO is not a continuous stretch of time in which convection and rainfall are occurring. Rather, an active MJO period, as determined by standard statistical treatments of the wind and satellite data such as that of Wheeler and Hendon (2004), has periods of highly suppressed conditions interspersed with bursts or episodes of deep convection and rainfall. At a given location, an MJO cycle is of the order of 30-60 days. The active half of a cycle is then about 2-4 weeks. DYNAMO data show that within this multi-week period rain falls in intermittent bursts of deep convection at intervals of 2-6 days, with each burst lasting 1-2 days. The time between bursts is highly suppressed, such that the convective cloud population consists of shallow non-precipitating cumulus. This intermediate burst timescale is neither the MJO timescale nor the timescale of an individual convective cloud. The modulation on the 2-6 day timescale was related to various types of higher frequency equatorial waves (especially, inertio-gravity waves and easterly waves). The largest individual convective cloud element in the MJO environment is the mesoscale convective system (MCS), which lasts about a half day, much shorter than the time period of the wave-modulated bursts. The intermediate scale bursts reflect an evolution of the cloud population. Numerous individual cloud systems undergo their lifecycles within the envelope of the wave-controlled time period of a few days. At a given site, such as the principal island site of Addu Atoll in DYNAMO, radar observations show that in an intermediate timescale episode the convective ensemble goes through a systematic series of stages characterized by differing proportions of elements of different sizes and intensities. The first stage is a population of shallow non-precipitating cumulus, followed by an ensemble of clouds containing some deeper convective elements. At the time of maximum rain during the episode, the population contains growing mesoscale systems. As the rain episode declines the population contains a substantial number of MCSs with broad stratiform regions. Thus, at least three scales are critical in the active periods of an MJO: the MJO scale, the equatorial wave scale of 2-6 days, and the scale of individual clouds, the largest of which are MCSs. This presentation will document the large-scale environment conditions on each of these scales, the population characteristics of the convection during the wave-modulated bursts, and of the individual cloud systems themselves.
Temperature influence on Hadley cell dynamics
NASA Astrophysics Data System (ADS)
Molnos, S.
2016-12-01
Over the last decades, satellite observations indicate that the Hadley cells have widened and possibly also intensified [1,2]. This might lead to a shift of fertile habitats with implications for biodiversity and agriculture [3]. Causes for these observed changes are uncertain and the possible role of global warming is debated. To better understand the key dynamical forcings involved, we investigate Hadley cell dynamics with an idealized atmosphere model [4,5] and compare its results with reanalysis data. This statistical-dynamical atmosphere model (SDAM) is based on time-averaged equations, and therefore much faster than the more widely used Atmospheric general circulations models (AGCMs).With SDAMS it is possible to perform climate simulations up to multi-millennia timescales. Here, we employ it to study the dominant processes related to the observed strengthening and widening of the Hadley cell using a very large ensemble sensitivity experiment testing the following possible underlying drivers: meridional temperature gradient, temperature anomaly and global mean temperature GMT. Interestingly, whereas the width of the Hadley cell depends nonlinearly on the temperature gradient, while its Intensification is nearly independent on temperature gradient. In contrast, a larger GMT always leads to an intensified Hadley cell. References: [1] Mitas, C. M.: Has the Hadley cell been strengthening in recent decades?, Geophys. Res. Lett., 32(3), 2005. [2] Seidel, D., Fu, Q., Randel, W. and Reichler, T.: Widening of the tropical belt in a changing climate, Nat. Geosci., 1(1), 21-248, 2008. [3] Heffernan, O.: The Mystery of Expanding Tropics, Nature, 530, 20-22, 2016. [4] Coumou, D., Petoukhov, V. and Eliseev, A. V.: Three-dimensional parameterizations of the synoptic scale kinetic energy and momentum flux in the Earth's atmosphere, Nonlinear Process. Geophys., 18(6), 807-827, 2011. [5] Eliseev, A. V., Coumou, D., Chernokulsky, A. V., Petoukhov, V. and Petri, S.: Scheme for calculation of multi-layer cloudiness and precipitation for climate models of intermediate complexity, Geosci. Model Dev., 6(5), 1745-1765, 2013.
The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering
NASA Astrophysics Data System (ADS)
Zaccai, Giuseppe; Natali, Francesca; Peters, Judith; Řihová, Martina; Zimmerman, Ella; Ollivier, J.; Combet, J.; Maurel, Marie-Christine; Bashan, Anat; Yonath, Ada
2016-11-01
Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.
Scale dependant compensational stacking of channelized sedimentary deposits
NASA Astrophysics Data System (ADS)
Wang, Y.; Straub, K. M.; Hajek, E. A.
2010-12-01
Compensational stacking, the tendency for sediment transport system to preferentially fill topographic lows, thus smoothing out topographic relief is a concept used in the interpretation of the stratigraphic record. Recently, a metric was developed to quantify the strength of compensation in sedimentary basins by comparing observed stacking patterns to what would be expected from simple, uncorrelated stacking. This method uses the rate of decay of spatial variability in sedimentation between picked depositional horizons with increasing vertical stratigraphic averaging distance. We explore how this metric varies as a function of stratigraphic scale using data from physical experiments, stratigraphy exposed in outcrops and numerical models. In an experiment conducted at Tulane University’s Sediment Dynamics Laboratory, the topography of a channelized delta formed by weakly cohesive sediment was monitored along flow-perpendicular transects at a high temporal resolution relative to channel kinematics. Over the course of this experiment a uniform relative subsidence pattern, designed to isolate autogenic processes, resulted in the construction of a stratigraphic package that is 25 times as thick as the depth of the experimental channels. We observe a scale-dependence on the compensational stacking of deposits set by the system’s avulsion time-scale. Above the avulsion time-scale deposits stack purely compensationally, but below this time-scale deposits stack somewhere between randomly and deterministically. The well-exposed Ferris Formation (Cretaceous/Paleogene, Hanna Basin, Wyoming, USA) also shows scale-dependant stratigraphic organization which appears to be set by an avulsion time-scale. Finally, we utilize simple object-based models to illustrate how channel avulsions influence compensation in alluvial basins.
Anisotropic attosecond charge carrier dynamics and layer decoupling in quasi-2D layered SnS 2
Eads, Calley N.; Bandak, Dmytro; Neupane, Mahesh R.; ...
2017-11-08
Strong quantum confinement effects lead to striking new physics in two-dimensional materials such as graphene or transition metal dichalcogenides. While spectroscopic fingerprints of such quantum confinement have been demonstrated widely, the consequences for carrier dynamics are at present less clear, particularly on ultrafast timescales. This is important for tailoring, probing, and understanding spin and electron dynamics in layered and two-dimensional materials even in cases where the desired bandgap engineering has been achieved. Here in this paper we show by means of core–hole clock spectroscopy that SnS 2 exhibits spindependent attosecond charge delocalization times (τ deloc) for carriers confined within amore » layer, τ deloc < 400 as, whereas interlayer charge delocalization is dynamically quenched in excess of a factor of 10, τ deloc > 2.7 fs. These layer decoupling dynamics are a direct consequence of strongly anisotropic screening established within attoseconds, and demonstrate that important two-dimensional characteristics are also present in bulk crystals of van der Waalslayered materials, at least on ultrafast timescales.« less
Long-range persistence in the global mean surface temperature and the global warming "time bomb"
NASA Astrophysics Data System (ADS)
Rypdal, M.; Rypdal, K.
2012-04-01
Detrended Fluctuation Analysis (DFA) and Maximum Likelihood Estimations (MLE) based on instrumental data over the last 160 years indicate that there is Long-Range Persistence (LRP) in Global Mean Surface Temperature (GMST) on time scales of months to decades. The persistence is much higher in sea surface temperature than in land temperatures. Power spectral analysis of multi-model, multi-ensemble runs of global climate models indicate further that this persistence may extend to centennial and maybe even millennial time-scales. We also support these conclusions by wavelet variogram analysis, DFA, and MLE of Northern hemisphere mean surface temperature reconstructions over the last two millennia. These analyses indicate that the GMST is a strongly persistent noise with Hurst exponent H>0.9 on time scales from decades up to at least 500 years. We show that such LRP can be very important for long-term climate prediction and for the establishment of a "time bomb" in the climate system due to a growing energy imbalance caused by the slow relaxation to radiative equilibrium under rising anthropogenic forcing. We do this by the construction of a multi-parameter dynamic-stochastic model for the GMST response to deterministic and stochastic forcing, where LRP is represented by a power-law response function. Reconstructed data for total forcing and GMST over the last millennium are used with this model to estimate trend coefficients and Hurst exponent for the GMST on multi-century time scale by means of MLE. Ensembles of solutions generated from the stochastic model also allow us to estimate confidence intervals for these estimates.
Light-field-driven currents in graphene
NASA Astrophysics Data System (ADS)
Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B.; Hommelhoff, Peter
2017-10-01
The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10-15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10-18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in graphene take place on a hitherto unexplored timescale, faster than electron-electron scattering (tens of femtoseconds) and electron-phonon scattering (hundreds of femtoseconds). We expect these results to have direct ramifications for band-structure tomography and light-field-driven petahertz electronics.
Light-field-driven currents in graphene.
Higuchi, Takuya; Heide, Christian; Ullmann, Konrad; Weber, Heiko B; Hommelhoff, Peter
2017-10-12
The ability to steer electrons using the strong electromagnetic field of light has opened up the possibility of controlling electron dynamics on the sub-femtosecond (less than 10 -15 seconds) timescale. In dielectrics and semiconductors, various light-field-driven effects have been explored, including high-harmonic generation, sub-optical-cycle interband population transfer and the non-perturbative change of the transient polarizability. In contrast, much less is known about light-field-driven electron dynamics in narrow-bandgap systems or in conductors, in which screening due to free carriers or light absorption hinders the application of strong optical fields. Graphene is a promising platform with which to achieve light-field-driven control of electrons in a conducting material, because of its broadband and ultrafast optical response, weak screening and high damage threshold. Here we show that a current induced in monolayer graphene by two-cycle laser pulses is sensitive to the electric-field waveform, that is, to the exact shape of the optical carrier field of the pulse, which is controlled by the carrier-envelope phase, with a precision on the attosecond (10 -18 seconds) timescale. Such a current, dependent on the carrier-envelope phase, shows a striking reversal of the direction of the current as a function of the driving field amplitude at about two volts per nanometre. This reversal indicates a transition of light-matter interaction from the weak-field (photon-driven) regime to the strong-field (light-field-driven) regime, where the intraband dynamics influence interband transitions. We show that in this strong-field regime the electron dynamics are governed by sub-optical-cycle Landau-Zener-Stückelberg interference, composed of coherent repeated Landau-Zener transitions on the femtosecond timescale. Furthermore, the influence of this sub-optical-cycle interference can be controlled with the laser polarization state. These coherent electron dynamics in graphene take place on a hitherto unexplored timescale, faster than electron-electron scattering (tens of femtoseconds) and electron-phonon scattering (hundreds of femtoseconds). We expect these results to have direct ramifications for band-structure tomography and light-field-driven petahertz electronics.
NASA Astrophysics Data System (ADS)
Hu, Xiaohu; Hong, Liang; Dean Smith, Micholas; Neusius, Thomas; Cheng, Xiaolin; Smith, Jeremy C.
2016-02-01
Internal motions of proteins are essential to their function. The time dependence of protein structural fluctuations is highly complex, manifesting subdiffusive, non-exponential behaviour with effective relaxation times existing over many decades in time, from ps up to ~102 s (refs ,,,). Here, using molecular dynamics simulations, we show that, on timescales from 10-12 to 10-5 s, motions in single proteins are self-similar, non-equilibrium and exhibit ageing. The characteristic relaxation time for a distance fluctuation, such as inter-domain motion, is observation-time-dependent, increasing in a simple, power-law fashion, arising from the fractal nature of the topology and geometry of the energy landscape explored. Diffusion over the energy landscape follows a non-ergodic continuous time random walk. Comparison with single-molecule experiments suggests that the non-equilibrium self-similar dynamical behaviour persists up to timescales approaching the in vivo lifespan of individual protein molecules.
The dynamics of neuronal redundancy in decision making
NASA Astrophysics Data System (ADS)
Daniels, Bryan; Flack, Jessica; Krakauer, David
We propose two temporal phases of collective computation in a visual motion direction discrimination task by analyzing recordings from 169 neural channels in the prefrontal cortex of macaque monkeys. Phase I is a distributed phase in which uncertainty is substantially reduced by pooling information from many cells. Phase II is a redundant phase in which numerous single cells contain all the information present at the population level in Phase I. A dynamic distributed model connects low redundancy to a slow timescale of information aggregation, and provides a common explanation for both behaviors that differs only in the degree of recurrent excitation. We attribute the slow timescale of information accumulation to critical slowing down near the transition to a memory-carrying collective state. We suggest that this dynamic of slow distributed accumulation followed by fast collective propagation is a generic feature of robust collective computing systems related to consensus formation.
Toward an Improved Representation of Middle Atmospheric Dynamics Thanks to the ARISE Project
NASA Astrophysics Data System (ADS)
Blanc, E.; Ceranna, L.; Hauchecorne, A.; Charlton-Perez, A.; Marchetti, E.; Evers, L. G.; Kvaerna, T.; Lastovicka, J.; Eliasson, L.; Crosby, N. B.; Blanc-Benon, P.; Le Pichon, A.; Brachet, N.; Pilger, C.; Keckhut, P.; Assink, J. D.; Smets, P. S. M.; Lee, C. F.; Kero, J.; Sindelarova, T.; Kämpfer, N.; Rüfenacht, R.; Farges, T.; Millet, C.; Näsholm, S. P.; Gibbons, S. J.; Espy, P. J.; Hibbins, R. E.; Heinrich, P.; Ripepe, M.; Khaykin, S.; Mze, N.; Chum, J.
2018-03-01
This paper reviews recent progress toward understanding the dynamics of the middle atmosphere in the framework of the Atmospheric Dynamics Research InfraStructure in Europe (ARISE) initiative. The middle atmosphere, integrating the stratosphere and mesosphere, is a crucial region which influences tropospheric weather and climate. Enhancing the understanding of middle atmosphere dynamics requires improved measurement of the propagation and breaking of planetary and gravity waves originating in the lowest levels of the atmosphere. Inter-comparison studies have shown large discrepancies between observations and models, especially during unresolved disturbances such as sudden stratospheric warmings for which model accuracy is poorer due to a lack of observational constraints. Correctly predicting the variability of the middle atmosphere can lead to improvements in tropospheric weather forecasts on timescales of weeks to season. The ARISE project integrates different station networks providing observations from ground to the lower thermosphere, including the infrasound system developed for the Comprehensive Nuclear-Test-Ban Treaty verification, the Lidar Network for the Detection of Atmospheric Composition Change, complementary meteor radars, wind radiometers, ionospheric sounders and satellites. This paper presents several examples which show how multi-instrument observations can provide a better description of the vertical dynamics structure of the middle atmosphere, especially during large disturbances such as gravity waves activity and stratospheric warming events. The paper then demonstrates the interest of ARISE data in data assimilation for weather forecasting and re-analyzes the determination of dynamics evolution with climate change and the monitoring of atmospheric extreme events which have an atmospheric signature, such as thunderstorms or volcanic eruptions.
Ramanathan, Arvind; Savol, Andrej J; Agarwal, Pratul K; Chennubhotla, Chakra S
2012-11-01
Biomolecular simulations at millisecond and longer time-scales can provide vital insights into functional mechanisms. Because post-simulation analyses of such large trajectory datasets can be a limiting factor in obtaining biological insights, there is an emerging need to identify key dynamical events and relating these events to the biological function online, that is, as simulations are progressing. Recently, we have introduced a novel computational technique, quasi-anharmonic analysis (QAA) (Ramanathan et al., PLoS One 2011;6:e15827), for partitioning the conformational landscape into a hierarchy of functionally relevant sub-states. The unique capabilities of QAA are enabled by exploiting anharmonicity in the form of fourth-order statistics for characterizing atomic fluctuations. In this article, we extend QAA for analyzing long time-scale simulations online. In particular, we present HOST4MD--a higher-order statistical toolbox for molecular dynamics simulations, which (1) identifies key dynamical events as simulations are in progress, (2) explores potential sub-states, and (3) identifies conformational transitions that enable the protein to access those sub-states. We demonstrate HOST4MD on microsecond timescale simulations of the enzyme adenylate kinase in its apo state. HOST4MD identifies several conformational events in these simulations, revealing how the intrinsic coupling between the three subdomains (LID, CORE, and NMP) changes during the simulations. Further, it also identifies an inherent asymmetry in the opening/closing of the two binding sites. We anticipate that HOST4MD will provide a powerful and extensible framework for detecting biophysically relevant conformational coordinates from long time-scale simulations. Copyright © 2012 Wiley Periodicals, Inc.
Identifying Decadal to Multi-decadal Variability in the Pacific by Empirical Mode Decomposition
NASA Astrophysics Data System (ADS)
Sommers, L. A.; Hamlington, B.; Cheon, S. H.
2016-12-01
Large scale climate variability in the Pacific Ocean like that associated with ENSO and the Pacific Decadal Oscillation (PDO) has been shown to have a significant impact on climate and sea level across a range of timescales. The changes related to these climate signals have worldwide impacts on fisheries, weather, and precipitation patterns among others. Understanding these inter-annual to multi-decadal oscillations is imperative to longer term climate forecasts and understanding how climate will behave, and its effect on changes in sea level. With a 110-year reconstruction of sea level, we examine decadal to multi-decadal variability seen in the sea level fluctuations in the Pacific Ocean. Using empirical mode decomposition (EMD), we break down regional sea level into a series of intrinsic mode functions (IMFs) and attempt attribution of these IMFs to specific climate modes of variability. In particular, and not unexpectedly, we identify IMFs associated with the PDO, finding correlations between the PDO Index and IMFs in the Pacific Ocean upwards of 0.6-0.8 over the 110-year reconstructed record. Perhaps more significantly, we also find evidence of a longer multi-decadal signal ( 50-60 years) in the higher order IMFs. This lower frequency variability has been suggested in previous literature as influencing GMSL, but here we find a regional pattern associated with this multi-decadal signal. By identifying and separating these periodic climate signals, we can gain a better understanding of how the sea level variability associated with these modes can impact sea level on short timescales and serve to exacerbate the effects of long-term sea level change.
Robust control of combustion instabilities
NASA Astrophysics Data System (ADS)
Hong, Boe-Shong
Several interactive dynamical subsystems, each of which has its own time-scale and physical significance, are decomposed to build a feedback-controlled combustion- fluid robust dynamics. On the fast-time scale, the phenomenon of combustion instability is corresponding to the internal feedback of two subsystems: acoustic dynamics and flame dynamics, which are parametrically dependent on the slow-time-scale mean-flow dynamics controlled for global performance by a mean-flow controller. This dissertation constructs such a control system, through modeling, analysis and synthesis, to deal with model uncertainties, environmental noises and time- varying mean-flow operation. Conservation law is decomposed as fast-time acoustic dynamics and slow-time mean-flow dynamics, served for synthesizing LPV (linear parameter varying)- L2-gain robust control law, in which a robust observer is embedded for estimating and controlling the internal status, while achieving trade- offs among robustness, performances and operation. The robust controller is formulated as two LPV-type Linear Matrix Inequalities (LMIs), whose numerical solver is developed by finite-element method. Some important issues related to physical understanding and engineering application are discussed in simulated results of the control system.
Finite-time consensus for controlled dynamical systems in network
NASA Astrophysics Data System (ADS)
Zoghlami, Naim; Mlayeh, Rhouma; Beji, Lotfi; Abichou, Azgal
2018-04-01
The key challenges in networked dynamical systems are the component heterogeneities, nonlinearities, and the high dimension of the formulated vector of state variables. In this paper, the emphasise is put on two classes of systems in network include most controlled driftless systems as well as systems with drift. For each model structure that defines homogeneous and heterogeneous multi-system behaviour, we derive protocols leading to finite-time consensus. For each model evolving in networks forming a homogeneous or heterogeneous multi-system, protocols integrating sufficient conditions are derived leading to finite-time consensus. Likewise, for the networking topology, we make use of fixed directed and undirected graphs. To prove our approaches, finite-time stability theory and Lyapunov methods are considered. As illustrative examples, the homogeneous multi-unicycle kinematics and the homogeneous/heterogeneous multi-second order dynamics in networks are studied.
Real-Time Load-Side Control of Electric Power Systems
NASA Astrophysics Data System (ADS)
Zhao, Changhong
Two trends are emerging from modern electric power systems: the growth of renewable (e.g., solar and wind) generation, and the integration of information technologies and advanced power electronics. The former introduces large, rapid, and random fluctuations in power supply, demand, frequency, and voltage, which become a major challenge for real-time operation of power systems. The latter creates a tremendous number of controllable intelligent endpoints such as smart buildings and appliances, electric vehicles, energy storage devices, and power electronic devices that can sense, compute, communicate, and actuate. Most of these endpoints are distributed on the load side of power systems, in contrast to traditional control resources such as centralized bulk generators. This thesis focuses on controlling power systems in real time, using these load side resources. Specifically, it studies two problems. (1) Distributed load-side frequency control: We establish a mathematical framework to design distributed frequency control algorithms for flexible electric loads. In this framework, we formulate a category of optimization problems, called optimal load control (OLC), to incorporate the goals of frequency control, such as balancing power supply and demand, restoring frequency to its nominal value, restoring inter-area power flows, etc., in a way that minimizes total disutility for the loads to participate in frequency control by deviating from their nominal power usage. By exploiting distributed algorithms to solve OLC and analyzing convergence of these algorithms, we design distributed load-side controllers and prove stability of closed-loop power systems governed by these controllers. This general framework is adapted and applied to different types of power systems described by different models, or to achieve different levels of control goals under different operation scenarios. We first consider a dynamically coherent power system which can be equivalently modeled with a single synchronous machine. We then extend our framework to a multi-machine power network, where we consider primary and secondary frequency controls, linear and nonlinear power flow models, and the interactions between generator dynamics and load control. (2) Two-timescale voltage control: The voltage of a power distribution system must be maintained closely around its nominal value in real time, even in the presence of highly volatile power supply or demand. For this purpose, we jointly control two types of reactive power sources: a capacitor operating at a slow timescale, and a power electronic device, such as a smart inverter or a D-STATCOM, operating at a fast timescale. Their control actions are solved from optimal power flow problems at two timescales. Specifically, the slow-timescale problem is a chance-constrained optimization, which minimizes power loss and regulates the voltage at the current time instant while limiting the probability of future voltage violations due to stochastic changes in power supply or demand. This control framework forms the basis of an optimal sizing problem, which determines the installation capacities of the control devices by minimizing the sum of power loss and capital cost. We develop computationally efficient heuristics to solve the optimal sizing problem and implement real-time control. Numerical experiments show that the proposed sizing and control schemes significantly improve the reliability of voltage control with a moderate increase in cost.
Comparison of air pollution in Shanghai and Lanzhou based on wavelet transform.
Su, Yana; Sha, Yongzhong; Zhai, Guangyu; Zong, Shengliang; Jia, Jiehua
2017-04-21
For a long-period comparative analysis of air pollution in coastal and inland cities, we analyzed the continuous Morlet wavelet transform on the time series of a 5274-day air pollution index in Shanghai and Lanzhou during 15 years and studied the multi-scale variation characteristic, main cycle, and impact factor of the air pollution time series. The analysis showed that (1) air pollution in the two cities was non-stationary and nonlinear, had multiple timescales, and exhibited the characteristics of high in winter and spring and low in summer and autumn. (2) The monthly variation in air pollution in Shanghai was not significant, whereas the seasonal variation of air pollution in Lanzhou was obvious. (3) Air pollution in Shanghai showed an ascending tendency, whereas that in Lanzhou presented a descending tendency. Overall, air pollution in Lanzhou was higher than that in Shanghai, but the situation has reversed since 2015. (4) The primary cycles of air pollution in these two cities were close, but the secondary cycles were significantly different. The aforementioned differences were mainly due to the impact of topographical and meteorological factors in Lanzhou, the weather process and the surrounding environment in Shanghai. These conclusions have reference significance for Shanghai and Lanzhou to control air pollution. The multi-timescale variation and local features of the wavelet analysis method used in this study can be applied to varied aspects of air pollution analysis. The identification of cycle characteristics and the monitoring, forecasting, and controlling of air pollution can yield valuable reference.
Mean-field approximations of fixation time distributions of evolutionary game dynamics on graphs
NASA Astrophysics Data System (ADS)
Ying, Li-Min; Zhou, Jie; Tang, Ming; Guan, Shu-Guang; Zou, Yong
2018-02-01
The mean fixation time is often not accurate for describing the timescales of fixation probabilities of evolutionary games taking place on complex networks. We simulate the game dynamics on top of complex network topologies and approximate the fixation time distributions using a mean-field approach. We assume that there are two absorbing states. Numerically, we show that the mean fixation time is sufficient in characterizing the evolutionary timescales when network structures are close to the well-mixing condition. In contrast, the mean fixation time shows large inaccuracies when networks become sparse. The approximation accuracy is determined by the network structure, and hence by the suitability of the mean-field approach. The numerical results show good agreement with the theoretical predictions.
Probabilistic density function method for nonlinear dynamical systems driven by colored noise.
Barajas-Solano, David A; Tartakovsky, Alexandre M
2016-05-01
We present a probability density function (PDF) method for a system of nonlinear stochastic ordinary differential equations driven by colored noise. The method provides an integrodifferential equation for the temporal evolution of the joint PDF of the system's state, which we close by means of a modified large-eddy-diffusivity (LED) closure. In contrast to the classical LED closure, the proposed closure accounts for advective transport of the PDF in the approximate temporal deconvolution of the integrodifferential equation. In addition, we introduce the generalized local linearization approximation for deriving a computable PDF equation in the form of a second-order partial differential equation. We demonstrate that the proposed closure and localization accurately describe the dynamics of the PDF in phase space for systems driven by noise with arbitrary autocorrelation time. We apply the proposed PDF method to analyze a set of Kramers equations driven by exponentially autocorrelated Gaussian colored noise to study nonlinear oscillators and the dynamics and stability of a power grid. Numerical experiments show the PDF method is accurate when the noise autocorrelation time is either much shorter or longer than the system's relaxation time, while the accuracy decreases as the ratio of the two timescales approaches unity. Similarly, the PDF method accuracy decreases with increasing standard deviation of the noise.
Nonlinear zero-sum differential game analysis by singular perturbation methods
NASA Technical Reports Server (NTRS)
Sinar, J.; Farber, N.
1982-01-01
A class of nonlinear, zero-sum differential games, exhibiting time-scale separation properties, can be analyzed by singular-perturbation techniques. The merits of such an analysis, leading to an approximate game solution, as well as the 'well-posedness' of the formulation, are discussed. This approach is shown to be attractive for investigating pursuit-evasion problems; the original multidimensional differential game is decomposed to a 'simple pursuit' (free-stream) game and two independent (boundary-layer) optimal-control problems. Using multiple time-scale boundary-layer models results in a pair of uniformly valid zero-order composite feedback strategies. The dependence of suboptimal strategies on relative geometry and own-state measurements is demonstrated by a three dimensional, constant-speed example. For game analysis with realistic vehicle dynamics, the technique of forced singular perturbations and a variable modeling approach is proposed. Accuracy of the analysis is evaluated by comparison with the numerical solution of a time-optimal, variable-speed 'game of two cars' in the horizontal plane.
Bold-line Monte Carlo and the nonequilibrium physics of strongly correlated many-body systems
NASA Astrophysics Data System (ADS)
Cohen, Guy
2015-03-01
This talk summarizes real time bold-line diagrammatic Monte-Carlo approaches to quantum impurity models, which make significant headway against the sign problem by summing over corrections to self-consistent diagrammatic expansions rather than a bare diagrammatic series. When the bold-line method is combined with reduced dynamics techniques both local single-time properties and two time correlators such as Green functions can be computed at very long timescales, enabling studies of nonequilibrium steady state behavior of quantum impurity models and creating new solvers for nonequilibrium dynamical mean field theory. This work is supported by NSF DMR 1006282, NSF CHE-1213247, DOE ER 46932, TG-DMR120085 and TG-DMR130036, and the Yad Hanadiv-Rothschild Foundation.
Visualizing Structure and Dynamics of Disaccharide Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, J. F.; Beckham, G. T.; Himmel, M. E.
2012-01-01
We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.
Insights into Regolith Dynamics from the Irradiation Record Preserved in Hayabusa Samples
NASA Technical Reports Server (NTRS)
Keller, Lindsay P.; Berger, E. L.
2014-01-01
The rates of space weathering processes are poorly constrained for asteroid surfaces, with recent estimates ranging over 5 orders of magnitude. The return of the first surface samples from a space-weathered asteroid by the Hayabusa mission and their laboratory analysis provides "ground truth" to anchor the timescales for space weathering. We determine the rates of space weathering on Itokawa by measuring solar flare track densities and the widths of solar wind damaged rims on grains. These measurements are made possible through novel focused ion beam (FIB) sample preparation methods.
NASA Technical Reports Server (NTRS)
Bivolaru, Daniel (Inventor); Cutler, Andrew D. (Inventor); Danehy, Paul M. (Inventor)
2015-01-01
A system that simultaneously measures the translational temperature, bulk velocity, and density in gases by collecting, referencing, and analyzing nanosecond time-scale Rayleigh scattered light from molecules is described. A narrow-band pulsed laser source is used to probe two largely separated measurement locations, one of which is used for reference. The elastically scattered photons containing information from both measurement locations are collected at the same time and analyzed spectrally using a planar Fabry-Perot interferometer. A practical means of referencing the measurement of velocity using the laser frequency, and the density and temperature using the information from the reference measurement location maintained at constant properties is provided.
Optical monitoring of BL Lac object S5 0716+714 and FSRQ 3C 273 from 2000 to 2014
NASA Astrophysics Data System (ADS)
Yuan, Yu-Hai; Fan, Jun-hui; Tao, Jun; Qian, Bo-Chen; Costantin, Denise; Xiao, Hu-Bing; Pei, Zhi-Yuan; Lin, Chao
2017-09-01
Context. Using the 1.56 m telescope at the Shanghai Observatory (ShAO), China, we monitored two sources, BL Lac object S5 0716+714 and flat spectrum radio quasar (FSRQ) 3C 273. For S5 0716+714, we report 4969 sets of CCD (Charge-coupled Device) photometrical optical observations (1369 for V band, 1861 for R band and 1739 for I band) in the monitoring time from Dec. 4, 2000 to Apr. 5, 2014. For 3C 273, we report 460 observations (138 for V band, 146 for R band and 176 for I band) in the monitoring time from Mar. 28, 2006 to Apr. 9, 2014. Aims: The observations provide us with a large amount of data to analyze the short-term and long-term optical variabilities. Based on the variable timescales, we can estimate the central black hole mass and the Doppler factor. An abundance of multi-band observations can help us to analyze the relations between the brightness and spectrum. Methods: We use Gaussian fitting to analyze the intra-day light curves and obtain the intra-day variability (IDV) timescales. We use the discrete correlation function (DCF) method and Jurkevich method to analyze the quasi-periodic variability. Based on the VRI observations, we use the linear fitting to analyze the relations between brightness and spectrum. Results: The two sources both show IDV properties for S5 0716+714. The timescales are in the range from 17.3 min to 4.82 h; for 3C 273, the timescale is ΔT = 35.6 min. Based on the periodic analysis methods, we find the periods PV = 24.24 ± 1.09 days, PR = 24.12 ± 0.76 days, PI = 24.82 ± 0.73 days for S5 0716+714, and P = 12.99 ± 0.72, 21.76 ± 1.45 yr for 3C 273. The two sources displayed the "bluer-when-brighter" spectral evolution properties. Conclusions: S5 0716+714 and 3C 273 are frequently studied objects. The violent optical variability and IDV may come from the jet. Gaussian fitting can be used to analyze IDVs. The relations between brightness (flux density) and spectrum are strongly influenced by the frequency. A table of the individual photometry measurements is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A43
Li, Miao; Li, Jun; Zhou, Yiyu
2015-12-08
The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts-MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing.
Li, Miao; Li, Jun; Zhou, Yiyu
2015-01-01
The problem of jointly detecting and tracking multiple targets from the raw observations of an infrared focal plane array is a challenging task, especially for the case with uncertain target dynamics. In this paper a multi-model labeled multi-Bernoulli (MM-LMB) track-before-detect method is proposed within the labeled random finite sets (RFS) framework. The proposed track-before-detect method consists of two parts—MM-LMB filter and MM-LMB smoother. For the MM-LMB filter, original LMB filter is applied to track-before-detect based on target and measurement models, and is integrated with the interacting multiple models (IMM) approach to accommodate the uncertainty of target dynamics. For the MM-LMB smoother, taking advantage of the track labels and posterior model transition probability, the single-model single-target smoother is extended to a multi-model multi-target smoother. A Sequential Monte Carlo approach is also presented to implement the proposed method. Simulation results show the proposed method can effectively achieve tracking continuity for multiple maneuvering targets. In addition, compared with the forward filtering alone, our method is more robust due to its combination of forward filtering and backward smoothing. PMID:26670234
NASA Astrophysics Data System (ADS)
Lea, J.; Mair, D. W.; Rea, B. R.; Schofield, J.; Kamenos, N.; Pearce, D.; Schoenrock, K. M.
2017-12-01
While the Greenland Ice Sheet has undergone significant retreat over the last 80 years, our understanding of the ice sheet's response to climate forcing over centennial to millennial timescales is poorly constrained. Knowledge of marine glacier outlets over these timescales would provide crucial information regarding longer term ice sheet dynamics, beyond instrumental and historical records. It is notably difficult to constrain such histories for these glaciers due to: (i) a highly dynamic ice front environment in combination with the Little Ice Age advance(s) destroying much of the preceding evidence for glacier change; (ii) often poor landform/sediment preservation due to steep sided fjords; (iii) the areas with greatest preservation potential, the fjords bottoms, being submarine and often ice choked, and therefore non-trivial to survey, and sample. The tidewater glacier Kangiata Nunaata Sermia (KNS), SW Greenland provides an exception to this. Here we present a record of >22km of terminus advance and retreat spanning the last 1000 years using a combination of geomorphological, sedimentological and archaeological evidence. This timescale includes periods of substantial warming and cooling of air temperatures that appear to correspond to periods of advance and retreat. Results also suggest that the average advance rates in the early part of the millennium (110 m a-1) are of a similar magnitude to contemporary retreat rates observed around Greenland. The results generated here provide an ideal opportunity to validate the performance of numerical models (notably those that include calving) over centennial timescales. Evaluating model performance against the past behaviour of KNS could therefore lead to significant improvements in the confidence of ice sheet change projections up to 2100 and beyond.
Warmer, deeper, and greener mixed layers in the North Atlantic subpolar gyre over the last 50 years.
Martinez, Elodie; Raitsos, Dionysios E; Antoine, David
2016-02-01
Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom-up processes, the top-down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi-decadal Oscillation (AMO). While previous studies have hypothesized that climate-driven warming would facilitate seasonal stratification of surface waters and long-term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom-up (NAO control) and top-down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales. © 2015 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Dee, S. G.; Parsons, L. A.; Loope, G. R.; Overpeck, J. T.; Ault, T. R.; Emile-Geay, J.
2017-10-01
The spectral characteristics of paleoclimate observations spanning the last millennium suggest the presence of significant low-frequency (multi-decadal to centennial scale) variability in the climate system. Since this low-frequency climate variability is critical for climate predictions on societally-relevant scales, it is essential to establish whether General Circulation models (GCMs) are able to simulate it faithfully. Recent studies find large discrepancies between models and paleoclimate data at low frequencies, prompting concerns surrounding the ability of GCMs to predict long-term, high-magnitude variability under greenhouse forcing (Laepple and Huybers, 2014a, 2014b). However, efforts to ground climate model simulations directly in paleoclimate observations are impeded by fundamental differences between models and the proxy data: proxy systems often record a multivariate and/or nonlinear response to climate, precluding a direct comparison to GCM output. In this paper we bridge this gap via a forward proxy modeling approach, coupled to an isotope-enabled GCM. This allows us to disentangle the various contributions to signals embedded in ice cores, speleothem calcite, coral aragonite, tree-ring width, and tree-ring cellulose. The paper addresses the following questions: (1) do forward-modeled ;pseudoproxies; exhibit variability comparable to proxy data? (2) if not, which processes alter the shape of the spectrum of simulated climate variability, and are these processes broadly distinguishable from climate? We apply our method to representative case studies, and broaden these insights with an analysis of the PAGES2k database (PAGES2K Consortium, 2013). We find that current proxy system models (PSMs) can help resolve model-data discrepancies on interannual to decadal timescales, but cannot account for the mismatch in variance on multi-decadal to centennial timescales. We conclude that, specific to this set of PSMs and isotope-enabled model, the paleoclimate record may exhibit larger low-frequency variability than GCMs currently simulate, indicative of incomplete physics and/or forcings.
DeRose, Robert; Pohlmeyer, Christopher; Umeda, Nobuhiro; Ueno, Tasuku; Nagano, Tetsuo; Kuo, Scot; Inoue, Takanari
2012-03-09
Dynamic regulation of the Rho family of small guanosine triphosphatases (GTPases) with great spatiotemporal precision is essential for various cellular functions and events(1, 2). Their spatiotemporally dynamic nature has been revealed by visualization of their activity and localization in real time(3). In order to gain deeper understanding of their roles in diverse cellular functions at the molecular level, the next step should be perturbation of protein activities at a precise subcellular location and timing. To achieve this goal, we have developed a method for light-induced, spatio-temporally controlled activation of small GTPases by combining two techniques: (1) rapamycin-induced FKBP-FRB heterodimerization and (2) a photo-caging method of rapamycin. With the use of rapamycin-mediated FKBP-FRB heterodimerization, we have developed a method for rapidly inducible activation or inactivation of small GTPases including Rac(4), Cdc42(4), RhoA(4) and Ras(5), in which rapamycin induces translocation of FKBP-fused GTPases, or their activators, to the plasma membrane where FRB is anchored. For coupling with this heterodimerization system, we have also developed a photo-caging system of rapamycin analogs. A photo-caged compound is a small molecule whose activity is suppressed with a photocleavable protecting group known as a caging group. To suppress heterodimerization activity completely, we designed a caged rapamycin that is tethered to a macromolecule such that the resulting large complex cannot cross the plasma membrane, leading to virtually no background activity as a chemical dimerizer inside cells(6). Figure 1 illustrates a scheme of our system. With the combination of these two systems, we locally recruited a Rac activator to the plasma membrane on a timescale of seconds and achieved light-induced Rac activation at the subcellular level(6).
No large population of unbound or wide-orbit Jupiter-mass planets.
Mróz, Przemek; Udalski, Andrzej; Skowron, Jan; Poleski, Radosław; Kozłowski, Szymon; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Pietrukowicz, Paweł; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał
2017-08-10
Planet formation theories predict that some planets may be ejected from their parent systems as result of dynamical interactions and other processes. Unbound planets can also be formed through gravitational collapse, in a way similar to that in which stars form. A handful of free-floating planetary-mass objects have been discovered by infrared surveys of young stellar clusters and star-forming regions as well as wide-field surveys, but these studies are incomplete for objects below five Jupiter masses. Gravitational microlensing is the only method capable of exploring the entire population of free-floating planets down to Mars-mass objects, because the microlensing signal does not depend on the brightness of the lensing object. A characteristic timescale of microlensing events depends on the mass of the lens: the less massive the lens, the shorter the microlensing event. A previous analysis of 474 microlensing events found an excess of ten very short events (1-2 days)-more than known stellar populations would suggest-indicating the existence of a large population of unbound or wide-orbit Jupiter-mass planets (reported to be almost twice as common as main-sequence stars). These results, however, do not match predictions of planet-formation theories and surveys of young clusters. Here we analyse a sample of microlensing events six times larger than that of ref. 11 discovered during the years 2010-15. Although our survey has very high sensitivity (detection efficiency) to short-timescale (1-2 days) microlensing events, we found no excess of events with timescales in this range, with a 95 per cent upper limit on the frequency of Jupiter-mass free-floating or wide-orbit planets of 0.25 planets per main-sequence star. We detected a few possible ultrashort-timescale events (with timescales of less than half a day), which may indicate the existence of Earth-mass and super-Earth-mass free-floating planets, as predicted by planet-formation theories.
A distal mutation perturbs dynamic amino acid networks in dihydrofolate reductase
Bae, Sung-Hun; Duggan, Brendan M.; Benkovic, Stephen J.; Dyson, H. Jane; Wright, Peter E
2013-01-01
Correlated networks of amino acids have been proposed to play a fundamental role in allostery and enzyme catalysis. These networks of amino acids can be traced from surface-exposed residues all the way into the active site, and disruption of these networks can decrease enzyme activity. Substitution of the distal Gly121 residue in E.coli dihydrofolate reductase results in up to a 200-fold decrease in the hydride transfer rate despite the fact that the residue is located 15 Å from the active-site center. In the present study, NMR relaxation experiments are used to demonstrate that dynamics on the ps-ns and μs-ms timescales are changed significantly in the G121V mutant of dihydrofolate reductase. In particular, ps-ns timescale dynamics are decreased in the FG loop (containing the mutated residue 121) and the neighboring active-site loop (the Met20 loop) in the mutant compared to wild-type enzyme, suggesting that these loops are dynamically coupled. Changes in methyl order parameters reveal a pathway by which dynamic perturbations can be propagated more than 25 Å across the protein from the site of mutation. All of the enzyme complexes, including the model Michaelis complex with folate and NADP+ bound, assume an occluded ground state conformation, and we do not observe sampling of a higher energy closed conformation by 15N R2 relaxation dispersion. This is highly significant, since it is only in the closed conformation that the cofactor and substrate reactive centers are positioned for reaction. The mutation also impairs μs - ms timescale fluctuations that have been implicated in product release from the wild type enzyme. Our results are consistent with an important role for Gly121 in controlling protein dynamics critical for enzyme function and further validate the dynamic energy landscape hypothesis of enzyme catalysis. PMID:23758161
NASA Astrophysics Data System (ADS)
Feng, Ximeng; Li, Gang; Yu, Haixia; Wang, Shaohui; Yi, Xiaoqing; Lin, Ling
2018-03-01
Noninvasive blood component analysis by spectroscopy has been a hotspot in biomedical engineering in recent years. Dynamic spectrum provides an excellent idea for noninvasive blood component measurement, but studies have been limited to the application of broadband light sources and high-resolution spectroscopy instruments. In order to remove redundant information, a more effective wavelength selection method has been presented in this paper. In contrast to many common wavelength selection methods, this method is based on sensing mechanism which has a clear mechanism and can effectively avoid the noise from acquisition system. The spectral difference coefficient was theoretically proved to have a guiding significance for wavelength selection. After theoretical analysis, the multi-band spectral difference coefficient-wavelength selection method combining with the dynamic spectrum was proposed. An experimental analysis based on clinical trial data from 200 volunteers has been conducted to illustrate the effectiveness of this method. The extreme learning machine was used to develop the calibration models between the dynamic spectrum data and hemoglobin concentration. The experiment result shows that the prediction precision of hemoglobin concentration using multi-band spectral difference coefficient-wavelength selection method is higher compared with other methods.
NASA Astrophysics Data System (ADS)
Haustein, Karsten; Otto, Friederike; Uhe, Peter; Allen, Myles; Cullen, Heidi
2016-04-01
Within the last decade, extreme weather event attribution has emerged as a new field of science and garnered increasing attention from the wider scientific community and the public. Numerous methods have been put forward to determine the contribution of anthropogenic climate change to individual extreme weather events. So far nearly all such analyses were done months after an event has happened. First, we present our newly established method which can assess the fraction of attributable risk (FAR) of a severe weather event due to an external driver in real-time. The method builds on a large ensemble of atmosphere-only GCM/RCM simulations forced by seasonal forecast sea surface temperatures (SSTs). Taking the UK 2013/14 winter floods as an example, we demonstrate that the change in risk for heavy rainfall during the England floods due to anthropogenic climate change is of similar magnitude using either observed or seasonal forecast SSTs. While FAR is assumed to be independent from event-specific dynamic contributions due to anomalous circulation patterns as a first approximation, the risk of an event to occur under current conditions is clearly a function of the state of the atmosphere. The shorter the event, the more it is a result of chaotic internal weather variability. Hence we are interested to (1) attribute the event to thermodynamic and dynamic causes and to (2) establish a sensible time-scale for which we can make a useful and potentially robust attribution statement with regard to event-specific dynamics. Having tested the dynamic response of our model to SST conditions in January 2014, we find that observed SSTs are required to establish a discernible link between anomalous ocean temperatures and the atmospheric circulation over the North Atlantic in general and the UK in particular. However, for extreme events occurring under strongly anomalous SST patterns, associated with known low-frequency climate modes such as El Nino or La Nina, forecast SSTs can provide sufficient guidance to determine the dynamic contribution to the event on the basis of monthly mean values. No such link can be made (North Atlantic/Western Europe region) for shorter time-scales, unless the observed state of the circulation is taken as reference for the model analysis (e.g. Christidis et al. 2014). We present results from our most recent attribution analysis for the December 2015 UK floods (Storm Desmond and Eva), during which we find a robust teleconnection link between Pacific SSTs and North Atlantic Jetstream anomalies. This is true for both experiments, with forecast and observed SSTs. We propose a fast and simple analysis method based on the comparison of current climatological circulation patterns with actual and natural conditions. Alternative methods are discussed and analysed regarding their potential for fast-track attribution of the role of dynamics. Also, we briefly revisit the issue of internal vs forced dynamic contributions.
Momentum-Based Dynamics for Spacecraft with Chained Revolute Appendages
NASA Technical Reports Server (NTRS)
Queen, Steven; London, Ken; Gonzalez, Marcelo
2005-01-01
An efficient formulation is presented for a sub-class of multi-body dynamics problems that involve a six degree-of-freedom base body and a chain of N rigid linkages connected in series by single degree-of-freedom revolute joints. This general method is particularly well suited for simulations of spacecraft dynamics and control that include the modeling of an orbiting platform with or without internal degrees of freedom such as reaction wheels, dampers, and/or booms. In the present work, particular emphasis is placed on dynamic simulation of multi-linkage robotic manipulators. The differential equations of motion are explicitly given in terms of linear and angular momentum states, which can be evaluated recursively along a serial chain of linkages for an efficient real-time solution on par with the best of the O(N3) methods.
Insights into Regolith Evolution from TEM Studies of Space Weathering of Itokawa Particles
NASA Technical Reports Server (NTRS)
Berger, Eve L.; Keller, Lindsay P.
2015-01-01
Exposure to solar wind irradiation and micrometeorite impacts alter the properties of regolith materials exposed on airless bodies. However, estimates of space weathering rates for asteroid regoliths span many orders of magnitude. Timescales for space weathering processes on airless bodies can be anchored by analyzing surface samples returned by JAXA's Hayabusa mission to asteroid 25143 Itokawa. Constraints on timescales of solar flare particle track accumulation and formation of solar wind produced ion-damaged rims yield information on regolith dynamics.
The Analytical Limits of Modeling Short Diffusion Timescales
NASA Astrophysics Data System (ADS)
Bradshaw, R. W.; Kent, A. J.
2016-12-01
Chemical and isotopic zoning in minerals is widely used to constrain the timescales of magmatic processes such as magma mixing and crystal residence, etc. via diffusion modeling. Forward modeling of diffusion relies on fitting diffusion profiles to measured compositional gradients. However, an individual measurement is essentially an average composition for a segment of the gradient defined by the spatial resolution of the analysis. Thus there is the potential for the analytical spatial resolution to limit the timescales that can be determined for an element of given diffusivity, particularly where the scale of the gradient approaches that of the measurement. Here we use a probabilistic modeling approach to investigate the effect of analytical spatial resolution on estimated timescales from diffusion modeling. Our method investigates how accurately the age of a synthetic diffusion profile can be obtained by modeling an "unknown" profile derived from discrete sampling of the synthetic compositional gradient at a given spatial resolution. We also include the effects of analytical uncertainty and the position of measurements relative to the diffusion gradient. We apply this method to the spatial resolutions of common microanalytical techniques (LA-ICP-MS, SIMS, EMP, NanoSIMS). Our results confirm that for a given diffusivity, higher spatial resolution gives access to shorter timescales, and that each analytical spacing has a minimum timescale, below which it overestimates the timescale. For example, for Ba diffusion in plagioclase at 750 °C timescales are accurate (within 20%) above 10, 100, 2,600, and 71,000 years at 0.3, 1, 5, and 25 mm spatial resolution, respectively. For Sr diffusion in plagioclase at 750 °C, timescales are accurate above 0.02, 0.2, 4, and 120 years at the same spatial resolutions. Our results highlight the importance of selecting appropriate analytical techniques to estimate accurate diffusion-based timescales.
Asynchronously Coupled Models of Ice Loss from Airless Planetary Bodies
NASA Astrophysics Data System (ADS)
Schorghofer, N.
2016-12-01
Ice is found near the surface of dwarf planet Ceres, in some main belt asteroids, and perhaps in NEOs that will be explored or even mined in future. The simple but important question of how fast ice is lost from airless bodies can present computational challenges. The thermal cycle on the surface repeats on much shorter time-scales than ice retreats; one process acts on the time-scale of hours, the other over billions of years. This multi-scale situation is addressed with asynchronous coupling, where models with different time steps are woven together. The sharp contrast at the retreating ice table is dealt with with explicit interface tracking. For Ceres, which is covered with a thermally insulating dust mantle, desiccation rates are orders of magnitude slower than had been calculated with simpler models. More model challenges remain: The role of impact devolatization and the time-scale for complete desiccation of an asteroid. I will also share my experience with code distribution using GitHub and Zenodo.
NASA Astrophysics Data System (ADS)
Myhre, S. E.; Hill, T. M.; Frieder, C.; Grupe, B.
2016-02-01
Here we present two new marine sediment archives from the continental margin of San Diego, California, USA, which record decadal to centennial oscillations in the hydrographic structure of the Eastern Pacific Oxygen Minimum Zone (OMZ). The two cores, located at 528 and 1,180 m water depth, record oceanographic history across overlapping timescales. Biotic communities, including Foraminifera, Echinodermata, Brachiopoda, Mollusca and Ostrocoda, were examined in subsurface (>10 cm sediment core depth) samples. Chronologies for both cores were developed with reservoir-corrected 14C dates of mixed planktonic Foraminifera and linearly interpolated sedimentation rates. Sediment ages for the cores range from 400-1,800 years before present. Indices of foraminiferal community density, diversity and evenness are applied as biotic proxies to track the intensification of the continental margin OMZ. Biotic communities at the shallower site reveal multi-decadal to centennial timescales of OMZ intensification, whereas the deeper site exhibits decadal to multi-decadal scales of hydrographic variability. Hypoxia-associated foraminiferal genera Uvigerina and Bolivina were compositionally dominant during intervals of peak foraminiferal density. Invertebrate assemblages often co-occurred across taxa groups, and thereby provide a broad trophic context for interpreting changes in the margin seafloor. Variability in the advection of Pacific Equatorial Water may mechanistically contribute to this described hydrographic variability. This investigation reconstructs historical timescales of OMZ intensification, seafloor ecological variability, and synchrony between open-ocean processes and regional climate.
Quasi-Periodic Pulsations During the Impulsive and Decay Phases of an X-Class Flare
NASA Technical Reports Server (NTRS)
Hays, L. A.; Gallagher, P. T.; Dennis, B. R.; Ireland, J.; Inglis, A. R.; Ryan, D. F.
2016-01-01
Quasi-periodic pulsations (QPPs) are often observed in X-ray emission from solar flares. To date, it is unclear what their physical origins are. Here, we present a multi-instrument investigation of the nature of QPP during the impulsive and decay phases of the X1.0 flare of 2013 October 28. We focus on the character of the fine structure pulsations evident in the soft X-ray (SXR) time derivatives and compare this variability with structure across multiple wavelengths including hard X-ray and microwave emission. We find that during the impulsive phase of the flare, high correlations between pulsations in the thermal and non-thermal emissions are seen. A characteristic timescale of 20 s is observed in all channels and a second timescale of 55 s is observed in the non-thermal emissions. SXR pulsations are seen to persist into the decay phase of this flare, up to 20 minutes after the non-thermal emission has ceased. We find that these decay phase thermal pulsations have very small amplitude and show an increase in characteristic timescale from 40 s up to 70 s. We interpret the bursty nature of the co-existing multi-wavelength QPPs during the impulsive phase in terms of episodic particle acceleration and plasma heating. The persistent thermal decay phase QPPs are most likely connected with compressive magnetohydrodynamic processes in the post-flare loops such as the fast sausage mode or the vertical kink mode.
Dynamic clustering detection through multi-valued descriptors of dermoscopic images.
Cozza, Valentina; Guarracino, Maria Rosario; Maddalena, Lucia; Baroni, Adone
2011-09-10
This paper introduces a dynamic clustering methodology based on multi-valued descriptors of dermoscopic images. The main idea is to support medical diagnosis to decide if pigmented skin lesions belonging to an uncertain set are nearer to malignant melanoma or to benign nevi. Melanoma is the most deadly skin cancer, and early diagnosis is a current challenge for clinicians. Most data analysis algorithms for skin lesions discrimination focus on segmentation and extraction of features of categorical or numerical type. As an alternative approach, this paper introduces two new concepts: first, it considers multi-valued data that scalar variables not only describe but also intervals or histogram variables; second, it introduces a dynamic clustering method based on Wasserstein distance to compare multi-valued data. The overall strategy of analysis can be summarized into the following steps: first, a segmentation of dermoscopic images allows to identify a set of multi-valued descriptors; second, we performed a discriminant analysis on a set of images where there is an a priori classification so that it is possible to detect which features discriminate the benign and malignant lesions; and third, we performed the proposed dynamic clustering method on the uncertain cases, which need to be associated to one of the two previously mentioned groups. Results based on clinical data show that the grading of specific descriptors associated to dermoscopic characteristics provides a novel way to characterize uncertain lesions that can help the dermatologist's diagnosis. Copyright © 2011 John Wiley & Sons, Ltd.
Efficient Simulation of Compressible, Viscous Fluids using Multi-rate Time Integration
NASA Astrophysics Data System (ADS)
Mikida, Cory; Kloeckner, Andreas; Bodony, Daniel
2017-11-01
In the numerical simulation of problems of compressible, viscous fluids with single-rate time integrators, the global timestep used is limited to that of the finest mesh point or fastest physical process. This talk discusses the application of multi-rate Adams-Bashforth (MRAB) integrators to an overset mesh framework to solve compressible viscous fluid problems of varying scale with improved efficiency, with emphasis on the strategy of timescale separation and the application of the resulting numerical method to two sample problems: subsonic viscous flow over a cylinder and a viscous jet in crossflow. The results presented indicate the numerical efficacy of MRAB integrators, outline a number of outstanding code challenges, demonstrate the expected reduction in time enabled by MRAB, and emphasize the need for proper load balancing through spatial decomposition in order for parallel runs to achieve the predicted time-saving benefit. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.
Agulhas leakage dynamics affects decadal variability in Atlantic overturning circulation.
Biastoch, A; Böning, C W; Lutjeharms, J R E
2008-11-27
Predicting the evolution of climate over decadal timescales requires a quantitative understanding of the dynamics that govern the meridional overturning circulation (MOC). Comprehensive ocean measurement programmes aiming to monitor MOC variations have been established in the subtropical North Atlantic (RAPID, at latitude 26.5 degrees N, and MOVE, at latitude 16 degrees N) and show strong variability on intraseasonal to interannual timescales. Observational evidence of longer-term changes in MOC transport remains scarce, owing to infrequent sampling of transoceanic sections over past decades. Inferences based on long-term sea surface temperature records, however, supported by model simulations, suggest a variability with an amplitude of +/-1.5-3 Sv (1 Sv = 10(6) m(3) s(-1)) on decadal timescales in the subtropics. Such variability has been attributed to variations of deep water formation in the sub-arctic Atlantic, particularly the renewal rate of Labrador Sea Water. Here we present results from a model simulation that suggest an additional influence on decadal MOC variability having a Southern Hemisphere origin: dynamic signals originating in the Agulhas leakage region at the southern tip of Africa. These contribute a MOC signal in the tropical and subtropical North Atlantic that is of the same order of magnitude as the northern source. A complete rationalization of observed MOC changes therefore also requires consideration of signals arriving from the south.
NASA Astrophysics Data System (ADS)
Gkioulidou, M.; Ukhorskiy, A. Y.; Mitchell, D. G.; Lanzerotti, L. J.
2015-12-01
The ring current energy budget plays a key role in the global electrodynamics of Earth's space environment. Pressure gradients developed in the inner magnetosphere can shield the near-Earth region from solar wind-induced electric fields. The distortion of Earth's magnetic field due to the ring current affects the dynamics of particles contributing both to the ring current and radiation belts. Therefore, understanding the long-term evolution of the inner magnetosphere energy content is essential. We have investigated the evolution of ring current proton pressure (7 - 600 keV) in the inner magnetosphere based on data from the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument aboard Van Allen Probe B throughout the year 2013. We find that although the low-energy component of the protons (< 80 keV) is governed by convective timescales and is very well correlated with the Dst index, the high-energy component (>100 keV) varies on much longer timescales and shows either no or anti-correlation with the Dst index. Interestingly, the contributions of the high- and low-energy protons to the total energy content are comparable. Our results indicate that the proton dynamics, and as a consequence the total energy budget in the inner magnetosphere (inside geosynchronous orbit), is not strictly controlled by storm-time timescales as those are defined by the Dst index.
Mesoscopic modelling and simulation of soft matter.
Schiller, Ulf D; Krüger, Timm; Henrich, Oliver
2017-12-20
The deformability of soft condensed matter often requires modelling of hydrodynamical aspects to gain quantitative understanding. This, however, requires specialised methods that can resolve the multiscale nature of soft matter systems. We review a number of the most popular simulation methods that have emerged, such as Langevin dynamics, dissipative particle dynamics, multi-particle collision dynamics, sometimes also referred to as stochastic rotation dynamics, and the lattice-Boltzmann method. We conclude this review with a short glance at current compute architectures for high-performance computing and community codes for soft matter simulation.
Structure and dynamics of protein waters revealed by radiolysis and mass spectrometry
Gupta, Sayan; D’Mello, Rhijuta; Chance, Mark R.
2012-01-01
Water is critical for the structure, stability, and functions of macromolecules. Diffraction and NMR studies have revealed structure and dynamics of bound waters at atomic resolution. However, localizing the sites and measuring the dynamics of bound waters, particularly on timescales relevant to catalysis and macromolecular assembly, is quite challenging. Here we demonstrate two techniques: first, temperature-dependent radiolytic hydroxyl radical labeling with a mass spectrometry (MS)-based readout to identify sites of bulk and bound water interactions with surface and internal residue side chains, and second, H218O radiolytic exchange coupled MS to measure the millisecond dynamics of bound water interactions with various internal residue side chains. Through an application of the methods to cytochrome c and ubiquitin, we identify sites of water binding and measure the millisecond dynamics of bound waters in protein crevices. As these MS-based techniques are very sensitive and not protein size limited, they promise to provide unique insights into protein–water interactions and water dynamics for both small and large proteins and their complexes. PMID:22927377
2013-01-01
The accelerated molecular dynamics (aMD) method has recently been shown to enhance the sampling of biomolecules in molecular dynamics (MD) simulations, often by several orders of magnitude. Here, we describe an implementation of the aMD method for the OpenMM application layer that takes full advantage of graphics processing units (GPUs) computing. The aMD method is shown to work in combination with the AMOEBA polarizable force field (AMOEBA-aMD), allowing the simulation of long time-scale events with a polarizable force field. Benchmarks are provided to show that the AMOEBA-aMD method is efficiently implemented and produces accurate results in its standard parametrization. For the BPTI protein, we demonstrate that the protein structure described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use of a polarizable force field and enhanced sampling. PMID:24634618
Modelling and mapping tick dynamics using volunteered observations.
Garcia-Martí, Irene; Zurita-Milla, Raúl; van Vliet, Arnold J H; Takken, Willem
2017-11-14
Tick populations and tick-borne infections have steadily increased since the mid-1990s posing an ever-increasing risk to public health. Yet, modelling tick dynamics remains challenging because of the lack of data and knowledge on this complex phenomenon. Here we present an approach to model and map tick dynamics using volunteered data. This approach is illustrated with 9 years of data collected by a group of trained volunteers who sampled active questing ticks (AQT) on a monthly basis and for 15 locations in the Netherlands. We aimed at finding the main environmental drivers of AQT at multiple time-scales, and to devise daily AQT maps at the national level for 2014. Tick dynamics is a complex ecological problem driven by biotic (e.g. pathogens, wildlife, humans) and abiotic (e.g. weather, landscape) factors. We enriched the volunteered AQT collection with six types of weather variables (aggregated at 11 temporal scales), three types of satellite-derived vegetation indices, land cover, and mast years. Then, we applied a feature engineering process to derive a set of 101 features to characterize the conditions that yielded a particular count of AQT on a date and location. To devise models predicting the AQT, we use a time-aware Random Forest regression method, which is suitable to find non-linear relationships in complex ecological problems, and provides an estimation of the most important features to predict the AQT. We trained a model capable of fitting AQT with reduced statistical metrics. The multi-temporal study on the feature importance indicates that variables linked to water levels in the atmosphere (i.e. evapotranspiration, relative humidity) consistently showed a higher explanatory power than previous works using temperature. As a product of this study, we are able of mapping daily tick dynamics at the national level. This study paves the way towards the design of new applications in the fields of environmental research, nature management, and public health. It also illustrates how Citizen Science initiatives produce geospatial data collections that can support scientific analysis, thus enabling the monitoring of complex environmental phenomena.
Chiappori, Federica; Mattiazzi, Luca; Milanesi, Luciano; Merelli, Ivan
2016-03-02
Phosphorylation is one of the most important post-translational modifications (PTM) employed by cells to regulate several cellular processes. Studying the effects of phosphorylations on protein structures allows to investigate the modulation mechanisms of several proteins including chaperones, like the small HSPs, which display different multimeric structures according to the phosphorylation of a few serine residues. In this context, the proposed study is aimed at finding a method to correlate different PTM patterns (in particular phosphorylations at the monomers interface of multimeric complexes) with the dynamic behaviour of the complex, using physicochemical parameters derived from molecular dynamics simulations in the timescale of nanoseconds. We have developed a methodology relying on computing nine physicochemical parameters, derived from the analysis of short MD simulations, and combined with N identifiers that characterize the PTMs of the analysed protein. The nine general parameters were validated on three proteins, with known post-translational modified conformation and unmodified conformation. Then, we applied this approach to the case study of αB-Crystallin, a chaperone which multimeric state (up to 40 units) is supposed to be controlled by phosphorylation of Ser45 and Ser59. Phosphorylation of serines at the dimer interface induces the release of hexamers, the active state of αB-Crystallin. 30 ns of MD simulation were obtained for each possible combination of dimer phosphorylation state and average values of structural, dynamic, energetic and functional features were calculated on the equilibrated portion of the trajectories. Principal Component Analysis was applied to the parameters and the first five Principal Components, which summed up to 84 % of the total variance, were finally considered. The validation of this approach on multimeric proteins, which structures were known both modified and unmodified, allowed us to propose a new approach that can be used to predict the impact of PTM patterns in multi-modified proteins using data collected from short molecular dynamics simulations. Analysis on the αB-Crystallin case study clusters together all-P dimers with all-P hexamers and no-P dimer with no-P hexamer and results suggest a great influence of Ser59 phosphorylation on chain B.
Simulating immiscible multi-phase flow and wetting with 3D stochastic rotation dynamics (SRD)
NASA Astrophysics Data System (ADS)
Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan; Brinkmann, Martin
2013-11-01
We use a variant of the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the multi-color SRD method, first proposed by Inoue et al., we present an implementation that accounts for complex wettability on heterogeneous surfaces. In order to demonstrate the versatility of this algorithm, we consider immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. We show that these patterns have a significant effect on the interface dynamics. Furthermore, the implementation of angular momentum conservation into the SRD algorithm allows us to extent the applicability of SRD also to micro-fluidic systems. It is now possible to study e.g. the internal flow behaviour of a droplet depending on the driving velocity of the surrounding bulk fluid or the splitting of droplets by an obstacle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patankar, S.; Gumbrell, E. T.; Robinson, T. S.
Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less
NASA Astrophysics Data System (ADS)
Gjersing, Erica Lee
The techniques of Nuclear Magnetic Resonance (NMR) and Raman spectroscopy have been employed to study structure and dynamics in Ge-Se, Ge/As-Te, and As-S binary and complex Ge-As-Te and P-As-S ternary chalcogenide glasses. Structural studies were conducted on Ge-Se glasses and on binary Ge/As-Te and ternary Ge-As-Te systems. The structure of the GexSe100-x glass series, with 5≤x≤33, is investigated with 77Se Magic Angle Spinning (MAS) NMR and then compared with three different proposed structural models. For the binary Ge-Te and As-Te and ternary Ge-As-Te glass systems the structure is studied using Raman spectroscopy and correlated with physical properties such as molar volume, viscosity, optical band gap and thermophysical properties. Studies on glass transition dynamics were conducted on systems with a range of structural features including an As4S3 inorganic molecular glass former, an As-P-S system where molecules are bonded to the As-S network, and network glasses in the Ge-Se system. Timescales of the rotational dynamics of As4S3 cage molecules in the molecular As-sulfide glass and supercooled liquid show remarkably large decoupling from the timescales of viscous flow and shear relaxation at temperatures below and near Tg (312K). Next, the dynamic behavior of a (As 2S3)90(P2S5)10 glass, which is proposed to consist of As2P2S8 molecular structures which are connected to an As-S network, is investigated with 31P NMR. The rotational dynamics of selenium chains in network forming GexSe100-x glasses and supercooled liquids with 5≤x≤23 are investigated with variable temperature 77Se NMR spectroscopy to determine the relationship between rigidity percolation and dynamic behavior. The timescale of the motion of the Se atoms is observed to be nearly identical for x≤17 and
NASA Astrophysics Data System (ADS)
Donner, Reik
2013-04-01
Time series analysis offers a rich toolbox for deciphering information from high-resolution geological and geomorphological archives and linking the thus obtained results to distinct climate and environmental processes. Specifically, on various time-scales from inter-annual to multi-millenial, underlying driving forces exhibit more or less periodic oscillations, the detection of which in proxy records often allows linking them to specific mechanisms by which the corresponding drivers may have affected the archive under study. A persistent problem in geomorphology is that available records do not present a clear signal of the variability of environmental conditions, but exhibit considerable uncertainties of both the measured proxy variables and the associated age model. Particularly, time-scale uncertainty as well as the heterogeneity of sampling in the time domain are source of severe conceptual problems that may lead to false conclusions about the presence or absence of oscillatory patterns and their mutual phasing in different archives. In my presentation, I will discuss how one can cope with non-uniformly sampled proxy records to detect and quantify oscillatory patterns in one or more data sets. For this purpose, correlation analysis is reformulated using kernel estimates which are found superior to classical estimators based on interpolation or Fourier transform techniques. In order to characterize non-stationary or noisy periodicities and their relative phasing between different records, an extension of continuous wavelet transform is utilized. The performance of both methods is illustrated for different case studies. An extension to explicitly considering time-scale uncertainties by means of Bayesian techniques is briefly outlined.
The origin of Total Solar Irradiance variability on timescales less than a day
NASA Astrophysics Data System (ADS)
Shapiro, Alexander; Krivova, Natalie; Schmutz, Werner; Solanki, Sami K.; Leng Yeo, Kok; Cameron, Robert; Beeck, Benjamin
2016-07-01
Total Solar Irradiance (TSI) varies on timescales from minutes to decades. It is generally accepted that variability on timescales of a day and longer is dominated by solar surface magnetic fields. For shorter time scales, several additional sources of variability have been proposed, including convection and oscillation. However, available simplified and highly parameterised models could not accurately explain the observed variability in high-cadence TSI records. We employed the high-cadence solar imagery from the Helioseismic and Magnetic Imager onboard the Solar Dynamics Observatory and the SATIRE (Spectral And Total Irradiance Reconstruction) model of solar irradiance variability to recreate the magnetic component of TSI variability. The recent 3D simulations of solar near-surface convection with MURAM code have been used to calculate the TSI variability caused by convection. This allowed us to determine the threshold timescale between TSI variability caused by the magnetic field and convection. Our model successfully replicates the TSI measurements by the PICARD/PREMOS radiometer which span the period of July 2010 to February 2014 at 2-minute cadence. Hence, we demonstrate that solar magnetism and convection can account for TSI variability at all timescale it has ever been measured (sans the 5-minute component from p-modes).
Nonequilibrium Brownian motion beyond the effective temperature.
Gnoli, Andrea; Puglisi, Andrea; Sarracino, Alessandro; Vulpiani, Angelo
2014-01-01
The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein's relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own "effective" temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein's relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased.
NASA Astrophysics Data System (ADS)
Huang, Wen-Min; Mou, Chung-Yu; Chang, Cheng-Hung
2010-02-01
While the scattering phase for several one-dimensional potentials can be exactly derived, less is known in multi-dimensional quantum systems. This work provides a method to extend the one-dimensional phase knowledge to multi-dimensional quantization rules. The extension is illustrated in the example of Bogomolny's transfer operator method applied in two quantum wells bounded by step potentials of different heights. This generalized semiclassical method accurately determines the energy spectrum of the systems, which indicates the substantial role of the proposed phase correction. Theoretically, the result can be extended to other semiclassical methods, such as Gutzwiller trace formula, dynamical zeta functions, and semiclassical Landauer-Büttiker formula. In practice, this recipe enhances the applicability of semiclassical methods to multi-dimensional quantum systems bounded by general soft potentials.
Larsen, Laurel G.; Harvey, Judson W.; Maglio, Morgan M.
2014-01-01
Hyporheic fluxes influence ecological processes across a continuum of timescales. However, few studies have been able to characterize hyporheic fluxes and residence time distributions (RTDs) over timescales of days to years, during which evapotranspiration (ET) and seasonal flood pulses create unsteady forcing. Here we present a data-driven, particle-tracking piston model that characterizes hyporheic fluxes and RTDs based on measured vertical head differences. We used the model to test the relative influence of ET and seasonal flood pulses in the Everglades (FL, USA), in a manner applicable to other low-energy floodplains or broad, shallow streams. We found that over the multiyear timescale, flood pulses that drive relatively deep (∼1 m) flow paths had the dominant influence on hyporheic fluxes and residence times but that ET effects were discernible at shorter timescales (weeks to months) as a break in RTDs. Cumulative RTDs on either side of the break were generally well represented by lognormal functions, except for when ET was strong and none of the standard distributions applied to the shorter timescale. At the monthly timescale, ET increased hyporheic fluxes by 1–2 orders of magnitude; it also decreased 6 year mean residence times by 53–87%. Long, slow flow paths driven by flood pulses increased 6 year hyporheic fluxes by another 1–2 orders of magnitude, to a level comparable to that induced over the short term by shear flow in streams. Results suggest that models of intermediate-timescale processes should include at least two-storage zones with different RTDs, and that supporting field data collection occur over 3–4 years.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Li; Pierce, David W.; Russell, Lynn M.
This study examines multi-year climate variability associated with sea salt aerosols and their contribution to the variability of shortwave cloud forcing (SWCF) using a 150-year simulation for pre-industrial conditions of the Community Earth System Model version 1.0 (CESM1). The results suggest that changes in sea salt and related cloud and radiative properties on interannual timescales are dominated by the ENSO cycle. Sea salt variability on longer (interdecadal) timescales is associated with low-frequency Pacific ocean variability similar to the interdecadal Pacific Oscillation (IPO), but does not show a statistically significant spectral peak. A multivariate regression suggests that sea salt aerosol variabilitymore » may contribute to SWCF variability in the tropical Pacific, explaining up to 25-35% of the variance in that region. Elsewhere, there is only a small aerosol influence on SWCF through modifying cloud droplet number and liquid water path that contributes to the change of cloud effective radius and cloud optical depth (and hence cloud albedo), producing a multi-year aerosol-cloud-wind interaction.« less
Ultrafast Doublon Dynamics in Photoexcited 1 T -TaS2
NASA Astrophysics Data System (ADS)
Ligges, M.; Avigo, I.; Golež, D.; Strand, H. U. R.; Beyazit, Y.; Hanff, K.; Diekmann, F.; Stojchevska, L.; Kalläne, M.; Zhou, P.; Rossnagel, K.; Eckstein, M.; Werner, P.; Bovensiepen, U.
2018-04-01
Strongly correlated materials exhibit intriguing properties caused by intertwined microscopic interactions that are hard to disentangle in equilibrium. Employing nonequilibrium time-resolved photoemission spectroscopy on the quasi-two-dimensional transition-metal dichalcogenide 1 T -Ta S2 , we identify a spectroscopic signature of doubly occupied sites (doublons) that reflects fundamental Mott physics. Doublon-hole recombination is estimated to occur on timescales of electronic hopping ℏ/J ≈14 fs . Despite strong electron-phonon coupling, the dynamics can be explained by purely electronic effects captured by the single-band Hubbard model under the assumption of weak hole doping, in agreement with our static sample characterization. This sensitive interplay of static doping and vicinity to the metal-insulator transition suggests a way to modify doublon relaxation on the few-femtosecond timescale.
Molecular Dynamics of Hot Dense Plasmas: New Horizons
NASA Astrophysics Data System (ADS)
Graziani, Frank
2011-06-01
We describe the status of a new time-dependent simulation capability for hot dense plasmas. The backbone of this multi-institutional computational and experimental effort--the Cimarron Project--is the massively parallel molecular dynamics (MD) code ``ddcMD''. The project's focus is material conditions such as exist in inertial confinement fusion experiments, and in many stellar interiors: high temperatures, high densities, significant electromagnetic fields, mixtures of high- and low- Z elements, and non-Maxwellian particle distributions. Of particular importance is our ability to incorporate into this classical MD code key atomic, radiative, and nuclear processes, so that their interacting effects under non-ideal plasma conditions can be investigated. This talk summarizes progress in computational methodology, discusses strengths and weaknesses of quantum statistical potentials as effective interactions for MD, explains the model used for quantum events possibly occurring in a collision and highlights some significant results obtained to date. We will also discuss a new idea called kinetic theory MD which now being explored to deal more efficiently with the very disparate dynamical timescales that arise in fusion plasmas. We discuss how this approach can be derived rigorously from the n-body quantum Wigner equation and illustrate the approach with an example. This work is performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Zixuan; Ratner, Mark A.; Seideman, Tamar, E-mail: t-seideman@northwestern.edu
2014-12-14
We develop a numerical approach for simulating light-induced charge transport dynamics across a metal-molecule-metal conductance junction. The finite-difference time-domain method is used to simulate the plasmonic response of the metal structures. The Huygens subgridding technique, as adapted to Lorentz media, is used to bridge the vastly disparate length scales of the plasmonic metal electrodes and the molecular system, maintaining accuracy. The charge and current densities calculated with classical electrodynamics are transformed to an electronic wavefunction, which is then propagated through the molecular linker via the Heisenberg equations of motion. We focus mainly on development of the theory and exemplify ourmore » approach by a numerical illustration of a simple system consisting of two silver cylinders bridged by a three-site molecular linker. The electronic subsystem exhibits fascinating light driven dynamics, wherein the charge density oscillates at the driving optical frequency, exhibiting also the natural system timescales, and a resonance phenomenon leads to strong conductance enhancement.« less
Both genome and cytosol dynamics change in E. coli challenged with sublethal rifampicin
NASA Astrophysics Data System (ADS)
Wlodarski, Michal; Raciti, Bianca; Kotar, Jurij; Cosentino Lagomarsino, Marco; Fraser, Gillian M.; Cicuta, Pietro
2017-02-01
While the action of many antimicrobial drugs is well understood at the molecular level, a systems-level physiological response to antibiotics remains largely unexplored. This work considers fluctuation dynamics of both the chromosome and cytosol in Escherichia coli, and their response to sublethal treatments of a clinically important antibiotic, rifampicin. We precisely quantify the changes in dynamics of chromosomal loci and cytosolic aggregates (a rheovirus nonstructural protein known as μNS-GFP), measuring short time-scale displacements across several hours of drug exposure. To achieve this we develop an empirical method correcting for photo-bleaching and loci size effects. This procedure allows us to characterize the dynamic response to rifampicin in different growth conditions, including a customised microfluidic device. We find that sub-lethal doses of rifampicin cause a small but consistent increase in motility of both the chromosomal loci and cytosolic aggregates. Chromosomal and cytosolic responses are consistent with each other and between different growth conditions.
NASA Astrophysics Data System (ADS)
Stepanova, L. V.
2017-12-01
Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.
Xiao, Li; Luo, Ray
2017-12-07
We explored a multi-scale algorithm for the Poisson-Boltzmann continuum solvent model for more robust simulations of biomolecules. In this method, the continuum solvent/solute interface is explicitly simulated with a numerical fluid dynamics procedure, which is tightly coupled to the solute molecular dynamics simulation. There are multiple benefits to adopt such a strategy as presented below. At this stage of the development, only nonelectrostatic interactions, i.e., van der Waals and hydrophobic interactions, are included in the algorithm to assess the quality of the solvent-solute interface generated by the new method. Nevertheless, numerical challenges exist in accurately interpolating the highly nonlinear van der Waals term when solving the finite-difference fluid dynamics equations. We were able to bypass the challenge rigorously by merging the van der Waals potential and pressure together when solving the fluid dynamics equations and by considering its contribution in the free-boundary condition analytically. The multi-scale simulation method was first validated by reproducing the solute-solvent interface of a single atom with analytical solution. Next, we performed the relaxation simulation of a restrained symmetrical monomer and observed a symmetrical solvent interface at equilibrium with detailed surface features resembling those found on the solvent excluded surface. Four typical small molecular complexes were then tested, both volume and force balancing analyses showing that these simple complexes can reach equilibrium within the simulation time window. Finally, we studied the quality of the multi-scale solute-solvent interfaces for the four tested dimer complexes and found that they agree well with the boundaries as sampled in the explicit water simulations.
NASA Astrophysics Data System (ADS)
Parker, Jeffrey B.; LoDestro, Lynda L.; Told, Daniel; Merlo, Gabriele; Ricketson, Lee F.; Campos, Alejandro; Jenko, Frank; Hittinger, Jeffrey A. F.
2018-05-01
The vast separation dividing the characteristic times of energy confinement and turbulence in the core of toroidal plasmas makes first-principles prediction on long timescales extremely challenging. Here we report the demonstration of a multiple-timescale method that enables coupling global gyrokinetic simulations with a transport solver to calculate the evolution of the self-consistent temperature profile. This method, which exhibits resiliency to the intrinsic fluctuations arising in turbulence simulations, holds potential for integrating nonlocal gyrokinetic turbulence simulations into predictive, whole-device models.
Rapid microfluidic mixing and liquid jets for studying biomolecular chemical dynamics
NASA Astrophysics Data System (ADS)
Langley, Daniel; Abbey, Brian
2018-01-01
X-ray Free-Electron Lasers (XFELs) offer a unique opportunity to study the structural dynamics of proteins on a femtosecond time-scale. To realize the full potential of XFEL sources for studying time-resolved biomolecular processes however, requires the optimization and development of devices that can both act as a trigger and a delivery mechanism for the system of interest. Here we present numerical simulations and actual devices exploring the conditions required for the development of successful mixing and injection devices for tracking the molecular dynamics of proteins in solution on micro to nanosecond timescales using XFELs. The mechanism for combining reagents employs a threefold combination of pico-liter volumes, lamination and serpentine mixing. Focusing and delivering the sample in solution is achieved using the Gas Dynamic Virtual Nozzle (GDVN), which was specifically developed to produce a micrometer diameter, in-vacuum liquid jet. We explore the influence of parameters such as flow rate and gas pressure on the mixing time and jet stability, and explore the formation of rapid homogeneously mixed jets for `mix-and-inject' liquid scattering experiments at Synchrotron and XFEL facilities.
NASA Astrophysics Data System (ADS)
Ocampo, Carlos J.; Oldham, Carolyn E.; Sivapalan, Murugesu; Turner, Jeffrey V.
2006-12-01
Deciphering the connection between streamflows and nitrate (NO-3) discharge requires identification of the various water flow pathways within a catchment, and the different time-scales at which hydrological and biogeochemical processes occur. Despite the complexity of the processes involved, many catchments around the world present a characteristic flushing response of NO-3 export. Yet the controls on the flushing response, and how they vary across space and time, are still not clearly understood. In this paper, the flushing response of NO-3 export from a rural catchment in Western Australia was investigated using isotopic (deuterium), chemical (chloride, NO-3), and hydrometric data across different antecedent conditions and time-scales. The catchment streamflow was at all time-scales dominated by a pre-event water source, and the NO-3 discharge was correlated with the magnitude of areas contributing to saturation overland flow. The NO-3 discharge also appeared related to the shallow groundwater dynamics. Thus, the antecedent moisture condition of the catchment at seasonal and interannual time-scales had a major impact on the NO-3 flushing response. In particular, the dynamics of the shallow ephemeral perched aquifer drove a shift from hydrological controls on NO-3 discharge during the early flushing stage to an apparent biogeochemical control on NO-3 discharge during the steady decline stage of the flushing response. This temporally variable control hypothesis provides a new and alternative description of the mechanisms behind the commonly seen flushing response. Copyright
Reaching extended length-scales with accelerated dynamics
NASA Astrophysics Data System (ADS)
Hubartt, Bradley; Shim, Yunsic; Amar, Jacques
2012-02-01
While temperature-accelerated dynamics (TAD) has been quite successful in extending the time-scales for non-equilibrium simulations of small systems, the computational time increases rapidly with system size. One possible solution to this problem, which we refer to as parTAD^1 is to use spatial decomposition combined with our previously developed semi-rigorous synchronous sublattice algorithm^2. However, while such an approach leads to significantly better scaling as a function of system-size, it also artificially limits the size of activated events and is not completely rigorous. Here we discuss progress we have made in developing an alternative approach in which localized saddle-point searches are combined with parallel GPU-based molecular dynamics in order to improve the scaling behavior. By using this method, along with the use of an adaptive method to determine the optimal high-temperature^3, we have been able to significantly increase the range of time- and length-scales over which accelerated dynamics simulations may be carried out. [1] Y. Shim et al, Phys. Rev. B 76, 205439 (2007); ibid, Phys. Rev. Lett. 101, 116101 (2008). [2] Y. Shim and J.G. Amar, Phys. Rev. B 71, 125432 (2005). [3] Y. Shim and J.G. Amar, J. Chem. Phys. 134, 054127 (2011).
Structures to Resist the Effects of Accidental Explosions. Volume 3. Principles of Dynamic Analysis
1984-06-01
multi-degree-of-freedom systems) is presented. A step-by-step numerical integration of an element’s motion under dynamic loads using the...structural arrangements; providing closures, and preventing damage to interior portions of structures due to structual motion , shock, and fragment...an element’s motion under dynamic loads utilizing the Acceleration-Impulse- Extrapolation Method or the Average Acceleration Method and design charts
NASA Astrophysics Data System (ADS)
Luy, N. T.
2018-04-01
The design of distributed cooperative H∞ optimal controllers for multi-agent systems is a major challenge when the agents' models are uncertain multi-input and multi-output nonlinear systems in strict-feedback form in the presence of external disturbances. In this paper, first, the distributed cooperative H∞ optimal tracking problem is transformed into controlling the cooperative tracking error dynamics in affine form. Second, control schemes and online algorithms are proposed via adaptive dynamic programming (ADP) and the theory of zero-sum differential graphical games. The schemes use only one neural network (NN) for each agent instead of three from ADP to reduce computational complexity as well as avoid choosing initial NN weights for stabilising controllers. It is shown that despite not using knowledge of cooperative internal dynamics, the proposed algorithms not only approximate values to Nash equilibrium but also guarantee all signals, such as the NN weight approximation errors and the cooperative tracking errors in the closed-loop system, to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is shown by simulation results of an application to wheeled mobile multi-robot systems.
NASA Astrophysics Data System (ADS)
Chiriaco, Marjolaine; Dupont, Jean-Charles; Bastin, Sophie; Badosa, Jordi; Lopez, Julio; Haeffelin, Martial; Chepfer, Helene; Guzman, Rodrigo
2018-05-01
A scientific approach is presented to aggregate and harmonize a set of 60 geophysical variables at hourly timescale over a decade, and to allow multiannual and multi-variable studies combining atmospheric dynamics and thermodynamics, radiation, clouds and aerosols from ground-based observations. Many datasets from ground-based observations are currently in use worldwide. They are very valuable because they contain complete and precise information due to their spatio-temporal co-localization over more than a decade. These datasets, in particular the synergy between different type of observations, are under-used because of their complexity and diversity due to calibration, quality control, treatment, format, temporal averaging, metadata, etc. Two main results are presented in this article: (1) a set of methods available for the community to robustly and reliably process ground-based data at an hourly timescale over a decade is described and (2) a single netCDF file is provided based on the SIRTA supersite observations. This file contains approximately 60 geophysical variables (atmospheric and in ground) hourly averaged over a decade for the longest variables. The netCDF file is available and easy to use for the community. In this article, observations are re-analyzed
. The prefix re
refers to six main steps: calibration, quality control, treatment, hourly averaging, homogenization of the formats and associated metadata, as well as expertise on more than a decade of observations. In contrast, previous studies (i) took only some of these six steps into account for each variable, (ii) did not aggregate all variables together in a single file and (iii) did not offer an hourly resolution for about 60 variables over a decade (for the longest variables). The approach described in this article can be applied to different supersites and to additional variables. The main implication of this work is that complex atmospheric observations are made readily available for scientists who are non-experts in measurements. The dataset from SIRTA observations can be downloaded at http://sirta.ipsl.fr/reobs.html (last access: April 2017) (Downloads tab, no password required) under https://doi.org/10.14768/4F63BAD4-E6AF-4101-AD5A-61D4A34620DE.
Dynamic structural disorder in supported nanoscale catalysts
NASA Astrophysics Data System (ADS)
Rehr, J. J.; Vila, F. D.
2014-04-01
We investigate the origin and physical effects of "dynamic structural disorder" (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.
Theoretical Approaches in Evolutionary Ecology: Environmental Feedback as a Unifying Perspective.
Lion, Sébastien
2018-01-01
Evolutionary biology and ecology have a strong theoretical underpinning, and this has fostered a variety of modeling approaches. A major challenge of this theoretical work has been to unravel the tangled feedback loop between ecology and evolution. This has prompted the development of two main classes of models. While quantitative genetics models jointly consider the ecological and evolutionary dynamics of a focal population, a separation of timescales between ecology and evolution is assumed by evolutionary game theory, adaptive dynamics, and inclusive fitness theory. As a result, theoretical evolutionary ecology tends to be divided among different schools of thought, with different toolboxes and motivations. My aim in this synthesis is to highlight the connections between these different approaches and clarify the current state of theory in evolutionary ecology. Central to this approach is to make explicit the dependence on environmental dynamics of the population and evolutionary dynamics, thereby materializing the eco-evolutionary feedback loop. This perspective sheds light on the interplay between environmental feedback and the timescales of ecological and evolutionary processes. I conclude by discussing some potential extensions and challenges to our current theoretical understanding of eco-evolutionary dynamics.
Simulation of spacecraft attitude dynamics using TREETOPS and model-specific computer Codes
NASA Technical Reports Server (NTRS)
Cochran, John E.; No, T. S.; Fitz-Coy, Norman G.
1989-01-01
The simulation of spacecraft attitude dynamics and control using the generic, multi-body code called TREETOPS and other codes written especially to simulate particular systems is discussed. Differences in the methods used to derive equations of motion--Kane's method for TREETOPS and the Lagrangian and Newton-Euler methods, respectively, for the other two codes--are considered. Simulation results from the TREETOPS code are compared with those from the other two codes for two example systems. One system is a chain of rigid bodies; the other consists of two rigid bodies attached to a flexible base body. Since the computer codes were developed independently, consistent results serve as a verification of the correctness of all the programs. Differences in the results are discussed. Results for the two-rigid-body, one-flexible-body system are useful also as information on multi-body, flexible, pointing payload dynamics.
Scheduling and Pricing for Expected Ramp Capability in Real-Time Power Markets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ela, Erik; O'Malley, Mark
2016-05-01
Higher variable renewable generation penetrations are occurring throughout the world on different power systems. These resources increase the variability and uncertainty on the system which must be accommodated by an increase in the flexibility of the system resources in order to maintain reliability. Many scheduling strategies have been discussed and introduced to ensure that this flexibility is available at multiple timescales. To meet variability, that is, the expected changes in system conditions, two recent strategies have been introduced: time-coupled multi-period market clearing models and the incorporation of ramp capability constraints. To appropriately evaluate these methods, it is important to assessmore » both efficiency and reliability. But it is also important to assess the incentive structure to ensure that resources asked to perform in different ways have the proper incentives to follow these directions, which is a step often ignored in simulation studies. We find that there are advantages and disadvantages to both approaches. We also find that look-ahead horizon length in multi-period market models can impact incentives. This paper proposes scheduling and pricing methods that ensure expected ramps are met reliably, efficiently, and with associated prices based on true marginal costs that incentivize resources to do as directed by the market. Case studies show improvements of the new method.« less
Wang, Yawei; Wang, Lizhen; Du, Chengfei; Mo, Zhongjun; Fan, Yubo
2016-06-01
In contrast to numerous researches on static or quasi-static stiffness of cervical spine segments, very few investigations on their dynamic stiffness were published. Currently, scale factors and estimated coefficients were usually used in multi-body models for including viscoelastic properties and damping effects, meanwhile viscoelastic properties of some tissues were unavailable for establishing finite element models. Because dynamic stiffness of cervical spine segments in these models were difficult to validate because of lacking in experimental data, we tried to gain some insights on current modeling methods through studying dynamic stiffness differences between these models. A finite element model and a multi-body model of C6-C7 segment were developed through using available material data and typical modeling technologies. These two models were validated with quasi-static response data of the C6-C7 cervical spine segment. Dynamic stiffness differences were investigated through controlling motions of C6 vertebrae at different rates and then comparing their reaction forces or moments. Validation results showed that both the finite element model and the multi-body model could generate reasonable responses under quasi-static loads, but the finite element segment model exhibited more nonlinear characters. Dynamic response investigations indicated that dynamic stiffness of this finite element model might be underestimated because of the absence of dynamic stiffen effect and damping effects of annulus fibrous, while representation of these effects also need to be improved in current multi-body model. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Li, Yongbo; Yang, Yuantao; Li, Guoyan; Xu, Minqiang; Huang, Wenhu
2017-07-01
Health condition identification of planetary gearboxes is crucial to reduce the downtime and maximize productivity. This paper aims to develop a novel fault diagnosis method based on modified multi-scale symbolic dynamic entropy (MMSDE) and minimum redundancy maximum relevance (mRMR) to identify the different health conditions of planetary gearbox. MMSDE is proposed to quantify the regularity of time series, which can assess the dynamical characteristics over a range of scales. MMSDE has obvious advantages in the detection of dynamical changes and computation efficiency. Then, the mRMR approach is introduced to refine the fault features. Lastly, the obtained new features are fed into the least square support vector machine (LSSVM) to complete the fault pattern identification. The proposed method is numerically and experimentally demonstrated to be able to recognize the different fault types of planetary gearboxes.
Statistical Physics of Population Genetics in the Low Population Size Limit
NASA Astrophysics Data System (ADS)
Atwal, Gurinder
The understanding of evolutionary processes lends itself naturally to theory and computation, and the entire field of population genetics has benefited greatly from the influx of methods from applied mathematics for decades. However, in spite of all this effort, there are a number of key dynamical models of evolution that have resisted analytical treatment. In addition, modern DNA sequencing technologies have magnified the amount of genetic data available, revealing an excess of rare genetic variants in human genomes, challenging the predictions of conventional theory. Here I will show that methods from statistical physics can be used to model the distribution of genetic variants, incorporating selection and spatial degrees of freedom. In particular, a functional path-integral formulation of the Wright-Fisher process maps exactly to the dynamics of a particle in an effective potential, beyond the mean field approximation. In the small population size limit, the dynamics are dominated by instanton-like solutions which determine the probability of fixation in short timescales. These results are directly relevant for understanding the unusual genetic variant distribution at moving frontiers of populations.
Direct Large-Scale N-Body Simulations of Planetesimal Dynamics
NASA Astrophysics Data System (ADS)
Richardson, Derek C.; Quinn, Thomas; Stadel, Joachim; Lake, George
2000-01-01
We describe a new direct numerical method for simulating planetesimal dynamics in which N˜10 6 or more bodies can be evolved simultaneously in three spatial dimensions over hundreds of dynamical times. This represents several orders of magnitude improvement in resolution over previous studies. The advance is made possible through modification of a stable and tested cosmological code optimized for massively parallel computers. However, owing to the excellent scalability and portability of the code, modest clusters of workstations can treat problems with N˜10 5 particles in a practical fashion. The code features algorithms for detection and resolution of collisions and takes into account the strong central force field and flattened Keplerian disk geometry of planetesimal systems. We demonstrate the range of problems that can be addressed by presenting simulations that illustrate oligarchic growth of protoplanets, planet formation in the presence of giant planet perturbations, the formation of the jovian moons, and orbital migration via planetesimal scattering. We also describe methods under development for increasing the timescale of the simulations by several orders of magnitude.
Multi-year predictability in a coupled general circulation model
NASA Astrophysics Data System (ADS)
Power, Scott; Colman, Rob
2006-02-01
Multi-year to decadal variability in a 100-year integration of a BMRC coupled atmosphere-ocean general circulation model (CGCM) is examined. The fractional contribution made by the decadal component generally increases with depth and latitude away from surface waters in the equatorial Indo-Pacific Ocean. The relative importance of decadal variability is enhanced in off-equatorial “ wings” in the subtropical eastern Pacific. The model and observations exhibit “ENSO-like” decadal patterns. Analytic results are derived, which show that the patterns can, in theory, occur in the absence of any predictability beyond ENSO time-scales. In practice, however, modification to this stochastic view is needed to account for robust differences between ENSO-like decadal patterns and their interannual counterparts. An analysis of variability in the CGCM, a wind-forced shallow water model, and a simple mixed layer model together with existing and new theoretical results are used to improve upon this stochastic paradigm and to provide a new theory for the origin of decadal ENSO-like patterns like the Interdecadal Pacific Oscillation and Pacific Decadal Oscillation. In this theory, ENSO-driven wind-stress variability forces internal equatorially-trapped Kelvin waves that propagate towards the eastern boundary. Kelvin waves can excite reflected internal westward propagating equatorially-trapped Rossby waves (RWs) and coastally-trapped waves (CTWs). CTWs have no impact on the off-equatorial sub-surface ocean outside the coastal wave guide, whereas the RWs do. If the frequency of the incident wave is too high, then only CTWs are excited. At lower frequencies, both CTWs and RWs can be excited. The lower the frequency, the greater the fraction of energy transmitted to RWs. This lowers the characteristic frequency (reddens the spectrum) of variability off the equator relative to its equatorial counterpart. At low frequencies, dissipation acts as an additional low pass filter that becomes more effective, as latitude increases. At the same time, ENSO-driven off-equatorial surface heating anomalies drive mixed layer temperature responses in both hemispheres. Both the eastern boundary interactions and the accumulation of surface heat fluxes by the surface mixed layer act to low pass filter the ENSO-forcing. The resulting off-equatorial variability is therefore more coherent with low pass filtered (decadal) ENSO indices [e.g. NINO3 sea-surface temperature (SST)] than with unfiltered ENSO indices. Consequently large correlations between variability and NINO3 extend further poleward on decadal time-scales than they do on interannual time-scales. This explains why decadal ENSO-like patterns have a broader meridional structure than their interannual counterparts. This difference in appearance can occur even if ENSO indices do not have any predictability beyond interannual time-scales. The wings around 15-20°S, and sub-surface variability at many other locations are predictable on interannual and multi-year time-scales. This includes westward propagating internal RWs within about 25° of the equator. The slowest of these take up to 4 years to reach the western boundary. This sub-surface predictability has significant oceanographic interest. However, it is linked to only low levels of SST variability. Consequently, extrapolation of delayed action oscillator theory to decadal time-scales might not be justified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uberuaga, Blas Pedro; Voter, Arthur F; Perez, Danny
A long-standing limitation in the use of molecular dynamics (MD) simulation is that it can only be applied directly to processes that take place on very short timescales: nanoseconds if empirical potentials are employed, or picoseconds if we rely on electronic structure methods. Many processes of interest in chemistry, biochemistry, and materials science require study over microseconds and beyond, due either to the natural timescale for the evolution or to the duration of the experiment of interest. Ignoring the case of liquids xxx, the dynamics on these time scales is typically characterized by infrequent-event transitions, from state to state, usuallymore » involving an energy barrier. There is a long and venerable tradition in chemistry of using transition state theory (TST) [10, 19, 23] to directly compute rate constants for these kinds of activated processes. If needed dynamical corrections to the TST rate, and even quantum corrections, can be computed to achieve an accuracy suitable for the problem at hand. These rate constants then allow them to understand the system behavior on longer time scales than we can directly reach with MD. For complex systems with many reaction paths, the TST rates can be fed into a stochastic simulation procedure such as kinetic Monte Carlo xxx, and a direct simulation of the advance of the system through its possible states can be obtained in a probabilistically exact way. A problem that has become more evident in recent years, however, is that for many systems of interest there is a complexity that makes it difficult, if not impossible, to determine all the relevant reaction paths to which TST should be applied. This is a serious issue, as omitted transition pathways can have uncontrollable consequences on the simulated long-time kinetics. Over the last decade or so, we have been developing a new class of methods for treating the long-time dynamics in these complex, infrequent-event systems. Rather than trying to guess in advance what reaction pathways may be important, we return instead to a molecular dynamics treatment, in which the trajectory itself finds an appropriate way to escape from each state of the system. Since a direct integration of the trajectory would be limited to nanoseconds, while we are seeking to follow the system for much longer times, we modify the dynamics in some way to cause the first escape to happen much more quickly, thereby accelerating the dynamics. The key is to design the modified dynamics in a way that does as little damage as possible to the probability for escaping along a given pathway - i.e., we try to preserve the relative rate constants for the different possible escape paths out of the state. We can then use this modified dynamics to follow the system from state to state, reaching much longer times than we could reach with direct MD. The dynamics within any one state may no longer be meaningful, but the state-to-state dynamics, in the best case, as we discuss in the paper, can be exact. We have developed three methods in this accelerated molecular dynamics (AMD) class, in each case appealing to TST, either implicitly or explicitly, to design the modified dynamics. Each of these methods has its own advantages, and we and others have applied these methods to a wide range of problems. The purpose of this article is to give the reader a brief introduction to how these methods work, and discuss some of the recent developments that have been made to improve their power and applicability. Note that this brief review does not claim to be exhaustive: various other methods aiming at similar goals have been proposed in the literature. For the sake of brevity, our focus will exclusively be on the methods developed by the group.« less
Inherent Structure versus Geometric Metric for State Space Discretization
Liu, Hanzhong; Li, Minghai; Fan, Jue; Huo, Shuanghong
2016-01-01
Inherent structure (IS) and geometry-based clustering methods are commonly used for analyzing molecular dynamics trajectories. ISs are obtained by minimizing the sampled conformations into local minima on potential/effective energy surface. The conformations that are minimized into the same energy basin belong to one cluster. We investigate the influence of the applications of these two methods of trajectory decomposition on our understanding of the thermodynamics and kinetics of alanine tetrapeptide. We find that at the micro cluster level, the IS approach and root-mean-square deviation (RMSD) based clustering method give totally different results. Depending on the local features of energy landscape, the conformations with close RMSDs can be minimized into different minima, while the conformations with large RMSDs could be minimized into the same basin. However, the relaxation timescales calculated based on the transition matrices built from the micro clusters are similar. The discrepancy at the micro cluster level leads to different macro clusters. Although the dynamic models established through both clustering methods are validated approximately Markovian, the IS approach seems to give a meaningful state space discretization at the macro cluster level. PMID:26915811
Cooperation based dynamic team formation in multi-agent auctions
NASA Astrophysics Data System (ADS)
Pippin, Charles E.; Christensen, Henrik
2012-06-01
Auction based methods are often used to perform distributed task allocation on multi-agent teams. Many existing approaches to auctions assume fully cooperative team members. On in-situ and dynamically formed teams, reciprocal collaboration may not always be a valid assumption. This paper presents an approach for dynamically selecting auction partners based on observed team member performance and shared reputation. In addition, we present the use of a shared reputation authority mechanism. Finally, experiments are performed in simulation on multiple UAV platforms to highlight situations in which it is better to enforce cooperation in auctions using this approach.
Estimating glacier response times and disequilibrium in a changing climate
NASA Astrophysics Data System (ADS)
Christian, J. E.; Koutnik, M.; Roe, G.
2017-12-01
Glaciers respond to climate variations according to a characteristic timescale that, for most mountain glaciers, is on the order of 10—100 years. An important consequence of this multi-decadal memory is that a glacier's transient response to a climate trend exhibits a persistent lag behind the equilibrium response. In the context of anthropogenic warming, this means that most glaciers are currently well out of equilibrium, and that a substantial amount of retreat is committed even without further warming. The degree of disequilibrium depends fundamentally on the glacier response timescale, making it an important parameter to constrain. A common and robust metric for the response timescale is τ=H/bt, where H and bt are characteristic values for ice thickness and the terminus mass-balance rate, respectively. However, sparse observations, climate variability, and glacier disequilibrium make it difficult to define these characteristic values. We compare several sources of uncertainty that will affect estimates of the response timescale and thus the degree of disequilibrium. Ice thickness is poorly constrained for many glaciers, which bears directly on estimates of the response timescale. However, errors may also arise from estimating thickness and mass-balance rates in a variable climate. We assess how noisy mass balance and observed terminus fluctuations introduce sampling errors into estimates of the glacier's response timescale and the expected equilibrium response to a climate change. Additionally, the instantaneous value of τ evolves during sustained warming as the glacier thins and retreats. Perhaps counterintuitively, τ can increase if retreat into higher elevations exceeds thinning. This has implications for estimating the timescale based on currently observed geometry and mass balance. We use shallow-ice and 3-stage linear models to explore these effects with synthetic glacier geometries and climate forcings. In this way, we can diagnose the geometric and climatic sources of uncertainty in glacier response timescales and degrees of disequilibrium. Estimating these metrics from existing datasets is necessary to relate mass balance to glacier state and to anticipate future responses; our analyses will help constrain such estimates and improve understanding of their limitations.
Kernel optimization for short-range molecular dynamics
NASA Astrophysics Data System (ADS)
Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He
2017-02-01
To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.
Kikuchi, Yasuka; Oyama-Manabe, Noriko; Naya, Masanao; Manabe, Osamu; Tomiyama, Yuuki; Sasaki, Tsukasa; Katoh, Chietsugu; Kudo, Kohsuke; Tamaki, Nagara; Shirato, Hiroki
2014-07-01
This study introduces a method to calculate myocardium blood flow (MBF) and coronary flow reserve (CFR) using the relatively low-dose dynamic 320-row multi-detector computed tomography (MDCT), validates the method against (15)O-H₂O positron-emission tomography (PET) and assesses the CFRs of coronary artery disease (CAD) patients. Thirty-two subjects underwent both dynamic CT perfusion (CTP) and PET perfusion imaging at rest and during pharmacological stress. In 12 normal subjects (pilot group), the calculation method for MBF and CFR was established. In the other 13 normal subjects (validation group), MBF and CFR obtained by dynamic CTP and PET were compared. Finally, the CFRs obtained by dynamic CTP and PET were compared between the validation group and CAD patients (n = 7). Correlation between MBF of MDCT and PET was strong (r = 0.95, P < 0.0001). CFR showed good correlation between dynamic CTP and PET (r = 0.67, P = 0.0126). CFRCT in the CAD group (2.3 ± 0.8) was significantly lower than that in the validation group (5.2 ± 1.8) (P = 0.0011). We established a method for measuring MBF and CFR with the relatively low-dose dynamic MDCT. Lower CFR was well demonstrated in CAD patients by dynamic CTP. • MBF and CFR can be calculated using dynamic CTP with 320-row MDCT. • MBF and CFR showed good correlation between dynamic CTP and PET. • Lower CFR was well demonstrated in CAD patients by dynamic CTP.