Dynamic Blowout Risk Analysis Using Loss Functions.
Abimbola, Majeed; Khan, Faisal
2018-02-01
Most risk analysis approaches are static; failing to capture evolving conditions. Blowout, the most feared accident during a drilling operation, is a complex and dynamic event. The traditional risk analysis methods are useful in the early design stage of drilling operation while falling short during evolving operational decision making. A new dynamic risk analysis approach is presented to capture evolving situations through dynamic probability and consequence models. The dynamic consequence models, the focus of this study, are developed in terms of loss functions. These models are subsequently integrated with the probability to estimate operational risk, providing a real-time risk analysis. The real-time evolving situation is considered dependent on the changing bottom-hole pressure as drilling progresses. The application of the methodology and models are demonstrated with a case study of an offshore drilling operation evolving to a blowout. © 2017 Society for Risk Analysis.
A Scalable Distribution Network Risk Evaluation Framework via Symbolic Dynamics
Yuan, Kai; Liu, Jian; Liu, Kaipei; Tan, Tianyuan
2015-01-01
Background Evaluations of electric power distribution network risks must address the problems of incomplete information and changing dynamics. A risk evaluation framework should be adaptable to a specific situation and an evolving understanding of risk. Methods This study investigates the use of symbolic dynamics to abstract raw data. After introducing symbolic dynamics operators, Kolmogorov-Sinai entropy and Kullback-Leibler relative entropy are used to quantitatively evaluate relationships between risk sub-factors and main factors. For layered risk indicators, where the factors are categorized into four main factors – device, structure, load and special operation – a merging algorithm using operators to calculate the risk factors is discussed. Finally, an example from the Sanya Power Company is given to demonstrate the feasibility of the proposed method. Conclusion Distribution networks are exposed and can be affected by many things. The topology and the operating mode of a distribution network are dynamic, so the faults and their consequences are probabilistic. PMID:25789859
Validation of the train energy and dynamics simulator (TEDS).
DOT National Transportation Integrated Search
2015-01-01
FRA has developed Train Energy and Dynamics Simulator (TEDS) based upon a longitudinal train dynamics and operations : simulation model which allows users to conduct safety and risk evaluations, incident investigations, studies of train operations, :...
A dynamical systems model for nuclear power plant risk
NASA Astrophysics Data System (ADS)
Hess, Stephen Michael
The recent transition to an open access generation marketplace has forced nuclear plant operators to become much more cost conscious and focused on plant performance. Coincidentally, the regulatory perspective also is in a state of transition from a command and control framework to one that is risk-informed and performance-based. Due to these structural changes in the economics and regulatory system associated with commercial nuclear power plant operation, there is an increased need for plant management to explicitly manage nuclear safety risk. Application of probabilistic risk assessment techniques to model plant hardware has provided a significant contribution to understanding the potential initiating events and equipment failures that can lead to core damage accidents. Application of the lessons learned from these analyses has supported improved plant operation and safety over the previous decade. However, this analytical approach has not been nearly as successful in addressing the impact of plant processes and management effectiveness on the risks of plant operation. Thus, the research described in this dissertation presents a different approach to address this issue. Here we propose a dynamical model that describes the interaction of important plant processes among themselves and their overall impact on nuclear safety risk. We first provide a review of the techniques that are applied in a conventional probabilistic risk assessment of commercially operating nuclear power plants and summarize the typical results obtained. The limitations of the conventional approach and the status of research previously performed to address these limitations also are presented. Next, we present the case for the application of an alternative approach using dynamical systems theory. This includes a discussion of previous applications of dynamical models to study other important socio-economic issues. Next, we review the analytical techniques that are applicable to analysis of these models. Details of the development of the mathematical risk model are presented. This includes discussion of the processes included in the model and the identification of significant interprocess interactions. This is followed by analysis of the model that demonstrates that its dynamical evolution displays characteristics that have been observed at commercially operating plants. The model is analyzed using the previously described techniques from dynamical systems theory. From this analysis, several significant insights are obtained with respect to the effective control of nuclear safety risk. Finally, we present conclusions and recommendations for further research.
Dynamic loads during failure risk assessment of bridge crane structures
NASA Astrophysics Data System (ADS)
Gorynin, A. D.; Antsev, V. Yu; Shaforost, A. N.
2018-03-01
The paper presents the method of failure risk assessment associated with a bridge crane metal structure at the design stage. It also justifies the necessity of taking into account dynamic loads with regard to the operational cycle of a bridge crane during failure risk assessment of its metal structure.
Complex Dynamics of the Power Transmission Grid (and other Critical Infrastructures)
NASA Astrophysics Data System (ADS)
Newman, David
2015-03-01
Our modern societies depend crucially on a web of complex critical infrastructures such as power transmission networks, communication systems, transportation networks and many others. These infrastructure systems display a great number of the characteristic properties of complex systems. Important among these characteristics, they exhibit infrequent large cascading failures that often obey a power law distribution in their probability versus size. This power law behavior suggests that conventional risk analysis does not apply to these systems. It is thought that much of this behavior comes from the dynamical evolution of the system as it ages, is repaired, upgraded, and as the operational rules evolve with human decision making playing an important role in the dynamics. In this talk, infrastructure systems as complex dynamical systems will be introduced and some of their properties explored. The majority of the talk will then be focused on the electric power transmission grid though many of the results can be easily applied to other infrastructures. General properties of the grid will be discussed and results from a dynamical complex systems power transmission model will be compared with real world data. Then we will look at a variety of uses of this type of model. As examples, we will discuss the impact of size and network homogeneity on the grid robustness, the change in risk of failure as generation mix (more distributed vs centralized for example) changes, as well as the effect of operational changes such as the changing the operational risk aversion or grid upgrade strategies. One of the important outcomes from this work is the realization that ``improvements'' in the system components and operational efficiency do not always improve the system robustness, and can in fact greatly increase the risk, when measured as a risk of large failure.
Predation risk suppresses the positive feedback between size structure and cannibalism.
Kishida, Osamu; Trussell, Geoffrey C; Ohno, Ayaka; Kuwano, Shinya; Ikawa, Takuya; Nishimura, Kinya
2011-11-01
1. Cannibalism can play a prominent role in the structuring and dynamics of ecological communities. Previous studies have emphasized the importance of size structure and density of cannibalistic species in shaping short- and long-term cannibalism dynamics, but our understanding of how predators influence cannibalism dynamics is limited. This is despite widespread evidence that many prey species exhibit behavioural and morphological adaptations in response to predation risk. 2. This study examined how the presence and absence of predation risk from larval dragonflies Aeshna nigroflava affected cannibalism dynamics in its prey larval salamanders Hynobius retardatus. 3. We found that feedback dynamics between size structure and cannibalism depended on whether dragonfly predation risk was present. In the absence of dragonfly risk cues, a positive feedback between salamander size structure and cannibalism through time occurred because most of the replicates in this treatment contained at least one salamander larvae having an enlarged gape (i.e. cannibal). In contrast, this feedback and the emergence of cannibalism were rarely observed in the presence of the dragonfly risk cues. Once salamander size divergence occurred, experimental reversals of the presence or absence of dragonfly risk cues did not alter existing cannibalism dynamics as the experiment progressed. Thus, the effects of risk on the mechanisms driving cannibalism dynamics likely operated during the early developmental period of the salamander larvae. 4. The effects of dragonfly predation risk on behavioural aspects of cannibalistic interactions among hatchlings may prohibit the initiation of dynamics between size structure and cannibalism. Our predation trials clearly showed that encounter rates among hatchlings and biting and ingestion rates of prospective prey by prospective cannibals were significantly lower in the presence vs. absence of dragonfly predation risk even though the size asymmetry between cannibals and victims was similar in both risk treatments. These results suggest that dragonfly risk cues first suppress cannibalism among hatchlings and then prevent size variation from increasing through time. 5. We suggest that the positive feedback dynamics between size structure and cannibalism and their modification by predation risk may also operate in other systems to shape the population dynamics of cannibalistic prey species as well as overall community dynamics. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.
CERT Resiliency Engineering Framework
2007-03-01
Heightened threat level and increasing uncertainty Shorter-lived skills 5 Operational risk management problems Poor planning and execution No asset...increasingly effective & efficient Today’s operational environment No operational boundaries Pervasive & rapidly changing technology Dynamic & expanding risks ...management function Seen as a technical function or responsibility Searching for magic bullet: CobiT , ITIL, ISO17799, NFP1600 Poorly defined and measured
Bulduk, Sıdıka; Bulduk, Emre Özgür; Süren, Tufan
2017-09-01
Work-related musculoskeletal disorders (WMSDs) are a major hazard for sewing machine operators. Ergonomics education is recommended for reducing musculoskeletal disorders at workstations. This study aimed to evaluate the effect of an ergonomics education in reducing the exposure to risk factors for WMSDs among sewing machine operators. In this study of 278 workers, their exposure to the risk of WMSDs was assessed using the quick exposure check scale prior to them attending an ergonomics education programme and then again 3 months after the programme. The scores for risk exposure before the education programme were moderate for back (static) and back (dynamic), high for shoulder/arm and very high for wrist/hand and neck. The results obtained 3 months later were low for back (static) and shoulder/arm, and moderate for back (dynamic), wrist/hand and neck. Based on our results, ergonomics education can reduce the exposure to risk factors for WMSDs in the workplace.
Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions
NASA Astrophysics Data System (ADS)
Fernandes, R.; Braunschweig, F.; Lourenço, F.; Neves, R.
2015-07-01
The technological evolution in terms of computational capacity, data acquisition systems, numerical modelling and operational oceanography is supplying opportunities for designing and building holistic approaches and complex tools for newer and more efficient management (planning, prevention and response) of coastal water pollution risk events. A combined methodology to dynamically estimate time and space variable shoreline risk levels from ships has been developed, integrating numerical metocean forecasts and oil spill simulations with vessel tracking automatic identification systems (AIS). The risk rating combines the likelihood of an oil spill occurring from a vessel navigating in a study area - Portuguese Continental shelf - with the assessed consequences to the shoreline. The spill likelihood is based on dynamic marine weather conditions and statistical information from previous accidents. The shoreline consequences reflect the virtual spilled oil amount reaching shoreline and its environmental and socio-economic vulnerabilities. The oil reaching shoreline is quantified with an oil spill fate and behaviour model running multiple virtual spills from vessels along time. Shoreline risks can be computed in real-time or from previously obtained data. Results show the ability of the proposed methodology to estimate the risk properly sensitive to dynamic metocean conditions and to oil transport behaviour. The integration of meteo-oceanic + oil spill models with coastal vulnerability and AIS data in the quantification of risk enhances the maritime situational awareness and the decision support model, providing a more realistic approach in the assessment of shoreline impacts. The risk assessment from historical data can help finding typical risk patterns, "hot spots" or developing sensitivity analysis to specific conditions, whereas real time risk levels can be used in the prioritization of individual ships, geographical areas, strategic tug positioning and implementation of dynamic risk-based vessel traffic monitoring.
Safely Enabling UAS Operations in Low-Altitude Airspace
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal H.
2016-01-01
Flexibility where possible, and structure where necessary. Consider the needs of national security, safe airspace operations, economic opportunities, and emerging technologies. Risk-based approach based on population density, assets on the ground, density of operations, etc. Digital, virtual, dynamic, and as needed UTM services to manage operations.
Combining operational models and data into a dynamic vessel risk assessment tool for coastal regions
NASA Astrophysics Data System (ADS)
Fernandes, R.; Braunschweig, F.; Lourenço, F.; Neves, R.
2016-02-01
The technological evolution in terms of computational capacity, data acquisition systems, numerical modelling and operational oceanography is supplying opportunities for designing and building holistic approaches and complex tools for newer and more efficient management (planning, prevention and response) of coastal water pollution risk events. A combined methodology to dynamically estimate time and space variable individual vessel accident risk levels and shoreline contamination risk from ships has been developed, integrating numerical metocean forecasts and oil spill simulations with vessel tracking automatic identification systems (AIS). The risk rating combines the likelihood of an oil spill occurring from a vessel navigating in a study area - the Portuguese continental shelf - with the assessed consequences to the shoreline. The spill likelihood is based on dynamic marine weather conditions and statistical information from previous accidents. The shoreline consequences reflect the virtual spilled oil amount reaching shoreline and its environmental and socio-economic vulnerabilities. The oil reaching shoreline is quantified with an oil spill fate and behaviour model running multiple virtual spills from vessels along time, or as an alternative, a correction factor based on vessel distance from coast. Shoreline risks can be computed in real time or from previously obtained data. Results show the ability of the proposed methodology to estimate the risk properly sensitive to dynamic metocean conditions and to oil transport behaviour. The integration of meteo-oceanic + oil spill models with coastal vulnerability and AIS data in the quantification of risk enhances the maritime situational awareness and the decision support model, providing a more realistic approach in the assessment of shoreline impacts. The risk assessment from historical data can help finding typical risk patterns ("hot spots") or developing sensitivity analysis to specific conditions, whereas real-time risk levels can be used in the prioritization of individual ships, geographical areas, strategic tug positioning and implementation of dynamic risk-based vessel traffic monitoring.
NASA Technical Reports Server (NTRS)
Frigm, Ryan C.; Levi, Joshua A.; Mantziaras, Dimitrios C.
2010-01-01
An operational Conjunction Assessment Risk Analysis (CARA) concept is the real-time process of assessing risk posed by close approaches and reacting to those risks if necessary. The most effective way to completely mitigate conjunction risk is to perform an avoidance maneuver. The NASA Goddard Space Flight Center has implemented a routine CARA process since 2005. Over this period, considerable experience has been gained and many lessons have been learned. This paper identifies and presents these experiences as general concepts in the description of the Conjunction Assessment, Flight Dynamics, and Flight Operations methodologies and processes. These general concepts will be tied together and will be exemplified through a case study of an actual high risk conjunction event for the Aura mission.
Managing Risk in Safety Critical Operations - Lessons Learned from Space Operations
NASA Technical Reports Server (NTRS)
Gonzalez, Steven A.
2002-01-01
The Mission Control Center (MCC) at Johnson Space Center (JSC) has a rich legacy of supporting Human Space Flight operations throughout the Apollo, Shuttle and International Space Station eras. Through the evolution of ground operations and the Mission Control Center facility, NASA has gained a wealth of experience of what it takes to manage the risk in Safety Critical Operations, especially when human life is at risk. The focus of the presentation will be on the processes (training, operational rigor, team dynamics) that enable the JSC/MCC team to be so successful. The presentation will also share the evolution of the Mission Control Center architecture and how the evolution was introduced while managing the risk to the programs supported by the team. The details of the MCC architecture (e.g., the specific software, hardware or tools used in the facility) will not be shared at the conference since it would not give any additional insight as to how risk is managed in Space Operations.
2010-08-12
environmental risk assessment using the example of areas contaminated due to mining activity." Applied Radiation and Isotopes 66(11): 1661-1665. Miles, A...Medina, et al. (2006). "The Prestige oil spill in Cantabria (Bay of Biscay). Part I: Operational forecasting system for quick response, risk assessment ...successfully applied to oil spill prediction using operational or near -operational models (Ko, Rowley et al. 2005; Castanedo, Medina et al. 2006
NASA Technical Reports Server (NTRS)
Jung, Jaewoo; Kopardekar, Parimal H.
2016-01-01
Flexibility where possible, and structure where necessary. Consider the needs of national security, safe airspace operations, economic opportunities, and emerging technologies. Risk-based approach based on population density, assets on the ground, density of operations, etc. Digital, virtual, dynamic, and as needed UTM services to manage operations.
NASA Technical Reports Server (NTRS)
Kopardekar, Parimal H.; Cavolowsky, John
2015-01-01
Flexibility where possible, and structure where necessary. Consider the needs of national security, safe airspace operations, economic opportunities, and emerging technologies. Risk-based approach based on population density, assets on the ground, density of operations, etc. Digital, virtual, dynamic, and as needed UTM services to manage operations.
Managing Risk for Cassini During Mission Operations and Data Analysis (MOandDA)
NASA Technical Reports Server (NTRS)
Witkowski, Mona M.
2002-01-01
A Risk Management Process has been tailored for Cassini that not only satisfies the requirements of NASA and JPL, but also allows the Program to proactively identify and assess risks that threaten mission objectives. Cassini Risk Management is a team effort that involves both management and engineering staff. The process is managed and facilitated by the Mission Assurance Manager (MAM), but requires regular interactions with Program Staff and team members to instill the risk management philosophy into the day to day mission operations. While Risk Management is well defined for projects in the development phase, it is a relatively new concept for Mission Operations. The Cassini team has embraced this process and has begun using it in an effective, proactive manner, to ensure mission success. It is hoped that the Cassini Risk Management Process will form the basis by which risk management is conducted during MO&DA on future projects. proactive in identifying, assessing and mitigating risks before they become problems. Cost ehtiveness is achieved by: Comprehensively identifying risks Rapidly assessing which risks require the expenditure of pruject cewums Taking early actions to mitigate these risks Iterating the process frequently, to be responsive to the dynamic internal and external environments The Cassini Program has successfully implemented a Risk Management Process for mission operations, The initial SRL has been developed and input into he online tool. The Risk Management webbased system has been rolled out for use by the flight team and risk owners we working proactive in identifying, assessing and mitigating risks before they become problems. Cost ehtiveness is achieved by: Comprehensively identifying risks Rapidly assessing which risks require the expenditure of pruject cewums Taking early actions to mitigate these risks Iterating the process frequently, to be responsive to the dynamic internal and external environments The Cassini Program has successfully implemented a Risk Management Process for mission operations, The initial SRL has been developed and input into he online tool. The Risk Management webbased system has been rolled out for use by the flight team and risk owners we working put into place will become visible and will be illusmted in future papers.
Functional correlation approach to operational risk in banking organizations
NASA Astrophysics Data System (ADS)
Kühn, Reimer; Neu, Peter
2003-05-01
A Value-at-Risk-based model is proposed to compute the adequate equity capital necessary to cover potential losses due to operational risks, such as human and system process failures, in banking organizations. Exploring the analogy to a lattice gas model from physics, correlations between sequential failures are modeled by as functionally defined, heterogeneous couplings between mutually supportive processes. In contrast to traditional risk models for market and credit risk, where correlations are described as equal-time-correlations by a covariance matrix, the dynamics of the model shows collective phenomena such as bursts and avalanches of process failures.
2018-01-01
Qualitative risk assessment frameworks, such as the Productivity Susceptibility Analysis (PSA), have been developed to rapidly evaluate the risks of fishing to marine populations and prioritize management and research among species. Despite being applied to over 1,000 fish populations, and an ongoing debate about the most appropriate method to convert biological and fishery characteristics into an overall measure of risk, the assumptions and predictive capacity of these approaches have not been evaluated. Several interpretations of the PSA were mapped to a conventional age-structured fisheries dynamics model to evaluate the performance of the approach under a range of assumptions regarding exploitation rates and measures of biological risk. The results demonstrate that the underlying assumptions of these qualitative risk-based approaches are inappropriate, and the expected performance is poor for a wide range of conditions. The information required to score a fishery using a PSA-type approach is comparable to that required to populate an operating model and evaluating the population dynamics within a simulation framework. In addition to providing a more credible characterization of complex system dynamics, the operating model approach is transparent, reproducible and can evaluate alternative management strategies over a range of plausible hypotheses for the system. PMID:29856869
[Situational awareness: you won't see it unless you understand it].
Graafland, Maurits; Schijven, Marlies P
2015-01-01
In dynamic, high-risk environments such as the modern operating theatre, healthcare providers are required to identify a multitude of signals correctly and in time. Errors resulting from failure to identify or interpret signals correctly lead to calamities. Medical training curricula focus largely on teaching technical skills and knowledge, not on the cognitive skills needed to interact appropriately with fast-changing, complex environments in practice. The term 'situational awareness' describes the dynamic process of receiving, interpreting and processing information in such dynamic environments. Improving situational awareness in high-risk environments should be part of medical curricula. In addition, the flood of information in high-risk environments should be presented more clearly and effectively. It is important that physicians become more involved in this regard.
NASA Technical Reports Server (NTRS)
Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.
2017-01-01
Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the engines operating point to a region of lower risk through the modulation of available control actuators while maintaining the desired engine thrust output. Follow-on work will assess the feasibility and effectiveness of such control-based mitigation strategies.
Advanced uncertainty modelling for container port risk analysis.
Alyami, Hani; Yang, Zaili; Riahi, Ramin; Bonsall, Stephen; Wang, Jin
2016-08-13
Globalization has led to a rapid increase of container movements in seaports. Risks in seaports need to be appropriately addressed to ensure economic wealth, operational efficiency, and personnel safety. As a result, the safety performance of a Container Terminal Operational System (CTOS) plays a growing role in improving the efficiency of international trade. This paper proposes a novel method to facilitate the application of Failure Mode and Effects Analysis (FMEA) in assessing the safety performance of CTOS. The new approach is developed through incorporating a Fuzzy Rule-Based Bayesian Network (FRBN) with Evidential Reasoning (ER) in a complementary manner. The former provides a realistic and flexible method to describe input failure information for risk estimates of individual hazardous events (HEs) at the bottom level of a risk analysis hierarchy. The latter is used to aggregate HEs safety estimates collectively, allowing dynamic risk-based decision support in CTOS from a systematic perspective. The novel feature of the proposed method, compared to those in traditional port risk analysis lies in a dynamic model capable of dealing with continually changing operational conditions in ports. More importantly, a new sensitivity analysis method is developed and carried out to rank the HEs by taking into account their specific risk estimations (locally) and their Risk Influence (RI) to a port's safety system (globally). Due to its generality, the new approach can be tailored for a wide range of applications in different safety and reliability engineering and management systems, particularly when real time risk ranking is required to measure, predict, and improve the associated system safety performance. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kostyukov, V. N.; Naumenko, A. P.
2017-08-01
The paper dwells upon urgent issues of evaluating impact of actions conducted by complex technological systems operators on their safe operation considering application of condition monitoring systems for elements and sub-systems of petrochemical production facilities. The main task for the research is to distinguish factors and criteria of monitoring system properties description, which would allow to evaluate impact of errors made by personnel on operation of real-time condition monitoring and diagnostic systems for machinery of petrochemical facilities, and find and objective criteria for monitoring system class, considering a human factor. On the basis of real-time condition monitoring concepts of sudden failure skipping risk, static and dynamic error, monitoring systems, one may solve a task of evaluation of impact that personnel's qualification has on monitoring system operation in terms of error in personnel or operators' actions while receiving information from monitoring systems and operating a technological system. Operator is considered as a part of the technological system. Although, personnel's behavior is usually a combination of the following parameters: input signal - information perceiving, reaction - decision making, response - decision implementing. Based on several researches on behavior of nuclear powers station operators in USA, Italy and other countries, as well as on researches conducted by Russian scientists, required data on operator's reliability were selected for analysis of operator's behavior at technological facilities diagnostics and monitoring systems. The calculations revealed that for the monitoring system selected as an example, the failure skipping risk for the set values of static (less than 0.01) and dynamic (less than 0.001) errors considering all related factors of data on reliability of information perception, decision-making, and reaction fulfilled is 0.037, in case when all the facilities and error probability are under control - not more than 0.027. In case when only pump and compressor units are under control, the failure skipping risk is not more than 0.022, when the probability of error in operator's action is not more than 0.011. The work output shows that on the basis of the researches results an assessment of operators' reliability can be made in terms of almost any kind of production, but considering only technological capabilities, since operators' psychological and general training considerable vary in different production industries. Using latest technologies of engineering psychology and design of data support systems, situation assessment systems, decision-making and responding system, as well as achievement in condition monitoring in various production industries one can evaluate hazardous condition skipping risk probability considering static, dynamic errors and human factor.
NASA Astrophysics Data System (ADS)
Conway, Esther; Waterfall, Alison; Pepler, Sam; Newey, Charles
2015-04-01
In this paper we decribe a business process modelling approach to the integration of exisiting archival activities. We provide a high level overview of existing practice and discuss how procedures can be extended and supported through the description of preservation state. The aim of which is to faciliate the dynamic controlled management of scientific data through its lifecycle. The main types of archival processes considered are: • Management processes that govern the operation of an archive. These management processes include archival governance (preservation state management, selection of archival candidates and strategic management) . • Operational processes that constitute the core activities of the archive which maintain the value of research assets. These operational processes are the acquisition, ingestion, deletion, generation of metadata and preservation actvities, • Supporting processes, which include planning, risk analysis and monitoring of the community/preservation environment. We then proceed by describing the feasability testing of extended risk management and planning procedures which integrate current practices. This was done through the CEDA Archival Format Audit which inspected British Atmospherics Data Centre and National Earth Observation Data Centre Archival holdings. These holdings are extensive, comprising of around 2PB of data and 137 million individual files which were analysed and characterised in terms of format based risk. We are then able to present an overview of the risk burden faced by a large scale archive attempting to maintain the usability of heterogeneous environmental data sets. We conclude by presenting a dynamic data management information model that is capable of describing the preservation state of archival holdings throughout the data lifecycle. We provide discussion of the following core model entities and their relationships: • Aspirational entities, which include Data Entity definitions and their associated Preservation Objectives. • Risk entities, which act as drivers for change within the data lifecycle. These include Acquisitional Risks, Technical Risks, Strategic Risks and External Risks • Plan entities, which detail the actions to bring about change within an archive. These include Acquisition Plans, Preservation Plans and Monitoring plans • The Result entities describe the successful outcomes of the executed plans. These include Acquisitions, Mitigations and Accepted Risks.
NASA Astrophysics Data System (ADS)
Stoddard, M. A.; Etienne, L.; Fournier, M.; Pelot, R.; Beveridge, L.
2016-04-01
Maritime traffic volume in the Arctic is growing for several reasons: climate change is resulting in less ice in extent, duration, and thickness; economic drivers are inducing growth in resource extraction traffic, community size (affecting resupply) and adventure tourism. This dynamic situation, coupled with harsh weather, variable operating conditions, remoteness, and lack of straightforward emergency response options, demand robust risk management processes. The requirements for risk management for polar ship operations are specified in the new International Maritime Organization (IMO) International Code for Ships Operating in Polar Waters (Polar Code). The goal of the Polar Code is to provide for safe ship operations and protection of the polar environment by addressing the risk present in polar waters. Risk management is supported by evidence-based models, including threat identification (types and frequency of hazards), exposure levels, and receptor characterization. Most of the information used to perform risk management in polar waters is attained in-situ, but increasingly is being augmented with open-access remote sensing information. In this paper we focus on the use of open-access historical ice charts as an integral part of northern navigation, especially for route planning and evaluation.
Engineering Risk Assessment of Space Thruster Challenge Problem
NASA Technical Reports Server (NTRS)
Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie
2014-01-01
The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.
Dobson, Ian; Carreras, Benjamin A; Lynch, Vickie E; Newman, David E
2007-06-01
We give an overview of a complex systems approach to large blackouts of electric power transmission systems caused by cascading failure. Instead of looking at the details of particular blackouts, we study the statistics and dynamics of series of blackouts with approximate global models. Blackout data from several countries suggest that the frequency of large blackouts is governed by a power law. The power law makes the risk of large blackouts consequential and is consistent with the power system being a complex system designed and operated near a critical point. Power system overall loading or stress relative to operating limits is a key factor affecting the risk of cascading failure. Power system blackout models and abstract models of cascading failure show critical points with power law behavior as load is increased. To explain why the power system is operated near these critical points and inspired by concepts from self-organized criticality, we suggest that power system operating margins evolve slowly to near a critical point and confirm this idea using a power system model. The slow evolution of the power system is driven by a steady increase in electric loading, economic pressures to maximize the use of the grid, and the engineering responses to blackouts that upgrade the system. Mitigation of blackout risk should account for dynamical effects in complex self-organized critical systems. For example, some methods of suppressing small blackouts could ultimately increase the risk of large blackouts.
Butler, Robert J; Lehr, Michael E; Fink, Michael L; Kiesel, Kyle B; Plisky, Phillip J
2013-09-01
Field expedient screening tools that can identify individuals at an elevated risk for injury are needed to minimize time loss in American football players. Previous research has suggested that poor dynamic balance may be associated with an elevated risk for injury in athletes; however, this has yet to be examined in college football players. To determine if dynamic balance deficits are associated with an elevated risk of injury in collegiate football players. It was hypothesized that football players with lower performance and increased asymmetry in dynamic balance would be at an elevated risk for sustaining a noncontact lower extremity injury. Prospective cohort study. Fifty-nine collegiate American football players volunteered for this study. Demographic information, injury history, and dynamic balance testing performance were collected, and noncontact lower extremity injuries were recorded over the course of the season. Receiver operator characteristic curves were calculated based on performance on the Star Excursion Balance Test (SEBT), including composite score and asymmetry, to determine the population-specific risk cut-off point. Relative risk was then calculated based on these variables, as well as previous injury. A cut-off point of 89.6% composite score on the SEBT optimized the sensitivity (100%) and specificity (71.7%). A college football player who scored below 89.6% was 3.5 times more likely to get injured. Poor performance on the SEBT may be related to an increased risk for sustaining a noncontact lower extremity injury over the course of a competitive American football season. College football players should be screened preseason using the SEBT to identify those at an elevated risk for injury based upon dynamic balance performance to implement injury mitigation strategies to this specific subgroup of athletes.
Davoren, Mary; O'Dwyer, Sarah; Abidin, Zareena; Naughton, Leena; Gibbons, Olivia; Doyle, Elaine; McDonnell, Kim; Monks, Stephen; Kennedy, Harry G
2012-07-13
We examined whether new structured professional judgment instruments for assessing need for therapeutic security, treatment completion and recovery in forensic settings were related to moves from higher to lower levels of therapeutic security and added anything to assessment of risk. This was a prospective naturalistic twelve month observational study of a cohort of patients in a forensic hospital placed according to their need for therapeutic security along a pathway of moves from high to progressively less secure units in preparation for discharge. Patients were assessed using the DUNDRUM-1 triage security scale, the DUNDRUM-3 programme completion scale and the DUNDRUM-4 recovery scale and assessments of risk of violence, self harm and suicide, symptom severity and global function. Patients were subsequently observed for positive moves to less secure units and negative moves to more secure units. There were 86 male patients at baseline with mean follow-up 0.9 years, 11 positive and 9 negative moves. For positive moves, logistic regression indicated that along with location at baseline, the DUNDRUM-1, HCR-20 dynamic and PANSS general symptom scores were associated with subsequent positive moves. The receiver operating characteristic was significant for the DUNDRUM-1 while ANOVA co-varying for both location at baseline and HCR-20 dynamic score was significant for DUNDRUM-1. For negative moves, logistic regression showed DUNDRUM-1 and HCR-20 dynamic scores were associated with subsequent negative moves, along with DUNDRUM-3 and PANSS negative symptoms in some models. The receiver operating characteristic was significant for the DUNDRUM-4 recovery and HCR-20 dynamic scores with DUNDRUM-1, DUNDRUM-3, PANSS general and GAF marginal. ANOVA co-varying for both location at baseline and HCR-20 dynamic scores showed only DUNDRUM-1 and PANSS negative symptoms associated with subsequent negative moves. Clinicians appear to decide moves based on combinations of current and imminent (dynamic) risk measured by HCR-20 dynamic score and historical seriousness of risk as measured by need for therapeutic security (DUNDRUM-1) in keeping with Scott's formulation of risk and seriousness. The DUNDRUM-3 programme completion and DUNDRUM-4 recovery scales have utility as dynamic measures that can off-set perceived 'dangerousness'.
2012-01-01
Background We examined whether new structured professional judgment instruments for assessing need for therapeutic security, treatment completion and recovery in forensic settings were related to moves from higher to lower levels of therapeutic security and added anything to assessment of risk. Methods This was a prospective naturalistic twelve month observational study of a cohort of patients in a forensic hospital placed according to their need for therapeutic security along a pathway of moves from high to progressively less secure units in preparation for discharge. Patients were assessed using the DUNDRUM-1 triage security scale, the DUNDRUM-3 programme completion scale and the DUNDRUM-4 recovery scale and assessments of risk of violence, self harm and suicide, symptom severity and global function. Patients were subsequently observed for positive moves to less secure units and negative moves to more secure units. Results There were 86 male patients at baseline with mean follow-up 0.9 years, 11 positive and 9 negative moves. For positive moves, logistic regression indicated that along with location at baseline, the DUNDRUM-1, HCR-20 dynamic and PANSS general symptom scores were associated with subsequent positive moves. The receiver operating characteristic was significant for the DUNDRUM-1 while ANOVA co-varying for both location at baseline and HCR-20 dynamic score was significant for DUNDRUM-1. For negative moves, logistic regression showed DUNDRUM-1 and HCR-20 dynamic scores were associated with subsequent negative moves, along with DUNDRUM-3 and PANSS negative symptoms in some models. The receiver operating characteristic was significant for the DUNDRUM-4 recovery and HCR-20 dynamic scores with DUNDRUM-1, DUNDRUM-3, PANSS general and GAF marginal. ANOVA co-varying for both location at baseline and HCR-20 dynamic scores showed only DUNDRUM-1 and PANSS negative symptoms associated with subsequent negative moves. Conclusions Clinicians appear to decide moves based on combinations of current and imminent (dynamic) risk measured by HCR-20 dynamic score and historical seriousness of risk as measured by need for therapeutic security (DUNDRUM-1) in keeping with Scott's formulation of risk and seriousness. The DUNDRUM-3 programme completion and DUNDRUM-4 recovery scales have utility as dynamic measures that can off-set perceived 'dangerousness'. PMID:22794187
2014-03-01
64 selections, 128 aggregations and 510 join operators . 0 100 200 300 400 500 600 700 800 900 1000 0 10 20 30 40 50 60 70 T im e...DC, USA, 2001, IEEE Computer So- ciety, pp. 391–398. [66] E. Network and I. S. A. (ENISA), Inventory of risk managemen - t /risk assessment methods, Sept... Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that
Narayanan, Harish; Viana, Fabiano F; Smith, Julian A; Roumeliotis, Nicholas K; Troupis, Christopher J; Crossett, Marcus P; Troupis, John M
2015-10-01
Repeat cardiac surgeries are well known to have higher rates of complications, one of the important reasons being injuries associated with re-do sternotomy. Routine imaging with CT can help to minimise this risk by pre-operatively assessing the anatomical relation between the sternum and the underlying cardiovascular structures, but is limited by its inability to determine the presence and severity of functional tethering and adhesions between these structures. However, with the evolution of wide area detector MD CT scanners, it is possible to assess the presence of tethering using the dynamic four-dimensional CT (4D CT) imaging technique. Nineteen patients undergoing re-do cardiac surgery were pre-operatively imaged using dynamic 4D CT during regulated respiration. The datasets were assessed in cine mode for presence of differential motion between sternum and underlying cardiovascular structures which indicates lack of significant tethering. Overall, there was excellent correlation between preoperative imaging and intraoperative findings. The technique enabled our surgeons to meticulously plan the procedures and to avoid re-entry related injuries. Our initial experience shows that dynamic 4D CT is useful in risk stratification prior to re-do sternotomy by determining the presence or absence of tethering between sternum and underlying structures based on assessment of differential motion. Furthermore we determined the technique to be superior to non-dynamic assessment of retrocardiac tethering. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Vehicle track interaction safety standards
DOT National Transportation Integrated Search
2014-04-02
Vehicle/Track Interaction (VTI) Safety Standards aim to : reduce the risk of derailments and other accidents attributable : to the dynamic interaction between moving vehicles and the : track over which they operate. On March 13, 2013, the Federal : R...
Business continuity management in emerging markets: the case of Jordan.
Sawalha, Ihab H; Anchor, John R
2012-01-01
Despite their considerable growth in last few decades, emerging markets (EM) face numerous risks that have the potential to slow down or obstruct their development. Three main issues are discussed in this paper: first, the risks facing organisations operating in emerging markets and Jordan in particular; secondly, the role of business continuity management (BCM) in emerging markets; and thirdly, potential factors that underpin the role of BCM in emerging markets. These issues are significant, as they represent the role of BCM in highly dynamic and fast changing business environments. The paper provides a discussion of the significance of BCM in reducing or preventing risks facing organisations operating in emerging markets, especially those in Jordan.
NASA Astrophysics Data System (ADS)
Coyne, Kevin Anthony
The safe operation of complex systems such as nuclear power plants requires close coordination between the human operators and plant systems. In order to maintain an adequate level of safety following an accident or other off-normal event, the operators often are called upon to perform complex tasks during dynamic situations with incomplete information. The safety of such complex systems can be greatly improved if the conditions that could lead operators to make poor decisions and commit erroneous actions during these situations can be predicted and mitigated. The primary goal of this research project was the development and validation of a cognitive model capable of simulating nuclear plant operator decision-making during accident conditions. Dynamic probabilistic risk assessment methods can improve the prediction of human error events by providing rich contextual information and an explicit consideration of feedback arising from man-machine interactions. The Accident Dynamics Simulator paired with the Information, Decision, and Action in a Crew context cognitive model (ADS-IDAC) shows promise for predicting situational contexts that might lead to human error events, particularly knowledge driven errors of commission. ADS-IDAC generates a discrete dynamic event tree (DDET) by applying simple branching rules that reflect variations in crew responses to plant events and system status changes. Branches can be generated to simulate slow or fast procedure execution speed, skipping of procedure steps, reliance on memorized information, activation of mental beliefs, variations in control inputs, and equipment failures. Complex operator mental models of plant behavior that guide crew actions can be represented within the ADS-IDAC mental belief framework and used to identify situational contexts that may lead to human error events. This research increased the capabilities of ADS-IDAC in several key areas. The ADS-IDAC computer code was improved to support additional branching events and provide a better representation of the IDAC cognitive model. An operator decision-making engine capable of responding to dynamic changes in situational context was implemented. The IDAC human performance model was fully integrated with a detailed nuclear plant model in order to realistically simulate plant accident scenarios. Finally, the improved ADS-IDAC model was calibrated, validated, and updated using actual nuclear plant crew performance data. This research led to the following general conclusions: (1) A relatively small number of branching rules are capable of efficiently capturing a wide spectrum of crew-to-crew variabilities. (2) Compared to traditional static risk assessment methods, ADS-IDAC can provide a more realistic and integrated assessment of human error events by directly determining the effect of operator behaviors on plant thermal hydraulic parameters. (3) The ADS-IDAC approach provides an efficient framework for capturing actual operator performance data such as timing of operator actions, mental models, and decision-making activities.
Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines.
Zhou, Lu-Jie; Cao, Qing-Gui; Yu, Kai; Wang, Lin-Lin; Wang, Hai-Bin
2018-04-26
This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines.
Research on Occupational Safety, Health Management and Risk Control Technology in Coal Mines
Zhou, Lu-jie; Cao, Qing-gui; Yu, Kai; Wang, Lin-lin; Wang, Hai-bin
2018-01-01
This paper studies the occupational safety and health management methods as well as risk control technology associated with the coal mining industry, including daily management of occupational safety and health, identification and assessment of risks, early warning and dynamic monitoring of risks, etc.; also, a B/S mode software (Geting Coal Mine, Jining, Shandong, China), i.e., Coal Mine Occupational Safety and Health Management and Risk Control System, is developed to attain the aforementioned objectives, namely promoting the coal mine occupational safety and health management based on early warning and dynamic monitoring of risks. Furthermore, the practical effectiveness and the associated pattern for applying this software package to coal mining is analyzed. The study indicates that the presently developed coal mine occupational safety and health management and risk control technology and the associated software can support the occupational safety and health management efforts in coal mines in a standardized and effective manner. It can also control the accident risks scientifically and effectively; its effective implementation can further improve the coal mine occupational safety and health management mechanism, and further enhance the risk management approaches. Besides, its implementation indicates that the occupational safety and health management and risk control technology has been established based on a benign cycle involving dynamic feedback and scientific development, which can provide a reliable assurance to the safe operation of coal mines. PMID:29701715
Bansbach, Heather M; Lovalekar, Mita T; Abt, John P; Rafferty, Deirdre; Yount, Darcie; Sell, Timothy C
2017-08-01
The odds of sustaining non-contact musculoskeletal injuries are higher in Special Operations Forces operators than in infantry soldiers. The ankle is one of the most commonly injured joints, and once injured can put individuals at risk for reinjury. The purpose of this study was to determine if any differences in postural stability and landing kinematics exist between operators with a self-reported ankle injury in the past one year and uninjured controls. A total of 55 Special Operations Forces operators were included in this analysis. Comparisons were made between operators with a self-reported ankle injury within one-year of their test date (n=11) and healthy matched controls (n=44). Comparisons were also made between injured and uninjured limbs within the injured group. Dynamic postural stability and landing kinematics at the ankle, knee, and hip were assessed during a single-leg jump-landing task. Comparisons were made between groups with independent t-tests and within the injured group between limbs using paired t-tests. There were no significant differences in dynamic postural stability index or landing kinematics between the injured and uninjured groups. Anterior-posterior stability index was significantly higher on the uninjured limb compared to the injured limb within the injured group (P=0.02). Single ankle injuries sustained by operators may not lead to deficits in dynamic postural stability. Dynamic postural stability index and landing kinematics within one year after injury were either not affected by the injuries reported, or injured operators were trained back to baseline measures through rehabilitation and daily activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brigantic, Robert T.; Betzsold, Nick J.; Bakker, Craig KR
In this presentation we overview a methodology for dynamic security risk quantification and optimal resource allocation of security assets for high profile venues. This methodology is especially applicable to venues that require security screening operations such as mass transit (e.g., train or airport terminals), critical infrastructure protection (e.g., government buildings), and largescale public events (e.g., concerts or professional sports). The method starts by decomposing the three core components of risk -- threat, vulnerability, and consequence -- into their various subcomponents. For instance, vulnerability can be decomposed into availability, accessibility, organic security, and target hardness and each of these can bemore » evaluated against the potential threats of interest for the given venue. Once evaluated, these subcomponents are rolled back up to compute the specific value for the vulnerability core risk component. Likewise, the same is done for consequence and threat, and then risk is computed as the product of these three components. A key aspect of our methodology is dynamically quantifying risk. That is, we incorporate the ability to uniquely allow the subcomponents and core components, and in turn, risk, to be quantified as a continuous function of time throughout the day, week, month, or year as appropriate.« less
NASA Astrophysics Data System (ADS)
Salloum, Ahmed
Constraint relaxation by definition means that certain security, operational, or financial constraints are allowed to be violated in the energy market model for a predetermined penalty price. System operators utilize this mechanism in an effort to impose a price-cap on shadow prices throughout the market. In addition, constraint relaxations can serve as corrective approximations that help in reducing the occurrence of infeasible or extreme solutions in the day-ahead markets. This work aims to capture the impact constraint relaxations have on system operational security. Moreover, this analysis also provides a better understanding of the correlation between DC market models and AC real-time systems and analyzes how relaxations in market models propagate to real-time systems. This information can be used not only to assess the criticality of constraint relaxations, but also as a basis for determining penalty prices more accurately. Constraint relaxations practice was replicated in this work using a test case and a real-life large-scale system, while capturing both energy market aspects and AC real-time system performance. System performance investigation included static and dynamic security analysis for base-case and post-contingency operating conditions. PJM peak hour loads were dynamically modeled in order to capture delayed voltage recovery and sustained depressed voltage profiles as a result of reactive power deficiency caused by constraint relaxations. Moreover, impacts of constraint relaxations on operational system security were investigated when risk based penalty prices are used. Transmission lines in the PJM system were categorized according to their risk index and each category was as-signed a different penalty price accordingly in order to avoid real-time overloads on high risk lines. This work also extends the investigation of constraint relaxations to post-contingency relaxations, where emergency limits are allowed to be relaxed in energy market models. Various scenarios were investigated to capture and compare between the impacts of base-case and post-contingency relaxations on real-time system performance, including the presence of both relaxations simultaneously. The effect of penalty prices on the number and magnitude of relaxations was investigated as well.
Incorporating Equipment Condition Assessment in Risk Monitors for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Coles, Garill A.; Meyer, Ryan M.
2013-10-01
Advanced small modular reactors (aSMRs) can complement the current fleet of large light-water reactors in the USA for baseload and peak demand power production and process heat applications (e.g., water desalination, shale oil extraction, hydrogen production). The day-to-day costs of aSMRs are expected to be dominated by operations and maintenance (O&M); however, the effect of diverse operating missions and unit modularity on O&M is not fully understood. These costs could potentially be reduced by optimized scheduling, with risk-informed scheduling of maintenance, repair, and replacement of equipment. Currently, most nuclear power plants have a “living” probabilistic risk assessment (PRA), which reflectsmore » the as-operated, as-modified plant and combine event probabilities with population-based probability of failure (POF) for key components. “Risk monitors” extend the PRA by incorporating the actual and dynamic plant configuration (equipment availability, operating regime, environmental conditions, etc.) into risk assessment. In fact, PRAs are more integrated into plant management in today’s nuclear power plants than at any other time in the history of nuclear power. However, population-based POF curves are still used to populate fault trees; this approach neglects the time-varying condition of equipment that is relied on during standard and non-standard configurations. Equipment condition monitoring techniques can be used to estimate the component POF. Incorporating this unit-specific estimate of POF in the risk monitor can provide a more accurate estimate of risk in different operating and maintenance configurations. This enhanced risk assessment will be especially important for aSMRs that have advanced component designs, which don’t have an available operating history to draw from, and often use passive design features, which present challenges to PRA. This paper presents the requirements and technical gaps for developing a framework to integrate unit-specific estimates of POF into risk monitors, resulting in enhanced risk monitors that support optimized operation and maintenance of aSMRs.« less
Operational Implementation of Space Debris Mitigation Procedures
NASA Astrophysics Data System (ADS)
Gicquel, Anne-Helene; Bonaventure, Francois
2013-08-01
During the spacecraft lifetime, Astrium supports its customers to manage collision risks alerts from the Joint Space Operations Center (JSpOC). This was previously done with hot-line support and a manual operational procedure. Today, it is automated and integrated in QUARTZ, the Astrium Flight Dynamics operational tool. The algorithms and process details for this new 5- step functionality are provided in this paper. To improve this functionality, some R&D activities such as the study of dilution phenomenon and low relative velocity encounters are going on. Regarding end of life disposal, recent operational experiences as well as studies results are presented.
ASSESSMENT OF DYNAMIC PRA TECHNIQUES WITH INDUSTRY AVERAGE COMPONENT PERFORMANCE DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yadav, Vaibhav; Agarwal, Vivek; Gribok, Andrei V.
In the nuclear industry, risk monitors are intended to provide a point-in-time estimate of the system risk given the current plant configuration. Current risk monitors are limited in that they do not properly take into account the deteriorating states of plant equipment, which are unit-specific. Current approaches to computing risk monitors use probabilistic risk assessment (PRA) techniques, but the assessment is typically a snapshot in time. Living PRA models attempt to address limitations of traditional PRA models in a limited sense by including temporary changes in plant and system configurations. However, information on plant component health are not considered. Thismore » often leaves risk monitors using living PRA models incapable of conducting evaluations with dynamic degradation scenarios evolving over time. There is a need to develop enabling approaches to solidify risk monitors to provide time and condition-dependent risk by integrating traditional PRA models with condition monitoring and prognostic techniques. This paper presents estimation of system risk evolution over time by integrating plant risk monitoring data with dynamic PRA methods incorporating aging and degradation. Several online, non-destructive approaches have been developed for diagnosing plant component conditions in nuclear industry, i.e., condition indication index, using vibration analysis, current signatures, and operational history [1]. In this work the component performance measures at U.S. commercial nuclear power plants (NPP) [2] are incorporated within the various dynamic PRA methodologies [3] to provide better estimates of probability of failures. Aging and degradation is modeled within the Level-1 PRA framework and is applied to several failure modes of pumps and can be extended to a range of components, viz. valves, generators, batteries, and pipes.« less
Jing, Xu; Hu, Hanwen; Yang, Huijun; Au, Man Ho; Li, Shuqin; Xiong, Naixue; Imran, Muhammad; Vasilakos, Athanasios V
2017-03-21
The prospect of Line-of-Business Services (LoBSs) for infrastructure of Emerging Sensor Networks (ESNs) is exciting. Access control remains a top challenge in this scenario as the service provider's server contains a lot of valuable resources. LoBSs' users are very diverse as they may come from a wide range of locations with vastly different characteristics. Cost of joining could be low and in many cases, intruders are eligible users conducting malicious actions. As a result, user access should be adjusted dynamically. Assessing LoBSs' risk dynamically based on both frequency and threat degree of malicious operations is therefore necessary. In this paper, we proposed a Quantitative Risk Assessment Model (QRAM) involving frequency and threat degree based on value at risk. To quantify the threat degree as an elementary intrusion effort, we amend the influence coefficient of risk indexes in the network security situation assessment model. To quantify threat frequency as intrusion trace effort, we make use of multiple behavior information fusion. Under the influence of intrusion trace, we adapt the historical simulation method of value at risk to dynamically access LoBSs' risk. Simulation based on existing data is used to select appropriate parameters for QRAM. Our simulation results show that the duration influence on elementary intrusion effort is reasonable when the normalized parameter is 1000. Likewise, the time window of intrusion trace and the weight between objective risk and subjective risk can be set to 10 s and 0.5, respectively. While our focus is to develop QRAM for assessing the risk of LoBSs for infrastructure of ESNs dynamically involving frequency and threat degree, we believe it is also appropriate for other scenarios in cloud computing.
Jing, Xu; Hu, Hanwen; Yang, Huijun; Au, Man Ho; Li, Shuqin; Xiong, Naixue; Imran, Muhammad; Vasilakos, Athanasios V.
2017-01-01
The prospect of Line-of-Business Services (LoBSs) for infrastructure of Emerging Sensor Networks (ESNs) is exciting. Access control remains a top challenge in this scenario as the service provider’s server contains a lot of valuable resources. LoBSs’ users are very diverse as they may come from a wide range of locations with vastly different characteristics. Cost of joining could be low and in many cases, intruders are eligible users conducting malicious actions. As a result, user access should be adjusted dynamically. Assessing LoBSs’ risk dynamically based on both frequency and threat degree of malicious operations is therefore necessary. In this paper, we proposed a Quantitative Risk Assessment Model (QRAM) involving frequency and threat degree based on value at risk. To quantify the threat degree as an elementary intrusion effort, we amend the influence coefficient of risk indexes in the network security situation assessment model. To quantify threat frequency as intrusion trace effort, we make use of multiple behavior information fusion. Under the influence of intrusion trace, we adapt the historical simulation method of value at risk to dynamically access LoBSs’ risk. Simulation based on existing data is used to select appropriate parameters for QRAM. Our simulation results show that the duration influence on elementary intrusion effort is reasonable when the normalized parameter is 1000. Likewise, the time window of intrusion trace and the weight between objective risk and subjective risk can be set to 10 s and 0.5, respectively. While our focus is to develop QRAM for assessing the risk of LoBSs for infrastructure of ESNs dynamically involving frequency and threat degree, we believe it is also appropriate for other scenarios in cloud computing. PMID:28335569
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; Diego Mandelli; Ronald L. Boring
2015-07-01
The United States Department of Energy is sponsoring the Light Water Reactor Sustainability program, which has the overall objective of supporting the near-term and the extended operation of commercial nuclear power plants. One key research and development (R&D) area in this program is the Risk-Informed Safety Margin Characterization pathway, which combines probabilistic risk simulation with thermohydraulic simulation codes to define and manage safety margins. The R&D efforts to date, however, have not included robust simulations of human operators, and how the reliability of human performance or lack thereof (i.e., human errors) can affect risk-margins and plant performance. This paper describesmore » current and planned research efforts to address the absence of robust human reliability simulations and thereby increase the fidelity of simulated accident scenarios.« less
Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation
NASA Astrophysics Data System (ADS)
Di Baldassarre, Giuliano; Martinez, Fabian; Kalantari, Zahra; Viglione, Alberto
2017-03-01
Over the last few decades, numerous studies have investigated human impacts on drought and flood events, while conversely other studies have explored human responses to hydrological extremes. Yet, there is still little understanding about the dynamics resulting from their interplay, i.e. both impacts and responses. Current quantitative methods therefore can fail to assess future risk dynamics and, as a result, while risk reduction strategies built on these methods often work in the short term, they tend to lead to unintended consequences in the long term. In this paper, we review the puzzles and dynamics resulting from the interplay of society and hydrological extremes, and describe an initial effort to model hydrological extremes in the Anthropocene. In particular, we first discuss the need for a novel approach to explicitly account for human interactions with both drought and flood events, and then present a stylized model simulating the reciprocal effects between hydrological extremes and changing reservoir operation rules. Lastly, we highlight the unprecedented opportunity offered by the current proliferation of big data to unravel the coevolution of hydrological extremes and society across scales and along gradients of social and hydrological conditions.
Sustainable infrastructure system modeling under uncertainties and dynamics
NASA Astrophysics Data System (ADS)
Huang, Yongxi
Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the potential risks caused by feedstock seasonality and demand uncertainty. Facility spatiality, time variation of feedstock yields, and demand uncertainty are integrated into a two-stage stochastic programming (SP) framework. In the study of Transitional Energy System Modeling under Uncertainty, a multistage stochastic dynamic programming is established to optimize the process of building and operating fuel production facilities during the transition. Dynamics due to the evolving technologies and societal changes and uncertainty due to demand fluctuations are the major issues to be addressed.
Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings
NASA Astrophysics Data System (ADS)
Ravindranath, A.; Devineni, N.
2016-12-01
Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.
Pediatric PHO requires strong heart, good partner.
1997-05-01
As states convert Medicaid into managed care, pediatric PHOs must change their operating dynamics to meet the challenges and take advantage of the emerging opportunities. One of the biggest questions these PHOs face is whether to start their own HMOs and risk alienating existing payers.
USDA-ARS?s Scientific Manuscript database
Determining minimal, effective free chlorine (FC) concentration for preventing pathogen survival and cross-contamination is critical for developing science- and risk-based food safety practices. The correlation between dynamic FC concentrations and bacterial survival was investigated under commerci...
A Risk Assessment System with Automatic Extraction of Event Types
NASA Astrophysics Data System (ADS)
Capet, Philippe; Delavallade, Thomas; Nakamura, Takuya; Sandor, Agnes; Tarsitano, Cedric; Voyatzi, Stavroula
In this article we describe the joint effort of experts in linguistics, information extraction and risk assessment to integrate EventSpotter, an automatic event extraction engine, into ADAC, an automated early warning system. By detecting as early as possible weak signals of emerging risks ADAC provides a dynamic synthetic picture of situations involving risk. The ADAC system calculates risk on the basis of fuzzy logic rules operated on a template graph whose leaves are event types. EventSpotter is based on a general purpose natural language dependency parser, XIP, enhanced with domain-specific lexical resources (Lexicon-Grammar). Its role is to automatically feed the leaves with input data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald; Mandelli, Diego; Rasmussen, Martin
2016-06-01
This report presents an application of a computation-based human reliability analysis (HRA) framework called the Human Unimodel for Nuclear Technology to Enhance Reliability (HUNTER). HUNTER has been developed not as a standalone HRA method but rather as framework that ties together different HRA methods to model dynamic risk of human activities as part of an overall probabilistic risk assessment (PRA). While we have adopted particular methods to build an initial model, the HUNTER framework is meant to be intrinsically flexible to new pieces that achieve particular modeling goals. In the present report, the HUNTER implementation has the following goals: •more » Integration with a high fidelity thermal-hydraulic model capable of modeling nuclear power plant behaviors and transients • Consideration of a PRA context • Incorporation of a solid psychological basis for operator performance • Demonstration of a functional dynamic model of a plant upset condition and appropriate operator response This report outlines these efforts and presents the case study of a station blackout scenario to demonstrate the various modules developed to date under the HUNTER research umbrella.« less
The Study on Financial Supervision for Chinese Financial Industry under Mixed Operation
NASA Astrophysics Data System (ADS)
Wei, Song
Financial mixed operation refers to that financial institution can offer all financial services (banking, securities, insurance, and trust) and engage in industrial businesses by holding the share ownership. Because of self interests, risk diversification, the change of competition condition, and clients' needs of the diversity of financial products and services, commercial banks make it possible for the mixed operation to be the optimal choice of the banking businesses under dynamic conditions in globalized competition, which results in the diversity and integration of banking businesses.
Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems
NASA Astrophysics Data System (ADS)
Mason, E.; Giuliani, M.; Castelletti, A.; Amigoni, F.
2018-04-01
Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations.
due to the dangers of utilizing convoy operations. However, enemy actions, austere conditions, and inclement weather pose a significant risk to a...squares temporal differencing for policy evaluation. We construct a representative problem instance based on an austere combat environment in order to
Paik, Samuel Y; Zalk, David M; Swuste, Paul
2008-08-01
Control banding (CB) strategies offer simplified solutions for controlling worker exposures to constituents that are found in the workplace in the absence of firm toxicological and exposure data. These strategies may be particularly useful in nanotechnology applications, considering the overwhelming level of uncertainty over what nanomaterials and nanotechnologies present as potential work-related health risks, what about these materials might lead to adverse toxicological activity, how risk related to these might be assessed and how to manage these issues in the absence of this information. This study introduces a pilot CB tool or 'CB Nanotool' that was developed specifically for characterizing the health aspects of working with engineered nanoparticles and determining the level of risk and associated controls for five ongoing nanotechnology-related operations being conducted at two Department of Energy research laboratories. Based on the application of the CB Nanotool, four of the five operations evaluated in this study were found to have implemented controls consistent with what was recommended by the CB Nanotool, with one operation even exceeding the required controls for that activity. The one remaining operation was determined to require an upgrade in controls. By developing this dynamic CB Nanotool within the realm of the scientific information available, this application of CB appears to be a useful approach for assessing the risk of nanomaterial operations, providing recommendations for appropriate engineering controls and facilitating the allocation of resources to the activities that most need them.
NASA Technical Reports Server (NTRS)
Hejduk, M. D.; Frigm, Ryan C.
2015-01-01
Satellite conjunction assessment is perhaps the fastest growing area in space situational awareness and protection with military, civil and commercial satellite owner-operators embracing more and more sophisticated processes to avoid the avoidable - namely collisions between high value space assets and orbital debris. NASA and Centre National d'Etudes Spatiales (CNES) have collaborated to offer an introductory short course on all the major aspects of the conjunctions assessment problem. This half-day course will cover satellite conjunction dynamics and theory. Joint Space Operations Center (JsPOC) conjunction data products, major risk assessment parameters and plots, conjunction remediation decision support, and present and future challenges. This briefing represents the NASA portion of the course.
Bayatian, Majid; Ashrafi, Khosro; Azari, Mansour Rezazadeh; Jafari, Mohammad Javad; Mehrabi, Yadollah
2018-04-01
There has been an increasing concern about the continuous and the sudden release of volatile organic pollutants from petroleum refineries and occupational and environmental exposures. Benzene is one of the most prevalent volatile compounds, and it has been addressed by many authors for its potential toxicity in occupational and environmental settings. Due to the complexities of sampling and analysis of benzene in routine and accidental situations, a reliable estimation of the benzene concentration in the outdoor setting of refinery using a computational fluid dynamics (CFD) could be instrumental for risk assessment of occupational exposure. In the present work, a computational fluid dynamic model was applied for exposure risk assessment with consideration of benzene being released continuously from a reforming unit of a refinery. For simulation of benzene dispersion, GAMBIT, FLUENT, and CFD post software are used as preprocessing, processing, and post-processing, respectively. Computational fluid dynamic validation was carried out by comparing the computed data with the experimental measurements. Eventually, chronic daily intake and lifetime cancer risk for routine operations through the two seasons of a year are estimated through the simulation model. Root mean square errors are 0.19 and 0.17 for wind speed and concentration, respectively. Lifetime risk assessments of workers are 0.4-3.8 and 0.0096-0.25 per 1000 workers in stable and unstable atmospheric conditions, respectively. Exposure risk is unacceptable for the head of shift work, chief engineer, and general workers in 141 days (38.77%) in a year. The results of this study show that computational fluid dynamics is a useful tool for modeling of benzene exposure in a complex geometry and can be used to estimate lifetime risks of occupation groups in a refinery setting.
Real-Time Risk Assessment Framework for Unmanned Aircraft System (UAS) Traffic Management (UTM)
NASA Technical Reports Server (NTRS)
Ancel, Ersin; Capristan, Francisco M.; Foster, John V.; Condotta, Ryan
2017-01-01
The new Federal Aviation Administration (FAA) Small Unmanned Aircraft rule (Part 107) marks the first national regulations for commercial operation of small unmanned aircraft systems (sUAS) under 55 pounds within the National Airspace System (NAS). Although sUAS flights may not be performed beyond visual line-of-sight or over non- participant structures and people, safety of sUAS operations must still be maintained and tracked at all times. Moreover, future safety-critical operation of sUAS (e.g., for package delivery) are already being conceived and tested. NASA's Unmanned Aircraft System Trac Management (UTM) concept aims to facilitate the safe use of low-altitude airspace for sUAS operations. This paper introduces the UTM Risk Assessment Framework (URAF) which was developed to provide real-time safety evaluation and tracking capability within the UTM concept. The URAF uses Bayesian Belief Networks (BBNs) to propagate off -nominal condition probabilities based on real-time component failure indicators. This information is then used to assess the risk to people on the ground by calculating the potential impact area and the effects of the impact. The visual representation of the expected area of impact and the nominal risk level can assist operators and controllers with dynamic trajectory planning and execution. The URAF was applied to a case study to illustrate the concept.
Solar Dynamics Observatory On-Orbit Jitter Testing, Analysis, and Mitigation Plans
NASA Technical Reports Server (NTRS)
Liu, Kuo-Chia; Blaurock, Carl A.; Bourkland, Kristin L.; Morgenstern, Wendy M.; Maghami, Peiman G.
2011-01-01
The recently launched Solar Dynamics Observatory (SDO) has two science instruments onboard that required sub-arcsecond pointing stability. Significant effort has been spent pre-launch to characterize the disturbances sources and validating jitter level at the component, sub-assembly, and spacecraft levels. However, an end-to-end jitter test emulating the flight condition was not performed on the ground due to cost and risk concerns. As a result, the true jitter level experienced on orbit remained uncertain prior to launch. Based on the pre-launch analysis, several operational constraints were placed on the observatory aimed to minimize the instrument jitter levels. If the actual jitter is below the analysis predictions, these operational constraints can be relaxed to reduce the burden of the flight operations team. The SDO team designed a three-day jitter test, utilizing the instrument sensors to measure pointing jitter up to 256 Hz. The test results were compared to pre-launch analysis predictions, used to determine which operational constraints can be relaxed, and analyzed for setting the jitter mitigation strategies for future SDO operations.
Recycle dynamics during centrifugal compressor ESD, start-up and surge control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botros, K.K.; Jones, B.J.; Richards, D.J.
1996-12-31
Recycle systems are important components in the operation of centrifugal compressor stations. They are essential during a start-up operation, for surge protection and for emergency shutdown (ESD). These operations are inherently dynamic where interactions between equipment, control and gas flow occur in a complex manner with the associated risk of compressor surge. Of particular importance are the effects or recycle system capacity, the recycle valve characteristics, check valve dynamic behavior, piping geometry and capacitance around the compressor unit, and the performance characteristics of the centrifugal compressor itself. This paper presents numerical results of the effects of some of these parametersmore » on surge control, ESD and unit startup. These parameters are: (1) The effects of damping the surge control flow signal in an attempt to suppress the signal noise, on the integrity of the surge control system; (2) The effects of recycle valve characteristics, stroke time and valve capacity on ESD; (3) The effects of recycle line size on ESD; and (4) The effects of the recycle valve closing time (or rate) on the startup operation, with the intent of shortening this time to minimum for environmental reasons. Results were obtained from the solution of the pertinent dynamic equations describing the gas and equipment dynamics which has been verified against field and laboratory measurements. The samples presented in this paper were applied to a 24 MW natural gas compressor station on the NOVA Gas Transmission system, and to a scale-down laboratory model. Influence of other parameters from this investigation were published elsewhere and are cited in the reference section.« less
Nonexplicit change detection in complex dynamic settings: what eye movements reveal.
Vachon, François; Vallières, Benoît R; Jones, Dylan M; Tremblay, Sébastien
2012-12-01
We employed a computer-controlled command-and-control (C2) simulation and recorded eye movements to examine the extent and nature of the inability to detect critical changes in dynamic displays when change detection is implicit (i.e., requires no explicit report) to the operator's task. Change blindness-the failure to notice significant changes to a visual scene-may have dire consequences on performance in C2 and surveillance operations. Participants performed a radar-based risk-assessment task involving multiple subtasks. Although participants were not required to explicitly report critical changes to the operational display, change detection was critical in informing decision making. Participants' eye movements were used as an index of visual attention across the display. Nonfixated (i.e., unattended) changes were more likely to be missed than were fixated (i.e., attended) changes, supporting the idea that focused attention is necessary for conscious change detection. The finding of significant pupil dilation for changes undetected but fixated suggests that attended changes can nonetheless be missed because of a failure of attentional processes. Change blindness in complex dynamic displays takes the form of failures in establishing task-appropriate patterns of attentional allocation. These findings have implications in the design of change-detection support tools for dynamic displays and work procedure in C2 and surveillance.
RME 1317 - MiSDE VRCS test, flight deck activity with Collins
1997-05-19
STS084-310-012 (15-24 May 1997) --- Astronaut Eileen M. Collins, STS-84 pilot, occupies the commander's station on the Space Shuttle Atlantis' flight deck during rendezvous operations with Russia's Mir Space Station. She is looking over notes regarding a Risk Mitigation Experiment (RME) called the Mir Structural Dynamics Experiment (MSDE).
Linear modeling of human hand-arm dynamics relevant to right-angle torque tool interaction.
Ay, Haluk; Sommerich, Carolyn M; Luscher, Anthony F
2013-10-01
A new protocol was evaluated for identification of stiffness, mass, and damping parameters employing a linear model for human hand-arm dynamics relevant to right-angle torque tool use. Powered torque tools are widely used to tighten fasteners in manufacturing industries. While these tools increase accuracy and efficiency of tightening processes, operators are repetitively exposed to impulsive forces, posing risk of upper extremity musculoskeletal injury. A novel testing apparatus was developed that closely mimics biomechanical exposure in torque tool operation. Forty experienced torque tool operators were tested with the apparatus to determine model parameters and validate the protocol for physical capacity assessment. A second-order hand-arm model with parameters extracted in the time domain met model accuracy criterion of 5% for time-to-peak displacement error in 93% of trials (vs. 75% for frequency domain). Average time-to-peak handle displacement and relative peak handle force errors were 0.69 ms and 0.21%, respectively. Model parameters were significantly affected by gender and working posture. Protocol and numerical calculation procedures provide an alternative method for assessing mechanical parameters relevant to right-angle torque tool use. The protocol more closely resembles tool use, and calculation procedures demonstrate better performance of parameter extraction using time domain system identification methods versus frequency domain. Potential future applications include parameter identification for in situ torque tool operation and equipment development for human hand-arm dynamics simulation under impulsive forces that could be used for assessing torque tools based on factors relevant to operator health (handle dynamics and hand-arm reaction force).
Dynamic Positioning System (DPS) Risk Analysis Using Probabilistic Risk Assessment (PRA)
NASA Technical Reports Server (NTRS)
Thigpen, Eric B.; Boyer, Roger L.; Stewart, Michael A.; Fougere, Pete
2017-01-01
The National Aeronautics and Space Administration (NASA) Safety & Mission Assurance (S&MA) directorate at the Johnson Space Center (JSC) has applied its knowledge and experience with Probabilistic Risk Assessment (PRA) to projects in industries ranging from spacecraft to nuclear power plants. PRA is a comprehensive and structured process for analyzing risk in complex engineered systems and/or processes. The PRA process enables the user to identify potential risk contributors such as, hardware and software failure, human error, and external events. Recent developments in the oil and gas industry have presented opportunities for NASA to lend their PRA expertise to both ongoing and developmental projects within the industry. This paper provides an overview of the PRA process and demonstrates how this process was applied in estimating the probability that a Mobile Offshore Drilling Unit (MODU) operating in the Gulf of Mexico and equipped with a generically configured Dynamic Positioning System (DPS) loses location and needs to initiate an emergency disconnect. The PRA described in this paper is intended to be generic such that the vessel meets the general requirements of an International Maritime Organization (IMO) Maritime Safety Committee (MSC)/Circ. 645 Class 3 dynamically positioned vessel. The results of this analysis are not intended to be applied to any specific drilling vessel, although provisions were made to allow the analysis to be configured to a specific vessel if required.
Operational Performance Risk Assessment in Support of A Supervisory Control System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denning, Richard S.; Muhlheim, Michael David; Cetiner, Sacit M.
Supervisory control system (SCS) is developed for multi-unit advanced small modular reactors to minimize human interventions in both normal and abnormal operations. In SCS, control action decisions made based on probabilistic risk assessment approach via Event Trees/Fault Trees. Although traditional PRA tools are implemented, their scope is extended to normal operations and application is reversed; success of non-safety related system instead failure of safety systems this extended PRA approach called as operational performance risk assessment (OPRA). OPRA helps to identify success paths, combination of control actions for transients and to quantify these success paths to provide possible actions without activatingmore » plant protection system. In this paper, a case study of the OPRA in supervisory control system is demonstrated within the context of the ALMR PRISM design, specifically power conversion system. The scenario investigated involved a condition that the feed water control valve is observed to be drifting to the closed position. Alternative plant configurations were identified via OPRA that would allow the plant to continue to operate at full or reduced power. Dynamic analyses were performed with a thermal-hydraulic model of the ALMR PRISM system using Modelica to evaluate remained safety margins. Successful recovery paths for the selected scenario are identified and quantified via SCS.« less
Asymmetric acceleration/deceleration dynamics in heart rate variability
NASA Astrophysics Data System (ADS)
Alvarez-Ramirez, J.; Echeverria, J. C.; Meraz, M.; Rodriguez, E.
2017-08-01
The heart rate variability (HRV) is an important physiological signal used either to assess the risk of cardiac death or to model the cardiovascular regulatory dynamics. Asymmetries in HRV data have been observed using 2D Poincare plots, which have been linked to a non-equilibrium operation of the cardiac autonomic system. This work further explores the presence of asymmetries but in the serial correlations of the dynamics of HRV data. To this end, detrended fluctuation analysis (DFA) was used to estimate the Hurst exponent both when the heart rate is accelerating and when it is decelerating. The analysis is conducted using data collected from subjects under normal sinus rhythm (NSR), congestive heart failure (CHF) and atrial fibrillation (AF) . For the NSR cases, it was found that correlations are stronger (p < 0 . 05) when the heart rate is accelerating than when it is decelerating over different scales in the range 20-40 beats. In contrast, the opposite behavior was detected for the CHF and AF patients. Possible links between asymmetric correlations in the dynamics and the mechanisms controlling the operation of the heart rate are discussed, as well as their implications for modeling the cardiovascular regulatory dynamics.
Fuel cell-gas turbine hybrid system design part II: Dynamics and control
NASA Astrophysics Data System (ADS)
McLarty, Dustin; Brouwer, Jack; Samuelsen, Scott
2014-05-01
Fuel cell gas turbine hybrid systems have achieved ultra-high efficiency and ultra-low emissions at small scales, but have yet to demonstrate effective dynamic responsiveness or base-load cost savings. Fuel cell systems and hybrid prototypes have not utilized controls to address thermal cycling during load following operation, and have thus been relegated to the less valuable base-load and peak shaving power market. Additionally, pressurized hybrid topping cycles have exhibited increased stall/surge characteristics particularly during off-design operation. This paper evaluates additional control actuators with simple control methods capable of mitigating spatial temperature variation and stall/surge risk during load following operation of hybrid fuel cell systems. The novel use of detailed, spatially resolved, physical fuel cell and turbine models in an integrated system simulation enables the development and evaluation of these additional control methods. It is shown that the hybrid system can achieve greater dynamic response over a larger operating envelope than either individual sub-system; the fuel cell or gas turbine. Results indicate that a combined feed-forward, P-I and cascade control strategy is capable of handling moderate perturbations and achieving a 2:1 (MCFC) or 4:1 (SOFC) turndown ratio while retaining >65% fuel-to-electricity efficiency, while maintaining an acceptable stack temperature profile and stall/surge margin.
Wan, Tao; Bloch, B. Nicolas; Plecha, Donna; Thompson, CheryI L.; Gilmore, Hannah; Jaffe, Carl; Harris, Lyndsay; Madabhushi, Anant
2016-01-01
To identify computer extracted imaging features for estrogen receptor (ER)-positive breast cancers on dynamic contrast en-hanced (DCE)-MRI that are correlated with the low and high OncotypeDX risk categories. We collected 96 ER-positivebreast lesions with low (<18, N = 55) and high (>30, N = 41) OncotypeDX recurrence scores. Each lesion was quantitatively charac-terize via 6 shape features, 3 pharmacokinetics, 4 enhancement kinetics, 4 intensity kinetics, 148 textural kinetics, 5 dynamic histogram of oriented gradient (DHoG), and 6 dynamic local binary pattern (DLBP) features. The extracted features were evaluated by a linear discriminant analysis (LDA) classifier in terms of their ability to distinguish low and high OncotypeDX risk categories. Classification performance was evaluated by area under the receiver operator characteristic curve (Az). The DHoG and DLBP achieved Az values of 0.84 and 0.80, respectively. The 6 top features identified via feature selection were subsequently combined with the LDA classifier to yield an Az of 0.87. The correlation analysis showed that DHoG (ρ = 0.85, P < 0.001) and DLBP (ρ = 0.83, P < 0.01) were significantly associated with the low and high risk classifications from the OncotypeDX assay. Our results indicated that computer extracted texture features of DCE-MRI were highly correlated with the high and low OncotypeDX risk categories for ER-positive cancers. PMID:26887643
Environmental risk factors associated with bovine tuberculosis among cattle in high-risk areas
Winkler, B.; Mathews, F.
2015-01-01
Our research shows that environmental features are important predictors of bovine tuberculosis (bTB) in British cattle herds in high-prevalence regions. Data from 503 case and 808 control farms included in the randomized badger culling trial (RBCT) were analysed. bTB risk increased in larger herds and on farms with greater areas of maize, deciduous woodland and marsh, whereas a higher percentage of boundaries composed of hedgerows decreased the risk. The model was tested on another case–control study outside RBCT areas, and here it had a much smaller predictive power. This suggests that different infection dynamics operate outside high-risk areas, although it is possible that unknown confounding factors may also have played a role. PMID:26559511
Reducing The Risk Of Fires In Conveyor Transport
NASA Astrophysics Data System (ADS)
Cheremushkina, M. S.; Poddubniy, D. A.
2017-01-01
The paper deals with the actual problem of increasing the safety of operation of belt conveyors in mines. Was developed the control algorithm that meets the technical requirements of the mine belt conveyors, reduces the risk of fires of conveyors belt, and enables energy and resource savings taking into account random sort of traffic. The most effective method of decision such tasks is the construction of control systems with the use of variable speed drives for asynchronous motors. Was designed the mathematical model of the system "variable speed multiengine drive - conveyor - control system of conveyors", that takes into account the dynamic processes occurring in the elements of the transport system, provides an assessment of the energy efficiency of application the developed algorithms, which allows to reduce the dynamic overload in the belt to (15-20)%.
NASA Astrophysics Data System (ADS)
DeSena, J. T.; Martin, S. R.; Clarke, J. C.; Dutrow, D. A.; Newman, A. J.
2012-06-01
As the number and diversity of sensing assets available for intelligence, surveillance and reconnaissance (ISR) operations continues to expand, the limited ability of human operators to effectively manage, control and exploit the ISR ensemble is exceeded, leading to reduced operational effectiveness. Automated support both in the processing of voluminous sensor data and sensor asset control can relieve the burden of human operators to support operation of larger ISR ensembles. In dynamic environments it is essential to react quickly to current information to avoid stale, sub-optimal plans. Our approach is to apply the principles of feedback control to ISR operations, "closing the loop" from the sensor collections through automated processing to ISR asset control. Previous work by the authors demonstrated non-myopic multiple platform trajectory control using a receding horizon controller in a closed feedback loop with a multiple hypothesis tracker applied to multi-target search and track simulation scenarios in the ground and space domains. This paper presents extensions in both size and scope of the previous work, demonstrating closed-loop control, involving both platform routing and sensor pointing, of a multisensor, multi-platform ISR ensemble tasked with providing situational awareness and performing search, track and classification of multiple moving ground targets in irregular warfare scenarios. The closed-loop ISR system is fullyrealized using distributed, asynchronous components that communicate over a network. The closed-loop ISR system has been exercised via a networked simulation test bed against a scenario in the Afghanistan theater implemented using high-fidelity terrain and imagery data. In addition, the system has been applied to space surveillance scenarios requiring tracking of space objects where current deliberative, manually intensive processes for managing sensor assets are insufficiently responsive. Simulation experiment results are presented. The algorithm to jointly optimize sensor schedules against search, track, and classify is based on recent work by Papageorgiou and Raykin on risk-based sensor management. It uses a risk-based objective function and attempts to minimize and balance the risks of misclassifying and losing track on an object. It supports the requirement to generate tasking for metric and feature data concurrently and synergistically, and account for both tracking accuracy and object characterization, jointly, in computing reward and cost for optimizing tasking decisions.
Modeling Hydrological Extremes in the Anthropocene
NASA Astrophysics Data System (ADS)
Di Baldassarre, Giuliano; Martinez, Fabian; Kalantari, Zahra; Viglione, Alberto
2017-04-01
Hydrological studies have investigated human impacts on hydrological extremes, i.e. droughts and floods, while social studies have explored human responses and adaptation to them. Yet, there is still little understanding about the dynamics resulting from two-way feedbacks, i.e. both impacts and responses. Traditional risk assessment methods therefore fail to assess future dynamics, and thus risk reduction strategies built on these methods can lead to unintended consequences in the medium-long term. Here we review the dynamics resulting from the reciprocal links between society and hydrological extremes, and describe initial efforts to model floods and droughts in the Anthropocene. In particular, we first discuss the need for a novel approach to explicitly account for human interactions with both hydrological extremes, and then present a stylized model simulating the reciprocal effects between droughts, foods and reservoir operation rules. Unprecedented opportunities offered by the growing availability of global data and worldwide archives to uncover the mutual shaping of hydrological extremes and society across places and scales are also discussed.
Kim, MinJeong; Liu, Hongbin; Kim, Jeong Tai; Yoo, ChangKyoo
2014-08-15
Sensor faults in metro systems provide incorrect information to indoor air quality (IAQ) ventilation systems, resulting in the miss-operation of ventilation systems and adverse effects on passenger health. In this study, a new sensor validation method is proposed to (1) detect, identify and repair sensor faults and (2) evaluate the influence of sensor reliability on passenger health risk. To address the dynamic non-Gaussianity problem of IAQ data, dynamic independent component analysis (DICA) is used. To detect and identify sensor faults, the DICA-based squared prediction error and sensor validity index are used, respectively. To restore the faults to normal measurements, a DICA-based iterative reconstruction algorithm is proposed. The comprehensive indoor air-quality index (CIAI) that evaluates the influence of the current IAQ on passenger health is then compared using the faulty and reconstructed IAQ data sets. Experimental results from a metro station showed that the DICA-based method can produce an improved IAQ level in the metro station and reduce passenger health risk since it more accurately validates sensor faults than do conventional methods. Copyright © 2014 Elsevier B.V. All rights reserved.
A Research Roadmap for Computation-Based Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boring, Ronald; Mandelli, Diego; Joe, Jeffrey
2015-08-01
The United States (U.S.) Department of Energy (DOE) is sponsoring research through the Light Water Reactor Sustainability (LWRS) program to extend the life of the currently operating fleet of commercial nuclear power plants. The Risk Informed Safety Margin Characterization (RISMC) research pathway within LWRS looks at ways to maintain and improve the safety margins of these plants. The RISMC pathway includes significant developments in the area of thermalhydraulics code modeling and the development of tools to facilitate dynamic probabilistic risk assessment (PRA). PRA is primarily concerned with the risk of hardware systems at the plant; yet, hardware reliability is oftenmore » secondary in overall risk significance to human errors that can trigger or compound undesirable events at the plant. This report highlights ongoing efforts to develop a computation-based approach to human reliability analysis (HRA). This computation-based approach differs from existing static and dynamic HRA approaches in that it: (i) interfaces with a dynamic computation engine that includes a full scope plant model, and (ii) interfaces with a PRA software toolset. The computation-based HRA approach presented in this report is called the Human Unimodels for Nuclear Technology to Enhance Reliability (HUNTER) and incorporates in a hybrid fashion elements of existing HRA methods to interface with new computational tools developed under the RISMC pathway. The goal of this research effort is to model human performance more accurately than existing approaches, thereby minimizing modeling uncertainty found in current plant risk models.« less
Debris Dispersion Model Using Java 3D
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar; Bardina, Jorge
2004-01-01
This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.
NASA Astrophysics Data System (ADS)
Belkina, T. A.; Konyukhova, N. B.; Kurochkin, S. V.
2016-01-01
Previous and new results are used to compare two mathematical insurance models with identical insurance company strategies in a financial market, namely, when the entire current surplus or its constant fraction is invested in risky assets (stocks), while the rest of the surplus is invested in a risk-free asset (bank account). Model I is the classical Cramér-Lundberg risk model with an exponential claim size distribution. Model II is a modification of the classical risk model (risk process with stochastic premiums) with exponential distributions of claim and premium sizes. For the survival probability of an insurance company over infinite time (as a function of its initial surplus), there arise singular problems for second-order linear integrodifferential equations (IDEs) defined on a semiinfinite interval and having nonintegrable singularities at zero: model I leads to a singular constrained initial value problem for an IDE with a Volterra integral operator, while II model leads to a more complicated nonlocal constrained problem for an IDE with a non-Volterra integral operator. A brief overview of previous results for these two problems depending on several positive parameters is given, and new results are presented. Additional results are concerned with the formulation, analysis, and numerical study of "degenerate" problems for both models, i.e., problems in which some of the IDE parameters vanish; moreover, passages to the limit with respect to the parameters through which we proceed from the original problems to the degenerate ones are singular for small and/or large argument values. Such problems are of mathematical and practical interest in themselves. Along with insurance models without investment, they describe the case of surplus completely invested in risk-free assets, as well as some noninsurance models of surplus dynamics, for example, charity-type models.
A New Theory of Trajectory Design and NASA's Vision
NASA Technical Reports Server (NTRS)
Folta, David
2006-01-01
This new theory is defined as the use of chaos to design trajectories and orbits that can be used to meet complex mission goals. The benefits are; a) minimizes fuel costs; b) optimizes trajectory profiles; c) provides non-standard and new orbit designs; and d) mitigates operational risks. Other synonymous terms include dynamical systems, invariant manifolds, capture orbits and ballistic orbits.
NASA Astrophysics Data System (ADS)
Cui, Jia; Hong, Bei; Jiang, Xuepeng; Chen, Qinghua
2017-05-01
With the purpose of reinforcing correlation analysis of risk assessment threat factors, a dynamic assessment method of safety risks based on particle filtering is proposed, which takes threat analysis as the core. Based on the risk assessment standards, the method selects threat indicates, applies a particle filtering algorithm to calculate influencing weight of threat indications, and confirms information system risk levels by combining with state estimation theory. In order to improve the calculating efficiency of the particle filtering algorithm, the k-means cluster algorithm is introduced to the particle filtering algorithm. By clustering all particles, the author regards centroid as the representative to operate, so as to reduce calculated amount. The empirical experience indicates that the method can embody the relation of mutual dependence and influence in risk elements reasonably. Under the circumstance of limited information, it provides the scientific basis on fabricating a risk management control strategy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. JOe; Ronald L. Boring
Probabilistic Risk Assessment (PRA) and Human Reliability Assessment (HRA) are important technical contributors to the United States (U.S.) Nuclear Regulatory Commission’s (NRC) risk-informed and performance based approach to regulating U.S. commercial nuclear activities. Furthermore, all currently operating commercial NPPs in the U.S. are required by federal regulation to be staffed with crews of operators. Yet, aspects of team performance are underspecified in most HRA methods that are widely used in the nuclear industry. There are a variety of "emergent" team cognition and teamwork errors (e.g., communication errors) that are 1) distinct from individual human errors, and 2) important to understandmore » from a PRA perspective. The lack of robust models or quantification of team performance is an issue that affects the accuracy and validity of HRA methods and models, leading to significant uncertainty in estimating HEPs. This paper describes research that has the objective to model and quantify team dynamics and teamwork within NPP control room crews for risk informed applications, thereby improving the technical basis of HRA, which improves the risk-informed approach the NRC uses to regulate the U.S. commercial nuclear industry.« less
A comprehensive Network Security Risk Model for process control networks.
Henry, Matthew H; Haimes, Yacov Y
2009-02-01
The risk of cyber attacks on process control networks (PCN) is receiving significant attention due to the potentially catastrophic extent to which PCN failures can damage the infrastructures and commodity flows that they support. Risk management addresses the coupled problems of (1) reducing the likelihood that cyber attacks would succeed in disrupting PCN operation and (2) reducing the severity of consequences in the event of PCN failure or manipulation. The Network Security Risk Model (NSRM) developed in this article provides a means of evaluating the efficacy of candidate risk management policies by modeling the baseline risk and assessing expectations of risk after the implementation of candidate measures. Where existing risk models fall short of providing adequate insight into the efficacy of candidate risk management policies due to shortcomings in their structure or formulation, the NSRM provides model structure and an associated modeling methodology that captures the relevant dynamics of cyber attacks on PCN for risk analysis. This article develops the NSRM in detail in the context of an illustrative example.
Mukherjee, Debraj; Pressman, Barry D; Krakow, Deborah; Rimoin, David L; Danielpour, Moise
2014-09-01
Achondroplasia may be associated with compression at the cervicomedullary junction. Determining which patients are at greatest risk for neurological complications of cervicomedullary compression can be difficult. In the current study the authors reviewed their records to determine the incidence and clinical significance of dynamic cervicomedullary stenosis and obstruction of CSF flow along with surgical outcomes following posterior fossa decompression. The authors reviewed 34 consecutive cases involving symptomatic children with achondroplasia undergoing cervicomedullary decompression performed by a single surgeon over 11 years. Of these patients, 29 had undergone preoperative dynamic MRI of the cervicomedullary junction with cine (cinema) CSF flow studies; 13 of these patients underwent postoperative dynamic MRI studies. Clinical outcomes included changes in polysomnography, head circumference percentile, and fontanel characteristics. Radiographic outcomes included changes in dynamic spinal cord diameter, improvement in CSF flow at the foramen magnum, and change in the Evans ratio. Patients were predominantly female, with a mean age at presentation of 6.6 years and mean follow-up of 3.7 years (range 1-10 years). All patients had moderate to excellent improvement in postoperative polysomnography, slight decrease in average head circumference percentile (from 46.9th percentile to 45.7th percentile), and no subjective worsening of fontanel characteristics. The Evans ratio decreased by 2%, spinal cord diameter increased an average of 3.1 mm, 5.2 mm, and 0.2 mm in the neutral, flexed, and extended positions, respectively, and CSF flow improved qualitatively in all 3 positions. There were no postoperative infections, CSF leaks, or other major complications. None of the patients undergoing initial foramen magnum decompression performed at our medical center required reoperation. Patients with achondroplasia and symptomatic cervicomedullary compression have increased risk of dynamic stenosis at the foramen magnum evident upon dynamic cine MRI. Operative decompression may be offered with low risk of complications or need for reoperation.
Maguire, Tessa; Daffern, Michael; Bowe, Steven J; McKenna, Brian
2017-10-01
In the present study, we explored the predictive validity of the Dynamic Appraisal of Situational Aggression (DASA) assessment tool in male (n = 30) and female (n = 30) patients admitted to the acute units of a forensic mental health hospital. We also tested the psychometric properties of the original DASA bands and novel risk bands. The first 60 days of each patient's file was reviewed to identify daily DASA scores and subsequent risk-related nursing interventions and aggressive behaviour within the following 24 hours. Risk assessments, followed by documented nursing interventions, were removed to preserve the integrity of the risk-assessment analysis. Receiver-operator characteristics were used to test the predictive accuracy of the DASA, and generalized estimating equations (GEE) were used to account for repeated risk assessments, which occurs when analysing short-term risk-assessment data. The results revealed modest predictive validity for males and females. GEE analyses suggested the need to adjust the DASA risk bands to the following (with associated odds ratios (OR) for aggressive behaviour): 0 = low risk; 1, 2, 3 = moderate-risk OR, 4.70 (95% confidence interval (CI): 2.84-7.80); and 4, 5, 6, 7 = high-risk OR, 16.13 (95% CI: 9.71-26.78). The adjusted DASA risk bands could assist nurses by prompting violence-prevention interventions when the level of risk is elevated. © 2017 Australian College of Mental Health Nurses Inc.
Interim Status Report for Risk Management for SFRs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovsky, Zachary Kyle; Denman, Matthew R.; Groth, Katrina
2015-10-01
Accident management is an important component to maintaining risk at acceptable levels for all complex systems, such as nuclear power plants. With the introduction of passive, or inherently safe, reactor designs the focus has shifted from management by operators to allowing the system's design to take advantage of natural phenomena to manage the accident. Inherently and passively safe designs are laudable, but nonetheless extreme boundary conditions can interfere with the design attributes which facilitate inherent safety, thus resulting in unanticipated and undesirable end states. This report examines an inherently safe and small sodium fast reactor experiencing a variety of beyondmore » design basis events with the intent of exploring the utility of a Dynamic Bayesian Network to infer the state of the reactor to inform the operator's corrective actions. These inferences also serve to identify the instruments most critical to informing an operator's actions as candidates for hardening against radiation and other extreme environmental conditions that may exist in an accident. This reduction in uncertainty serves to inform ongoing discussions of how small sodium reactors would be licensed and may serve to reduce regulatory risk and cost for such reactors.« less
Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future
NASA Technical Reports Server (NTRS)
Matney, Mark
2016-01-01
Despite of the tireless work by space surveillance assets, much of the Earth debris environment is not easily measured or tracked. For every object that is in an orbit we can track, there are hundreds of small debris that are too small to be tracked but still large enough to damage spacecraft. In addition, even if we knew today's environment with perfect knowledge, the debris environment is dynamic and would change tomorrow. Therefore, orbital debris scientists rely on numerical modeling to understand the nature of the debris environment and its risk to space operations throughout Earth orbit and into the future. This talk will summarize the ways in which modeling complements measurements to help give us a better picture of what is occurring in Earth orbit, and helps us to better conduct current and future space operations.
A Qualitative Data Collection Strategy for Africa
2013-02-01
local dynamics. For example, oil and gas companies need to identify risks that could potentially affect their planned or ongoing operations in resource...that has been an effective approach in southeast Asia are collaborative research networks convening non-official partners, e.g., traditional...from Africa. For example, a group of analysts within IDA have a proven track record using one such methodology in Southeast Asia where it has
Designing and validating the joint battlespace infosphere
NASA Astrophysics Data System (ADS)
Peterson, Gregory D.; Alexander, W. Perry; Birdwell, J. Douglas
2001-08-01
Fielding and managing the dynamic, complex information systems infrastructure necessary for defense operations presents significant opportunities for revolutionary improvements in capabilities. An example of this technology trend is the creation and validation of the Joint Battlespace Infosphere (JBI) being developed by the Air Force Research Lab. The JBI is a system of systems that integrates, aggregates, and distributes information to users at all echelons, from the command center to the battlefield. The JBI is a key enabler of meeting the Air Force's Joint Vision 2010 core competencies such as Information Superiority, by providing increased situational awareness, planning capabilities, and dynamic execution. At the same time, creating this new operational environment introduces significant risk due to an increased dependency on computational and communications infrastructure combined with more sophisticated and frequent threats. Hence, the challenge facing the nation is the most effective means to exploit new computational and communications technologies while mitigating the impact of attacks, faults, and unanticipated usage patterns.
NASA Astrophysics Data System (ADS)
Davendralingam, Navindran
Conceptual design of aircraft and the airline network (routes) on which aircraft fly on are inextricably linked to passenger driven demand. Many factors influence passenger demand for various Origin-Destination (O-D) city pairs including demographics, geographic location, seasonality, socio-economic factors and naturally, the operations of directly competing airlines. The expansion of airline operations involves the identificaion of appropriate aircraft to meet projected future demand. The decisions made in incorporating and subsequently allocating these new aircraft to serve air travel demand affects the inherent risk and profit potential as predicted through the airline revenue management systems. Competition between airlines then translates to latent passenger observations of the routes served between OD pairs and ticket pricing---this in effect reflexively drives future states of demand. This thesis addresses the integrated nature of aircraft design, airline operations and passenger demand, in order to maximize future expected profits as new aircraft are brought into service. The goal of this research is to develop an approach that utilizes aircraft design, airline network design and passenger demand as a unified framework to provide better integrated design solutions in order to maximize expexted profits of an airline. This is investigated through two approaches. The first is a static model that poses the concurrent engineering paradigm above as an investment portfolio problem. Modern financial portfolio optimization techniques are used to leverage risk of serving future projected demand using a 'yet to be introduced' aircraft against potentially generated future profits. Robust optimization methodologies are incorporated to mitigate model sensitivity and address estimation risks associated with such optimization techniques. The second extends the portfolio approach to include dynamic effects of an airline's operations. A dynamic programming approach is employed to simulate the reflexive nature of airline supply-demand interactions by modeling the aggregate changes in demand that would result from tactical allocations of aircraft to maximize profit. The best yet-to-be-introduced aircraft maximizes profit by minimizing the long term fleetwide direct operating costs.
NASA Astrophysics Data System (ADS)
Tourre, Y. M.; Vignolles, C.; Lacaux, J.-P.; Bigeard, G.; Ndione, J.-A.; Lafaye, M.
2009-09-01
This paper presents an analysis of the interaction between the various variables associated with Rift Valley fever (RVF) such as the mosquito vector, available hosts and rainfall distribution. To that end, the varying zones potentially occupied by mosquitoes (ZPOM), rainfall events and pond dynamics, and the associated exposure of hosts to the RVF virus by Aedes vexans, were analyzed in the Barkedji area of the Ferlo, Senegal, during the 2003 rainy season. Ponds were identified by remote sensing using a high-resolution SPOT-5 satellite image. Additional data on ponds and rainfall events from the Tropical Rainfall Measuring Mission were combined with in-situ entomological and limnimetric measurements, and the localization of vulnerable ruminant hosts (data derived from QuickBird satellite). Since "Ae. vexans productive events” are dependent on the timing of rainfall for their embryogenesis (six days without rain are necessary to trigger hatching), the dynamic spatio-temporal distribution of Ae. vexans density was based on the total rainfall amount and pond dynamics. Detailed ZPOM mapping was obtained on a daily basis and combined with aggressiveness temporal profiles. Risks zones, i.e. zones where hazards and vulnerability are combined, are expressed by the percentages of parks where animals are potentially exposed to mosquito bites. This new approach, simply relying upon rainfall distribution evaluated from space, is meant to contribute to the implementation of a new, operational early warning system for RVF based on environmental risks linked to climatic and environmental conditions.
Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code
Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc
2018-02-02
The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less
Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc
The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less
Benchmarking novel approaches for modelling species range dynamics
Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H.; Moore, Kara A.; Zimmermann, Niklaus E.
2016-01-01
Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species’ range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species’ response to climate change but also emphasise several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. PMID:26872305
Benchmarking novel approaches for modelling species range dynamics.
Zurell, Damaris; Thuiller, Wilfried; Pagel, Jörn; Cabral, Juliano S; Münkemüller, Tamara; Gravel, Dominique; Dullinger, Stefan; Normand, Signe; Schiffers, Katja H; Moore, Kara A; Zimmermann, Niklaus E
2016-08-01
Increasing biodiversity loss due to climate change is one of the most vital challenges of the 21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably project species' range dynamics and extinction risks. Recently, several new approaches to model range dynamics have been developed to supplement correlative species distribution models (SDMs), but applications clearly lag behind model development. Indeed, no comparative analysis has been performed to evaluate their performance. Here, we build on process-based, simulated data for benchmarking five range (dynamic) models of varying complexity including classical SDMs, SDMs coupled with simple dispersal or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian process-based dynamic range model (DRM). We specifically test the effects of demographic and community processes on model predictive performance. Under current climate, DRMs performed best, although only marginally. Under climate change, predictive performance varied considerably, with no clear winners. Yet, all range dynamic models improved predictions under climate change substantially compared to purely correlative SDMs, and the population dynamic models also predicted reasonable extinction risks for most scenarios. When benchmarking data were simulated with more complex demographic and community processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, we found that structural decisions during model building can have great impact on model accuracy, but prior system knowledge on important processes can reduce these uncertainties considerably. Our results reassure the clear merit in using dynamic approaches for modelling species' response to climate change but also emphasize several needs for further model and data improvement. We propose and discuss perspectives for improving range projections through combination of multiple models and for making these approaches operational for large numbers of species. © 2016 John Wiley & Sons Ltd.
Threat and error management for anesthesiologists: a predictive risk taxonomy
Ruskin, Keith J.; Stiegler, Marjorie P.; Park, Kellie; Guffey, Patrick; Kurup, Viji; Chidester, Thomas
2015-01-01
Purpose of review Patient care in the operating room is a dynamic interaction that requires cooperation among team members and reliance upon sophisticated technology. Most human factors research in medicine has been focused on analyzing errors and implementing system-wide changes to prevent them from recurring. We describe a set of techniques that has been used successfully by the aviation industry to analyze errors and adverse events and explain how these techniques can be applied to patient care. Recent findings Threat and error management (TEM) describes adverse events in terms of risks or challenges that are present in an operational environment (threats) and the actions of specific personnel that potentiate or exacerbate those threats (errors). TEM is a technique widely used in aviation, and can be adapted for the use in a medical setting to predict high-risk situations and prevent errors in the perioperative period. A threat taxonomy is a novel way of classifying and predicting the hazards that can occur in the operating room. TEM can be used to identify error-producing situations, analyze adverse events, and design training scenarios. Summary TEM offers a multifaceted strategy for identifying hazards, reducing errors, and training physicians. A threat taxonomy may improve analysis of critical events with subsequent development of specific interventions, and may also serve as a framework for training programs in risk mitigation. PMID:24113268
Diagnostic Accuracy of Fall Risk Assessment Tools in People With Diabetic Peripheral Neuropathy
Pohl, Patricia S.; Mahnken, Jonathan D.; Kluding, Patricia M.
2012-01-01
Background Diabetic peripheral neuropathy affects nearly half of individuals with diabetes and leads to increased fall risk. Evidence addressing fall risk assessment for these individuals is lacking. Objective The purpose of this study was to identify which of 4 functional mobility fall risk assessment tools best discriminates, in people with diabetic peripheral neuropathy, between recurrent “fallers” and those who are not recurrent fallers. Design A cross-sectional study was conducted. Setting The study was conducted in a medical research university setting. Participants The participants were a convenience sample of 36 individuals between 40 and 65 years of age with diabetic peripheral neuropathy. Measurements Fall history was assessed retrospectively and was the criterion standard. Fall risk was assessed using the Functional Reach Test, the Timed “Up & Go” Test, the Berg Balance Scale, and the Dynamic Gait Index. Sensitivity, specificity, positive and negative likelihood ratios, and overall diagnostic accuracy were calculated for each fall risk assessment tool. Receiver operating characteristic curves were used to estimate modified cutoff scores for each fall risk assessment tool; indexes then were recalculated. Results Ten of the 36 participants were classified as recurrent fallers. When traditional cutoff scores were used, the Dynamic Gait Index and Functional Reach Test demonstrated the highest sensitivity at only 30%; the Dynamic Gait Index also demonstrated the highest overall diagnostic accuracy. When modified cutoff scores were used, all tools demonstrated improved sensitivity (80% or 90%). Overall diagnostic accuracy improved for all tests except the Functional Reach Test; the Timed “Up & Go” Test demonstrated the highest diagnostic accuracy at 88.9%. Limitations The small sample size and retrospective fall history assessment were limitations of the study. Conclusions Modified cutoff scores improved diagnostic accuracy for 3 of 4 fall risk assessment tools when testing people with diabetic peripheral neuropathy. PMID:22836004
Application of the API/NPRA SVA methodology to transportation security issues.
Moore, David A
2006-03-17
Security vulnerability analysis (SVA) is becoming more prevalent as the issue of chemical process security is of greater concern. The American Petroleum Institute (API) and the National Petrochemical and Refiner's Association (NPRA) have developed a guideline for conducting SVAs of petroleum and petrochemical facilities in May 2003. In 2004, the same organizations enhanced the guidelines by adding the ability to evaluate transportation security risks (pipeline, truck, and rail). The importance of including transportation and value chain security in addition to fixed facility security in a SVA is that these issues may be critically important to understanding the total risk of the operation. Most of the SVAs done using the API/NPRA SVA and other SVA methods were centered on the fixed facility and the operations within the plant fence. Transportation interfaces alone are normally studied as a part of the facility SVA, and the entire transportation route impacts and value chain disruption are not commonly considered. Particularly from a national, regional, or local infrastructure analysis standpoint, understanding the interdependencies is critical to the risk assessment. Transportation risks may include weaponization of the asset by direct attack en route, sabotage, or a Trojan Horse style attack into a facility. The risks differ in the level of access control and the degree of public exposures, as well as the dynamic nature of the assets. The public exposures along the transportation route need to be carefully considered. Risks may be mitigated by one of many strategies including internment, staging, prioritization, conscription, or prohibition, as well as by administrative security measures and technology for monitoring and isolating the assets. This paper illustrates how these risks can be analyzed by the API/NPRA SVA methodology. Examples are given of a pipeline operation, and other examples are found in the guidelines.
Systemic delay propagation in the US airport network
Fleurquin, Pablo; Ramasco, José J.; Eguiluz, Victor M.
2013-01-01
Technologically driven transport systems are characterized by a networked structure connecting operation centers and by a dynamics ruled by pre-established schedules. Schedules impose serious constraints on the timing of the operations, condition the allocation of resources and define a baseline to assess system performance. Here we study the performance of an air transportation system in terms of delays. Technical, operational or meteorological issues affecting some flights give rise to primary delays. When operations continue, such delays can propagate, magnify and eventually involve a significant part of the network. We define metrics able to quantify the level of network congestion and introduce a model that reproduces the delay propagation patterns observed in the U.S. performance data. Our results indicate that there is a non-negligible risk of systemic instability even under normal operating conditions. We also identify passenger and crew connectivity as the most relevant internal factor contributing to delay spreading. PMID:23362459
OFMspert: An architecture for an operator's associate that evolves to an intelligent tutor
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1991-01-01
With the emergence of new technology for both human-computer interaction and knowledge-based systems, a range of opportunities exist which enhance the effectiveness and efficiency of controllers of high-risk engineering systems. The design of an architecture for an operator's associate is described. This associate is a stand-alone model-based system designed to interact with operators of complex dynamic systems, such as airplanes, manned space systems, and satellite ground control systems in ways comparable to that of a human assistant. The operator function model expert system (OFMspert) architecture and the design and empirical validation of OFMspert's understanding component are described. The design and validation of OFMspert's interactive and control components are also described. A description of current work in which OFMspert provides the foundation in the development of an intelligent tutor that evolves to an assistant, as operator expertise evolves from novice to expert, is provided.
NASA Technical Reports Server (NTRS)
Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal
2017-01-01
Many applications of small Unmanned Aircraft System (UAS) have been envisioned. These include surveillance of key assets such as pipelines, rail, or electric wires, deliveries, search and rescue, traffic monitoring, videography, and precision agriculture. These operations are likely to occur in the same airspace in the presence of many static and dynamic constraints such as airports, and high wind areas. Therefore, operations of small UAS need to be managed to ensure safety and operation efficiency is maintained. NASA has advanced a concept for UAS Traffic Management (UTM) and has initiated a research effort to refine that concept and develop operational and system requirements. A UTM research platform is in development and flight test activities to evaluate core functions and key assumptions focusing exclusively on UAS operations in different environments are underway. This seminar will present lessons learned from a recent flight test focused on enabling operations of multiple UAS in lower-risk environments within and beyond visual line of sight (BVLOS).
Kwan, Jennifer L.; Park, Bborie K.; Carpenter, Tim E.; Ngo, Van; Civen, Rachel
2012-01-01
In Los Angeles, California, USA, 2 epidemics of West Nile virus (WNV) disease have occurred since WNV was recognized in 2003. To assess which measure of risk was most predictive of human cases, we compared 3 measures: the California Mosquito-Borne Virus Surveillance and Response Plan Assessment, the vector index, and the Dynamic Continuous-Area Space-Time system. A case–crossover study was performed by using symptom onset dates from 384 persons with WNV infection to determine their relative environmental exposure to high-risk conditions as measured by each method. Receiver-operating characteristic plots determined thresholds for each model, and the area under the curve was used to compare methods. We found that the best risk assessment model for human WNV cases included surveillance data from avian, mosquito, and climate sources. PMID:22840314
Eisen, Lars; Lozano-Fuentes, Saul
2009-01-01
The aims of this review paper are to 1) provide an overview of how mapping and spatial and space-time modeling approaches have been used to date to visualize and analyze mosquito vector and epidemiologic data for dengue; and 2) discuss the potential for these approaches to be included as routine activities in operational vector and dengue control programs. Geographical information system (GIS) software are becoming more user-friendly and now are complemented by free mapping software that provide access to satellite imagery and basic feature-making tools and have the capacity to generate static maps as well as dynamic time-series maps. Our challenge is now to move beyond the research arena by transferring mapping and GIS technologies and spatial statistical analysis techniques in user-friendly packages to operational vector and dengue control programs. This will enable control programs to, for example, generate risk maps for exposure to dengue virus, develop Priority Area Classifications for vector control, and explore socioeconomic associations with dengue risk. PMID:19399163
The Macro Dynamics of Weapon System Acquisition: Shaping Early Decisions to Get Better Outcomes
2012-05-17
defects and rework •Design tools and processes •Lack of feedback to key design and SE processes •Lack of quantified risk and uncertainty at key... Tools for Rapid Exploration of the Physical Design Space Coupling Operability, Interoperability, and Physical Feasibility Analyses – a Game Changer...Interoperability •Training Quantified Margins and Uncertainties at Each Critical Decision Point M&S RDT&E A Continuum of Tools Underpinned with
Vignolles, Cécile; Tourre, Yves M; Mora, Oscar; Imanache, Laurent; Lafaye, Murielle
2010-11-01
In the vicinity of the Barkedji village (in the Ferlo region of Senegal), the abundance and aggressiveness of the vector mosquitoes for Rift Valley fever (RVF) are strongly linked to rainfall events and associated ponds dynamics. Initially, these results were obtained from spectral analysis of high-resolution (~10 m) Spot-5 images, but, as a part of the French AdaptFVR project, identification of the free water dynamics within ponds was made with the new high-resolution (down to 3-meter pixels), Synthetic Aperture Radar satellite (TerraSAR-X) produced by Infoterra GmbH, Friedrichshafen/Potsdam, Germany. During summer 2008, within a 30 x 50 km radar image, it was found that identified free water fell well within the footprints of ponds localized by optical data (i.e. Spot-5 images), which increased the confidence in this new and complementary remote sensing technique. Moreover, by using near real-time rainfall data from the Tropical Rainfall Measuring Mission (TRMM), NASA/JAXA joint mission, the filling-up and flushing-out rates of the ponds can be accurately determined. The latter allows for a precise, spatio-temporal mapping of the zones potentially occupied by mosquitoes capable of revealing the variability of pond surfaces. The risk for RVF infection of gathered bovines and small ruminants (~1 park/km(2)) can thus be assessed. This new operational approach (which is independent of weather conditions) is an important development in the mapping of risk components (i.e. hazards plus vulnerability) related to RVF transmission during the summer monsoon, thus contributing to a RVF early warning system.
Enhancing response coordination through the assessment of response network structural dynamics
Jalili, Mahdi; Choi, Soo-Mi
2018-01-01
Preparing for intensifying threats of emergencies in unexpected, dangerous, and serious natural or man-made events, and consequent management of the situation, is highly demanding in terms of coordinating the personnel and resources to support human lives and the environment. This necessitates prompt action to manage the uncertainties and risks imposed by such extreme events, which requires collaborative operation among different stakeholders (i.e., the personnel from both the state and local communities). This research aims to find a way to enhance the coordination of multi-organizational response operations. To do so, this manuscript investigates the role of participants in the formed coordination response network and also the emergence and temporal dynamics of the network. By analyzing an inter-personal response coordination operation to an extreme bushfire event, the networks’ and participants’ structural change is evaluated during the evolution of the operation network over four time durations. The results reveal that the coordination response network becomes more decentralized over time due to the high volume of communication required to exchange information. New emerging communication structures often do not fit the developed plans, which stress the need for coordination by feedback in addition to by plan. In addition, we find that the participant’s brokering role in the response operation network identifies a formal and informal coordination role. This is useful for comparison of network structures to examine whether what really happens during response operations complies with the initial policy. PMID:29447192
Enhancing response coordination through the assessment of response network structural dynamics.
Abbasi, Alireza; Sadeghi-Niaraki, Abolghasem; Jalili, Mahdi; Choi, Soo-Mi
2018-01-01
Preparing for intensifying threats of emergencies in unexpected, dangerous, and serious natural or man-made events, and consequent management of the situation, is highly demanding in terms of coordinating the personnel and resources to support human lives and the environment. This necessitates prompt action to manage the uncertainties and risks imposed by such extreme events, which requires collaborative operation among different stakeholders (i.e., the personnel from both the state and local communities). This research aims to find a way to enhance the coordination of multi-organizational response operations. To do so, this manuscript investigates the role of participants in the formed coordination response network and also the emergence and temporal dynamics of the network. By analyzing an inter-personal response coordination operation to an extreme bushfire event, the networks' and participants' structural change is evaluated during the evolution of the operation network over four time durations. The results reveal that the coordination response network becomes more decentralized over time due to the high volume of communication required to exchange information. New emerging communication structures often do not fit the developed plans, which stress the need for coordination by feedback in addition to by plan. In addition, we find that the participant's brokering role in the response operation network identifies a formal and informal coordination role. This is useful for comparison of network structures to examine whether what really happens during response operations complies with the initial policy.
NASA Astrophysics Data System (ADS)
Velazquez, Antonio; Swartz, R. Andrew
2012-04-01
Wind energy is an increasingly important component of this nation's renewable energy portfolio, however safe and economical wind turbine operation is a critical need to ensure continued adoption. Safe operation of wind turbine structures requires not only information regarding their condition, but their operational environment. Given the difficulty inherent in SHM processes for wind turbines (damage detection, location, and characterization), some uncertainty in conditional assessment is expected. Furthermore, given the stochastic nature of the loading on turbine structures, a probabilistic framework is appropriate to characterize their risk of failure at a given time. Such information will be invaluable to turbine controllers, allowing them to operate the structures within acceptable risk profiles. This study explores the characterization of the turbine loading and response envelopes for critical failure modes of the turbine blade structures. A framework is presented to develop an analytical estimation of the loading environment (including loading effects) based on the dynamic behavior of the blades. This is influenced by behaviors including along and across-wind aero-elastic effects, wind shear gradient, tower shadow effects, and centrifugal stiffening effects. The proposed solution includes methods that are based on modal decomposition of the blades and require frequent updates to the estimated modal properties to account for the time-varying nature of the turbine and its environment. The estimated demand statistics are compared to a code-based resistance curve to determine a probabilistic estimate of the risk of blade failure given the loading environment.
Towards a Moral Ecology of Pharmacological Cognitive Enhancement in British Universities.
Vagwala, Meghana Kasturi; Bicquelet, Aude; Didziokaite, Gabija; Coomber, Ross; Corrigan, Oonagh; Singh, Ilina
2017-01-01
Few empirical studies in the UK have examined the complex social patterns and values behind quantitative estimates of the prevalence of pharmacological cognitive enhancement (PCE). We conducted a qualitative investigation of the social dynamics and moral attitudes that shape PCE practices among university students in two major metropolitan areas in the UK. Our thematic analysis of eight focus groups ( n = 66) suggests a moral ecology that operates within the social infrastructure of the university. We find that PCE resilience among UK university students is mediated by normative and cultural judgments disfavoring competitiveness and prescription drug taking. PCE risk can be augmented by social factors such as soft peer pressure and normalization of enhancement within social and institutional networks. We suggest that moral ecological dynamics should be viewed as key mechanisms of PCE risk and resilience in universities. Effective PCE governance within universities should therefore attend to developing further understanding of the moral ecologies of PCE.
Maneuver Strategy for OSIRIS-REx Proximity Operations
NASA Technical Reports Server (NTRS)
Wibben, Daniel R.; Williams, Kenneth E.; McAdams, James V.; Antreasian, Peter G.; Leonard, Jason M.; Moreau, Michael C.
2017-01-01
The Origins Spectral Interpretation Resource Identification Security Regolith Explorer (OSIRIS-REx) asteroid sample return mission will study and observe asteroid (101955) Bennu (previously known as 1999 RQ36) and subsequently collect and return a sample from the asteroid to Earth for further detailed analysis. After a successful launch in September 2016, the spacecraft will be in cruise phase for two years until arrival at asteroid Bennu in late 2018. At that time, aseries of critical maneuvers will provide an initial characterization of Bennu and the dynamical environment surrounding it, ultimately concluding with a successful capture into orbit about the small asteroid. This paper discusses some of the unique navigation challenges presented by these early operational phases in close proximity to Bennu and shares key observations and results from operational tests that have prepared the operations team and help mitigate the risks posed by these challenges.
NASA Technical Reports Server (NTRS)
Raftery, Michael; Carter-Journet, Katrina
2013-01-01
The International Space Station (ISS) risk management methodology is an example of a mature and sustainable process. Risk management is a systematic approach used to proactively identify, analyze, plan, track, control, communicate, and document risks to help management make risk-informed decisions that increase the likelihood of achieving program objectives. The ISS has been operating in space for over 14 years and permanently crewed for over 12 years. It is the longest surviving habitable vehicle in low Earth orbit history. Without a mature and proven risk management plan, it would be increasingly difficult to achieve mission success throughout the life of the ISS Program. A successful risk management process must be able to adapt to a dynamic program. As ISS program-level decision processes have evolved, so too has the ISS risk management process continued to innovate, improve, and adapt. Constant adaptation of risk management tools and an ever-improving process is essential to the continued success of the ISS Program. Above all, sustained support from program management is vital to risk management continued effectiveness. Risk management is valued and stressed as an important process by the ISS Program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankovsky, Zachary Kyle; Denman, Matthew R.
It is difficult to assess the consequences of a transient in a sodium-cooled fast reactor (SFR) using traditional probabilistic risk assessment (PRA) methods, as numerous safety-related sys- tems have passive characteristics. Often there is significant dependence on the value of con- tinuous stochastic parameters rather than binary success/failure determinations. One form of dynamic PRA uses a system simulator to represent the progression of a transient, tracking events through time in a discrete dynamic event tree (DDET). In order to function in a DDET environment, a simulator must have characteristics that make it amenable to changing physical parameters midway through themore » analysis. The SAS4A SFR system analysis code did not have these characteristics as received. This report describes the code modifications made to allow dynamic operation as well as the linking to a Sandia DDET driver code. A test case is briefly described to demonstrate the utility of the changes.« less
Use of the Dynamic Visual Acuity Test as a screener for community-dwelling older adults who fall.
Honaker, Julie A; Shepard, Neil T
2011-01-01
Adequate function of the peripheral vestibular system, specifically the vestibulo-ocular reflex (VOR; a network of neural connections between the peripheral vestibular system and the extraocular muscles) is essential for maintaining stable vision during head movements. Decreased visual acuity resulting from an impaired peripheral vestibular system may impede balance and postural control and place an individual at risk of falling. Therefore, sensitive measures of the vestibular system are warranted to screen for the tendency to fall, alerting clinicians to recommend further risk of falling assessment and referral to a falling risk reduction program. Dynamic Visual Acuity (DVA) testing is a computerized VOR assessment method to evaluate the peripheral vestibular system during head movements; reduced visual acuity as documented with DVA testing may be sensitive to screen for falling risk. This study examined the sensitivity and specificity of the computerized DVA test with yaw plane head movements for identifying community-dwelling adults (58-78 years) who are prone to falling. A total of 16 older adults with a history of two or more unexplained falls in the previous twelve months and 16 age and gender matched controls without a history of falls in the previous twelve months participated. Computerized DVA with horizontal head movements at a fixed velocity of 120 deg/sec was measured and compared with the Dynamic Gait Index (DGI) a gold standard gait assessment measurement for identifying falling risk. Receiver operating characteristics (ROC) curve analysis and area under the ROC curve (AUC) were used to assess the sensitivity and specificity of the computerized DVA as a screening measure for falling risk as determined by the DGI. Results suggested a link between computerized DVA and the propensity to fall; DVA in the yaw plane was found to be a sensitive (92%) and accurate screening measure when using a cutoff logMAR value of >0.25.
Operational support to collision avoidance activities by ESA's space debris office
NASA Astrophysics Data System (ADS)
Braun, V.; Flohrer, T.; Krag, H.; Merz, K.; Lemmens, S.; Bastida Virgili, B.; Funke, Q.
2016-09-01
The European Space Agency's (ESA) Space Debris Office provides a service to support operational collision avoidance activities. This support currently covers ESA's missions Cryosat-2, Sentinel-1A and -2A, the constellation of Swarm-A/B/C in low-Earth orbit (LEO), as well as missions of third-party customers. In this work, we describe the current collision avoidance process for ESA and third-party missions in LEO. We give an overview on the upgrades developed and implemented since the advent of conjunction summary messages (CSM)/conjunction data messages (CDM), addressing conjunction event detection, collision risk assessment, orbit determination, orbit and covariance propagation, process control, and data handling. We pay special attention to the effect of warning thresholds on the risk reduction and manoeuvre rates, as they are established through risk mitigation and analysis tools, such as ESA's Debris Risk Assessment and Mitigation Analysis (DRAMA) software suite. To handle the large number of CDMs and the associated risk analyses, a database-centric approach has been developed. All CDMs and risk analysis results are stored in a database. In this way, a temporary local "mini-catalogue" of objects close to our target spacecraft is obtained, which can be used, e.g., for manoeuvre screening and to update the risk analysis whenever a new ephemeris becomes available from the flight dynamics team. The database is also used as the backbone for a Web-based tool, which consists of the visualization component and a collaboration tool that facilitates the status monitoring and task allocation within the support team as well as communication with the control team. The visualization component further supports the information sharing by displaying target and chaser motion over time along with the involved uncertainties. The Web-based solution optimally meets the needs for a concise and easy-to-use way to obtain a situation picture in a very short time, and the support for third-party missions not operated from the European Space Operations Centre (ESOC). Finally, we provide statistics on the identified conjunction events, taking into account the known significant changes in the LEO orbital environment and share ESA's experience along with recent examples.
ELECTRA © Launch and Re-Entry Safety Analysis Tool
NASA Astrophysics Data System (ADS)
Lazare, B.; Arnal, M. H.; Aussilhou, C.; Blazquez, A.; Chemama, F.
2010-09-01
French Space Operation Act gives as prime objective to National Technical Regulations to protect people, properties, public health and environment. In this frame, an independent technical assessment of French space operation is delegated to CNES. To perform this task and also for his owns operations CNES needs efficient state-of-the-art tools for evaluating risks. The development of the ELECTRA© tool, undertaken in 2007, meets the requirement for precise quantification of the risks involved in launching and re-entry of spacecraft. The ELECTRA© project draws on the proven expertise of CNES technical centers in the field of flight analysis and safety, spaceflight dynamics and the design of spacecraft. The ELECTRA© tool was specifically designed to evaluate the risks involved in the re-entry and return to Earth of all or part of a spacecraft. It will also be used for locating and visualizing nominal or accidental re-entry zones while comparing them with suitable geographic data such as population density, urban areas, and shipping lines, among others. The method chosen for ELECTRA© consists of two main steps: calculating the possible reentry trajectories for each fragment after the spacecraft breaks up; calculating the risks while taking into account the energy of the fragments, the population density and protection afforded by buildings. For launch operations and active re-entry, the risk calculation will be weighted by the probability of instantaneous failure of the spacecraft and integrated for the whole trajectory. ELECTRA©’s development is today at the end of the validation phase, last step before delivery to users. Validation process has been performed in different ways: numerical application way for the risk formulation; benchmarking process for casualty area, level of energy of the fragments entries and level of protection housing module; best practices in space transportation industries concerning dependability evaluation; benchmarking process for world population repartition leading to the choice of a worldwide used model called GPW V3. Then, the complementary part for validation has been numerous system tests, most of them by comparison with already existing tools, operationally used for example into the European Space port in French Guyana. The purpose of this article is to review the method and models chosen by CNES for describing physical phenomena and the results of validation process including comparison with other risk assessment tools.
"Going solid": a model of system dynamics and consequences for patient safety
Cook, R; Rasmussen, J
2005-01-01
Rather than being a static property of hospitals and other healthcare facilities, safety is dynamic and often on short time scales. In the past most healthcare delivery systems were loosely coupled—that is, activities and conditions in one part of the system had only limited effect on those elsewhere. Loose coupling allowed the system to buffer many conditions such as short term surges in demand. Modern management techniques and information systems have allowed facilities to reduce inefficiencies in operation. One side effect is the loss of buffers that previously accommodated demand surges. As a result, situations occur in which activities in one area of the hospital become critically dependent on seemingly insignificant events in seemingly distant areas. This tight coupling condition is called "going solid". Rasmussen's dynamic model of risk and safety can be used to formulate a model of patient safety dynamics that includes "going solid" and its consequences. Because the model addresses the dynamic aspects of safety, it is particularly suited to understanding current conditions in modern healthcare delivery and the way these conditions may lead to accidents. PMID:15805459
Criteria for assessing problem solving and decision making in complex environments
NASA Technical Reports Server (NTRS)
Orasanu, Judith
1993-01-01
Training crews to cope with unanticipated problems in high-risk, high-stress environments requires models of effective problem solving and decision making. Existing decision theories use the criteria of logical consistency and mathematical optimality to evaluate decision quality. While these approaches are useful under some circumstances, the assumptions underlying these models frequently are not met in dynamic time-pressured operational environments. Also, applying formal decision models is both labor and time intensive, a luxury often lacking in operational environments. Alternate approaches and criteria are needed. Given that operational problem solving and decision making are embedded in ongoing tasks, evaluation criteria must address the relation between those activities and satisfaction of broader task goals. Effectiveness and efficiency become relevant for judging reasoning performance in operational environments. New questions must be addressed: What is the relation between the quality of decisions and overall performance by crews engaged in critical high risk tasks? Are different strategies most effective for different types of decisions? How can various decision types be characterized? A preliminary model of decision types found in air transport environments will be described along with a preliminary performance model based on an analysis of 30 flight crews. The performance analysis examined behaviors that distinguish more and less effective crews (based on performance errors). Implications for training and system design will be discussed.
NASA Astrophysics Data System (ADS)
Galelli, Stefano; Goedbloed, Albert; Schmitter, Petra; Castelletti, Andrea
2014-05-01
Urban water reservoirs are a viable adaptation option to account for increasing drinking water demand of urbanized areas as they allow storage and re-use of water that is normally lost. In addition, the direct availability of freshwater reduces pumping costs and diversifies the portfolios of drinking water supply. Yet, these benefits have an associated twofold cost. Firstly, the presence of large, impervious areas increases the hydraulic efficiency of urban catchments, with short time of concentration, increased runoff rates, losses of infiltration and baseflow, and higher risk of flash floods. Secondly, the high concentration of nutrients and sediments characterizing urban discharges is likely to cause water quality problems. In this study we propose a new control scheme combining Model Predictive Control (MPC), hydro-meteorological forecasts and dynamic model emulation to design real-time operating policies that conjunctively optimize water quantity and quality targets. The main advantage of this scheme stands in its capability of exploiting real-time hydro-meteorological forecasts, which are crucial in such fast-varying systems. In addition, the reduced computational requests of the MPC scheme allows coupling it with dynamic emulators of water quality processes. The approach is demonstrated on Marina Reservoir, a multi-purpose reservoir located in the heart of Singapore and characterized by a large, highly urbanized catchment with a short (i.e. approximately one hour) time of concentration. Results show that the MPC scheme, coupled with a water quality emulator, provides a good compromise between different operating objectives, namely flood risk reduction, drinking water supply and salinity control. Finally, the scheme is used to assess the effect of source control measures (e.g. green roofs) aimed at restoring the natural hydrological regime of Marina Reservoir catchment.
Effectiveness of GNSS disposal strategies
NASA Astrophysics Data System (ADS)
Alessi, E. M.; Rossi, A.; Valsecchi, G. B.; Anselmo, L.; Pardini, C.; Colombo, C.; Lewis, H. G.; Daquin, J.; Deleflie, F.; Vasile, M.; Zuiani, F.; Merz, K.
2014-06-01
The management of the Global Navigation Satellite Systems (GNSS) and of the Medium Earth Orbit (MEO) region as a whole is a subject that cannot be deferred, due to the growing exploitation and launch rate in that orbital regime. The advent of the European Galileo and the Chinese Beidou constellations significantly added complexity to the system and calls for an adequate global view on the four constellations present in operation. The operation procedures, including maintenance and disposal practices, of the constellations currently deployed were analyzed in order to asses a proper reference simulation scenario. The complex dynamics of the MEO region with all the geopotential and lunisolar resonances was studied to better identify the proper end-of-life orbit for every proposed strategy, taking into account and, whenever possible, exploiting the orbital dynamics in this peculiar region of space. The possibility to exploit low thrust propulsion or non gravitational perturbations with passive de-orbiting devices (and a combination of the two) was analyzed, in view of possible applications in the design of the future generations of the constellations satellites. Several upgrades in the long-term evolution software SDM and DAMAGE were undertaken to properly handle the constellation simulations in every aspect from constellation maintenance to orbital dynamics. A thorough approach considering the full time evolving covariance matrix associated with every object was implemented in SDM to compute the collision risk and associated maneuver rate for the constellation satellites. Once the software upgrades will be completed, the effectiveness of the different disposal strategies will be analyzed in terms of residual collision risk and avoidance maneuvers rate. This work was performed under the ESA/GSP Contract no. 4000107201/12/F/MOS.
Risk-taking behavior in the presence of nonconvex asset dynamics.
Lybbert, Travis J; Barrett, Christopher B
2011-01-01
The growing literature on poverty traps emphasizes the links between multiple equilibria and risk avoidance. However, multiple equilibria may also foster risk-taking behavior by some poor people. We illustrate this idea with a simple analytical model in which people with different wealth and ability endowments make investment and risky activity choices in the presence of known nonconvex asset dynamics. This model underscores a crucial distinction between familiar static concepts of risk aversion and forward-looking dynamic risk responses to nonconvex asset dynamics. Even when unobservable preferences exhibit decreasing absolute risk aversion, observed behavior may suggest that risk aversion actually increases with wealth near perceived dynamic asset thresholds. Although high ability individuals are not immune from poverty traps, they can leverage their capital endowments more effectively than lower ability types and are therefore less likely to take seemingly excessive risks. In general, linkages between behavioral responses and wealth dynamics often seem to run in both directions. Both theoretical and empirical poverty trap research could benefit from making this two-way linkage more explicit.
Quantification of resilience to water scarcity, a dynamic measure in time and space
NASA Astrophysics Data System (ADS)
Simonovic, S. P.; Arunkumar, R.
2016-05-01
There are practical links between water resources management, climate change adaptation and sustainable development leading to reduction of water scarcity risk and re-enforcing resilience as a new development paradigm. Water scarcity, due to the global change (population growth, land use change and climate change), is of serious concern since it can cause loss of human lives and serious damage to the economy of a region. Unfortunately, in many regions of the world, water scarcity is, and will be unavoidable in the near future. As the scarcity is increasing, at the same time it erodes resilience, therefore global change has a magnifying effect on water scarcity risk. In the past, standard water resources management planning considered arrangements for prevention, mitigation, preparedness and recovery, as well as response. However, over the last ten years substantial progress has been made in establishing the role of resilience in sustainable development. Dynamic resilience is considered as a novel measure that provides for better understanding of temporal and spatial dynamics of water scarcity. In this context, a water scarcity is seen as a disturbance in a complex physical-socio-economic system. Resilience is commonly used as a measure to assess the ability of a system to respond and recover from a failure. However, the time independent static resilience without consideration of variability in space does not provide sufficient insight into system's ability to respond and recover from the failure state and was mostly used as a damage avoidance measure. This paper provides an original systems framework for quantification of resilience. The framework is based on the definition of resilience as the ability of physical and socio-economic systems to absorb disturbance while still being able to continue functioning. The disturbance depends on spatial and temporal perspectives and direct interaction between impacts of disturbance (social, health, economic, and other) and adaptive capacity of the system to absorb disturbance. Utility of the dynamic resilience is demonstrated through a single-purpose reservoir operation subject to different failure (water scarcity) scenarios. The reservoir operation is simulated using the system dynamics (SD) feedback-based object-oriented simulation approach.
NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission
NASA Technical Reports Server (NTRS)
Ruffa, John A.; Ward, David K.; Bartusek, LIsa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.
2012-01-01
The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO's on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.
Electric power - Photovoltaic or solar dynamic?
NASA Technical Reports Server (NTRS)
Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.
1985-01-01
The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.
NASA's Solar Dynamics Observatory (SDO): A Systems Approach to a Complex Mission
NASA Technical Reports Server (NTRS)
Ruffa, John A.; Ward, David K.; Bartusek, Lisa M.; Bay, Michael; Gonzales, Peter J.; Pesnell, William D.
2012-01-01
The Solar Dynamics Observatory (SDO) includes three advanced instruments, massive science data volume, stringent science data completeness requirements, and a custom ground station to meet mission demands. The strict instrument science requirements imposed a number of challenging drivers on the overall mission system design, leading the SDO team to adopt an integrated systems engineering presence across all aspects of the mission to ensure that mission science requirements would be met. Key strategies were devised to address these system level drivers and mitigate identified threats to mission success. The global systems engineering team approach ensured that key drivers and risk areas were rigorously addressed through all phases of the mission, leading to the successful SDO launch and on-orbit operation. Since launch, SDO s on-orbit performance has met all mission science requirements and enabled groundbreaking science observations, expanding our understanding of the Sun and its dynamic processes.
The Sustainable Development of Space: Astro-environmental and dynamical considerations
NASA Astrophysics Data System (ADS)
Boley, Aaron; Byers, Michael; Russell, Sara
2018-04-01
The sustainable development of space is a global (and exo-global) challenge that is not limited by borders or research disciplines. Sustainable development is "development that meets the needs of the present without compromising the ability of future generations to meet their own needs". While the development of space brings new economic and scientific possibilities, it also carries significant political, legal, and technical uncertainties. For example, the rapidly increasing accessibility of space is motivating states to unilaterally adopt legislation for the new era of space use, which may have significant unintended consequences, such as increased risks to space assets, disputes among state as well as non-state actors, and changes to unique astro-environments. Any policy or legal position must be informed by the dynamical and astrophysical realities of space use, creating complex and interwoven challenges. Here, we explore several of these potential challenges related to astro-environmentalism, space minining operations, and the associated dynamics.
Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics
NASA Astrophysics Data System (ADS)
Schäfer, Benjamin; Beck, Christian; Aihara, Kazuyuki; Witthaut, Dirk; Timme, Marc
2018-02-01
Multiple types of fluctuations impact the collective dynamics of power grids and thus challenge their robust operation. Fluctuations result from processes as different as dynamically changing demands, energy trading and an increasing share of renewable power feed-in. Here we analyse principles underlying the dynamics and statistics of power grid frequency fluctuations. Considering frequency time series for a range of power grids, including grids in North America, Japan and Europe, we find a strong deviation from Gaussianity best described as Lévy-stable and q-Gaussian distributions. We present a coarse framework to analytically characterize the impact of arbitrary noise distributions, as well as a superstatistical approach that systematically interprets heavy tails and skewed distributions. We identify energy trading as a substantial contribution to today's frequency fluctuations and effective damping of the grid as a controlling factor enabling reduction of fluctuation risks, with enhanced effects for small power grids.
Lamadé, Wolfram; Friedrich, Colin; Ulmer, Christoph; Basar, Tarkan; Weiss, Heinz; Thon, Klaus-Peter
2011-03-01
A series of investigations proposed that patients' preference on minimal invasive and scarless surgery may be influenced by age, sex, and surgical as well as endoscopic history of the individual patient. However, it is unknown which psychological criteria lead to the acceptance of increased personal surgical risk or increased personal expenses in patients demanding scarless operations. We investigated whether individual body image contributes to the patient's readiness to assume higher risk in favor of potentially increased cosmesis. We conducted a nonrandomized survey among 63 consecutive surgical patients after receiving surgery. Individual body image perception was assessed postoperatively applying the FKB-20 questionnaire extended by four additional items. The FKB-20 questionnaire is a validated tool for measuring body image disturbances resulting in a two-dimensional score with negative body image (NBI) and vital body dynamics (VBD) being the two resulting scores. A subgroup analysis was performed according to the conducted operations: conventional open surgery = group 1, traditional laparoscopic surgery = group 2, and no scar surgery = group 3. There was a significant correlation between a negative body image and the preference for scar sparing and scarless surgery indicated by a significantly increased acceptance of surgical risks and the willingness to spend additional money for receiving scarless surgery (r = 0.333; p = 0.0227). Allocated to operation subgroups, 17 of 63 patients belonged to group 1 (OS), 29 to group 2 (minimally invasive surgery), and 17 patients to group 3 (no scar). Although age and sex were unequally distributed, the groups were homogenous regarding body mass index and body image (NBI). Subgroup analysis revealed that postoperative desire for scar sparing approaches was most frequently expressed by patients who received no scar operations. Patients with an NBI tend towards scarless surgery and are willing to accept increased operative risk and to spend additional money for improved postoperative cosmesis.
Dotson, G Scott; Hudson, Naomi L; Maier, Andrew
2015-01-01
Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management.
Dotson, G. Scott; Hudson, Naomi L.; Maier, Andrew
2016-01-01
Emergency Management and Operations (EMO) personnel are in need of resources and tools to assist in understanding the health risks associated with dermal exposures during chemical incidents. This article reviews available resources and presents a conceptual framework for a decision support system (DSS) that assists in characterizing and managing risk during chemical emergencies involving dermal exposures. The framework merges principles of three decision-making techniques: 1) scenario planning, 2) risk analysis, and 3) multicriteria decision analysis (MCDA). This DSS facilitates dynamic decision making during each of the distinct life cycle phases of an emergency incident (ie, preparedness, response, or recovery) and identifies EMO needs. A checklist tool provides key questions intended to guide users through the complexities of conducting a dermal risk assessment. The questions define the scope of the framework for resource identification and application to support decision-making needs. The framework consists of three primary modules: 1) resource compilation, 2) prioritization, and 3) decision. The modules systematically identify, organize, and rank relevant information resources relating to the hazards of dermal exposures to chemicals and risk management strategies. Each module is subdivided into critical elements designed to further delineate the resources based on relevant incident phase and type of information. The DSS framework provides a much needed structure based on contemporary decision analysis principles for 1) documenting key questions for EMO problem formulation and 2) a method for systematically organizing, screening, and prioritizing information resources on dermal hazards, exposures, risk characterization, and management. PMID:26312660
Probabilistic assessment of dynamic system performance. Part 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belhadj, Mohamed
1993-01-01
Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safemore » operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.« less
A systematic review of dynamics in climate risk and vulnerability assessments
NASA Astrophysics Data System (ADS)
Jurgilevich, Alexandra; Räsänen, Aleksi; Groundstroem, Fanny; Juhola, Sirkku
2017-01-01
Understanding climate risk is crucial for effective adaptation action, and a number of assessment methodologies have emerged. We argue that the dynamics of the individual components in climate risk and vulnerability assessments has received little attention. In order to highlight this, we systematically reviewed 42 sub-national climate risk and vulnerability assessments. We analysed the assessments using an analytical framework with which we evaluated (1) the conceptual approaches to vulnerability and exposure used, (2) if current or future risks were assessed, and (3) if and how changes over time (i.e. dynamics) were considered. Of the reviewed assessments, over half addressed future risks or vulnerability; and of these future-oriented studies, less than 1/3 considered both vulnerability and exposure dynamics. While the number of studies that include dynamics is growing, and while all studies included socio-economic aspects, often only biophysical dynamics was taken into account. We discuss the challenges of assessing socio-economic and spatial dynamics, particularly the poor availability of data and methods. We suggest that future-oriented studies assessing risk dynamics would benefit from larger stakeholder involvement, discussion of the assessment purpose, the use of multiple methods, inclusion of uncertainty/sensitivity analyses and pathway approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
JACKSON VL
2011-08-31
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance atmore » full-scale.« less
Nuclear Power Plant Cyber Security Discrete Dynamic Event Tree Analysis (LDRD 17-0958) FY17 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wheeler, Timothy A.; Denman, Matthew R.; Williams, R. A.
Instrumentation and control of nuclear power is transforming from analog to modern digital assets. These control systems perform key safety and security functions. This transformation is occurring in new plant designs as well as in the existing fleet of plants as the operation of those plants is extended to 60 years. This transformation introduces new and unknown issues involving both digital asset induced safety issues and security issues. Traditional nuclear power risk assessment tools and cyber security assessment methods have not been modified or developed to address the unique nature of cyber failure modes and of cyber security threat vulnerabilities.more » iii This Lab-Directed Research and Development project has developed a dynamic cyber-risk in- formed tool to facilitate the analysis of unique cyber failure modes and the time sequencing of cyber faults, both malicious and non-malicious, and impose those cyber exploits and cyber faults onto a nuclear power plant accident sequence simulator code to assess how cyber exploits and cyber faults could interact with a plants digital instrumentation and control (DI&C) system and defeat or circumvent a plants cyber security controls. This was achieved by coupling an existing Sandia National Laboratories nuclear accident dynamic simulator code with a cyber emulytics code to demonstrate real-time simulation of cyber exploits and their impact on automatic DI&C responses. Studying such potential time-sequenced cyber-attacks and their risks (i.e., the associated impact and the associated degree of difficulty to achieve the attack vector) on accident management establishes a technical risk informed framework for developing effective cyber security controls for nuclear power.« less
NASA Astrophysics Data System (ADS)
Georgakakos, A. P.; Kistenmacher, M.; Yao, H.; Georgakakos, K. P.
2014-12-01
The 2014 National Climate Assessment of the US Global Change Research Program emphasizes that water resources managers and planners in most US regions will have to cope with new risks, vulnerabilities, and opportunities, and recommends the development of adaptive capacity to effectively respond to the new water resources planning and management challenges. In the face of these challenges, adaptive reservoir regulation is becoming all the more ncessary. Water resources management in Northern California relies on the coordinated operation of several multi-objective reservoirs on the Trinity, Sacramento, American, Feather, and San Joaquin Rivers. To be effective, reservoir regulation must be able to (a) account for forecast uncertainty; (b) assess changing tradeoffs among water uses and regions; and (c) adjust management policies as conditions change; and (d) evaluate the socio-economic and environmental benefits and risks of forecasts and policies for each region and for the system as a whole. The Integrated Forecast and Reservoir Management (INFORM) prototype demonstration project operated in Northern California through the collaboration of several forecast and management agencies has shown that decision support systems (DSS) with these attributes add value to stakeholder decision processes compared to current, less flexible management practices. Key features of the INFORM DSS include: (a) dynamically downscaled operational forecasts and climate projections that maintain the spatio-temporal coherence of the downscaled land surface forcing fields within synoptic scales; (b) use of ensemble forecast methodologies for reservoir inflows; (c) assessment of relevant tradeoffs among water uses on regional and local scales; (d) development and evaluation of dynamic reservoir policies with explicit consideration of hydro-climatic forecast uncertainties; and (e) focus on stakeholder information needs.This article discusses the INFORM integrated design concept, underlying methodologies, and selected applications with the California water resources system.
Multilateral haptics-based immersive teleoperation for improvised explosive device disposal
NASA Astrophysics Data System (ADS)
Erickson, David; Lacheray, Hervé; Daly, John
2013-05-01
Of great interest to police and military organizations is the development of effective improvised explosive device (IED) disposal (IEDD) technology to aid in activities such as mine field clearing, and bomb disposal. At the same time minimizing risk to personnel. This paper presents new results in the research and development of a next generation mobile immersive teleoperated explosive ordnance disposal system. This system incorporates elements of 3D vision, multilateral teleoperation for high transparency haptic feedback, immersive augmented reality operator control interfaces, and a realistic hardware-in-the-loop (HIL) 3D simulation environment incorporating vehicle and manipulator dynamics for both operator training and algorithm development. In the past year, new algorithms have been developed to facilitate incorporating commercial off-the-shelf (COTS) robotic hardware into the teleoperation system. In particular, a real-time numerical inverse position kinematics algorithm that can be applied to a wide range of manipulators has been implemented, an inertial measurement unit (IMU) attitude stabilization system for manipulators has been developed and experimentally validated, and a voiceoperated manipulator control system has been developed and integrated into the operator control station. The integration of these components into a vehicle simulation environment with half-car vehicle dynamics has also been successfully carried out. A physical half-car plant is currently being constructed for HIL integration with the simulation environment.
Transfer of Real-time Dynamic Radiation Environment Assimilation Model; Research to Operation
NASA Astrophysics Data System (ADS)
Cho, K. S. F.; Hwang, J.; Shin, D. K.; Kim, G. J.; Morley, S.; Henderson, M. G.; Friedel, R. H.; Reeves, G. D.
2015-12-01
Real-time Dynamic Radiation Environment Assimilation Model (rtDREAM) was developed by LANL for nowcast of energetic electrons' flux at the radiation belt to quantify potential risks from radiation damage at the satellites. Assimilated data are from multiple sources including LANL assets (GEO, GPS). For transfer from research to operation of the rtDREAM code, LANL/KSWC/NOAA makes a Memorandum Of Understanding (MOU) on the collaboration between three parts. By this MOU, KWSC/RRA provides all the support for transitioning the research version of DREAM to operations. KASI is primarily responsible for providing all the interfaces between the current scientific output formats of the code and useful space weather products that can be used and accessed through the web. In the second phase, KASI will be responsible in performing the work needed to transform the Van Allen Probes beacon data into "DREAM ready" inputs. KASI will also provide the "operational" code framework and additional data preparation, model output, display and web page codes back to LANL and SWPC. KASI is already a NASA partnering ground station for the Van Allen Probes' space weather beacon data and can here show use and utility of these data for comparison between rtDREAM and observations by web. NOAA has offered to take on some of the data processing tasks specific to the GOES data.
[Questions concerning humanitarian action].
Simonnot, C
2002-01-01
Although development of humanitarian action is rooted historical events, the dynamics behind today's international relief organizations can only be understood within the context of the modern world. Relief organizations are currently confronted with major challenges and paradoxes. The challenges include the need to enhance professionalization and standardization of assistance operations and exposure to greater risks. The paradoxes involve the need to implement complex, highly publicized programs in a simplistic manner and problems involved in managing the complex relationship between relief workers and victims, tainted with the almighty powers of the actors.
Introducing new technologies into Space Station subsystems
NASA Technical Reports Server (NTRS)
Wiskerchen, Michael J.; Mollakarimi, Cindy L.
1989-01-01
A new systems engineering technology has been developed and applied to Shuttle processing. The new engineering approach emphasizes the identification, quantitative assessment, and management of system performance and risk related to the dynamic nature of requirements, technology, and operational concepts. The Space Shuttle Tile Automation System is described as an example of the first application of the new engineering technology. Lessons learned from the Shuttle processing experience are examined, and concepts are presented which are applicable to the design and development of the Space Station Freedom.
Problem reporting management system performance simulation
NASA Technical Reports Server (NTRS)
Vannatta, David S.
1993-01-01
This paper proposes the Problem Reporting Management System (PRMS) model as an effective discrete simulation tool that determines the risks involved during the development phase of a Trouble Tracking Reporting Data Base replacement system. The model considers the type of equipment and networks which will be used in the replacement system as well as varying user loads, size of the database, and expected operational availability. The paper discusses the dynamics, stability, and application of the PRMS and addresses suggested concepts to enhance the service performance and enrich them.
Hunt, Graham J F; Callaghan, Kathleen S N
2008-08-01
Although the published work in health care increasingly promotes aviation as a high-reliability industry to be emulated, there is little empirical research to justify equating the dynamics of health care's operating environment with that of aviation. This article examines some of the potential key areas of difference between the two professional groups with respect to crew resource management. The risks of implementing crew resource management training in health care without an evidential basis are discussed.
The socio-economic dimension of flood risk assessment: insights of KULTURisk framework
NASA Astrophysics Data System (ADS)
Giupponi, Carlo; Gain, Animesh; Mojtahed, Vahid; Balbi, Stefano
2013-04-01
The approaches for vulnerability and risk assessment have found different and often contrasting solutions by various schools of thought. The two most prominent communities in this field are: climate change adaptation (CCA), and disaster risk reduction (DRR). Although those communities have usually in common the aim of reducing socio-economic vulnerability and risk to natural hazards, they have usually referred to different definitions and conceptualizations. For example, the DRR community has always driven more emphasis on the concept of risk and vulnerability is considered as a physical/environmental input for the quantification of risk, while the CCA research stream, mainly under the auspices of the Intergovernmental Panel on Climate Change (IPCC), considered vulnerability as an output deriving from social conditions and processes such as adaptation or maladaptation. Recently, with the publication of the IPCC Special Report on extreme events and disasters (IPCC-SREX), the notions of vulnerability and risk are somehow integrated in order to jointly consider both climate change adaptation and disaster risk management. The IPCC-SREX indeed is expected to significantly contribute to find common language and methodological approaches across disciplines and, therefore, the opportunity emerges for proposing new operational solutions, consistent with the most recent evolution of concepts and terminology. Based on the development of the IPCC Report, the KULTURisk project developed an operational framework to support integrated assessment and decision support through the combination of contributions from diverse disciplinary knowledge, with emphasis on the social and economic dimensions. KIRAF (KULTURisk Integrated Risk Assessment Framework) is specifically aimed at comprehensively evaluate the benefits of risk mitigation measures with consideration of the dynamic context deriving from the consideration of climatic changes and their effects on natural disasters, within the policy framework of climate change adaptation (CCA). Three main innovations are proposed with respect to the current state of the art: (1) to include the social capacities of reducing risk, (2) to go beyond the estimation direct tangible costs, and (3) to provide an operational solution for decision support to assess risks, impacts and the benefits of plausible risk reduction measures, compatible with both the DRR and the CCA literatures. As stated above, the proposed framework is the inclusion of social capacities (adaptive and coping capacities) in the process of translating risk into a comprehensive cost matrix considering not only direct tangible costs (damages), but also the three other components deriving from the combination of tangible/intangible and direct/indirect costs. The proposed KIRAF approach is thus expected to provide: 1) an operational basis for multidisciplinary integration; 2) a flexible reference to deal with heterogeneous case studies and potentially various types of hazards; and 3) a means to support the assessment of alternative risk prevention measures including consideration of social and cultural dimensions.
ERIC Educational Resources Information Center
Lofthouse, Rachael E.; Lindsay, William R.; Totsika, Vasiliki; Hastings, Richard P.; Boer, Douglas P.; Haaven, James L.
2013-01-01
Background: The purpose of the present study was to add to the literature on the predictive accuracy of a dynamic intellectual disability specific risk assessment tool. Method: A dynamic risk assessment for sexual reoffending (ARMIDILO-S), a static risk assessment for sexual offending (STATIC-99), and a static risk assessment for violence…
Recursive flexible multibody system dynamics using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1992-01-01
This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-mode models are used for the deformation of each individual body. The algorithms are based on two spatial operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward dynamics for the systems. The second (innovations) factorization of the mass matrix, leads to an operator expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The primary focus is on serial chains, but extensions to general topologies are also described. A comparison of computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than the composite-body algorithm for most flexible multibody systems.
Simmons, Janie
2006-01-01
Background The drug treatment field tends to place emphasis on the individual rather than the individual in social context. While there are a growing number of studies indicating that drug-using intimate partners are likely to play an important role in determining treatment options, little attention has been given to the experience and complex treatment needs of illicit drug-using (heroin, cocaine, crack) couples. Methods This exploratory study used in-depth interviews and ethnographic engagement to better understand the relationship between interpersonal dynamics and the treatment experience of ten relatively stable drug-using couples in Hartford, CT. Semi-structured and open-ended qualitative interviews were conducted with each couple and separately with each partner. Whenever possible, the day-to-day realities and contexts of risk were also observed via participant and non-participant observation of these couples in the community. A grounded theory approach was used to inductively code and analyze nearly 40 transcripts of 60–90 minute interviews as well as fieldnotes. Results This study builds on a concept of complex interpersonal dynamics among drug users. Interpersonal dynamics of care and collusion were identified: couples cared for each other and colluded to acquire and use drugs. Care and collusion operate at the micro level of the risk environment. Treatment barriers and inadequacies were identified as part of the risk environment at the meso or intermediate level of analysis, and larger social forces such as gender dynamics, poverty and the "War on Drugs" were identified at the macro level. Interpersonal dynamics posed problems for couples when one or both partners were interested in accessing treatment. Structural barriers presented additional obstacles with the denial of admittance of both partners to treatment programs which had a sole focus on the individual and avoided treating couples. Conclusion Detoxification and treatment facilities need to recognize the complex interplay between interpersonal dynamics which shape the treatment experience of couples, and which are also shaped by larger structural dynamics, including barriers in the treatment system. Improvements to the treatment system in general will go a long way in improving treatment for couples. Couples-specific programming also needs to be developed. PMID:16722545
Besmer, Michael D; Epting, Jannis; Page, Rebecca M; Sigrist, Jürg A; Huggenberger, Peter; Hammes, Frederik
2016-12-07
Detailed measurements of physical, chemical and biological dynamics in groundwater are key to understanding the important processes in place and their influence on water quality - particularly when used for drinking water. Measuring temporal bacterial dynamics at high frequency is challenging due to the limitations in automation of sampling and detection of the conventional, cultivation-based microbial methods. In this study, fully automated online flow cytometry was applied in a groundwater system for the first time in order to monitor microbial dynamics in a groundwater extraction well. Measurements of bacterial concentrations every 15 minutes during 14 days revealed both aperiodic and periodic dynamics that could not be detected previously, resulting in total cell concentration (TCC) fluctuations between 120 and 280 cells μL -1 . The aperiodic dynamic was linked to river water contamination following precipitation events, while the (diurnal) periodic dynamic was attributed to changes in hydrological conditions as a consequence of intermittent groundwater extraction. Based on the high number of measurements, the two patterns could be disentangled and quantified separately. This study i) increases the understanding of system performance, ii) helps to optimize monitoring strategies, and iii) opens the possibility for more sophisticated (quantitative) microbial risk assessment of drinking water treatment systems.
Besmer, Michael D.; Epting, Jannis; Page, Rebecca M.; Sigrist, Jürg A.; Huggenberger, Peter; Hammes, Frederik
2016-01-01
Detailed measurements of physical, chemical and biological dynamics in groundwater are key to understanding the important processes in place and their influence on water quality – particularly when used for drinking water. Measuring temporal bacterial dynamics at high frequency is challenging due to the limitations in automation of sampling and detection of the conventional, cultivation-based microbial methods. In this study, fully automated online flow cytometry was applied in a groundwater system for the first time in order to monitor microbial dynamics in a groundwater extraction well. Measurements of bacterial concentrations every 15 minutes during 14 days revealed both aperiodic and periodic dynamics that could not be detected previously, resulting in total cell concentration (TCC) fluctuations between 120 and 280 cells μL−1. The aperiodic dynamic was linked to river water contamination following precipitation events, while the (diurnal) periodic dynamic was attributed to changes in hydrological conditions as a consequence of intermittent groundwater extraction. Based on the high number of measurements, the two patterns could be disentangled and quantified separately. This study i) increases the understanding of system performance, ii) helps to optimize monitoring strategies, and iii) opens the possibility for more sophisticated (quantitative) microbial risk assessment of drinking water treatment systems. PMID:27924920
Smirnova, Olga A; Cucinotta, Francis A
2018-02-01
A recently developed biologically motivated dynamical model of the assessment of the excess relative risk (ERR) for radiogenic leukemia among acutely/continuously irradiated humans (Smirnova, 2015, 2017) is applied to estimate the ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions. Numerous scenarios of space radiation exposure during space missions are used in the modeling studies. The dependence of the ERR for leukemia among astronauts on several mission parameters including the dose equivalent rates of galactic cosmic rays (GCR) and large solar particle events (SPEs), the number of large SPEs, the time interval between SPEs, mission duration, the degree of astronaut's additional shielding during SPEs, the degree of their additional 12-hour's daily shielding, as well as the total mission dose equivalent, is examined. The results of the estimation of ERR for radiogenic leukemia among astronauts, which are obtained in the framework of the developed dynamical model for various scenarios of space radiation exposure, are compared with the corresponding results, computed by the commonly used linear model. It is revealed that the developed dynamical model along with the linear model can be applied to estimate ERR for radiogenic leukemia among astronauts engaged in long-term interplanetary space missions in the range of applicability of the latter. In turn, the developed dynamical model is capable of predicting the ERR for leukemia among astronauts for the irradiation regimes beyond the applicability range of the linear model in emergency cases. As a supplement to the estimations of cancer incidence and death (REIC and REID) (Cucinotta et al., 2013, 2017), the developed dynamical model for the assessment of the ERR for leukemia can be employed on the pre-mission design phase for, e.g., the optimization of the regimes of astronaut's additional shielding in the course of interplanetary space missions. The developed model can also be used on the phase of the real-time responses during the space mission to make the decisions on the operational application of appropriate countermeasures to minimize the risks of occurrences of leukemia, especially, for emergency cases. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Assessment of the Impacts of ACLS on the ISS Life Support System Using Dynamic Simulations in V-HAB
NASA Technical Reports Server (NTRS)
Putz, Daniel; Olthoff, Claas; Ewert, Michael; Anderson, Molly
2016-01-01
The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is the Virtual Habitat (V-HAB). Based on MATLAB, V-HAB has been under development at the Institute of Astronautics of the Technical University of Munich (TUM) since 2004 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large, ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside individual modules of the ISS by splitting it into twelve distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS Simulation and several different operating modes for both ACLS and the existing ISS life support systems are studied and the impacts of ACLS on the rest of the system are determined. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to a achieve a very low CO2 concentration in the cabin atmosphere.
Assessment of the Impacts of ACLS on the ISS Life Support System using Dynamic Simulations in V-HAB
NASA Technical Reports Server (NTRS)
Puetz, Daniel; Olthoff, Claas; Ewert, Michael K.; Anderson, Molly S.
2016-01-01
The Advanced Closed Loop System (ACLS) is currently under development by Airbus Defense and Space and is slated for launch to the International Space Station (ISS) in 2017. The addition of new hardware into an already complex system such as the ISS life support system (LSS) always poses operational risks. It is therefore important to understand the impacts ACLS will have on the existing systems to ensure smooth operations for the ISS. This analysis can be done by using dynamic computer simulations and one possible tool for such a simulation is Virtual Habitat (V-HAB). Based on Matlab (Registered Trademark) V-HAB has been under development at the Institute of Astronautics of the Technical University Munich (TUM) since 2006 and in the past has been successfully used to simulate the ISS life support systems. The existing V-HAB ISS simulation model treated the interior volume of the space station as one large ideally-stirred container. This model was improved to allow the calculation of the atmospheric composition inside the individual modules of the ISS by splitting it into ten distinct volumes. The virtual volumes are connected by a simulation of the inter-module ventilation flows. This allows for a combined simulation of the LSS hardware and the atmospheric composition aboard the ISS. A dynamic model of ACLS is added to the ISS simulation and different operating modes for both ACLS and the existing ISS life support systems are studied to determine the impacts of ACLS on the rest of the system. The results suggest that the US, Russian and ACLS CO2 systems can operate at the same time without impeding each other. Furthermore, based on the results of this analysis, the US and ACLS Sabatier systems can be operated in parallel as well to achieve the highest possible CO2 recycling together with a low CO2 concentration.
Computational modelling of atherosclerosis.
Parton, Andrew; McGilligan, Victoria; O'Kane, Maurice; Baldrick, Francina R; Watterson, Steven
2016-07-01
Atherosclerosis is one of the principle pathologies of cardiovascular disease with blood cholesterol a significant risk factor. The World Health Organization estimates that approximately 2.5 million deaths occur annually because of the risk from elevated cholesterol, with 39% of adults worldwide at future risk. Atherosclerosis emerges from the combination of many dynamical factors, including haemodynamics, endothelial damage, innate immunity and sterol biochemistry. Despite its significance to public health, the dynamics that drive atherosclerosis remain poorly understood. As a disease that depends on multiple factors operating on different length scales, the natural framework to apply to atherosclerosis is mathematical and computational modelling. A computational model provides an integrated description of the disease and serves as an in silico experimental system from which we can learn about the disease and develop therapeutic hypotheses. Although the work completed in this area to date has been limited, there are clear signs that interest is growing and that a nascent field is establishing itself. This article discusses the current state of modelling in this area, bringing together many recent results for the first time. We review the work that has been done, discuss its scope and highlight the gaps in our understanding that could yield future opportunities. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease
NASA Technical Reports Server (NTRS)
Peng, C. K.; Havlin, S.; Hausdorff, J. M.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.
1995-01-01
Under healthy conditions, the normal cardiac (sinus) interbeat interval fluctuates in a complex manner. Quantitative analysis using techniques adapted from statistical physics reveals the presence of long-range power-law correlations extending over thousands of heartbeats. This scale-invariant (fractal) behavior suggests that the regulatory system generating these fluctuations is operating far from equilibrium. In contrast, it is found that for subjects at high risk of sudden death (e.g., congestive heart failure patients), these long-range correlations break down. Application of fractal scaling analysis and related techniques provides new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as motivating development of novel physiologic models of systems that appear to be heterodynamic rather than homeostatic.
NASA Astrophysics Data System (ADS)
Monteleone, M.; Lanorte, A.; Lasaponara, R.
2009-04-01
Cyberpark 2000 is a project funded by the UE Regional Operating Program of the Apulia Region (2000-2006). The main objective of the Cyberpark 2000 project is to develop a new assessment model for the management and monitoring of protected areas in Foggia Province (Apulia Region) based on Information and Communication Technologies. The results herein described are placed inside the research activities finalized to develop an environmental monitoring system knowledge based on the use of satellite time series. This study include: - A- satellite time series of high spatial resolution data for supporting the analysis of fire static risk factors through land use mapping and spectral/quantitative characterization of vegetation fuels; - B- satellite time series of MODIS for supporting fire dynamic risk evaluation of study area - Integrated fire detection by using thermal imaging cameras placed on panoramic view-points; - C - integrated high spatial and high temporal satellite time series for supporting studies in change detection factors or anomalies in vegetation covers; - D - satellite time-series for monitoring: (i) post fire vegetation recovery and (ii) spatio/temporal vegetation dynamics in unburned and burned vegetation covers.
The Moral Economy of Violence in the US Inner City
Karandinos, George; Hart, Laurie Kain; Castrillo, Fernando Montero; Bourgois, Philippe
2014-01-01
In an 8-week period, there were 16 shootings with three fatalities, three stabbings, and 14 additional “aggravated assaults” in the four square blocks surrounding our field site in the Puerto Rican corner of North Philadelphia. In the aftermath of the shoot-outs, the drug sellers operating on our block were forced to close down their operations by several mothers who repeatedly called the police. Drawing on the concept of moral economy (Thompson, Scott, Taussig), Mauss’s interpretation of gift exchange, and a political economy critique of hypercarceralization in the United States, we understand the high levels of US inner-city violence as operating within a moral logic framed by economic scarcity and hostile state relations. Residents seek security, self-respect, and profit in social networks that compel them to participate in solidary exchanges of assistive violence dynamized by kinship and gender obligations. A hierarchical, extractive drug economy fills the void left by deindustrialization, resulting in a dynamic of embodied primitive accumulation at the expense of addicted customers and chronically incarcerated just-in-time street sellers at high risk of assault. Nevertheless, the mobilization of violence organizing the illegal drug economy also follows ethical norms and obligations that are recognized as legitimate by many local residents. PMID:25067849
van der Put, Claudia E; van Vugt, Eveline S; Stams, Geert Jan J M; Deković, Maja; van der Laan, Peter H
2013-02-01
To date, there is surprisingly little research on differences in the prevalence and impact of risk factors for general recidivism between juveniles who have committed sexual offenses (JSO) and juveniles who have committed nonsexual offenses (NSO). Therefore, we examined differences in the prevalence and impact of dynamic risk factors for general delinquency between youth with nonsexual offenses (NSO, n = 504), youth with misdemeanor sexual offenders (MSO, n = 136), youth with felony sexual offenders (FSO, n = 116) and youth with offenses against much younger children (CSO, n = 373). The sample consisted of boys with a mean age of 15.3 years (SD = 1.5). The prevalence of dynamic risk factors for general delinquency was significantly lower in JSOs than in NSOs. More serious sexual offenses were associated with a lower prevalence of dynamic risk factors. In contrast, the impact of most dynamic risk factors on general recidivism proved to be significantly larger among JSOs compared to NSOs. The relative importance of the dynamic risk factors varied for each type of JSO, resulting in differences in the dynamic risk profiles of the various types of JSOs.
[Dynamic retraction microneurosurgery for the treatment of medial tentorial meningiomas].
Du, W; Zhong, D; Lü, D; Li, J; Huang, H Y; Yang, J; Wu, Y T; Xia, H J; Tang, W Y; Sun, X C
2018-05-08
Objective: To investigate the effectiveness and clinical significance of dynamic retraction microneurosurgery for the treatment of medial tentorial meningiomas. Methods: From January 2011 to December 2016, a cohort of 28 patients with medial tentorial meningiomas were treated by microneurosurgery at the First Affiliated Hospital of Chongqing Medical University. Patients who treated intraoperatively with dynamic retraction surgery from January 2014 to December 2016 were assigned into dynamic retraction group, and those with fixed retractors intraoperatively from January 2011 to December 2013 were assigned into retractor group. The surgical approaches tailored in our patients were based on predominant direction of tumor extension. The extent of tumor resection was scored according to the Simpson's classification scale. Comparisons of tumor size, operation time, hospitalization time, retraction-related injury, tumor Simpson resection grade and Karnofsky Performance Scale(KPS) score six months after surgery were also made between two groups. Results: A total of 12 patients(retractor group) were treated with the use of self-retaining brain retractors intraoperatively and dynamic retraction surgical procedure was performed intraoperatively in 16 patients(dynamic retraction group). The difference between two groups with regard to sex, age, tumor size, operation time and tumor Simpson resection grade was not statistically significant(all P >0.05). The mean duration of hospital time was shorter in the dynamic retraction group than that in the retractor group(18.3 d±1.8 d vs 20.2 d±1.3 d, P =0.004). The dynamic retraction group had lower incidence of retraction-related injury compared with the retractor group(1/16 vs 6/12), P =0.022]. The dynamic retraction group had better neurological recovery rate with KPS >80 evaluated six months after surgery compared with the retractor group(14/16 vs 5/12, P =0.017). Conclusions: Dynamic retraction microneurosurgery for the treatment of medial tentorial meningiomas is feasible, which can obviate or reduce the amount of brain retraction needed, and may be of help in lowering the risk of postoperative neurological deficits and complications and leading to reduced hospitalization cost and improved surgical outcomes.
77 FR 1779 - Meeting and Webinar on Integrated Dynamic Transit Operations; Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-11
.... Transit- oriented Connected Vehicle for Mobility applications support dynamic system operations and... DEPARTMENT OF TRANSPORTATION Meeting and Webinar on Integrated Dynamic Transit Operations; Notice... Transportation. ACTION: Notice. The U.S. Department of Transportation (USDOT) Intelligent Transportation System...
A Novel Biobjective Risk-Based Model for Stochastic Air Traffic Network Flow Optimization Problem.
Cai, Kaiquan; Jia, Yaoguang; Zhu, Yanbo; Xiao, Mingming
2015-01-01
Network-wide air traffic flow management (ATFM) is an effective way to alleviate demand-capacity imbalances globally and thereafter reduce airspace congestion and flight delays. The conventional ATFM models assume the capacities of airports or airspace sectors are all predetermined. However, the capacity uncertainties due to the dynamics of convective weather may make the deterministic ATFM measures impractical. This paper investigates the stochastic air traffic network flow optimization (SATNFO) problem, which is formulated as a weighted biobjective 0-1 integer programming model. In order to evaluate the effect of capacity uncertainties on ATFM, the operational risk is modeled via probabilistic risk assessment and introduced as an extra objective in SATNFO problem. Computation experiments using real-world air traffic network data associated with simulated weather data show that presented model has far less constraints compared to stochastic model with nonanticipative constraints, which means our proposed model reduces the computation complexity.
Shale gas development: a smart regulation framework.
Konschnik, Katherine E; Boling, Mark K
2014-01-01
Advances in directional drilling and hydraulic fracturing have sparked a natural gas boom from shale formations in the United States. Regulators face a rapidly changing industry comprised of hundreds of players, operating tens of thousands of wells across 30 states. They are often challenged to respond by budget cuts, a brain drain to industry, regulations designed for conventional gas developments, insufficient information, and deeply polarized debates about hydraulic fracturing and its regulation. As a result, shale gas governance remains a halting patchwork of rules, undermining opportunities to effectively characterize and mitigate development risk. The situation is dynamic, with research and incremental regulatory advances underway. Into this mix, we offer the CO/RE framework--characterization of risk, optimization of mitigation strategies, regulation, and enforcement--to design tailored governance strategies. We then apply CO/RE to three types of shale gas risks, to illustrate its potential utility to regulators.
Carbothermal Production of Magnesium: Csiro's Magsonic™ Process
NASA Astrophysics Data System (ADS)
Prentice, Leon H.; Nagle, Michael W.; Barton, Timothy R. D.; Tassios, Steven; Kuan, Benny T.; Witt, Peter J.; Constanti-Carey, Keri K.
Carbothermal production has been recognized as conceptually the simplest and cleanest route to magnesium metal, but has suffered from technical challenges of development and scale-up. Work by CSIRO has now successfully demonstrated the technology using supersonic quenching of magnesium vapor (the MagSonic™ Process). Key barriers to process development have been overcome: the experimental program has achieved sustained operation, no nozzle blockage, minimal reversion, and safe handling of pyrophoric powders. The laboratory equipment has been operated at industrially relevant magnesium vapor concentrations (>25% Mg) for multiple runs with no blockage. Novel computational fluid dynamics (CFD) modeling of the shock quenching and metal vapor condensation has informed nozzle design and is supported by experimental data. Reversion below 10% has been demonstrated, and magnesium successfully purified (>99.9%) from the collected powder. Safe operating procedures have been developed and demonstrated, minimizing the risk of powder explosion. The MagSonic™ Process is now ready to progress to significantly larger scale and continuous operation.
Internet Based Simulations of Debris Dispersion of Shuttle Launch
NASA Technical Reports Server (NTRS)
Bardina, Jorge; Thirumalainambi, Rajkumar
2004-01-01
The debris dispersion model (which dispersion model?) is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models are useful in understanding the complexity of launch and range operations. Modeling and simulation in this area mainly focuses on orbital dynamics and range safety concepts, including destruct limits, telemetry and tracking, and population risk. Particle explosion modeling is the process of simulating an explosion by breaking the rocket into many pieces. The particles are scattered throughout their motion using the laws of physics eventually coming to rest. The size of the foot print explains the type of explosion and distribution of the particles. The shuttle launch and range operations in this paper are discussed based on the operations of the Kennedy Space Center, Florida, USA. Java 3D graphics provides geometric and visual content with suitable modeling behaviors of Shuttle launches.
Risk of ionising radiation to trainee orthopaedic surgeons.
Khan, Ishrat A; Kamalasekaran, Senthil; Fazal, M Ali
2012-02-01
We undertook this study to determine the amount of scattered radiation received by the primary surgeon, assistant and patient during dynamic hip screw fixation for proximal femoral fractures. Data was collected from fifty patients. Five registrars were included as operating surgeon and four senior house officers as assistant surgeon. Radiation was monitored by thermo luminescent dosimeters placed on the surgeon and assistant. The approximate distance of surgeon and assistant from the operative site was measured. A dosimeter on the unaffected hip of patients measured the radiation to the patient. The results show that the surgeon's dominant hand receives the highest dose of radiation and radiation exposure is dependent on the experience of the operator. Our study concludes that exposure to radiation during this procedure is well below the toxic levels; however greater awareness is needed for harmful effects of exposure to long term low dose radiation.
Chatterjee, Arijit; Sahu, Subhashis
2018-03-29
A huge number of labourers engaged in construction industry in India both in organized and unorganized sectors. The construction labourers most often work for an extended period of time and they are compelled to uphold altered static and dynamic operational stance in awkward positions during the complete period of work which raises the demand on the musculoskeletal system and may lead to work related musculoskeletal disorders (WRMSDs). This study is intended to explore the operational stance and occupation related musculoskeletal manifestations amongst the construction labourers. One sixty four male labourers from different construction sites of West Bengal was randomly taken for this study. A modified Nordic questionnaire on MSD and the 12 item General Health Questionnaire (GHQ12) were administered on the construction labourers. Rapid Entire Body Assessment [REBA] and Ovako Work Analysis System [OWAS] methods were applied to analyze the operational stance. Finally, discomfort levels of the specific operational stance were calculated by the use of risk level and BPD scale. From the study it was revealed that most of the construction labourers habitually in awkward operational stance and were affected by altering musculoskeletal manifestations like pain in low back, neck, and wrist. It has been also found that there is a significant (p< 0.05) association between the intensity of pain feeling, age, year of working experience and risk level of the individual working postures of the labourers. Appropriate work-rest schedule, amendments of some working techniques and use of some ergonomically designed equipment may lessen the WRMSDs and improve the health eminence of construction labourers in unorganized sectors.
Integrated health management and control of complex dynamical systems
NASA Astrophysics Data System (ADS)
Tolani, Devendra K.
2005-11-01
A comprehensive control and health management strategy for human-engineered complex dynamical systems is formulated for achieving high performance and reliability over a wide range of operation. Results from diverse research areas such as Probabilistic Robust Control (PRC), Damage Mitigating/Life Extending Control (DMC), Discrete Event Supervisory (DES) Control, Symbolic Time Series Analysis (STSA) and Health and Usage Monitoring System (HUMS) have been employed to achieve this goal. Continuous-domain control modules at the lower level are synthesized by PRC and DMC theories, whereas the upper-level supervision is based on DES control theory. In the PRC approach, by allowing different levels of risk under different flight conditions, the control system can achieve the desired trade off between stability robustness and nominal performance. In the DMC approach, component damage is incorporated in the control law to reduce the damage rate for enhanced structural durability. The DES controller monitors the system performance and, based on the mission requirements (e.g., performance metrics and level of damage mitigation), switches among various lower-level controllers. The core idea is to design a framework where the DES controller at the upper-level, mimics human intelligence and makes appropriate decisions to satisfy mission requirements, enhance system performance and structural durability. Recently developed tools in STSA have been used for anomaly detection and failure prognosis. The DMC deals with the usage monitoring or operational control part of health management, where as the issue of health monitoring is addressed by the anomaly detection tools. The proposed decision and control architecture has been validated on two test-beds, simulating the operations of rotorcraft dynamics and aircraft propulsion.
Spatial operator algebra for flexible multibody dynamics
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1993-01-01
This paper presents an approach to modeling the dynamics of flexible multibody systems such as flexible spacecraft and limber space robotic systems. A large number of degrees of freedom and complex dynamic interactions are typical in these systems. This paper uses spatial operators to develop efficient recursive algorithms for the dynamics of these systems. This approach very efficiently manages complexity by means of a hierarchy of mathematical operations.
Spatial operator algebra framework for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, Abhinandan; Kreutz, K.
1989-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Spatial Operator Algebra for multibody system dynamics
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1992-01-01
The Spatial Operator Algebra framework for the dynamics of general multibody systems is described. The use of a spatial operator-based methodology permits the formulation of the dynamical equations of motion of multibody systems in a concise and systematic way. The dynamical equations of progressively more complex grid multibody systems are developed in an evolutionary manner beginning with a serial chain system, followed by a tree topology system and finally, systems with arbitrary closed loops. Operator factorizations and identities are used to develop novel recursive algorithms for the forward dynamics of systems with closed loops. Extensions required to deal with flexible elements are also discussed.
Defining the Intrinsic Cardiac Risks of Operations to Improve Preoperative Cardiac Risk Assessments.
Liu, Jason B; Liu, Yaoming; Cohen, Mark E; Ko, Clifford Y; Sweitzer, Bobbie J
2018-02-01
Current preoperative cardiac risk stratification practices group operations into broad categories, which might inadequately consider the intrinsic cardiac risks of individual operations. We sought to define the intrinsic cardiac risks of individual operations and to demonstrate how grouping operations might lead to imprecise estimates of perioperative cardiac risk. Elective operations (based on Common Procedural Terminology codes) performed from January 1, 2010 to December 31, 2015 at hospitals participating in the American College of Surgeons National Surgical Quality Improvement Program were studied. A composite measure of perioperative adverse cardiac events was defined as either cardiac arrest requiring cardiopulmonary resuscitation or acute myocardial infarction. Operations' intrinsic cardiac risks were derived from mixed-effects models while controlling for patient mix. Resultant risks were sorted into low-, intermediate-, and high-risk categories, and the most commonly performed operations within each category were identified. Intrinsic operative risks were also examined using a representative grouping of operations to portray within-group variation. Sixty-six low, 30 intermediate, and 106 high intrinsic cardiac risk operations were identified. Excisional breast biopsy had the lowest intrinsic cardiac risk (overall rate, 0.01%; odds ratio, 0.11; 95% CI, 0.02 to 0.25) relative to the average, whereas aorto-bifemoral bypass grafting had the highest (overall rate, 4.1%; odds ratio, 6.61; 95% CI, 5.54 to 7.90). There was wide variation in the intrinsic cardiac risks of operations within the representative grouping (median odds ratio, 1.40; interquartile range, 0.88 to 2.17). A continuum of intrinsic cardiac risk exists among operations. Grouping operations into broad categories inadequately accounts for the intrinsic cardiac risk of individual operations.
Shea, C.P.; Bettoli, Phillip William; Potoka, K. M.; Saylor, C. F.; Shute, P. W.
2015-01-01
During the past 100 years, most large rivers in North America have been altered for flood control, hydropower, navigation or water supply development. Although these activities clearly provide important human services, their associated environmental disturbances can profoundly affect stream-dwelling organisms. We used dynamic multi-species occupancy models combined with a trait-based approach to estimate the influence of site-level and species-level characteristics on patch dynamic rates for 15 darter species native to the Elk River, a large, flow-regulated Tennessee River tributary in Tennessee and Alabama. Dynamic occupancy modelling results indicated that for every 2.5 °C increase in stream temperature, darters were 3.94 times more likely to colonize previously unoccupied stream reaches. Additionally, large-bodied darter species were 3.72 times more likely to colonize stream reaches compared with small-bodied species, but crevice-spawning darter species were 5.24 times less likely to colonize previously unoccupied stream reaches. In contrast, darters were 2.21 times less likely to become locally extinct for every 2.5 °C increase in stream temperature, but high stream discharge conditions elevated the risk of local extinction. Lastly, the presence of populations in neighbouring upstream study reaches contributed to a lower risk of extinction, whereas the presence of populations in neighbouring downstream study reaches contributed to higher rates of colonization. Our study demonstrates the application of a trait-based approach combined with a metapopulation framework to assess the patch dynamics of darters in a regulated river. Results from our study will provide a baseline for evaluating the ecological consequences of alternative dam operations.
Coordinating with Humans by Adjustable-Autonomy for Multirobot Pursuit (CHAMP)
NASA Astrophysics Data System (ADS)
Dumond, Danielle; Ayers, Jeanine; Schurr, Nathan; Carlin, Alan; Burke, Dustin; Rousseau, Jeffrey
2012-06-01
One of the primary challenges facing the modern small-unit tactical team is the ability of the unit to safely and effectively search, explore, clear and hold urbanized terrain that includes buildings, streets, and subterranean dwellings. Buildings provide cover and concealment to an enemy and restrict the movement of forces while diminishing their ability to engage the adversary. The use of robots has significant potential to reduce the risk to tactical teams and dramatically force multiply the small unit's footprint. Despite advances in robotic mobility, sensing capabilities, and human-robot interaction, the use of robots in room clearing operations remains nascent. CHAMP is a software system in development that integrates with a team of robotic platforms to enable them to coordinate with a human operator performing a search and pursuit task. In this way, the human operator can either give control to the robots to search autonomously, or can retain control and direct the robots where needed. CHAMP's autonomy is built upon a combination of adversarial pursuit algorithms and dynamic function allocation strategies that maximize the team's resources. Multi-modal interaction with CHAMP is achieved using novel gesture-recognition based capabilities to reduce the need for heads-down tele-operation. The Champ Coordination Algorithm addresses dynamic and limited team sizes, generates a novel map of the area, and takes into account mission goals, user preferences and team roles. In this paper we show results from preliminary simulated experiments and find that the CHAMP system performs faster than traditional search and pursuit algorithms.
Paulsson, Johnny; Stig, Josefine Corin; Olsson, Ola
2017-08-24
In treatment of unstable trochanteric fractures dynamic hip screw and Medoff sliding plate devices are designed to allow secondary fracture impaction, whereas intramedullary nails aim to maintain fracture alignment. Different treatment protocols are used by two similar Swedish regional emergency care hospitals. Dynamic hip screw is used for fractures considered as stable within the respective treatment protocol, whereas one treatment protocol (Medoff sliding plate/dynamic hip screw) uses biaxial Medoff sliding plate for unstable pertrochanteric fractures and uniaxial Medoff sliding plate for subtrochanteric fractures, the second (intramedullary nail/dynamic hip screw) uses intramedullary nail for subtrochanteric fractures and for pertrochanteric fractures with intertrochanteric comminution or subtrochanteric extension. All orthopedic surgeries are registered in a regional database. All consecutive trochanteric fracture operations during 2011-2012 (n = 856) and subsequent technical reoperations (n = 40) were derived from the database. Reoperations were analysed and classified into the categories adjustment (percutaneous removal of the locking screw of the Medoff sliding plate or the intramedullary nail, followed by fracture healing) or minor, intermediate (reosteosynthesis) or major (hip joint replacement, Girdlestone or persistent nonunion) technical complications. The relative risk of intermediate or major technical complications was 4.2 (1.2-14) times higher in unstable pertrochanteric fractures and 4.6 (1.1-19) times higher in subtrochanteric fractures with treatment protocol: intramedullary nail/dynamic hip screw, compared to treatment protocol: Medoff sliding plate/dynamic hip screw. Overall rates of intermediate and major technical complications in unstable pertrochanteric and subtrochanteric fractures were with biaxial Medoff sliding plate 0.68%, with uniaxial Medoff sliding plate 1.4%, with dynamic hip screw 3.4% and with intramedullary nail 7.2%. The treatment protocol based on use of biaxial Medoff sliding plate for unstable pertrochanteric and uniaxial Medoff sliding plate for subtrochanteric fractures reduced the risk of severe technical complications compared to using the treatment protocol based on dynamic hip screw and intramedullary nail.
Rouamba, J; Bruneau, J C; Sory, I; Kagbadouno, M; Coulibaly, B; Jamonneau, V; Solano, P; Rayaisse, J B; Camara, M; Courtin, F
2013-05-01
Seeking to understand how humans, by the settlements they create (among other means), influence the operation of the pathogen system of sleeping sickness, the authors performed a diachronic analysis of the landscape and settlement dynamics by comparing topographic maps from 1957, a satellite image from 2004, and georeferenced censuses from 2009 and 2001. It appears that the extreme mobility of the population between the continent and the islands is the principal cause for the continuation of this disease at the mouth of the Rio Pongo.
Tactical radar technology study. Volume 1: Executive summary
NASA Astrophysics Data System (ADS)
Rosien, R.; Cardone, L.; Hammers, D.; Klein, A.; Nozawa, E.
1980-03-01
This report presents results of a study to identify new technology required to provide advanced multi-threat performance capabilities in future tactical surveillance radar designs. A baseline design with optional subsystem characteristics has been synthesized to provide both functional and operational survivability in a dynamic and hostile situation postulated for the post 1985 time frame. Comparisons have been made of available technology with that required by the new baseline design to identify new technology requirements. Recommendations are presented for critical new technology programs including estimates of technical risks, costs and required development time.
Alternative liability insurance: a physician-owned captive insurance company.
Lee, G F
1991-06-01
The physician-owned captive insurance company is a lesser known but dynamic alternative to commercial insurance. The Physicians Reimbursement Fund, Ltd., was founded in 1975 in response to the malpractice crisis of that year. The company insures about 100 physicians in high-risk specialties. Approximately one half are obstetrician-gynecologists. Innovative management has enabled this company to operate successfully at a fraction of the premium charged by typical insurance companies. Fourteen years of experience have demonstrated the ability of this company to successfully serve the needs of the community.
Computational Workbench for Multibody Dynamics
NASA Technical Reports Server (NTRS)
Edmonds, Karina
2007-01-01
PyCraft is a computer program that provides an interactive, workbenchlike computing environment for developing and testing algorithms for multibody dynamics. Examples of multibody dynamic systems amenable to analysis with the help of PyCraft include land vehicles, spacecraft, robots, and molecular models. PyCraft is based on the Spatial-Operator- Algebra (SOA) formulation for multibody dynamics. The SOA operators enable construction of simple and compact representations of complex multibody dynamical equations. Within the Py-Craft computational workbench, users can, essentially, use the high-level SOA operator notation to represent the variety of dynamical quantities and algorithms and to perform computations interactively. PyCraft provides a Python-language interface to underlying C++ code. Working with SOA concepts, a user can create and manipulate Python-level operator classes in order to implement and evaluate new dynamical quantities and algorithms. During use of PyCraft, virtually all SOA-based algorithms are available for computational experiments.
PRESSCA: A regional operative Early Warning System for landslides risk scenario assessment
NASA Astrophysics Data System (ADS)
Ponziani, Francesco; Stelluti, Marco; Berni, Nicola; Brocca, Luca; Moramarco, Tommaso
2013-04-01
The Italian national alert system for the hydraulic and hydrogeological risk is ensured by the National Civil Protection Department, through the "Functional Centres" Network, together with scientific/technical Support Centres, named "Competence Centres". The role of the Functional Centres is to alert regional/national civil protection network, to manage the prediction and the monitoring phases, thus ensuring the flow of data for the management of the emergency. The Umbria regional alerting procedure is based on three increasing warning levels of criticality for 6 sub-areas (~1200 km²). Specifically, for each duration (from 1 to 48 hours), three criticality levels are assigned to the rainfall values corresponding to a recurrence interval of 2, 5, and 10 years. In order to improve confidence on the daily work for hydrogeological risk assessment and management, a simple and operational early warning system for the prediction of shallow landslide triggering on regional scale was implemented. The system is primarily based on rainfall thresholds, which represent the main element of evaluation for the early-warning procedures of the Italian Civil Protection system. Following previous studies highlighting that soil moisture conditions play a key role on landslide triggering, a continuous physically-based soil water balance model was implemented for the estimation of soil moisture conditions over the whole regional territory. In fact, a decreasing trend between the cumulated rainfall values over 24, 36 and 48 hours and the soil moisture conditions prior to past landslide events was observed. This trend provides an easy-to-use tool to dynamically adjust the operational rainfall thresholds with the soil moisture conditions simulated by the soil water balance model prior to rainfall events. The application of this procedure allowed decreasing the uncertainties tied to the application of the rainfall thresholds only. The system is actually operational in real-time and it was recently coupled with quantitative rainfall and temperature forecasts (given by the COSMO ME local scale models for Umbria) to extend the prediction up to 72 hours forecast. The main output is constituted by four spatially distributed early warning indicators (normal, caution, warning, alarm), in compliance with national and regional law, based on the comparison between the observed (forecasted) rainfall and the dynamic thresholds. The early warning indicators, calculated over the whole regional territory, are combined with susceptibility and vulnerability layers using a WEB-GIS platform, in order to build a near real time risk scenario. The main outcome of the system is a spatially distributed landslide hazard map with the highlight of areas where local risk situations may arise due to landslides induced by the interaction between meteorological forcing and the presence of vulnerability elements. The System is inclusive of specific sections dedicated to areas with specific risks (as debris flows prone areas), with specific thresholds. The main purpose of this study is firstly to describe the operational early warning system. Then, the integration of near real-time soil moisture data obtained through the satellite sensor ASCAT (Advanced SCATterometer) within the system is shown. This could allow enhancing the reliability of the modelled soil moisture data over the regional territory. The recent rainfall event of 11-14 November 2012 is used as case study. Reported triggered landslides are studied and used in order to check/refine the early warning system.
Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation
2016-03-17
ARL-TR-7629 ● MAR 2016 US Army Research Laboratory Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time...ARL-TR-7629 ● MAR 2016 US Army Research Laboratory Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation...SUBTITLE Making Optic Flow Robust to Dynamic Lighting Conditions for Real-Time Operation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT
Data-Driven Model Reduction and Transfer Operator Approximation
NASA Astrophysics Data System (ADS)
Klus, Stefan; Nüske, Feliks; Koltai, Péter; Wu, Hao; Kevrekidis, Ioannis; Schütte, Christof; Noé, Frank
2018-06-01
In this review paper, we will present different data-driven dimension reduction techniques for dynamical systems that are based on transfer operator theory as well as methods to approximate transfer operators and their eigenvalues, eigenfunctions, and eigenmodes. The goal is to point out similarities and differences between methods developed independently by the dynamical systems, fluid dynamics, and molecular dynamics communities such as time-lagged independent component analysis, dynamic mode decomposition, and their respective generalizations. As a result, extensions and best practices developed for one particular method can be carried over to other related methods.
12 CFR 217.161 - Qualification requirements for incorporation of operational risk mitigants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... operational risk exposure to reflect qualifying operational risk mitigants if: (1) The Board-regulated...) Qualifying operational risk mitigants. Qualifying operational risk mitigants are: (1) Insurance that: (i) Is... institution assigns the company is assigned a PD equal to or less than 10 basis points; (ii) Has an initial...
12 CFR 324.161 - Qualification requirements for incorporation of operational risk mitigants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... operational risk exposure to reflect qualifying operational risk mitigants if: (1) The FDIC-supervised...) Qualifying operational risk mitigants. Qualifying operational risk mitigants are: (1) Insurance that: (i) Is... institution assigns the company is assigned a PD equal to or less than 10 basis points; (ii) Has an initial...
Trust-based learning and behaviors for convoy obstacle avoidance
NASA Astrophysics Data System (ADS)
Mikulski, Dariusz G.; Karlsen, Robert E.
2015-05-01
In many multi-agent systems, robots within the same team are regarded as being fully trustworthy for cooperative tasks. However, the assumption of trustworthiness is not always justified, which may not only increase the risk of mission failure, but also endanger the lives of friendly forces. In prior work, we addressed this issue by using RoboTrust to dynamically adjust to observed behaviors or recommendations in order to mitigate the risks of illegitimate behaviors. However, in the simulations in prior work, all members of the convoy had knowledge of the convoy goal. In this paper, only the lead vehicle has knowledge of the convoy goals and the follow vehicles must infer trustworthiness strictly from lead vehicle performance. In addition, RoboTrust could only respond to observed performance and did not dynamically learn agent behavior. In this paper, we incorporate an adaptive agent-specific bias into the RoboTrust algorithm that modifies its trust dynamics. This bias is learned incrementally from agent interactions, allowing good agents to benefit from faster trust growth and slower trust decay and bad agents to be penalized with slower trust growth and faster trust decay. We then integrate this new trust model into a trust-based controller for decentralized autonomous convoy operations. We evaluate its performance in an obstacle avoidance mission, where the convoy attempts to learn the best speed and following distances combinations for an acceptable obstacle avoidance probability.
Tourre, Yves M; Lacaux, Jean-Pierre; Vignolles, Cécile; Lafaye, Murielle
2009-11-11
Climate and environment vary across many spatio-temporal scales, including the concept of climate change, which impact on ecosystems, vector-borne diseases and public health worldwide. To develop a conceptual approach by mapping climatic and environmental conditions from space and studying their linkages with Rift Valley Fever (RVF) epidemics in Senegal. Ponds in which mosquitoes could thrive were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on pond dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localisation of vulnerable hosts such as penned cattle (from QuickBird satellite) were also used. Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds' dynamics. While Zones Potentially Occupied by Mosquitoes are mapped, detailed risk areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of areas where cattle are potentially exposed to mosquitoes' bites. This new conceptual approach, using precise remote-sensing techniques, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of operational early warning systems for RVF based on both natural and anthropogenic climatic and environmental changes. In a climate change context, this approach could also be applied to other vector-borne diseases and places worldwide.
Operational Dynamic Configuration Analysis
NASA Technical Reports Server (NTRS)
Lai, Chok Fung; Zelinski, Shannon
2010-01-01
Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified schedule containing k configurations based on stability score of the sector combinations among the raw operational configurations. In addition, the number of the selected configurations is determined based on balance between accuracy and assessment complexity.
Testing efficacy of monthly forecast application in agrometeorology: Winter wheat phenology dynamic
NASA Astrophysics Data System (ADS)
Lalic, B.; Jankovic, D.; Dekic, Lj; Eitzinger, J.; Firanj Sremac, A.
2017-02-01
Use of monthly weather forecast as input meteorological data for agrometeorological forecasting, crop modelling and plant protection can foster promising applications in agricultural production. Operational use of monthly or seasonal weather forecast can help farmers to optimize field operations (fertilizing, irrigation) and protection measures against plant diseases and pests by taking full advantage of monthly forecast information in predicting plant development, pest and disease risks and yield potentials few weeks in advance. It can help producers to obtain stable or higher yield with the same inputs and to minimise losses caused by weather. In Central and South-Eastern Europe ongoing climate change lead to shifts of crops phenology dynamics (i.e. in Serbia 4-8 weeks earlier in 2016 than in previous years) and brings this subject in the front of agronomy science and practice. Objective of this study is to test efficacy of monthly forecast in predicting phenology dynamics of different winter wheat varieties, using phenological model developed by Forecasting and Warning Service of Serbia in plant protection. For that purpose, historical monthly forecast for four months (March 1, 2005 - June 30, 2005) was assimilated from ECMWF MARS archive for 50 ensemble members and control run. Impact of different agroecological conditions is tested by using observed and forecasted data for two locations - Rimski Sancevi (Serbia) and Groß-Enzersdorf (Austria).
Modelling of dynamic contact length in rail grinding process
NASA Astrophysics Data System (ADS)
Zhi, Shaodan; Li, Jianyong; Zarembski, A. M.
2014-09-01
Rails endure frequent dynamic loads from the passing trains for supporting trains and guiding wheels. The accumulated stress concentrations will cause the plastic deformation of rail towards generating corrugations, contact fatigue cracks and also other defects, resulting in more dangerous status even the derailment risks. So the rail grinding technology has been invented with rotating grinding stones pressed on the rail with defects removal. Such rail grinding works are directed by experiences rather than scientifically guidance, lacking of flexible and scientific operating methods. With grinding control unit holding the grinding stones, the rail grinding process has the characteristics not only the surface grinding but also the running railway vehicles. First of all, it's important to analyze the contact length between the grinding stone and the rail, because the contact length is a critical parameter to measure the grinding capabilities of stones. Moreover, it's needed to build up models of railway vehicle unit bonded with the grinding stone to represent the rail grinding car. Therefore the theoretical model for contact length is developed based on the geometrical analysis. And the calculating models are improved considering the grinding car's dynamic behaviors during the grinding process. Eventually, results are obtained based on the models by taking both the operation parameters and the structure parameters into the calculation, which are suitable for revealing the process of rail grinding by combining the grinding mechanism and the railway vehicle systems.
A financial network perspective of financial institutions' systemic risk contributions
NASA Astrophysics Data System (ADS)
Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang; Uryasev, Stan
2016-08-01
This study considers the effects of the financial institutions' local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial networks are constructed from dynamic conditional correlations (DCC) with graph filtering method of minimum spanning trees (MSTs). Then we investigate dynamics of systemic risk contributions of financial institution. Also we study dynamics of financial institution's local topology structure in the financial network. Finally, we analyze the quantitative relationships between the local topology structure and systemic risk contribution with panel data regression analysis. We find that financial institutions with greater node strength, larger node betweenness centrality, larger node closeness centrality and larger node clustering coefficient tend to be associated with larger systemic risk contributions.
NASA Astrophysics Data System (ADS)
Lall, U.
2009-12-01
The concern with anthropogenic climate change has spurred significant interest in strategies for climate change adaptation in water resource systems planning and management. The thesis of this talk is that this is a subset of strategies that need to sustainably design and operate structural and non-structural systems for managing resources in a changing environment. Even with respect to a changing climate, the largest opportunity for immediate adaptation to a changing climate may be provided by an improved understanding and prediction capability for seasonal to interannual and decadal climate variability. I shall lay out some ideas as to how this can be done and provide an example for reservoir water allocation and management, and one for flood risk management.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-12
... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2011-1106] Dynamic Positioning... ``Mobile Offshore Drilling Unit Dynamic Positioning Guidance''. The notice recommended owners and operators of Mobile Offshore Drilling Units (MODUs) follow Marine Technology Society (MTS) Dynamic Positioning...
A Simplified Approach to Risk Assessment Based on System Dynamics: An Industrial Case Study.
Garbolino, Emmanuel; Chery, Jean-Pierre; Guarnieri, Franck
2016-01-01
Seveso plants are complex sociotechnical systems, which makes it appropriate to support any risk assessment with a model of the system. However, more often than not, this step is only partially addressed, simplified, or avoided in safety reports. At the same time, investigations have shown that the complexity of industrial systems is frequently a factor in accidents, due to interactions between their technical, human, and organizational dimensions. In order to handle both this complexity and changes in the system over time, this article proposes an original and simplified qualitative risk evaluation method based on the system dynamics theory developed by Forrester in the early 1960s. The methodology supports the development of a dynamic risk assessment framework dedicated to industrial activities. It consists of 10 complementary steps grouped into two main activities: system dynamics modeling of the sociotechnical system and risk analysis. This system dynamics risk analysis is applied to a case study of a chemical plant and provides a way to assess the technological and organizational components of safety. © 2016 Society for Risk Analysis.
Koopman operator theory: Past, present, and future
NASA Astrophysics Data System (ADS)
Brunton, Steven; Kaiser, Eurika; Kutz, Nathan
2017-11-01
Koopman operator theory has emerged as a dominant method to represent nonlinear dynamics in terms of an infinite-dimensional linear operator. The Koopman operator acts on the space of all possible measurement functions of the system state, advancing these measurements with the flow of the dynamics. A linear representation of nonlinear dynamics has tremendous potential to enable the prediction, estimation, and control of nonlinear systems with standard textbook methods developed for linear systems. Dynamic mode decomposition has become the leading data-driven method to approximate the Koopman operator, although there are still open questions and challenges around how to obtain accurate approximations for strongly nonlinear systems. This talk will provide an introductory overview of modern Koopman operator theory, reviewing the basics and describing recent theoretical and algorithmic developments. Particular emphasis will be placed on the use of data-driven Koopman theory to characterize and control high-dimensional fluid dynamic systems. This talk will also address key advances in the rapidly growing fields of machine learning and data science that are likely to drive future developments.
Dynamic building risk assessment theoretic model for rainstorm-flood utilization ABM and ABS
NASA Astrophysics Data System (ADS)
Lai, Wenze; Li, Wenbo; Wang, Hailei; Huang, Yingliang; Wu, Xuelian; Sun, Bingyun
2015-12-01
Flood is one of natural disasters with the worst loss in the world. It needs to assess flood disaster risk so that we can reduce the loss of flood disaster. Disaster management practical work needs the dynamic risk results of building. Rainstorm flood disaster system is a typical complex system. From the view of complex system theory, flood disaster risk is the interaction result of hazard effect objects, rainstorm flood hazard factors, and hazard environments. Agent-based modeling (ABM) is an important tool for complex system modeling. Rainstorm-flood building risk dynamic assessment method (RFBRDAM) was proposed using ABM in this paper. The interior structures and procedures of different agents in proposed meth had been designed. On the Netlogo platform, the proposed method was implemented to assess the building risk changes of the rainstorm flood disaster in the Huaihe River Basin using Agent-based simulation (ABS). The results indicated that the proposed method can dynamically assess building risk of the whole process for the rainstorm flood disaster. The results of this paper can provide one new approach for flood disaster building risk dynamic assessment and flood disaster management.
Dynamic Attack Tree Tool for Risk Assessments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, Karl
2012-03-13
DATT enables interactive visualization, qualitative analysis and recording of cyber and other forms of risk. It facilitates dynamic risk-based approaches (as opposed to static compliance-based) to security and risk management in general. DATT allows decision makers to consistently prioritize risk mitigation strategies and quickly see where attention is most needed across the enterprise.
[Status of aortic valve reconstruction and Ross operation in aortic valve diseases].
Sievers, Hans H
2002-08-01
At first glance the aortic valve is a relative simple valve mechanism connecting the left ventricle and the ascending aorta. Detailed analysis of the different components of the aortic valve including the leaflets and sinuses revealed a complex motion of each part leading to a perfect durable valve mechanism at rest and during exercise. Theoretically, the reconstruction or imitation of these structures in patients with aortic valve disease should lead to optimal results. Prerequisite is the exact knowledge of the important functional characteristics of the aortic valve. The dynamic behavior of the aortic root closely harmonizing with the leaflets not only warrants stress minimizing and valve durability, but also optimizes coronary flow, left ventricular function and aortic impedance. The newly discovered contractile capacity of the leaflets and the root components are important for tuning the dynamics. Isolated reconstruction of the aortic valve such as decalcification, commissurotomy, plication of ring or leaflets of a tricuspid aortic valve and cusp extension are seldom indicated in contrast to the reconstruction of the bicuspid insufficient valve. Proper indication and skilled techniques lead to excellent hemodynamic and clinical intermediate-term result up to 7 years after reconstruction. Latest follow-up revealed a mean aortic insufficiency of 0.7, maximal pressure gradient of 11.4 +/- 8.5 mm Hg with zero hospital or late mortality, reoperation or thromboembolic events in 22 patients. The reconstructive techniques for aortic root aneurysm and/or type A dissection according to David or Yacoub have become routine procedures in the last 10 years. The hemodynamic and clinical results are excellent with low reoperation rate and very low risk of thromboembolism. Generally, a maximal diameter of the root of 5 cm is indicative for performing the operation. In patients with Marfan's syndrome the reconstruction should be advanced even with smaller diameters especially if these are progressive and combined with aortic insufficiency. ROSS-OPERATION: The Ross-Operation includes the replacement of the diseased aortic valve with the pulmonary autograft and reconstruction of the right ventricular outflow tract using a homograft. The hemodynamic results are excellent regarding the autograft and also the clinical results with very low thromboembolic risk and acceptable reoperation rate. This method is especially indicated for active young patients, women, who desire children, athletes and patients in general, who like to avoid long-term anticoagulation. In some cases the homograft may develop a dysfunction predominantly a pulmonary stenosis requiring reoperation. In the author's series of 245 Ross-operations in 12 years the homograft had to be replaced in 4 cases without letality. Innovative, decellularized homografts with the potential to repopulate with autologeous cells show promising results after 1 year of clinical implantation without signs of antibody development. Probably these tissue-engineered modification may improve the homograft results. The reconstructive techniques of the aortic valve and the Ross-operation have a certain risk of reoperation that must be weighed against the advantages of very low hospital and late valve related death, excellent hemodynamics, very low risk of macro- and microembolism as well as bleeding, lack of long-term anticoagulation and unrestricted life-style.
Assessing the Risk of Crew Injury Due to Dynamic Loads During Spaceflight
NASA Technical Reports Server (NTRS)
Somers, J. T.; Gernhardt, M.; Newby, N.
2014-01-01
Spaceflight requires tremendous amounts of energy to achieve Earth orbit and to attain escape velocity for interplanetary missions. Although the majority of the energy is managed in such a way as to limit the accelerations on the crew, several mission phases may result in crew exposure to dynamic loads. In the automotive industry, risk of serious injury can be tolerated because the probability of a crash is remote each time a person enters a vehicle, resulting in a low total risk of injury. For spaceflight, the level of acceptable injury risk must be lower to achieve a low total risk of injury because the dynamic loads are expected on each flight. To mitigate the risk of injury due to dynamic loads, the NASA Human Research Program has developed a research plan to inform the knowledge gaps and develop relevant tools for assessing injury risk. The risk of injury due to dynamic loads can be further subdivided into extrinsic and intrinsic risk factors. Extrinsic risk factors include the vehicle dynamic profile, seat and restraint design, and spacesuit design. Human tolerance to loads varies considerably depending on the direction, amplitude, and rise-time of acceleration therefore the orientation of the body to the dynamic vector is critical to determining crew risk of injury. Although a particular vehicle dynamic profile may be safe for a particular design, the seat, restraint, and suit designs can affect the risk of injury due to localized effects. In addition, characteristics intrinsic to the crewmember may also contribute to the risk of injury, such as crewmember sex, age, anthropometry, and deconditioning due to spaceflight, and each astronaut may have a different risk profile because of these factors. The purpose of the research plan is to address any knowledge gaps in the risk factors to mitigate injury risk. Methods for assessing injury risk have been well documented in other analogous industries and include human volunteer testing, human exposure to dynamic environments, post-mortem human subject (PMHS) testing, animal testing, anthropomorphic test devices (ATD), dynamic models of the human, numerical models of ATDs, and numerical models of the human. Each has inherent strengths and limitations. For example, human volunteer testing is advantageous because a population can be selected that is similar to the astronaut corps; however, because of the inherent ethical limitations, only sub-injurious conditions can be tested. PMHSs can be tested in a variety of conditions including injurious levels, but the responses are not completely analogous to living human subjects. In addition, it is exceedingly difficult to select a PMHS population that is similar to the astronaut corps. ATDs are currently widely used in the automotive industry and military because they are highly repeatable and durable. Unfortunately, because they are mechanical models of the human body, the biofidelity of the responses are limited to dynamic conditions used to validate the ATD. Numerical models of the ATD, in addition to the strengths and limitations for ATDs, are easy to use for a variety of designs before a design is fabricated, but also have additional limitations for ATDs, are easy to use for a variety of designs before a design is fabricated, but also have additional uncertainty. Dynamic models are simple and easy to use, but do not account for localized effects of the seat and suit. Finally, numerical models of the human have the potential to have the most advantages; however, the current models are not validated for the conditions expected during spaceflight. To properly assess spaceflight conditions with numerical human models, human data would be needed to optimize the model responses for those conditions. Using the appropriate assessment method with the knowledge gained for each risk factor, an appropriate approach for mitigating the risk of injury due to dynamic loads can be developed ensuring crew safety in future NASA vehicles.
49 CFR 232.109 - Dynamic brake requirements.
Code of Federal Regulations, 2010 CFR
2010-10-01
... system that includes dynamic brakes shall adopt and comply with written operating rules governing safe... verifiable data and research. (k) A railroad operating a train with a brake system that includes dynamic... 49 Transportation 4 2010-10-01 2010-10-01 false Dynamic brake requirements. 232.109 Section 232...
Modeling Load Dynamics to Support Resiliency-based Operations in Low-Inertia Microgrids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuffner, Francis K.; Schneider, Kevin P.; Hansen, Jacob
Microgrids have repeatedly demonstrated the ability to provide uninterrupted service to critical end-use loads during normal outages, severe weather events, and natural disasters. While their ability to provide critical services is well documented, microgrids present a more dynamic operational environment than grid-connected distribution systems. The electrodynamics of a microgrid are commonly driven by the high inertia of rotating generators, which are common in many microgrids. In such high-inertia systems, the impact of end-use load electromechanical dynamics are often not examined. However, with the increased penetration of inverter-based generation with little or no inertia, it is necessary to consider the impactmore » that the dynamics of the end-use loads have on the operations of microgrids, particularly for a resiliency-based operation. These operations include, but are not limited to, switching operations, loss of generating units, and the starting of induction motors. This paper examines the importance of including multi-state electromechanical dynamic models of the end-use load when evaluating the operations of low inertia microgrids, and shows that by properly representing their behavior, it is possible to cost effectively size equipment while supporting resilient operations of critical end-use loads.« less
Modeling Load Dynamics to Support Resiliency-based Operations in Low-Inertia Microgrids
Tuffner, Francis K.; Schneider, Kevin P.; Hansen, Jacob; ...
2018-03-07
Microgrids have repeatedly demonstrated the ability to provide uninterrupted service to critical end-use loads during normal outages, severe weather events, and natural disasters. While their ability to provide critical services is well documented, microgrids present a more dynamic operational environment than grid-connected distribution systems. The electrodynamics of a microgrid are commonly driven by the high inertia of rotating generators, which are common in many microgrids. In such high-inertia systems, the impact of end-use load electromechanical dynamics are often not examined. However, with the increased penetration of inverter-based generation with little or no inertia, it is necessary to consider the impactmore » that the dynamics of the end-use loads have on the operations of microgrids, particularly for a resiliency-based operation. These operations include, but are not limited to, switching operations, loss of generating units, and the starting of induction motors. This paper examines the importance of including multi-state electromechanical dynamic models of the end-use load when evaluating the operations of low inertia microgrids, and shows that by properly representing their behavior, it is possible to cost effectively size equipment while supporting resilient operations of critical end-use loads.« less
Strategic roles for behaviour change communication in a changing malaria landscape.
Koenker, Hannah; Keating, Joseph; Alilio, Martin; Acosta, Angela; Lynch, Matthew; Nafo-Traore, Fatoumata
2014-01-02
Strong evidence suggests that quality strategic behaviour change communication (BCC) can improve malaria prevention and treatment behaviours. As progress is made towards malaria elimination, BCC becomes an even more important tool. BCC can be used 1) to reach populations who remain at risk as transmission dynamics change (e.g. mobile populations), 2) to facilitate identification of people with asymptomatic infections and their compliance with treatment, 3) to inform communities of the optimal timing of malaria control interventions, and 4) to explain changing diagnostic concerns (e.g. increasing false negatives as parasite density and multiplicity of infections fall) and treatment guidelines. The purpose of this commentary is to highlight the benefits and value for money that BCC brings to all aspects of malaria control, and to discuss areas of operations research needed as transmission dynamics change.
Strategic roles for behaviour change communication in a changing malaria landscape
2014-01-01
Strong evidence suggests that quality strategic behaviour change communication (BCC) can improve malaria prevention and treatment behaviours. As progress is made towards malaria elimination, BCC becomes an even more important tool. BCC can be used 1) to reach populations who remain at risk as transmission dynamics change (e.g. mobile populations), 2) to facilitate identification of people with asymptomatic infections and their compliance with treatment, 3) to inform communities of the optimal timing of malaria control interventions, and 4) to explain changing diagnostic concerns (e.g. increasing false negatives as parasite density and multiplicity of infections fall) and treatment guidelines. The purpose of this commentary is to highlight the benefits and value for money that BCC brings to all aspects of malaria control, and to discuss areas of operations research needed as transmission dynamics change. PMID:24383426
NASA Astrophysics Data System (ADS)
Taha, Ahmad Fayez
Transportation networks, wearable devices, energy systems, and the book you are reading now are all ubiquitous cyber-physical systems (CPS). These inherently uncertain systems combine physical phenomena with communication, data processing, control and optimization. Many CPSs are controlled and monitored by real-time control systems that use communication networks to transmit and receive data from systems modeled by physical processes. Existing studies have addressed a breadth of challenges related to the design of CPSs. However, there is a lack of studies on uncertain CPSs subject to dynamic unknown inputs and cyber-attacks---an artifact of the insertion of communication networks and the growing complexity of CPSs. The objective of this dissertation is to create secure, computational foundations for uncertain CPSs by establishing a framework to control, estimate and optimize the operation of these systems. With major emphasis on power networks, the dissertation deals with the design of secure computational methods for uncertain CPSs, focusing on three crucial issues---(1) cyber-security and risk-mitigation, (2) network-induced time-delays and perturbations and (3) the encompassed extreme time-scales. The dissertation consists of four parts. In the first part, we investigate dynamic state estimation (DSE) methods and rigorously examine the strengths and weaknesses of the proposed routines under dynamic attack-vectors and unknown inputs. In the second part, and utilizing high-frequency measurements in smart grids and the developed DSE methods in the first part, we present a risk mitigation strategy that minimizes the encountered threat levels, while ensuring the continual observability of the system through available, safe measurements. The developed methods in the first two parts rely on the assumption that the uncertain CPS is not experiencing time-delays, an assumption that might fail under certain conditions. To overcome this challenge, networked unknown input observers---observers/estimators for uncertain CPSs---are designed such that the effect of time-delays and cyber-induced perturbations are minimized, enabling secure DSE and risk mitigation in the first two parts. The final part deals with the extreme time-scales encompassed in CPSs, generally, and smart grids, specifically. Operational decisions for long time-scales can adversely affect the security of CPSs for faster time-scales. We present a model that jointly describes steady-state operation and transient stability by combining convex optimal power flow with semidefinite programming formulations of an optimal control problem. This approach can be jointly utilized with the aforementioned parts of the dissertation work, considering time-delays and DSE. The research contributions of this dissertation furnish CPS stakeholders with insights on the design and operation of uncertain CPSs, whilst guaranteeing the system's real-time safety. Finally, although many of the results of this dissertation are tailored to power systems, the results are general enough to be applied for a variety of uncertain CPSs.
NASA Technical Reports Server (NTRS)
Agarwal, G. C.; Osafo-Charles, F.; Oneill, W. D.; Gottlieb, G. L.
1982-01-01
Time series analysis is applied to model human operator dynamics in pursuit and compensatory tracking modes. The normalized residual criterion is used as a one-step analytical tool to encompass the processes of identification, estimation, and diagnostic checking. A parameter constraining technique is introduced to develop more reliable models of human operator dynamics. The human operator is adequately modeled by a second order dynamic system both in pursuit and compensatory tracking modes. In comparing the data sampling rates, 100 msec between samples is adequate and is shown to provide better results than 200 msec sampling. The residual power spectrum and eigenvalue analysis show that the human operator is not a generator of periodic characteristics.
Performance limitations of bilateral force reflection imposed by operator dynamic characteristics
NASA Technical Reports Server (NTRS)
Chapel, Jim D.
1989-01-01
A linearized, single-axis model is presented for bilateral force reflection which facilitates investigation into the effects of manipulator, operator, and task dynamics, as well as time delay and gain scaling. Structural similarities are noted between this model and impedance control. Stability results based upon this model impose requirements upon operator dynamic characteristics as functions of system time delay and environmental stiffness. An experimental characterization reveals the limited capabilities of the human operator to meet these requirements. A procedure is presented for determining the force reflection gain scaling required to provide stability and acceptable operator workload. This procedure is applied to a system with dynamics typical of a space manipulator, and the required gain scaling is presented as a function of environmental stiffness.
ORATOS: ESA's future flight dynamics operations system
NASA Astrophysics Data System (ADS)
Dreger, Frank; Fertig, Juergen; Muench, Rolf
The Orbit and Attitude Operations System (ORATOS -- the European Space Agency's future orbit and attitude operations system -- will be in use from the mid-nineties until well beyond the year 2000. The ORATOS design is based on the experience from flight dynamics support to all past ESA missions. The ORATOS computer hardware consists of a network of powerful UNIX workstations. ORATOS resides on several hardware platforms, each comprising one or more fileservers, several client workstations and the associated communications interface hardware. The ORATOS software is structured into three layers. The flight dynamics applications layer, the support layer and the operating system layer. This architectural design separates the flight dynamics application software from the support tools and operating system facilities. It allows upgrading and replacement of operating system facilities with a minimum (or no) effect on the application layer.
Dual redundant arm system operational quality measures and their applications - Dynamic measures
NASA Technical Reports Server (NTRS)
Lee, Sukhan; Kim, Sungbok
1990-01-01
Dual-arm dynamic operation quality measures are presented which quantify the efficiency and capability of generating Cartesian accelerations by two cooperative arms based on the analysis of dual-arm dynamic interactions. Dual-arm dynamic manipulability is defined as the efficiency of generating Cartesian accelerations under the dynamic and kinematic interactions between individual arms and an object under manipulation. The analysis of dual-arm dynamic interactions is based on the so-called Cartesian space agent model of an arm, which represents an individual arm as a force source acting upon a point mass with the effective Cartesian space arm dynamics and an environment or an object under manipulation. The Cartesian space agent model of an arm makes it possible to derive the dynamic and kinematic constraints involved in the transport, assembly and grasping modes of dual-arm cooperation. A task-oriented operational quality measure, (TOQd) is defined by evaluating dual-arm dynamic manipulability in terms of given task requirements. TOQd is used in dual-arm joint configuration optimization. Simulation results are shown. A complete set of forward dynamic equations for a dual-arm system is derived, and dual-arm dynamic operational quality measures for various modes of dual-arm cooperation allowing sliding contacts are established.
de Korne, Dirk F; van Wijngaarden, Jeroen D H; van Rooij, Jeroen; Wauben, Linda S G L; Hiddema, U Frans; Klazinga, Niek S
2012-09-01
To evaluate the use of floor marking on the positioning of surgical devices within the clean air flow in an operating room (OR) to minimise infection risk. Laminar flow clean air systems are important in preventing infection in ORs but, for optimal results, surgical devices must be correctly positioned. The authors evaluated floor marking in four ORs at an eye hospital using time series analysis. Through observations during 829 surgeries over a 20-month period, the positions of surgical devices were determined. Eight semistructured interviews with surgical staff were conducted to assess user experiences and team dynamics. Before marking, the instrument table was positioned completely within the laminar flow in only 6.1% of the cases. This increased to 36.1% and finally 53.8%. Mayo stands were increasingly positioned within the laminar flow: from 74.2% to 84.7%. The surgical lamp decreasingly obstructed flow: from 41.8% to 28.7%. At T3 (20 months), however, in 48.6% of the applicable cases the lamp was positioned in the flow again. Discussions and site visits between airside operators and surgical staff resulted in increasing awareness of specific risk areas in the OR. OR floor markings facilitated and stimulated safety awareness and resulted in significantly increased compliance with the positioning of surgical devices in the clean air flow. Safety and quality approaches in hospital care, therefore, should include a human factors approach that focuses on system design in addition to teaching clinical and non-technical skills.
Hickey, Graeme L.; Grant, Stuart W.; Murphy, Gavin J.; Bhabra, Moninder; Pagano, Domenico; McAllister, Katherine; Buchan, Iain; Bridgewater, Ben
2013-01-01
OBJECTIVES Progressive loss of calibration of the original EuroSCORE models has necessitated the introduction of the EuroSCORE II model. Poor model calibration has important implications for clinical decision-making and risk adjustment of governance analyses. The objective of this study was to explore the reasons for the calibration drift of the logistic EuroSCORE. METHODS Data from the Society for Cardiothoracic Surgery in Great Britain and Ireland database were analysed for procedures performed at all National Health Service and some private hospitals in England and Wales between April 2001 and March 2011. The primary outcome was in-hospital mortality. EuroSCORE risk factors, overall model calibration and discrimination were assessed over time. RESULTS A total of 317 292 procedures were included. Over the study period, mean age at surgery increased from 64.6 to 67.2 years. The proportion of procedures that were isolated coronary artery bypass grafts decreased from 67.5 to 51.2%. In-hospital mortality fell from 4.1 to 2.8%, but the mean logistic EuroSCORE increased from 5.6 to 7.6%. The logistic EuroSCORE remained a good discriminant throughout the study period (area under the receiver-operating characteristic curve between 0.79 and 0.85), but calibration (observed-to-expected mortality ratio) fell from 0.76 to 0.37. Inadequate adjustment for decreasing baseline risk affected calibration considerably. DISCUSSIONS Patient risk factors and case-mix in adult cardiac surgery change dynamically over time. Models like the EuroSCORE that are developed using a ‘snapshot’ of data in time do not account for this and can subsequently lose calibration. It is therefore important to regularly revalidate clinical prediction models. PMID:23152436
Representation of bidirectional ground motions for design spectra in building codes
Stewart, Jonathan P.; Abrahamson, Norman A.; Atkinson, Gail M.; Beker, Jack W.; Boore, David M.; Bozorgnia, Yousef; Campbell, Kenneth W.; Comartin, Craig D.; Idriss, I.M.; Lew, Marshall; Mehrain, Michael; Moehle, Jack P.; Naeim, Farzad; Sabol, Thomas A.
2011-01-01
The 2009 NEHRP Provisions modified the definition of horizontal ground motion from the geometric mean of spectral accelerations for two components to the peak response of a single lumped mass oscillator regardless of direction. These maximum-direction (MD) ground motions operate under the assumption that the dynamic properties of the structure (e.g., stiffness, strength) are identical in all directions. This assumption may be true for some in-plan symmetric structures, however, the response of most structures is dominated by modes of vibration along specific axes (e.g., longitudinal and transverse axes in a building), and often the dynamic properties (especially stiffness) along those axes are distinct. In order to achieve structural designs consistent with the collapse risk level given in the NEHRP documents, we argue that design spectra should be compatible with expected levels of ground motion along those principal response axes. The use of MD ground motions effectively assumes that the azimuth of maximum ground motion coincides with the directions of principal structural response. Because this is unlikely, design ground motions have lower probability of occurrence than intended, with significant societal costs. We recommend adjustments to make design ground motions compatible with target risk levels.
NASA Technical Reports Server (NTRS)
Foster, John V.; Hartman, David C.
2017-01-01
The NASA Unmanned Aircraft System (UAS) Traffic Management (UTM) project is conducting research to enable civilian low-altitude airspace and UAS operations. A goal of this project is to develop probabilistic methods to quantify risk during failures and off nominal flight conditions. An important part of this effort is the reliable prediction of feasible trajectories during off-nominal events such as control failure, atmospheric upsets, or navigation anomalies that can cause large deviations from the intended flight path or extreme vehicle upsets beyond the normal flight envelope. Few examples of high-fidelity modeling and prediction of off-nominal behavior for small UAS (sUAS) vehicles exist, and modeling requirements for accurately predicting flight dynamics for out-of-envelope or failure conditions are essentially undefined. In addition, the broad range of sUAS aircraft configurations already being fielded presents a significant modeling challenge, as these vehicles are often very different from one another and are likely to possess dramatically different flight dynamics and resultant trajectories and may require different modeling approaches to capture off-nominal behavior. NASA has undertaken an extensive research effort to define sUAS flight dynamics modeling requirements and develop preliminary high fidelity six degree-of-freedom (6-DOF) simulations capable of more closely predicting off-nominal flight dynamics and trajectories. This research has included a literature review of existing sUAS modeling and simulation work as well as development of experimental testing methods to measure and model key components of propulsion, airframe and control characteristics. The ultimate objective of these efforts is to develop tools to support UTM risk analyses and for the real-time prediction of off-nominal trajectories for use in the UTM Risk Assessment Framework (URAF). This paper focuses on modeling and simulation efforts for a generic quad-rotor configuration typical of many commercial vehicles in use today. An overview of relevant off-nominal multi-rotor behaviors will be presented to define modeling goals and to identify the prediction capability lacking in simplified models of multi-rotor performance. A description of recent NASA wind tunnel testing of multi-rotor propulsion and airframe components will be presented illustrating important experimental and data acquisition methods, and a description of preliminary propulsion and airframe models will be presented. Lastly, examples of predicted off-nominal flight dynamics and trajectories from the simulation will be presented.
Keenan, Karen A; Wohleber, Meleesa F; Perlsweig, Katherine A; Baldwin, Thomas M; Caviston, Michael; Lovalekar, Mita; Connaboy, Christopher; Nindl, Bradley C; Beals, Kim
2017-11-01
Previous research has examined lower extremity (LE) musculoskeletal injury (MSI) patterns and risk factors in Special Operations Forces (SOF) trainees, conventional military personnel, and athletes; however, it is unclear if SOF have the same patterns/risk factors. This study aimed to determine the association of musculoskeletal, balance, and physiological characteristics with LE MSI in SOF. Cohort study. A total of 726 Air Force (N=140), Navy Sea, Air, and Land (N=301), and Special Warfare Combatant Crewmen (N=285) SOF (age=25.72±4.77years, height=178.34±6.63cm, weight=84.28±9.03kg) participated in laboratory testing, including: LE muscular strength and flexibility; balance; body composition; anaerobic power/capacity; and aerobic capacity. Medical charts were reviewed for LE MSI 365days following laboratory testing. Participants were assigned by injury status and laboratory data stratified by tertile. Chi-square statistics were calculated to determine the frequency of LE MSI across tertiles for each characteristic. There was a significant association between LE MSI and: ankle inversion strength (weaker side: Χ(2)=17.703; stronger side: Χ(2)=18.911; p≤0.001); ankle eversion/inversion strength ratio (lower side: Χ(2)=13.456; higher side: Χ(2)=16.885; p≤0.001); hamstring flexibility (less flexible: Χ(2)=19.930; more flexible Χ(2)=15.185; p≤0.001); gastrocnemius-soleus flexibility (less flexible: Χ(2)=7.889, p=0.019); dynamic balance asymmetry (Χ(2)=7.444, p=0.024); Vestibular and Preference ratios (Χ(2)=9.124, p=0.010 and Χ(2)=6.572, p=0.037, respectively); and aerobic capacity (Χ(2)=13.935, p=0.001). Characteristics associated with LE MSI are unique in SOF. Human performance program initiatives should include efforts to optimize ankle strength and flexibility, maintain moderate hamstring flexibility, expand dynamic balance strategies, and maximize aerobic capacity to reduce LE MSI risk. Copyright © 2017 Sports Medicine Australia. All rights reserved.
A Method for Dynamic Risk Assessment and Management of Rockbursts in Drill and Blast Tunnels
NASA Astrophysics Data System (ADS)
Liu, Guo-Feng; Feng, Xia-Ting; Feng, Guang-Liang; Chen, Bing-Rui; Chen, Dong-Fang; Duan, Shu-Qian
2016-08-01
Focusing on the problems caused by rockburst hazards in deep tunnels, such as casualties, damage to construction equipment and facilities, construction schedule delays, and project cost increase, this research attempts to present a methodology for dynamic risk assessment and management of rockbursts in D&B tunnels. The basic idea of dynamic risk assessment and management of rockbursts is determined, and methods associated with each step in the rockburst risk assessment and management process are given, respectively. Among them, the main parts include a microseismic method for early warning the occurrence probability of rockburst risk, an estimation method that aims to assess potential consequences of rockburst risk, an evaluation method that utilizes a new quantitative index considering both occurrence probability and consequences for determining the level of rockburst risk, and the dynamic updating. Specifically, this research briefly describes the referenced microseismic method of warning rockburst, but focuses on the analysis of consequences and associated risk assessment and management of rockburst. Using the proposed method of risk assessment and management of rockburst, the occurrence probability, potential consequences, and the level of rockburst risk can be obtained in real-time during tunnel excavation, which contributes to the dynamic optimisation of risk mitigation measures and their application. The applicability of the proposed method has been verified by those cases from the Jinping II deep headrace and water drainage tunnels at depths of 1900-2525 m (with a length of 11.6 km in total for D&B tunnels).
NASA Astrophysics Data System (ADS)
Jamróz, Paweł; Ligęza, Paweł; Socha, Katarzyna
2012-12-01
The use of measurement apparatus under conditions which differ significantly from those under which the apparatus was adjusted carries the risk of altering the previously determined measurement characteristics. This is of special concern in the case of apparatus which is sensitive to external measurement conditions. Advanced measurement systems are equipped with algorithms which allow the negative effect of unstable environmental conditions on their static characteristics to be compensated for. Meanwhile, the problem of altered dynamic properties of such systems is often neglected. This paper presents a model study in which the effect of variable operational conditions on dynamic response of hot-wire anemometric measurement system in the case of simulated mine flows was investigated. A mathematical model of measurement system able to compensate the negative effect of changes in flow velocity and configuration of measurement apparatus itself on its dynamic properties was developed and investigated. Based on conducted experiments, we have developed an automatic regulation algorithm enabling the transmission band of measurement apparatus to be optimized for measurement conditions prevailing in mine environment.
Dynamic TIMI Risk Score for STEMI
Amin, Sameer T.; Morrow, David A.; Braunwald, Eugene; Sloan, Sarah; Contant, Charles; Murphy, Sabina; Antman, Elliott M.
2013-01-01
Background Although there are multiple methods of risk stratification for ST‐elevation myocardial infarction (STEMI), this study presents a prospectively validated method for reclassification of patients based on in‐hospital events. A dynamic risk score provides an initial risk stratification and reassessment at discharge. Methods and Results The dynamic TIMI risk score for STEMI was derived in ExTRACT‐TIMI 25 and validated in TRITON‐TIMI 38. Baseline variables were from the original TIMI risk score for STEMI. New variables were major clinical events occurring during the index hospitalization. Each variable was tested individually in a univariate Cox proportional hazards regression. Variables with P<0.05 were incorporated into a full multivariable Cox model to assess the risk of death at 1 year. Each variable was assigned an integer value based on the odds ratio, and the final score was the sum of these values. The dynamic score included the development of in‐hospital MI, arrhythmia, major bleed, stroke, congestive heart failure, recurrent ischemia, and renal failure. The C‐statistic produced by the dynamic score in the derivation database was 0.76, with a net reclassification improvement (NRI) of 0.33 (P<0.0001) from the inclusion of dynamic events to the original TIMI risk score. In the validation database, the C‐statistic was 0.81, with a NRI of 0.35 (P=0.01). Conclusions This score is a prospectively derived, validated means of estimating 1‐year mortality of STEMI at hospital discharge and can serve as a clinically useful tool. By incorporating events during the index hospitalization, it can better define risk and help to guide treatment decisions. PMID:23525425
Dynamic TIMI risk score for STEMI.
Amin, Sameer T; Morrow, David A; Braunwald, Eugene; Sloan, Sarah; Contant, Charles; Murphy, Sabina; Antman, Elliott M
2013-01-29
Although there are multiple methods of risk stratification for ST-elevation myocardial infarction (STEMI), this study presents a prospectively validated method for reclassification of patients based on in-hospital events. A dynamic risk score provides an initial risk stratification and reassessment at discharge. The dynamic TIMI risk score for STEMI was derived in ExTRACT-TIMI 25 and validated in TRITON-TIMI 38. Baseline variables were from the original TIMI risk score for STEMI. New variables were major clinical events occurring during the index hospitalization. Each variable was tested individually in a univariate Cox proportional hazards regression. Variables with P<0.05 were incorporated into a full multivariable Cox model to assess the risk of death at 1 year. Each variable was assigned an integer value based on the odds ratio, and the final score was the sum of these values. The dynamic score included the development of in-hospital MI, arrhythmia, major bleed, stroke, congestive heart failure, recurrent ischemia, and renal failure. The C-statistic produced by the dynamic score in the derivation database was 0.76, with a net reclassification improvement (NRI) of 0.33 (P<0.0001) from the inclusion of dynamic events to the original TIMI risk score. In the validation database, the C-statistic was 0.81, with a NRI of 0.35 (P=0.01). This score is a prospectively derived, validated means of estimating 1-year mortality of STEMI at hospital discharge and can serve as a clinically useful tool. By incorporating events during the index hospitalization, it can better define risk and help to guide treatment decisions.
Tractor seating for operators with paraplegia.
Wilhite, C S; Field, W E; Jaramillo, M
2017-01-01
This feasibility study explored the utility of using a pressure mapping instrument to explore the variable of pressure under subjects sitting on a commonly used tractor seat, and four other cushion interventions. The research model used single-subject with repeated measures during simulated tractor operation. In examining the graphical images and pressure mapping data available from the instrument; the contour tractor seat used in this study was not sufficient in redistributing pressure for people with paraplegia operating tractors, putting them at greater risk for acquiring a pressure ulcer. The use of pressure mapping equipment to study seated pressure within dynamic environments is achievable, and further studies need to be performed and replicated in simulated or in vivo environments. The data in this study suggest people with paraplegia operating agricultural equipment may not have acceptable pressure distribution using the manufacturer's installed seat and must rely on adding wheelchair cushions or other materials to the seat surface to create acceptable pressure distribution. However, doing so changes other aspects of the seating micro or macro climate that can also be problematic.
Santos-Vega, Mauricio; Bouma, Menno J; Kohli, Vijay; Pascual, Mercedes
2016-01-01
Background The world is rapidly becoming urban with the global population living in cities projected to double by 2050. This increase in urbanization poses new challenges for the spread and control of communicable diseases such as malaria. In particular, urban environments create highly heterogeneous socio-economic and environmental conditions that can affect the transmission of vector-borne diseases dependent on human water storage and waste water management. Interestingly India, as opposed to Africa, harbors a mosquito vector, Anopheles stephensi, which thrives in the man-made environments of cities and acts as the vector for both Plasmodium vivax and Plasmodium falciparum, making the malaria problem a truly urban phenomenon. Here we address the role and determinants of within-city spatial heterogeneity in the incidence patterns of vivax malaria, and then draw comparisons with results for falciparum malaria. Methodology/principal findings Statistical analyses and a phenomenological transmission model are applied to an extensive spatio-temporal dataset on cases of Plasmodium vivax in the city of Ahmedabad (Gujarat, India) that spans 12 years monthly at the level of wards. A spatial pattern in malaria incidence is described that is largely stationary in time for this parasite. Malaria risk is then shown to be associated with socioeconomic indicators and environmental parameters, temperature and humidity. In a more dynamical perspective, an Inhomogeneous Markov Chain Model is used to predict vivax malaria risk. Models that account for climate factors, socioeconomic level and population size show the highest predictive skill. A comparison to the transmission dynamics of falciparum malaria reinforces the conclusion that the spatio-temporal patterns of risk are strongly driven by extrinsic factors. Conclusion/significance Climate forcing and socio-economic heterogeneity act synergistically at local scales on the population dynamics of urban malaria in this city. The stationarity of malaria risk patterns provides a basis for more targeted intervention, such as vector control, based on transmission ‘hotspots’. This is especially relevant for P. vivax, a more resilient parasite than P. falciparum, due to its ability to relapse and the operational shortcomings of delivering a “radical cure”. PMID:27906962
Santos-Vega, Mauricio; Bouma, Menno J; Kohli, Vijay; Pascual, Mercedes
2016-12-01
The world is rapidly becoming urban with the global population living in cities projected to double by 2050. This increase in urbanization poses new challenges for the spread and control of communicable diseases such as malaria. In particular, urban environments create highly heterogeneous socio-economic and environmental conditions that can affect the transmission of vector-borne diseases dependent on human water storage and waste water management. Interestingly India, as opposed to Africa, harbors a mosquito vector, Anopheles stephensi, which thrives in the man-made environments of cities and acts as the vector for both Plasmodium vivax and Plasmodium falciparum, making the malaria problem a truly urban phenomenon. Here we address the role and determinants of within-city spatial heterogeneity in the incidence patterns of vivax malaria, and then draw comparisons with results for falciparum malaria. Statistical analyses and a phenomenological transmission model are applied to an extensive spatio-temporal dataset on cases of Plasmodium vivax in the city of Ahmedabad (Gujarat, India) that spans 12 years monthly at the level of wards. A spatial pattern in malaria incidence is described that is largely stationary in time for this parasite. Malaria risk is then shown to be associated with socioeconomic indicators and environmental parameters, temperature and humidity. In a more dynamical perspective, an Inhomogeneous Markov Chain Model is used to predict vivax malaria risk. Models that account for climate factors, socioeconomic level and population size show the highest predictive skill. A comparison to the transmission dynamics of falciparum malaria reinforces the conclusion that the spatio-temporal patterns of risk are strongly driven by extrinsic factors. Climate forcing and socio-economic heterogeneity act synergistically at local scales on the population dynamics of urban malaria in this city. The stationarity of malaria risk patterns provides a basis for more targeted intervention, such as vector control, based on transmission 'hotspots'. This is especially relevant for P. vivax, a more resilient parasite than P. falciparum, due to its ability to relapse and the operational shortcomings of delivering a "radical cure".
Roos, Paulien E; Dingwell, Jonathan B
2013-06-21
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the 'push-off' force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. Copyright © 2013 Elsevier Ltd. All rights reserved.
Roos, Paulien E.; Dingwell, Jonathan B.
2013-01-01
Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-related increases in neuromuscular noise may contribute to the increased fall risk observed at faster walking speeds. Using a 3D dynamic walking model, we systematically varied walking speed without and with physiologically-appropriate neuromuscular noise. We quantified how actual fall risk changed with gait speed, how neuromuscular noise affected speed-related changes in fall risk, and how well orbital and local dynamic stability measures predicted changes in fall risk across speeds. When we included physiologically-appropriate noise to the ‘push-off’ force in our model, fall risk increased with increasing walking speed. Changes in kinematic variability, orbital, and local dynamic stability did not predict these speed-related changes in fall risk. Thus, the increased neuromuscular variability that results from increased signal-dependent noise that is necessitated by the greater muscular force requirements of faster walking may contribute to the increased fall risk observed at faster walking speeds. The lower fall risk observed at slower speeds supports experimental evidence that slowing down can be an effective strategy to reduce fall risk. This may help explain the slower walking speeds observed in older adults and others. PMID:23659911
Mission Assurance Analysis Protocol (MAAP): Assessing Risk in Complex Environments
2005-09-01
5 1.7 Focus on Risk .................................................................................. 6 2 Defining Risk ...20 CMU/SEI-2005-TN-032 4.4 Extrinsic and Intrinsic Risk ............................................................. 21 5 Operational Risk in...Section 5 , "Operational Risk in Distributed Processes," we look at the characteristics of operational risk in processes where management control is
Li, Qing; Qiao, Fengxiang; Yu, Lei; Shi, Junqing
2018-06-01
Vehicle interior noise functions at the dominant frequencies of 500 Hz below and around 800 Hz, which fall into the bands that may impair hearing. Recent studies demonstrated that freeway commuters are chronically exposed to vehicle interior noise, bearing the risk of hearing impairment. The interior noise evaluation process is mostly conducted in a laboratory environment. The test results and the developed noise models may underestimate or ignore the noise effects from dynamic traffic and road conditions and configuration. However, the interior noise is highly associated with vehicle maneuvering. The vehicle maneuvering on a freeway weaving segment is more complex because of its nature of conflicting areas. This research is intended to explore the risk of the interior noise exposure on freeway weaving segments for freeway commuters and to improve the interior noise estimation by constructing a decision tree learning-based noise exposure dose (NED) model, considering weaving segment designs and engine operation. On-road driving tests were conducted on 12 subjects on State Highway 288 in Houston, Texas. On-board Diagnosis (OBD) II, a smartphone-based roughness app, and a digital sound meter were used to collect vehicle maneuvering and engine information, International Roughness Index, and interior noise levels, respectively. Eleven variables were obtainable from the driving tests, including the length and type of a weaving segment, serving as predictors. The importance of the predictors was estimated by their out-of-bag-permuted predictor delta errors. The hazardous exposure level of the interior noise on weaving segments was quantified to hazard quotient, NED, and daily noise exposure level, respectively. Results showed that the risk of hearing impairment on freeway is acceptable; the interior noise level is the most sensitive to the pavement roughness and is subject to freeway configuration and traffic conditions. The constructed NED model shows high predictive power (R = 0.93, normalized root-mean-square error [NRMSE] < 6.7%). Vehicle interior noise is usually ignored in the public, and its modeling and evaluation are generally conducted in a laboratory environment, regardless of the interior noise effects from dynamic traffic, road conditions, and road configuration. This study quantified the interior exposure dose on freeway weaving segments, which provides freeway commuters with a sense of interior noise exposure risk. In addition, a bagged decision tree-based interior noise exposure dose model was constructed, considering vehicle maneuvering, vehicle engine operational information, pavement roughness, and weaving segment configuration. The constructed model could significantly improve the interior noise estimation for road engineers and vehicle manufactures.
12 CFR 211.13 - Supervision and reporting.
Code of Federal Regulations, 2010 CFR
2010-01-01
... particular, information on risk assets, exposure to market risk, liquidity management, operations, internal controls, legal and operational risk, and conformance to management policies. (iii) Reports on risk assets... financial performance, risk exposure, management policies, operations, and controls. (ii) Complete...
Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations
NASA Technical Reports Server (NTRS)
Righetti, Pier Luigi; Meixner, Hilda; Sancho, Francisco; Damiano, Antimo; Lazaro, David
2007-01-01
The 19th of October 2006 at 16:28 UTC the first MetOp satellite (MetOp A) was successfully launched from the Baykonur cosmodrome by a Soyuz/Fregat launcher. After only three days of LEOP operations, performed by ESOC, the satellite was handed over to EUMETSAT, who is since then taking care of all satellite operations. MetOp A is the first European operational satellite for meteorology flying in a Low Earth Orbit (LEO), all previous satellites operated by EUMETSAT, belonging to the METEOSAT family, being located in the Geo-stationary orbit. To ensure safe operations for a LEO satellite accurate and continuous commanding from ground of the on-board AOCS is required. That makes the operational transition at the end of the LEOP quite challenging, as the continuity of the Flight Dynamics operations is to be maintained. That means that the main functions of the Flight Dynamics have to be fully validated on-flight during the LEOP, before taking over the operational responsibility on the spacecraft, and continuously monitored during the entire mission. Due to the nature of a meteorological operational mission, very stringent requirements in terms of overall service availability (99 % of the collected data), timeliness of processing of the observation data (3 hours after sensing) and accuracy of the geo-location of the meteorological products (1 km) are to be fulfilled. That translates in tight requirements imposed to the Flight Dynamics facility (FDF) in terms of accuracy, timeliness and availability of the generated orbit and clock solutions; a detailed monitoring of the quality of these products is thus mandatory. Besides, being the accuracy of the image geo-location strongly related with the pointing performance of the platform and with the on-board timing stability, monitoring from ground of the behaviour of the on-board sensors and clock is needed. This paper presents an overview of the Flight Dynamics operations performed during the different phases of the MetOp A mission up to routine. The activities performed to validate all the Flight Dynamics functions, characterize the behaviour of the satellite and monitor the performances of the Flight Dynamics facility will be highlighted. The MetOp Flight Dynamics Operations team is led by Anders Meier Soerensen and composed by Pier Luigi Righetti, Francisco Sancho, Antimo Damiano and David Lazaro. The team is supported by Hilda Meixner, responsible for all Flight Dynamics validation activities.
Risk of hydrocyanic acid release in the electroplating industry.
Piccinini, N; Ruggiero, G N; Baldi, G; Robotto, A
2000-01-07
This paper suggests assessing the consequences of hydrocyanic acid (HCN) release into the air by aqueous cyanide solutions in abnormal situations such as the accidental introduction of an acid, or the insertion of a cyanide in a pickling bath. It provides a well-defined source model and its resolution by methods peculiar to mass transport phenomena. The procedure consists of four stages: calculation of the liquid phase concentration, estimate of the HCN liquid-vapour equilibrium, determination of the mass transfer coefficient at the liquid-vapour interface, evaluation of the air concentration of HCN and of the damage distances. The results show that small baths operating at high temperatures are the major sources of risk. The building up of lethal air concentrations, on the other hand, is governed by the values of the mass transfer coefficient, which is itself determined by the flow dynamics and bath geometry. Concerning the magnitude of the risk, the fallout for external emergency planning is slight in all the cases investigated.
YOUNG ADULT DATING RELATIONSHIPS AND THE MANAGEMENT OF SEXUAL RISK
Manning, Wendy D.; Giordano, Peggy C.; Longmore, Monica A.; Flanigan, Christine M.
2012-01-01
Young adult involvement in sexual behavior typically occurs within a relationship context, but we know little about the ways in which specific features of romantic relationships influence sexual decision-making. Prior work on sexual risk taking focuses attention on health issues rather than relationship dynamics. We draw on data from the Toledo Adolescent Relationships Study (TARS) (n = 475) to examine the association between qualities and dynamics of current/most recent romantic relationships such as communication and emotional processes, conflict, demographic asymmetries, and duration and the management of sexual risk. We conceptualize ‘risk management’ as encompassing multiple domains, including (1) questioning the partner about previous sexual behaviors/risks, (2) using condoms consistently, and (3) maintaining sexual exclusivity within the relationship. We identify distinct patterns of risk management among dating young adults and find that specific qualities and dynamics of these relationships are linked to variations in risk management. Results from this paper suggest the need to consider relational dynamics in efforts to target and influence young adult sexual risk-taking and reduce STIs, including HIV. PMID:23805015
YOUNG ADULT DATING RELATIONSHIPS AND THE MANAGEMENT OF SEXUAL RISK.
Manning, Wendy D; Giordano, Peggy C; Longmore, Monica A; Flanigan, Christine M
2012-04-01
Young adult involvement in sexual behavior typically occurs within a relationship context, but we know little about the ways in which specific features of romantic relationships influence sexual decision-making. Prior work on sexual risk taking focuses attention on health issues rather than relationship dynamics. We draw on data from the Toledo Adolescent Relationships Study (TARS) (n = 475) to examine the association between qualities and dynamics of current/most recent romantic relationships such as communication and emotional processes, conflict, demographic asymmetries, and duration and the management of sexual risk. We conceptualize 'risk management' as encompassing multiple domains, including (1) questioning the partner about previous sexual behaviors/risks, (2) using condoms consistently, and (3) maintaining sexual exclusivity within the relationship. We identify distinct patterns of risk management among dating young adults and find that specific qualities and dynamics of these relationships are linked to variations in risk management. Results from this paper suggest the need to consider relational dynamics in efforts to target and influence young adult sexual risk-taking and reduce STIs, including HIV.
Risk-Sensitive Control of Pure Jump Process on Countable Space with Near Monotone Cost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suresh Kumar, K., E-mail: suresh@math.iitb.ac.in; Pal, Chandan, E-mail: cpal@math.iitb.ac.in
2013-12-15
In this article, we study risk-sensitive control problem with controlled continuous time pure jump process on a countable space as state dynamics. We prove multiplicative dynamic programming principle, elliptic and parabolic Harnack’s inequalities. Using the multiplicative dynamic programing principle and the Harnack’s inequalities, we prove the existence and a characterization of optimal risk-sensitive control under the near monotone condition.
Advantages and Disadvantages of Physiological Assessment For Next Generation Control Room Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuan Q. Tran; Ronald L. Boring; Donald D. Dudenhoeffer
2007-08-01
Abstract - We propose using non-obtrusive physiological assessment (e.g., eye tracking,) to assess human information processing errors (e.g., loss of vigilance) and limitations (e.g., workload) for advanced energy systems early in the design process. This physiological approach for assessing risk will circumvent many limitations of current risk methodologies such as subjective rating (e.g., rater’s biases) and performance modeling (e.g., risk assessment is scripted and is based upon the individual modeler’s judgment). Key uses will be to evaluate (early in the design process) novel control room equipment and configurations as well as newly developed automated systems that will inevitably place amore » high information load on operators. The physiological risk assessment tool will allow better precision in pinpointing problematic design issues and will provide a “real-time” assessment of risk. Furthermore, this physiological approach would extend the state-of-the-art of human reliability methods from a “static” measure to more “dynamic.” This paper will discuss a broad range of the current popular online performance gauges as well as its advantages and disadvantages for use in next generation control room.« less
Risk Prediction Models for Acute Kidney Injury in Critically Ill Patients: Opus in Progressu.
Neyra, Javier A; Leaf, David E
2018-05-31
Acute kidney injury (AKI) is a complex systemic syndrome associated with high morbidity and mortality. Among critically ill patients admitted to intensive care units (ICUs), the incidence of AKI is as high as 50% and is associated with dismal outcomes. Thus, the development and validation of clinical risk prediction tools that accurately identify patients at high risk for AKI in the ICU is of paramount importance. We provide a comprehensive review of 3 clinical risk prediction tools that have been developed for incident AKI occurring in the first few hours or days following admission to the ICU. We found substantial heterogeneity among the clinical variables that were examined and included as significant predictors of AKI in the final models. The area under the receiver operating characteristic curves was ∼0.8 for all 3 models, indicating satisfactory model performance, though positive predictive values ranged from only 23 to 38%. Hence, further research is needed to develop more accurate and reproducible clinical risk prediction tools. Strategies for improved assessment of AKI susceptibility in the ICU include the incorporation of dynamic (time-varying) clinical parameters, as well as biomarker, functional, imaging, and genomic data. © 2018 S. Karger AG, Basel.
Testing Strategies and Methodologies for the Max Launch Abort System
NASA Technical Reports Server (NTRS)
Schaible, Dawn M.; Yuchnovicz, Daniel E.
2011-01-01
The National Aeronautics and Space Administration (NASA) Engineering and Safety Center (NESC) was tasked to develop an alternate, tower-less launch abort system (LAS) as risk mitigation for the Orion Project. The successful pad abort flight demonstration test in July 2009 of the "Max" launch abort system (MLAS) provided data critical to the design of future LASs, while demonstrating the Agency s ability to rapidly design, build and fly full-scale hardware at minimal cost in a "virtual" work environment. Limited funding and an aggressive schedule presented a challenge for testing of the complex MLAS system. The successful pad abort flight demonstration test was attributed to the project s systems engineering and integration process, which included: a concise definition of, and an adherence to, flight test objectives; a solid operational concept; well defined performance requirements, and a test program tailored to reducing the highest flight test risks. The testing ranged from wind tunnel validation of computational fluid dynamic simulations to component ground tests of the highest risk subsystems. This paper provides an overview of the testing/risk management approach and methodologies used to understand and reduce the areas of highest risk - resulting in a successful flight demonstration test.
Collision Avoidance Short Course Part I: Theory
NASA Technical Reports Server (NTRS)
Hejduk, Matthew D.
2017-01-01
Satellite conjunction assessment is perhaps the fastest-growing area in space situational awareness and protection, with military, civil, and commercial satellite owner operators embracing more and more sophisticated processes to avoid the avoidable namely collisions between high-value space assets and orbital debris. NASA and CNES have collaborated to offer an introductory short course on all the major aspects of the conjunction assessment problem. This half-day course will cover satellite conjunction dynamics and theory, JSpOC conjunction data products, major risk assessment parameters and plots, conjunction remediation decision support, and present and future challenges. This briefing represents the NASA portion of the course.
78 FR 32255 - HHS-Operated Risk Adjustment Data Validation Stakeholder Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-29
...-Operated Risk Adjustment Data Validation Stakeholder Meeting AGENCY: Centers for Medicare & Medicaid... Act HHS-operated risk adjustment data validation process. The purpose of this public meeting is to... interested parties about key HHS policy considerations pertaining to the HHS-operated risk adjustment data...
The Swift Project Contamination Control Program: A Case study of Balancing Cost, Schedule and Risk
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Day, Diane; Secunda, Mark
2003-01-01
The Swift Observatory will be launched in early 2004 to examine the dynamic process of gamma ray burst (GRB) events. The multi-wavelength Observatory will study the GRB afterglow characteristics, which will help to answer fundamental questions about both the structure and the evolution of the universe. The Swift Observatory Contamination Control Program has been developed to aid in ensuring the success of the on-orbit performance of two of the primary instruments: the Ultraviolet and Optical Telescope (UVOT) and the X-Ray Telescope (XRT). During the design phase of the Observatory, the contamination control program evolved and trade studies were performed to assess the risk of contaminating the sensitive UVOT and XRT optics during both pre-launch testing and on-orbit operations, within the constraints of the overall program cost and schedule.
The Swift Project Contamination Control Program: A Case Study of Balancing Cost, Schedule and Risk
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Day, Diane T.; Secunda, Mark S.; Rosecrans, Glenn P.
2004-01-01
The Swift Observatory will be launched in early 2004 to examine the dynamic process of gamma ray burst (GRB) events. The multi-wavelength Observatory will study the GRB afterglow characteristics, which will help to answer fundamental questions about both the structure and the evolution of the universe. The Swift Observatory Contamination Control Program has been developed to aid in ensuring the success of the on-orbit performance of two of the primary instruments: the Ultraviolet and Optical Telescope (UVOT) and the X-Ray Telescope (XRT). During the design phase of the Observatory, the contamination control program evolved and trade studies were performed to assess the risk of contaminating the sensitive UVOT and XRT optics during both pre-launch testing and on-orbit operations, within the constraints of the overall program cost and schedule.
Economic-Oriented Stochastic Optimization in Advanced Process Control of Chemical Processes
Dobos, László; Király, András; Abonyi, János
2012-01-01
Finding the optimal operating region of chemical processes is an inevitable step toward improving economic performance. Usually the optimal operating region is situated close to process constraints related to product quality or process safety requirements. Higher profit can be realized only by assuring a relatively low frequency of violation of these constraints. A multilevel stochastic optimization framework is proposed to determine the optimal setpoint values of control loops with respect to predetermined risk levels, uncertainties, and costs of violation of process constraints. The proposed framework is realized as direct search-type optimization of Monte-Carlo simulation of the controlled process. The concept is illustrated throughout by a well-known benchmark problem related to the control of a linear dynamical system and the model predictive control of a more complex nonlinear polymerization process. PMID:23213298
Klußmann, André; Gebhardt, Hansjürgen; Rieger, Monika; Liebers, Falk; Steinberg, Ulf
2012-01-01
Upper extremity musculoskeletal symptoms and disorders are common in the working population. The economic and social impact of such disorders is considerable. Long-time, dynamic repetitive exposure of the hand-arm system during manual handling operations (MHO) alone or in combination with static and postural effort are recognised as causes of musculoskeletal symptoms and disorders. The assessment of these manual work tasks is crucial to estimate health risks of exposed employees. For these work tasks, a new method for the assessment of the working conditions was developed and a validation study was performed. The results suggest satisfying criterion validity and moderate objectivity of the KIM-MHO draft 2007. The method was modified and evaluated again. It is planned to release a new version of KIM-MHO in spring 2012.
Quantum Dynamical Applications of Salem's Theorem
NASA Astrophysics Data System (ADS)
Damanik, David; Del Rio, Rafael
2009-07-01
We consider the survival probability of a state that evolves according to the Schrödinger dynamics generated by a self-adjoint operator H. We deduce from a classical result of Salem that upper bounds for the Hausdorff dimension of a set supporting the spectral measure associated with the initial state imply lower bounds on a subsequence of time scales for the survival probability. This general phenomenon is illustrated with applications to the Fibonacci operator and the critical almost Mathieu operator. In particular, this gives the first quantitative dynamical bound for the critical almost Mathieu operator.
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Kreutz, K.; Milman, M.
1988-01-01
A powerful new spatial operator algebra for modeling, control, and trajectory design of manipulators is discussed along with its implementation in the Ada programming language. Applications of this algebra to robotics include an operator representation of the manipulator Jacobian matrix; the robot dynamical equations formulated in terms of the spatial algebra, showing the complete equivalence between the recursive Newton-Euler formulations to robot dynamics; the operator factorization and inversion of the manipulator mass matrix which immediately results in O(N) recursive forward dynamics algorithms; the joint accelerations of a manipulator due to a tip contact force; the recursive computation of the equivalent mass matrix as seen at the tip of a manipulator; and recursive forward dynamics of a closed chain system. Finally, additional applications and current research involving the use of the spatial operator algebra are discussed in general terms.
Advanced superposition methods for high speed turbopump vibration analysis
NASA Technical Reports Server (NTRS)
Nielson, C. E.; Campany, A. D.
1981-01-01
The small, high pressure Mark 48 liquid hydrogen turbopump was analyzed and dynamically tested to determine the cause of high speed vibration at an operating speed of 92,400 rpm. This approaches the design point operating speed of 95,000 rpm. The initial dynamic analysis in the design stage and subsequent further analysis of the rotor only dynamics failed to predict the vibration characteristics found during testing. An advanced procedure for dynamics analysis was used in this investigation. The procedure involves developing accurate dynamic models of the rotor assembly and casing assembly by finite element analysis. The dynamically instrumented assemblies are independently rap tested to verify the analytical models. The verified models are then combined by modal superposition techniques to develop a completed turbopump model where dynamic characteristics are determined. The results of the dynamic testing and analysis obtained are presented and methods of moving the high speed vibration characteristics to speeds above the operating range are recommended. Recommendations for use of these advanced dynamic analysis procedures during initial design phases are given.
Piezoelectric sensor pen for dynamic signature verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
EerNisse, E.P.; Land, C.E.; Snelling, J.B.
The concept of using handwriting dynamics for electronic identification is discussed. A piezoelectric sensor pen for obtaining the pen point dynamics during writing is described. Design equations are derived and details of an operating device are presented. Typical output waveforms are shown to demonstrate the operation of the pen and to show the dissimilarities between dynamics of a genuine signature and an attempted forgery.
Coupled Responses of Sewol, Twin Barges and Slings During Salvage
NASA Astrophysics Data System (ADS)
Yao, Zong; Wang, Wei-ping; Jiang, Yan; Chen, Shi-hai
2018-04-01
Korean Sewol is successfully lifted up with the strand jack system based on twin barges. During the salvage operation, two barges and Sewol encounter offshore environmental conditions of wave, current and wind. It is inevitable that the relative motions among the three bodies are coupled with the sling tensions, which may cause big dynamic loads for the lifting system. During the project engineering phase and the site operation, it is necessary to build up a simulation model that can precisely generate the coupled responses in order to define a suitable weather window and monitor risks for the salvage operation. A special method for calculating multibody coupled responses is introduced into Sewol salvage project. Each body's hydrodynamic force and moment in multibody configuration is calculated in the way that one body is treated as freely moving in space, while other bodies are set as fixed globally. The hydrodynamic force and moment are then applied into a numerical simulation model with some calibration coefficients being inserted. These coefficients are calibrated with the model test results. The simulation model built up this way can predict coupled responses with the similar accuracy as the model test and full scale measurement, and particularly generate multibody shielding effects. Site measured responses and the responses only resulted from from the simulation keep project management simultaneously to judge risks of each salvage stage, which are important for success of Sewol salvage.
Proposed design modifications to reduce risk of operating rotary field mowers.
White, K L; Wells, L G; Shearer, S A; Piercy, L R
2000-11-01
The primary objective of this project was to reduce risk of injury associated with operating a rotary mower driven by a tractor power take-off (PTO) by developing and evaluating design improvements and determining their economic feasibility. Researchers have concluded that alteration of machinery design has a greater impact on the reduction of accidents than safety training. Implementation of an Operator Presence Sensing System (OPSS) and removal of the PTO are the two injury-reducing, engineering modifications evaluated by this research. Hydraulic power allows this to occur by providing dynamic braking, few moving parts (removal of the PTO), and controllable power. A hydraulic circuit was developed to power the mower and to enable an OPSS. Tractor hydraulics were simulated using a hydraulic training bench. Two mower configurations were tested: 6.55 cm3 rev(-1) (0.4 in.3 rev(-1)) displacement motor with a 0.748 kg blade and 47.5 cm3 rev(-1) (2.9 in.3 rev(-1)) displacement motor with a 9.4 kg blade. A PTO-driven rotary mower was not used to test the circuit due to spatial and safety limitations of the hydraulic training bench. Results from the first mower configuration verified the concepts behind the hydraulic circuit. The second configuration verified the OPSS and indicated the applicability of the circuit to a rotary mower.
Sadrizadeh, Sasan; Pantelic, Jovan; Sherman, Max; Clark, Jordan; Abouali, Omid
2018-03-08
Operating rooms (ORs) are usually over-pressurized in order to prevent the penetration of contaminated air and the consequent risk of surgical site infection. However, a door-opening can result in the rapid disappearance of pressure and contaminants can then easily penetrate into the surgical zone. Therefore, a broad knowledge and understanding of OR ventilation systems and their protective potential is essential for optimizing the surgical environment. This study investigated the air quality and level of airborne particles during a single and multiple door-opening cycles in an operating room supplied by a turbulent-mixing ventilation system. The exploration was carried out numerically using computational fluid dynamics. Model validation was performed to ensure the validity of the achieved results. The OR was initially over-pressurized by approximately 15Pa, relative to the adjacent corridors. Both sliding and hinged doors were simulated and compared. Penetration of bacteria carrying particles from the corridors to the OR can be successfully restricted by using a positive-pressure system. However, the results clearly indicate that frequent door opening can interfere with airflow ventilation systems, alter the pressure gradient, and increase the infection risk for the patient undergoing surgical intervention. Door-opening disturbs the airflow field and could result in containment failure. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Simulation Based Training Improves Airway Management for Helicopter EMS Teams
NASA Technical Reports Server (NTRS)
Dhindsa, Harinder S.; Reid, Renee; Murray, David; Lovelady, James; Powell, Katie; Sayles, Jeff; Stevenson, Christopher; Baker, Kathy; Solada, Brian; Carroll, Scott;
2011-01-01
The use of paralytic medications in the performance of RSI intubation is a high risk intervention used by many HEMS crews. There is no margin for error in RSI intubation as the results can be fatal. Operating room access for airway management training has become more difficult, and is not representative of the environment in which HEMS crews typically function. LifeEvac of Virginia designed and implemented an SST airway management program to provide a realistic, consistent training platform. The dynamic program incorporates standardized scenarios, and real life challenging cases that this and other programs have encountered. SST is done in a variety of settings including the helicopter, back of ambulances, staged car crashes and simulation centers. The result has been the indoctrination of a well defined, consistent approach to every airway management intervention. The SST program facillitates enhancement of technical skills. as well as team dynamics and communication.
Game-theoretic equilibrium analysis applications to deregulated electricity markets
NASA Astrophysics Data System (ADS)
Joung, Manho
This dissertation examines game-theoretic equilibrium analysis applications to deregulated electricity markets. In particular, three specific applications are discussed: analyzing the competitive effects of ownership of financial transmission rights, developing a dynamic game model considering the ramp rate constraints of generators, and analyzing strategic behavior in electricity capacity markets. In the financial transmission right application, an investigation is made of how generators' ownership of financial transmission rights may influence the effects of the transmission lines on competition. In the second application, the ramp rate constraints of generators are explicitly modeled using a dynamic game framework, and the equilibrium is characterized as the Markov perfect equilibrium. Finally, the strategic behavior of market participants in electricity capacity markets is analyzed and it is shown that the market participants may exaggerate their available capacity in a Nash equilibrium. It is also shown that the more conservative the independent system operator's capacity procurement, the higher the risk of exaggerated capacity offers.
Complexity and network dynamics in physiological adaptation: an integrated view.
Baffy, György; Loscalzo, Joseph
2014-05-28
Living organisms constantly interact with their surroundings and sustain internal stability against perturbations. This dynamic process follows three fundamental strategies (restore, explore, and abandon) articulated in historical concepts of physiological adaptation such as homeostasis, allostasis, and the general adaptation syndrome. These strategies correspond to elementary forms of behavior (ordered, chaotic, and static) in complex adaptive systems and invite a network-based analysis of the operational characteristics, allowing us to propose an integrated framework of physiological adaptation from a complex network perspective. Applicability of this concept is illustrated by analyzing molecular and cellular mechanisms of adaptation in response to the pervasive challenge of obesity, a chronic condition resulting from sustained nutrient excess that prompts chaotic exploration for system stability associated with tradeoffs and a risk of adverse outcomes such as diabetes, cardiovascular disease, and cancer. Deconstruction of this complexity holds the promise of gaining novel insights into physiological adaptation in health and disease. Published by Elsevier Inc.
Tourre, Yves M.; Lacaux, Jean-Pierre; Vignolles, Cécile; Lafaye, Murielle
2009-01-01
Background Climate and environment vary across many spatio-temporal scales, including the concept of climate change, which impact on ecosystems, vector-borne diseases and public health worldwide. Objectives To develop a conceptual approach by mapping climatic and environmental conditions from space and studying their linkages with Rift Valley Fever (RVF) epidemics in Senegal. Design Ponds in which mosquitoes could thrive were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on pond dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localisation of vulnerable hosts such as penned cattle (from QuickBird satellite) were also used. Results Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds’ dynamics. While Zones Potentially Occupied by Mosquitoes are mapped, detailed risk areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of areas where cattle are potentially exposed to mosquitoes’ bites. Conclusions This new conceptual approach, using precise remote-sensing techniques, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of operational early warning systems for RVF based on both natural and anthropogenic climatic and environmental changes. In a climate change context, this approach could also be applied to other vector-borne diseases and places worldwide. PMID:20052381
NASA Astrophysics Data System (ADS)
Tourre, Y. M.
2009-12-01
Climate and environment vary on many spatio-temporal scales, including climate change, with impacts on ecosystems, vector-borne diseases and public health worldwide. This study is to enable societal benefits from a conceptual approach by mapping climatic and environmental conditions from space and understanding the mechanisms within the Health Social Benefit GEOSS area. The case study is for Rift Valley Fever (RVF) epidemics in Senegal is presented. Ponds contributing to mosquitoes’ thriving, were identified from remote sensing using high-resolution SPOT-5 satellite images. Additional data on ponds’ dynamics and rainfall events (obtained from the Tropical Rainfall Measuring Mission) were combined with hydrological in-situ data. Localization of vulnerable hosts such as parked cattle (from QuickBird satellite) are also used. Dynamic spatio-temporal distribution of Aedes vexans density (one of the main RVF vectors) is based on the total rainfall amount and ponds’ dynamics. While Zones Potentially Occupied by Mosquitoes (ZPOM) are mapped, detailed risks areas, i.e. zones where hazards and vulnerability occur, are expressed in percentages of parks where cattle is potentially exposed to mosquitoes’ bites. This new conceptual approach, using remote-sensing techniques belonging to GEOSS, simply relies upon rainfall distribution also evaluated from space. It is meant to contribute to the implementation of integrated operational early warning system within the health application communities since climatic and environmental conditions (both natural and anthropogenic) are changing rapidly.
Rong, Hao; Tian, Jin
2015-05-01
The study contributes to human reliability analysis (HRA) by proposing a method that focuses more on human error causality within a sociotechnical system, illustrating its rationality and feasibility by using a case of the Minuteman (MM) III missile accident. Due to the complexity and dynamics within a sociotechnical system, previous analyses of accidents involving human and organizational factors clearly demonstrated that the methods using a sequential accident model are inadequate to analyze human error within a sociotechnical system. System-theoretic accident model and processes (STAMP) was used to develop a universal framework of human error causal analysis. To elaborate the causal relationships and demonstrate the dynamics of human error, system dynamics (SD) modeling was conducted based on the framework. A total of 41 contributing factors, categorized into four types of human error, were identified through the STAMP-based analysis. All factors are related to a broad view of sociotechnical systems, and more comprehensive than the causation presented in the accident investigation report issued officially. Recommendations regarding both technical and managerial improvement for a lower risk of the accident are proposed. The interests of an interdisciplinary approach provide complementary support between system safety and human factors. The integrated method based on STAMP and SD model contributes to HRA effectively. The proposed method will be beneficial to HRA, risk assessment, and control of the MM III operating process, as well as other sociotechnical systems. © 2014, Human Factors and Ergonomics Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flueck, Alex
The “High Fidelity, Faster than RealTime Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of largescale power system dynamics simulation, including (1) a validated faster than real time simulation of both stable and unstable transient dynamics in a largescale positive sequence transmission grid model, (2) a threephase unbalanced simulation platform formore » modeling new grid devices, such as independently controlled singlephase static var compensators (SVCs), (3) the world’s first high fidelity threephase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a firstofits kind implementation of a singlephase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the longterm, the simulator will form the backbone of the newly conceived hybrid realtime protection and control architecture that will coordinate local controls, widearea measurements, widearea controls and advanced realtime prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the fasterthanrealtime simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three phase unbalanced simulator’s ability to model threephase and single phase networks and devices.« less
Failure dynamics of the global risk network.
Szymanski, Boleslaw K; Lin, Xin; Asztalos, Andrea; Sreenivasan, Sameet
2015-06-18
Risks threatening modern societies form an intricately interconnected network that often underlies crisis situations. Yet, little is known about how risk materializations in distinct domains influence each other. Here we present an approach in which expert assessments of likelihoods and influence of risks underlie a quantitative model of the global risk network dynamics. The modeled risks range from environmental to economic and technological, and include difficult to quantify risks, such as geo-political and social. Using the maximum likelihood estimation, we find the optimal model parameters and demonstrate that the model including network effects significantly outperforms the others, uncovering full value of the expert collected data. We analyze the model dynamics and study its resilience and stability. Our findings include such risk properties as contagion potential, persistence, roles in cascades of failures and the identity of risks most detrimental to system stability. The model provides quantitative means for measuring the adverse effects of risk interdependencies and the materialization of risks in the network.
NASA Astrophysics Data System (ADS)
Khan, Valentina; Tscepelev, Valery; Vilfand, Roman; Kulikova, Irina; Kruglova, Ekaterina; Tischenko, Vladimir
2016-04-01
Long-range forecasts at monthly-seasonal time scale are in great demand of socio-economic sectors for exploiting climate-related risks and opportunities. At the same time, the quality of long-range forecasts is not fully responding to user application necessities. Different approaches, including combination of different prognostic models, are used in forecast centers to increase the prediction skill for specific regions and globally. In the present study, two forecasting methods are considered which are exploited in operational practice of Hydrometeorological Center of Russia. One of them is synoptical-analogous method of forecasting of surface air temperature at monthly scale. Another one is dynamical system based on the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia. The seasonal version of this model has been used to issue global and regional forecasts at monthly-seasonal time scales. This study presents results of the evaluation of surface air temperature forecasts generated with using above mentioned synoptical-statistical and dynamical models, and their combination to potentially increase skill score over Northern Eurasia. The test sample of operational forecasts is encompassing period from 2010 through 2015. The seasonal and interannual variability of skill scores of these methods has been discussed. It was noticed that the quality of all forecasts is highly dependent on the inertia of macro-circulation processes. The skill scores of forecasts are decreasing during significant alterations of synoptical fields for both dynamical and empirical schemes. Procedure of combination of forecasts from different methods, in some cases, has demonstrated its effectiveness. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).
Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design
Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley
2004-01-01
Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...
Determinants of re-operation for bleeding in head and neck cancer surgery.
Haapio, E; Kinnunen, I; Airaksinen, J K E; Irjala, H; Kiviniemi, T
2018-04-01
Post-operative bleeding in the head and neck area is potentially fatal. This 'real world' study sought to assess factors that increase the risk of re-operation for post-operative bleeding in head and neck cancer surgery. A total of 456 patients underwent surgery for head and neck cancer (591 operations). The primary endpoint was re-operation for bleeding. The rate of re-operation for bleeding was 5 per cent of all operations. Re-operation for bleeding was an independent risk factor for 30-day mortality (odds ratio = 5.27, p = 0.014). Risk factors for re-operation because of bleeding included excessive (more than 4000 ml) fluid administration (over 24 hours) (p < 0.001), heavy alcohol consumption (p = 0.014), pre-operative oncological treatment (p = 0.017), advanced disease stage (p = 0.020) and higher tumour (T) classification (p = 0.034). Operations with more excessive bleeding (700 ml or more) were associated with an increased risk (p = 0.001) of re-operation for post-operative bleeding. Moreover, the risk of re-operation was significantly higher in patients undergoing microvascular surgery compared to those who had no oncological treatment pre-operatively (18 vs 6 per cent, p = 0.001). The 30-day mortality risk increased over 5-fold in patients undergoing re-operation for bleeding.
Risk-Aware Planetary Rover Operation: Autonomous Terrain Classification and Path Planning
NASA Technical Reports Server (NTRS)
Ono, Masahiro; Fuchs, Thoams J.; Steffy, Amanda; Maimone, Mark; Yen, Jeng
2015-01-01
Identifying and avoiding terrain hazards (e.g., soft soil and pointy embedded rocks) are crucial for the safety of planetary rovers. This paper presents a newly developed groundbased Mars rover operation tool that mitigates risks from terrain by automatically identifying hazards on the terrain, evaluating their risks, and suggesting operators safe paths options that avoids potential risks while achieving specified goals. The tool will bring benefits to rover operations by reducing operation cost, by reducing cognitive load of rover operators, by preventing human errors, and most importantly, by significantly reducing the risk of the loss of rovers.
Airborne Subscale Transport Aircraft Research Testbed: Aircraft Model Development
NASA Technical Reports Server (NTRS)
Jordan, Thomas L.; Langford, William M.; Hill, Jeffrey S.
2005-01-01
The Airborne Subscale Transport Aircraft Research (AirSTAR) testbed being developed at NASA Langley Research Center is an experimental flight test capability for research experiments pertaining to dynamics modeling and control beyond the normal flight envelope. An integral part of that testbed is a 5.5% dynamically scaled, generic transport aircraft. This remotely piloted vehicle (RPV) is powered by twin turbine engines and includes a collection of sensors, actuators, navigation, and telemetry systems. The downlink for the plane includes over 70 data channels, plus video, at rates up to 250 Hz. Uplink commands for aircraft control include over 30 data channels. The dynamic scaling requirement, which includes dimensional, weight, inertial, actuator, and data rate scaling, presents distinctive challenges in both the mechanical and electrical design of the aircraft. Discussion of these requirements and their implications on the development of the aircraft along with risk mitigation strategies and training exercises are included here. Also described are the first training (non-research) flights of the airframe. Additional papers address the development of a mobile operations station and an emulation and integration laboratory.
STARDUST-U experiments on fluid-dynamic conditions affecting dust mobilization during LOVAs
NASA Astrophysics Data System (ADS)
Poggi, L. A.; Malizia, A.; Ciparisse, J. F.; Tieri, F.; Gelfusa, M.; Murari, A.; Del Papa, C.; Giovannangeli, I.; Gaudio, P.
2016-07-01
Since 2006 the Quantum Electronics and Plasma Physics (QEP) Research Group together with ENEA FusTech of Frascati have been working on dust re-suspension inside tokamaks and its potential capability to jeopardize the integrity of future fusion nuclear plants (i.e. ITER or DEMO) and to be a risk for the health of the operators. Actually, this team is working with the improved version of the "STARDUST" facility, i.e. "STARDUST-Upgrade". STARDUST-U facility has four new air inlet ports that allow the experimental replication of Loss of Vacuum Accidents (LOVAs). The experimental campaign to detect the different pressurization rates, local air velocity, temperature, have been carried out from all the ports in different accident conditions and the principal results will be analyzed and compared with the numerical simulations obtained through a CFD (Computational Fluid Dynamic) code. This preliminary thermo fluid-dynamic analysis of the accident is crucial for numerical model development and validation, and for the incoming experimental campaign of dust resuspension inside STARDUST-U due to well-defined accidents presented in this paper.
Summer drought predictability over Europe: empirical versus dynamical forecasts
NASA Astrophysics Data System (ADS)
Turco, Marco; Ceglar, Andrej; Prodhomme, Chloé; Soret, Albert; Toreti, Andrea; Doblas-Reyes Francisco, J.
2017-08-01
Seasonal climate forecasts could be an important planning tool for farmers, government and insurance companies that can lead to better and timely management of seasonal climate risks. However, climate seasonal forecasts are often under-used, because potential users are not well aware of the capabilities and limitations of these products. This study aims at assessing the merits and caveats of a statistical empirical method, the ensemble streamflow prediction system (ESP, an ensemble based on reordering historical data) and an operational dynamical forecast system, the European Centre for Medium-Range Weather Forecasts—System 4 (S4) in predicting summer drought in Europe. Droughts are defined using the Standardized Precipitation Evapotranspiration Index for the month of August integrated over 6 months. Both systems show useful and mostly comparable deterministic skill. We argue that this source of predictability is mostly attributable to the observed initial conditions. S4 shows only higher skill in terms of ability to probabilistically identify drought occurrence. Thus, currently, both approaches provide useful information and ESP represents a computationally fast alternative to dynamical prediction applications for drought prediction.
Early Results from Solar Dynamic Space Power System Testing
NASA Technical Reports Server (NTRS)
Shaltens, Richard K.; Mason, Lee S.
1996-01-01
A government/industry team designed, built and tested a 2-kWe solar dynamic space power system in a large thermal vacuum facility with a simulated Sun at the NASA Lewis Research Center. The Lewis facility provides an accurate simulation of temperatures, high vacuum and solar flux as encountered in low-Earth orbit. The solar dynamic system includes a Brayton power conversion unit integrated with a solar receiver which is designed to store energy for continuous power operation during the eclipse phase of the orbit. This paper reviews the goals and status of the Solar Dynamic Ground Test Demonstration project and describes the initial testing, including both operational and performance data. System testing to date has accumulated over 365 hours of power operation (ranging from 400 watts to 2.0-W(sub e)), including 187 simulated orbits, 16 ambient starts and 2 hot restarts. Data are shown for an orbital startup, transient and steady-state orbital operation and shutdown. System testing with varying insolation levels and operating speeds is discussed. The solar dynamic ground test demonstration is providing the experience and confidence toward a successful flight demonstration of the solar dynamic technologies on the Space Station Mir in 1997.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna; Le Blanc, Katya L.; Bly, Aaron
The paper-based procedures currently used for nearly all activities in the commercial nuclear power industry have a long history of ensuring safe operation of the plants. However, there is potential to greatly increase efficiency and safety by improving how the human operator interacts with the procedures. One way to achieve these improvements is through the use of computer-based procedures (CBPs). A CBP system offers a vast variety of improvements, such as context driven job aids, integrated human performance tools (e.g., placekeeping, correct component verification, etc.), and dynamic step presentation. The latter means that the CBP system could only display relevantmore » steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the operator down the path of relevant steps based on the current conditions. This feature will reduce the operator’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. The research team at the Idaho National Laboratory has developed a prototype CBP system for field workers, which has been evaluated from a human factors and usability perspective in four laboratory studies. Based on the results from each study revisions were made to the CBP system. However, a crucial step to get the end users' (e.g., auxiliary operators, maintenance technicians, etc.) acceptance is to put the system in their hands and let them use it as a part of their everyday work activities. In the spring 2014 the first field evaluation of the INL CBP system was conducted at a nuclear power plant. Auxiliary operators conduct a functional test of one out of three backup air compressors each week. During the field evaluation activity, one auxiliary operator conducted the test with the paper-based procedure while a second auxiliary operator followed along with the computer-based procedure. After each conducted functional test the operators were asked a series of questions designed to provide feedback on the feasibility to use a CBP system in the plant and the general user experience of the CBP system. This paper will describe the field evaluation and its results in detail. For example, the result shows that the context driven job aids and the incorporated human performance tools are much liked by the auxiliary operators. The paper will describe and present initial findings from a second field evaluation conducted at second nuclear utility. For this field evaluation a preventive maintenance work order for the HVAC system was used. In addition, there will be a description of the method and objective of two field evaluations planned to be conducted late 2014 or early 2015.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandelli, Diego; Rabiti, Cristian; Cogliati, Joshua
2014-11-01
Passive system, structure and components (SSCs) will degrade over their operation life and this degradation may cause to reduction in the safety margins of a nuclear power plant. In traditional probabilistic risk assessment (PRA) using the event-tree/fault-tree methodology, passive SSC failure rates are generally based on generic plant failure data and the true state of a specific plant is not reflected realistically. To address aging effects of passive SSCs in the traditional PRA methodology [1] does consider physics based models that account for the operating conditions in the plant, however, [1] does not include effects of surveillance/inspection. This paper representsmore » an overall methodology for the incorporation of aging modeling of passive components into the RAVEN/RELAP-7 environment which provides a framework for performing dynamic PRA. Dynamic PRA allows consideration of both epistemic and aleatory uncertainties (including those associated with maintenance activities) in a consistent phenomenological and probabilistic framework and is often needed when there is complex process/hardware/software/firmware/ human interaction [2]. Dynamic PRA has gained attention recently due to difficulties in the traditional PRA modeling of aging effects of passive components using physics based models and also in the modeling of digital instrumentation and control systems. RAVEN (Reactor Analysis and Virtual control Environment) [3] is a software package under development at the Idaho National Laboratory (INL) as an online control logic driver and post-processing tool. It is coupled to the plant transient code RELAP-7 (Reactor Excursion and Leak Analysis Program) also currently under development at INL [3], as well as RELAP 5 [4]. The overall methodology aims to: • Address multiple aging mechanisms involving large number of components in a computational feasible manner where sequencing of events is conditioned on the physical conditions predicted in a simulation environment such as RELAP-7. • Identify the risk-significant passive components, their failure modes and anticipated rates of degradation • Incorporate surveillance and maintenance activities and their effects into the plant state and into component aging progress. • Asses aging affects in a dynamic simulation environment 1. C. L. SMITH, V. N. SHAH, T. KAO, G. APOSTOLAKIS, “Incorporating Ageing Effects into Probabilistic Risk Assessment –A Feasibility Study Utilizing Reliability Physics Models,” NUREG/CR-5632, USNRC, (2001). 2. T. ALDEMIR, “A Survey of Dynamic Methodologies for Probabilistic Safety Assessment of Nuclear Power Plants, Annals of Nuclear Energy, 52, 113-124, (2013). 3. C. RABITI, A. ALFONSI, J. COGLIATI, D. MANDELLI and R. KINOSHITA “Reactor Analysis and Virtual Control Environment (RAVEN) FY12 Report,” INL/EXT-12-27351, (2012). 4. D. ANDERS et.al, "RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7," INL/EXT-12-25924, (2012).« less
Indications and results of systemic to pulmonary shunts: results from a national database.
Dorobantu, Dan Mihai; Pandey, Ragini; Sharabiani, Mansour Taghavi; Mahani, Alireza Shahidzadeh; Angelini, Gianni Davide; Martin, Robin Peter; Stoica, Serban Constantin
2016-06-01
The systemic-to-pulmonary shunt (SPS) remains an important palliative therapy in many congenital heart defects. Unlike other surgical treatments, the mortality after shunt operations has risen. We used an audit dataset to investigate potential reasons for this change and to report national results. A total of 1993 patients classified in 13 diagnoses underwent an SPS procedure between 2000 and 2013. Indication trends by era and also results before repair or next stage are reported. A dynamic hazard model with competing risks and modulated renewal was used to determine predictors of outcomes. The usage of SPS in Tetralogy of Fallot (ToF) has significantly decreased in the last decade, with cases of single ventricle (SV) and pulmonary atresia (PA) with septal communication increasing (P < 0.001 for trends). This is correlated with an increase of early mortality from 5.1% in the first half of the decade to 9.8% in the latter (P = 0.007 for trend). At 1.5 years, 13.9% of patients have died, 17.8% had a shunt reintervention and 68.3% of patients are alive and reintervention-free. Low weight, PA-intact septum, SV and central shunt type are among the factors associated with increased mortality, whereas PA-ventricular septal defect, corrected transposition, isomerism, central shunt and low weight are among those associated with increased reintervention, also having a dynamic effect on the relative risk when compared with ToF patients. Shunt reinterventions are not associated with worse outcomes when adjusted by other covariates, but they do have higher 30-day mortality if occurring earlier than 30 days from the index (P < 0.001). Patients operated in later years were found to have significantly lower survival at a distance from index. The observed historical rise in mortality for shunt operations relates to complex factors including changing practice for repair of ToF and for univentricular palliation. PA and SV patients are the groups of patients at the highest risk of death. Small size, shunt type and underlying anatomical defect are the main determinants of outcomes. Trends in indication and mortality seem to indicate that more severely ill patients benefit from shunting, but with an increase in mortality. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
NASA Technical Reports Server (NTRS)
Shih, Ann T.; Ancel, Ersin; Jones, Sharon Monica; Reveley, Mary S.; Luxhoj, James T.
2012-01-01
Aviation is a problem domain characterized by a high level of system complexity and uncertainty. Safety risk analysis in such a domain is especially challenging given the multitude of operations and diverse stakeholders. The Federal Aviation Administration (FAA) projects that by 2025 air traffic will increase by more than 50 percent with 1.1 billion passengers a year and more than 85,000 flights every 24 hours contributing to further delays and congestion in the sky (Circelli, 2011). This increased system complexity necessitates the application of structured safety risk analysis methods to understand and eliminate where possible, reduce, and/or mitigate risk factors. The use of expert judgments for probabilistic safety analysis in such a complex domain is necessary especially when evaluating the projected impact of future technologies, capabilities, and procedures for which current operational data may be scarce. Management of an R&D product portfolio in such a dynamic domain needs a systematic process to elicit these expert judgments, process modeling results, perform sensitivity analyses, and efficiently communicate the modeling results to decision makers. In this paper a case study focusing on the application of an R&D portfolio of aeronautical products intended to mitigate aircraft Loss of Control (LOC) accidents is presented. In particular, the knowledge elicitation process with three subject matter experts who contributed to the safety risk model is emphasized. The application and refinement of a verbal-numerical scale for conditional probability elicitation in a Bayesian Belief Network (BBN) is discussed. The preliminary findings from this initial step of a three-part elicitation are important to project management practitioners as they illustrate the vital contribution of systematic knowledge elicitation in complex domains.
NASA Astrophysics Data System (ADS)
Bramlette, Richard B.
In the 1950s, Eugene Gluhareff built the first working "pressure jet" engine, a variation on the classical ramjet engine with a pressurized inlet system relying on sonic tuning which allowed operation at subsonic speeds. The engine was an unqualified success. Unfortunately, after decades of sales and research, Gluhareff passed away leaving behind no significant published studies of the engine or detailed analysis of its operation. The design was at serious risk of being lost to history. This dissertation is intended to address that risk by studying a novel subscale modification of Gluhareff's original design operating on the same principles. Included is a background of related engine and how the pressure jet is distinct. The preliminary sizing of a pressure jet using closed-form expressions is then discussed followed by a review of propane oxidation modeling, how it integrates into the Computational Fluid Dynamics (CFD) solver, and the modeling of the pressure jet engine cycle with CFD. The simulation was matched to experimental data recorded on a purpose-built test stand recording chamber pressure, exhaust speed (via a Pitot/static system), temperatures, and thrust force. The engine CFD simulation produced a wide range of qualitative results that matched the experimental data well and suggested strong recirculation flows through the engine confirming suspicions about how the engine operates. Engine operating frequency between CFD and experiment also showed good agreement and appeared to be driven by the "Kadenacy Effect." The research effort lastly opens the door for further study of the engine cycle, the use of pressurized intakes to produce static thrust in a ramjet engine, the Gluhareff pressure jet's original geometry, and a wide array of potential applications. A roadmap of further study and applications is detailed including a modeling and testing of larger engines.
Silk, Aaron; Lenton, Gavin; Savage, Robbie; Aisbett, Brad
2018-02-01
Search and rescue operations are necessary in locating, assisting and recovering individuals lost or in distress. In Australia, land-based search and rescue roles require a range of physically demanding tasks undertaken in dynamic and challenging environments. The aim of the current research was to identify and characterise the physically demanding tasks inherent to search and rescue operation personnel within Australia. These aims were met through a subjective job task analysis approach. In total, 11 criterion tasks were identified by personnel. These tasks were the most physically demanding, frequently occurring and operationally important tasks to these specialist roles. Muscular strength was the dominant fitness component for 7 of the 11 tasks. In addition to the discrete criterion tasks, an operational scenario was established. With the tasks and operational scenario identified, objective task analysis procedures can be undertaken so that practitioners can implement evidence-based strategies, such as physical selection procedures and task-based physical training programs, commensurate with the physical demands of search and rescue job roles. Practitioner Summary: The identification of physically demanding tasks amongst specialist emergency service roles predicates health and safety strategies which can be incorporated into organisations. Knowledge of physical task parameters allows employers to mitigate injury risk through the implementation of strategies modelled on the precise physical demands of the role.
Information Security and Integrity Systems
NASA Technical Reports Server (NTRS)
1990-01-01
Viewgraphs from the Information Security and Integrity Systems seminar held at the University of Houston-Clear Lake on May 15-16, 1990 are presented. A tutorial on computer security is presented. The goals of this tutorial are the following: to review security requirements imposed by government and by common sense; to examine risk analysis methods to help keep sight of forest while in trees; to discuss the current hot topic of viruses (which will stay hot); to examine network security, now and in the next year to 30 years; to give a brief overview of encryption; to review protection methods in operating systems; to review database security problems; to review the Trusted Computer System Evaluation Criteria (Orange Book); to comment on formal verification methods; to consider new approaches (like intrusion detection and biometrics); to review the old, low tech, and still good solutions; and to give pointers to the literature and to where to get help. Other topics covered include security in software applications and development; risk management; trust: formal methods and associated techniques; secure distributed operating system and verification; trusted Ada; a conceptual model for supporting a B3+ dynamic multilevel security and integrity in the Ada runtime environment; and information intelligence sciences.
Fractal dynamics in physiology: Alterations with disease and aging
Goldberger, Ary L.; Amaral, Luis A. N.; Hausdorff, Jeffrey M.; Ivanov, Plamen Ch.; Peng, C.-K.; Stanley, H. Eugene
2002-01-01
According to classical concepts of physiologic control, healthy systems are self-regulated to reduce variability and maintain physiologic constancy. Contrary to the predictions of homeostasis, however, the output of a wide variety of systems, such as the normal human heartbeat, fluctuates in a complex manner, even under resting conditions. Scaling techniques adapted from statistical physics reveal the presence of long-range, power-law correlations, as part of multifractal cascades operating over a wide range of time scales. These scaling properties suggest that the nonlinear regulatory systems are operating far from equilibrium, and that maintaining constancy is not the goal of physiologic control. In contrast, for subjects at high risk of sudden death (including those with heart failure), fractal organization, along with certain nonlinear interactions, breaks down. Application of fractal analysis may provide new approaches to assessing cardiac risk and forecasting sudden cardiac death, as well as to monitoring the aging process. Similar approaches show promise in assessing other regulatory systems, such as human gait control in health and disease. Elucidating the fractal and nonlinear mechanisms involved in physiologic control and complex signaling networks is emerging as a major challenge in the postgenomic era. PMID:11875196
Predicting Reading Ability for Bilingual Latino Children Using Dynamic Assessment
ERIC Educational Resources Information Center
Petersen, Douglas B.; Gillam, Ronald B.
2015-01-01
This study investigated the predictive validity of a dynamic assessment designed to evaluate later risk for reading difficulty in bilingual Latino children at risk for language impairment. During kindergarten, 63 bilingual Latino children completed a dynamic assessment nonsense-word recoding task that yielded pretest to posttest gain scores,…
Mapping quantum-classical Liouville equation: projectors and trajectories.
Kelly, Aaron; van Zon, Ramses; Schofield, Jeremy; Kapral, Raymond
2012-02-28
The evolution of a mixed quantum-classical system is expressed in the mapping formalism where discrete quantum states are mapped onto oscillator states, resulting in a phase space description of the quantum degrees of freedom. By defining projection operators onto the mapping states corresponding to the physical quantum states, it is shown that the mapping quantum-classical Liouville operator commutes with the projection operator so that the dynamics is confined to the physical space. It is also shown that a trajectory-based solution of this equation can be constructed that requires the simulation of an ensemble of entangled trajectories. An approximation to this evolution equation which retains only the Poisson bracket contribution to the evolution operator does admit a solution in an ensemble of independent trajectories but it is shown that this operator does not commute with the projection operators and the dynamics may take the system outside the physical space. The dynamical instabilities, utility, and domain of validity of this approximate dynamics are discussed. The effects are illustrated by simulations on several quantum systems.
Smooth time-dependent receiver operating characteristic curve estimators.
Martínez-Camblor, Pablo; Pardo-Fernández, Juan Carlos
2018-03-01
The receiver operating characteristic curve is a popular graphical method often used to study the diagnostic capacity of continuous (bio)markers. When the considered outcome is a time-dependent variable, two main extensions have been proposed: the cumulative/dynamic receiver operating characteristic curve and the incident/dynamic receiver operating characteristic curve. In both cases, the main problem for developing appropriate estimators is the estimation of the joint distribution of the variables time-to-event and marker. As usual, different approximations lead to different estimators. In this article, the authors explore the use of a bivariate kernel density estimator which accounts for censored observations in the sample and produces smooth estimators of the time-dependent receiver operating characteristic curves. The performance of the resulting cumulative/dynamic and incident/dynamic receiver operating characteristic curves is studied by means of Monte Carlo simulations. Additionally, the influence of the choice of the required smoothing parameters is explored. Finally, two real-applications are considered. An R package is also provided as a complement to this article.
NASA Astrophysics Data System (ADS)
Lawrence, G.; Reid, S.; Tranquille, C.; Evans, H.
2013-12-01
Space Weather is a multi-disciplinary and cross-domain system defined as, 'The physical and phenomenological state of natural space environments. The associated discipline aims, through observation, monitoring, analysis and modelling, at understanding and predicting the state of the Sun, the interplanetary and planetary environments, and the solar and non-solar driven perturbations that affect them, and also at forecasting and nowcasting the potential impacts on biological and technological systems'. National and Agency-level efforts to provide services addressing the myriad problems, such as ESA's SSA programme are therefore typically complex and ambitious undertakings to introduce a comprehensive suite of services aimed at a large number and broad range of end users. We focus on some of the particular threats and risks that Space Weather events pose to the Spacecraft Operations community, and the resulting implications in terms of User Requirements. We describe some of the highest-priority service elements identified as being needed by the Operations community, and outline some service components that are presently available, or under development. The particular threats and risks often vary according to orbit, so the particular User Needs for Operators at LEO, MEO and GEO are elaborated. The inter-relationship between these needed service elements and existing service components within the broader Space Weather domain is explored. Some high-priority service elements and potential correlation with Space Weather drivers include: solar array degradation and energetic proton storms; single event upsets at GEO and solar proton events and galactic cosmic rays; surface charging and deep dielectric charging at MEO and radiation belt dynamics; SEUs at LEO and the South Atlantic Anomaly and its variability. We examine the current capability to provide operational services addressing such threats and identify some advances that the Operations community can expect to benefit from in the short- and medium-term, such as: enhanced forecasting eg. using Bayesian statistics; optimization and standardization of effects tools; operations-ready real-time data tools, with customization options tailored around the operator's views; next-generation SWE-specific sensors and provision of key data to Operators.
Examining the equivalence of Bakamjian-Thomas mass operators in different forms of dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyzou, W. N.
We discus the proof of the equivalence of relativistic quantum mechanical models based on the generalized Bakamjian-Thomas construction in all of Dirac's forms of dynamics. Explicit representations of the equivalent mass operators are given in all three of Dirac's forms of dynamics.
NASA Astrophysics Data System (ADS)
Lerner-Lam, A.
2007-05-01
Outside of the research community and mission agencies, global geophysical monitoring rarely receives sustained attention except in the aftermath of a humanitarian disaster. The recovery and rebuilding period focuses attention and resources for a short time on regional needs for geophysical observation, often at the national or sub-national level. This can result in the rapid deployment of national monitoring networks, but may overlook the longer-term benefits of integration with global networks. Even in the case of multinational disasters, such as the Indian Ocean tsunami, it has proved difficult to promote the integration of national solutions with global monitoring, research and operations infrastructure. More importantly, continuing operations at the national or sub-national scale are difficult to sustain once the resources associated with recovery and rebuilding are depleted. Except for some notable examples, the vast infrastructure associated with global geophysical monitoring is not utilized constructively to promote the integration of national networks with international efforts. This represents a missed opportunity not only for monitoring, but for developing the international research and educational collaborations necessary for technological transfer and capacity building. The recent confluence of highly visible disasters, global multi-hazard risk assessments, evaluations of the relationships between natural disasters and socio-economic development, and shifts in development agency policies, provides an opportunity to link global geophysical monitoring initiatives to central issues in international development. Natural hazard risk reduction has not been the first priority of international development agendas for understandable, mainly humanitarian reasons. However, it is now recognized that the so-called risk premium associated with making development projects more risk conscious or risk resilient is relatively small relative to potential losses. Thus there is an attitudinal shift emerging whereby disaster risk management can be "mainstreamed" into the sustainable development programs in many countries. Consequently, it is incumbent to demonstrate that multi-scale geophysical monitoring, comprising integration of global networks with national and sub-national operations, is a foundational component of sustainable development infrastructure. This suggests even greater emphasis on developing dynamic and adaptive multi- hazard risk assessments, encompassing valid estimates of social and physical vulnerabilities; designing multi- scale network integration strategies that consider risk as well as hazard; providing operational and flexible templates for developing national networks in a global context; emphasizing the backbone characteristics of global geophysical monitoring to nations seeking to develop their own monitoring capacity; promoting sustained international research, education and training collaborations coinciding with the development of monitoring capacity; and continuing to promote the free and open exchange of data as a necessary component of sustained intellectual interest in monitoring. A combination of these strategies may counteract the decay of interest in regional geophysical monitoring after a disaster.
IT Operational Risk Measurement Model Based on Internal Loss Data of Banks
NASA Astrophysics Data System (ADS)
Hao, Xiaoling
Business operation of banks relies increasingly on information technology (IT) and the most important role of IT is to guarantee the operational continuity of business process. Therefore, IT Risk management efforts need to be seen from the perspective of operational continuity. Traditional IT risk studies focused on IT asset-based risk analysis and risk-matrix based qualitative risk evaluation. In practice, IT risk management practices of banking industry are still limited to the IT department and aren't integrated into business risk management, which causes the two departments to work in isolation. This paper presents an improved methodology for dealing with IT operational risk. It adopts quantitative measurement method, based on the internal business loss data about IT events, and uses Monte Carlo simulation to predict the potential losses. We establish the correlation between the IT resources and business processes to make sure risk management of IT and business can work synergistically.
Risk assessment by dynamic representation of vulnerability, exploitation, and impact
NASA Astrophysics Data System (ADS)
Cam, Hasan
2015-05-01
Assessing and quantifying cyber risk accurately in real-time is essential to providing security and mission assurance in any system and network. This paper presents a modeling and dynamic analysis approach to assessing cyber risk of a network in real-time by representing dynamically its vulnerabilities, exploitations, and impact using integrated Bayesian network and Markov models. Given the set of vulnerabilities detected by a vulnerability scanner in a network, this paper addresses how its risk can be assessed by estimating in real-time the exploit likelihood and impact of vulnerability exploitation on the network, based on real-time observations and measurements over the network. The dynamic representation of the network in terms of its vulnerabilities, sensor measurements, and observations is constructed dynamically using the integrated Bayesian network and Markov models. The transition rates of outgoing and incoming links of states in hidden Markov models are used in determining exploit likelihood and impact of attacks, whereas emission rates help quantify the attack states of vulnerabilities. Simulation results show the quantification and evolving risk scores over time for individual and aggregated vulnerabilities of a network.
Heisenberg operator approach for spin squeezing dynamics
NASA Astrophysics Data System (ADS)
Bhattacherjee, Aranya Bhuti; Sharma, Deepti; Pelster, Axel
2017-12-01
We reconsider the one-axis twisting Hamiltonian, which is commonly used for generating spin squeezing, and treat its dynamics within the Heisenberg operator approach. To this end we solve the underlying Heisenberg equations of motion perturbatively and evaluate the expectation values of the resulting time-dependent Heisenberg operators in order to determine approximately the dynamics of spin squeezing. Comparing our results with those originating from exact numerics reveals that they are more accurate than the commonly used frozen spin approximation.
NASA Astrophysics Data System (ADS)
Chan, H. M.; van der Velden, B. H. M.; E Loo, C.; Gilhuijs, K. G. A.
2017-08-01
We present a radiomics model to discriminate between patients at low risk and those at high risk of treatment failure at long-term follow-up based on eigentumors: principal components computed from volumes encompassing tumors in washin and washout images of pre-treatment dynamic contrast-enhanced (DCE-) MR images. Eigentumors were computed from the images of 563 patients from the MARGINS study. Subsequently, a least absolute shrinkage selection operator (LASSO) selected candidates from the components that contained 90% of the variance of the data. The model for prediction of survival after treatment (median follow-up time 86 months) was based on logistic regression. Receiver operating characteristic (ROC) analysis was applied and area-under-the-curve (AUC) values were computed as measures of training and cross-validated performances. The discriminating potential of the model was confirmed using Kaplan-Meier survival curves and log-rank tests. From the 322 principal components that explained 90% of the variance of the data, the LASSO selected 28 components. The ROC curves of the model yielded AUC values of 0.88, 0.77 and 0.73, for the training, leave-one-out cross-validated and bootstrapped performances, respectively. The bootstrapped Kaplan-Meier survival curves confirmed significant separation for all tumors (P < 0.0001). Survival analysis on immunohistochemical subgroups shows significant separation for the estrogen-receptor subtype tumors (P < 0.0001) and the triple-negative subtype tumors (P = 0.0039), but not for tumors of the HER2 subtype (P = 0.41). The results of this retrospective study show the potential of early-stage pre-treatment eigentumors for use in prediction of treatment failure of breast cancer.
ERIC Educational Resources Information Center
Mitchell, Christine M.; Govindaraj, T.
1990-01-01
Discusses the use of intelligent tutoring systems as opposed to traditional on-the-job training for training operators of complex dynamic systems and describes the computer architecture for a system for operators of a NASA (National Aeronautics and Space Administration) satellite control system. An experimental evaluation with college students is…
Hu, Yue-Yung; Arriaga, Alexander F.; Roth, Emilie M.; Peyre, Sarah E.; Corso, Katherine A.; Swanson, Richard S.; Osteen, Robert T.; Schmitt, Pamela; Bader, Angela M.; Zinner, Michael J.; Greenberg, Caprice C.
2012-01-01
Objective To understand the etiology and resolution of unanticipated events in the operating room (OR). Background The majority of surgical adverse events occur intra-operatively. The OR represents a complex, high-risk system. The influence of different human, team, and organizational/environmental factors on safety and performance is unknown. Methods We video-recorded and transcribed 10 high-acuity operations, representing 43.7 hours of patient care. Deviations, defined as delays and/or episodes of decreased patient safety, were identified by majority consensus of a multidisciplinary team. Factors that contributed to each event and/or mitigated its impact were determined and attributed to the patient, providers, or environment/organization. Results Thirty-three deviations (10 delays, 17 safety compromises, 6 both) occurred – with a mean of one every 79.4 minutes. These deviations were multifactorial (mean 3.1 factors). Problems with communication and organizational structure appeared repeatedly at the root of both types of deviations. Delays tended to be resolved with vigilance, communication, coordination, and cooperation, while mediation of safety compromises was most frequently accomplished with vigilance, leadership, communication, and/or coordination. The organization/environment was not found to play a direct role in compensation. Conclusions Unanticipated events are common in the OR. Deviations result from poor organizational/environmental design and suboptimal team dynamics, with caregivers compensating to avoid patient harm. While recognized in other high risk domains, such human resilience has not yet been described in surgery and has major implications for the design of safety interventions. PMID:22750753
Operational Oceanograhy System for Oil Spill Risk Management at Santander Bay (Spain)
NASA Astrophysics Data System (ADS)
Castanedo Bárcena, S.; Nuñez, P.; Perez-Diaz, B.; Abascal, A.; Cardenas, M.; Medina, R.
2016-02-01
Estuaries and bays are sheltered areas that usually host a wide range of industry and interests (e.g. aquaculture, fishing, recreation, habitat protection). Oil spill risk assessment in these environments is fundamental given the reduced response time associated to this very local scale. This work presents a system comprising two modules: (1) an Operational Oceanography System (OOS) based on nesting high resolution models which provides short-term (within 48 hours) oil spill trajectory forecasting and (2) an oil spill risk assessment system (OSRAS) that estimates risk as the combination of hazard and vulnerability. Hazard is defined as the probability of the coast to be polluted by an oil spill and is calculated on the basis of a library of pre-run cases. The OOS is made up by: (1) Daily boundary conditions (sea level, ocean currents, salinity and temperature) and meteorological forcing are obtained from the European network MYOCEAN and from the Spanish met office, AEMET, respectively; (2) COAWST modelling system is the engine of the OOS (at this stage of the project only ROMS is on); (3) an oil spill transport and fate model, TESEO (4) a web service that manages the operational system and allows the user to run hypothetical as well as real oil spill trajectories using the daily forecast of wind and high resolution ocean variables carried out by COAWST. Regarding the OSRAS system, the main contributions of this work are: (1) the use of extensive meteorological and oceanographic database provided by state-of-the-art ocean and atmospheric models, (2) the use of clustering techniques to establish representative met-ocean scenarios (i.e. combination of sea state, meteorological conditions, tide and river flow), (3) dynamic downscaling of the met-ocean scenarios with COAWST modelling system and (4) management of hundreds of runs performed with the state-of-the-art oil spill transport model TESEO.
Radiation predictions and shielding calculations for RITS-6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maenchen, John Eric; O'Malley, John; Kensek, Ronald Patrick
2005-06-01
The mission of Radiographic Integrated Test Stand-6 (RITS-6) facility is to provide the underlying science and technology for pulsed-power-driven flash radiographic X-ray sources for the National Nuclear Security Administration (NNSA). Flash X-ray radiography is a penetrating diagnostic to discern the internal structure in dynamic experiments. Short (~50 nanosecond (ns) duration) bursts of very high intensity Xrays from mm-scale source sizes are required at a variety of voltages to address this mission. RITS-6 was designed and is used to both develop the accelerator technology needed for these experiments and serves as the principal test stand to develop the high intensity electronmore » beam diodes that generate the required X-ray sources. RITS is currently in operation with three induction cavities (RITS-3) with a maximum voltage output of 5.5 MV and is classified as a low hazard non-nuclear facility in accordance with CPR 400.1.1, Chapter 13, Hazards Identification/Analysis and Risk Management. The facility will be expanded from three to six cavities (RITS-6) effectively doubling the operating voltage. The increase in the operating voltage to above 10 MV has resulted in RITS-6 being classified as an accelerator facility. RITS-6 will come under DOE Order 420.2B, Safety of Accelerator Facilities. The hazards of RITS are detailed in the "Safety Assessment Document for the Radiographic Integrated Test Stand Facility." The principal non-industrial hazard is prompt x-ray radiation. As the operating voltage is increased, both the penetration power and the total amount (dose) of x-rays are increased, thereby increasing the risk to local personnel. Fixed site shielding (predominantly concrete walls and a steel/lead skyshine shield) is used to attenuate these x-rays and mitigate this risk. This SAND Report details the anticipated x-ray doses, the shielding design, and the anticipated x-ray doses external to this shielding structure both in areas where administrative access control restricts occupation and in adjacent uncontrolled areas.« less
A stochastic agent-based model of pathogen propagation in dynamic multi-relational social networks
Khan, Bilal; Dombrowski, Kirk; Saad, Mohamed
2015-01-01
We describe a general framework for modeling and stochastic simulation of epidemics in realistic dynamic social networks, which incorporates heterogeneity in the types of individuals, types of interconnecting risk-bearing relationships, and types of pathogens transmitted across them. Dynamism is supported through arrival and departure processes, continuous restructuring of risk relationships, and changes to pathogen infectiousness, as mandated by natural history; dynamism is regulated through constraints on the local agency of individual nodes and their risk behaviors, while simulation trajectories are validated using system-wide metrics. To illustrate its utility, we present a case study that applies the proposed framework towards a simulation of HIV in artificial networks of intravenous drug users (IDUs) modeled using data collected in the Social Factors for HIV Risk survey. PMID:25859056
Generation of Simulated Tracking Data for LADEE Operational Readiness Testing
NASA Technical Reports Server (NTRS)
Woodburn, James; Policastri, Lisa; Owens, Brandon
2015-01-01
Operational Readiness Tests were an important part of the pre-launch preparation for the LADEE mission. The generation of simulated tracking data to stress the Flight Dynamics System and the Flight Dynamics Team was important for satisfying the testing goal of demonstrating that the software and the team were ready to fly the operational mission. The simulated tracking was generated in a manner to incorporate the effects of errors in the baseline dynamical model, errors in maneuver execution and phenomenology associated with various tracking system based components. The ability of the mission team to overcome these challenges in a realistic flight dynamics scenario indicated that the team and flight dynamics system were ready to fly the LADEE mission. Lunar Atmosphere and Dust Environment.
Risk Perception Analysis Related To Existing Dams In Italy
NASA Astrophysics Data System (ADS)
Solimene, Pellegrino
2013-04-01
In the first part of this work, the progress of Italian National Rules about dams design, construction and operation are presented to highlight the strong connection existing between the promulgation of new decrees, as a consequence of a dam accidents, and the necessity to prevent further loss of lives and goods downstream. Following the Gleno Dam failure (1923), a special Ministerial Committee wrote out the first Regulations and made the proposal to establish, within the High Council of Public Works, a special department that become soon the "Dam Service", with the tasks of control and supervision about construction and operation phases of the dams and their reservoirs. A different definition of tasks and the structure of Dam Service were provided in accordance with law n° 183/1989, which transferred all the technical services to the Office of the Prime Minister; the aim was to join the Dam Office with the Department for National Technical Services, with the objective of increasing the knowledge of the territory and promoting the study on flood propagation downstream in case of operations on bottom outlet or hypothetical dam-break. In fact, population living downstream is not ready to accept any amount of risk because has not a good knowledge of the efforts of experts involved in dam safety, both from the operators and from the safety Authority. So it's important to optimize all the activities usually performed in a dam safety program and improve the emergency planning as a response to people's primary needs and feeling about safety from Civil Protection Authority. In the second part of the work, a definition of risk is provided as the relationship existing between probability of occurrence and loss, setting out the range within to plan for prevention (risk mitigation), thanks to the qualitative assessment of the minimum safety level that is suited to assign funds to plan for Civil Protection (loss mitigation). The basic meaning of the reliability of a zoned earthfill dam is illustrated by defining the risk analysis during its construction and operation. A qualitative "Event Tree Analysis" makes clear with an example the probability of occurrence of the events triggered by an earthquake, and leads to a classification of the damage level. Finally, a System Dynamics (SD) approach is presented to investigate possibilities of a preventive planning in relationship to the risk, so that it's possible to establish shared procedures to achieve the correct management in any crisis phase. As a qualitative result of a SD application, figure 1 presents a flow-chart about a case study on the same dam so to illustrate the emergency planning in a step by step procedure according to the Regulations.
Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations
NASA Technical Reports Server (NTRS)
Cutri-Kohart, Rebecca M.
2011-01-01
The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.
NASA Astrophysics Data System (ADS)
Zhang, Yu-Feng; Muhammad, Iqbal; Yue, Chao
2017-10-01
We extend two known dynamical systems obtained by Blaszak, et al. via choosing Casimir functions and utilizing Novikov-Lax equation so that a series of novel dynamical systems including generalized Burgers dynamical system, heat equation, and so on, are followed to be generated. Then we expand some differential operators presented in the paper to deduce two types of expanding dynamical models. By taking the generalized Burgers dynamical system as an example, we deform its expanding model to get a half-expanding system, whose recurrence operator is derived from Lax representation, and its Hamiltonian structure is also obtained by adopting a new way. Finally, we expand the generalized Burgers dynamical system to the (2+1)-dimensional case whose Hamiltonian structure is derived by Poisson tensor and gradient of the Casimir function. Besides, a kind of (2+1)-dimensional expanding dynamical model of the (2+1)-dimensional dynamical system is generated as well. Supported by the Fundamental Research Funds for the Central University under Grant No. 2017XKZD11
An Evidenced-Based Approach for Estimating Decompression Sickness Risk in Aircraft Operations
NASA Technical Reports Server (NTRS)
Robinson, Ronald R.; Dervay, Joseph P.; Conkin, Johnny
1999-01-01
Estimating the risk of decompression Sickness (DCS) in aircraft operations remains a challenge, making the reduction of this risk through the development of operationally acceptable denitrogenation schedules difficult. In addition, the medical recommendations which are promulgated are often not supported by rigorous evaluation of the available data, but are instead arrived at by negotiation with the aircraft operations community, are adapted from other similar aircraft operations, or are based upon the opinion of the local medical community. We present a systematic approach for defining DCS risk in aircraft operations by analyzing the data available for a specific aircraft, flight profile, and aviator population. Once the risk of DCS in a particular aircraft operation is known, appropriate steps can be taken to reduce this risk to a level acceptable to the applicable aviation community. Using this technique will allow any aviation medical community to arrive at the best estimate of DCS risk for its specific mission and aviator population and will allow systematic reevaluation of the decisions regarding DCS risk reduction when additional data are available.
Applicability of dynamic membrane technology in anaerobic membrane bioreactors.
Ersahin, Mustafa Evren; Ozgun, Hale; Tao, Yu; van Lier, Jules B
2014-01-01
This study investigated the applicability of dynamic membrane technology in anaerobic membrane bioreactors for the treatment of high strength wastewaters. A monofilament woven fabric was used as support material for dynamic membrane formation. An anaerobic dynamic membrane bioreactor (AnDMBR) was operated under a variety of operational conditions, including different sludge retention times (SRTs) of 20 and 40 days in order to determine the effect of SRT on both biological performance and dynamic membrane filtration characteristics. High COD removal efficiencies exceeding 99% were achieved during the operation at both SRTs. Higher filtration resistances were measured during the operation at SRT of 40 days in comparison to SRT of 20 days, applying a stable flux of 2.6 L/m(2) h. The higher filtration resistances coincided with lower extracellular polymeric substances concentration in the bulk sludge at SRT of 40 days, likely resulting in a decreased particle flocculation. Results showed that dynamic membrane technology achieved a stable and high quality permeate and AnDMBRs can be used as a reliable and satisfactory technology for treatment of high strength wastewaters. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Jian Jun; Ahmed, A. K. W.; Rakheja, Subhash; Khajepour, Amir
2010-12-01
In practice, it is not very uncommon to find railway track systems with unsupported sleepers due to the uneven settlement of a ballasted track system. These unsupported sleepers are among the major vibration excitations for a train and track system when a train moves forwards on a track. The vibration induced by unsupported sleepers can cause a large dynamic contact force between wheels and rails. For heavily loaded high-speed trains, the deteriorated sleeper support may lead to accelerated degradation of the railway track and vehicle components, and may thus impose safety risk to the operation. This paper presents analyses of a coupled vehicle-track assembly consisting of a roll plane vehicle model, a continuous track system model and an adaptive wheel-rail contact model. In order to improve the simulation efficiency, a numerical approach based on the central finite difference method is proposed in this investigation. The developed model assembly and proposed simulation method are utilised to simulate the vehicle-track dynamic interaction in the presence of unsupported sleepers. The dynamic response in terms of the dynamic wheel-rail interaction force due to one or multiple unsupported sleepers is studied. Important factors influencing the dynamic wheel-rail interaction force in the presence of sleeper voids are also investigated. The results show that the vehicle speed, the gap size and the number of unsupported sleepers primarily dictate the magnitude of impact load which can be significant.
Dynamic Computation of Change Operations in Version Management of Business Process Models
NASA Astrophysics Data System (ADS)
Küster, Jochen Malte; Gerth, Christian; Engels, Gregor
Version management of business process models requires that changes can be resolved by applying change operations. In order to give a user maximal freedom concerning the application order of change operations, position parameters of change operations must be computed dynamically during change resolution. In such an approach, change operations with computed position parameters must be applicable on the model and dependencies and conflicts of change operations must be taken into account because otherwise invalid models can be constructed. In this paper, we study the concept of partially specified change operations where parameters are computed dynamically. We provide a formalization for partially specified change operations using graph transformation and provide a concept for their applicability. Based on this, we study potential dependencies and conflicts of change operations and show how these can be taken into account within change resolution. Using our approach, a user can resolve changes of business process models without being unnecessarily restricted to a certain order.
Advances in the assessment and prediction of interpersonal violence.
Mills, Jeremy F
2005-02-01
This article underscores the weakness of clinical judgment as a mechanism for prediction with examples from other areas in the psychological literature. Clinical judgment has as its Achilles'heel the reliance on a person to incorporate multiple pieces of information while overcoming human judgment errors--a feat insurmountable thus far. The actuarial approach to risk assessment has overcome many of the weaknesses of clinical judgment and has been shown to be a much superior method. Nonetheless, the static/historical nature of the risk factors associated with most actuarial approaches is limiting. Advances in risk prediction will be found in part in the development of dynamic actuarial instruments that will measure both static/historical and changeable risk factors. The dynamic risk factors can be reevaluated on an ongoing basis, and it is proposed that the level of change in dynamic factors necessary to represent a significant change in overall risk will be an interactive function with static risk factors.
Surgeon Perception of Risk and Benefit in the Decision to Operate.
Sacks, Greg D; Dawes, Aaron J; Ettner, Susan L; Brook, Robert H; Fox, Craig R; Maggard-Gibbons, Melinda; Ko, Clifford Y; Russell, Marcia M
2016-12-01
To determine how surgeons' perceptions of treatment risks and benefits influence their decisions to operate. Little is known about what makes one surgeon choose to operate on a patient and another chooses not to operate. Using an online study, we presented a national sample of surgeons (N = 767) with four detailed clinical vignettes (mesenteric ischemia, gastrointestinal bleed, bowel obstruction, appendicitis) where the best treatment option was uncertain and asked them to: (1) judge the risks (probability of serious complications) and benefits (probability of recovery) for operative and nonoperative management and (2) decide whether or not they would recommend an operation. Across all clinical vignettes, surgeons varied markedly in both their assessments of the risks and benefits of operative and nonoperative management (narrowest range 4%-100% for all four predictions across vignettes) and in their decisions to operate (49%-85%). Surgeons were less likely to operate as their perceptions of operative risk increased [absolute difference (AD) = -29.6% from 1.0 standard deviation below to 1.0 standard deviation above mean (95% confidence interval, CI: -31.6, -23.8)] and their perceptions of nonoperative benefit increased [AD = -32.6% (95% CI: -32.8,--28.9)]. Surgeons were more likely to operate as their perceptions of operative benefit increased [AD = 18.7% (95% CI: 12.6, 21.5)] and their perceptions of nonoperative risk increased [AD = 32.7% (95% CI: 28.7, 34.0)]. Differences in risk/benefit perceptions explained 39% of the observed variation in decisions to operate across the four vignettes. Given the same clinical scenarios, surgeons' perceptions of treatment risks and benefits vary and are highly predictive of their decisions to operate.
The utilisation of engineered invert traps in the management of near bed solids in sewer networks.
Ashley, R M; Tait, S J; Stovin, V R; Burrows, R; Framer, A; Buxton, A P; Blackwood, D J; Saul, A J; Blanksby, J R
2003-01-01
Large existing sewers are considerable assets which wastewater utilities will require to operate for the foreseeable future to maintain health and the quality of life in cities. Despite their existence for more than a century there is surprisingly little guidance available to manage these systems to minimise problems associated with in-sewer solids. A joint study has been undertaken in the UK, to refine and utilise new knowledge gained from field data, laboratory results and Computational Fluid Dynamics (CFD) simulations to devise cost beneficial engineering tools for the application of small invert traps to localise the deposition of sediments in sewers at accessible points for collection. New guidance has been produced for trap siting and this has been linked to a risk-cost-effectiveness assessment procedure to enable system operators to approach in-sewer sediment management pro-actively rather than reactively as currently happens.
Zatevahina, M V; Farzutdinov, A F; Rahimov, A A; Makrushin, I M; Kvachantiradze, G Y
2015-01-01
The purpose of the study is to examine the perioperative dynamics of strategic blood oxygen transport indicators: delivery (DO2), consumption (VO2), the coefficient of oxygen uptake (CUO2) and their composition, as well as the dynamics of blood lactate indicators in patients with ischaemic heart disease (IHD) who underwent surgery under cardiopulmonary bypass with high thoracic epidural anaesthesia (HTEA) as the main component of anesthesia. Research was conducted in 30 patients with a critical degree of operational risk, during the correction of post-infarction heart aneurysmn using the V. Dor method in combination with coronary artery bypass grafting. The strategic blood oxygen transport indicators (delivery, consumption and the oxygen uptake coefficient) showed a statistically significant decrease compared to the physiological norm and to the initial data at two points of the research: the intubation of the trachea and during cardiopulmonary bypass. The system components of oxygen were influenced at problematic stages by the dynamics of SvO2 (increase), AVD (decrease), hemodilution withe fall of the HIb- in the process of JR in the persence of superficial hypothermia. The maintenance of optimal CA in the context of HTEA, combined with a balanced volemic load and a minimized cardiotonic support ensured the stabilisation of strategic blood oxygen transport indicators aithe postperfusion stage and during the immediate postoperative period The article is dedicated to the study of strategic blood oxygen transport indicators and their components during the operation of geometric reconstruc-tion of the left ventricle combined with coronary artery-bypass using cardiopulmonary bypass and with high thoracic epidural anesthesia as the main component of general anaesthesia. The analysis has covered the stagewise delivery dynamics, consumption and the oxygen uptake coefficient at II stages of the operation and of the immediate postoperative period. The study has ident (fled the causes qf reduced oxygen transport during the preperfu- sion and postperfusion periods, under IR and during the immediate postoperative period. Values of CA, SvO2, AVD, Hb, hemnodilution, T qf the body in oxygen transport indicator dynamics have been proven. A way of maintaining oxygen transport indicators close to the physiological norm in the immediate postoperative period has been justified.
The ethics of conducting a co-operative inquiry with vulnerable people.
Tee, Stephen R; Lathlean, Judith A
2004-09-01
Mental health services users have been calling for greater participation in clinical research. Participation in this context means research 'with' rather than 'on' groups of people. Conducting a co-operative inquiry involving the participation of vulnerable individuals as co-researchers, in particular those with a history of mental health problems, places an obligation on researchers to articulate and justify sound ethical procedures. The aim of this paper is to consider how the ethical issues encountered when conducting participative research with vulnerable people can be addressed in the implementation of a co-operative inquiry with users of mental health services. The study was based on personal reflection and a critical review of associated literature obtained from a database search using Boolean logic. The findings, presented under the headings of the four prima facie moral principles, suggest the need for researchers using participative approaches to demonstrate the humanistic attributes required for engaging and working with people over a period of time. These include building and maintaining trusting relationships, assessing competence to participate, managing interpersonal and group dynamics and making complex collaborative decisions about participants' continued participation in a study. When using a co-operative inquiry approach involving vulnerable individuals, researchers need to demonstrate clearly how a balance between autonomy and paternalism will be achieved, how risks will be anticipated and managed and how fairness will be maintained throughout all procedures. Researchers using participative approaches need to have developed a level of personal insight and self-awareness through access to supervision which focuses on sources of unintended manipulation and interpersonal dynamics that may arise at the inception of a study and throughout its course. Researchers and ethics committees have a shared responsibility to ensure that vulnerable people are appropriately engaged to maintain the advancement of user knowledge which informs nursing practice.
Structural dynamics verification facility study
NASA Technical Reports Server (NTRS)
Kiraly, L. J.; Hirchbein, M. S.; Mcaleese, J. M.; Fleming, D. P.
1981-01-01
The need for a structural dynamics verification facility to support structures programs was studied. Most of the industry operated facilities are used for highly focused research, component development, and problem solving, and are not used for the generic understanding of the coupled dynamic response of major engine subsystems. Capabilities for the proposed facility include: the ability to both excite and measure coupled structural dynamic response of elastic blades on elastic shafting, the mechanical simulation of various dynamical loadings representative of those seen in operating engines, and the measurement of engine dynamic deflections and interface forces caused by alternative engine mounting configurations and compliances.
Recursive dynamics for flexible multibody systems using spatial operators
NASA Technical Reports Server (NTRS)
Jain, A.; Rodriguez, G.
1990-01-01
Due to their structural flexibility, spacecraft and space manipulators are multibody systems with complex dynamics and possess a large number of degrees of freedom. Here the spatial operator algebra methodology is used to develop a new dynamics formulation and spatially recursive algorithms for such flexible multibody systems. A key feature of the formulation is that the operator description of the flexible system dynamics is identical in form to the corresponding operator description of the dynamics of rigid multibody systems. A significant advantage of this unifying approach is that it allows ideas and techniques for rigid multibody systems to be easily applied to flexible multibody systems. The algorithms use standard finite-element and assumed modes models for the individual body deformation. A Newton-Euler Operator Factorization of the mass matrix of the multibody system is first developed. It forms the basis for recursive algorithms such as for the inverse dynamics, the computation of the mass matrix, and the composite body forward dynamics for the system. Subsequently, an alternative Innovations Operator Factorization of the mass matrix, each of whose factors is invertible, is developed. It leads to an operator expression for the inverse of the mass matrix, and forms the basis for the recursive articulated body forward dynamics algorithm for the flexible multibody system. For simplicity, most of the development here focuses on serial chain multibody systems. However, extensions of the algorithms to general topology flexible multibody systems are described. While the computational cost of the algorithms depends on factors such as the topology and the amount of flexibility in the multibody system, in general, it appears that in contrast to the rigid multibody case, the articulated body forward dynamics algorithm is the more efficient algorithm for flexible multibody systems containing even a small number of flexible bodies. The variety of algorithms described here permits a user to choose the algorithm which is optimal for the multibody system at hand. The availability of a number of algorithms is even more important for real-time applications, where implementation on parallel processors or custom computing hardware is often necessary to maximize speed.
Influence of the rotor-stator interaction on the dynamic stresses of Francis runners
NASA Astrophysics Data System (ADS)
Guillaume, R.; Deniau, J. L.; Scolaro, D.; Colombet, C.
2012-11-01
Thanks to advances in computing capabilities and Computational Fluid Dynamics (CFD) techniques, it is now possible to calculate realistic unsteady pressure fields in Francis turbines. This paper will explain methods to calculate the structural loads and the dynamic behaviour in order to optimize the turbine design and maximize its reliability and lifetime. Depending on the operating conditions of a Francis turbine, different hydraulic phenomena may impact the mechanical behaviour of the structure. According to their nature, these highly variable phenomena should be treated differently and specifically in order to estimate the potential risks arising on submerged structures, in particular the runner. The operating condition studied thereafter is the point at maximum power with the maximum head. Under this condition, the runner is excited by only one dynamic phenomenon named the Rotor-Stator Interaction (RSI). The origin of the phenomenon is located on the radial gap of the turbine and is the source of pressure fluctuations. A fluid-structure analysis is performed to observe the influence of that dynamic pressure field on the runner behaviour. The first part of the paper deals with the unsteady fluid computation. The RSI phenomenon is totally unsteady so the fluid simulation must take into account the entire machine and its rotation movement, in order to obtain a dynamic pressure field. In the second part of the paper, a method suitable for the RSI study is developed. It is known that the fluctuating pressure in this gap can be described as a sum of spatial components. By evaluating these components in the CFD results and on the scale model, it is possible to assess the relevance of the numerical results on the whole runner. After this step, the numerical pressure field can be used as the dynamic load of the structure. The final part of the paper presentsthe mechanical finite element calculations. A modal analysis of the runner in water and a harmonic analysis of its dynamic behaviour using the CFD results are carried out. These calculations will show that the RSI on the medium head Francis runner does not create damage on the runner even if the natural frequencies are closed to the wicket gates passing frequency. The numerical results are reinforced by experimental observations done on runner prototypes showing that the wicket gates passing frequency does not have significant influence on low and medium head Francis runner behaviour.
Operational Risk Defined Through a Complex Operating Environment
2015-02-26
including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed , and completing and reviewing...This argument defines operational risk as any environmental, institutional, or social impediment to the principles of joint operations that disrupt...Restraint, Perseverance, and Legitimacy. This argument defines operational risk as any environmental, institutional, or social impediment to the
Zare, Mohsen; Sagot, Jean-Claude; Roquelaure, Yves
2018-05-17
Industrial companies indicate a tendency to eliminate variations in operator strategies, particularly following implementation of the lean principle. Companies believe when the operators perform the same prescribed tasks, they have to execute them in the same manner (completing the same gestures and being exposed to the same risk factors). They attempt to achieve better product quality by standardizing and reducing operational leeway. However, operators adjust and modify ways of performing tasks to balance between their abilities and the requirements of the job. This study aims to investigate the variability of exposure to physical risk factors within and between operators when executing the same prescribed tasks. The Ergonomic Standard method was used to evaluate two workstations. Seven operators were observed thirty times between repeated cycle times at those workstations. The results revealed the variability of exposure to risk factors between and within operators in the repeated execution of the same tasks. Individual characteristics and operators' strategies might generate the variability of exposure to risk factors that may be an opportunity to reduce the risks of work-related musculoskeletal disorders (WR-MSDs). However, sometimes operators' strategies may cause overexposure to risk factors; operators most often adopt such strategies to undertake their tasks while reducing the workload.
Pruvot, M; Kutz, S; Barkema, H W; De Buck, J; Orsel, K
2014-11-01
Mycobacterium avium subsp. paratuberculosis (MAP) and Neospora caninum (NC) are two pathogens causing important production limiting diseases in the cattle industry. Significant impacts of MAP and NC have been reported on dairy cattle herds, but little is known about the importance, risk factors and transmission patterns in western Canadian cow-calf herds. In this cross-sectional study, the prevalence of MAP and NC infection in southwest Alberta cow-calf herds was estimated, risk factors for NC were identified, and the reproductive impacts of the two pathogens were assessed. Blood and fecal samples were collected from 840 cows on 28 cow-calf operations. Individual cow and herd management information was collected by self-administered questionnaires and one-on-one interviews. Bayesian estimates of the true prevalence of MAP and NC were computed, and bivariable and multivariable statistical analysis were done to assess the association between the NC serological status and ranch management risk factors, and the clinical effects of the two pathogens. Bayesian estimates of true prevalence indicated that 20% (95% probability interval: 8-38%) of herds had at least one MAP-positive cow, with a within-herd prevalence in positive herds of 22% (8-45%). From the Bayesian posterior distributions of NC prevalence, the median herd-level prevalence was 66% (33-95%) with 10% (4-21%) cow-level prevalence in positive herds. Multivariable analysis indicated that introducing purchased animals in the herd might increase the risk of NC. The negative association of NC with proper carcass disposal and presence of horses on ranch (possibly in relation to herd monitoring and guarding activities), may suggest the importance of wild carnivores in the dynamics of this pathogen in the study area. We also observed an association between MAP and NC serological status and the number of abortions. Additional studies should be done to further examine specific risk factors for MAP and NC, assess the consequences on the reproductive performances in cow-calf herds, and evaluate the overall impact of these pathogens on cow-calf operations. Copyright © 2014 Elsevier B.V. All rights reserved.
Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases
NASA Technical Reports Server (NTRS)
McFarland, Shane M.
2011-01-01
In support of the NASA Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses on detailed results of the testing that has been conducted under this test series thus far.
Maljovec, D.; Liu, S.; Wang, B.; ...
2015-07-14
Here, dynamic probabilistic risk assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP and MELCOR) with simulation controller codes (e.g., RAVEN and ADAPT). Whereas system simulator codes model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic and operating procedures) and stochastic (e.g., component failures and parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by sampling values of a set of parameters and simulating the system behavior for that specific set of parameter values. For complex systems, a major challenge in using DPRA methodologies is to analyze the large number of scenarios generated,more » where clustering techniques are typically employed to better organize and interpret the data. In this paper, we focus on the analysis of two nuclear simulation datasets that are part of the risk-informed safety margin characterization (RISMC) boiling water reactor (BWR) station blackout (SBO) case study. We provide the domain experts a software tool that encodes traditional and topological clustering techniques within an interactive analysis and visualization environment, for understanding the structures of such high-dimensional nuclear simulation datasets. We demonstrate through our case study that both types of clustering techniques complement each other for enhanced structural understanding of the data.« less
Injury Potential Testing of Suited Occupants During Dynamic Spacecraft Flight Phases
NASA Technical Reports Server (NTRS)
McFarland, Shane M.
2010-01-01
In support of the Constellation Program, a space-suit architecture was envisioned for support of Launch, Entry, Abort, Micro-g EVA, Post Landing crew operations, and under emergency conditions, survival. This space suit architecture is unique in comparison to previous launch, entry, and abort (LEA) suit architectures in that it utilized rigid mobility elements in the scye and the upper arm regions. The suit architecture also employed rigid thigh disconnect elements to allow for quick disconnect functionality above the knee which allowed for commonality of the lower portion of the suit across two suit configurations. This suit architecture was designed to interface with the Orion seat subsystem, which includes seat components, lateral supports, and restraints. Due to this unique configuration of spacesuit mobility elements, combined with the need to provide occupant protection during dynamic landing events, risks were identified with potential injury due to the suit characteristics described above. To address the risk concerns, a test series was developed to evaluate the likelihood and consequences of these potential issues. Testing included use of Anthropomorphic Test Devices (ATDs), Post Mortem Human Subjects (PMHS), and representative seat/suit hardware in combination with high linear acceleration events. The ensuing treatment focuses o detailed results of the testing that has ben conducted under this test series thus far.
A Taxonomy of Operational Risks
2005-09-01
the operational organization. Con - tractual constraints or requirements can impose risk if the mission delivers products or services under contract...Carnegie Mellon Software Engineering Institute A Taxonomy of Operational Risks CMU/SEI-2005-TN-036 Brian P. Gallagher Pamela J. Case DIST...Operational Risks CMU/SEI-2005-TN-036 Brian P. Gallagher Pamela J. Case Rita C. Creel Susan Kushner Ray C. Williams September2005 Acquisition Support Program
1992-06-01
The first United States Microgravity Laboratory (USML-1) provided scientific research in materials science, fluid dynamics, biotechnology, and combustion science in a weightless environment inside the Spacelab module. This photograph is a close-up view of the Glovebox in operation during the mission. The Spacelab Glovebox, provided by the European Space Agency, offers experimenters new capabilities to test and develop science procedures and technologies in microgravity. It enables crewmembers to handle, transfer, and otherwise manipulate materials in ways that are impractical in the open Spacelab. The facility is equipped with three doors: a central port through which experiments are placed in the Glovebox and two glovedoors on both sides with an attachment for gloves or adjustable cuffs and adapters for cameras. The Glovebox has an enclosed compartment that offers a clean working space and minimizes the contamination risks to both Spacelab and experiment samples. Although fluid containment and ease of cleanup are major benefits provided by the facility, it can also contain powders and bioparticles; toxic, irritating, or potentially infectious materials; and other debris produced during experiment operations. The facility is equipped with photographic/video capabilities and permits mounting a microscope. For the USML-1 mission, the Glovebox experiments fell into four basic categories: fluid dynamics, combustion science, crystal growth, and technology demonstration. The USML-1 flew aboard the STS-50 mission in June 1992.
NASA Astrophysics Data System (ADS)
Martin, A.; Pascal, C.; Leconte, R.
2014-12-01
Stochastic Dynamic Programming (SDP) is known to be an effective technique to find the optimal operating policy of hydropower systems. In order to improve the performance of SDP, this project evaluates the impact of re-updating the policy at every time step by using Ensemble Streamflow Prediction (ESP). We present a case study of the Kemano's hydropower system on the Nechako River in British Columbia, Canada. Managed by Rio Tinto Alcan (RTA), this system is subject to large streamflow volumes in spring due to important amount of snow depth during the winter season. Therefore, the operating policy should not only maximize production but also minimize the risk of flooding. The hydrological behavior of the system is simulated with CEQUEAU, a distributed and deterministic hydrological model developed by the Institut national de la recherche scientifique - Eau, Terre et Environnement (INRS-ETE) in Quebec, Canada. On each decision time step, CEQUEAU is used to generate ESP scenarios based on historical meteorological sequences and the current state of the hydrological model. These scenarios are used into the SDP to optimize the new release policy for the next time steps. This routine is then repeated over the entire simulation period. Results are compared with those obtained by using SDP on historical inflow scenarios.
Dynamic risk control by human nucleus accumbens
Lopez-Sosa, Fernando; Gonzalez-Rosa, Javier Jesus; Galarza, Ana; Avecillas, Josue; Pineda-Pardo, Jose Angel; Lopez-Ibor, Juan José; Reneses, Blanca; Barcia, Juan Antonio
2015-01-01
Real-world decisions about reward often involve a complex counterbalance of risk and value. Although the nucleus accumbens has been implicated in the underlying neural substrate, its criticality to human behaviour remains an open question, best addressed with interventional methodology that probes the behavioural consequences of focal neural modulation. Combining a psychometric index of risky decision-making with transient electrical modulation of the nucleus accumbens, here we reveal profound, highly dynamic alteration of the relation between probability of reward and choice during therapeutic deep brain stimulation in four patients with treatment-resistant psychiatric disease. Short-lived phasic electrical stimulation of the region of the nucleus accumbens dynamically altered risk behaviour, transiently shifting the psychometric function towards more risky decisions only for the duration of stimulation. A critical, on-line role of human nucleus accumbens in dynamic risk control is thereby established. PMID:26428667
Chaotic behaviors of operational amplifiers.
Yim, Geo-Su; Ryu, Jung-Wan; Park, Young-Jai; Rim, Sunghwan; Lee, Soo-Young; Kye, Won-Ho; Kim, Chil-Min
2004-04-01
We investigate nonlinear dynamical behaviors of operational amplifiers. When the output terminal of an operational amplifier is connected to the inverting input terminal, the circuit exhibits period-doubling bifurcation, chaos, and periodic windows, depending on the voltages of the positive and the negative power supplies. We study these nonlinear dynamical characteristics of this electronic circuit experimentally.
Integrated Dynamic Transit Operations (IDTO) concept of operations.
DOT National Transportation Integrated Search
2012-05-01
In support of USDOTs Intelligent Transportation Systems (ITS) Mobility Program, the Dynamic Mobility Applications (DMA) program seeks to create applications that fully leverage frequently collected and rapidly disseminated multi-source data gat...
Man/Machine Interaction Dynamics And Performance (MMIDAP) capability
NASA Technical Reports Server (NTRS)
Frisch, Harold P.
1991-01-01
The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.
1991-04-03
The USML-1 Glovebox (GBX) is a multi-user facility supporting 16 experiments in fluid dynamics, combustion sciences, crystal growth, and technology demonstration. The GBX has an enclosed working space which minimizes the contamination risks to both Spacelab and experiment samples. The GBX supports four charge-coupled device (CCD) cameras (two of which may be operated simultaneously) with three black-and-white and three color camera CCD heads available. The GBX also has a backlight panel, a 35 mm camera, and a stereomicroscope that offers high-magnification viewing of experiment samples. Video data can also be downlinked in real-time. The GBX also provides electrical power for experiment hardware, a time-temperature display, and cleaning supplies.
1995-08-29
The USML-1 Glovebox (GBX) is a multi-user facility supporting 16 experiments in fluid dynamics, combustion sciences, crystal growth, and technology demonstration. The GBX has an enclosed working space which minimizes the contamination risks to both Spacelab and experiment samples. The GBX supports four charge-coupled device (CCD) cameras (two of which may be operated simultaneously) with three black-and-white and three color camera CCD heads available. The GBX also has a backlight panel, a 35 mm camera, and a stereomicroscope that offers high-magnification viewing of experiment samples. Video data can also be downlinked in real-time. The GBX also provides electrical power for experiment hardware, a time-temperature display, and cleaning supplies.
NASA Technical Reports Server (NTRS)
Demeo, Martha E.
1990-01-01
The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).
Collision Avoidance "Short Course" Part III: CA Role in Changing Space Flight Environment
NASA Technical Reports Server (NTRS)
Newman, Lauri
2017-01-01
Satellite conjunction assessment is perhaps the fastest-growing area in space situational awareness and protection, with military, civil, and commercial satellite owner operators embracing more and more sophisticated processes to avoid the avoidable namely collisions between high-value space assets and orbital debris. NASA and CNES have collaborated to offer an introductory short course on all the major aspects of the conjunction assessment problem. This half-day course will cover satellite conjunction dynamics and theory, JSpOC conjunction data products, major risk assessment parameters and plots, conjunction remediation decision support, and present and future challenges. This briefing represents the NASA portion of the course.
DOE Office of Scientific and Technical Information (OSTI.GOV)
A. Alfonsi; C. Rabiti; D. Mandelli
The Reactor Analysis and Virtual control ENviroment (RAVEN) code is a software tool that acts as the control logic driver and post-processing engine for the newly developed Thermal-Hydraulic code RELAP-7. RAVEN is now a multi-purpose Probabilistic Risk Assessment (PRA) software framework that allows dispatching different functionalities: Derive and actuate the control logic required to simulate the plant control system and operator actions (guided procedures), allowing on-line monitoring/controlling in the Phase Space Perform both Monte-Carlo sampling of random distributed events and Dynamic Event Tree based analysis Facilitate the input/output handling through a Graphical User Interface (GUI) and a post-processing data miningmore » module« less
Graph Theory Roots of Spatial Operators for Kinematics and Dynamics
NASA Technical Reports Server (NTRS)
Jain, Abhinandan
2011-01-01
Spatial operators have been used to analyze the dynamics of robotic multibody systems and to develop novel computational dynamics algorithms. Mass matrix factorization, inversion, diagonalization, and linearization are among several new insights obtained using such operators. While initially developed for serial rigid body manipulators, the spatial operators and the related mathematical analysis have been shown to extend very broadly including to tree and closed topology systems, to systems with flexible joints, links, etc. This work uses concepts from graph theory to explore the mathematical foundations of spatial operators. The goal is to study and characterize the properties of the spatial operators at an abstract level so that they can be applied to a broader range of dynamics problems. The rich mathematical properties of the kinematics and dynamics of robotic multibody systems has been an area of strong research interest for several decades. These properties are important to understand the inherent physical behavior of systems, for stability and control analysis, for the development of computational algorithms, and for model development of faithful models. Recurring patterns in spatial operators leads one to ask the more abstract question about the properties and characteristics of spatial operators that make them so broadly applicable. The idea is to step back from the specific application systems, and understand more deeply the generic requirements and properties of spatial operators, so that the insights and techniques are readily available across different kinematics and dynamics problems. In this work, techniques from graph theory were used to explore the abstract basis for the spatial operators. The close relationship between the mathematical properties of adjacency matrices for graphs and those of spatial operators and their kernels were established. The connections hold across very basic requirements on the system topology, the nature of the component bodies, the indexing schemes, etc. The relationship of the underlying structure is intimately connected with efficient, recursive computational algorithms. The results provide the foundational groundwork for a much broader look at the key problems in kinematics and dynamics. The properties of general graphs and trees of nodes and edge were examined, as well as the properties of adjacency matrices that are used to describe graph connectivity. The nilpotency property of such matrices for directed trees was reviewed, and the adjacency matrices were generalized to the notion of block weighted adjacency matrices that support block matrix elements. This leads us to the development of the notion of Spatial Kernel Operator SKO kernels. These kernels provide the basis for the development of SKO resolvent operators.
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl (Compiler); Guo, Ten-Huei
2014-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
Application and Evaluation of Control Modes for Risk-Based Engine Performance Enhancements
NASA Technical Reports Server (NTRS)
Liu, Yuan; Litt, Jonathan S.; Sowers, T. Shane; Owen, A. Karl; Guo, Ten-Huei
2015-01-01
The engine control system for civil transport aircraft imposes operational limits on the propulsion system to ensure compliance with safety standards. However, during certain emergency situations, aircraft survivability may benefit from engine performance beyond its normal limits despite the increased risk of failure. Accordingly, control modes were developed to improve the maximum thrust output and responsiveness of a generic high-bypass turbofan engine. The algorithms were designed such that the enhanced performance would always constitute an elevation in failure risk to a consistent predefined likelihood. This paper presents an application of these risk-based control modes to a combined engine/aircraft model. Through computer and piloted simulation tests, the aim is to present a notional implementation of these modes, evaluate their effects on a generic airframe, and demonstrate their usefulness during emergency flight situations. Results show that minimal control effort is required to compensate for the changes in flight dynamics due to control mode activation. The benefits gained from enhanced engine performance for various runway incursion scenarios are investigated. Finally, the control modes are shown to protect against potential instabilities during propulsion-only flight where all aircraft control surfaces are inoperable.
NASA Technical Reports Server (NTRS)
Leveton, L. B.; VanderArk, S. T.
2014-01-01
The Behavioral Health and Performance discipline at NASA Johnson Space Center is organized into two distinct Divisions (Biomedical Research and Environmental Science Division and Space and Clinical Operations Division) but is integrated and interrelated in its day-to-day work. Ongoing operations supporting NASA's spaceflight goals benefit from the research portfolios that address risks to mission success. Similarly, these research portfolios are informed by operations to ensure investigations stay relevant given the dynamic environment of spaceflight. There are many success stories that can be presented where initial work begun as a BHP Research project, and funded through the Human Research Program, was fully implemented in operations or addressed an operational need. Examples include improving effectiveness of the debriefings used within Mission Control by the Mission Operations Directorate and countermeasures for fatigue management. There is also ongoing collaboration with research and operations for developing selection methods for future generation astronauts, and to enhance and inform the current family support function. The objective of this panel is to provide examples of recent success stories, describe areas where close collaboration is benefitting ongoing research and operations, and summarize how this will come together as NASA plans for the one year ISS mission - a unique opportunity for both BHP operations and research to learn more about preparing and supporting crewmembers for extended missions in space. The proposed panel will be comprised of six presentations, each describing a unique aspect of research or operations and the benefits to current and future spaceflight.
Appraising the risk matrix 2000 static sex offender risk assessment tool.
Tully, Ruth J; Browne, Kevin D
2015-02-01
This critical appraisal explores the reliability and validity of the Risk Matrix 2000 static sex offender risk assessment tool that is widely used in the United Kingdom. The Risk Matrix 2000 has to some extent been empirically validated for use with adult male sex offenders; however, this review highlights that further research into the validity of this static tool with sex offender subgroups or types is necessary in order to improve practical utility. The Risk Matrix 2000 relies on static risk predictors, thus it is limited in scope. This article argues that the addition of dynamic items that have been shown to be predictive of sexual recidivism would further enhance the tool. The paper argues that adding dynamic risk items would fit better with a rehabilitative approach to sex offender risk management and assessment. This would also provide a means by which to effectively plan sex offender treatment and evaluate individual offenders' progress in treatment; however, difficulties remain in identifying and assessing dynamic risk factors of sexual offending and so further research is required. © The Author(s) 2013.
Geospace monitoring for space weather research and operation
NASA Astrophysics Data System (ADS)
Nagatsuma, Tsutomu
2017-10-01
Geospace, a space surrounding the Earth, is one of the key area for space weather. Because geospace environment dynamically varies depending on the solar wind conditions. Many kinds of space assets are operating in geospace for practical purposes. Anomalies of space assets are sometimes happened because of space weather disturbances in geospace. Therefore, monitoring and forecasting of geospace environment is very important tasks for NICT's space weather research and development. To monitor and to improve forecasting model, fluxgate magnetometers and HF radars are operated by our laboratory, and its data are used for our research work, too. We also operate real-time data acquisition system for satellite data, such as DSCOVR, STEREO, and routinely received high energy particle data from Himawari-8. Based on these data, we are monitoring current condition of geomagnetic disturbances, and that of radiation belt. Using these data, we have developed empirical models for relativistic electron flux at GEO and inner magnetosphere. To provide userfriendly information , we are trying to develop individual spacecraft anomaly risk estimation tool based on combining models of space weather and those of spacecraft charging, Current status of geospace monitoring, forecasting, and research activities are introduced.
NASA Technical Reports Server (NTRS)
D'Souza, Christopher; Milenkovich, Zoran; Wilson, Zachary; Huich, David; Bendle, John; Kibler, Angela
2011-01-01
The Space Operations Simulation Center (SOSC) at the Lockheed Martin (LM) Waterton Campus in Littleton, Colorado is a dynamic test environment focused on Autonomous Rendezvous and Docking (AR&D) development testing and risk reduction activities. The SOSC supports multiple program pursuits and accommodates testing Guidance, Navigation, and Control (GN&C) algorithms for relative navigation, hardware testing and characterization, as well as software and test process development. The SOSC consists of a high bay (60 meters long by 15.2 meters wide by 15.2 meters tall) with dual six degree-of-freedom (6DOF) motion simulators and a single fixed base 6DOF robot. The large testing area (maximum sensor-to-target effective range of 60 meters) allows for large-scale, flight-like simulations of proximity maneuvers and docking events. The facility also has two apertures for access to external extended-range outdoor target test operations. In addition, the facility contains four Mission Operations Centers (MOCs) with connectivity to dual high bay control rooms and a data/video interface room. The high bay is rated at Class 300,000 (. 0.5 m maximum particles/m3) cleanliness and includes orbital lighting simulation capabilities.
Policy tree optimization for adaptive management of water resources systems
NASA Astrophysics Data System (ADS)
Herman, Jonathan; Giuliani, Matteo
2017-04-01
Water resources systems must cope with irreducible uncertainty in supply and demand, requiring policy alternatives capable of adapting to a range of possible future scenarios. Recent studies have developed adaptive policies based on "signposts" or "tipping points" that suggest the need of updating the policy. However, there remains a need for a general method to optimize the choice of the signposts to be used and their threshold values. This work contributes a general framework and computational algorithm to design adaptive policies as a tree structure (i.e., a hierarchical set of logical rules) using a simulation-optimization approach based on genetic programming. Given a set of feature variables (e.g., reservoir level, inflow observations, inflow forecasts), the resulting policy defines both the optimal reservoir operations and the conditions under which such operations should be triggered. We demonstrate the approach using Folsom Reservoir (California) as a case study, in which operating policies must balance the risk of both floods and droughts. Numerical results show that the tree-based policies outperform the ones designed via Dynamic Programming. In addition, they display good adaptive capacity to the changing climate, successfully adapting the reservoir operations across a large set of uncertain climate scenarios.
Risk Perception and Communication in Commercial Reusable Launch Vehicle Operations
NASA Astrophysics Data System (ADS)
Hardy, Terry L.
2005-12-01
A number of inventors and entrepreneurs are currently attempting to develop and commercially operate reusable launch vehicles to carry voluntary participants into space. The operation of these launch vehicles, however, produces safety risks to the crew, to the space flight participants, and to the uninvolved public. Risk communication therefore becomes increasingly important to assure that those involved in the flight understand the risk and that those who are not directly involved understand the personal impact of RLV operations on their lives. Those involved in the launch vehicle flight may perceive risk differently from those non-participants, and these differences in perception must be understood to effectively communicate this risk. This paper summarizes existing research in risk perception and communication and applies that research to commercial reusable launch vehicle operations. Risk communication is discussed in the context of requirements of United States law for informed consent from any space flight participants on reusable suborbital launch vehicles.
12 CFR 932.6 - Operations risk capital requirement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 12 Banks and Banking 7 2011-01-01 2011-01-01 false Operations risk capital requirement. 932.6 Section 932.6 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK RISK MANAGEMENT AND CAPITAL STANDARDS FEDERAL HOME LOAN BANK CAPITAL REQUIREMENTS § 932.6 Operations risk capital requirement...
75 FR 50936 - Loan Policies and Operations; Lending and Leasing Limits and Risk Management
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-18
...-AC60 Loan Policies and Operations; Lending and Leasing Limits and Risk Management AGENCY: Farm Credit... sound operation of System institutions by strengthening their risk management practices and abilities to... the establishment of consistent, uniform and prudent concentration risk management policies by System...
12 CFR 932.6 - Operations risk capital requirement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Operations risk capital requirement. 932.6 Section 932.6 Banks and Banking FEDERAL HOUSING FINANCE BOARD FEDERAL HOME LOAN BANK RISK MANAGEMENT AND CAPITAL STANDARDS FEDERAL HOME LOAN BANK CAPITAL REQUIREMENTS § 932.6 Operations risk capital requirement...
Operational Risk and the American Way of Warfare
2011-12-01
tactical level. That conclusion however, fails to account for the entire context. The cumulative effect is one of operational complacency. The...largely come at the cost of any operational thinking about risk. The operational risk in the current fight is not easily discernible because it seems...traditional American answers to risk. This addiction to annihilation through firepower has come with a high cost . The culture of annihilation through
Bus operator perceptions of safety risks.
DOT National Transportation Integrated Search
2013-07-01
This paper presents the results of a survey of TriMet bus operators addressing safety risks in their assigned work. Surveyed risk factors : were organized into five categories: vehicle design and condition; route layout; operating conditions; fatigue...
Risk-Assessment for Equipment Operating on the Lunar Surface
NASA Technical Reports Server (NTRS)
Richmond, R. C.; Kusiak, A.; Ramachandran, N.
2008-01-01
Particle-size distribution of lunar dust simulant is evaluated using scanning electron spectroscopy in order to consider approaches to evaluating risk to individual mechanical components operating on the lunar surface. Assessing component risk and risk-mitigation during actual operations will require noninvasive continuous data gathering on numerous parameters. Those data sets would best be evaluated using data-mining algorithms to assess risk, and recovery from risk, of individual mechanical components in real-time.
Impact of a Risk Calculator on Risk Perception and Surgical Decision Making: A Randomized Trial.
Sacks, Greg D; Dawes, Aaron J; Ettner, Susan L; Brook, Robert H; Fox, Craig R; Russell, Marcia M; Ko, Clifford Y; Maggard-Gibbons, Melinda
2016-12-01
The aim of this study was to determine whether exposure to data from a risk calculator influences surgeons' assessments of risk and in turn, their decisions to operate. Little is known about how risk calculators inform clinical judgment and decision-making. We asked a national sample of surgeons to assess the risks (probability of serious complications or death) and benefits (recovery) of operative and nonoperative management and to rate their likelihood of recommending an operation (5-point scale) for 4 detailed clinical vignettes wherein the best treatment strategy was uncertain. Surgeons were randomized to the clinical vignettes alone (control group; n = 384) or supplemented by data from a risk calculator (risk calculator group; n = 395). We compared surgeons' judgments and decisions between the groups. Surgeons exposed to the risk calculator judged levels of operative risk that more closely approximated the risk calculator value (RCV) compared with surgeons in the control group [mesenteric ischemia: 43.7% vs 64.6%, P < 0.001 (RCV = 25%); gastrointestinal bleed: 47.7% vs 53.4%, P < 0.001 (RCV = 38%); small bowel obstruction: 13.6% vs 17.5%, P < 0.001 (RCV = 14%); appendicitis: 13.4% vs 24.4%, P < 0.001 (RCV = 5%)]. Surgeons exposed to the risk calculator also varied less in their assessment of operative risk (standard deviations: mesenteric ischemia 20.2% vs 23.2%, P = 0.01; gastrointestinal bleed 17.4% vs 24.1%, P < 0.001; small bowel obstruction 10.6% vs 14.9%, P < 0.001; appendicitis 15.2% vs 21.8%, P < 0.001). However, averaged across the 4 vignettes, the 2 groups did not differ in their reported likelihood of recommending an operation (mean 3.7 vs 3.7, P = 0.76). Exposure to risk calculator data leads to less varied and more accurate judgments of operative risk among surgeons, and thus may help inform discussions of treatment options between surgeons and patients. Interestingly, it did not alter their reported likelihood of recommending an operation.
Personalized Medicine Enrichment Design for DHA Supplementation Clinical Trial.
Lei, Yang; Mayo, Matthew S; Carlson, Susan E; Gajewski, Byron J
2017-03-01
Personalized medicine aims to match patient subpopulation to the most beneficial treatment. The purpose of this study is to design a prospective clinical trial in which we hope to achieve the highest level of confirmation in identifying and making treatment recommendations for subgroups, when the risk levels in the control arm can be ordered. This study was motivated by our goal to identify subgroups in a DHA (docosahexaenoic acid) supplementation trial to reduce preterm birth (gestational age<37 weeks) rate. We performed a meta-analysis to obtain informative prior distributions and simulated operating characteristics to ensure that overall Type I error rate was close to 0.05 in designs with three different models: independent, hierarchical, and dynamic linear models. We performed simulations and sensitivity analysis to examine the subgroup power of models and compared results to a chi-square test. We performed simulations under two hypotheses: a large overall treatment effect and a small overall treatment effect. Within each hypothesis, we designed three different subgroup effects scenarios where resulting subgroup rates are linear, flat, or nonlinear. When the resulting subgroup rates are linear or flat, dynamic linear model appeared to be the most powerful method to identify the subgroups with a treatment effect. It also outperformed other methods when resulting subgroup rates are nonlinear and the overall treatment effect is big. When the resulting subgroup rates are nonlinear and the overall treatment effect is small, hierarchical model and chi-square test did better. Compared to independent and hierarchical models, dynamic linear model tends to be relatively robust and powerful when the control arm has ordinal risk subgroups.
Lim, Tau Meng; Cheng, Shanbao; Chua, Leok Poh
2009-07-01
Axial flow blood pumps are generally smaller as compared to centrifugal pumps. This is very beneficial because they can provide better anatomical fit in the chest cavity, as well as lower the risk of infection. This article discusses the design, levitated responses, and parameter estimation of the dynamic characteristics of a compact hybrid magnetic bearing (HMB) system for axial flow blood pump applications. The rotor/impeller of the pump is driven by a three-phase permanent magnet brushless and sensorless motor. It is levitated by two HMBs at both ends in five degree of freedom with proportional-integral-derivative controllers, among which four radial directions are actively controlled and one axial direction is passively controlled. The frequency domain parameter estimation technique with statistical analysis is adopted to validate the stiffness and damping coefficients of the HMB system. A specially designed test rig facilitated the estimation of the bearing's coefficients in air-in both the radial and axial directions. Experimental estimation showed that the dynamic characteristics of the HMB system are dominated by the frequency-dependent stiffness coefficients. By injecting a multifrequency excitation force signal onto the rotor through the HMBs, it is noticed in the experimental results the maximum displacement linear operating range is 20% of the static eccentricity with respect to the rotor and stator gap clearance. The actuator gain was also successfully calibrated and may potentially extend the parameter estimation technique developed in the study of identification and monitoring of the pump's dynamic properties under normal operating conditions with fluid.
ERIC Educational Resources Information Center
Lago-Delello, Ellie
This study examined differences between kindergarten and first-grade children identified as at risk (AR) or not at risk (NAR) for the development of severe emotional disturbance on selected factors of classroom dynamics. Screening, using the Systematic Screening for Behavior Disorders measure, of all 628 kindergarten and first-grade children at…
Satellite Radar Interferometry For Risk Management Of Gas Pipeline Networks
NASA Astrophysics Data System (ADS)
Ianoschi, Raluca; Schouten, Mathijs; Bas Leezenberg, Pieter; Dheenathayalan, Prabu; Hanssen, Ramon
2013-12-01
InSAR time series analyses can be fine-tuned for specific applications, yielding a potential increase in benchmark density, precision and reliability. Here we demonstrate the algorithms developed for gas pipeline monitoring, enabling operators to precisely pinpoint unstable locations. This helps asset management in planning, prioritizing and focusing in-situ inspections, thus reducing maintenance costs. In unconsolidated Quaternary soils, ground settlement contributes to possible failure of brittle cast iron gas pipes and their connections to houses. Other risk factors include the age and material of the pipe. The soil dynamics have led to a catastrophic explosion in the city of Amsterdam, which triggered an increased awareness for the significance of this problem. As the extent of the networks can be very wide, InSAR is shown to be a valuable source of information for identifying the hazard regions. We monitor subsidence affecting an urban gas transportation network in the Netherlands using both medium and high resolution SAR data. Results for the 2003-2010 period provide clear insights on the differential subsidence rates in the area. This enables characterization of underground motion that affects the integrity of the pipeline. High resolution SAR data add extra detail of door-to-door pipeline connections, which are vulnerable due to different settlements between house connections and main pipelines. The rates which we measure represent important input in planning of maintenance works. Managers can decide the priority and timing for inspecting the pipelines. The service helps manage the risk and reduce operational cost in gas transportation networks.
Stem cell treatments in China: rethinking the patient role in the global bio-economy.
Chen, Haidan; Gottweis, Herbert
2013-05-01
The paper looks in detail at patients that were treated at one of the most discussed companies operating in the field of untried stem cell treatments, Beike Biotech of Shenzhen, China. Our data show that patients who had been treated at Beike Biotech view themselves as proactively pursuing treatment choices that are not available in their home countries. These patients typically come from a broad variety of countries: China, the United Kingdom, the United States, South Africa and Australia. Among the patients we interviewed there seemed to be both an awareness of the general risks involved in such experimental treatments and a readiness to accept those risks weighed against the possible benefits. We interpret this evidence as possibly reflecting the emergence of risk-taking patients as 'consumers' of medical options as well as the drive of patients to seek treatment options in the global arena, rather than being hindered by the ethical and regulatory constraints of their home countries. Further, we found that these patients tend to operate in more or less stable networks and groups in which they interact and cooperate closely and develop opinions and assessments of available treatment options for their ailments. These patients also perform a multiple role as patients, research subjects, and research funders because they are required to pay their way into treatment and research activities. This new social dynamics of patienthood has important implications for the ethical governance of stem cell treatments. © 2011 Blackwell Publishing Ltd.
NASA Technical Reports Server (NTRS)
Gallo, C.; Kasuba, R.; Pintz, A.; Spring, J.
1986-01-01
The dynamic analysis of a horizontal axis fixed pitch wind turbine generator (WTG) rated at 56 kW is discussed. A mechanical Continuously Variable Transmission (CVT) was incorporated in the drive train to provide variable speed operation capability. One goal of the dynamic analysis was to determine if variable speed operation, by means of a mechanical CVT, is capable of capturing the transient power in the WTG/wind environment. Another goal was to determine the extent of power regulation possible with CVT operation.
2009-09-01
this information supports the decison - making process as it is applied to the management of risk. 2. Operational Risk Operational risk is the threat... reasonability . However, to make a software system fault tolerant, the system needs to recognize and fix a system state condition. To detect a fault, a fault...Tracking ..........................................51 C. DECISION- MAKING PROCESS................................................................51 1. Risk
Spatio-temporal dynamics of security investments in an interdependent risk environment
NASA Astrophysics Data System (ADS)
Shafi, Kamran; Bender, Axel; Zhong, Weicai; Abbass, Hussein A.
2012-10-01
In a globalised world where risks spread through contagion, the decision of an entity to invest in securing its premises from stochastic risks no longer depends solely on its own actions but also on the actions of other interacting entities in the system. This phenomenon is commonly seen in many domains including airline, logistics and computer security and is referred to as Interdependent Security (IDS). An IDS game models this decision problem from a game-theoretic perspective and deals with the behavioural dynamics of risk-reduction investments in such settings. This paper enhances this model and investigates the spatio-temporal aspects of the IDS games. The spatio-temporal dynamics are studied using simple replicator dynamics on a variety of network structures and for various security cost tradeoffs that lead to different Nash equilibria in an IDS game. The simulation results show that the neighbourhood configuration has a greater effect on the IDS game dynamics than network structure. An in-depth empirical analysis of game dynamics is carried out on regular graphs, which leads to the articulation of necessary and sufficient conditions for dominance in IDS games under spatial constraints.
Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches
NASA Technical Reports Server (NTRS)
Bigler, Mark; Boyer, Roger L.
2015-01-01
For the last 30 years, the United States' human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After over 40 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent and how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very dynamic conditions, particularly in the lower atmosphere, and returning the crew home safely. This paper will provide an overview of the PRA model that has been developed of this new launch system, including some of the challenges that are associated with this effort.
Dynamic Modeling of Ascent Abort Scenarios for Crewed Launches
NASA Technical Reports Server (NTRS)
Bigler, Mark; Boyer, Roger L.
2015-01-01
For the last 30 years, the United States's human space program has been focused on low Earth orbit exploration and operations with the Space Shuttle and International Space Station programs. After nearly 50 years, the U.S. is again working to return humans beyond Earth orbit. To do so, NASA is developing a new launch vehicle and spacecraft to provide this capability. The launch vehicle is referred to as the Space Launch System (SLS) and the spacecraft is called Orion. The new launch system is being developed with an abort system that will enable the crew to escape launch failures that would otherwise be catastrophic as well as probabilistic design requirements set for probability of loss of crew (LOC) and loss of mission (LOM). In order to optimize the risk associated with designing this new launch system, as well as verifying the associated requirements, NASA has developed a comprehensive Probabilistic Risk Assessment (PRA) of the integrated ascent phase of the mission that includes the launch vehicle, spacecraft and ground launch facilities. Given the dynamic nature of rocket launches and the potential for things to go wrong, developing a PRA to assess the risk can be a very challenging effort. Prior to launch and after the crew has boarded the spacecraft, the risk exposure time can be on the order of three hours. During this time, events may initiate from either of the spacecraft, the launch vehicle, or the ground systems, thus requiring an emergency egress from the spacecraft to a safe ground location or a pad abort via the spacecraft's launch abort system. Following launch, again either the spacecraft or the launch vehicle can initiate the need for the crew to abort the mission and return to the home. Obviously, there are thousands of scenarios whose outcome depends on when the abort is initiated during ascent as to how the abort is performed. This includes modeling the risk associated with explosions and benign system failures that require aborting a spacecraft under very dynamic conditions, particularly in the lower atmosphere, and returning the crew home safely. This paper will provide an overview of the PRA model that has been developed of this new launch system, including some of the challenges that are associated with this effort. Key Words: PRA, space launches, human space program, ascent abort, spacecraft, launch vehicles
NASA Astrophysics Data System (ADS)
Chirisa, Innocent; Bandauko, Elmond; Matamanda, Abraham; Mandisvika, Gladys
2017-06-01
Until recently there has been little, if any, concern over revamping let alone improving wastewater management system in Zimbabwe's urban areas given the dominance and institutionalised water-borne system. Yet, the current constraints in this system and the immensity of urbanisation in the country begs and compels planners, engineers and systems thinkers to rethink what best can work as a sustainable wastewater system. With particular reference to the ever-expanding Harare metropolitan region, this article provides an evaluative analysis on the potentiality, risks and strategies that can be adopted by Harare and its satellites in addressing the problems of the conventional wastewater management system. The suggested framework of operation is a decentralised domestic wastewater collection and treatment system which however has its own multifarious risks. Using systems dynamics conceptualisation of the potentiality, opportunities, risks and strategies, the paper seeks to model the path and outcomes of this decentralised domestic wastewater collection and treatment system and also suggests a number of policy measures and strategies that the city of Harare and its satellites can adopt.
Dynamic Forest: An Efficient Index Structure for NAND Flash Memory
NASA Astrophysics Data System (ADS)
Yang, Chul-Woong; Yong Lee, Ki; Ho Kim, Myoung; Lee, Yoon-Joon
In this paper, we present an efficient index structure for NAND flash memory, called the Dynamic Forest (D-Forest). Since write operations incur high overhead on NAND flash memory, D-Forest is designed to minimize write operations for index updates. The experimental results show that D-Forest significantly reduces write operations compared to the conventional B+-tree.
Comparing erosion risks from forest operations to wildfire
William J. Elliot; Peter R. Robichaud
2001-01-01
Wildfire and forest operations remove vegetation and disturb forest soils. Both of these effects can lead to an increased risk of soil erosion. Operations to reduce forest fuel loads, however, may reduce the risk of wildfire. This paper presents research and modeling results which show that under many conditions, carefully planned operations with adequate buffers,...
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Tevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is "SCAN Testbed," and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
CoNNeCT Antenna Positioning System Dynamic Simulator Modal Model Correlation
NASA Technical Reports Server (NTRS)
Jones, Trevor M.; McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Suarez, Vicente J.
2012-01-01
The National Aeronautics and Space Administration (NASA) developed an on-orbit, adaptable, Software Defined Radios (SDR)/Space Telecommunications Radio System (STRS)-based testbed facility to conduct a suite of experiments to advance technologies, reduce risk, and enable future mission capabilities on the International Space Station (ISS). The Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT) Project will provide NASA, industry, other Government agencies, and academic partners the opportunity to develop and field communications, navigation, and networking technologies in both the laboratory and space environment based on reconfigurable, software-defined radio platforms and the STRS Architecture. The CoNNeCT Payload Operations Nomenclature is SCAN Testbed, and this nomenclature will be used in all ISS integration, safety, verification, and operations documentation. The SCAN Testbed (payload) is a Flight Releasable Attachment Mechanism (FRAM) based payload that will launch aboard the Japanese H-II Transfer Vehicle (HTV) Multipurpose Exposed Pallet (EP-MP) to the International Space Station (ISS), and will be transferred to the Express Logistics Carrier 3 (ELC3) via Extravehicular Robotics (EVR). The SCAN Testbed will operate on-orbit for a minimum of two years.
Preliminary Exploration of Adaptive State Predictor Based Human Operator Modeling
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2012-01-01
Control-theoretic modeling of the human operator dynamic behavior in manual control tasks has a long and rich history. In the last two decades, there has been a renewed interest in modeling the human operator. There has also been significant work on techniques used to identify the pilot model of a given structure. The purpose of this research is to attempt to go beyond pilot identification based on collected experimental data and to develop a predictor of pilot behavior. An experiment was conducted to quantify the effects of changing aircraft dynamics on an operator s ability to track a signal in order to eventually model a pilot adapting to changing aircraft dynamics. A gradient descent estimator and a least squares estimator with exponential forgetting used these data to predict pilot stick input. The results indicate that individual pilot characteristics and vehicle dynamics did not affect the accuracy of either estimator method to estimate pilot stick input. These methods also were able to predict pilot stick input during changing aircraft dynamics and they may have the capability to detect a change in a subject due to workload, engagement, etc., or the effects of changes in vehicle dynamics on the pilot.
NASA Astrophysics Data System (ADS)
Roth, Eatai; Howell, Darrin; Beckwith, Cydney; Burden, Samuel A.
2017-05-01
Humans, interacting with cyber-physical systems (CPS), formulate beliefs about the system's dynamics. It is natural to expect that human operators, tasked with teleoperation, use these beliefs to control the remote robot. For tracking tasks in the resulting human-cyber-physical system (HCPS), theory suggests that human operators can achieve exponential tracking (in stable systems) without state estimation provided they possess an accurate model of the system's dynamics. This internalized inverse model, however, renders a portion of the system state unobservable to the human operator—the zero dynamics. Prior work shows humans can track through observable linear dynamics, thus we focus on nonlinear dynamics rendered unobservable through tracking control. We propose experiments to assess the human operator's ability to learn and invert such models, and distinguish this behavior from that achieved by pure feedback control.
Day, David M; Wilson, Holly A; Bodwin, Kelly; Monson, Candice M
2017-10-01
The dynamic nature of risk to re-offend is an important issue in the management of offenders and has stimulated extensive research into dynamic risk factors that can alter an individual's overall risk to re-offend if addressed. However, few studies have examined the relative importance of these dynamic risk factors, complicating the task of developing case management and treatment plans that will effect the most change. Using a large, high-risk sample and multi-wave data of a common risk assessment tool, the Level of Service Inventory-Ontario Revised (LSI-OR), the current study investigated the relationship among criminogenic risk factors and their role in influencing the overall risk score. Results indicated a diverse pattern of effects on the eight subscale scores, specifically suggesting that changes on Procriminal Attitude/Orientation, Criminal History, and Leisure/Recreation subscales resulted in a quicker rate of change to the overall risk score over time. These results suggest that some factors may be driving the change in overall risk and could potentially effect the most change if prioritized for intervention. Practical implications and implications for further research are discussed.
Dynamic interrogative data capture (DIDC) : concept of operations.
DOT National Transportation Integrated Search
2016-04-01
This Concept of Operations (ConOps) describes the characteristics of the Dynamic Interrogative Data Capture (DIDC) algorithms and associated software. The objective of the DIDC algorithms and software is to optimize the capture and transmission of ve...
Prototype development and demonstration for integrated dynamic transit operations.
DOT National Transportation Integrated Search
2016-01-01
This document serves as the Final Report specific to the Integrated Dynamic Transit Operations (IDTO) Prototype Development and Deployment Project, hereafter referred to as IDTO Prototype Deployment or IDTO PD project. This project was performed unde...
Moyal dynamics and trajectories
NASA Astrophysics Data System (ADS)
Braunss, G.
2010-01-01
We give first an approximation of the operator δh: f → δhf := h*planckf - f*planckh in terms of planck2n, n >= 0, where h\\equiv h(p,q), (p,q)\\in {\\mathbb R}^{2 n} , is a Hamilton function and *planck denotes the star product. The operator, which is the generator of time translations in a *planck-algebra, can be considered as a canonical extension of the Liouville operator Lh: f → Lhf := {h, f}Poisson. Using this operator we investigate the dynamics and trajectories of some examples with a scheme that extends the Hamilton-Jacobi method for classical dynamics to Moyal dynamics. The examples we have chosen are Hamiltonians with a one-dimensional quartic potential and two-dimensional radially symmetric nonrelativistic and relativistic Coulomb potentials, and the Hamiltonian for a Schwarzschild metric. We further state a conjecture concerning an extension of the Bohr-Sommerfeld formula for the calculation of the exact eigenvalues for systems with classically periodic trajectories.
Li, Xiaohong; Blount, Patricia L; Vaughan, Thomas L; Reid, Brian J
2011-02-01
Aside from primary prevention, early detection remains the most effective way to decrease mortality associated with the majority of solid cancers. Previous cancer screening models are largely based on classification of at-risk populations into three conceptually defined groups (normal, cancer without symptoms, and cancer with symptoms). Unfortunately, this approach has achieved limited successes in reducing cancer mortality. With advances in molecular biology and genomic technologies, many candidate somatic genetic and epigenetic "biomarkers" have been identified as potential predictors of cancer risk. However, none have yet been validated as robust predictors of progression to cancer or shown to reduce cancer mortality. In this Perspective, we first define the necessary and sufficient conditions for precise prediction of future cancer development and early cancer detection within a simple physical model framework. We then evaluate cancer risk prediction and early detection from a dynamic clonal evolution point of view, examining the implications of dynamic clonal evolution of biomarkers and the application of clonal evolution for cancer risk management in clinical practice. Finally, we propose a framework to guide future collaborative research between mathematical modelers and biomarker researchers to design studies to investigate and model dynamic clonal evolution. This approach will allow optimization of available resources for cancer control and intervention timing based on molecular biomarkers in predicting cancer among various risk subsets that dynamically evolve over time.
Contact dynamics recording and analysis system using an optical fiber sensor approach
NASA Astrophysics Data System (ADS)
Anghel, F.; Pavelescu, D.; Grattan, K. T. V.; Palmer, A. W.
1997-09-01
A contact dynamics recording and analysis system configured using an optical fiber sensor has been developed having been designed with a particular application to the accurate and time-varying description of moving contact operating during electrical arc breaking, in an experimental platform simulating the operation of a vacuum circuit breaker. The system utilizes dynamic displacement measurement and data recording and a post-process data analysis to reveal the dynamic speed and acceleration data of the equipment.
NASA Technical Reports Server (NTRS)
Newman, Lauri K.; Frigm, Ryan C.; Duncan, Matthew G.; Hejduk, Matthew D.
2014-01-01
Reacting to potential on-orbit collision risk in an operational environment requires timely and accurate communication and exchange of data, information, and analysis to ensure informed decision-making for safety of flight and responsible use of the shared space environment. To accomplish this mission, it is imperative that all stakeholders effectively manage resources: devoting necessary and potentially intensive resource commitment to responding to high-risk conjunction events and preventing unnecessary expenditure of resources on events of low collision risk. After 10 years of operational experience, the NASA Robotic Conjunction Assessment Risk Analysis (CARA) is modifying its Concept of Operations (CONOPS) to ensure this alignment of collision risk and resource management. This evolution manifests itself in the approach to characterizing, reporting, and refining of collision risk. Implementation of this updated CONOPS is expected to have a demonstrated improvement on the efficacy of JSpOC, CARA, and owner/operator resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.
An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less
Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.
2016-06-17
An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less
Bayesian network representing system dynamics in risk analysis of nuclear systems
NASA Astrophysics Data System (ADS)
Varuttamaseni, Athi
2011-12-01
A dynamic Bayesian network (DBN) model is used in conjunction with the alternating conditional expectation (ACE) regression method to analyze the risk associated with the loss of feedwater accident coupled with a subsequent initiation of the feed and bleed operation in the Zion-1 nuclear power plant. The use of the DBN allows the joint probability distribution to be factorized, enabling the analysis to be done on many simpler network structures rather than on one complicated structure. The construction of the DBN model assumes conditional independence relations among certain key reactor parameters. The choice of parameter to model is based on considerations of the macroscopic balance statements governing the behavior of the reactor under a quasi-static assumption. The DBN is used to relate the peak clad temperature to a set of independent variables that are known to be important in determining the success of the feed and bleed operation. A simple linear relationship is then used to relate the clad temperature to the core damage probability. To obtain a quantitative relationship among different nodes in the DBN, surrogates of the RELAP5 reactor transient analysis code are used. These surrogates are generated by applying the ACE algorithm to output data obtained from about 50 RELAP5 cases covering a wide range of the selected independent variables. These surrogates allow important safety parameters such as the fuel clad temperature to be expressed as a function of key reactor parameters such as the coolant temperature and pressure together with important independent variables such as the scram delay time. The time-dependent core damage probability is calculated by sampling the independent variables from their probability distributions and propagate the information up through the Bayesian network to give the clad temperature. With the knowledge of the clad temperature and the assumption that the core damage probability has a one-to-one relationship to it, we have calculated the core damage probably as a function of transient time. The use of the DBN model in combination with ACE allows risk analysis to be performed with much less effort than if the analysis were done using the standard techniques.
Skin antiseptics and the risk of operating theatre fires.
Spigelman, Allan D; Swan, Judith R
2005-07-01
Following press reports of patients catching fire or receiving chemical burns in the operating theatre, a review was conducted on the flammability of skin antiseptics. The purpose of the paper was to clarify confusion regarding povidine-iodine (Betadine), which had been reported as being flammable, and also to determine the use of alcohol-based solutions in the Hunter Area Health Service. A risk assessment was conducted and risk reduction strategies outlined. Risk assessment was made following a literature review and an audit of 10 operating theatres in the Hunter Area Health Service. Risk for operating room fires from alcohol-based skin antiseptics was confirmed. Antiseptics in aqueous solutions only smoulder. The Hunter Health survey indicated that although alcohol-based solutions were not used in operating theatres, they were used in anaesthetic bays for insertion of epidural and central line catheters. Strategies to reduce the risk of fire include discontinuation of use of alcohol-based skin antiseptics in operating theatres; using fire retardant surgical drapes; installing over-current protection devices on electrical equipment; minimizing flammable conditions by avoiding nitrous oxide and using the lowest required concentration of inspired oxygen; use of non-flammable cuffed endotracheal tubes; education and training of operating theatre personnel in fire hazards. Operating theatre fires continue to be a major risk for patient safety. In order to reduce this risk, the strategies outlined here should be followed.
NASA Astrophysics Data System (ADS)
Mertens, C. J.; Kress, B. T.; Wiltberger, M. J.; Tobiska, W.; Xu, X.
2011-12-01
The Nowcast of Atmospheric Ionizing Radiation for Aviation Safety (NAIRAS) is a prototype operational model for predicting commercial aircraft radiation exposure from galactic and solar cosmic rays. NAIRAS predictions are currently streaming live from the project's public website, and the exposure rate nowcast is also available on the SpaceWx smartphone app for iPhone, IPad, and Android. Cosmic rays are the primary source of human exposure to high linear energy transfer radiation at aircraft altitudes, which increases the risk of cancer and other adverse health effects. Thus, the NAIRAS model addresses an important national need with broad societal, public health and economic benefits. The processes responsible for the variability in the solar wind, interplanetary magnetic field, solar energetic particle spectrum, and the dynamical response of the magnetosphere to these space environment inputs, strongly influence the composition and energy distribution of the atmospheric ionizing radiation field. During the development of the NAIRAS model, new science questions were identified that must be addressed in order to obtain a more reliable and robust operational model of atmospheric radiation exposure. Addressing these science questions require improvements in both space weather modeling and observations. The focus of this talk is to present these science questions, the proposed methodologies for addressing these science questions, and the anticipated improvements to the operational predictions of atmospheric radiation exposure. The overarching goal of this work is to provide a decision support tool for the aviation industry that will enable an optimal balance to be achieved between minimizing health risks to passengers and aircrew while simultaneously minimizing costs to the airline companies.
Design of relative trajectories for in orbit proximity operations
NASA Astrophysics Data System (ADS)
Opromolla, Roberto; Fasano, Giancarmine; Rufino, Giancarlo; Grassi, Michele
2018-04-01
This paper presents an innovative approach to design relative trajectories suitable for close-proximity operations in orbit, by assigning high-level constraints regarding their stability, shape and orientation. Specifically, this work is relevant to space mission scenarios, e.g. formation flying, on-orbit servicing, and active debris removal, which involve either the presence of two spacecraft carrying out coordinated maneuvers, or a servicing/recovery spacecraft (chaser) performing monitoring, rendezvous and docking with respect to another space object (target). In the above-mentioned scenarios, an important aspect is the capability of reducing collision risks and of providing robust and accurate relative navigation solutions. To this aim, the proposed approach exploits a relative motion model relevant to two-satellite formations, and developed in mean orbit parameters, which takes the perturbation effect due to secular Earth oblateness, as well as the motion of the target along a small-eccentricity orbit, into account. This model is used to design trajectories which ensure safe relative motion, to minimize collision risks and relax control requirements, providing at the same time favorable conditions, in terms of target-chaser relative observation geometry for pose determination and relative navigation with passive or active electro-optical sensors on board the chaser. Specifically, three design strategies are proposed in the context of a space target monitoring scenario, considering as design cases both operational spacecraft and debris, characterized by highly variable shape, size and absolute rotational dynamics. The effectiveness of the proposed design approach in providing favorable observation conditions for target-chaser relative pose estimation is demonstrated within a simulation environment which reproduces the designed target-chaser relative trajectory, the operation of an active LIDAR installed on board the chaser, and pose estimation algorithms.
Dynamic probability control limits for risk-adjusted CUSUM charts based on multiresponses.
Zhang, Xiang; Loda, Justin B; Woodall, William H
2017-07-20
For a patient who has survived a surgery, there could be several levels of recovery. Thus, it is reasonable to consider more than two outcomes when monitoring surgical outcome quality. The risk-adjusted cumulative sum (CUSUM) chart based on multiresponses has been developed for monitoring a surgical process with three or more outcomes. However, there is a significant effect of varying risk distributions on the in-control performance of the chart when constant control limits are applied. To overcome this disadvantage, we apply the dynamic probability control limits to the risk-adjusted CUSUM charts for multiresponses. The simulation results demonstrate that the in-control performance of the charts with dynamic probability control limits can be controlled for different patient populations because these limits are determined for each specific sequence of patients. Thus, the use of dynamic probability control limits for risk-adjusted CUSUM charts based on multiresponses allows each chart to be designed for the corresponding patient sequence of a surgeon or a hospital and therefore does not require estimating or monitoring the patients' risk distribution. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Use of artificial intelligence in supervisory control
NASA Technical Reports Server (NTRS)
Cohen, Aaron; Erickson, Jon D.
1989-01-01
Viewgraphs describing the design and testing of an intelligent decision support system called OFMspert are presented. In this expert system, knowledge about the human operator is represented through an operator/system model referred to as the OFM (Operator Function Model). OFMspert uses the blackboard model of problem solving to maintain a dynamic representation of operator goals, plans, tasks, and actions given previous operator actions and current system state. Results of an experiment to assess OFMspert's intent inferencing capability are outlined. Finally, the overall design philosophy for an intelligent tutoring system (OFMTutor) for operators of complex dynamic systems is summarized.
Impact assessment of integrated dynamic transit operations : final report.
DOT National Transportation Integrated Search
2016-03-02
This document details the impact assessment conducted by the Volpe Center for the Integrated Dynamic Transit Operations (IDTO) prototypedemonstrations in Columbus, Ohio and Central Florida. The prototype is one result of the U.S. Department of Transp...
Impacts Assessment of Integrated Dynamic Transit Operations : Final Report
DOT National Transportation Integrated Search
2016-03-02
This document details the impact assessment conducted by the Volpe Center for the Integrated Dynamic Transit Operations (IDTO) prototype demonstrations in Columbus, Ohio and Central Florida. The prototype is one result of the U.S. Department of Trans...
The construction of power grid operation index system considering the risk of maintenance
NASA Astrophysics Data System (ADS)
Tang, Jihong; Wang, Canlin; Jiang, Xinfan; Ye, Jianhui; Pan, Feilai
2018-02-01
In recent years, large-scale blackout occurred at home and abroad caused widespread concern about the operation of the grid in the world, and the maintenance risk is an important indicator of grid safety. The barrier operation of the circuit breaker exists in the process of overhaul of the power grid. The operation of the different barrier is of great significance to the change of the power flow, thus affecting the safe operation of the system. Most of the grid operating status evaluation index system did not consider the risk of maintenance, to this end, this paper from the security, economy, quality and cleanliness of the four angles, build the power grid operation index system considering the risk of maintenance.
Li, Xinan; Xu, Hongyuan; Cheung, Jeffrey T
2016-12-01
This work describes a new approach for gait analysis and balance measurement. It uses an inertial measurement unit (IMU) that can either be embedded inside a dynamically unstable platform for balance measurement or mounted on the lower back of a human participant for gait analysis. The acceleration data along three Cartesian coordinates is analyzed by the gait-force model to extract bio-mechanics information in both the dynamic state as in the gait analyzer and the steady state as in the balance scale. For the gait analyzer, the simple, noninvasive and versatile approach makes it appealing to a broad range of applications in clinical diagnosis, rehabilitation monitoring, athletic training, sport-apparel design, and many other areas. For the balance scale, it provides a portable platform to measure the postural deviation and the balance index under visual or vestibular sensory input conditions. Despite its simple construction and operation, excellent agreement has been demonstrated between its performance and the high-cost commercial balance unit over a wide dynamic range. The portable balance scale is an ideal tool for routine monitoring of balance index, fall-risk assessment, and other balance-related health issues for both clinical and household use.
Stonelake, Stephen; Thomson, Peter; Suggett, Nigel
2015-09-01
National guidance states that all patients having emergency surgery should have a mortality risk assessment calculated on admission so that the 'high risk' patient can receive the appropriate seniority and level of care. We aimed to assess if peri-operative risk scoring tools could accurately calculate mortality and morbidity risk. Mortality risk scores for 86 consecutive emergency laparotomies, were calculated using pre-operative (ASA, Lee index) and post-operative (POSSUM, P-POSSUM and CR-POSSUM) risk calculation tools. Morbidity risk scores were calculated using the POSSUM predicted morbidity and compared against actual morbidity according to the Clavien-Dindo classification. The actual mortality was 10.5%. The average predicted risk scores for all laparotomies were: ASA 26.5%, Lee Index 2.5%, POSSUM 29.5%, P-POSSUM 18.5%, CR-POSSUM 10.5%. Complications occurred following 67 laparotomies (78%). The majority (51%) of complications were classified as Clavien-Dindo grade 2-3 (non-life-threatening). Patients having a POSSUM morbidity risk of greater than 50% developed significantly more life-threatening complications (CD 4-5) compared with those who predicted less than or equal to 50% morbidity risk (P = 0.01). Pre-operative risk stratification remains a challenge because the Lee Index under-predicts and ASA over-predicts mortality risk. Post-operative risk scoring using the CR-POSSUM is more accurate and we suggest can be used to identify patients who require intensive care post-operatively. In the absence of accurate risk scoring tools that can be used on admission to hospital it is not possible to reliably audit the achievement of national standards of care for the 'high-risk' patient.
Specialized data analysis of SSME and advanced propulsion system vibration measurements
NASA Technical Reports Server (NTRS)
Coffin, Thomas; Swanson, Wayne L.; Jong, Yen-Yi
1993-01-01
The basic objectives of this contract were to perform detailed analysis and evaluation of dynamic data obtained during Space Shuttle Main Engine (SSME) test and flight operations, including analytical/statistical assessment of component dynamic performance, and to continue the development and implementation of analytical/statistical models to effectively define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational conditions. This study was to provide timely assessment of engine component operational status, identify probable causes of malfunction, and define feasible engineering solutions. The work was performed under three broad tasks: (1) Analysis, Evaluation, and Documentation of SSME Dynamic Test Results; (2) Data Base and Analytical Model Development and Application; and (3) Development and Application of Vibration Signature Analysis Techniques.
McKim, Vicky L
2017-06-01
In the world of risk management, which encompasses the business continuity disciplines, many types of risk require evaluation. Financial risk is most often the primary focus, followed by product and market risks. Another critical area, which typically lacks a thorough review or may be overlooked, is operational risk. This category encompasses many risk exposure types including those around building structures and systems, environmental issues, nature, neighbours, clients, regulatory compliance, network, data security and so on. At times, insurance carriers will assess internal hazards, but seldom do these assessments include more than a cursory look at other types of operational risk. In heavily regulated environments, risk assessments are required but may not always include thorough assessments of operational exposures. Vulnerabilities may linger or go unnoticed, only to become the catalyst for a business disruption at a later time, some of which are so severe that business recovery becomes nearly impossible. Businesses may suffer loss of clients as the result of a prolonged disruption of services. Comprehensive operational risk assessments can assist in identifying such vulnerabilities, exposures and threats so that the risk can be minimised or removed. This paper lays out how an assessment of this type can be successfully conducted.
Tether dynamics and control results for tethered satellite system's initial flight
NASA Astrophysics Data System (ADS)
Chapel, Jim D.; Flanders, Howard
The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.
Tether dynamics and control results for tethered satellite system's initial flight
NASA Technical Reports Server (NTRS)
Chapel, Jim D.; Flanders, Howard
1993-01-01
The recent Tethered Satellite System-1 (TSS-1) mission has provided a wealth of data concerning the dynamics of tethered systems in space and has demonstrated the effectiveness of operational techniques designed to control these dynamics. In this paper, we review control techniques developed for managing tether dynamics, and discuss the results of using these techniques for the Tethered Satellite System's maiden flight on STS-46. In particular, the flight results of controlling libration dynamics, string dynamics, and slack tether are presented. These results show that tether dynamics can be safely managed. The overall stability of the system was found to be surprisingly good even at relatively short tether lengths. In fact, the system operated in passive mode at a tether length of 256 meters for over 9 hours. Only monitoring of the system was required during this time. Although flight anomalies prevented the planned deployment to 20 km, the extended operations at shorter tether lengths have proven the viability of using tethers in space. These results should prove invaluable in preparing for future missions with tethered objects in space.
The human operator transfer function: Identification of the limb mechanics subsystem
NASA Technical Reports Server (NTRS)
Jones, Lynette A.; Hunter, Ian W.
1991-01-01
The objective of our research is to decompose the performance of the human operator in terms of the subsystems that determine the operator's responses in order to establish how the dynamics of these component subsystems influence the operator's performance. In the present experiment, the dynamic stiffness of the human elbow joint was measured at rest and under different levels of biceps muscle activation; this work forms part of the analysis of the limb mechanics subsystem.
Operational Risk Measurement of Chinese Commercial Banks Based on Extreme Value Theory
NASA Astrophysics Data System (ADS)
Song, Jiashan; Li, Yong; Ji, Feng; Peng, Cheng
The financial institutions and supervision institutions have all agreed on strengthening the measurement and management of operational risks. This paper attempts to build a model on the loss of operational risks basing on Peak Over Threshold model, emphasizing on weighted least square, which improved Hill’s estimation method, while discussing the situation of small sample, and fix the sample threshold more objectively basing on the media-published data of primary banks loss on operational risk from 1994 to 2007.
Study of the Dynamics of Transcephalic Cerebral Impedance Data during Cardio-Vascular Surgery
NASA Astrophysics Data System (ADS)
Atefi, S. R.; Seoane, F.; Lindecrantz, K.
2013-04-01
Postoperative neurological deficits are one of the risks associated with cardio vascular surgery, necessitating development of new techniques for cerebral monitoring. In this study an experimental observation regarding the dynamics of transcephalic Electrical Bioimpedance (EBI) in patients undergoing cardiac surgery with and without extracorporeal circulation (ECC) was conducted to investigate the potential use of electrical Bioimpedance for cerebral monitoring in cardio vascular surgery. Tetrapolar transcephalic EBI measurements at single frequency of 50 kHz were recorded prior to and during cardio vascular surgery. The obtained results show that the transcephalic impedance decreases in both groups of patients as operation starts, however slight differences in these two groups were also observed with the cerebral impedance reduction in patients having no ECC being less common and not as pronounced as in the ECC group. Changes in the cerebral impedance were in agreement with changes of haematocrit and temperature. The origin of EBI changes is still unexplained however these results encourage us to continue investigating the application of electrical bioimpedance cerebral monitoring clinically.
Effect of structural mount dynamics on a pair of operating Stirling Convertors
NASA Astrophysics Data System (ADS)
Goodnight, Thomas W.; Suárez, Vicente J.; Hughes, William O.; Samorezov, Sergey
2002-01-01
The U.S. Department of Energy (DOE), in conjunction with NASA John H. Glenn Research Center and Stirling Technology Company, are currently developing a Stirling convertor for a Stirling Radioisotope Generator (SRG). NASA Headquarters and DOE have identified the SRG for potential use as an advanced spacecraft power system for future NASA deep-space and Mars surface missions. Low-level dynamic base-shake tests were conducted on a dynamic simulation of the structural mount for a pair of Operating Stirling Convertors. These tests were conducted at NASA Glenn Research Center's Structural Dynamics Laboratory as part of the development of this technology. The purpose of these tests was to identify the changes in transmissibility and the effect on structural dynamic response on a pair of operating Stirling Technology Demonstration Convertors (TDCs). This paper addresses the base-shake test, setup, procedure and results conducted on the Stirling TDC mount simulator in April 2001. .
Session 6: Dynamic Modeling and Systems Analysis
NASA Technical Reports Server (NTRS)
Csank, Jeffrey; Chapman, Jeffryes; May, Ryan
2013-01-01
These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators
Impacts Assessment of Integrated Dynamic Transit Operations: Evaluation Plan and Addendum
DOT National Transportation Integrated Search
2016-04-01
This document details the process that the Volpe Center intended to follow in evaluating the impacts of the Integrated Dynamic Transit Operations (IDTO) prototype demonstration in Columbus, Ohio and Central Florida. The document also includes the add...
Impact Assessment of Integrated Dynamic Transit Operations Evaluation Plan and Addendum.
DOT National Transportation Integrated Search
2016-01-04
This document details the process that the Volpe Center intended to follow in evaluating the impacts of the Integrated Dynamic Transit Operations (IDTO) prototype demonstration in Columbus, Ohio and Central Florida. The document also includes the add...
Thermann, H; Hüfner, T; Tscherne, H
2000-03-01
The treatment of acute of Achilles tendon rupture experienced a dynamic development in the last ten years. Decisive for this development was the application of MRI and above all the ultrasonography in the diagnostics of the pathological changes and injuries of tendons. The question of rupture morphology as well as different courses of healing could be now evaluated objectively. These advances led consequently to new modalities in treatment concepts and rehabilitation protocols. The decisive input for improvements of the outcome results and particularly the shortening of the rehabilitation period came with introduction of the early functional treatment in contrast to immobilizing plaster treatment. In a prospective randomized study (1987-1989) at the Trauma Dept. of the Hannover Medical School could show no statistical differences comparing functional non-operative with functional operative therapy with a special therapy boot (Variostabil/Adidas). The crucial criteria for therapy selection results from the sonographically measured position of the tendon stumps in plantar flexion (20 degrees). With complete adaptation of the tendons' ends surgical treatment does not achieve better results than non-operative functional treatment in term of tendon healing and functional outcome. Regarding the current therapeutic standards each method has is advantages and disadvantages. Both, the operative and non-operative functional treatment enable a stable tendon healing with a low risk of re-rupture (1-2%). Meanwhile there is consensus for early functional after-treatment of the operated Achilles' tendons. There seems to be a trend towards non-operative functional treatment in cases of adequate sonographical findings, or to minimal invasive surgical techniques.
Protected quantum computing: interleaving gate operations with dynamical decoupling sequences.
Zhang, Jingfu; Souza, Alexandre M; Brandao, Frederico Dias; Suter, Dieter
2014-02-07
Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.
Analysis and Modeling of Ground Operations at Hub Airports
NASA Technical Reports Server (NTRS)
Atkins, Stephen (Technical Monitor); Andersson, Kari; Carr, Francis; Feron, Eric; Hall, William D.
2000-01-01
Building simple and accurate models of hub airports can considerably help one understand airport dynamics, and may provide quantitative estimates of operational airport improvements. In this paper, three models are proposed to capture the dynamics of busy hub airport operations. Two simple queuing models are introduced to capture the taxi-out and taxi-in processes. An integer programming model aimed at representing airline decision-making attempts to capture the dynamics of the aircraft turnaround process. These models can be applied for predictive purposes. They may also be used to evaluate control strategies for improving overall airport efficiency.
A comparison of the environmental impact of different AOPs: risk indexes.
Giménez, Jaime; Bayarri, Bernardí; González, Óscar; Malato, Sixto; Peral, José; Esplugas, Santiago
2014-12-31
Today, environmental impact associated with pollution treatment is a matter of great concern. A method is proposed for evaluating environmental risk associated with Advanced Oxidation Processes (AOPs) applied to wastewater treatment. The method is based on the type of pollution (wastewater, solids, air or soil) and on materials and energy consumption. An Environmental Risk Index (E), constructed from numerical criteria provided, is presented for environmental comparison of processes and/or operations. The Operation Environmental Risk Index (EOi) for each of the unit operations involved in the process and the Aspects Environmental Risk Index (EAj) for process conditions were also estimated. Relative indexes were calculated to evaluate the risk of each operation (E/NOP) or aspect (E/NAS) involved in the process, and the percentage of the maximum achievable for each operation and aspect was found. A practical application of the method is presented for two AOPs: photo-Fenton and heterogeneous photocatalysis with suspended TiO2 in Solarbox. The results report the environmental risks associated with each process, so that AOPs tested and the operations involved with them can be compared.
CERT Resilience Management Model: A Maturity Model Approach to Managing Operational Resilience
2010-07-28
manufacturing, and energy 8 years @ SEI concentrating in information security risk management BS-Accounting; MBA Frequent lecturer in Carnegie...impact Move all operational risk management activities in the same direction Optimize cost/effectiveness Meet mission no-matter-what How do you...processes Effective operational risk management requires harmonization: convergence of these activities working toward the same goals Operational
Best Practices for Fatigue Risk Management in Non-Traditional Shiftwork
NASA Technical Reports Server (NTRS)
Flynn-Evans, Erin E.
2016-01-01
Fatigue risk management programs provide effective tools to mitigate fatigue among shift workers. Although such programs are effective for typical shiftwork scenarios, where individuals of equal skill level can be divided into shifts to cover 24 hour operations, traditional programs are not sufficient for managing sleep loss among individuals with unique skill sets, in occupations where non-traditional schedules are required. Such operations are prevalent at NASA and in other high stress occupations, including among airline pilots, military personnel, and expeditioners. These types of operations require fatigue risk management programs tailored to the specific requirements of the mission. Without appropriately tailored fatigue risk management, such operations can lead to an elevated risk of operational failure, disintegration of teamwork, and increased risk of accidents and incidents. In order to design schedules for such operations, schedule planners must evaluate the impact of a given operation on circadian misalignment, acute sleep loss, chronic sleep loss and sleep inertia. In addition, individual-level factors such as morningness-eveningness preference and sleep disorders should be considered. After the impact of each of these factors has been identified, scheduling teams can design schedules that meet operational requirements, while also minimizing fatigue.
Brulle, R.V.
1981-09-03
A cyclogiro windmill has a rotor provided with blades shaped in the configuration of symmetrical airfoils and actuators to pivot the blades about axes parallel to the axis of rotation for the rotor. The actuator for each blade constantly changes the rock angle for the blade, that is its angle with respect to a reference on the rotor, and this modulation is such that the blade in making a revolution around the axis of rotation for the rotor undergoes an interval of static operation wherein its angle of attack is for the most part constant and less than the static stall angle, a short interval where the blade flips to position in which its opposite surface is presented toward the free wind, a short interval of dynamic operation wherein the angle of attack exceeds the static stal angle, another interval of static operation at an angle of attack of essentially the same magnitude as before, another interval of blade flip, and another interval of dynamic operation. During the intervals of dynamic operation, the blades experience a significant increase in lift force without a corresponding increase in drag, so that a high lift-to-drag ratio develops. The blades during dynamic operation further develop strong vortices which are directed outwardly at the sides of the windmill stream tube, and this increases the width of the stream tube, causing a greater mass of air to flow through the rotor. The short intervals of operation under dynamic conditions enable the blades to extract more energy from the free wind than would be possible if the blade operated solely under static conditions, and this in turn renders the windmill more useful in moderate velocity winds as well as high velocity winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brulle, R.V.
1981-09-03
A cyclogiro windmill has a rotor provided with blades shaped in the configuration of symmetrical airfoils and actuators to pivot the blades about axes parallel to the axis of rotation for the rotor. The actuator for each blade constantly changes the rock angle for the blade, that is its angle with respect to a reference on the rotor, and this modulation is such that the blade in making a revolution around the axis of rotation for the rotor undergoes an interval of static operation wherein its angle of attack is for the most part constant and less than the staticmore » stall angle, a short interval where the blade flips to position in which its opposite surface is presented toward the free wind, a short interval of dynamic operation wherein the angle of attack exceeds the static stal angle, another interval of static operation at an angle of attack of essentially the same magnitude as before, another interval of blade flip, and another interval of dynamic operation. During the intervals of dynamic operation, the blades experience a significant increase in lift force without a corresponding increase in drag, so that a high lift-to-drag ratio develops. The blades during dynamic operation further develop strong vortices which are directed outwardly at the sides of the windmill stream tube, and this increases the width of the stream tube, causing a greater mass of air to flow through the rotor. The short intervals of operation under dynamic conditions enable the blades to extract more energy from the free wind than would be possible if the blade operated solely under static conditions, and this in turn renders the windmill more useful in moderate velocity winds as well as high velocity winds.« less
A probabilistic technique for the assessment of complex dynamic system resilience
NASA Astrophysics Data System (ADS)
Balchanos, Michael Gregory
In the presence of operational uncertainty, one of the greatest challenges in systems engineering is to ensure system effectiveness, mission capability and survivability for large scale, complex system architectures. Historic events such as the 2003 Northeastern Blackout, and the 2005 Hurricane Katrina, have underlined the great importance of system safety, and survivability. With safety management currently applied on a reactive basis to emerging incidents and risk challenges, there is a paradigm shift from passive, reactive and diagnosis-based approaches to the development of architectures that will autonomously manage safety and survivability through active, proactive and prognosis-based engineering solutions. The shift aims to bring safety considerations early in the engineering design process, in order to reduce retrofitting and additional safety certification costs, increase flexibility in risk management, and essentially make safety be "built-in" the design. As a possible enabling research direction, resilience engineering is an emerging discipline, pertinent to safety management, which offers alternative insights on the design of more safe and survivable system architectures. Conceptually, resilience engineering brings new perspectives on the understanding of system safety, accidents, failures, performance degradations and risk. A resilient system can "absorb" the impact of change due to unexpected disturbances, while it "adapts" to change, in order to maintain the system's physical integrity and capability to carry on with its mission. The leading hypothesis advocates that if a complex dynamic system is more resilient, then it would be more survivable, thus more effective, despite the unexpected disturbances that could affect its normal operating conditions. For investigating the impact of more resilient systems on survivability and safety, a framework for theoretical resilience estimations has been formulated. It constitutes the basis for quantitative techniques for total system resilience evaluation, based on scenario-based, dynamic system simulations. Physics-based Modeling and Simulation (M&S) is applied for dynamical system behavior analysis, which includes system performance, health monitoring, damage propagation and overall mission capability. For the development of the assessment framework and testing of a resilience assessment technique, a small-scale canonical problem has been formulated, involving a computational model of a degradable and reconfigurable spring-mass-damper SDOF system, in a multiple main and redundant spring configuration. A rule-based feedback controller is responsible for system performance recovery, through the application of different reconfiguration strategies and strategic activation of the necessary main or redundant springs. Uncertainty effects on system operation are introduced through disturbance factors, such as external forces with varying magnitude, input frequency, event duration and occurrence time. Such factors are the basis for scenario formulation, in support of a Monte Carlo simulation analysis. Case studies with varying levels of damping and different reconfiguration strategies, involve the investigation of operational uncertainty effects on system performance, mission capability, and system survivability. These studies furthermore explore uncertainty effects on resilience functions that describe the system's capacities on "restoring" mission capability, on "absorbing" the effects of changing conditions, and on "adapting" to the occurring change. The proposed resilience assessment technique or the Topological Investigation for Resilient and Effective Systems, through Increased Architecture Survivability (TIRESIAS) is then applied and demonstrated for a naval system application, in the form of a reduced scale, reconfigurable cooling network of a naval combatant. Uncertainty effects are modeled through combinations of different number of network fluid leaks. The TIRESIAS approach on the system baseline (32-control valve configuration) has allowed for the investigation of leak effects on survival times, mission capability degradations, as well as the resilience function capacities. As part of the technique demonstration, case studies were conducted for different architecture configurations, which have been generated for different total number of control valves and valve locations on the topology.
NASA Technical Reports Server (NTRS)
1993-01-01
The Marshall Space Flight Center is responsible for the development and management of advanced launch vehicle propulsion systems, including the Space Shuttle Main Engine (SSME), which is presently operational, and the Space Transportation Main Engine (STME) under development. The SSME's provide high performance within stringent constraints on size, weight, and reliability. Based on operational experience, continuous design improvement is in progress to enhance system durability and reliability. Specialized data analysis and interpretation is required in support of SSME and advanced propulsion system diagnostic evaluations. Comprehensive evaluation of the dynamic measurements obtained from test and flight operations is necessary to provide timely assessment of the vibrational characteristics indicating the operational status of turbomachinery and other critical engine components. Efficient performance of this effort is critical due to the significant impact of dynamic evaluation results on ground test and launch schedules, and requires direct familiarity with SSME and derivative systems, test data acquisition, and diagnostic software. Detailed analysis and evaluation of dynamic measurements obtained during SSME and advanced system ground test and flight operations was performed including analytical/statistical assessment of component dynamic behavior, and the development and implementation of analytical/statistical models to efficiently define nominal component dynamic characteristics, detect anomalous behavior, and assess machinery operational condition. In addition, the SSME and J-2 data will be applied to develop vibroacoustic environments for advanced propulsion system components, as required. This study will provide timely assessment of engine component operational status, identify probable causes of malfunction, and indicate feasible engineering solutions. This contract will be performed through accomplishment of negotiated task orders.
Systemic risk: the dynamics of model banking systems
May, Robert M.; Arinaminpathy, Nimalan
2010-01-01
The recent banking crises have made it clear that increasingly complex strategies for managing risk in individual banks have not been matched by corresponding attention to overall systemic risks. We explore some simple mathematical caricatures for ‘banking ecosystems’, with emphasis on the interplay between the characteristics of individual banks (capital reserves in relation to total assets, etc.) and the overall dynamical behaviour of the system. The results are discussed in relation to potential regulations aimed at reducing systemic risk. PMID:19864264
ERIC Educational Resources Information Center
Lindsay, William R.; Murphy, Lesley; Smith, Gordon; Murphy, Daniel; Edwards, Zoe; Chittock, Chris; Grieve, Alan; Young, Steven J.
2004-01-01
Purpose: Research on dynamic risk assessment has developed over the last 10 years and a number of variables have emerged as being possible predictors of future sexual and violent offences. These variables include hostile attitude/anger and compliance with routine. In 2002, Thornton ("Sexual Abuse: A Journal of Research & Treatment" 14, 139)…
NASA Astrophysics Data System (ADS)
Pagano, Alessandro; Pluchinotta, Irene; Giordano, Raffaele; Vurro, Michele
2016-04-01
Resilience has recently become a key concept, and a crucial paradigm in the analysis of the impacts of natural disasters, mainly concerning Lifeline Systems (LS). Indeed, the traditional risk management approaches require a precise knowledge of all potential hazards and a full understanding of the interconnections among different infrastructures, based on past events and trends analysis. Nevertheless, due to the inner complexity of LS, their interconnectedness and the dynamic context in which they operate (i.e. technology, economy and society), it is difficult to gain a complete comprehension of the processes influencing vulnerabilities and threats. Therefore, resilience thinking addresses the complexities of large integrated systems and the uncertainty of future threats, emphasizing the absorbing, adapting and responsive behavior of the system. Resilience thinking approaches are focused on the capability of the system to deal with the unforeseeable. The increasing awareness of the role played by LS, has led governmental agencies and institutions to develop resilience management strategies. Risk prone areas, such as cities, are highly dependent on infrastructures providing essential services that support societal functions, safety, economic prosperity and quality of life. Among the LS, drinking water supply is critical for supporting citizens during emergency and recovery, since a disruption could have a range of serious societal impacts. A very well-known method to assess LS resilience is the TOSE approach. The most interesting feature of this approach is the integration of four dimensions: Technical, Organizational, Social and Economic. Such issues are all concurrent to the resilience level of an infrastructural system, and should be therefore quantitatively assessed. Several researches underlined that the lack of integration among the different dimensions, composing the resilience concept, may contribute to a mismanagement of LS in case of natural disasters. Moving in such direction, System Dynamics Modeling (SDM) is a suitable operative approach. The SDM allows taking into account all resilience dimensions in an integrated and dynamic way. Furthermore, it allows to combine predictive and learning functionality through feedback mechanisms, and to foster active involvement of stakeholders in the modelling process. The present paper show some results of ongoing research activities. The main aim of the work is to describe using SDM, the relationships and interdependencies between drinking water supply infrastructures and societies in building the resilience of urban communities in case of natural disasters. Reflections are carried out on the comparison between two major earthquakes in Italy: L'Aquila in 2009 and Emilia Romagna in 2012. The model aims at defining a quantitative tool to assess the evolution of resilience of drinking water supply system. Specifically, it has been used to evaluate the impact of actions and strategies for resilience improvement on the dynamic evolution of the system, thus suggesting the most suitable ones.
NASA Technical Reports Server (NTRS)
Carter-Journet, Katrina; Clahoun, Jessica; Morrow, Jason; Duncan, Gary
2012-01-01
The National Aeronautics and Space Administration (NASA) originally designed the International Space Station (ISS) to operate until 2015, but have extended operations until at least 2020. As part of this very dynamic Program, there is an effort underway to simplify the certification of Commercial ]of ]the ]Shelf (COTS) hardware. This change in paradigm allows the ISS Program to take advantage of technologically savvy and commercially available hardware, such as the iPad. The iPad, a line of tablet computers designed and marketed by Apple Inc., was chosen to support this endeavor. The iPad is functional, portable, and could be easily accessed in an emergency situation. The iPad Electronic Flight Bag (EFB), currently approved for use in flight by the Federal Aviation Administration (FAA), is a fraction of the cost of a traditional Class 2 EFB. In addition, the iPad fs ability to use electronic aeronautical data in lieu of paper in route charts and approach plates can cut the annual cost of paper data in half for commercial airlines. ISS may be able to benefit from this type of trade since one of the most important factors considered is information management. Emergency procedures onboard the ISS are currently available to the crew in paper form. Updates to the emergency books can either be launched on an upcoming visiting vehicle such as a Russian Soyuz flight or printed using the onboard ISS printer. In both cases, it is costly to update hardcopy procedures. A new operations concept was proposed to allow for the use of a tablet system that would provide a flexible platform to support space station crew operations. The purpose of the system would be to provide the crew the ability to view and maintain operational data, such as emergency procedures while also allowing Mission Control Houston to update the procedures. The ISS Program is currently evaluating the safety risks associated with the use of iPads versus paper. Paper products can contribute to the flammability risk and require manual updates that take time away from research tasks. The ISS program has recently purchased three iPads for the astronauts and the certification has been approved. The crew is currently using the iPads onboard. The results of this analysis could be used to discern whether the iPad is a viable option for use in emergencies by assessing the risk posture through the development of a quantitative probabilistic risk assessment (PRA).
Risk of Late-Onset Adhesions and Incisional Hernia Repairs after Surgery
Bensley, Rodney P; Schermerhorn, Marc L; Hurks, Rob; Sachs, Teviah; Boyd, Christopher A; O’Malley, A James; Cotterill, Philip; Landon, Bruce E
2013-01-01
BACKGROUND Long-term adhesion-related complications and incisional hernias after abdominal surgery are common and costly. There are few data on the risk of these complications after different abdominal operations. STUDY DESIGN We identified Medicare beneficiaries who underwent endovascular repair of an abdominal aortic aneurysm from 2001–2008 who presumably are not at risk for laparotomy-related complications. We identified all laparoscopic and open operations involving the abdomen, pelvis, or retroperitoneum and categorized them into 5 groups according to invasiveness. We then identified laparotomy-related complications for up to 5 years after the index operation and compared these with the baseline rate of complications in a control group of patients who did not undergo an abdominal operation. RESULTS We studied 85,663 patients, 7,513 (8.8%) of which underwent a laparotomy, including 2,783 major abdominal operations, 709 minor abdominal operations, 963 ventral hernia repairs, 493 retroperitoneal/pelvic operations, and 2,565 laparoscopic operations. Mean age was 76.7 years and 82.0% were male. Major abdominal operations carried the highest risk for adhesion-related complications (14.3% and 25.0% at 2 and 5 years compared with 4.0% and 7.8% for the control group; p < 0.001) and incisional hernias (7.8% and 12.0% compared with 0.6% and 1.2% for the control group; p < 0.001). Laparoscopic operations (4.6% and 10.7% for adhesions, 1.9% and 3.2% for incisional hernias) carried the lowest risk. CONCLUSIONS Late-onset laparotomy-related complications are frequent and their risk extends through 5 years beyond the perioperative period. With the advancement and expansion of laparoscopic techniques and its attendant lower risk for long-term complications, these results can alter the risk-to-benefit profile of various types of abdominal operations and can also strengthen the rationale for additional development of laparoscopic approaches to abdominal operations. PMID:23623220
Stonelake, Stephen; Thomson, Peter; Suggett, Nigel
2015-01-01
Introduction National guidance states that all patients having emergency surgery should have a mortality risk assessment calculated on admission so that the ‘high risk’ patient can receive the appropriate seniority and level of care. We aimed to assess if peri-operative risk scoring tools could accurately calculate mortality and morbidity risk. Methods Mortality risk scores for 86 consecutive emergency laparotomies, were calculated using pre-operative (ASA, Lee index) and post-operative (POSSUM, P-POSSUM and CR-POSSUM) risk calculation tools. Morbidity risk scores were calculated using the POSSUM predicted morbidity and compared against actual morbidity according to the Clavien–Dindo classification. Results The actual mortality was 10.5%. The average predicted risk scores for all laparotomies were: ASA 26.5%, Lee Index 2.5%, POSSUM 29.5%, P-POSSUM 18.5%, CR-POSSUM 10.5%. Complications occurred following 67 laparotomies (78%). The majority (51%) of complications were classified as Clavien–Dindo grade 2–3 (non-life-threatening). Patients having a POSSUM morbidity risk of greater than 50% developed significantly more life-threatening complications (CD 4–5) compared with those who predicted less than or equal to 50% morbidity risk (P = 0.01). Discussion Pre-operative risk stratification remains a challenge because the Lee Index under-predicts and ASA over-predicts mortality risk. Post-operative risk scoring using the CR-POSSUM is more accurate and we suggest can be used to identify patients who require intensive care post-operatively. Conclusions In the absence of accurate risk scoring tools that can be used on admission to hospital it is not possible to reliably audit the achievement of national standards of care for the ‘high-risk’ patient. PMID:26468369
Methodology for Designing Operational Banking Risks Monitoring System
NASA Astrophysics Data System (ADS)
Kostjunina, T. N.
2018-05-01
The research looks at principles of designing an information system for monitoring operational banking risks. A proposed design methodology enables one to automate processes of collecting data on information security incidents in the banking network, serving as the basis for an integrated approach to the creation of an operational risk management system. The system can operate remotely ensuring tracking and forecasting of various operational events in the bank network. A structure of a content management system is described.
Cheng, Xiang; Wu, Jia-Wei; Sun, Ping; Song, Zi-Fang; Zheng, Qi-Chang
2016-12-01
Pleural effusion after hepatectomy is associated with significant morbidity and prolonged hospital stays. Several studies have addressed the risk factors for postoperative pleural effusion. However, there are no researches concerning the role of the initial 12-h operative fluid volume. The aim of this study was to evaluate whether the initial 12-h operative fluid volume during liver resection is an independent risk factor for pleural effusion after hepatectomy. In this study, we retrospectively analyzed clinical data of 470 patients consecutively undergoing elective hepatectomy between January 2011 and December 2012. We prospectively collected and retrospectively analyzed baseline and clinical data, including preoperative, intraoperative, and postoperative variables. Univariate and multivariate analyses were carried out to identify whether the initial 12-h operative fluid volume was an independent risk factor for pleural effusion after hepatectomy. The multivariate analysis identified 2 independent risk factors for pleural effusion: operative time [odds ratio (OR)=10.2] and initial 12-h operative fluid volume (OR=1.0003). Threshold effect analyses revealed that the initial 12 h operative fluid volume was positively correlated with the incidence of pleural effusion when the initial 12-h operative fluid volume exceeded 4636 mL. We conclude that the initial 12-h operative fluid volume during liver resection and operative time are independent risk factors for pleural effusion after hepatectomy. Perioperative intravenous fluids should be restricted properly.
Dynamic data filtering system and method
Bickford, Randall L; Palnitkar, Rahul M
2014-04-29
A computer-implemented dynamic data filtering system and method for selectively choosing operating data of a monitored asset that modifies or expands a learned scope of an empirical model of normal operation of the monitored asset while simultaneously rejecting operating data of the monitored asset that is indicative of excessive degradation or impending failure of the monitored asset, and utilizing the selectively chosen data for adaptively recalibrating the empirical model to more accurately monitor asset aging changes or operating condition changes of the monitored asset.
Dynamic isoperimetry and the geometry of Lagrangian coherent structures
NASA Astrophysics Data System (ADS)
Froyland, Gary
2015-10-01
The study of transport and mixing processes in dynamical systems is particularly important for the analysis of mathematical models of physical systems. We propose a novel, direct geometric method to identify subsets of phase space that remain strongly coherent over a finite time duration. This new method is based on a dynamic extension of classical (static) isoperimetric problems; the latter are concerned with identifying submanifolds with the smallest boundary size relative to their volume. The present work introduces dynamic isoperimetric problems; the study of sets with small boundary size relative to volume as they are evolved by a general dynamical system. We formulate and prove dynamic versions of the fundamental (static) isoperimetric (in)equalities; a dynamic Federer-Fleming theorem and a dynamic Cheeger inequality. We introduce a new dynamic Laplace operator and describe a computational method to identify coherent sets based on eigenfunctions of the dynamic Laplacian. Our results include formal mathematical statements concerning geometric properties of finite-time coherent sets, whose boundaries can be regarded as Lagrangian coherent structures. The computational advantages of our new approach are a well-separated spectrum for the dynamic Laplacian, and flexibility in appropriate numerical approximation methods. Finally, we demonstrate that the dynamic Laplace operator can be realised as a zero-diffusion limit of a newly advanced probabilistic transfer operator method [9] for finding coherent sets, which is based on small diffusion. Thus, the present approach sits naturally alongside the probabilistic approach [9], and adds a formal geometric interpretation.
FINITE-STATE APPROXIMATIONS TO DENUMERABLE-STATE DYNAMIC PROGRAMS,
AIR FORCE OPERATIONS, LOGISTICS), (*INVENTORY CONTROL, DYNAMIC PROGRAMMING), (*DYNAMIC PROGRAMMING, APPROXIMATION(MATHEMATICS)), INVENTORY CONTROL, DECISION MAKING, STOCHASTIC PROCESSES, GAME THEORY, ALGORITHMS, CONVERGENCE
Vertical-plane pendulum absorbers for minimizing helicopter vibratory loads
NASA Technical Reports Server (NTRS)
Amer, K. B.; Neff, J. R.
1974-01-01
The use of pendulum dynamic absorbers mounted on the blade root and operating in the vertical plane to minimize helicopter vibratory loads was discussed. A qualitative description was given of the concept of the dynamic absorbers and some results of analytical studies showing the degree of reduction in vibratory loads attainable are presented. Operational experience of vertical plane dynamic absorbers on the OH-6A helicopter is also discussed.
Flight Dynamics Mission Support and Quality Assurance Process
NASA Technical Reports Server (NTRS)
Oh, InHwan
1996-01-01
This paper summarizes the method of the Computer Sciences Corporation Flight Dynamics Operation (FDO) quality assurance approach to support the National Aeronautics and Space Administration Goddard Space Flight Center Flight Dynamics Support Branch. Historically, a strong need has existed for developing systematic quality assurance using methods that account for the unique nature and environment of satellite Flight Dynamics mission support. Over the past few years FDO has developed and implemented proactive quality assurance processes applied to each of the six phases of the Flight Dynamics mission support life cycle: systems and operations concept, system requirements and specifications, software development support, operations planing and training, launch support, and on-orbit mission operations. Rather than performing quality assurance as a final step after work is completed, quality assurance has been built in as work progresses in the form of process assurance. Process assurance activities occur throughout the Flight Dynamics mission support life cycle. The FDO Product Assurance Office developed process checklists for prephase process reviews, mission team orientations, in-progress reviews, and end-of-phase audits. This paper will outline the evolving history of FDO quality assurance approaches, discuss the tailoring of Computer Science Corporations's process assurance cycle procedures, describe some of the quality assurance approaches that have been or are being developed, and present some of the successful results.
Asymmetric impacts of global risk appetite on the risk premium for an emerging market
NASA Astrophysics Data System (ADS)
Kanlı, İbrahim Burak
2008-05-01
This paper analyzes the impact of global risk appetite on the risk premium utilizing high-frequency data. Taking the Turkish economy as our laboratory, we find that the risk premium volatility responds only to a worsening in the risk appetite for the Turkish economy, which is a result that we do not observe for the other emerging markets. Then, we investigate the role of current account dynamics on this asymmetric effect, by focusing also on an economy with similar current account performance. The empirical results find supporting evidence for the role of current account dynamics on the estimated asymmetry.
Integrating human behaviour dynamics into flood disaster risk assessment
NASA Astrophysics Data System (ADS)
Aerts, J. C. J. H.; Botzen, W. J.; Clarke, K. C.; Cutter, S. L.; Hall, J. W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther, H.
2018-03-01
The behaviour of individuals, businesses, and government entities before, during, and immediately after a disaster can dramatically affect the impact and recovery time. However, existing risk-assessment methods rarely include this critical factor. In this Perspective, we show why this is a concern, and demonstrate that although initial efforts have inevitably represented human behaviour in limited terms, innovations in flood-risk assessment that integrate societal behaviour and behavioural adaptation dynamics into such quantifications may lead to more accurate characterization of risks and improved assessment of the effectiveness of risk-management strategies and investments. Such multidisciplinary approaches can inform flood-risk management policy development.
Structural dynamic analysis of the Space Shuttle Main Engine
NASA Technical Reports Server (NTRS)
Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.
1981-01-01
This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.
Simulations of Operation Dynamics of Different Type GaN Particle Sensors
Gaubas, Eugenijus; Ceponis, Tomas; Kalesinskas, Vidas; Pavlov, Jevgenij; Vysniauskas, Juozas
2015-01-01
The operation dynamics of the capacitor-type and PIN diode type detectors based on GaN have been simulated using the dynamic and drift-diffusion models. The drift-diffusion current simulations have been implemented by employing the software package Synopsys TCAD Sentaurus. The monopolar and bipolar drift regimes have been analyzed by using dynamic models based on the Shockley-Ramo theorem. The carrier multiplication processes determined by impact ionization have been considered in order to compensate carrier lifetime reduction due to introduction of radiation defects into GaN detector material. PMID:25751080
A classification of open Gaussian dynamics
NASA Astrophysics Data System (ADS)
Grimmer, Daniel; Brown, Eric; Kempf, Achim; Mann, Robert B.; Martín-Martínez, Eduardo
2018-06-01
We introduce a classification scheme for the generators of bosonic open Gaussian dynamics, providing instructive diagrams description for each type of dynamics. Using this classification, we discuss the consequences of imposing complete positivity on Gaussian dynamics. In particular, we show that non-symplectic operations must be active to allow for complete positivity. In addition, non-symplectic operations can, in fact, conserve the volume of phase space only if the restriction of complete positivity is lifted. We then discuss the implications for the relationship between information and energy flows in open quantum mechanics.
A Risk Management Architecture for Emergency Integrated Aircraft Control
NASA Technical Reports Server (NTRS)
McGlynn, Gregory E.; Litt, Jonathan S.; Lemon, Kimberly A.; Csank, Jeffrey T.
2011-01-01
Enhanced engine operation--operation that is beyond normal limits--has the potential to improve the adaptability and safety of aircraft in emergency situations. Intelligent use of enhanced engine operation to improve the handling qualities of the aircraft requires sophisticated risk estimation techniques and a risk management system that spans the flight and propulsion controllers. In this paper, an architecture that weighs the risks of the emergency and of possible engine performance enhancements to reduce overall risk to the aircraft is described. Two examples of emergency situations are presented to demonstrate the interaction between the flight and propulsion controllers to facilitate the enhanced operation.
An Integrated Tone Mapping for High Dynamic Range Image Visualization
NASA Astrophysics Data System (ADS)
Liang, Lei; Pan, Jeng-Shyang; Zhuang, Yongjun
2018-01-01
There are two type tone mapping operators for high dynamic range (HDR) image visualization. HDR image mapped by perceptual operators have strong sense of reality, but will lose local details. Empirical operators can maximize local detail information of HDR image, but realism is not strong. A common tone mapping operator suitable for all applications is not available. This paper proposes a novel integrated tone mapping framework which can achieve conversion between empirical operators and perceptual operators. In this framework, the empirical operator is rendered based on improved saliency map, which simulates the visual attention mechanism of the human eye to the natural scene. The results of objective evaluation prove the effectiveness of the proposed solution.
Aspirin Use Prior to Coronary Artery Bypass Grafting Surgery: a Systematic Review.
Elbadawi, Ayman; Saad, Marwan; Nairooz, Ramez
2017-02-01
Aspirin use before coronary artery bypass graft (CABG) surgery has been a puzzling question for years. Controversy existed regarding the overall benefits vs. risk of pre-operative aspirin use and was translated to conflicting guidelines from major societies. Observational studies have suggested a reduced mortality with pre-operative aspirin use. A meta-analysis of randomized controlled trials showed increased risk of post-operative bleeding with aspirin, with no associated increased mortality risk. A recent large randomized controlled trial did not find a significant difference in bleeding risk or post-operative mortality with pre-CABG aspirin use. The results of available studies showed a beneficial effect with pre-CABG aspirin use by decreasing thrombotic complications and perioperative myocardial infarction, with an associated adverse risk of bleeding that did not affect mortality rates. Given overall benefit-risk assessment, we are in favor of pre-operative aspirin use in CABG patients.
A Framework for Context Sensitive Risk-Based Access Control in Medical Information Systems
Choi, Donghee; Kim, Dohoon; Park, Seog
2015-01-01
Since the access control environment has changed and the threat of insider information leakage has come to the fore, studies on risk-based access control models that decide access permissions dynamically have been conducted vigorously. Medical information systems should protect sensitive data such as medical information from insider threat and enable dynamic access control depending on the context such as life-threatening emergencies. In this paper, we suggest an approach and framework for context sensitive risk-based access control suitable for medical information systems. This approach categorizes context information, estimating and applying risk through context- and treatment-based permission profiling and specifications by expanding the eXtensible Access Control Markup Language (XACML) to apply risk. The proposed framework supports quick responses to medical situations and prevents unnecessary insider data access through dynamic access authorization decisions in accordance with the severity of the context and treatment. PMID:26075013
Godlevskiy, A I; Savolyuk, S I; Tomashevskiy, Ya V
2015-07-01
The dynamics of cytopathic hypoxia markers in patients with acute pancreatitis (AP) biliary etiology (BE), depending on the presence of concomitant diabetes mellitus (DM), which is an independent factor of premorbid severity increase and increase in the degree of operational and anesthetic risk. Markers of cytopathic hypoxia use as methods for early diagnosis of acute liver failure (ALF) and monitoring the effectiveness of its correction promising. In terms of cytopathic hypoxia may be at the stage of laboratory diagnostics to distinguish between destructive and non-destructive forms APBE, and for markers of endothelial dysfunction--destructive forms on the area and depth of destruction of the pancreas.
NASA Astrophysics Data System (ADS)
Robbes, D.; Langlois, P.; Dolabdjian, C.; Bloyet, D.; Hamet, J. F.; Murray, H.
1993-03-01
Using careful measurements of the I-V curve of a YBCO thin-film microbridge under light irradiation at 780 nm and temperature close to 77 K, it is shown that the critical current versus temperature dependence is a good thermometer for estimating bolometric effects in the film. A novel dynamic voltage bias is introduced which directly gives the device current responsitivity and greatly reduces risks of thermal runaway. Detectivity is very low but it is predicted that a noise equivalent temperature of less than 10 exp -7 K/sq rt Hz would be achievable in a wide temperature range (10-80 K), which is an improvement over thermometry at the resistive transition.
NASA Astrophysics Data System (ADS)
Bukov, Marin; Polkovnikov, Anatoli
2014-10-01
We study the stroboscopic and nonstroboscopic dynamics in the Floquet realization of the Harper-Hofstadter Hamiltonian. We show that the former produces the evolution expected in the high-frequency limit only for observables, which commute with the operator to which the driving protocol couples. On the contrary, nonstroboscopic dynamics is capable of capturing the evolution governed by the Floquet Hamiltonian of any observable associated with the effective high-frequency model. We provide exact numerical simulations for the dynamics of the number operator following a quantum cyclotron orbit on a 2×2 plaquette, as well as the chiral current operator flowing along the legs of a 2×20 ladder. The exact evolution is compared with its stroboscopic and nonstroboscopic counterparts, including finite-frequency corrections.
Towards a standardized grasping and refuelling on-orbit servicing for geo spacecraft
NASA Astrophysics Data System (ADS)
Medina, Alberto; Tomassini, Angelo; Suatoni, Matteo; Avilés, Marcos; Solway, Nick; Coxhill, Ian; Paraskevas, Iosif S.; Rekleitis, Georgios; Papadopoulos, Evangelos; Krenn, Rainer; Brito, André; Sabbatinelli, Beatrice; Wollenhaupt, Birk; Vidal, Christian; Aziz, Sarmad; Visentin, Gianfranco
2017-05-01
Exploitation of space must benefit from the latest advances in robotics. On-orbit servicing is a clear candidate for the application of autonomous rendezvous and docking mechanisms. However, during the last three decades most of the trials took place combining extravehicular activities (EVAs) with telemanipulated robotic arms. The European Space Agency (ESA) considers that grasping and refuelling are promising near-mid-term capabilities that could be performed by servicing spacecraft. Minimal add-ons on spacecraft to enhance their serviceability may protect them for a changing future in which satellite servicing may become mainstream. ESA aims to conceive and promote standard refuelling provisions that can be installed in present and future European commercial geostationary orbit (GEO) satellite platforms and scientific spacecraft. For this purpose ESA has started the ASSIST activity addressing the analysis, design and validation of internal provisions (such as modifications to fuel, gas, electrical and data architecture to allow servicing) and external provisions (such as integrated berthing fixtures with peripheral electrical, gas, liquid connectors, leak check systems and corresponding optical and radio markers for cooperative rendezvous and docking). This refuelling approach is being agreed with European industry (OHB, Thales Alenia Space) and expected to be consolidated with European commercial operators as a first step to become an international standard; this approach is also being considered for on-orbit servicing spacecraft, such as the SpaceTug, by Airbus DS. This paper describes in detail the operational means, structure, geometry and accommodation of the system. Internal and external provisions will be designed with the minimum possible impact on the current architecture of GEO satellites without introducing additional risks in the development and commissioning of the satellite. End-effector and berthing fixtures are being designed in the range of few kilos and linear dimensions around 15 cm. A central mechanical part is expected to perform first a soft docking followed by a motorized retraction ending during a hard docking phase using aligning pins. Mating and de-mating will be exhaustively analysed to ensure robustness of operations. Leakage-free valves would allow for the transfer of fuel to the serviced spacecraft. The validation of the ASSIST system through dedicated environmental tests in a vacuum chamber together with dynamic testing using an air-bearing table will allow for the demonstration of concept feasibility and its suitability for becoming a standard of the on-orbit space industry. Failure during the injection of the payload into the nominal target or transfer orbit. In most cases the satellite cannot accomplish this on its own; an orbit transfer vehicle could provide support. Necessity for support unfinished operations during the test and commissioning phase. Typical example can be incomplete deployment mechanism of solar arrays or of antenna dishes. Premature end of life of the satellite due to equipment obsolescence or wear. Extension of the expected duration of the satellite operative life through a refuelling of propellant tanks devoted to attitude/orbit control. This scenario will be the main subject of this ASSIST project and will be fully explored. This activity is led by GMV (coordinator and dynamics simulator) together with MOOG (mechanical design, breadboard manufacturing and environmental testing), NTUA (air-bearing table dynamics and testing), DLR (contact dynamics), OHB (mission requirements and propulsion provisions) and TAS (mission requirements).This paper is organized as follows: Section 1 provides an introduction, Section 2 introduces the ASSIST concept, Section 3 provides a review on servicing/refuelling systems, Section 4 describes the operational scenarios and phases, Section 5 presents the ASSIST design while Section 6 describes the step-by-step refuelling operations, Sections 7 and 8 present the internal and external provisions respectively, Section 9 introduces the Kinematic and Dynamic simulator, Section 10 shows the air-bearing test set-up, Section 11 describes the dynamic test cases and validation results and finally Sections 12 present the conclusions.
Habib, Md Monjurul
2015-01-01
Many sewing machine operators are working with high risk factors for musculoskeletal health in the garments industries in Bangladesh. To identify the physical risk factors among sewing machine operators in a Bangladeshi garments factory. Sewing machine operators (327, 83% female), were evaluated. The mean age of the participants was 25.25 years. Six ergonomic risk factors were determined using the Musculoskeletal Disorders risk assessment. Data collection included measurements of sewing machine table and chair heights; this data was combined with information from informal interviews. Significant ergonomic risk factors found included the combination of awkward postures of the neck and back, repetitive hand and arm movements, poor ergonomic workstations and prolonged working hours without adequate breaks; these risk factors resulted in musculoskeletal complaints, sick leave, and switching jobs. One aspect of improving worker health in garment factories includes addressing musculoskeletal risk factors through ergonomic interventions.
Probabilistic empirical prediction of seasonal climate: evaluation and potential applications
NASA Astrophysics Data System (ADS)
Dieppois, B.; Eden, J.; van Oldenborgh, G. J.
2017-12-01
Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a new evaluation of an established empirical system used to predict seasonal climate across the globe. Forecasts for surface air temperature, precipitation and sea level pressure are produced by the KNMI Probabilistic Empirical Prediction (K-PREP) system every month and disseminated via the KNMI Climate Explorer (climexp.knmi.nl). K-PREP is based on multiple linear regression and built on physical principles to the fullest extent with predictive information taken from the global CO2-equivalent concentration, large-scale modes of variability in the climate system and regional-scale information. K-PREP seasonal forecasts for the period 1981-2016 will be compared with corresponding dynamically generated forecasts produced by operational forecast systems. While there are many regions of the world where empirical forecast skill is extremely limited, several areas are identified where K-PREP offers comparable skill to dynamical systems. We discuss two key points in the future development and application of the K-PREP system: (a) the potential for K-PREP to provide a more useful basis for reference forecasts than those based on persistence or climatology, and (b) the added value of including K-PREP forecast information in multi-model forecast products, at least for known regions of good skill. We also discuss the potential development of stakeholder-driven applications of the K-PREP system, including empirical forecasts for circumboreal fire activity.
Dynamic pressure measurement of cartridge operated vole captive bolt devices.
Frank, M; Philipp, K P; Franke, E; Frank, N; Bockholdt, B; Grossjohann, R; Ekkernkamp, A
2009-01-10
Vole captive bolt devices are powder actuated spring guns that are used as a pest control mean. After having triggered the explosion of the blank cartridge by touching a metal ring around the muzzle, the vole is killed by the massive propulsion of the gas jet. Improper use and recklessness while handling these devices may cause severe injuries with the hand of the operator at particular risk. Currently, there are no experimental investigations on the ballistic background of these devices. An experimental test set-up was designed for measurement of the firing pressure and the dynamic force of the gas jet of a vole captive bolt device. Therefore, a vole captive bolt device was prepared with a pressure take-off channel and a piezoelectric transducer for measurement of the firing pressure. For measurement of the dynamic impact force of the gas jet an annular quartz force sensor was installed on a test bench. Each three simultaneous measurements of the cartridges' firing pressure and the dynamic force of the blast wave were taken at various distances between muzzle and load washer. The maximum gas pressure in the explosion chamber was up to 1100 bar. The shot development over time showed a typical gas pressure curve. Flow velocity of the gas jet was up to 2000 m/s. The maximum impact force of the gas jet at the target showed a strong inverse ratio to the muzzle's distance and was up to 11,500 N for the contact shot distance. Energy density of the gas jet for the close contact shot was far beyond the energy density required for skin penetration. The unique design features (short tube between cartridge mouth and muzzle and narrow diameter of the muzzle) of these gadgets are responsible for the high firing pressure, velocity and force of the gas jet. These findings explain the trauma mechanics of the extensive tissue damage observed in accidental shots of these devices.
Sustainable and Smart City Planning Using Spatial Data in Wallonia
NASA Astrophysics Data System (ADS)
Stephenne, N.; Beaumont, B.; Hallot, E.; Wolff, E.; Poelmans, L.; Baltus, C.
2016-09-01
Simulating population distribution and land use changes in space and time offer opportunities for smart city planning. It provides a holistic and dynamic vision of fast changing urban environment to policy makers. Impacts, such as environmental and health risks or mobility issues, of policies can be assessed and adapted consequently. In this paper, we suppose that "Smart" city developments should be sustainable, dynamic and participative. This paper addresses these three smart objectives in the context of urban risk assessment in Wallonia, Belgium. The sustainable, dynamic and participative solution includes (i) land cover and land use mapping using remote sensing and GIS, (ii) population density mapping using dasymetric mapping, (iii) predictive modelling of land use changes and population dynamics and (iv) risk assessment. The comprehensive and long-term vision of the territory should help to draw sustainable spatial planning policies, to adapt remote sensing acquisition, to update GIS data and to refine risk assessment from regional to city scale.
Viljoen, Jodi L.; Gray, Andrew L.; Shaffer, Catherine; Latzman, Natasha E.; Scalora, Mario J.; Ullman, Daniel
2018-01-01
Although the Juvenile Sex Offender Assessment Protocol–II (J-SOAP-II) and the Structured Assessment of Violence Risk in Youth (SAVRY) include an emphasis on dynamic, or modifiable factors, there has been little research on dynamic changes on these tools. To help address this gap, we compared admission and discharge scores of 163 adolescents who attended a residential, cognitive-behavioral treatment program for sexual offending. Based on reliable change indices, one half of youth showed a reliable decrease on the J-SOAP-II Dynamic Risk Total Score and one third of youth showed a reliable decrease on the SAVRY Dynamic Risk Total Score. Contrary to expectations, decreases in risk factors and increases in protective factors did not predict reduced sexual, violent nonsexual, or any reoffending. In addition, no associations were found between scores on the Psychopathy Checklist:Youth Version and levels of change. Overall, the J-SOAP-II and the SAVRY hold promise in measuring change, but further research is needed. PMID:26199271
Viljoen, Jodi L; Gray, Andrew L; Shaffer, Catherine; Latzman, Natasha E; Scalora, Mario J; Ullman, Daniel
2017-06-01
Although the Juvenile Sex Offender Assessment Protocol-II (J-SOAP-II) and the Structured Assessment of Violence Risk in Youth (SAVRY) include an emphasis on dynamic, or modifiable factors, there has been little research on dynamic changes on these tools. To help address this gap, we compared admission and discharge scores of 163 adolescents who attended a residential, cognitive-behavioral treatment program for sexual offending. Based on reliable change indices, one half of youth showed a reliable decrease on the J-SOAP-II Dynamic Risk Total Score and one third of youth showed a reliable decrease on the SAVRY Dynamic Risk Total Score. Contrary to expectations, decreases in risk factors and increases in protective factors did not predict reduced sexual, violent nonsexual, or any reoffending. In addition, no associations were found between scores on the Psychopathy Checklist:Youth Version and levels of change. Overall, the J-SOAP-II and the SAVRY hold promise in measuring change, but further research is needed.
Short Operative Duration and Surgical Site Infection Risk in Hip and Knee Arthroplasty Procedures
Dicks, Kristen V.; Baker, Arthur W.; Durkin, Michael J.; Anderson, Deverick J.; Moehring, Rebekah W.; Chen, Luke F.; Sexton, Daniel J.; Weber, David J.; Lewis, Sarah S.
2016-01-01
OBJECTIVE To determine the association (1) between shorter operative duration and surgical site infection (SSI) and (2) between surgeon median operative duration and SSI risk among first-time hip and knee arthroplasties. DESIGN Retrospective cohort study SETTING A total of 43 community hospitals located in the southeastern United States. PATIENTS Adults who developed SSIs according to National Healthcare Safety Network criteria within 365 days of first-time knee or hip arthroplasties performed between January 1, 2008 and December 31, 2012. METHODS Log-binomial regression models estimated the association (1) between operative duration and SSI outcome and (2) between surgeon median operative duration and SSI outcome. Hip and knee arthroplasties were evaluated in separate models. Each model was adjusted for American Society of Anesthesiology score and patient age. RESULTS A total of 25,531 hip arthroplasties and 42,187 knee arthroplasties were included in the study. The risk of SSI in knee arthroplasties with an operative duration shorter than the 25th percentile was 0.40 times the risk of SSI in knee arthroplasties with an operative duration between the 25th and 75th percentile (risk ratio [RR], 0.40; 95% confidence interval [CI], 0.38–0.56; P <.01). Short operative duration did not demonstrate significant association with SSI for hip arthroplasties (RR, 1.04; 95% CI, 0.79–1.37; P =.36). Knee arthroplasty surgeons with shorter median operative durations had a lower risk of SSI than surgeons with typical median operative durations (RR, 0.52; 95% CI, 0.43–0.64; P <.01). CONCLUSIONS Short operative durations were not associated with a higher SSI risk for knee or hip arthroplasty procedures in our analysis. PMID:26391277
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, P; Wang, L; Riegel, A
Purpose: Several nomograms exist for the purpose of ordering palladium- 103 seeds for permanent prostate seed implants. Excess seeds pose additional radiation safety risks and increase the cost of care. This study compared three seed ordering nomograms with seed counts from dynamic intra-operative PSI to determine (1) the cause of excess seeds and (2) the optimal nomogram for our institution. Methods: Pre-operative and intra-operative clinical data were collected for 100 Gy (n=151) and 125 Gy (n=224) prostate seed implants. The number of implanted seeds which would have given D90=100% was normalized to that criteria and seed strength of 2U. Thismore » was plotted against intra-operative prostate volume and compared to two previously published nomograms and an in-house nomogram. A linear fit was produced and confidence intervals were calculated. The causes of excess seeds were assessed by comparing pre- and intra-operative prostate volumes, variability of D90 around 100%, and variance of seed strength from 2U. Results: Of the 375 total cases, 97.6% had excess seeds. On average, 27.17±12.91% of ordered seeds were wasted. Of this percentage, 6.98±5.47% of excess seeds were due to overestimation of pre-operative prostate volume, 1.10±0.88% were due to D90<100%, 1.17±0.67% were due to seed strength over 2U, and 17.36±7.79% could not be directly attributed to a specific reason. The latter percentage may be due to overestimation of the in-house nomogram. Two of three nomograms substantially overestimated the number of seeds required. The third nomogram underestimated the required seed number for smaller prostate treatment volume. A linear fit to the clinical data was derived and 99.9% confidence intervals were calculated. Conclusion: Over 85% of clinical cases wasted over 15% of ordered seeds. Two of three nomograms overestimated the required number of seeds. The upper 99.9% C.I. of the clinical data may provide a more reasonable nomogram for Pd-103 seed ordering.« less
12 CFR 3.161 - Qualification requirements for incorporation of operational risk mitigants.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 12 Banks and Banking 1 2014-01-01 2014-01-01 false Qualification requirements for incorporation of... qualifying operational risk mitigants if: (1) The national bank's or Federal savings association's.... Qualifying operational risk mitigants are: (1) Insurance that: (i) Is provided by an unaffiliated company...
System Dynamics Modeling for Public Health: Background and Opportunities
Homer, Jack B.; Hirsch, Gary B.
2006-01-01
The systems modeling methodology of system dynamics is well suited to address the dynamic complexity that characterizes many public health issues. The system dynamics approach involves the development of computer simulation models that portray processes of accumulation and feedback and that may be tested systematically to find effective policies for overcoming policy resistance. System dynamics modeling of chronic disease prevention should seek to incorporate all the basic elements of a modern ecological approach, including disease outcomes, health and risk behaviors, environmental factors, and health-related resources and delivery systems. System dynamics shows promise as a means of modeling multiple interacting diseases and risks, the interaction of delivery systems and diseased populations, and matters of national and state policy. PMID:16449591
The dynamic conditional relationship between stock market returns and implied volatility
NASA Astrophysics Data System (ADS)
Park, Sung Y.; Ryu, Doojin; Song, Jeongseok
2017-09-01
Using the dynamic conditional correlation multivariate generalized autoregressive conditional heteroskedasticity (DCC-MGARCH) model, we empirically examine the dynamic relationship between stock market returns (KOSPI200 returns) and implied volatility (VKOSPI), as well as their statistical mechanics, in the Korean market, a representative and leading emerging market. We consider four macroeconomic variables (exchange rates, risk-free rates, term spreads, and credit spreads) as potential determinants of the dynamic conditional correlation between returns and volatility. Of these macroeconomic variables, the change in exchange rates has a significant impact on the dynamic correlation between KOSPI200 returns and the VKOSPI, especially during the recent financial crisis. We also find that the risk-free rate has a marginal effect on this dynamic conditional relationship.
NASA Technical Reports Server (NTRS)
Brousse, Pascal; Desprairies, Arnaud
1993-01-01
Since 1974, CNES, the French National Space Agency, has been involved in the geostationary launch and early operations phases (LEOP) of moving satellites from a transfer orbit delivered by a launcher to a geostationary point. During the operations and their preparation, the Flight Dynamics Center (FDC), part of CNES LEOP facilities, is in charge of the space mechanics aspects. What is noteworthy about the Spanish HISPASAT satellite positioning is that all the operations were performed on the customer's premises, and consequently the FDC was duplicated in Madrid, Spain. The first part of this paper is the FDC presentation: its role, its hardware configuration, and its space dynamics ground control system called MERCATOR. The second part of this paper details the preparation used by the FDC for the HISPASAT mission: hardware and software installation in Madrid, integration with the other entities, and technical and operational qualifications. The third part gives results concerning flight dynamics aspects and operational activities.
NASA Technical Reports Server (NTRS)
Barro, E.; Delbufalo, A.; Rossi, F.
1993-01-01
The definition of some modern high demanding space systems requires a different approach to system definition and design from that adopted for traditional missions. System functionality is strongly coupled to the operational analysis, aimed at characterizing the dynamic interactions of the flight element with its surrounding environment and its ground control segment. Unambiguous functional, operational and performance requirements are to be defined for the system, thus improving also the successive development stages. This paper proposes a Petri Nets based methodology and two related prototype applications (to ARISTOTELES orbit control and to Hermes telemetry generation) for the operational analysis of space systems through the dynamic modeling of their functions and a related computer aided environment (ISIDE) able to make the dynamic model work, thus enabling an early validation of the system functional representation, and to provide a structured system requirements data base, which is the shared knowledge base interconnecting static and dynamic applications, fully traceable with the models and interfaceable with the external world.
NASA Astrophysics Data System (ADS)
Gudder, Stanley
2008-07-01
A new approach to quantum Markov chains is presented. We first define a transition operation matrix (TOM) as a matrix whose entries are completely positive maps whose column sums form a quantum operation. A quantum Markov chain is defined to be a pair (G,E) where G is a directed graph and E =[Eij] is a TOM whose entry Eij labels the edge from vertex j to vertex i. We think of the vertices of G as sites that a quantum system can occupy and Eij is the transition operation from site j to site i in one time step. The discrete dynamics of the system is obtained by iterating the TOM E. We next consider a special type of TOM called a transition effect matrix. In this case, there are two types of dynamics, a state dynamics and an operator dynamics. Although these two types are not identical, they are statistically equivalent. We next give examples that illustrate various properties of quantum Markov chains. We conclude by showing that our formalism generalizes the usual framework for quantum random walks.
Balancing Dynamic Strength of Spur Gears Operated at Extended Center Distance
NASA Technical Reports Server (NTRS)
Lin, Hsiang Hsi; Liou, Chuen-Huei; Oswald, Fred B.; Townsend, Dennis P.
1996-01-01
This paper presents an analytical study on using hob offset to balance the dynamic tooth strength of spur gears operated at a center distance greater than the standard value. This study is an extension of a static study by Mabie and others. The study was limited to the offset values that assure the pinion and gear teeth will neither be undercut nor become pointed. The analysis presented in this paper was performed using DANST-PC, a new version of the NASA gear dynamics code. The operating speed of the transmission influences the amount of hob offset required to equalize the dynamic stresses in the pinion and gear. The optimum hob offset for the pinion was found to vary within a small range as the speed changes. The optimum value is generally greater than the optimum value found by static procedures. For gears that must operate over a wide range of speeds, an average offset value may be used.
Dynamics of subway networks based on vehicles operation timetable
NASA Astrophysics Data System (ADS)
Xiao, Xue-mei; Jia, Li-min; Wang, Yan-hui
2017-05-01
In this paper, a subway network is represented as a dynamic, directed and weighted graph, in which vertices represent subway stations and weights of edges represent the number of vehicles passing through the edges by considering vehicles operation timetable. Meanwhile the definitions of static and dynamic metrics which can represent vertices' and edges' local and global attributes are proposed. Based on the model and metrics, standard deviation is further introduced to study the dynamic properties (heterogeneity and vulnerability) of subway networks. Through a detailed analysis of the Beijing subway network, we conclude that with the existing network structure, the heterogeneity and vulnerability of the Beijing subway network varies over time when the vehicle operation timetable is taken into consideration, and the distribution of edge weights affects the performance of the network. In other words, although the vehicles operation timetable is restrained by the physical structure of the network, it determines the performances and properties of the Beijing subway network.
NASA Astrophysics Data System (ADS)
Chiavico, Mattia; Raso, Luciano; Dorchies, David; Malaterre, Pierre-Olivier
2015-04-01
Seine river region is an extremely important logistic and economic junction for France and Europe. The hydraulic protection of most part of the region relies on four controlled reservoirs, managed by EPTB Seine-Grands Lacs. Presently, reservoirs operation is not centrally coordinated, and release rules are based on empirical filling curves. In this study, we analyze how a centralized release policy can face flood and drought risks, optimizing water system efficiency. The optimal and centralized decisional problem is solved by Stochastic Dual Dynamic Programming (SDDP) method, minimizing an operational indicator for each planning objective. SDDP allows us to include into the system: 1) the hydrological discharge, specifically a stochastic semi-distributed auto-regressive model, 2) the hydraulic transfer model, represented by a linear lag and route model, and 3) reservoirs and diversions. The novelty of this study lies on the combination of reservoir and hydraulic models in SDDP for flood and drought protection problems. The study case covers the Seine basin until the confluence with Aube River: this system includes two reservoirs, the city of Troyes, and the Nuclear power plant of Nogent-Sur-Seine. The conflict between the interests of flood protection, drought protection, water use and ecology leads to analyze the environmental system in a Multi-Objective perspective.
Xiao, Yan; Schenkel, Stephen; Faraj, Samer; Mackenzie, Colin F; Moss, Jacqueline
2007-10-01
Highly reliable, efficient collaborative work relies on excellent communication. We seek to understand how a traditional whiteboard is used as a versatile information artifact to support communication in rapid-paced, highly dynamic collaborative work. The similar communicative demands of the trauma operating suite and an emergency department (ED) make the findings applicable to both settings. We took photographs and observed staff's interaction with a whiteboard in a 6-bed surgical suite dedicated to trauma service. We analyzed the integral role of artifacts in cognitive activities as when workers configure and manage visual spaces to simplify their cognitive tasks. We further identified characteristics of the whiteboard as a communicative information artifact in supporting coordination in fast-paced environments. We identified 8 ways in which the whiteboard was used by physicians, nurses, and with other personnel to support collaborative work: task management, team attention management, task status tracking, task articulation, resource planning and tracking, synchronous and asynchronous communication, multidisciplinary problem solving and negotiation, and socialization and team building. The whiteboard was highly communicative because of its location and installation method, high interactivity and usability, high expressiveness, and ability to visualize transition points to support work handoffs. Traditional information artifacts such as whiteboards play significant roles in supporting collaborative work. How these artifacts are used provides insights into complicated information needs of teamwork in highly dynamic, high-risk settings such as an ED.
Dynamic and Personalized Risk Forecast in Step-Down Units. Implications for Monitoring Paradigms.
Chen, Lujie; Ogundele, Olufunmilayo; Clermont, Gilles; Hravnak, Marilyn; Pinsky, Michael R; Dubrawski, Artur W
2017-03-01
Cardiorespiratory insufficiency (CRI) is a term applied to the manifestations of loss of normal cardiorespiratory reserve and portends a bad outcome. CRI occurs commonly in hospitalized patients, but its risk escalation patterns are unexplored. To describe the dynamic and personal character of CRI risk evolution observed through continuous vital sign monitoring of individual step-down unit patients. Using a machine learning model, we estimated risk trends for CRI (defined as exceedance of vital sign stability thresholds) for each of 1,971 admissions (1,880 unique patients) to a 24-bed adult surgical trauma step-down unit at an urban teaching hospital in Pittsburgh, Pennsylvania using continuously recorded vital signs from standard bedside monitors. We compared and contrasted risk trends during initial 4-hour periods after step-down unit admission, and again during the 4 hours immediately before the CRI event, between cases (ever had a CRI) and control subjects (never had a CRI). We further explored heterogeneity of risk escalation patterns during the 4 hours before CRI among cases, comparing personalized to nonpersonalized risk. Estimated risk was significantly higher for cases (918) than control subjects (1,053; P ≤ 0.001) during the initial 4-hour stable periods. Among cases, the aggregated nonpersonalized risk trend increased 2 hours before the CRI, whereas the personalized risk trend became significantly different from control subjects 90 minutes ahead. We further discovered several unique phenotypes of risk escalation patterns among cases for nonpersonalized (14.6% persistently high risk, 18.6% early onset, 66.8% late onset) and personalized risk (7.7% persistently high risk, 8.9% early onset, 83.4% late onset). Insights from this proof-of-concept analysis may guide design of dynamic and personalized monitoring systems that predict CRI, taking into account the triage and real-time monitoring utility of vital signs. These monitoring systems may prove useful in the dynamic allocation of technological and clinical personnel resources in acute care hospitals.
Dynamical Localization for Unitary Anderson Models
NASA Astrophysics Data System (ADS)
Hamza, Eman; Joye, Alain; Stolz, Günter
2009-11-01
This paper establishes dynamical localization properties of certain families of unitary random operators on the d-dimensional lattice in various regimes. These operators are generalizations of one-dimensional physical models of quantum transport and draw their name from the analogy with the discrete Anderson model of solid state physics. They consist in a product of a deterministic unitary operator and a random unitary operator. The deterministic operator has a band structure, is absolutely continuous and plays the role of the discrete Laplacian. The random operator is diagonal with elements given by i.i.d. random phases distributed according to some absolutely continuous measure and plays the role of the random potential. In dimension one, these operators belong to the family of CMV-matrices in the theory of orthogonal polynomials on the unit circle. We implement the method of Aizenman-Molchanov to prove exponential decay of the fractional moments of the Green function for the unitary Anderson model in the following three regimes: In any dimension, throughout the spectrum at large disorder and near the band edges at arbitrary disorder and, in dimension one, throughout the spectrum at arbitrary disorder. We also prove that exponential decay of fractional moments of the Green function implies dynamical localization, which in turn implies spectral localization. These results complete the analogy with the self-adjoint case where dynamical localization is known to be true in the same three regimes.
Raju, Leo; Milton, R S; Mahadevan, Senthilkumaran
The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations.
Raju, Leo; Milton, R. S.; Mahadevan, Senthilkumaran
2016-01-01
The objective of this paper is implementation of multiagent system (MAS) for the advanced distributed energy management and demand side management of a solar microgrid. Initially, Java agent development environment (JADE) frame work is used to implement MAS based dynamic energy management of solar microgrid. Due to unstable nature of MATLAB, when dealing with multithreading environment, MAS operating in JADE is linked with the MATLAB using a middle ware called Multiagent Control Using Simulink with Jade Extension (MACSimJX). MACSimJX allows the solar microgrid components designed with MATLAB to be controlled by the corresponding agents of MAS. The microgrid environment variables are captured through sensors and given to agents through MATLAB/Simulink and after the agent operations in JADE, the results are given to the actuators through MATLAB for the implementation of dynamic operation in solar microgrid. MAS operating in JADE maximizes operational efficiency of solar microgrid by decentralized approach and increase in runtime efficiency due to JADE. Autonomous demand side management is implemented for optimizing the power exchange between main grid and microgrid with intermittent nature of solar power, randomness of load, and variation of noncritical load and grid price. These dynamics are considered for every time step and complex environment simulation is designed to emulate the distributed microgrid operations and evaluate the impact of agent operations. PMID:27127802
Code of Federal Regulations, 2014 CFR
2014-01-01
... internal risk rating and segmentation system; risk parameter quantification system; data management and... advanced IRB systems, operational risk management processes, operational risk data and assessment systems... generated on an arm's-length basis between the seller and the obligor (intercompany accounts receivable and...
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2018-07-01
Traction or braking operations are usually applied to trains or locomotives for acceleration, speed adjustment, and stopping. During these operations, gear transmission equipment plays a very significant role in the delivery of traction or electrical braking power. Failures of the gear transmissions are likely to cause power loses and even threaten the operation safety of the train. Its dynamic performance is closely related to the normal operation and service safety of the entire train, especially under some emergency braking conditions. In this paper, a locomotive-track coupled vertical-longitudinal dynamics model is employed with considering the dynamic action from the gear transmissions. This dynamics model enables the detailed analysis and more practical simulation on the characteristics of power transmission path, namely motor-gear transmission-wheelset-longitudinal motion of locomotive, especially for traction or braking conditions. Multi-excitation sources, such as time-varying mesh stiffness and nonlinear wheel-rail contact excitations, are considered in this study. This dynamics model is then validated by comparing the simulated results with the experimental test results under braking conditions. The calculated results indicate that involvement of gear transmission could reveal the load reduction of the wheelset due to transmitted forces. Vibrations of the wheelset and the motor are dominated by variation of the gear dynamic mesh forces in the low speed range and by rail geometric irregularity in the higher speed range. Rail vertical geometric irregularity could also cause wheelset longitudinal vibrations, and do modulations to the gear dynamic mesh forces. Besides, the hauling weight has little effect on the locomotive vibrations and the dynamic mesh forces of the gear transmissions for both traction and braking conditions under the same running speed.
NASA Astrophysics Data System (ADS)
Delaney, C.; Hartman, R. K.; Mendoza, J.; Evans, K. M.; Evett, S.
2016-12-01
Forecast informed reservoir operations (FIRO) is a methodology that incorporates short to mid-range precipitation or flow forecasts to inform the flood operations of reservoirs. Previous research and modeling for flood control reservoirs has shown that FIRO can reduce flood risk and increase water supply for many reservoirs. The risk-based method of FIRO presents a unique approach that incorporates flow forecasts made by NOAA's California-Nevada River Forecast Center (CNRFC) to model and assess risk of meeting or exceeding identified management targets or thresholds. Forecasted risk is evaluated against set risk tolerances to set reservoir flood releases. A water management model was developed for Lake Mendocino, a 116,500 acre-foot reservoir located near Ukiah, California. Lake Mendocino is a dual use reservoir, which is owned and operated for flood control by the United State Army Corps of Engineers and is operated by the Sonoma County Water Agency for water supply. Due to recent changes in the operations of an upstream hydroelectric facility, this reservoir has been plagued with water supply reliability issues since 2007. FIRO is applied to Lake Mendocino by simulating daily hydrologic conditions from 1985 to 2010 in the Upper Russian River from Lake Mendocino to the City of Healdsburg approximately 50 miles downstream. The risk-based method is simulated using a 15-day, 61 member streamflow hindcast by the CNRFC. Model simulation results of risk-based flood operations demonstrate a 23% increase in average end of water year (September 30) storage levels over current operations. Model results show no increase in occurrence of flood damages for points downstream of Lake Mendocino. This investigation demonstrates that FIRO may be a viable flood control operations approach for Lake Mendocino and warrants further investigation through additional modeling and analysis.
Risk Management as Strategic Change in National Homeland Security Policy
2007-09-01
HSI is operated under contract by Analytic Services Inc., with oversight from DHS Science and Technology (S& T ). 94 Threat and risk analysis are...Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget...risk management to the nation’s critical infrastructure owners and operators . This paper explores the challenges involved in implementing the risk
Space of states in operator BFV-formalism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batalin, I.A.; Tyutin, I.V.
1993-05-15
The dynamically adequate Fock realization of the extended space of asymptotic states is given within the framework of the operator BFV-formalism and of the Dirac quantization scheme as well. Physical subspace is picked out and established to be naturally isomorphic to the Dirac space of states. The formal mechanism (unitary [var epsilon]-limit), by means of which the operator BFV-dynamics reduces to the Dirac one, is studied. 10 refs.
Dynamic Sampling of Trace Contaminants During the Mission Operations Test of the Deep Space Habitat
NASA Technical Reports Server (NTRS)
Monje, Oscar; Valling, Simo; Cornish, Jim
2013-01-01
The atmospheric composition inside spacecraft during long duration space missions is dynamic due to changes in the living and working environment of crew members, crew metabolism and payload operations. A portable FTIR gas analyzer was used to monitor the atmospheric composition within the Deep Space Habitat (DSH) during the Mission Operations Test (MOT) conducted at the Johnson Space Center (JSC). The FTIR monitored up to 20 gases in near- real time. The procedures developed for operating the FTIR were successful and data was collected with the FTIR at 5 minute intervals. Not all the 20 gases sampled were detected in all the modules and it was possible to measure dynamic changes in trace contaminant concentrations that were related to crew activities involving exercise and meal preparation.
42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 3 2013-10-01 2013-10-01 false Fiscally sound operation and assumption of... Organizations: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation...
42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 3 2012-10-01 2012-10-01 false Fiscally sound operation and assumption of... Organizations: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation...
42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 3 2014-10-01 2014-10-01 false Fiscally sound operation and assumption of... Organizations: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation...
Political Dynamics Affected by Turncoats
NASA Astrophysics Data System (ADS)
Di Salvo, Rosa; Gorgone, Matteo; Oliveri, Francesco
2017-11-01
An operatorial theoretical model based on raising and lowering fermionic operators for the description of the dynamics of a political system consisting of macro-groups affected by turncoat-like behaviors is presented. The analysis of the party system dynamics is carried on by combining the action of a suitable quadratic Hamiltonian operator with specific rules (depending on the variations of the mean values of the observables) able to adjust periodically the conservative model to the political environment.
Kettelhut, Valeriya V; Vanschooneveld, Trevor C; McClay, James C; Mercer, David F; Fruhling, Ann; Meza, Jane L
2017-03-01
Decisions on antibiotic-resistant infection (ARI) prevention in dynamic health care settings should be agile and target the right process at the right time. Health information technologies can aid the recognition of high-risk situations for ARI transmission and timely facilitate operators' situational awareness (SA) in various military and civilian health care locations or transport platforms. High SA is one of the significant predictors of better performance. The objective of this study was to evaluate the impact of the developed health information visualization (VIZ) on the users' SA regarding situations when risks of ARI transmission and exposure are high. The enrolled 19 subjects assessed the proposed VIZ artifacts representing 1 scenario, compared the VIZ effectiveness against the currently employed local methods, and reported their SA (perception and comprehension) with the use of a pre- and post-self-rating questionnaire. The results showed that the VIZ significantly increased SA in the study subjects and revealed the importance of communicating the risk of exposure to ARIs. The VIZ enabled the participants to quickly acknowledge the high-risk individuals (super-spreaders), locations (hot spots), and biosafety (deficient infection prevention). The study concluded that SA-oriented technologies may be promising for promoting better infection prevention practices. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.
Dong, Zachary M; Chidi, Alexis P; Goswami, Julie; Han, Katrina; Simmons, Richard L; Rosengart, Matthew R; Tsung, Allan
2015-01-01
Background Hepatobiliary and pancreatic (HPB) operations have a high incidence of post-operative nosocomial infections. The aim of the present study was to determine whether hospitalization up to 1 year before HPB surgery is associated with an increased risk of post-operative infection, surgical-site infection (SSI) and infection resistant to surgical chemoprophylaxis. Methods A retrospective cohort study of patients undergoing HPB surgeries between January 2008 and June 2013 was conducted. A multivariable logistic regression model was used for controlling for potential confounders to determine the association between pre-operative admission and post-operative infection. Results Of the 1384 patients who met eligibility criteria, 127 (9.18%) experienced a post-operative infection. Pre-operative hospitalization was independently associated with an increased risk of a post-operative infection [adjusted odds ratio (aOR): 1.61, 95% confidence interval [CI]: 1.06–2.46] and SSI (aOR: 1.79, 95% CI: 1.07–2.97). Pre-operative hospitalization was also associated with an increased risk of post-operative infections resistant to standard pre-operative antibiotics (OR: 2.64, 95% CI: 1.06–6.59) and an increased risk of resistant SSIs (OR: 3.99, 95% CI: 1.25–12.73). Discussion Pre-operative hospitalization is associated with an increased incidence of post-operative infections, often with organisms that are resistant to surgical chemoprophylaxis. Patients hospitalized up to 1 year before HPB surgery may benefit from extended spectrum chemoprophylaxis. PMID:26333471
Predicted effect of dynamic load on pitting fatigue life for low-contact-ratio spur gears
NASA Technical Reports Server (NTRS)
Lewicki, David G.
1986-01-01
How dynamic load affects the surface pitting fatigue life of external spur gears was predicted by using the NASA computer program TELSGE. Parametric studies were performed over a range of various gear parameters modeling low-contact-ratio involute spur gears. In general, gear life predictions based on dynamic loads differed significantly from those based on static loads, with the predictions being strongly influenced by the maximum dynamic load during contact. Gear mesh operating speed strongly affected predicted dynamic load and life. Meshes operating at a resonant speed or one-half the resonant speed had significantly shorter lives. Dynamic life factors for gear surface pitting fatigue were developed on the basis of the parametric studies. In general, meshes with higher contact ratios had higher dynamic life factors than meshes with lower contact ratios. A design chart was developed for hand calculations of dynamic life factors.
Orthogonal Operation of Constitutional Dynamic Networks Consisting of DNA-Tweezer Machines.
Yue, Liang; Wang, Shan; Cecconello, Alessandro; Lehn, Jean-Marie; Willner, Itamar
2017-12-26
Overexpression or down-regulation of cellular processes are often controlled by dynamic chemical networks. Bioinspired by nature, we introduce constitutional dynamic networks (CDNs) as systems that emulate the principle of the nature processes. The CDNs comprise dynamically interconvertible equilibrated constituents that respond to external triggers by adapting the composition of the dynamic mixture to the energetic stabilization of the constituents. We introduce a nucleic acid-based CDN that includes four interconvertible and mechanically triggered tweezers, AA', BB', AB' and BA', existing in closed, closed, open, and open configurations, respectively. By subjecting the CDN to auxiliary triggers, the guided stabilization of one of the network constituents dictates the dynamic reconfiguration of the structures of the tweezers constituents. The orthogonal and reversible operations of the CDN DNA tweezers are demonstrated, using T-A·T triplex or K + -stabilized G-quadruplex as structural motifs that control the stabilities of the constituents. The implications of the study rest on the possible applications of input-guided CDN assemblies for sensing, logic gate operations, and programmed activation of molecular machines.
Design and implementation of the flight dynamics system for COMS satellite mission operations
NASA Astrophysics Data System (ADS)
Lee, Byoung-Sun; Hwang, Yoola; Kim, Hae-Yeon; Kim, Jaehoon
2011-04-01
The first Korean multi-mission geostationary Earth orbit satellite, Communications, Ocean, and Meteorological Satellite (COMS) was launched by an Ariane 5 launch vehicle in June 26, 2010. The COMS satellite has three payloads including Ka-band communications, Geostationary Ocean Color Imager, and Meteorological Imager. Although the COMS spacecraft bus is based on the Astrium Eurostar 3000 series, it has only one solar array to the south panel because all of the imaging sensors are located on the north panel. In order to maintain the spacecraft attitude with 5 wheels and 7 thrusters, COMS should perform twice a day wheel off-loading thruster firing operations, which affect on the satellite orbit. COMS flight dynamics system provides the general on-station functions such as orbit determination, orbit prediction, event prediction, station-keeping maneuver planning, station-relocation maneuver planning, and fuel accounting. All orbit related functions in flight dynamics system consider the orbital perturbations due to wheel off-loading operations. There are some specific flight dynamics functions to operate the spacecraft bus such as wheel off-loading management, oscillator updating management, and on-station attitude reacquisition management. In this paper, the design and implementation of the COMS flight dynamics system is presented. An object oriented analysis and design methodology is applied to the flight dynamics system design. Programming language C# within Microsoft .NET framework is used for the implementation of COMS flight dynamics system on Windows based personal computer.
NASA Technical Reports Server (NTRS)
Johnson, Walter W.; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Battiste, Vernol
2012-01-01
In todays terminal operations, controller workload increases and throughput decreases when fixed standard terminal arrival routes (STARs) are impacted by storms. To circumvent this operational constraint, Prete, Krozel, Mitchell, Kim and Zou (2008) proposed to use automation to dynamically adapt arrival and departure routing based on weather predictions. The present study examined this proposal in the context of a NextGen trajectory-based operation concept, focusing on the acceptability and its effect on the controllers ability to manage traffic flows. Six controllers and twelve transport pilots participated in a human-in-the-loop simulation of arrival operations into Louisville International Airport with interval management requirements. Three types of routing structures were used: Static STARs (similar to current routing, which require the trajectories of individual aircraft to be modified to avoid the weather), Dynamic routing (automated adaptive routing around weather), and Dynamic Adjusted routing (automated adaptive routing around weather with aircraft entry time adjusted to account for differences in route length). Spacing Responsibility, whether responsibility for interval management resided with the controllers (as today), or resided with the pilot (who used a flight deck based automated spacing algorithm), was also manipulated. Dynamic routing as a whole was rated superior to static routing, especially by pilots, both in terms of workload reduction and flight path safety. A downside of using dynamic routing was that the paths flown in the dynamic conditions tended to be somewhat longer than the paths flown in the static condition.
Chu, Chi Meng; Thomas, Stuart D M; Ogloff, James R P; Daffern, Michael
2013-04-01
Although violence risk assessment knowledge and practice has advanced over the past few decades, it remains practically difficult to decide which measures clinicians should use to assess and make decisions about the violence potential of individuals on an ongoing basis, particularly in the short to medium term. Within this context, this study sought to compare the predictive accuracy of dynamic risk assessment measures for violence with static risk assessment measures over the short term (up to 1 month) and medium term (up to 6 months) in a forensic psychiatric inpatient setting. Results showed that dynamic measures were generally more accurate than static measures for short- to medium-term predictions of inpatient aggression. These findings highlight the necessity of using risk assessment measures that are sensitive to important clinical risk state variables to improve the short- to medium-term prediction of aggression within the forensic inpatient setting. Such knowledge can assist with the development of more accurate and efficient risk assessment procedures, including the selection of appropriate risk assessment instruments to manage and prevent the violence of offenders with mental illnesses during inpatient treatment.
Using multiple lines of evidence to assess the risk of ecosystem collapse
Regan, Tracey J.; Dinh, Minh Ngoc; Ferrari, Renata; Keith, David A.; Lester, Rebecca; Mouillot, David; Murray, Nicholas J.; Nguyen, Hoang Anh; Nicholson, Emily
2017-01-01
Effective ecosystem risk assessment relies on a conceptual understanding of ecosystem dynamics and the synthesis of multiple lines of evidence. Risk assessment protocols and ecosystem models integrate limited observational data with threat scenarios, making them valuable tools for monitoring ecosystem status and diagnosing key mechanisms of decline to be addressed by management. We applied the IUCN Red List of Ecosystems criteria to quantify the risk of collapse of the Meso-American Reef, a unique ecosystem containing the second longest barrier reef in the world. We collated a wide array of empirical data (field and remotely sensed), and used a stochastic ecosystem model to backcast past ecosystem dynamics, as well as forecast future ecosystem dynamics under 11 scenarios of threat. The ecosystem is at high risk from mass bleaching in the coming decades, with compounding effects of ocean acidification, hurricanes, pollution and fishing. The overall status of the ecosystem is Critically Endangered (plausibly Vulnerable to Critically Endangered), with notable differences among Red List criteria and data types in detecting the most severe symptoms of risk. Our case study provides a template for assessing risks to coral reefs and for further application of ecosystem models in risk assessment. PMID:28931744
Using multiple lines of evidence to assess the risk of ecosystem collapse.
Bland, Lucie M; Regan, Tracey J; Dinh, Minh Ngoc; Ferrari, Renata; Keith, David A; Lester, Rebecca; Mouillot, David; Murray, Nicholas J; Nguyen, Hoang Anh; Nicholson, Emily
2017-09-27
Effective ecosystem risk assessment relies on a conceptual understanding of ecosystem dynamics and the synthesis of multiple lines of evidence. Risk assessment protocols and ecosystem models integrate limited observational data with threat scenarios, making them valuable tools for monitoring ecosystem status and diagnosing key mechanisms of decline to be addressed by management. We applied the IUCN Red List of Ecosystems criteria to quantify the risk of collapse of the Meso-American Reef, a unique ecosystem containing the second longest barrier reef in the world. We collated a wide array of empirical data (field and remotely sensed), and used a stochastic ecosystem model to backcast past ecosystem dynamics, as well as forecast future ecosystem dynamics under 11 scenarios of threat. The ecosystem is at high risk from mass bleaching in the coming decades, with compounding effects of ocean acidification, hurricanes, pollution and fishing. The overall status of the ecosystem is Critically Endangered (plausibly Vulnerable to Critically Endangered), with notable differences among Red List criteria and data types in detecting the most severe symptoms of risk. Our case study provides a template for assessing risks to coral reefs and for further application of ecosystem models in risk assessment. © 2017 The Authors.
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes
NASA Astrophysics Data System (ADS)
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti
2016-08-01
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes.
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu; Dua, Arti
2016-08-28
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kinetics resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.
Emergence of dynamic cooperativity in the stochastic kinetics of fluctuating enzymes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Ashutosh; Chatterjee, Sambarta; Nandi, Mintu
Dynamic co-operativity in monomeric enzymes is characterized in terms of a non-Michaelis-Menten kinetic behaviour. The latter is believed to be associated with mechanisms that include multiple reaction pathways due to enzymatic conformational fluctuations. Recent advances in single-molecule fluorescence spectroscopy have provided new fundamental insights on the possible mechanisms underlying reactions catalyzed by fluctuating enzymes. Here, we present a bottom-up approach to understand enzyme turnover kinetics at physiologically relevant mesoscopic concentrations informed by mechanisms extracted from single-molecule stochastic trajectories. The stochastic approach, presented here, shows the emergence of dynamic co-operativity in terms of a slowing down of the Michaelis-Menten (MM) kineticsmore » resulting in negative co-operativity. For fewer enzymes, dynamic co-operativity emerges due to the combined effects of enzymatic conformational fluctuations and molecular discreteness. The increase in the number of enzymes, however, suppresses the effect of enzymatic conformational fluctuations such that dynamic co-operativity emerges solely due to the discrete changes in the number of reacting species. These results confirm that the turnover kinetics of fluctuating enzyme based on the parallel-pathway MM mechanism switches over to the single-pathway MM mechanism with the increase in the number of enzymes. For large enzyme numbers, convergence to the exact MM equation occurs in the limit of very high substrate concentration as the stochastic kinetics approaches the deterministic behaviour.« less
NASA Astrophysics Data System (ADS)
Izvekov, Sergei
2017-03-01
We consider the generalized Langevin equations of motion describing exactly the particle-based coarse-grained dynamics in the classical microscopic ensemble that were derived recently within the Mori-Zwanzig formalism based on new projection operators [S. Izvekov, J. Chem. Phys. 138(13), 134106 (2013)]. The fundamental difference between the new family of projection operators and the standard Zwanzig projection operator used in the past to derive the coarse-grained equations of motion is that the new operators average out the explicit irrelevant trajectories leading to the possibility of solving the projected dynamics exactly. We clarify the definition of the projection operators and revisit the formalism to compute the projected dynamics exactly for the microscopic system in equilibrium. The resulting expression for the projected force is in the form of a "generalized additive fluctuating force" describing the departure of the generalized microscopic force associated with the coarse-grained coordinate from its projection. Starting with this key expression, we formulate a new exact formula for the memory function in terms of microscopic and coarse-grained conservative forces. We conclude by studying two independent limiting cases of practical importance: the Markov limit (vanishing correlations of projected force) and the limit of weak dependence of the memory function on the particle momenta. We present computationally affordable expressions which can be efficiently evaluated from standard molecular dynamics simulations.
45 CFR 153.630 - Data validation requirements when HHS operates risk adjustment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 45 Public Welfare 1 2013-10-01 2013-10-01 false Data validation requirements when HHS operates... Program § 153.630 Data validation requirements when HHS operates risk adjustment. (a) General requirement... performed on its risk adjustment data as described in this section. (b) Initial validation audit. (1) An...
45 CFR 153.630 - Data validation requirements when HHS operates risk adjustment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 45 Public Welfare 1 2014-10-01 2014-10-01 false Data validation requirements when HHS operates... Program § 153.630 Data validation requirements when HHS operates risk adjustment. (a) General requirement... performed on its risk adjustment data as described in this section. (b) Initial validation audit. (1) An...
[Cardiovascular assessment and management before non-cardiac surgery].
Schwarz, Stefanie; Bernheim, Alain M
2015-05-06
The preoperative cardiovascular risk management accounts for patient-related risk factors, the circumstances leading to the surgical procedure, and the risk of the operation. While urgent operations should not be delayed for cardiac testing, an elective surgical intervention should be postponed in unstable cardiac conditions. In stable cardiac situations, prophylactic coronary interventions to reduce the risk of perioperative complications are rarely indicated. Therefore, in most cases, the planned operation can be performed without previous cardiac stress testing or coronary angiography. Preoperative imaging stress testing is recommended for patients with poor functional capacities that are at high cardiovascular risk prior to a high-risk operation. According to the literature, preoperative prophylactic administration of betablockers and aspirin is controversial. Preoperative discontinuation of dual anti-platelet therapy within six months following drug-eluting stent implantation is not recommended.
Nakano, Yaemi
2008-08-01
The primary risk management, on the side of a nurse, in the operating room includes prevention of misidentificatin of both the patient and the site of operation. Leaving of a foreign body in the patient, falling of the patient from the operating table, incidence of deep venous thrombosis and mismatch of blood transfusion should also be prevented with utmost care. The long operating time in cardiovascular surgery and the lateral position of the patient on the operating table in chest or esophageal surgery require additional risk management. Risks of pressure sore as well as nervous injury can be prevented by fixing the patient securely with soft pads to maintain comfortable posture. Above all, careful watching of the patient's condition is most important.
NASA Astrophysics Data System (ADS)
Liu, P.
2013-12-01
Quantitative analysis of the risk for reservoir real-time operation is a hard task owing to the difficulty of accurate description of inflow uncertainties. The ensemble-based hydrologic forecasts directly depict the inflows not only the marginal distributions but also their persistence via scenarios. This motivates us to analyze the reservoir real-time operating risk with ensemble-based hydrologic forecasts as inputs. A method is developed by using the forecast horizon point to divide the future time into two stages, the forecast lead-time and the unpredicted time. The risk within the forecast lead-time is computed based on counting the failure number of forecast scenarios, and the risk in the unpredicted time is estimated using reservoir routing with the design floods and the reservoir water levels of forecast horizon point. As a result, a two-stage risk analysis method is set up to quantify the entire flood risks by defining the ratio of the number of scenarios that excessive the critical value to the total number of scenarios. The China's Three Gorges Reservoir (TGR) is selected as a case study, where the parameter and precipitation uncertainties are implemented to produce ensemble-based hydrologic forecasts. The Bayesian inference, Markov Chain Monte Carlo, is used to account for the parameter uncertainty. Two reservoir operation schemes, the real operated and scenario optimization, are evaluated for the flood risks and hydropower profits analysis. With the 2010 flood, it is found that the improvement of the hydrologic forecast accuracy is unnecessary to decrease the reservoir real-time operation risk, and most risks are from the forecast lead-time. It is therefore valuable to decrease the avarice of ensemble-based hydrologic forecasts with less bias for a reservoir operational purpose.
Layers of protection analysis in the framework of possibility theory.
Ouazraoui, N; Nait-Said, R; Bourareche, M; Sellami, I
2013-11-15
An important issue faced by risk analysts is how to deal with uncertainties associated with accident scenarios. In industry, one often uses single values derived from historical data or literature to estimate events probability or their frequency. However, both dynamic environments of systems and the need to consider rare component failures may make unrealistic this kind of data. In this paper, uncertainty encountered in Layers Of Protection Analysis (LOPA) is considered in the framework of possibility theory. Data provided by reliability databases and/or experts judgments are represented by fuzzy quantities (possibilities). The fuzzy outcome frequency is calculated by extended multiplication using α-cuts method. The fuzzy outcome is compared to a scenario risk tolerance criteria and the required reduction is obtained by resolving a possibilistic decision-making problem under necessity constraint. In order to validate the proposed model, a case study concerning the protection layers of an operational heater is carried out. Copyright © 2013 Elsevier B.V. All rights reserved.
Schwarzkopf, Ran; Laster, Scott K; Cross, Michael B; Lenz, Nathaniel M
2016-04-01
Proper ligament tension in flexion with posterior cruciate retaining (CR) total knee arthroplasty (TKA) has long been associated with clinical success. The purpose of this study was to determine the effect of varying levels of posterior cruciate ligament (PCL) release on the tibiofemoral kinematics and PCL strain. A computational analysis was performed and varying levels of PCL release were simulated. Tibiofemoral kinematics was evaluated. The maximum PCL strain was determined for each bundle to evaluate the risk of rupture based on the failure strain. The femoral AP position shifted anteriorly as the PCL stiffness was reduced. PCL strain in both bundles increased as stiffness was reduced. The model predicts that the AL bundle should not rupture for a 75% release. Risk of PM bundle rupture is greater than AL bundle. Our findings suggest that a partial PCL release impacts tibiofemoral kinematics and ligament tension and strain. The relationship is dynamic and care should be taken when seeking optimal balance intra-operatively.
The role of warning behaviors in threat assessment: an exploration and suggested typology.
Reid Meloy, J; Hoffmann, Jens; Guldimann, Angela; James, David
2012-01-01
The concept of warning behaviors offers an additional perspective in threat assessment. Warning behaviors are acts which constitute evidence of increasing or accelerating risk. They are acute, dynamic, and particularly toxic changes in patterns of behavior which may aid in structuring a professional's judgment that an individual of concern now poses a threat - whether the actual target has been identified or not. They require an operational response. A typology of eight warning behaviors for assessing the threat of intended violence is proposed: pathway, fixation, identification, novel aggression, energy burst, leakage, directly communicated threat, and last resort warning behaviors. Previous research on risk factors associated with such warning behaviors is reviewed, and examples of each warning behavior from various intended violence cases are presented, including public figure assassination, adolescent and adult mass murder, corporate celebrity stalking, and both domestic and foreign acts of terrorism. Practical applications and future research into warning behaviors are suggested. Copyright © 2011 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Hou, Jingming; Yuan, Ye; Wang, Peitao; Ren, Zhiyuan; Li, Xiaojuan
2017-03-01
Major tsunami disasters often cause great damage in the first few hours following an earthquake. The possible severity of such events requires preparations to prevent tsunami disasters or mitigate them. This paper is an attempt to develop a decision support system for rapid tsunami evacuation for local decision makers. Based on the numerical results database of tsunami disasters, this system can quickly obtain the tsunami inundation and travel time. Because numerical models are calculated in advance, this system can reduce decision-making time. Population distribution, as a vulnerability factor, was analyzed to identify areas of high risk for tsunami disasters. Combined with spatial data, this system can comprehensively analyze the dynamic and static evacuation process and identify problems that negatively impact evacuation, thus supporting the decision-making for tsunami evacuation in high-risk areas. When an earthquake and tsunami occur, this system can rapidly obtain the tsunami inundation and travel time and provide information to assist with tsunami evacuation operations.
Unique Offerings of the ISS as an Earth Observing Platform
NASA Technical Reports Server (NTRS)
Cooley, Victor M.
2013-01-01
The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.
Aortic root dynamism, geometry, and function after the remodeling operation: Clinical relevance.
Yacoub, Magdi H; Aguib, Heba; Gamrah, Mazen Abou; Shehata, Nairouz; Nagy, Mohamed; Donia, Mohamed; Aguib, Yasmine; Saad, Hesham; Romeih, Soha; Torii, Ryo; Afifi, Ahmed; Lee, Su-Lin
2018-04-13
Valve-conserving operations for aneurysms of the ascending aorta and root offer many advantages, and their use is steadily increasing. Optimizing the results of these operations depends on providing the best conditions for normal function and durability of the new root. Multimodality imaging including 2-dimensional echocardiography, multislice computed tomography, and cardiovascular magnetic resonance combined with image processing and computational fluid dynamics were used to define geometry, dynamism and aortic root function, before and after the remodeling operation. This was compared with 4 age-matched controls. The size and shape of the ascending aorta, aortic root, and its component parts showed considerable changes postoperatively, with preservation of dynamism. The postoperative size of the aortic annulus was reduced without the use of external bands or foreign material. Importantly, the elliptical shape of the annulus was maintained and changed during the cardiac cycle (Δ ellipticity index was 15% and 28% in patients 1 and 2, respectively). The "cyclic" area of the annulus changed in size (Δarea: 11.3% in patient 1 and 13.1% in patient 2). Functional analysis showed preserved reservoir function of the aortic root, and computational fluid dynamics demonstrated normalized pattern of flow in the ascending aorta, sinuses of Valsalva, and distal aorta. The remodeling operation results in near-normal geometry of the aortic root while maintaining dynamism of the aortic root and its components. This could have very important functional implications; the influence of these effects on both early- and long-term outcomes needs to be studied further. Copyright © 2018 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.
Spectral simplicity of apparent complexity. I. The nondiagonalizable metadynamics of prediction
NASA Astrophysics Data System (ADS)
Riechers, Paul M.; Crutchfield, James P.
2018-03-01
Virtually all questions that one can ask about the behavioral and structural complexity of a stochastic process reduce to a linear algebraic framing of a time evolution governed by an appropriate hidden-Markov process generator. Each type of question—correlation, predictability, predictive cost, observer synchronization, and the like—induces a distinct generator class. Answers are then functions of the class-appropriate transition dynamic. Unfortunately, these dynamics are generically nonnormal, nondiagonalizable, singular, and so on. Tractably analyzing these dynamics relies on adapting the recently introduced meromorphic functional calculus, which specifies the spectral decomposition of functions of nondiagonalizable linear operators, even when the function poles and zeros coincide with the operator's spectrum. Along the way, we establish special properties of the spectral projection operators that demonstrate how they capture the organization of subprocesses within a complex system. Circumventing the spurious infinities of alternative calculi, this leads in the sequel, Part II [P. M. Riechers and J. P. Crutchfield, Chaos 28, 033116 (2018)], to the first closed-form expressions for complexity measures, couched either in terms of the Drazin inverse (negative-one power of a singular operator) or the eigenvalues and projection operators of the appropriate transition dynamic.
Dynamic loading and stress life analysis of permanent space station modules
NASA Astrophysics Data System (ADS)
Anisimov, A. V.; Krokhin, I. A.; Likhoded, A. I.; Malinin, A. A.; Panichkin, N. G.; Sidorov, V. V.; Titov, V. A.
2016-11-01
Some methodological approaches to solving several key problems of dynamic loading and structural strength analysis of Permanent Space Station (PSS)modules developed on the basis of the working experience of Soviet and Russian PSS and the International Space station (ISS) are presented. The solutions of the direct and semi-inverse problems of PSS structure dynamics are mathematically stated. Special attention is paid to the use of the results of ground structural strength tests of space station modules and the data on the actual flight actions on the station and its dynamic responses in the orbital operation regime. The procedure of determining the dynamics and operation life parameters of elements of the PSS modules is described.
Commanders’ Perception of Risk: Enabling Boldness
2008-04-01
regulations and thorough risk management . 15 In a counter-insurgency it is often unclear who needs to be killed, and emphasis from higher levels of...their men will be forced to operate around the clock in prescribed levels of heavy body armor. Operational Risk Management is conducted for nearly any...incorporate Operational Risk Management (ORM) and/ or go/no go criteria to help communicate a similar point, but these tools do not answer this question
A spatial operator algebra for manipulator modeling and control
NASA Technical Reports Server (NTRS)
Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.
1991-01-01
A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.
Intent inferencing by an intelligent operator's associate - A validation study
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
1988-01-01
In the supervisory control of a complex, dynamic system, one potential form of aiding for the human operator is a computer-based operator's associate. The design philosophy of the operator's associate is that of 'amplifying' rather than automating human skills. In particular, the associate possesses understanding and control properties. Understanding allows it to infer operator intentions and thus form the basis for context-dependent advice and reminders; control properties allow the human operator to dynamically delegate individual tasks or subfunctions to the associate. This paper focuses on the design, implementation, and validation of the intent inferencing function. Two validation studies are described which empirically demonstrate the viability of the proposed approach to intent inferencing.
Dynamic Analysis and Test Results for an STC Stirling Generator
NASA Astrophysics Data System (ADS)
Qiu, Songgang; Peterson, Allen A.
2004-02-01
Long-life, high-efficiency generators based on free-piston Stirling machines are a future energy-conversion solution for both space and commercial applications. To aid in design and system integration efforts, Stirling Technology Company (STC) has developed dynamic simulation models for the internal moving subassemblies and for complete Stirling convertor assemblies. These dynamic models have been validated using test data from operating prototypes. Simplified versions of these models are presented to help explain the operating characteristics of the Stirling convertor. Power spectrum analysis is presented for the test data for casing acceleration, piston motion, displacer motion, and controller current/voltage during full power operation. The harmonics of a Stirling convertor and its moving components are identified for the STC zener-diode control scheme. The dynamic behavior of each moving component and its contribution to the system dynamics and resultant vibration forces are discussed. Additionally, the effects of a passive balancer and external suspension are predicted by another simplified system model.
Development of Improved Caprock Integrity and Risk Assessment Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, Michael
GeoMechanics Technologies has completed a geomechanical caprock integrity analysis and risk assessment study funded through the US Department of Energy. The project included: a detailed review of historical caprock integrity problems experienced in the natural gas storage industry; a theoretical description and documentation of caprock integrity issues; advanced coupled transport flow modelling and geomechanical simulation of three large-scale potential geologic sequestration sites to estimate geomechanical effects from CO₂ injection; development of a quantitative risk and decision analysis tool to assess caprock integrity risks; and, ultimately the development of recommendations and guidelines for caprock characterization and CO₂ injection operating practices. Historicalmore » data from gas storage operations and CO₂ sequestration projects suggest that leakage and containment incident risks are on the order of 10-1 to 10-2, which is higher risk than some previous studies have suggested for CO₂. Geomechanical analysis, as described herein, can be applied to quantify risks and to provide operating guidelines to reduce risks. The risk assessment tool developed for this project has been applied to five areas: The Wilmington Graben offshore Southern California, Kevin Dome in Montana, the Louden Field in Illinois, the Sleipner CO₂ sequestration operation in the North Sea, and the In Salah CO₂ sequestration operation in North Africa. Of these five, the Wilmington Graben area represents the highest relative risk while the Kevin Dome area represents the lowest relative risk.« less
42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 3 2010-10-01 2010-10-01 false Fiscally sound operation and assumption of...: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation, as demonstrated...
42 CFR 417.120 - Fiscally sound operation and assumption of financial risk.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 3 2011-10-01 2011-10-01 false Fiscally sound operation and assumption of...: Organization and Operation § 417.120 Fiscally sound operation and assumption of financial risk. (a) Fiscally sound operation—(1) General requirements. Each HMO must have a fiscally sound operation, as demonstrated...
Conceptualizing a Dynamic Fall Risk Model Including Intrinsic Risks and Exposures.
Klenk, Jochen; Becker, Clemens; Palumbo, Pierpaolo; Schwickert, Lars; Rapp, Kilan; Helbostad, Jorunn L; Todd, Chris; Lord, Stephen R; Kerse, Ngaire
2017-11-01
Falls are a major cause of injury and disability in older people, leading to serious health and social consequences including fractures, poor quality of life, loss of independence, and institutionalization. To design and provide adequate prevention measures, accurate understanding and identification of person's individual fall risk is important. However, to date, the performance of fall risk models is weak compared with models estimating, for example, cardiovascular risk. This deficiency may result from 2 factors. First, current models consider risk factors to be stable for each person and not change over time, an assumption that does not reflect real-life experience. Second, current models do not consider the interplay of individual exposure including type of activity (eg, walking, undertaking transfers) and environmental risks (eg, lighting, floor conditions) in which activity is performed. Therefore, we posit a dynamic fall risk model consisting of intrinsic risk factors that vary over time and exposure (activity in context). eHealth sensor technology (eg, smartphones) begins to enable the continuous measurement of both the above factors. We illustrate our model with examples of real-world falls from the FARSEEING database. This dynamic framework for fall risk adds important aspects that may improve understanding of fall mechanisms, fall risk models, and the development of fall prevention interventions. Copyright © 2017 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.
Business resilience: Reframing healthcare risk management.
Simeone, Cynthia L
2015-09-01
The responsibility of risk management in healthcare is fractured, with multiple stakeholders. Most hospitals and healthcare systems do not have a fully integrated risk management system that spans the entire organizational and operational structure for the delivery of key services. This article provides insight toward utilizing a comprehensive Business Resilience program and associated methodology to understand and manage organizational risk leading to organizational effectiveness and operational efficiencies, with the fringe benefit of realizing sustainable operational capability during adverse conditions. © 2015 American Society for Healthcare Risk Management of the American Hospital Association.
Acute peri-operative beta blockade in intermediate-risk patients.
Biccard, B M; Sear, J W; Foëx, P
2006-10-01
Peri-operative beta-blockade has been shown to reduce the incidence of postoperative cardio- vascular complications including cardiac death in high-risk non-cardiac surgical patients. However, the recent analysis by Lindenauer et al. suggests that it is inappropriate to administer beta-blockers blindly to all surgical patients. In an attempt to determine the appropriateness of peri-operative beta-blocker administration across patients with a spectrum of cardiovascular risks, we have examined studies of intermediate-risk patient groups (that is those undergoing intermediate risk surgery or those with a Lee Revised Cardiac Risk Score of < or =2). We analysed data from randomised prospective studies of the effects of acute peri-operative beta-blockade on the incidence of peri-operative myocardial ischaemia. By examining the demographics and surgical interventions in these patients, we have compared these studies with other studies of peri-operative silent myocardial ischaemia representing patients of similar risk. We thus estimated the expected long-term postoperative cardiovascular complication rate associated with myocardial ischaemia in these patients in terms of number needed to treat for ischaemia prevention and for prevention of major cardiovascular complications. Prevention of peri-operative myocardial ischaemia with acute beta-blockade in non-cardiac surgical patients with 1-2 RCRI clinical risk factors can be achieved with a number needed to treat of 10. It is not associated with a significant increase in drug associated side-effects. However, acute beta-blockade shows no real benefit in the prevention of major cardiovascular complications in intermediate risk non-vascular surgical patients with a number-needed-to-treat of 833. Vascular surgical patients undergoing intermediate-risk surgery may benefit from the protective effects of acute peri-operative beta-blockade, however, with a number-needed-to-treat of 68 it would require a randomised clinical trial of over 24,000 patients to prove their efficacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevallier, J.; Turner, L.
This article describes the design and operation of Trident IX a successfully applied jack up system. A summary of Trident IX's two years of operation in the Arabian Gulf and offshore West Africa is presented. The system is compared to conventional jacking systems in terms of design, operation, costs and safety. Dynamic forces at 400 ft. water depths are summarized, and design of the legs to withstand these dynamic forces and accomodate the new system are explained. Features are listed.
Dynamics and control of detumbling a disabled spacecraft during rescue operations
NASA Technical Reports Server (NTRS)
Kaplan, M. H.
1973-01-01
Results of a two-year research effort on dynamics and control of detumbling a disabled spacecraft during rescue operations are summarized. Answers to several basic questions about associated techniques and hardware requirements were obtained. Specifically, efforts have included development of operational procedures, conceptual design of remotely controlled modules, feasibility of internal moving mass for stabilization, and optimal techniques for minimum-time detumbling. Results have been documented in several reports and publications.
NASA Astrophysics Data System (ADS)
Liao, Hengpei; Zheng, Jun; Jin, Liwei; Huang, Huan; Deng, Zigang; Shi, Yunhua; Zhou, Difan; Cardwell, David A.
2018-07-01
We report that the dynamic levitation force of bulk high temperature superconductors (HTS) in motion attenuates when exposed to an inhomogeneous magnetic field. This phenomenon has significant potential implications for the long-term stability and running performance of HTS in maglev applications. In order to suppress the attenuation of the levitation force associated with fluctuations in magnetic field, we compare the dynamic levitation performance of single grain Y-Ba-Cu-O (YBCO) and Gd-Ba-Cu-O (GdBCO) bulk superconductors with relatively high critical current densities. A bespoke HTS maglev dynamic measurement system (SCML-03) incorporating a rotating circular permanent magnet guideway was employed to simulate the movement of HTS in a varying magnetic field at different frequencies (i.e. speed of rotation). The attenuation of the levitation force during dynamic operation, which is key parameter for effective maglev operation, has been evaluated experimentally. It is found that GdBCO bulk superconductors that exhibit superior levitation force properties are more able to resist the attenuation of levitation force compared with YBCO bulk materials under the same operating conditions. This investigation indicates clearly that GdBCO bulk superconductors can play an important role in suppressing attenuation of the levitation force, therefore improving the long-term levitation performance under dynamic operating conditions. This result is potentially significant in the design and application of HTS in maglev systems.
NASA Technical Reports Server (NTRS)
Frigm, Ryan C.; Hejduk, Matthew D.; Johnson, Lauren C.; Plakalovic, Dragan
2015-01-01
On-orbit collision risk is becoming an increasing mission risk to all operational satellites in Earth orbit. Managing this risk can be disruptive to mission and operations, present challenges for decision-makers, and is time-consuming for all parties involved. With the planned capability improvements to detecting and tracking smaller orbital debris and capacity improvements to routinely predict on-orbit conjunctions, this mission risk will continue to grow in terms of likelihood and effort. It is very real possibility that the future space environment will not allow collision risk management and mission operations to be conducted in the same manner as it is today. This paper presents the concept of a finite conjunction assessment-one where each discrete conjunction is not treated separately but, rather, as a continuous event that must be managed concurrently. The paper also introduces the Total Probability of Collision as an analogous metric for finite conjunction assessment operations and provides several options for its usage in a Concept of Operations.
Supporting virtual enterprise design by a web-based information model
NASA Astrophysics Data System (ADS)
Li, Dong; Barn, Balbir; McKay, Alison; de Pennington, Alan
2001-10-01
Development of IT and its applications have led to significant changes in business processes. To pursue agility, flexibility and best service to customers, enterprises focus on their core competence and dynamically build relationships with partners to form virtual enterprises as customer driven temporary demand chains/networks. Building the networked enterprise needs responsively interactive decisions instead of a single-direction partner selection process. Benefits and risks in the combination should be systematically analysed, and aggregated information about value-adding abilities and risks of networks needs to be derived from interactions of all partners. In this research, a hierarchical information model to assess partnerships for designing virtual enterprises was developed. Internet technique has been applied to the evaluation process so that interactive decisions can be visualised and made responsively during the design process. The assessment is based on the process which allows each partner responds to requirements of the virtual enterprise by planning its operational process as a bidder. The assessment is then produced by making an aggregated value to represent prospect of the combination of partners given current bidding. Final design is a combination of partners with the greatest total value-adding capability and lowest risk.
Operational fitness of box truss antennas in response to dynamic slewing
NASA Technical Reports Server (NTRS)
Bachtell, E. E.; Bettadapur, S. S.; Schartel, W. A.; Karanian, L. A.
1985-01-01
A parametric study was performed to define slewing capability of large satellites along with associated system changes or subsystem weight and complexity impacts. The satellite configuration and structural arrangement from the Earth Observation Spacecraft (EOS) study was used as the baseline spacecraft. Varying slew rates, settling times, damping, maneuver frequencies, and attitude hold times provided the data required to establish applicability to a wide range of potential missions. The key elements of the study are: (1) determine the dynamic transient response of the antenna system; (2) calculate the system errors produced by the dynamic response; (3) determine if the antenna has exceeded operational requirements at completion of the slew, and if so; (4) determine when the antenna has settled to the operational requirements. The slew event is not considered complete until the antenna is within operational limits.
Crack Monitoring of Operational Wind Turbine Foundations
McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim
2017-01-01
The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μm. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations. PMID:28825687
Hubble Servicing Challenges Drive Innovation of Shuttle Rendezvous Techniques
NASA Technical Reports Server (NTRS)
Goodman, John L.; Walker, Stephen R.
2009-01-01
Hubble Space Telescope (HST) servicing, performed by Space Shuttle crews, has contributed to what is arguably one of the most successful astronomy missions ever flown. Both nominal and contingency proximity operations techniques were developed to enable successful servicing, while lowering the risk of damage to HST systems, and improve crew safety. Influencing the development of these techniques were the challenges presented by plume impingement and HST performance anomalies. The design of both the HST and the Space Shuttle was completed before the potential of HST contamination and structural damage by shuttle RCS jet plume impingement was fully understood. Relative navigation during proximity operations has been challenging, as HST was not equipped with relative navigation aids. Since HST reached orbit in 1990, proximity operations design for servicing missions has evolved as insight into plume contamination and dynamic pressure has improved and new relative navigation tools have become available. Servicing missions have provided NASA with opportunities to gain insight into servicing mission design and development of nominal and contingency procedures. The HST servicing experiences and lessons learned are applicable to other programs that perform on-orbit servicing and rendezvous, both human and robotic.
Simulating the Composite Propellant Manufacturing Process
NASA Technical Reports Server (NTRS)
Williamson, Suzanne; Love, Gregory
2000-01-01
There is a strategic interest in understanding how the propellant manufacturing process contributes to military capabilities outside the United States. The paper will discuss how system dynamics (SD) has been applied to rapidly assess the capabilities and vulnerabilities of a specific composite propellant production complex. These facilities produce a commonly used solid propellant with military applications. The authors will explain how an SD model can be configured to match a specific production facility followed by a series of scenarios designed to analyze operational vulnerabilities. By using the simulation model to rapidly analyze operational risks, the analyst gains a better understanding of production complexities. There are several benefits of developing SD models to simulate chemical production. SD is an effective tool for characterizing complex problems, especially the production process where the cascading effect of outages quickly taxes common understanding. By programming expert knowledge into an SD application, these tools are transformed into a knowledge management resource that facilitates rapid learning without requiring years of experience in production operations. It also permits the analyst to rapidly respond to crisis situations and other time-sensitive missions. Most importantly, the quantitative understanding gained from applying the SD model lends itself to strategic analysis and planning.
Crack Monitoring of Operational Wind Turbine Foundations.
Perry, Marcus; McAlorum, Jack; Fusiek, Grzegorz; Niewczas, Pawel; McKeeman, Iain; Rubert, Tim
2017-08-21
The degradation of onshore, reinforced-concrete wind turbine foundations is usually assessed via above-ground inspections, or through lengthy excavation campaigns that suspend wind power generation. Foundation cracks can and do occur below ground level, and while sustained measurements of crack behaviour could be used to quantify the risk of water ingress and reinforcement corrosion, these cracks have not yet been monitored during turbine operation. Here, we outline the design, fabrication and field installation of subterranean fibre-optic sensors for monitoring the opening and lateral displacements of foundation cracks during wind turbine operation. We detail methods for in situ sensor characterisation, verify sensor responses against theoretical tower strains derived from wind speed data, and then show that measured crack displacements correlate with monitored tower strains. Our results show that foundation crack opening displacements respond linearly to tower strain and do not change by more than ±5 μ m. Lateral crack displacements were found to be negligible. We anticipate that the work outlined here will provide a starting point for real-time, long-term and dynamic analyses of crack displacements in future. Our findings could furthermore inform the development of cost-effective monitoring systems for ageing wind turbine foundations.
TARDEC's Intelligent Ground Systems overview
NASA Astrophysics Data System (ADS)
Jaster, Jeffrey F.
2009-05-01
The mission of the Intelligent Ground Systems (IGS) Area at the Tank Automotive Research, Development and Engineering Center (TARDEC) is to conduct technology maturation and integration to increase Soldier robot control/interface intuitiveness and robotic ground system robustness, functionality and overall system effectiveness for the Future Combat System Brigade Combat Team, Robotics Systems Joint Project Office and game changing capabilities to be fielded beyond the current force. This is accomplished through technology component development focused on increasing unmanned ground vehicle autonomy, optimizing crew interfaces and mission planners that capture commanders' intent, integrating payloads that provide 360 degree local situational awareness and expanding current UGV tactical behavior, learning and adaptation capabilities. The integration of these technology components into ground vehicle demonstrators permits engineering evaluation, User assessment and performance characterization in increasingly complex, dynamic and relevant environments to include high speed on road or cross country operations, all weather/visibility conditions and military operations in urban terrain (MOUT). Focused testing and experimentation is directed at reducing PM risk areas (safe operations, autonomous maneuver, manned-unmanned collaboration) and transitioning technology in the form of hardware, software algorithms, test and performance data, as well as User feedback and lessons learned.
Risk mitigation strategies for operations and maintenance activities.
DOT National Transportation Integrated Search
2012-04-01
The objective of this research was to investigate the application of integrated risk modeling to operations and maintenance activities, specifically moving operations, such as pavement testing, pavement marking, painting, snow removal, shoulder work,...
NASA Astrophysics Data System (ADS)
Guler Yigitoglu, Askin
In the context of long operation of nuclear power plants (NPPs) (i.e., 60-80 years, and beyond), investigation of the aging of passive systems, structures and components (SSCs) is important to assess safety margins and to decide on reactor life extension as indicated within the U.S. Department of Energy (DOE) Light Water Reactor Sustainability (LWRS) Program. In the traditional probabilistic risk assessment (PRA) methodology, evaluating the potential significance of aging of passive SSCs on plant risk is challenging. Although passive SSC failure rates can be added as initiating event frequencies or basic event failure rates in the traditional event-tree/fault-tree methodology, these failure rates are generally based on generic plant failure data which means that the true state of a specific plant is not reflected in a realistic manner on aging effects. Dynamic PRA methodologies have gained attention recently due to their capability to account for the plant state and thus address the difficulties in the traditional PRA modeling of aging effects of passive components using physics-based models (and also in the modeling of digital instrumentation and control systems). Physics-based models can capture the impact of complex aging processes (e.g., fatigue, stress corrosion cracking, flow-accelerated corrosion, etc.) on SSCs and can be utilized to estimate passive SSC failure rates using realistic NPP data from reactor simulation, as well as considering effects of surveillance and maintenance activities. The objectives of this dissertation are twofold: The development of a methodology for the incorporation of aging modeling of passive SSC into a reactor simulation environment to provide a framework for evaluation of their risk contribution in both the dynamic and traditional PRA; and the demonstration of the methodology through its application to pressurizer surge line pipe weld and steam generator tubes in commercial nuclear power plants. In the proposed methodology, a multi-state physics based model is selected to represent the aging process. The model is modified via sojourn time approach to reflect the operational and maintenance history dependence of the transition rates. Thermal-hydraulic parameters of the model are calculated via the reactor simulation environment and uncertainties associated with both parameters and the models are assessed via a two-loop Monte Carlo approach (Latin hypercube sampling) to propagate input probability distributions through the physical model. The effort documented in this thesis towards this overall objective consists of : i) defining a process for selecting critical passive components and related aging mechanisms, ii) aging model selection, iii) calculating the probability that aging would cause the component to fail, iv) uncertainty/sensitivity analyses, v) procedure development for modifying an existing PRA to accommodate consideration of passive component failures, and, vi) including the calculated failure probability in the modified PRA. The proposed methodology is applied to pressurizer surge line pipe weld aging and steam generator tube degradation in pressurized water reactors.
NASA Astrophysics Data System (ADS)
Sandri, Laura; Selva, Jacopo; Costa, Antonio; Macedonio, Giovanni; Marzocchi, Warner
2014-05-01
Probabilistic Volcanic Hazard Assessment (PVHA) represents the most complete scientific contribution for planning rational strategies aimed at mitigating the risk posed by volcanic activity at different time scales. The definition of the space-time window for PVHA is related to the kind of risk mitigation actions that are under consideration. Short intervals (days to weeks) are important for short-term risk mitigation actions like the evacuation of a volcanic area. During volcanic unrest episodes or eruptions, it is of primary importance to produce short-term tephra fallout forecast, and frequently update it to account for the rapidly evolving situation. This information is obviously crucial for crisis management, since tephra may heavily affect building stability, public health, transportations and evacuation routes (airports, trains, road traffic) and lifelines (electric power supply). In this study, we propose a methodology for the short-term PVHA and its operational implementation, based on the model BET_EF, in which measures from the monitoring system are used to routinely update the forecast of some parameters related to the eruption dynamics, that is, the probabilities of eruption, of every possible vent position and every possible eruption size. Then, considering all possible vent positions and eruptive sizes, tephra dispersal models are coupled with frequently updated meteorological forecasts. Finally, these results are merged through a Bayesian procedure, accounting for epistemic uncertainties at all the considered steps. As case study we retrospectively study some stages of the volcanic unrest that took place in Campi Flegrei (CF) in 1982-1984. In particular, we aim at presenting a practical example of possible operational tephra fall PVHA on a daily basis, in the surroundings of CF at different stages of the 1982-84 unrest. Tephra dispersal is simulated using the analytical HAZMAP code. We consider three possible eruptive sizes (a low, a medium and a high eruption "scenario" respectively) and 700 possible vent positions within the CF Neapolitan Yellow Tuff caldera. The probabilities related to eruption dynamics, and estimated by BET_EF, are based on the set up of the code obtained specifically for CF during a 6-years long elicitation project, and on the actual monitoring parameters measured during the unrest and published in the literature. We take advantage here of two novel improvements: (i) a time function to describe how the probability of eruption evolves within the time window defined for the forecast, and (ii) the production of hazard curves and their confidence levels, a tool that allows a complete description of PVHA and its uncertainties. The general goal of this study is to show what, and how, pieces of scientific knowledge can be operationally transferred to decision makers, and specifically how this could have been translated in practice during the 1982-84 Campi Flegrei crisis, if scientists knew what we know today about this volcano.
NASA Technical Reports Server (NTRS)
Daniledes, J.; Koch, J. R.
1980-01-01
The risk associated with the accidental release of carbon/graphite fibers (CF) from fires on commercial transport aircraft incorporating composite materials was assessed. Data are developed to evaluate the potential for CF damage to electrical and electronic equipment, assess the cost risk, and evaluate the hazard to continued operation. The subjects covered include identification of susceptible equipments, determination of infiltration transfer functions, analysis of airport operations, calculation of probabilities of equipment failures, assessment of the cost risk, and evaluation of the hazard to continued operation. The results show the risks associated with CF contamination are negligible through 1993.
Reliability and Validity of Observational Risk Screening in Evaluating Dynamic Knee Valgus
Ekegren, Christina L.; Miller, William C.; Celebrini, Richard G.; Eng, Janice J.; MacIntyre, Donna L.
2012-01-01
Study Design Nonexperimental methodological study. Objectives To determine the interrater and intrarater reliability and validity of using observational risk screening guidelines to evaluate dynamic knee valgus. Background A deficiency in the neuromuscular control of the hip has been identified as a key risk factor for non-contact anterior cruciate ligament (ACL) injury in post pubescent females. This deficiency can manifest itself as a valgus knee alignment during tasks involving hip and knee flexion. There are currently no scientifically tested methods to screen for dynamic knee valgus in the clinic or on the field. Methods Three physiotherapists used observational risk screening guidelines to rate 40 adolescent female soccer players according to their risk of ACL injury. The rating was based on the amount of dynamic knee valgus observed on a drop jump landing. Ratings were evaluated for intrarater and interrater agreement using kappa coefficients. Sensitivity and specificity of ratings were evaluated by comparing observational ratings with measurements obtained using 3-dimensional (3D) motion analysis. Results Kappa coefficients for intrarater and interrater agreement ranged from 0.75 to 0.85, indicating that ratings were reasonably consistent over time and between physiotherapists. Sensitivity values were inadequate, ranging from 67–87%. This indicated that raters failed to detect up to a third of “truly high risk” individuals. Specificity values ranged from 60–72% which was considered adequate for the purposes of the screen. Conclusion Observational risk screening is a practical and cost-effective method of screening for ACL injury risk. Rater agreement and specificity were acceptable for this method but sensitivity was not. To detect a greater proportion of individuals at risk of ACL injury, coaches and clinicians should ensure that they include additional tests for other high risk characteristics in their screening protocols. PMID:19721212
NASA Technical Reports Server (NTRS)
Pavlock, Kate M.
2011-01-01
The National Aeronautics and Space Administration's Dryden Flight Research Center completed flight testing of adaptive controls research on the Full-Scale Advance Systems Testbed (FAST) in January of 2011. The research addressed technical challenges involved with reducing risk in an increasingly complex and dynamic national airspace. Specific challenges lie with the development of validated, multidisciplinary, integrated aircraft control design tools and techniques to enable safe flight in the presence of adverse conditions such as structural damage, control surface failures, or aerodynamic upsets. The testbed is an F-18 aircraft serving as a full-scale vehicle to test and validate adaptive flight control research and lends a significant confidence to the development, maturation, and acceptance process of incorporating adaptive control laws into follow-on research and the operational environment. The experimental systems integrated into FAST were designed to allow for flexible yet safe flight test evaluation and validation of modern adaptive control technologies and revolve around two major hardware upgrades: the modification of Production Support Flight Control Computers (PSFCC) and integration of two, fourth-generation Airborne Research Test Systems (ARTS). Post-hardware integration verification and validation provided the foundation for safe flight test of Nonlinear Dynamic Inversion and Model Reference Aircraft Control adaptive control law experiments. To ensure success of flight in terms of cost, schedule, and test results, emphasis on risk management was incorporated into early stages of design and flight test planning and continued through the execution of each flight test mission. Specific consideration was made to incorporate safety features within the hardware and software to alleviate user demands as well as into test processes and training to reduce human factor impacts to safe and successful flight test. This paper describes the research configuration, experiment functionality, overall risk mitigation, flight test approach and results, and lessons learned of adaptive controls research of the Full-Scale Advanced Systems Testbed.
Computer Based Procedures for Field Workers - FY16 Research Activities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna; Bly, Aaron
The Computer-Based Procedure (CBP) research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. One area that could yield tremendous savings in increased efficiency and safety is in improving procedure use. A CBP provides the opportunity to incorporate context-driven jobmore » aids, such as drawings, photos, and just-in-time training. The presentation of information in CBPs can be much more flexible and tailored to the task, actual plant condition, and operation mode. The dynamic presentation of the procedure will guide the user down the path of relevant steps, thus minimizing time spent by the field worker to evaluate plant conditions and decisions related to the applicability of each step. This dynamic presentation of the procedure also minimizes the risk of conducting steps out of order and/or incorrectly assessed applicability of steps. This report provides a summary of the main research activities conducted in the Computer-Based Procedures for Field Workers effort since 2012. The main focus of the report is on the research activities conducted in fiscal year 2016. The activities discussed are the Nuclear Electronic Work Packages – Enterprise Requirements initiative, the development of a design guidance for CBPs (which compiles all insights gained through the years of CBP research), the facilitation of vendor studies at the Idaho National Laboratory (INL) Advanced Test Reactor (ATR), a pilot study for how to enhance the plant design modification work process, the collection of feedback from a field evaluation study at Plant Vogtle, and path forward to commercialize INL’s CBP system.« less