Sample records for dynamic panel model

  1. A curved piezo-structure model: implications on active structural acoustic control.

    PubMed

    Henry, J K; Clark, R L

    1999-09-01

    Current research in Active Structural Acoustic Control (ASAC) relies heavily upon accurately capturing the application physics associated with the structure being controlled. The application of ASAC to aircraft interior noise requires a greater understanding of the dynamics of the curved panels which compose the skin of an aircraft fuselage. This paper presents a model of a simply supported curved panel with attached piezoelectric transducers. The model is validated by comparison to previous work. Further, experimental results for a simply supported curved panel test structure are presented in support of the model. The curvature is shown to affect substantially the dynamics of the panel, the integration of transducers, and the bandwidth required for structural acoustic control.

  2. Does grassroots democracy reduce income inequality in China?*

    PubMed Central

    Shen, Yan; Yao, Yang

    2014-01-01

    Using village and household survey data collected from 48 villages of eight Chinese provinces for the period 1986–2002, this paper studies how the introduction of village elections affects income distribution at the village level. We estimate both a static fixed-effect panel model and a dynamic panel model for the within-village Gini coefficient and take care of the endogeneity of the introduction of elections. The dynamic panel model shows that having elections reduces the Gini coefficient by 0.04, or 14.3% of the sample average. We also find that elections tend to increase the income shares of poorer portions of the population. Further econometric analysis based on dynamic panel models shows that elections increase per-capita public expenditures by 271 Yuan, but do not increase the level or progressiveness of net or total income transfer in a village. Therefore, elections’ positive role in reducing income inequality is not played through more income redistribution, but through more pro-poor public investment. PMID:26052164

  3. Does grassroots democracy reduce income inequality in China?

    PubMed

    Shen, Yan; Yao, Yang

    2008-10-01

    Using village and household survey data collected from 48 villages of eight Chinese provinces for the period 1986-2002, this paper studies how the introduction of village elections affects income distribution at the village level. We estimate both a static fixed-effect panel model and a dynamic panel model for the within-village Gini coefficient and take care of the endogeneity of the introduction of elections. The dynamic panel model shows that having elections reduces the Gini coefficient by 0.04, or 14.3% of the sample average. We also find that elections tend to increase the income shares of poorer portions of the population. Further econometric analysis based on dynamic panel models shows that elections increase per-capita public expenditures by 271 Yuan, but do not increase the level or progressiveness of net or total income transfer in a village. Therefore, elections' positive role in reducing income inequality is not played through more income redistribution, but through more pro-poor public investment.

  4. Experimental and Theoretical Analysis of Sound Absorption Properties of Finely Perforated Wooden Panels.

    PubMed

    Song, Boqi; Peng, Limin; Fu, Feng; Liu, Meihong; Zhang, Houjiang

    2016-11-22

    Perforated wooden panels are typically utilized as a resonant sound absorbing material in indoor noise control. In this paper, the absorption properties of wooden panels perforated with tiny holes of 1-3 mm diameter were studied both experimentally and theoretically. The Maa-MPP (micro perforated panels) model and the Maa-Flex model were applied to predict the absorption regularities of finely perforated wooden panels. A relative impedance comparison and full-factorial experiments were carried out to verify the feasibility of the theoretical models. The results showed that the Maa-Flex model obtained good agreement with measured results. Control experiments and measurements of dynamic mechanical properties were carried out to investigate the influence of the wood characteristics. In this study, absorption properties were enhanced by sound-induced vibration. The relationship between the dynamic mechanical properties and the panel mass-spring vibration absorption was revealed. While the absorption effects of wood porous structure were not found, they were demonstrated theoretically by using acoustic wave propagation in a simplified circular pipe with a suddenly changed cross-section model. This work provides experimental and theoretical guidance for perforation parameter design.

  5. [A model for shared decision-making with frail older patients: consensus reached using Delphi technique].

    PubMed

    van de Pol, M H J; Fluit, C R M G; Lagro, J; Lagro-Janssen, A L M; Olde Rikkert, M G M

    2017-01-01

    To develop a model for shared decision-making with frail older patients. Online Delphi forum. We used a three-round Delphi technique to reach consensus on the structure of a model for shared decision-making with older patients. The expert panel consisted of 16 patients (round 1), and 59 professionals (rounds 1-3). In round 1, the panel of experts was asked about important steps in the process of shared decision-making and the draft model was introduced. Rounds 2 and 3 were used to adapt the model and test it for 'importance' and 'feasibility'. Consensus for the dynamic shared decision-making model as a whole was achieved for both importance (91% panel agreement) and feasibility (76% panel agreement). Shared decision-making with older patients is a dynamic process. It requires a continuous supportive dialogue between health care professional and patient.

  6. Tether Dynamics Simulation

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The proceedings of the conference are presented. The objective was to provide a forum for the discussion of the structure and status of existing computer programs which are used to simulate the dynamics of a variety of tether applications in space. A major topic was different simulation models and the process of validating them. Guidance on future work in these areas was obtained from a panel discussion; the panel was composed of resource and technical managers and dynamic analysts in the tether field. The conclusions of this panel are also presented.

  7. Experimental and Theoretical Analysis of Sound Absorption Properties of Finely Perforated Wooden Panels

    PubMed Central

    Song, Boqi; Peng, Limin; Fu, Feng; Liu, Meihong; Zhang, Houjiang

    2016-01-01

    Perforated wooden panels are typically utilized as a resonant sound absorbing material in indoor noise control. In this paper, the absorption properties of wooden panels perforated with tiny holes of 1–3 mm diameter were studied both experimentally and theoretically. The Maa-MPP (micro perforated panels) model and the Maa-Flex model were applied to predict the absorption regularities of finely perforated wooden panels. A relative impedance comparison and full-factorial experiments were carried out to verify the feasibility of the theoretical models. The results showed that the Maa-Flex model obtained good agreement with measured results. Control experiments and measurements of dynamic mechanical properties were carried out to investigate the influence of the wood characteristics. In this study, absorption properties were enhanced by sound-induced vibration. The relationship between the dynamic mechanical properties and the panel mass-spring vibration absorption was revealed. While the absorption effects of wood porous structure were not found, they were demonstrated theoretically by using acoustic wave propagation in a simplified circular pipe with a suddenly changed cross-section model. This work provides experimental and theoretical guidance for perforation parameter design. PMID:28774063

  8. Structural health monitoring based on sensitivity vector fields and attractor morphing.

    PubMed

    Yin, Shih-Hsun; Epureanu, Bogdan I

    2006-09-15

    The dynamic responses of a thermo-shielding panel forced by unsteady aerodynamic loads and a classical Duffing oscillator are investigated to detect structural damage. A nonlinear aeroelastic model is obtained for the panel by using third-order piston theory to model the unsteady supersonic flow, which interacts with the panel. To identify damage, we analyse the morphology (deformation and movement) of the attractor of the dynamics of the aeroelastic system and the Duffing oscillator. Damages of various locations, extents and levels are shown to be revealed by the attractor-based analysis. For the panel, the type of damage considered is a local reduction in the bending stiffness. For the Duffing oscillator, variations in the linear and nonlinear stiffnesses and damping are considered as damage. Present studies of such problems are based on linear theories. In contrast, the presented approach using nonlinear dynamics has the potential of enhancing accuracy and sensitivity of detection.

  9. Dynamics-based damage inspection of an aircraft wing panel

    NASA Astrophysics Data System (ADS)

    Pai, P. F.; Kim, Byeong-Seok; Chung, Jaycee H.

    2003-08-01

    This paper presents the dynamic characteristics and damage detection of an aircraft wing panel using a scanning laser vibrometer. The panel has an irregular shape with side lengths 16.44" x 14.82" x 11.10" x 5.38" x 14.22", different values of thickness (0.059" to 0.110"), and seven ribs on its backside. An in-house finite element code GESA is used to model the panel using 528 DKT plate elements and to obtain mode shapes and natural frequencies, and Operational Deflection Shapes (ODS) are measured using a scanning laser vibrometer. Results show that numerical dynamic characteristics agree well with the experimental ones. Six defects are created in the panel, including four small nuts glued on the backside and two small slots cut by electron discharge machining. Detection of the six defects is performed using the distributions of RMS velocities under high-frequency broadband periodic chirp excitations provided by a PZT patch and damage locating curves obtained by processing experimental ODSs using a newly developed BOudnary Effect Evaluation (BEE) method. The BEE method is non-destructive and model-independent; it processes experimental ODSs to reveal local boundary effects caused by defects. Experimental results show that the six small defects in the panel can be pinpointed using the approach.

  10. Final Report for Dynamic Models for Causal Analysis of Panel Data. Methodological Overview. Part II, Chapter 1.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This technical document, part of a series of chapters described in SO 011 759, describes a basic model of panel analysis used in a study of the causes of institutional and structural change in nations. Panel analysis is defined as a record of state occupancy of a sample of units at two or more points in time; for example, voters disclose voting…

  11. Estimation of Spatial Dynamic Nonparametric Durbin Models with Fixed Effects

    ERIC Educational Resources Information Center

    Qian, Minghui; Hu, Ridong; Chen, Jianwei

    2016-01-01

    Spatial panel data models have been widely studied and applied in both scientific and social science disciplines, especially in the analysis of spatial influence. In this paper, we consider the spatial dynamic nonparametric Durbin model (SDNDM) with fixed effects, which takes the nonlinear factors into account base on the spatial dynamic panel…

  12. Predicting the vibroacoustic response of satellite equipment panels.

    PubMed

    Conlon, S C; Hambric, S A

    2003-03-01

    Modern satellites are constructed of large, lightweight equipment panels that are strongly excited by acoustic pressures during launch. During design, performing vibroacoustic analyses to evaluate and ensure the integrity of the complex electronics mounted on the panels is critical. In this study the attached equipment is explicitly addressed and how its properties affect the panel responses is characterized. FEA and BEA methods are used to derive realistic parameters to input to a SEA hybrid model of a panel with multiple attachments. Specifically, conductance/modal density and radiation efficiency for nonhomogeneous panel structures with and without mass loading are computed. The validity of using the spatially averaged conductance of panels with irregular features for deriving the structure modal density is demonstrated. Maidanik's proposed method of modifying the traditional SEA input power is implemented, illustrating the importance of accounting for system internal couplings when calculating the external input power. The predictions using the SEA hybrid model agree with the measured data trends, and are found to be most sensitive to the assumed dynamic mass ratio (attachments/structure) and the attachment internal loss factor. Additional experimental and analytical investigations are recommended to better characterize dynamic masses, modal densities and loss factors.

  13. Dynamic Data Driven Methods for Self-aware Aerospace Vehicles

    DTIC Science & Technology

    2015-04-08

    structural response model that incorporates multiple degradation or failure modes including damaged panel strength (BVID, thru- hole ), damaged panel...stiffness (BVID, thru- hole ), loose fastener, fretted fastener hole , and disbonded surface. • A new data-driven approach for the online updating of the flight...between the first and second plies. The panels were reinforced around the boarders of the panel with through holes to simulate mounting the wing skins to

  14. The Living Arrangement Dynamics of Sick, Elderly Individuals

    ERIC Educational Resources Information Center

    Dostie, Benoit; Leger, Pierre Thomas

    2005-01-01

    We model the dynamics associated with living-arrangement decisions of sick elderly individuals. Using the Panel Study of Income Dynamics? Parental Health Supplement, we construct the complete living-arrangement histories of elderly individuals in need of care. We use a simultaneous random-effects competing-risks model to analyze the impact of…

  15. Computational and experimental studies of microvascular void features for passive-adaptation of structural panel dynamic properties

    NASA Astrophysics Data System (ADS)

    Sears, Nicholas C.; Harne, Ryan L.

    2018-01-01

    The performance, integrity, and safety of built-up structural systems are critical to their effective employment in diverse engineering applications. In conflict with these goals, harmonic or random excitations of structural panels may promote large amplitude oscillations that are particularly harmful when excitation energies are concentrated around natural frequencies. This contributes to fatigue concerns, performance degradation, and failure. While studies have considered active or passive damping treatments that adapt material characteristics and configurations for structural control, it remains to be understood how vibration properties of structural panels may be tailored via internal material transitions. Motivated to fill this knowledge gap, this research explores an idea of adapting the static and dynamic material distribution of panels through embedded microvascular channels and strategically placed voids that permit the internal movement of fluids within the panels for structural dynamic control. Finite element model and experimental investigations probe how redistributing material in the form of microscale voids influences the global vibration modes and natural frequencies of structural panels. Through parameter studies, the relationships among void shape, number, size, and location are quantified towards their contribution to the changing structural dynamics. For the panel composition and boundary conditions considered in this report, the findings reveal that transferring material between strategically placed voids may result in eigenfrequency changes as great as 10.0, 5.0, and 7.4% for the first, second, and third modes, respectively.

  16. Vibration Response Predictions for Heavy Panel Mounted Components from Panel Acreage Environment Specifications

    NASA Technical Reports Server (NTRS)

    Harrison, Phillip; Frady, Greg; Duvall, Lowery; Fulcher, Clay; LaVerde, Bruce

    2010-01-01

    The development of new launch vehicles in the Aerospace industry often relies on response measurements taken from previously developed vehicles during various stages of liftoff and ascent, and from wind tunnel models. These measurements include sound pressure levels, dynamic pressures in turbulent boundary layers and accelerations. Rigorous statistical scaling methods are applied to the data to derive new environments and estimate the performance of new skin panel structures. Scaling methods have proven to be reliable, particularly for designs similar to the vehicles used as the basis for scaling, and especially in regions of smooth acreage without exterior protuberances or heavy components mounted to the panel. To account for response attenuation of a panel-mounted component due to its apparent mass at higher frequencies, the vibroacoustics engineer often reduces the acreage vibration according to a weight ratio first suggested by Barrett. The accuracy of the reduction is reduced with increased weight of the panel-mounted component, and does not account for low-frequency amplification of the component/panel response as a system. A method is proposed that combines acreage vibration from scaling methods with finite element analysis to account for the frequency-dependent dynamics of heavy panel-mounted components. Since the acreage and mass-loaded skins respond to the same dynamic input pressure, such pressure may be eliminated in favor of a frequency-dependent scaling function applied to the acreage vibration to predict the mass-loaded panel response. The scaling function replaces the Barrett weight ratio, and contains all of the dynamic character of the loaded and unloaded skin panels. The solution simplifies for spatially uncorrelated and fully correlated input pressures. Since the prediction uses finite element models of the loaded and unloaded skins, a rich suite of response data are available to the design engineer, including interface forces, stress and strain, as well as acceleration and displacement. An extension of the method is also developed to incorporate the effect of a local protuberance near a heavy component. Acreage environments from traditional scaling methods with and without protuberance effects serve as the basis for the extension. Authors:

  17. Development of an Aerodynamic Analysis Method and Database for the SLS Service Module Panel Jettison Event Utilizing Inviscid CFD and MATLAB

    NASA Technical Reports Server (NTRS)

    Applebaum, Michael P.; Hall, Leslie, H.; Eppard, William M.; Purinton, David C.; Campbell, John R.; Blevins, John A.

    2015-01-01

    This paper describes the development, testing, and utilization of an aerodynamic force and moment database for the Space Launch System (SLS) Service Module (SM) panel jettison event. The database is a combination of inviscid Computational Fluid Dynamic (CFD) data and MATLAB code written to query the data at input values of vehicle/SM panel parameters and return the aerodynamic force and moment coefficients of the panels as they are jettisoned from the vehicle. The database encompasses over 5000 CFD simulations with the panels either in the initial stages of separation where they are hinged to the vehicle, in close proximity to the vehicle, or far enough from the vehicle that body interference effects are neglected. A series of viscous CFD check cases were performed to assess the accuracy of the Euler solutions for this class of problem and good agreement was obtained. The ultimate goal of the panel jettison database was to create a tool that could be coupled with any 6-Degree-Of-Freedom (DOF) dynamics model to rapidly predict SM panel separation from the SLS vehicle in a quasi-unsteady manner. Results are presented for panel jettison simulations that utilize the database at various SLS flight conditions. These results compare favorably to an approach that directly couples a 6-DOF model with the Cart3D Euler flow solver and obtains solutions for the panels at exact locations. This paper demonstrates a method of using inviscid CFD simulations coupled with a 6-DOF model that provides adequate fidelity to capture the physics of this complex multiple moving-body panel separation event.

  18. The first object oriented monitor for intravenous anesthesia.

    PubMed

    Cantraine, F R; Coussaert, E J

    2000-01-01

    To describe the design and implementation of "INFUSION TOOLBOX," a software tool to control and monitor multiple intravenous drug infusions simultaneously using pharmacokinetic and pharmacodynamic principles. INFUSION TOOLBOX has been designed to present a graphical interface. Object Oriented design was used and the software was implemented using Smalltalk, to run on a PC. Basic tools are available to manage patient, drugs, pumps and reports. These tools are the PatientPanel, the DrugPanel, the PumpPanel and the HistoryPanel. The screen is built dynamically. The panels may be collapsed or closed to avoid a crowded display. We also built control panels such as the Target ControlPanel which calculates the best infusion sequence to bring the drug concentration in the plasma compartment to a preset value. Before drug delivery, the user enters the patient's data, selects a drug, enters its dilution factor and chooses a pharmacokinetic model. The calculated plasma concentration is continually displayed and updated. The anesthetist may ask for the history of the delivery to obtain a graphic report or to add events to the logbook. A panel targeting the effect is used when a pharmacodynamic model is known. Data files for drugs, pumps and surgery are upgradable. By creating a resizeable ControlPanel we enable the anesthetist to display the information he wishes, when he wishes it. The available panels are diverse enough to meet the anesthetist needs; they may be adapted to the drug used, pumps used and surgery. It is the anesthetist who builds dynamically its different control screens. By adopting an evolutionary solution model we have achieved considerable success in building our drug delivery monitor. In addition we have gained valuable insight into the anesthesia information domain that will allow us to further enhance and expand the system.

  19. Integrated Structural/Acoustic Modeling of Heterogeneous Panels

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett, A.; Aboudi, Jacob; Arnold, Steven, M.; Pennline, James, A.

    2012-01-01

    A model for the dynamic response of heterogeneous media is presented. A given medium is discretized into a number of subvolumes, each of which may contain an elastic anisotropic material, void, or fluid, and time-dependent boundary conditions are applied to simulate impact or incident pressure waves. The full time-dependent displacement and stress response throughout the medium is then determined via an explicit solution procedure. The model is applied to simulate the coupled structural/acoustic response of foam core sandwich panels as well as aluminum panels with foam inserts. Emphasis is placed on the acoustic absorption performance of the panels versus weight and the effects of the arrangement of the materials and incident wave frequency.

  20. Joint production and substitution in timber supply: a panel data analysis

    Treesearch

    Torjus F Bolkesjo; Joseph Buongiorno; Birger Solberg

    2010-01-01

    Supply equations for sawlog and pulpwood were developed with a panel of data from 102 Norwegian municipalities, observed from 1980 to 2000. Static and dynamic models were estimated by cross-section, time-series andpanel data methods. A static model estimated by first differencing gavethe best overall results in terms of theoretical expectations, pattern ofresiduals,...

  1. Space station dynamic modeling, disturbance accommodation, and adaptive control

    NASA Technical Reports Server (NTRS)

    Wang, S. J.; Ih, C. H.; Lin, Y. H.; Metter, E.

    1985-01-01

    Dynamic models for two space station configurations were derived. Space shuttle docking disturbances and their effects on the station and solar panels are quantified. It is shown that hard shuttle docking can cause solar panel buckling. Soft docking and berthing can substantially reduce structural loads at the expense of large shuttle and station attitude excursions. It is found predocking shuttle momentum reduction is necessary to achieve safe and routine operations. A direct model reference adaptive control is synthesized and evaluated for the station model parameter errors and plant dynamics truncations. The rigid body and the flexible modes are treated. It is shown that convergence of the adaptive algorithm can be achieved in 100 seconds with reasonable performance even during shuttle hard docking operations in which station mass and inertia are instantaneously changed by more than 100%.

  2. Photoelectric panel with equatorial mounting of drive

    NASA Astrophysics Data System (ADS)

    Kukhta, M. S.; Krauinsh, P. Y.; Krauinsh, D. P.; Sokolov, A. P.; Mainy, S. B.

    2018-03-01

    The relevance of the work is determined by the need to create effective models for sunny energy. The article considers a photoelectric panel equipped with a system for tracking the sun. Efficiency of the system is provided by equatorial mounting, which compensates for the rotation of the Earth by rotating the sunny panel in the plane of the celestial equator. The specificity of climatic and geographical conditions of Tomsk is estimated. The dynamics of power variations of photoelectric panels with equatorial mounting during seasonal fluctuations in Tomsk is calculated. A mobile photovoltaic panel with equatorial mounting of the drive has been developed. The methods of design strategy for placing photovoltaic panels in the architectural environment of the city are presented. Key words: sunny energy, photovoltaics, equatorial mounting, mechatronic model, wave reducer, electric drive.

  3. Report of the panel on earth structure and dynamics, section 6

    NASA Technical Reports Server (NTRS)

    Dziewonski, Adam M.; Mcadoo, David C.; Oconnell, Richard J.; Smylie, Douglas E.; Yoder, Charles F.

    1991-01-01

    The panel identified problems related to the dynamics of the core and mantle that should be addressed by NASA programs. They include investigating the geodynamo based on observations of the Earth's magnetic field, determining the rheology of the mantle from geodetic observations of post-glacial vertical motions and changes in the gravity field, and determining the coupling between plate motions and mantle flow from geodetic observations of plate deformation. Also emphasized is the importance of support for interdisciplinary research to combine various data sets with models which couple rheology, structure and dynamics.

  4. Solar radiation - to - power generation models for one-axis tracking PV system with on-site measurements from Eskisehir, Turkey

    NASA Astrophysics Data System (ADS)

    Filik, Tansu; Başaran Filik, Ümmühan; Nezih Gerek, Ömer

    2017-11-01

    In this study, new analytic models are proposed for mapping on-site global solar radiation values to electrical power output values in solar photovoltaic (PV) panels. The model extraction is achieved by simultaneously recording solar radiation and generated power from fixed and tracking panels, each with capacity of 3 kW, in Eskisehir (Turkey) region. It is shown that the relation between the solar radiation and the corresponding electric power is not only nonlinear, but it also exhibits an interesting time-varying characteristic in the form of a hysteresis function. This observed radiation-to-power relation is, then, analytically modelled with three piece-wise function parts (corresponding to morning, noon and evening times), which is another novel contribution of this work. The model is determined for both fixed panels and panels with a tracking system. Especially the panel system with a dynamic tracker produces a harmonically richer (with higher values in general) characteristic, so higher order polynomial models are necessary for the construction of analytical solar radiation models. The presented models, characteristics of the hysteresis functions, and differences in the fixed versus solar-tracking panels are expected to provide valuable insight for further model based researches.

  5. Attitude dynamics and control of spacecraft with a partially filled liquid tank and flexible panels

    NASA Astrophysics Data System (ADS)

    Liu, Feng; Yue, Baozeng; Zhao, Liangyu

    2018-02-01

    A liquid-filled flexible spacecraft is essentially a time-variant fully-coupled system, whose dynamics characteristics are closely associated with its motion features. This paper focuses on the mathematical modelling and attitude control of the spacecraft coupled with fuel sloshing dynamics and flexible solar panels vibration. The slosh motion is represented by a spherical pendulum, whose motion description method is improved by using split variable operation. Benefiting from this improvement, the nonlinear lateral sloshing and the rotary sloshing as well as the rigid motion of a liquid respect to the spacecraft can be approximately described. The assumed modes discretization method has been adopted to approximate the elastic displacements of the attached panels, and the coupled dynamics is derived by using the Lagrangian formulation. A variable substitution method is proposed to obtain the apparently-uncoupled mathematical model of the rigid-flexible-liquid spacecraft. After linearization, this model can be directly used for designing Lyapunov output-feedback attitude controller (OFAC). With only torque actuators, and attitude and rate sensors installed, this kind of attitude controller, as simulation results show, is capable of not only bringing the spacecraft to the desired orientation, but also suppressing the effect of flex and slosh on the attitude motion of the spacecraft.

  6. Final Report for Dynamic Models for Causal Analysis of Panel Data. Models for Change in Quantitative Variables, Part III: Estimation from Panel Data. Part II, Chapter 5.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This document is part of a series of chapters described in SO 011 759. Addressing the problems of studying change and the change process, the report argues that sociologists should study coupled changes in qualitative and quantitative outcomes (e.g., marital status and earnings). The author presents a model for sociological studies of change in…

  7. Price impact on urban residential water demand: A dynamic panel data approach

    NASA Astrophysics Data System (ADS)

    ArbuéS, Fernando; BarberáN, Ramón; Villanúa, Inmaculada

    2004-11-01

    In this paper, we formulate and estimate a model of residential water demand with the aim of evaluating the potential of pricing policies as a mechanism for managing residential water. The proposed econometric model offers a new perspective on urban water demand analysis by combining microlevel data with a dynamic panel data estimation procedure. The empirical application suggests that residential users are more responsive to a lagged average price specification. Another result of the estimated model is that price is a moderately effective tool in reducing residential water demand within the present range of prices, with the estimated values for income elasticity and "elasticity of consumption with respect to family size" reinforcing this conclusion.

  8. Experimental modal analysis of the fuselage panels of an Aero Commander aircraft

    NASA Technical Reports Server (NTRS)

    Geisler, D.

    1981-01-01

    The reduction of interior noise in light aircraft was investigated with emphasis the thin fuselage sidewall. The approach used is theoretical and involves modeling of the sidewall panels and stiffeners. Experimental data obtained from tests investigating the effects of mass and stiffness treatments to the sidewalls are presented. The dynamic characteristics of treated panels are contrasted with the untreated sidewall panels using experimental modal analysis techniques. The results include the natural frequencies, modal dampling, and mode shapes of selected panels. Frequency response functions, data relating to the global fuselage response, and acoustic response are also presented.

  9. The dynamic and indirect spatial effects of neighborhood conditions on land value, spatial panel dynamic econometrics model

    NASA Astrophysics Data System (ADS)

    Fitriani, Rahma; Sumarminingsih, Eni; Astutik, Suci

    2017-05-01

    Land value is the product of past decision of its use leading to its value, as well as the value of the surrounded land. It is also affected by the local characteristic and the spillover development demand of the previous time period. The effect of each factor on land value will have dynamic and spatial virtues. Thus, a spatial panel dynamic model is used to estimate the particular effects. The model will be useful for predicting the future land value or the effect of implemented policy on land value. The objective of this paper is to derive the dynamic and indirect spatial marginal effects of the land characteristic and the spillover development demand on land value. Each effect is the partial derivative of the expected land value based on the spatial dynamic model with respect to each variable, by considering different time period and different location. The results indicate that the instant change of local or neighborhood characteristics on land value affect the local and the immediate neighborhood land value. However, the longer the change take place, the effect will spread further, not only on the immediate neighborhood.

  10. Dynamic tests of composite panels of an aircraft wing

    NASA Astrophysics Data System (ADS)

    Splichal, Jan; Pistek, Antonin; Hlinka, Jiri

    2015-10-01

    The paper describes the analysis of aerospace composite structures under dynamic loading. Today, it is common to use design procedures based on assumption of static loading only, and dynamic loading is rarely assumed and applied in design and certification of aerospace structures. The paper describes the application of dynamic loading for the design of aircraft structures, and the validation of the procedure on a selected structure. The goal is to verify the possibility of reducing the weight through improved design/modelling processes using dynamic loading instead of static loading. The research activity focuses on the modelling and testing of a composite panel representing a local segment of an aircraft wing section, investigating in particular the buckling behavior under dynamic loading. Finite Elements simulation tools are discussed, as well as the advantages of using a digital optical measurement system for the evaluation of the tests. The comparison of the finite element simulations with the results of the tests is presented.

  11. Dynamics Impact Tolerance of Shuttle RCC Leading Edge Panels Using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2005-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using physics-based codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which is used because of its thermal properties to protect the shuttle during reentry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of foam cylinders impacting 6- in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  12. Dynamic Impact Tolerance of Shuttle RCC Leading Edge Panels using LS-DYNA

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin; Jackson, Karen E.; Lyle, Karen H.; Jones, Lisa E.; Hardy, Robin C.; Spellman, Regina L.; Carney, Kelly S.; Melis, Matthew E.; Stockwell, Alan E.

    2008-01-01

    This paper describes a research program conducted to enable accurate prediction of the impact tolerance of the shuttle Orbiter leading-edge wing panels using 'physics-based- codes such as LS-DYNA, a nonlinear, explicit transient dynamic finite element code. The shuttle leading-edge panels are constructed of Reinforced-Carbon-Carbon (RCC) composite material, which issued because of its thermal properties to protect the shuttle during re-entry into the Earth's atmosphere. Accurate predictions of impact damage from insulating foam and other debris strikes that occur during launch required materials characterization of expected debris, including strain-rate effects. First, analytical models of individual foam and RCC materials were validated. Next, analytical models of individual foam cylinders impacting 6-in. x 6-in. RCC flat plates were developed and validated. LS-DYNA pre-test models of the RCC flat plate specimens established the impact velocity of the test for three damage levels: no-detectable damage, non-destructive evaluation (NDE) detectable damage, or visible damage such as a through crack or hole. Finally, the threshold of impact damage for RCC on representative Orbiter wing panels was predicted for both a small through crack and for NDE-detectable damage.

  13. Correlation Results for a Mass Loaded Vehicle Panel Test Article Finite Element Models and Modal Survey Tests

    NASA Technical Reports Server (NTRS)

    Maasha, Rumaasha; Towner, Robert L.

    2012-01-01

    High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons

  14. Robust analysis of the determinants of healthcare expenditure growth: evidence from panel data for low-, middle- and high-income countries.

    PubMed

    Younsi, Moheddine; Chakroun, Mohamed; Nafla, Amine

    2016-10-01

    This paper examines the determinants of healthcare expenditure for low-, middle- and high-income countries, and it quantifies their influences in order to assess policies for achieving universal health coverage. We elaborate two models, a fixed-effect model and the dynamic panel model, to estimate the factors associated with the total health expenditure growth as well as its major components for 167 countries over the period of 1993-2013. The panel data on total health expenditure per capita and its components were taken from the World Development Indicators. Overall, our results showed that total health expenditure per capita is rising in all countries over time as a result of rising incomes. However, our estimates showed that the income elasticity of health expenditure ranged from 0.75 to 0.96 in the fixed-effect static panel model, while in the dynamic panel model, it was smaller and ranged from 0.16 to 0.47. Our empirical findings indicate that development assistance for health reduced government domestic spending on health but increased total government health spending. Our results also indicate that the trend in health expenditure growth is significantly depending with the country's economic development. In addition, out-of-pocket expenditure is powerfully influenced by a country's capacity to increase general government revenues and social insurance contributions. Knowledge of factors associated to health expenditure might help policy makers to make wise judgments, plan health reforms and allocate resources efficiently. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  15. NASTRAN DMAP Fuzzy Structures Analysis: Summary of Research

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    2001-01-01

    The main proposed tasks of Cooperative Agreement NCC1-382 were: (1) developing MSC/NASTRAN DMAP language scripts to implement the Soize fuzzy structures approach for modeling the dynamics of complex structures; (2) benchmarking the results of the new code to those for a cantilevered beam in the literature; and (3) testing and validating the new code by comparing the fuzzy structures results to NASA Langley experimental and conventional finite element results for two model test structures representative of aircraft fuselage sidewall construction: (A) a small aluminum test panel (SLP, single longeron panel) with a single longitudinal stringer attached with bolts; and (B) a 47 by 72 inch flat aluminum fuselage panel (AFP, aluminum fuselage panel) including six longitudinal stringers and four frame stiffeners attached with rivets.

  16. Estimation of unemployment rates using small area estimation model by combining time series and cross-sectional data

    NASA Astrophysics Data System (ADS)

    Muchlisoh, Siti; Kurnia, Anang; Notodiputro, Khairil Anwar; Mangku, I. Wayan

    2016-02-01

    Labor force surveys conducted over time by the rotating panel design have been carried out in many countries, including Indonesia. Labor force survey in Indonesia is regularly conducted by Statistics Indonesia (Badan Pusat Statistik-BPS) and has been known as the National Labor Force Survey (Sakernas). The main purpose of Sakernas is to obtain information about unemployment rates and its changes over time. Sakernas is a quarterly survey. The quarterly survey is designed only for estimating the parameters at the provincial level. The quarterly unemployment rate published by BPS (official statistics) is calculated based on only cross-sectional methods, despite the fact that the data is collected under rotating panel design. The study purpose to estimate a quarterly unemployment rate at the district level used small area estimation (SAE) model by combining time series and cross-sectional data. The study focused on the application and comparison between the Rao-Yu model and dynamic model in context estimating the unemployment rate based on a rotating panel survey. The goodness of fit of both models was almost similar. Both models produced an almost similar estimation and better than direct estimation, but the dynamic model was more capable than the Rao-Yu model to capture a heterogeneity across area, although it was reduced over time.

  17. Nonlinear Dynamics and Bifurcation Analysis of a Boost Converter for Battery Charging in Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; Giaouris, Damian; Mandal, Kuntal; Banerjee, Soumitro

    Photovoltaic (PV) systems with a battery back-up form an integral part of distributed generation systems and therefore have recently attracted a lot of interest. In this paper, we consider a system of charging a battery from a PV panel through a current mode controlled boost dc-dc converter. We analyze its complete nonlinear/nonsmooth dynamics, using a piecewise model of the converter and realistic nonlinear v-i characteristics of the PV panel. Through this study, it is revealed that system design without taking into account the nonsmooth dynamics of the converter combined with the nonlinear v-i characteristics of the PV panel can lead to unpredictable responses of the overall system with high current ripple and other undesirable phenomena. This analysis can lead to better designed converters that can operate under a wide variation of the solar irradiation and the battery's state of charge. We show that the v-i characteristics of the PV panel combined with the battery's output voltage variation can increase or decrease the converter's robustness, both under peak current mode control and average current mode control. We justify the observation in terms of the change in the discrete-time map caused by the nonlinear v-i characteristics of the PV panel. The theoretical results are validated experimentally.

  18. Final Report for Dynamic Models for Causal Analysis of Panel Data. Preface.

    ERIC Educational Resources Information Center

    Hannan, Michael T.; Tuma, Nancy Brandon

    This document introduces research aimed to explore methods that could be used to make inferences about causual effects of educational change over time when data are from an educational panel. This preface, the first in a series of 14 chapters described in SO 011 760-772, discusses an educational research project designed to examine affects of…

  19. Evaluation of Thermal Protection Tile Transmissibility for Ground Vibration Test

    NASA Technical Reports Server (NTRS)

    Chung, Y. T.; Fowler, Samuel B.; Lo, Wenso; Towner, Robert

    2005-01-01

    Transmissibility analyses and tests were conducted on a composite panel with thermal protection system foams to evaluate the quality of the measured frequency response functions. Both the analysis and the test results indicate that the vehicle dynamic responses are fully transmitted to the accelerometers mounted on the thermal protection system in the normal direction below a certain frequency. In addition, the in-plane motions of the accelerometer mounted on the top surface of the thermal protection system behave more actively than those on the composite panel due to the geometric offset of the accelerometer from the panel in the test set-up. The transmissibility tests and analyses show that the frequency response functions measured from the accelerometers mounted on the TPS will provide accurate vehicle responses below 120 Hz for frequency and mode shape identification. By confirming that accurate dynamic responses below a given frequency can be obtained, this study increases the confidence needed for conducting the modal testing, model correlation, and model updating for a vehicle installed with TPS. '

  20. Nonlinear flutter analysis of composite panels

    NASA Astrophysics Data System (ADS)

    An, Xiaomin; Wang, Yan

    2018-05-01

    Nonlinear panel flutter is an interesting subject of fluid-structure interaction. In this paper, nonlinear flutter characteristics of curved composite panels are studied in very low supersonic flow. The composite panel with geometric nonlinearity is modeled by a nonlinear finite element method; and the responses are computed by the nonlinear Newmark algorithm. An unsteady aerodynamic solver, which contains a flux splitting scheme and dual time marching technology, is employed in calculating the unsteady pressure of the motion of the panel. Based on a half-step staggered coupled solution, the aeroelastic responses of two composite panels with different radius of R = 5 and R = 2.5 are computed and compared with each other at different dynamic pressure for Ma = 1.05. The nonlinear flutter characteristics comprising limited cycle oscillations and chaos are analyzed and discussed.

  1. A Method for Modeling the Intrinsic Dynamics of Intraindividual Variability: Recovering the Parameters of Simulated Oscillators in Multi-Wave Panel Data.

    ERIC Educational Resources Information Center

    Boker, Steven M.; Nesselroade, John R.

    2002-01-01

    Examined two methods for fitting models of intrinsic dynamics to intraindividual variability data by testing these techniques' behavior in equations through simulation studies. Among the main results is the demonstration that a local linear approximation of derivatives can accurately recover the parameters of a simulated linear oscillator, with…

  2. Photogrammetry research for FAST eleven-meter reflector panel surface shape measurement

    NASA Astrophysics Data System (ADS)

    Zhou, Rongwei; Zhu, Lichun; Li, Weimin; Hu, Jingwen; Zhai, Xuebing

    2010-10-01

    In order to design and manufacture the Five-hundred-meter Aperture Spherical Radio Telescope (FAST) active reflector measuring equipment, measurement on each reflector panel surface shape was presented, static measurement of the whole neutral spherical network of nodes was performed, real-time dynamic measurement at the cable network dynamic deformation was undertaken. In the implementation process of the FAST, reflector panel surface shape detection was completed before eleven-meter reflector panel installation. Binocular vision system was constructed based on the method of binocular stereo vision in machine vision, eleven-meter reflector panel surface shape was measured with photogrammetry method. Cameras were calibrated with the feature points. Under the linearity camera model, the lighting spot array was used as calibration standard pattern, and the intrinsic and extrinsic parameters were acquired. The images were collected for digital image processing and analyzing with two cameras, feature points were extracted with the detection algorithm of characteristic points, and those characteristic points were matched based on epipolar constraint method. Three-dimensional reconstruction coordinates of feature points were analyzed and reflective panel surface shape structure was established by curve and surface fitting method. The error of reflector panel surface shape was calculated to realize automatic measurement on reflector panel surface shape. The results show that unit reflector panel surface inspection accuracy was 2.30mm, within the standard deviation error of 5.00mm. Compared with the requirement of reflector panel machining precision, photogrammetry has fine precision and operation feasibility on eleven-meter reflector panel surface shape measurement for FAST.

  3. AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 34th and AIAA/ASME Adaptive Structures Forum, La Jolla, CA, Apr. 19-22, 1993, Technical Papers. Pts. 1-6

    NASA Astrophysics Data System (ADS)

    Topics addressed include the prediction of helicopter component loads using neural networks, spacecraft on-orbit coupled loads analysis, hypersonic flutter of a curved shallow panel with aerodynamic heating, thermal-acoustic fatigue of ceramic matrix composite materials, transition elements based on transfinite interpolation, damage progression in stiffened composite panels, a direct treatment of min-max dynamic response optimization problems, and sources of helicopter rotor hub inplane shears. Also discussed are dynamics of a layered elastic system, confidence bounds on structural reliability, mixed triangular space-time finite elements, advanced transparency development for USAF aircraft, a low-velocity impact on a graphite/PEEK, an automated mode-tracking strategy, transonic flutter suppression by a passive flap, a nonlinear response of composite panels to random excitation, an optimal placement of elastic supports on a simply supported plate, a probabilistic assessment of composite structures, a model for mode I failure of laminated composites, a residual flexibility approach to multibody dynamics,and multilayer piezoelectric actuators.

  4. Controlling flexible structures with second order actuator dynamics

    NASA Technical Reports Server (NTRS)

    Inman, Daniel J.; Umland, Jeffrey W.; Bellos, John

    1989-01-01

    The control of flexible structures for those systems with actuators that are modeled by second order dynamics is examined. Two modeling approaches are investigated. First a stability and performance analysis is performed using a low order finite dimensional model of the structure. Secondly, a continuum model of the flexible structure to be controlled, coupled with lumped parameter second order dynamic models of the actuators performing the control is used. This model is appropriate in the modeling of the control of a flexible panel by proof-mass actuators as well as other beam, plate and shell like structural numbers. The model is verified with experimental measurements.

  5. Modeling Microalgae Productivity in Industrial-Scale Vertical Flat Panel Photobioreactors.

    PubMed

    Endres, Christian H; Roth, Arne; Brück, Thomas B

    2018-05-01

    Potentially achievable biomass yields are a decisive performance indicator for the economic viability of mass cultivation of microalgae. In this study, a computer model has been developed and applied to estimate the productivity of microalgae for large-scale outdoor cultivation in vertical flat panel photobioreactors. Algae growth is determined based on simulations of the reactor temperature and light distribution. Site-specific weather and irradiation data are used for annual yield estimations in six climate zones. Shading and reflections between opposing panels and between panels and the ground are dynamically computed based on the reactor geometry and the position of the sun. The results indicate that thin panels (≤0.05 m) are best suited for the assumed cell density of 2 g L -1 and that reactor panels should face in north-south direction. Panel spacings of 0.4-0.75 m at a panel height of 1 m appear most suitable for commercial applications. Under these preconditions, yields of around 10 kg m -2 a -1 are possible for most locations in the U.S. Only in hot climates significantly lower yields have to be expected, as extreme reactor temperatures limit overall productivity.

  6. Overeducation Dynamics and Personality

    ERIC Educational Resources Information Center

    Blazquez, Maite; Budria, Santiago

    2012-01-01

    In this paper, we use the 2000-2008 waves of the German Socioeconomic Panel to examine overeducation transitions. The results are based on a first-order Markov model that allows us to account for both the initial conditions problem and potential endogeneity in attrition. We found that overeducation dynamics, especially the probability of entering…

  7. Aeroelastic System Development Using Proper Orthogonal Decomposition and Volterra Theory

    NASA Technical Reports Server (NTRS)

    Lucia, David J.; Beran, Philip S.; Silva, Walter A.

    2003-01-01

    This research combines Volterra theory and proper orthogonal decomposition (POD) into a hybrid methodology for reduced-order modeling of aeroelastic systems. The out-come of the method is a set of linear ordinary differential equations (ODEs) describing the modal amplitudes associated with both the structural modes and the POD basis functions for the uid. For this research, the structural modes are sine waves of varying frequency, and the Volterra-POD approach is applied to the fluid dynamics equations. The structural modes are treated as forcing terms which are impulsed as part of the uid model realization. Using this approach, structural and uid operators are coupled into a single aeroelastic operator. This coupling converts a free boundary uid problem into an initial value problem, while preserving the parameter (or parameters) of interest for sensitivity analysis. The approach is applied to an elastic panel in supersonic cross ow. The hybrid Volterra-POD approach provides a low-order uid model in state-space form. The linear uid model is tightly coupled with a nonlinear panel model using an implicit integration scheme. The resulting aeroelastic model provides correct limit-cycle oscillation prediction over a wide range of panel dynamic pressure values. Time integration of the reduced-order aeroelastic model is four orders of magnitude faster than the high-order solution procedure developed for this research using traditional uid and structural solvers.

  8. Dynamic Model and Control of a Photovoltaic Generation System using Energetic Macroscopic Representation

    NASA Astrophysics Data System (ADS)

    Solano, Javier; Duarte, José; Vargas, Erwin; Cabrera, Jhon; Jácome, Andrés; Botero, Mónica; Rey, Juan

    2016-10-01

    This paper addresses the Energetic Macroscopic Representation EMR, the modelling and the control of photovoltaic panel PVP generation systems for simulation purposes. The model of the PVP considers the variations on irradiance and temperature. A maximum power point tracking MPPT algorithm is considered to control the power converter. A novel EMR is proposed to consider the dynamic model of the PVP with variations in the irradiance and the temperature. The EMR is evaluated through simulations of a PVP generation system.

  9. Seven-panel solar wing deployment and on-orbit maneuvering analyses

    NASA Astrophysics Data System (ADS)

    Hwang, Earl

    2005-05-01

    BSS developed a new generation high power (~20kW) solar array to meet the customer demands. The high power solar array had the north and south solar wings of which designs were identical. Each side of the solar wing consists of three main conventional solar panels and the four-side panel swing-out new design. The fully deployed solar array surface area is 966 ft2. It was a quite challenging task to define the solar array's optimum design parameters and deployment scheme for such a huge solar array's successful deployment and on-orbit maneuvering. Hence, a deployable seven-flex-panel solar wing nonlinear math model and a fully deployed solar array/bus-payload math model were developed with the Dynamic Analysis and Design System (DADS) program codes utilizing the inherited and empirical data. Performing extensive parametric analyses with the math model, the optimum design parameters and the orbit maneuvering /deployment schemes were determined to meet all the design requirements, and for the successful solar wing deployment on-orbit.

  10. Report of Combat Consumption Modeling Improvement Panel.

    DTIC Science & Technology

    1980-07-01

    within a static frame- work , and so may require the use of a dynamic approach. 5. Navy Methodologies ( Less Risk) Like the Air Force, the Navy uses a...mda~id iw Cumr MOAN3 70 C 620 Ib9 Umplmmut d6 Um. IN PWmAN d WM A PaW dme adn hiSses by Onbs ds dmu~m. p.1Mm d6 tga agmey. UNCLASSIFIED lecumV...by ,the panel to be important, in detail. In many areas, the panel believes that the caveats and recommendations for future work presented In the DoD

  11. Dynamics of Work Disability and Pain

    PubMed Central

    Kapteyn, Arie; Smith, James P.; van Soest, Arthur

    2013-01-01

    This paper investigates the role of pain in affecting self-reported work disability and employment of elderly workers in the US. We investigate pain and its relationship to work disability and work in a dynamic panel data model, using six biennial waves from the Health and Retirement Study. We find the dynamics of the presence of pain is central to understanding the dynamics of self-reported work disability. By affecting work disability pain also has important implications for the dynamic patterns of employment. PMID:18180063

  12. Behavior of Concrete Panels Reinforced with Synthetic Fibers, Mild Steel, and GFRP Composites Subjected to Blasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. P. Pantelides; T. T. Garfield; W. D. Richins

    2012-03-01

    The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Eachmore » panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.« less

  13. Noise transmission from a curved panel into a cylindrical enclosure: analysis of structural acoustic coupling.

    PubMed

    Henry, J K; Clark, R L

    2001-04-01

    Much of the research on sound transmission through the aircraft fuselage into the interior of aircraft has considered coupling of the entire cylinder to the acoustic modes of the enclosure. Yet, much of the work on structural acoustic control of sound radiation has focused on reducing sound radiation from individual panels into an acoustic space. Research by the authors seeks to bridge this gap by considering the transmission of sound from individual panels on the fuselage to the interior of the aircraft. As part of this research, an analytical model of a curved panel, with attached piezoelectric actuators, subjected to a static pressure load was previously developed. In the present work, the analytical model is extended to consider the coupling of a curved panel to the interior acoustics of a rigid-walled cylinder. Insight gained from an accurate analytical model of the dynamics of the noise transmission from the curved panels of the fuselage into the cylindrical enclosure of an aircraft is essential to the development of feedback control systems for the control of stochastic inputs, such as turbulent boundary layer excitation. The criteria for maximal structural acoustic coupling between the modes of the curved panel and the modes of the cylindrical enclosure are studied. For panels with aspect ratios typical of those found in aircraft, results indicate that predominately axial structural modes couple most efficiently to the acoustic modes of the enclosure. The effects of the position of the curved panel on the cylinder are also studied. Structural acoustic coupling is found to not be significantly affected by varying panel position. The impact of the findings of this study on structural acoustic control design is discussed.

  14. Aerothermal and aeroelastic response prediction of aerospace structures in high-speed flows using direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Ostoich, Christopher Mark

    Future high-speed air vehicles will be lightweight, flexible, and reusable. Ve- hicles fitting this description are subject to severe thermal and fluid dynamic loading from multiple sources such as aerothermal heating, propulsion sys- tem exhaust, and high dynamic pressures. The combination of low-margin design requirements and extreme environmental conditions emphasizes the occurrence of fluid-thermal-structural coupling. Numerous attempts to field such vehicles have been unsuccessful over the past half-century due par- tially to the inability of traditional design and analysis practices to predict the structural response in this flight regime. In this thesis, a high-fidelity computational approach is used to examine the fluid-structural response of aerospace structures in high-speed flows. The method is applied to two cases: one involving a fluid-thermal interaction problem in a hypersonic flow and the other a fluid-structure interaction study involving a turbulent boundary layer and a compliant panel. The coupled fluid-thermal investigation features a nominally rigid alu- minum spherical dome fixed to a ceramic panel holder placed in a Mach 6.59 laminar boundary layer. The problem was originally studied by Glass and Hunt in a 1988 wind tunnel experiment in the NASA Langley 8-Foot High Temperature Tunnel and is motivated by thermally bowed body panels designed for the National Aerospace Plane. In this work, the compressible Navier-Stokes equations for a thermally perfect gas and the transient heat equation in the structure are solved simultaneously using two high-fidelity solvers coupled at the solid-fluid interface. Predicted surface heat fluxes are within 10% of the measured values in the dome interior with greater differ- ences found near the dome edges where uncertainties concerning the exper- imental model's construction likely influence the thermal dynamics. On the flat panel holder, the local surface heat fluxes approach those on the wind- ward dome face due to a dome-induced horseshoe vortex scouring the panel's surface. Comparisons with reduced-order models of heat transfer indicate that they perform with varying levels of accuracy around some portions of the geometry while completely failing to predict significant heat loads in re- gions where the dome-influenced flow impacts the ceramic panel. Cumulative effects of flow-thermal coupling at later simulation times on the reduction of panel drag and surface heat transfer are quantified. The second fluid-structure study investigates the interaction between a thin metallic panel and a Mach 2.25 turbulent boundary layer with an ini- tial momentum thickness Reynolds number of 1200. A transient, non-linear, large deformation, 3D finite element solver is developed to compute the dynamic response of the panel. The solver is coupled at the fluid-structure interface with the compressible Navier-Stokes solver, the latter of which is used for a direct numerical simulation of the turbulent boundary layer. In this approach, no simplifying assumptions regarding the structural solution or turbulence modeling are made in order to get detailed solution data. It is found that the thin panel state evolves into a flutter type response char- acterized by high-amplitude, high-frequency oscillations into the flow. The oscillating panel disturbs the supersonic flow by introducing compression waves, modifying the turbulence, and generating fluctuations in the power exiting the top of the flow domain. The work in this thesis serves as a step forward in structural response prediction in high-speed flows. The results demonstrate the ability of high- fidelity numerical approaches to serve as a guide for reduced-order model improvement and as well as provide accurate and detailed solution data in scenarios where experimental approaches are difficult or impossible.

  15. Cooperative Team Networks

    DTIC Science & Technology

    2016-06-01

    team processes, such as identifying motifs of dynamic communication exchanges which goes well beyond simple dyadic and triadic configurations; as well...new metrics and ways to formulate team processes, such as identifying motifs of dynamic communication exchanges which goes well beyond simple dyadic ...sensing, communication , information, and decision networks - Darryl Ahner (AFIT: Air Force Inst Tech) Panel Session: Mathematical Models of

  16. An investigation into NVC characteristics of vehicle behaviour using modal analysis

    NASA Astrophysics Data System (ADS)

    Hanouf, Zahir; Faris, Waleed F.; Ahmad, Kartini

    2017-03-01

    NVC characterizations of vehicle behavior is one essential part of the development targets in automotive industries. Therefore understanding dynamic behavior of each structural part of the vehicle is a major requirement in improving the NVC characteristics of a vehicle. The main focus of this research is to investigate structural dynamic behavior of a passenger car using modal analysis part by part technique and apply this method to derive the interior noise sources. In the first part of this work computational modal analysis part by part tests were carried out to identify the dynamic parameters of the passenger car. Finite elements models of the different parts of the car are constructed using VPG 3.2 software. Ls-Dyna pre and post processing was used to identify and analyze the dynamic behavior of each car components panels. These tests had successfully produced natural frequencies and their associated mode shapes of such panels like trunk, hood, roof and door panels. In the second part of this research, experimental modal analysis part by part is performed on the selected car panels to extract modal parameters namely frequencies and mode shapes. The study establishes the step-by-step procedures to carry out experimental modal analysis on the car structures, using single input excitation and multi-output responses (SIMO) technique. To ensure the validity of the results obtained by the previous method an inverse method was done by fixing the response and moving the excitation and the results found were absolutely the same. Finally, comparison between results obtained from both analyses showed good similarity in both frequencies and mode shapes. Conclusion drawn from this part of study was that modal analysis part-by-part can be strongly used to establish the dynamic characteristics of the whole car. Furthermore, the developed method is also can be used to show the relationship between structural vibration of the car panels and the passengers’ noise comfort inside the cabin.

  17. Dynamic and thermal response finite element models of multi-body space structural configurations

    NASA Technical Reports Server (NTRS)

    Edighoffer, Harold H.

    1987-01-01

    Presented is structural dynamics modeling of two multibody space structural configurations. The first configuration is a generic space station model of a cylindrical habitation module, two solar array panels, radiator panel, and central connecting tube. The second is a 15-m hoop-column antenna. Discussed is the special joint elimination sequence used for these large finite element models, so that eigenvalues could be extracted. The generic space station model aided test configuration design and analysis/test data correlation. The model consisted of six finite element models, one of each substructure and one of all substructures as a system. Static analysis and tests at the substructure level fine-tuned the finite element models. The 15-m hoop-column antenna is a truss column and structural ring interconnected with tension stabilizing cables. To the cables, pretensioned mesh membrane elements were attached to form four parabolic shaped antennae, one per quadrant. Imposing thermal preloads in the cables and mesh elements produced pretension in the finite element model. Thermal preload variation in the 96 control cables was adjusted to maintain antenna shape within the required tolerance and to give pointing accuracy.

  18. Finite Element Model Development For Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.

  19. PERFORMANCE OF RC AND FRC WALL PANELS REINFORCED WITH MILD STEEL AND GFRP COMPOSITES IN BLAST EVENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Timothy Garfield; William D. Richins; Thomas K. Larson

    The structural integrity of reinforced concrete structures in blast events is important for critical facilities. This paper presents experimental data generated for calibrating detailed finite element models that predict the performance of reinforced concrete wall panels with a wide range of construction details under blast loading. The test specimens were 1.2 m square wall panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consists of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bar reinforcement (Type A); FRC panels without additional reinforcement (Type B); FRC panels with steel barmore » reinforcement (Type C); NWC panels with glass fiber reinforced polymer (GFRP) bar reinforcement (Type D); and NWC panels reinforced with steel bar reinforcement and external bidirectional GFRP overlays on both faces (Type E). An additional three Type C panels were used as control specimens (CON). Each panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. The panels were instrumented with strain gauges, and accelerometers; in addition, pressure sensors and high speed videos were employed during the blast events. Panel types C and E had the best performance, whereas panel type B did not perform well. Preliminary dynamic simulations show crack patterns similar to the experimental results.« less

  20. Who Is Overeducated and Why? Probit and Dynamic Mixed Multinomial Logit Analyses of Vertical Mismatch in East and West Germany

    ERIC Educational Resources Information Center

    Boll, Christina; Leppin, Julian Sebastian; Schömann, Klaus

    2016-01-01

    Overeducation potentially signals a productivity loss. With Socio-Economic Panel data from 1984 to 2011 we identify drivers of educational mismatch for East and West medium and highly educated Germans. Addressing measurement error, state dependence and unobserved heterogeneity, we run dynamic mixed multinomial logit models for three different…

  1. Income dynamics with a stationary double Pareto distribution.

    PubMed

    Toda, Alexis Akira

    2011-04-01

    Once controlled for the trend, the distribution of personal income appears to be double Pareto, a distribution that obeys the power law exactly in both the upper and the lower tails. I propose a model of income dynamics with a stationary distribution that is consistent with this fact. Using US male wage data for 1970-1993, I estimate the power law exponent in two ways--(i) from each cross section, assuming that the distribution has converged to the stationary distribution, and (ii) from a panel directly estimating the parameters of the income dynamics model--and obtain the same value of 8.4.

  2. Test and Analysis of Foam Impacting a 6x6 Inch RCC Flat Panel

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    2006-01-01

    This report presents the testing and analyses of a foam projectile impacting onto thirteen 6x6 inch flat panels at a 90 degrees incidence angle. The panels tested in this investigation were fabricated of Reinforced-Carbon-Carbon material and were used to aid in the validation of an existing material model, MAT58. The computational analyses were performed using LS-DYNA, which is a physics-based, nonlinear, transient, finite element code used for analyzing material responses subjected to high impact forces and other dynamic conditions. The test results were used to validate LS-DYNA predictions and to determine the threshold of damage generated by the MAT58 cumulative damage material model. The threshold of damage parameter represents any external or internal visible RCC damage detectable by nondestructive evaluation techniques.

  3. Propulsion and Energetics Panel Working Group 15 on the Uniform Engine Test Programme

    DTIC Science & Technology

    1990-02-01

    earlier test of uniform aerodynamic models in wind tunnels under the auspices of the Fluid Dynamics Panel. A formal proposal was presented to the...this major new effort and members of the engine test community throughout AGARD were selected to serve on Working Group 15 along with PEP...STPA/MO 4 Mr J.R.Bednarsk; 4 Avenue de Ia Porte d’lssy PE-63 75015 Paris Naval Air Propulsion Center PO Box 7176 GERMANY Trenton. New Jersey 08628

  4. Dynamics modelling and Hybrid Suppression Control of space robots performing cooperative object manipulation

    NASA Astrophysics Data System (ADS)

    Zarafshan, P.; Moosavian, S. Ali A.

    2013-10-01

    Dynamics modelling and control of multi-body space robotic systems composed of rigid and flexible elements is elaborated here. Control of such systems is highly complicated due to severe under-actuated condition caused by flexible elements, and an inherent uneven nonlinear dynamics. Therefore, developing a compact dynamics model with the requirement of limited computations is extremely useful for controller design, also to develop simulation studies in support of design improvement, and finally for practical implementations. In this paper, the Rigid-Flexible Interactive dynamics Modelling (RFIM) approach is introduced as a combination of Lagrange and Newton-Euler methods, in which the motion equations of rigid and flexible members are separately developed in an explicit closed form. These equations are then assembled and solved simultaneously at each time step by considering the mutual interaction and constraint forces. The proposed approach yields a compact model rather than common accumulation approach that leads to a massive set of equations in which the dynamics of flexible elements is united with the dynamics equations of rigid members. To reveal such merits of this new approach, a Hybrid Suppression Control (HSC) for a cooperative object manipulation task will be proposed, and applied to usual space systems. A Wheeled Mobile Robotic (WMR) system with flexible appendages as a typical space rover is considered which contains a rigid main body equipped with two manipulating arms and two flexible solar panels, and next a Space Free Flying Robotic system (SFFR) with flexible members is studied. Modelling verification of these complicated systems is vigorously performed using ANSYS and ADAMS programs, while the limited computations of RFIM approach provides an efficient tool for the proposed controller design. Furthermore, it will be shown that the vibrations of the flexible solar panels results in disturbing forces on the base which may produce undesirable errors and perturb the object manipulation task. So, it is shown that these effects can be significantly eliminated by the proposed Hybrid Suppression Control algorithm.

  5. Contractual conditions, working conditions and their impact on health and well-being.

    PubMed

    Robone, Silvana; Jones, Andrew M; Rice, Nigel

    2011-10-01

    Given changes in the labour market in past decades, it is of interest to evaluate whether and how contractual and working conditions affect health and psychological well-being in society today. We consider the effects of contractual and working conditions on self-assessed health and psychological well-being using twelve waves (1991/1992-2002/2003) of the British Household Panel Survey. For self-assessed health, the dependent variable is categorical, and we estimate non-linear dynamic panel ordered probit models, while for psychological well-being, we estimate a dynamic linear specification. The results show that both contractual and working conditions have an influence on health and psychological well-being and that the impact is different for men and women.

  6. Income Transfers and Assets of the Poor. Revised. Discussion Paper.

    ERIC Educational Resources Information Center

    Ziliak, James P.

    Contrary to the predictions of the standard life-cycle model, many low lifetime-income households accumulate little wealth relative to their incomes compared to households with high lifetime income. This paper uses data from the Panel Study of Income Dynamics and a correlated random-effects generalized model of moments estimator to decompose the…

  7. Acoustic testing of high temperature panels

    NASA Technical Reports Server (NTRS)

    Leatherwood, Jack D.; Clevenson, Sherman A.; Powell, Clemans A.; Daniels, Edward F.

    1990-01-01

    Results are presented of a series of thermal-acoustic tests conducted on the NASA Langley Research Center Thermal-Acoustic Test Apparatus to (1) investigate techniques for obtaining strain measurements on metallic and carbon-carbon materials at elevated temperature; (2) document the dynamic strain response characteristics of several superalloy honeycomb thermal protection system panels at elevated temperatures of up to 1200 F; and (3) determine the strain response and sonic fatigue behavior of four carbon-carbon panels at both ambient and elevated temperatures. A second study tested four carbon-carbon panels to document panel dynamic response characteristics at ambient and elevated temperature, determine time to failure and faliure modes, and collect continuous strain data up to panel failure. Strain data are presented from both types of panels, and problems encountered in obtaining reliable strain data on the carbon-carbon panels are described. The failure modes of the carbon-carbon panels are examined.

  8. Dropping vs. Restarting: A Dynamic Analysis of Two Newspaper Subscribing Behaviors.

    ERIC Educational Resources Information Center

    Zhu, Jian-Hua

    In an effort to help describe and explain why people do not read and subscribe to newspapers, a study built on previous research by adding two new contributions: (1) reliance on a four-wave panel data-set rather than on a one-shot survey; and (2) use of a dynamic modeling procedure rather than cross-sectional analysis. The problem with previous…

  9. Structural evaluation of concepts for a solar energy concentrator for Space Station advanced development program

    NASA Technical Reports Server (NTRS)

    Kenner, Winfred S.; Rhodes, Marvin D.

    1994-01-01

    Solar dynamic power systems have a higher thermodynamic efficiency than conventional photovoltaic systems; therefore they are attractive for long-term space missions with high electrical power demands. In an investigation conducted in support of a preliminary concept for Space Station Freedom, an approach for a solar dynamic power system was developed and a number of the components for the solar concentrator were fabricated for experimental evaluation. The concentrator consists of hexagonal panels comprised of triangular reflective facets which are supported by a truss. Structural analyses of the solar concentrator and the support truss were conducted using finite-element models. A number of potential component failure scenarios were postulated and the resulting structural performance was assessed. The solar concentrator and support truss were found to be adequate to meet a 1.0-Hz structural dynamics design requirement in pristine condition. However, for some of the simulated component failure conditions, the fundamental frequency dropped below the 1.0-Hz design requirement. As a result, two alternative concepts were developed and assessed. One concept incorporated a tetrahedral ring truss support for the hexagonal panels: the second incorporated a full tetrahedral truss support for the panels. The results indicate that significant improvements in stiffness can be obtained by attaching the panels to a tetrahedral truss, and that this concentrator and support truss will meet the 1.0-Hz design requirement with any of the simulated failure conditions.

  10. Preliminary Findings from the First Two Waves of a Panel Study of Developing Career Expectations.

    ERIC Educational Resources Information Center

    Hotchkiss, Lawrence; Chiteji, Lisa

    This report is an exploratory application of a dynamic mathematical model to express a theory of changes in youth's career expectations over time. Main content is divided into two focuses: (1) theoretical interpretations of the differential equations which embody the mathematical model and (2) reporting and discussion of the results of preliminary…

  11. The Relationship between Student Transfers and District Academic Performance: Accounting for Feedback Effects

    ERIC Educational Resources Information Center

    Welsch, David M.; Zimmer, David M.

    2015-01-01

    This paper draws attention to a subtle, but concerning, empirical challenge common in panel data models that seek to estimate the relationship between student transfers and district academic performance. Specifically, if such models have a dynamic element, and if the estimator controls for unobserved traits by including district-level effects,…

  12. Final Report for Dynamic Models for Causal Analysis of Panel Data. Models for Change in Quantitative Variables, Part II Scholastic Models. Part II, Chapter 4.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This document is part of a series of chapters described in SO 011 759. Stochastic models for the sociological analysis of change and the change process in quantitative variables are presented. The author lays groundwork for the statistical treatment of simple stochastic differential equations (SDEs) and discusses some of the continuities of…

  13. Low-Velocity Impact Response of Sandwich Beams with Functionally Graded Core

    NASA Technical Reports Server (NTRS)

    Apetre, N. A.; Sankar, B. V.; Ambur, D. R.

    2006-01-01

    The problem of low-speed impact of a one-dimensional sandwich panel by a rigid cylindrical projectile is considered. The core of the sandwich panel is functionally graded such that the density, and hence its stiffness, vary through the thickness. The problem is a combination of static contact problem and dynamic response of the sandwich panel obtained via a simple nonlinear spring-mass model (quasi-static approximation). The variation of core Young's modulus is represented by a polynomial in the thickness coordinate, but the Poisson's ratio is kept constant. The two-dimensional elasticity equations for the plane sandwich structure are solved using a combination of Fourier series and Galerkin method. The contact problem is solved using the assumed contact stress distribution method. For the impact problem we used a simple dynamic model based on quasi-static behavior of the panel - the sandwich beam was modeled as a combination of two springs, a linear spring to account for the global deflection and a nonlinear spring to represent the local indentation effects. Results indicate that the contact stiffness of thc beam with graded core Increases causing the contact stresses and other stress components in the vicinity of contact to increase. However, the values of maximum strains corresponding to the maximum impact load arc reduced considerably due to grading of thc core properties. For a better comparison, the thickness of the functionally graded cores was chosen such that the flexural stiffness was equal to that of a beam with homogeneous core. The results indicate that functionally graded cores can be used effectively to mitigate or completely prevent impact damage in sandwich composites.

  14. Temperature and initial curvature effects in low-density panel flutter

    NASA Technical Reports Server (NTRS)

    Resende, Hugo B.

    1992-01-01

    The panel flutter phenomenon is studied assuming free-molecule flow. This kind of analysis is relevant in the case of hypersonic flight vehicles traveling at high altitudes, especially in the leeward portion of the vehicle. In these conditions the aerodynamic shear can be expected to be considerably larger than the pressure at a given point, so that the effects of such a loading are incorporated into the structural model. Both the pressure and shear loadings are functions of the panel temperature, which can lead to great variations on the location of the stability boundaries for parametric studies. Different locations can, however, be 'collapsed' onto one another by using as ordinate an appropriately normalized dynamic pressure parameter. This procedure works better for higher values of the panel temperature for a fixed undisturbed flow temperature. Finally, the behavior of the system is studied when the panel has some initial curvature. This leads to the conclusion that it may be unrealistic to try to distinguish between a parabolic or sinusoidal initial shape.

  15. Final Report for Dynamic Models for Causal Analysis of Panel Data. Models for Change in Quantitative Variables, Part I Deterministic Models. Part II, Chapter 3.

    ERIC Educational Resources Information Center

    Hannan, Michael T.

    This document is part of a series of chapters described in SO 011 759. Addressing the question of effective models to measure change and the change process, the author suggests that linear structural equation systems may be viewed as steady state outcomes of continuous-change models and have rich sociological grounding. Two interpretations of the…

  16. Rotorcraft Dynamics 1984

    NASA Technical Reports Server (NTRS)

    1985-01-01

    In the conference proceedings are 24 presented papers, their discussions, and material given in two panels. The presented papers address the general areas of the dynamics of rotorcraft or helicopters. Specific topics include the stability of rotors in hover and forward flight, the stability of coupled rotor-fuselage systems in hover, the loads on a rotor in forward flight including new developments in rotor loads calculations, and the calculation of rotorcraft vibration and means for its control or suppression. Material in the first panel deals with the successful application of dynamics technology to engineering development of flight vehicles. Material in the second panel is concerned with large data bases in the area of rotorocraft dynamics and how they are developed, managed, and used.

  17. Socioeconomic inequality in health in the British household panel: Tests of the social causation, health selection and the indirect selection hypothesis using dynamic fixed effects panel models.

    PubMed

    Foverskov, Else; Holm, Anders

    2016-02-01

    Despite social inequality in health being well documented, it is still debated which causal mechanism best explains the negative association between socioeconomic position (SEP) and health. This paper is concerned with testing the explanatory power of three widely proposed causal explanations for social inequality in health in adulthood: the social causation hypothesis (SEP determines health), the health selection hypothesis (health determines SEP) and the indirect selection hypothesis (no causal relationship). We employ dynamic data of respondents aged 30 to 60 from the last nine waves of the British Household Panel Survey. Household income and location on the Cambridge Scale is included as measures of different dimensions of SEP and health is measured as a latent factor score. The causal hypotheses are tested using a time-based Granger approach by estimating dynamic fixed effects panel regression models following the method suggested by Anderson and Hsiao. We propose using this method to estimate the associations over time since it allows one to control for all unobserved time-invariant factors and hence lower the chances of biased estimates due to unobserved heterogeneity. The results showed no proof of the social causation hypothesis over a one to five year period and limited support for the health selection hypothesis was seen only for men in relation to HH income. These findings were robust in multiple sensitivity analysis. We conclude that the indirect selection hypothesis may be the most important in explaining social inequality in health in adulthood, indicating that the well-known cross-sectional correlations between health and SEP in adulthood seem not to be driven by a causal relationship, but instead by dynamics and influences in place before the respondents turn 30 years old that affect both their health and SEP onwards. The conclusion is limited in that we do not consider the effect of specific diseases and causal relationships in adulthood may be present over a longer timespan than 5 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Modeling the Impact of Simulated Educational Interventions on the Use and Abuse of Pharmaceutical Opioids in the United States: A Report on Initial Efforts

    ERIC Educational Resources Information Center

    Wakeland, Wayne; Nielsen, Alexandra; Schmidt, Teresa D.; McCarty, Dennis; Webster, Lynn R.; Fitzgerald, John; Haddox, J. David

    2013-01-01

    Three educational interventions were simulated in a system dynamics model of the medical use, trafficking, and nonmedical use of pharmaceutical opioids. The study relied on secondary data obtained in the literature for the period of 1995 to 2008 as well as expert panel recommendations regarding model parameters and structure. The behavior of the…

  19. Planar rigid-flexible coupling spacecraft modeling and control considering solar array deployment and joint clearance

    NASA Astrophysics Data System (ADS)

    Li, Yuanyuan; Wang, Zilu; Wang, Cong; Huang, Wenhu

    2018-01-01

    Based on Nodal Coordinate Formulation (NCF) and Absolute Nodal Coordinate Formulation (ANCF), this paper establishes rigid-flexible coupling dynamic model of the spacecraft with large deployable solar arrays and multiple clearance joints to analyze and control the satellite attitude under deployment disturbance. Considering torque spring, close cable loop (CCL) configuration and latch mechanisms, a typical spacecraft composed of a rigid main-body described by NCF and two flexible panels described by ANCF is used as a demonstration case. Nonlinear contact force model and modified Coulomb friction model are selected to establish normal contact force and tangential friction model, respectively. Generalized elastic force are derived and all generalized forces are defined in the NCF-ANCF frame. The Newmark-β method is used to solve system equations of motion. The availability and superiority of the proposed model is verified through comparing with numerical co-simulations of Patran and ADAMS software. The numerical results reveal the effects of panel flexibility, joint clearance and their coupling on satellite attitude. The effects of clearance number, clearance size and clearance stiffness on satellite attitude are investigated. Furthermore, a proportional-differential (PD) attitude controller of spacecraft is designed to discuss the effect of attitude control on the dynamic responses of the whole system.

  20. Calibration of aero-structural reduced order models using full-field experimental measurements

    NASA Astrophysics Data System (ADS)

    Perez, R.; Bartram, G.; Beberniss, T.; Wiebe, R.; Spottswood, S. M.

    2017-03-01

    The structural response of hypersonic aircraft panels is a multi-disciplinary problem, where the nonlinear structural dynamics, aerodynamics, and heat transfer models are coupled. A clear understanding of the impact of high-speed flow effects on the structural response, and the potential influence of the structure on the local environment, is needed in order to prevent the design of overly-conservative structures, a common problem in past hypersonic programs. The current work investigates these challenges from a structures perspective. To this end, the first part of this investigation looks at the modeling of the response of a rectangular panel to an external heating source (thermo-structural coupling) where the temperature effect on the structure is obtained from forward looking infrared (FLIR) measurements and the displacement via 3D-digital image correlation (DIC). The second part of the study uses data from a previous series of wind-tunnel experiments, performed to investigate the response of a compliant panel to the effects of high-speed flow, to train a pressure surrogate model. In this case, the panel aero-loading is obtained from fast-response pressure sensitive paint (PSP) measurements, both directly and from the pressure surrogate model. The result of this investigation is the use of full-field experimental measurements to update the structural model and train a computational efficient model of the loading environment. The use of reduced order models, informed by these full-field physical measurements, is a significant step toward the development of accurate simulation models of complex structures that are computationally tractable.

  1. Dynamic determination of modulus of elasticity of full-size wood composite panels using a vibration method

    Treesearch

    Cheng Guan; Houjiang Zhang; Lujing Zhou; Xiping Wang

    2015-01-01

    A vibration testing method based on free vibration theory in a ‘‘free–free” support condition was investigated for evaluating the modulus of elasticity (MOE) of full-size wood composite panels (WCPs). Vibration experiments were conducted on three types of WCPs (medium density fibreboard, particleboard, and plywood) to determine the dynamic MOE of the panels. Static...

  2. Measurement of Dynamic Viscoelasticity of Full-Size Wood Composite Panels Using a Vibration Testing Method

    Treesearch

    Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng

    2016-01-01

    The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...

  3. Hypervelocity Impact Behaviour of CFRP-A1/HC Sandwich Panel: Finite-Element Studies

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Roy, Anish; Silberschmidt, Vadim V.

    2014-06-01

    The mechanical response of CFRP-Al/HC (carbon fibre- reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact ( 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by the means of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria and delamination is modelled using cohesive-zone elements. The damage of Al/HC core is assessed on the basis of a Johnson-Cook dynamic failure model while its hydrodynamic response is captured using the Mie- Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing of HC core.

  4. Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel

    NASA Astrophysics Data System (ADS)

    Phadnis, Vaibhav A.; Silberschmidt, Vadim V.

    2015-09-01

    The mechanical response of CFRP-Al/HC (carbon fibre-reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact (up to 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by mean of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria, delamination modelled using cohesive-zone elements. The damaged Al/HC core is assessed on the basis of a Johnson Cook dynamic failure model while its hydrodynamic response is captured using the Mie-Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing HC core.

  5. Oil prices, fiscal policy, and economic growth in oil-exporting countries

    NASA Astrophysics Data System (ADS)

    El-Anshasy, Amany A.

    This dissertation argues that in oil-exporting countries fiscal policy could play an important role in transmitting the oil shocks to the economy and that the indirect effects of the changes in oil prices via the fiscal channel could be quite significant. The study comprises three distinct, yet related, essays. In the first essay, I try to study the fiscal policy response to the changes in oil prices and to their growing volatility. In a dynamic general equilibrium framework, a fiscal policy reaction function is derived and is empirically tested for a panel of 15 oil-exporters covering the period 1970--2000. After the link between oil price shocks and fiscal policy is established, the second essay tries to investigate the impact of the highly volatile oil prices on economic growth for the same sample, controlling for the fiscal channel. In both essays the study employs recent dynamic panel-data estimation techniques: System GMM. This approach has the potential advantages of minimizing the bias resulting from estimating dynamic panel models, exploiting the time series properties of the data, controlling for the unobserved country-specific effects, and correcting for any simultaneity bias. In the third essay, I focus on the case of Venezuela for the period 1950--2001. The recent developments in the cointegrating vector autoregression, CVAR technique is applied to provide a suitable framework for analyzing the short-run dynamics and the long-run relationships among oil prices, government revenues, government consumption, investment, and output.

  6. Overview of the DAEDALOS project

    NASA Astrophysics Data System (ADS)

    Bisagni, Chiara

    2015-10-01

    The "Dynamics in Aircraft Engineering Design and Analysis for Light Optimized Structures" (DAEDALOS) project aimed to develop methods and procedures to determine dynamic loads by considering the effects of dynamic buckling, material damping and mechanical hysteresis during aircraft service. Advanced analysis and design principles were assessed with the scope of partly removing the uncertainty and the conservatism of today's design and certification procedures. To reach these objectives a DAEDALOS aircraft model representing a mid-size business jet was developed. Analysis and in-depth investigation of the dynamic response were carried out on full finite element models and on hybrid models. Material damping was experimentally evaluated, and different methods for damping evaluation were developed, implemented in finite element codes and experimentally validated. They include a strain energy method, a quasi-linear viscoelastic material model, and a generalized Maxwell viscous material damping. Panels and shells representative of typical components of the DAEDALOS aircraft model were experimentally tested subjected to static as well as dynamic loads. Composite and metallic components of the aircraft model were investigated to evaluate the benefit in terms of weight saving.

  7. Estimating the effects of wages on obesity.

    PubMed

    Kim, DaeHwan; Leigh, John Paul

    2010-05-01

    To estimate the effects of wages on obesity and body mass. Data on household heads, aged 20 to 65 years, with full-time jobs, were drawn from the Panel Study of Income Dynamics for 2003 to 2007. The Panel Study of Income Dynamics is a nationally representative sample. Instrumental variables (IV) for wages were created using knowledge of computer software and state legal minimum wages. Least squares (linear regression) with corrected standard errors were used to estimate the equations. Statistical tests revealed both instruments were strong and tests for over-identifying restrictions were favorable. Wages were found to be predictive (P < 0.05) of obesity and body mass in regressions both before and after applying IVs. Coefficient estimates suggested stronger effects in the IV models. Results are consistent with the hypothesis that low wages increase obesity prevalence and body mass.

  8. Sound-proof Sandwich Panel Design via Metamaterial Concept

    NASA Astrophysics Data System (ADS)

    Sui, Ni

    Sandwich panels consisting of hollow core cells and two face-sheets bonded on both sides have been widely used as lightweight and strong structures in practical engineering applications, but with poor acoustic performance especially at low frequency regime. Basic sound-proof methods for the sandwich panel design are spontaneously categorized as sound insulation and sound absorption. Motivated by metamaterial concept, this dissertation presents two sandwich panel designs without sacrificing weight or size penalty: A lightweight yet sound-proof honeycomb acoustic metamateiral can be used as core material for honeycomb sandwich panels to block sound and break the mass law to realize minimum sound transmission; the other sandwich panel design is based on coupled Helmholtz resonators and can achieve perfect sound absorption without sound reflection. Based on the honeycomb sandwich panel, the mechanical properties of the honeycomb core structure were studied first. By incorporating a thin membrane on top of each honeycomb core, the traditional honeycomb core turns into honeycomb acoustic metamaterial. The basic theory for such kind of membrane-type acoustic metamaterial is demonstrated by a lumped model with infinite periodic oscillator system, and the negative dynamic effective mass density for clamped membrane is analyzed under the membrane resonance condition. Evanescent wave mode caused by negative dynamic effective mass density and impedance methods are utilized to interpret the physical phenomenon of honeycomb acoustic metamaterials at resonance. The honeycomb metamaterials can extraordinarily improve low-frequency sound transmission loss below the first resonant frequency of the membrane. The property of the membrane, the tension of the membrane and the numbers of attached membranes can impact the sound transmission loss, which are observed by numerical simulations and validated by experiments. The sandwich panel which incorporates the honeycomb metamateiral as the core material maintains the mechanical property and yields a sound transmission loss that is consistently greater than 50 dB at low frequencies. Furthermore, the absorption property of the proposed honeycomb sandwich panel was experimentally studied. The honeycomb sandwich panel shows an excellent sound absorbing performance at high frequencies by using reinforced glass fiber without adding too much mass. The effect of the panel size and the stiffness of the grid-like frame effect of the honeycomb sandwich structures on sound transmission are discussed lastly. For the second sound-proof sandwich panel design, each unit cell of the sandwich panel is replaced by a Helmholtz resonator by perforating a small hole on the top face sheet. A perfect sound absorber sandwich panel with coupled Helmholtz resonators is proposed by two types: single identical Helmholtz resonator in each unit cell and dual Helmholtz resonators with different orifices, arranged in each cell arranged periodically. The soundproof sandwich panel is modelled as a panel embedded in rigid panel and assumed as a semiinfinite space with hard boundary condition. The net/mutual impedance model is first proposed and derived by solving Kirchhoff-Helmholtz integral by using the Green's function. The thermal-viscous energy dissipation at the thermal boundary layer dominates the total energy consumed. Two types of perfect sound absorber sandwich panel are designed in the last part. Two theoretical methods: the average energy and the equivalent surface impedance method are used to predict sound absorption performance. The geometry for perfect sound absorber sandwich panel at a target frequency can be obtained when the all the Helmholtz resonators are at resonance and the surface impedance of the sandwich panel matches the air impedance. The bandwidth for the identical sandwich panel mainly depends on the neck radius. The absorptive property of the dual Helmholtz resonators type of sandwich panel is studied by investigating the coupling effects between HRs. The theoretical results can be verified by numerical simulations through finite element method. The absorption bandwidth can be tuned by incorporating more HRs in each unit cell. Both sound-proof sandwich panel designs possess extraordinary acoustic performance for noise reduction at low frequency range with sub-wavelength structures. The sound absorber panel design can also achieve broadband sound attenuation at low frequencies.

  9. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  10. Technical evaluation report of AGARD Technical Evaluation Meeting on Unsteady Aerodynamics: Fundamentals and Applications to Aircraft Dynamics

    NASA Technical Reports Server (NTRS)

    Mabey, D. G.; Chambers, J. R.

    1986-01-01

    From May 6 to 9, 1985, the Fluid Dynamics Panel and Flight Mechanics Panel of AGARD jointly arranged a Symposium on Unsteady Aerodynamics-Fundamentals and Applications to Aircraft Dynamics at the Stadthall, Goettingen, West Germany. This Symposium was organized by an international program committee chaired by Dr. K. J. Orlik-Ruckemann of the Fluid Dynamics Panel. The program consisted of five sessions grouped in two parts: (1) Fundamentals of Unsteady Aerodynamics; and (2) Applications to Aircraft Dynamics. The 35 papers presented at the 4 day meeting are published in AGARD CP 386 and listed in the Appendix. As the papers are already available and cover a very wide field, the evaluators have offered brief comments on every paper, followed by an overall evaluation of the meeting, together with some general conclusions and recommendations.

  11. Shock and Vibration Symposium (59th) Held in Albuquerque, New Mexico on 18-20 October 1988. Volume 4

    DTIC Science & Technology

    1988-12-01

    program to support TOPEX spacecraft design, Statistical energy analysis modeling of nonstructural mass on lightweight equipment panels using VAPEPS...and Stress estimation and statistical energy analysis of the Magellan spacecraft solar array using VAPEPS; Dynamic measurement -- An automated

  12. Simulations of the burst and coast swimming behavior of fish

    NASA Astrophysics Data System (ADS)

    Zhou, Quan; Moored, Keith; Smits, Alexander

    2013-11-01

    An investigation into the burst and coast swimming behavior of fish is simulated with a 2-D, inviscid Boundary Element Method. The fish is modeled as a thin pitching panel that is allowed to free swim. A simple drag model is used where drag is proportional to the velocity squared in order to calculate the cruising velocity. The burst-coast behavior is modeled by a coasting phase, where the panel is motionless, and a burst phase, where the panel pitches with a single sine wave motion. Varying the frequency of the fin-beat and the duration of the duty cycle (the ratio of the burst-phase to the entire period), it is found that it is possible to alter swimming motion to yield a decrease of 50% in the cost of transport with no sacrifice of time-averaged cruising velocity. The analyses of the wake structure demonstrate how vortices shed by the fish affect and shape swimming dynamics. Supported by the Office of Naval Research under Program Director Dr. Bob Brizzolara, MURI grant number N00014-08-1-0642.

  13. Impact of military on biofuels consumption and GHG emissions: the evidence from G7 countries.

    PubMed

    Bildirici, Melike

    2018-05-01

    It was aimed to test the relation among the greenhouse gases emissions, economic growth, biofuels consumption, and militarization in G7 countries during the 1985-2015 period by Pedroni 1995 and panel Johansen tests and two long-run estimators-dynamic OLS and fully modified OLS. Long-run estimators found that economic growth and militarization have statistically significant positive impact on CO 2 emission of G7 countries. Furthermore, the panel causality tests were applied: Dumitrescu and Hurlin (Econ Model 29(4):1450-1460, 2012) and panel Granger causality. These tests determined the causal relationship between the variables. The results of this paper implied that economic growth and biofuels consumption depend on militarization, and economic growth and militarization are granger causes of the greenhouse gases emissions.

  14. The impact of HMO penetration on the relationship between nurse staffing and quality.

    PubMed

    Mark, Barbara A; Harless, David W; McCue, Michael

    2005-07-01

    While there are a number of studies examining the relationship between nurse staffing and quality, none has examined structural differences in the relationship between nurse staffing and quality contingent upon the level of managed care penetration. We used administrative data, and a dynamic panel data model to examine this relationship in a panel of 422 acute care hospitals from 1990 to 1995. We found that there were significant differences in the relationship between nurse staffing and both mortality and length of stay depending upon the level of HMO penetration in the hospital's market.

  15. High Energy Wide Area Blunt Impact on Composite Aircraft Structures

    NASA Astrophysics Data System (ADS)

    DeFrancisci, Gabriela K.

    The largest source of damage to commercial aircraft is caused by accidental contact with ground service equipment (GSE). The cylindrical bumper typically found on GSE distributes the impact load over a large contact area, possibly spanning multiple internal structural elements (frame bays) of a stiffened-skin fuselage. This type of impact can lead to damage that is widespread and difficult to detect visually. To address this problem, monolithic composite panels of various size and complexity have been modeled and tested quasi-statically and dynamically. The experimental observations have established that detectability is dependent on the impact location and immediately-adjacent internal structure of the panel, as well as the impactor geometry and total deformation of the panel. A methodology to model and predict damage caused by wide area blunt impact events was established, which was then applied to more general cases that were not tested in order to better understand the nature of this type of impact event and how it relates to the final damage state and visual detectability.

  16. Numerical modelling of phase-change material used for PV panels cooling

    NASA Astrophysics Data System (ADS)

    Sellami, Assia; Elotmani, Rabie; Kandoussi, Khalid; Eljouad, Mohamed; Hajjaji, Abdelowahed; Boutaous, M'Hamed

    2017-12-01

    Passive cooling of a PV solar panel using phase-change material (PCM) may play an important role in increasing efficiency of PV cells. Because it does not need a maintenance and does not release greenhouses gases, PCM seems to be a good way to decrease the among of overheating of PV cell. The aims of this paper describes a detailed multiphysical issue in order to understand the effect of PCM (RT25) in keeping PV cell temperature close to ambient. The study is focused on modeling the heat and mass transfer in a PCM domain by modifying the buoyancy term in momentum equation. Due to a phase-change and free convection, transient incompressible flow is taken into account to explain the dynamic variations of the velocity profile and viscosity distribution. With standard condition of irradiation and heat flux on both sides of the PV panel, a melt front has been tracked by the energy equation, which gives a good argument for the temperature evolution during phase-change.

  17. Progress in the Phase 0 Model Development of a STAR Concept for Dynamics and Control Testing

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Armand, Sasan C.

    2003-01-01

    The paper describes progress in the development of a lightweight, deployable passive Synthetic Thinned Aperture Radiometer (STAR). The spacecraft concept presented will enable the realization of 10 km resolution global soil moisture and ocean salinity measurements at 1.41 GHz. The focus of this work was on definition of an approximately 1/3-scaled, 5-meter Phase 0 test article for concept demonstration and dynamics and control testing. Design requirements, parameters and a multi-parameter, hybrid scaling approach for the dynamically scaled test model were established. The El Scaling Approach that was established allows designers freedom to define the cross section of scaled, lightweight structural components that is most convenient for manufacturing when the mass of the component is small compared to the overall system mass. Static and dynamic response analysis was conducted on analytical models to evaluate system level performance and to optimize panel geometry for optimal tension load distribution.

  18. COSPAR report to United Nations 2004: satellite dynamics

    NASA Technical Reports Server (NTRS)

    Willis, Pascal

    2004-01-01

    The COSPAR Panel on Satellite Dynamics (PSD) is concerned with the determination of the position, velocity and orientation in space of artificial and natural satellites around the Earth or in the outer space. The following report highlighs representative activities of this panel and provides general information on related international aspects.

  19. Vibro-acoustic model of an active aircraft cabin window

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2017-06-01

    This paper presents modeling and design of an active structural acoustic control (ASAC) system for controlling the low frequency sound field transmitted through an aircraft cabin window. The system uses stacked piezoelectric elements arranged in a manner to generate out-of-plane actuation point forces acting on the window panel boundaries. A theoretical vibro-acoustic model for an active quadruple-panel system is developed to characterize the dynamic behavior of the system and achieve a good understanding of the active control performance and the physical phenomena of the sound transmission loss (STL) characteristics. The quadruple-panel system represents the passenger window design used in some classes of modern aircraft with an exterior double pane of Plexiglas, an interior dust cover pane and a glazed dimmable pane, all separated by thin air cavities. The STL characteristics of identical pane window configurations with different piezoelectric actuator sets are analyzed. A parametric study describes the influence of important active parameters, such as the input voltage, number and location of the actuator elements, on the STL is investigated. In addition, a mathematical model for obtaining the optimal input voltage is developed to improve the acoustic attenuation capability of the control system. In general, the achieved results indicate that the proposed ASAC design offers a considerable improvement in the passive sound loss performance of cabin window design without significant effects, such as weight increase, on the original design. Also, the results show that the acoustic control of the active model with piezoelectric actuators bonded to the dust cover pane generates high structural vibrations in the radiating panel (dust cover) and an increase in sound power radiation. High active acoustic attenuation can be achieved by designing the ASAC system to apply active control forces on the inner Plexiglas panel or dimmable panel by installing the actuators on the boundaries of one of the two panels. In some cases, increasing the actuator numbers in the structure advances the active control performance by controlling more structural modes; however, this decreases the STL of the passive control system because of the increase in structure-borne sound transmission paths of the stiffer piezoelectric actuators.

  20. Hypersonic panel flutter in a rarefied atmosphere

    NASA Technical Reports Server (NTRS)

    Resende, Hugo B.

    1993-01-01

    Panel flutter is a form of dynamic aeroelastic instability resulting from the interaction between motion of an aircraft structural panel and the aerodynamic loads exerted on that panel by air flowing past one of the faces. It differs from lifting surface flutter in the sense that it is not usually catastrophic, the panel's motion being limited by nonlinear membrane stresses produced by the transverse displacement. Above some critical airflow condition, the linear instability grows to a limit cycle . The present investigation studies panel flutter in an aerodynamic regime known as 'free molecule flow', wherein intermolecular collisions can be neglected and loads are caused by interactions between individual molecules and the bounding surface. After collision with the panel, molecules may be reflected specularly or reemitted in diffuse fashion. Two parameters characterize this process: the 'momentum accommodation coefficient', which is the fraction of the specularly reflected molecules; and the ratio between the panel temperature and that of the free airstream. This model is relevant to the case of hypersonic flight vehicles traveling at very high altitudes and especially for panels oriented parallel to the airstream or in the vehicle's lee. Under these conditions the aerodynamic shear stress turns out to be considerably larger than the surface pressures, and shear effects must be included in the model. This is accomplished by means of distributed longitudinal and bending loads. The former can cause the panel to buckle. In the example of a simply-supported panel, it turns out that the second mode of free vibration tends to dominate the flutter solution, which is carried out by a Galerkin analysis. Several parametric studies are presented. They include the effects of (1) temperature ratio; (2) momentum accommodation coefficient; (3) spring parameters, which are associated with how the panel is connected to adjacent structures; (4) a parameter which relates compressive end load to its value which would cause classical column buckling; (5) a parameter proportional to the pressure differential between the front and back faces; and (6) initial curvature. The research is completed by an investigation into the possibility of accounting for molecular collisions, which proves to be infeasible given the speeds of current mainframe supercomputers.

  1. Unemployment in Families: The Case of Housework

    ERIC Educational Resources Information Center

    Gough, Margaret; Killewald, Alexandra

    2011-01-01

    Unemployment has consequences for individuals, but its impacts also reverberate through families. This paper examines how families adapt to unemployment in one area of life--time in housework. Using 74,881 observations from 10,390 couples in the Panel Study of Income Dynamics, we estimate fixed effects models and find that individuals spend…

  2. Turbulence in Compressible Flows

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Lecture notes for the AGARD Fluid Dynamics Panel (FDP) Special Course on 'Turbulence in Compressible Flows' have been assembled in this report. The following topics were covered: Compressible Turbulent Boundary Layers, Compressible Turbulent Free Shear Layers, Turbulent Combustion, DNS/LES and RANS Simulations of Compressible Turbulent Flows, and Case Studies of Applications of Turbulence Models in Aerospace.

  3. [Plug-in Based Centralized Control System in Operating Rooms].

    PubMed

    Wang, Yunlong

    2017-05-30

    Centralized equipment controls in an operating room (OR) is crucial to an efficient workflow in the OR. To achieve centralized control, an integrative OR needs to focus on designing a control panel that can appropriately incorporate equipment from different manufactures with various connecting ports and controls. Here we propose to achieve equipment integration using plug-in modules. Each OR will be equipped with a dynamic plug-in control panel containing physically removable connecting ports. Matching outlets will be installed onto the control panels of each equipment used at any given time. This dynamic control panel will be backed with a database containing plug-in modules that can connect any two types of connecting ports common among medical equipment manufacturers. The correct connecting ports will be called using reflection dynamics. This database will be updated regularly to include new connecting ports on the market, making it easy to maintain, update, expand and remain relevant as new equipment are developed. Together, the physical panel and the database will achieve centralized equipment controls in the OR that can be easily adapted to any equipment in the OR.

  4. Vortex Wakes of Conventional Aircraft

    DTIC Science & Technology

    1975-05-01

    Research Laboratories, Wright-Patterson Air Force Base , Ohio 45433, USA This work was prepared at the request of the Fluid Dynamics Panel of AGARD. THE...aerospace sciences relevant to strengthening the common defence posture; - Improving the co-operation among member nations in aerospace research and...two models have been developed to describe the inviscid structure of the vortex wake. The first model was due to Prandtl [10] and is based on the

  5. Structural Dynamics and Control Interaction of Flexible Structures

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S. (Editor); Scofield, Harold N. (Editor)

    1987-01-01

    A Workshop was held to promote technical exchange between the structural dynamic and control disciplines, foster joint technology, and provide a forum for discussing and focusing critical issues in the separate and combined areas. The workshop was closed by a panel meeting. Panel members' viewpoints and their responses to questions are included.

  6. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    NASA Astrophysics Data System (ADS)

    Irtaza, Hassan; Agarwal, Ashish

    2018-06-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  7. CFD Simulation of Turbulent Wind Effect on an Array of Ground-Mounted Solar PV Panels

    NASA Astrophysics Data System (ADS)

    Irtaza, Hassan; Agarwal, Ashish

    2018-02-01

    Aim of the present study is to determine the wind loads on the PV panels in a solar array since panels are vulnerable to high winds. Extensive damages of PV panels, arrays and mounting modules have been reported the world over due to high winds. Solar array of dimension 6 m × 4 m having 12 PV panels of size 1 m × 2 m on 3D 1:50 scaled models have been simulated using unsteady solver with Reynolds-Averaged Navier-Stokes equations of computational fluid dynamics techniques to study the turbulent wind effects on PV panels. A standalone solar array with 30° tilt angle in atmospheric surface layer with the Renormalized Group (RNG) turbulence closure subjected to incident wind varied from - 90° to 90°. The net pressure, drag and lift coefficients are found to be maximum when the wind is flowing normally to the PV panel either 90° or - 90°. The tilt angle of solar arrays the world over not vary on the latitude but also on the seasons. Keeping this in mind the ground mounted PV panels in array with varying tilt angle from 10° to 60° at an interval of 10° have been analyzed for normal wind incident i.e. 90° and - 90° using unsteady RNG turbulence model. Net pressure coefficients have been calculated and found to be increasing with increase in array tilting angle. Maximum net pressure coefficient was observed for the 60° tilted PV array for 90° and - 90° wind incident having value of 0.938 and 0.904 respectively. The results can be concluded that the PV panels are subjected to significant lift and drag forces under wind loading, which needs to be quantified with sufficient factor of safety to avoid damages.

  8. Development of a new connection for precast concrete walls subjected to cyclic loading

    NASA Astrophysics Data System (ADS)

    Vaghei, Ramin; Hejazi, Farzad; Taheri, Hafez; Jaafar, Mohd Saleh; Aziz, Farah Nora Aznieta Abdul

    2017-01-01

    The Industrialized Building System (IBS) was recently introduced to minimize the time and cost of project construction. Accordingly, ensuring the integration of the connection of precast components in IBS structures is an important factor that ensures stability of buildings subjected to dynamic loads from earthquakes, vehicles, and machineries. However, structural engineers still lack knowledge on the proper connection and detailed joints of IBS structure construction. Therefore, this study proposes a special precast concrete wall-to-wall connection system for dynamic loads that resists multidirectional imposed loads and reduces vibration effects (PI2014701723). This system is designed to connect two adjacent precast wall panels by using two steel U-shaped channels (i.e., male and female joints). During casting, each joint is adapted for incorporation into a respective wall panel after considering the following conditions: one side of the steel channel opens into the thickness face of the panel; a U-shaped rubber is implemented between the two channels to dissipate the vibration effect; and bolts and nuts are used to create an extension between the two U-shaped male and female steel channels. The developed finite element model of the precast wall is subjected to cyclic loads to evaluate the performance of the proposed connection during an imposed dynamic load. Connection performance is then compared with conventional connections based on the energy dissipation, stress, deformation, and concrete damage in the plastic range. The proposed precast connection is capable of exceeding the energy absorption of precast walls subjected to dynamic load, thereby improving its resistance behavior in all principal directions.

  9. Assessment of Molecular Modeling & Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2002-01-03

    This report reviews the development and applications of molecular and materials modeling in Europe and Japan in comparison to those in the United States. Topics covered include computational quantum chemistry, molecular simulations by molecular dynamics and Monte Carlo methods, mesoscale modeling of material domains, molecular-structure/macroscale property correlations like QSARs and QSPRs, and related information technologies like informatics and special-purpose molecular-modeling computers. The panel's findings include the following: The United States leads this field in many scientific areas. However, Canada has particular strengths in DFT methods and homogeneous catalysis; Europe in heterogeneous catalysis, mesoscale, and materials modeling; and Japan in materialsmore » modeling and special-purpose computing. Major government-industry initiatives are underway in Europe and Japan, notably in multi-scale materials modeling and in development of chemistry-capable ab-initio molecular dynamics codes.« less

  10. Robust Flutter Analysis for Aeroservoelastic Systems

    NASA Astrophysics Data System (ADS)

    Kotikalpudi, Aditya

    The dynamics of a flexible air vehicle are typically described using an aeroservoelastic model which accounts for interaction between aerodynamics, structural dynamics, rigid body dynamics and control laws. These subsystems can be individually modeled using a theoretical approach and experimental data from various ground tests can be combined into them. For instance, a combination of linear finite element modeling and data from ground vibration tests may be used to obtain a validated structural model. Similarly, an aerodynamic model can be obtained using computational fluid dynamics or simple panel methods and partially updated using limited data from wind tunnel tests. In all cases, the models obtained for these subsystems have a degree of uncertainty owing to inherent assumptions in the theory and errors in experimental data. Suitable uncertain models that account for these uncertainties can be built to study the impact of these modeling errors on the ability to predict dynamic instabilities known as flutter. This thesis addresses the methods used for modeling rigid body dynamics, structural dynamics and unsteady aerodynamics of a blended wing design called the Body Freedom Flutter vehicle. It discusses the procedure used to incorporate data from a wide range of ground based experiments in the form of model uncertainties within these subsystems. Finally, it provides the mathematical tools for carrying out flutter analysis and sensitivity analysis which account for these model uncertainties. These analyses are carried out for both open loop and controller in the loop (closed loop) cases.

  11. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. The SD module rejects waste heat from the power conversion cycle to space through a pumped-loop, multi-panel, deployable radiator. The baseline radiator configuration was defined during the Space Station conceptual design phase and is a function of the state point and heat rejection requirements of the power conversion unit. Requirements determined by the overall station design such as mass, system redundancy, micrometeoroid and space debris impact survivability, launch packaging, costs, and thermal and structural interaction with other station components have also been design drivers for the radiator configuration. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations. A brief description and discussion of the numerical model, it's capabilities and limitations, and results of the parametric studies performed is presented.

  12. Health Selection and the Process of Social Stratification: The Effect of Childhood Health on Socioeconomic Attainment

    ERIC Educational Resources Information Center

    Haas, Steven A.

    2006-01-01

    This study investigates whether childhood health acts as a mechanism through which socioeconomic status is transferred across generations. The study uses data from the Panel Study of Income Dynamics to track siblings and to estimate fixed-effects models that account for unobserved heterogeneity at the family level. The results demonstrate that…

  13. The Role of Residential Segregation in Explaining Racial Gaps in Childhood and Adolescent Obesity

    ERIC Educational Resources Information Center

    Ryabov, Igor

    2018-01-01

    The present study used nationally representative data from the U.S. Panel Study of Income Dynamics (PSID) merged with census-track data from the American Community Survey (ACS) to model race-ethnic disparities in overweight, obesity, and obesity-related disease among children and adolescents as a function of neighborhood race-ethnic segregation,…

  14. Bachelor's Degree Productivity X-Inefficiency: The Role of State Higher Education Policy

    ERIC Educational Resources Information Center

    Titus, Marvin A.

    2010-01-01

    Using stochastic frontier analysis and dynamic fixed-effects panel modeling, this study examines how changes in the x-inefficiency of bachelor's degree production are influenced by changes in state higher education policy. The findings from this research show that increases in need-based state financial aid help to mitigate the convergence among…

  15. Exit, Voice, and Suffering: Do Couples Adapt to Changing Employment Patterns?

    ERIC Educational Resources Information Center

    Gershuny, Jonathan; Bittman, Michael; Brice, John

    2005-01-01

    What is the long-term effect of the emerging predominance of the dual-earner family? This study uses data from 3 national household panel surveys-the British Household Panel Survey (N= 16,044), the German Socioeconomic Panel (N= 14,164), and the U.S. Panel Study of Income Dynamics (N= 7,423)which provide, for the first time, clear and direct…

  16. Dynamics of vacuum-sealed, double-leaf partitions

    NASA Astrophysics Data System (ADS)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  17. Static vs dynamic settlement and adhesion of diatoms to ship hull coatings.

    PubMed

    Zargiel, Kelli A; Swain, Geoffrey W

    2014-01-01

    Many experiments utilize static immersion tests to evaluate the performance of ship hull coatings. These provide valuable data; however, they do not accurately represent the conditions both the hull and fouling organisms encounter while a ship is underway. This study investigated the effect of static and dynamic immersion on the adhesion and settlement of diatoms to one antifouling coating (BRA 640), four fouling-release coatings (Intersleek(®) 700, Intersleek(®) 900, Hempasil X3, and Dow Corning 3140) and one standard surface (Intergard(®) 240 Epoxy). Differences in community composition were observed between the static and dynamic treatments. Achnanthes longipes was present on all coatings under static immersion, but was not present under dynamic immersion. This was also found for diatoms in the genera Bacillaria and Gyrosigma. Melosira moniformis was the only diatom present under dynamic conditions, but not static conditions. Several common fouling diatom genera were present on panels regardless of treatment: Amphora, Cocconeis, Entomoneis Cylindrotheca, Licmophora, Navicula, Nitzschia, Plagiotropis, and Synedra. Biofilm adhesion, diatom abundance and diatom diversity were found to be significantly different between static and dynamic treatments; however, the difference was dependent on coating and sampling date. Several coatings (Epoxy, DC 3140 and IS 700) had significantly higher biofilm adhesion on dynamically treated panels on at least one of the four sampling dates, while all coatings had significantly higher diatom abundance on at least one sampling date. Diversity was significantly greater on static panels than dynamic panels for Epoxy, IS 700 and HX3 at least once during the sampling period. The results demonstrate how hydrodynamic stress will significantly influence the microfouling community. Dynamic immersion testing is required to fully understand how antifouling surfaces will respond to biofilm formation when subjected to the stresses experienced by a ship underway.

  18. Does finance affect environmental degradation: evidence from One Belt and One Road Initiative region?

    PubMed

    Hafeez, Muhammad; Chunhui, Yuan; Strohmaier, David; Ahmed, Manzoor; Jie, Liu

    2018-04-01

    This paper explores the effects of finance on environmental degradation and investigates environmental Kuznets curve (EKC) of each country among 52 that participate in the One Belt and One Road Initiative (OBORI) using the latest long panel data span (1980-2016). We utilized panel long run econometric models (fully modified ordinary least square and dynamic ordinary least square) to explore the long-run estimates in full panel and country level. Moreover, the Dumitrescu and Hurlin (2012) causality test is applied to examine the short-run causalities among our considered variables. The empirical findings validate the EKC hypothesis; the long-run estimates point out that finance significantly enhances the environmental degradation (negatively in few cases). The short-run heterogeneous causality confirms the bi-directional causality between finance and environmental degradation. The empirical outcomes suggest that policymakers should consider the environmental degradation issue caused by financial development in the One Belt and One Road region.

  19. School Expenditure and School Performance: Evidence from New South Wales Schools Using a Dynamic Panel Analysis

    ERIC Educational Resources Information Center

    Pugh, G.; Mangan, J.; Blackburn, V.; Radicic, D.

    2015-01-01

    This article estimates the effects of school expenditure on school performance in government secondary schools in New South Wales, Australia over the period 2006-2010. It uses dynamic panel analysis to exploit time series data on individual schools that only recently has become available. We find a significant but small effect of expenditure on…

  20. Simulations of the flow past a cylinder using an unsteady double wake model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramos-García, N.; Sarlak, H.; Andersen, S. J.

    2016-06-08

    In the present work, the in-house UnSteady Double Wake Model (USDWM) is used to simulate flows past a cylinder at subcritical, supercritical, and transcritical Reynolds numbers. The flow model is a two-dimensional panel method which uses the unsteady double wake technique to model flow separation and its dynamics. In the present work the separation location is obtained from experimental data and fixed in time. The highly unsteady flow field behind the cylinder is analyzed in detail, comparing the vortex shedding charactericts under the different flow conditions.

  1. Experimental Nonlinear Dynamics and Snap-Through of Post-Buckled Thin Laminated Composite Plates

    NASA Astrophysics Data System (ADS)

    Kim, Han-Gyu

    Modern aerospace systems are increasingly being designed with composite panels and plates to achieve light weight and high specific strength and stiffness. For constrained panels, thermally-induced axial loading may cause buckling of the structure, which can lead to nonlinear and potentially chaotic behavior. When post-buckled composite plates experience snap-through, they are subjected to large-amplitude deformations and in-plane compressive loading. These phenomena pose a potential threat to the structural integrity of composite structures. In this work, the nonlinear dynamic behavior of post-buckled composite plates was investigated experimentally and computationally. For the experimental work, an electrodynamic shaker was used to apply harmonic loads and the dynamic response of plate specimens was measured using a single-point displacement-sensing laser, a double-point laser vibrometer (velocity-sensing), and a set of digital image correlation cameras. Both chaotic and periodic steady-state snap-through behaviors were investigated. The experimental data were used to characterize snap-through behaviors of the post-buckled specimens and their boundaries in the harmonic forcing parameter space. The nonlinear behavior of post-buckled plates was modeled using the classical laminated plate theory (CLPT) and the von Karman strain-displacement relations. The static equilibrium paths of the post-buckled plates were analyzed using an arc-length method with a branch-switching technique. For the dynamic analysis, the nonlinear equations of motion were derived based on CLPT and the nonlinear finite element model of the equations was constructed using the Hermite cubic interpolation functions for both conforming and nonconforming elements. The numerical analyses were conducted using the model and were compared with the experimental data.

  2. Dynamic Network Logistic Regression: A Logistic Choice Analysis of Inter- and Intra-Group Blog Citation Dynamics in the 2004 US Presidential Election

    PubMed Central

    2013-01-01

    Methods for analysis of network dynamics have seen great progress in the past decade. This article shows how Dynamic Network Logistic Regression techniques (a special case of the Temporal Exponential Random Graph Models) can be used to implement decision theoretic models for network dynamics in a panel data context. We also provide practical heuristics for model building and assessment. We illustrate the power of these techniques by applying them to a dynamic blog network sampled during the 2004 US presidential election cycle. This is a particularly interesting case because it marks the debut of Internet-based media such as blogs and social networking web sites as institutionally recognized features of the American political landscape. Using a longitudinal sample of all Democratic National Convention/Republican National Convention–designated blog citation networks, we are able to test the influence of various strategic, institutional, and balance-theoretic mechanisms as well as exogenous factors such as seasonality and political events on the propensity of blogs to cite one another over time. Using a combination of deviance-based model selection criteria and simulation-based model adequacy tests, we identify the combination of processes that best characterizes the choice behavior of the contending blogs. PMID:24143060

  3. Numerical simulation of wind loads on solar panels

    NASA Astrophysics Data System (ADS)

    Su, Kao-Chun; Chung, Kung-Ming; Hsu, Shu-Tsung

    2018-05-01

    Solar panels mounted on the roof of a building or ground are often vulnerable to strong wind loads. This study aims to investigate wind loads on solar panels using computational fluid dynamic (CFD). The results show good agreement with wind tunnel data, e.g. the streamwise distribution of mean surface pressure coefficient of a solar panel. Wind uplift for solar panels with four aspect ratios is evaluated. The effect of inclined angle and clearance (or height) of a solar panel is addressed. It is found that wind uplift of a solar panel increases when there is an increase in inclined angle and the clearance above ground shows an opposite effect.

  4. Poverty dynamics in Germany: Evidence on the relationship between persistent poverty and health behavior.

    PubMed

    Aue, Katja; Roosen, Jutta; Jensen, Helen H

    2016-03-01

    Previous studies have found poverty to be related to lower levels of health due to poor health behavior such as unhealthy eating, smoking or less physical activity. Longer periods of poverty seem to be especially harmful for individual health behavior. Studies have shown that poverty has a dynamic character. Moreover, poverty is increasingly regarded as being a multidimensional construct and one that considers more aspects than income alone. Against this background this paper analyzes the relationship between health behavior and persistent spells of income poverty as well as a combined poverty indicator using data of the German Socio-Economic Panel (2000-2010). Next to cross-sectional logistic regression models we estimate fixed-effects models to analyze the effect of persistent poverty on dietary behavior, tobacco consumption, and physical activity. Cross-sectional results suggest that persistent poverty is related to poor health behavior, particularly regarding tobacco consumption and physical activity. Results also show that multidimensional and dynamic aspects of poverty matter. Complementary panel analyses reveal negative effects for the combined poverty indicator only for dietary behavior in the total sample. However, by analyzing the sample by gender we identify further effects of persistent poverty on health behavior. The analyses show that not only do individuals in poverty but also those in precarious situations show health-damaging behavior more often. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Modeling of Dynamic Behavior of Carbon Fiber-Reinforced Polymer (CFRP) Composite under X-ray Radiation.

    PubMed

    Zhang, Kun; Tang, Wenhui; Fu, Kunkun

    2018-01-16

    Carbon fiber-reinforced polymer (CFRP) composites have been increasingly used in spacecraft applications. Spacecraft may encounter highenergy-density X-ray radiation in outer space that can cause severe damage. To protect spacecraft from such unexpected damage, it is essential to predict the dynamic behavior of CFRP composites under X-ray radiation. In this study, we developed an in-house three-dimensional explicit finite element (FEM) code to investigate the dynamic responses of CFRP composite under X-ray radiation for the first time, by incorporating a modified PUFF equation-of-state. First, the blow-off impulse (BOI) momentum of an aluminum panel was predicted by our FEM code and compared with an existing radiation experiment. Then, the FEM code was utilized to determine the dynamic behavior of a CFRP composite under various radiation conditions. It was found that the numerical result was comparable with the experimental one. Furthermore, the CFRP composite was more effective than the aluminum panel in reducing radiation-induced pressure and BOI momentum. The numerical results also revealed that a 1 keV X-ray led to vaporization of surface materials and a high-magnitude compressive stress wave, whereas a low-magnitude stress wave was generated with no surface vaporization when a 3 keV X-ray was applied.

  6. Risk patterns and correlated brain activities. Multidimensional statistical analysis of FMRI data in economic decision making study.

    PubMed

    van Bömmel, Alena; Song, Song; Majer, Piotr; Mohr, Peter N C; Heekeren, Hauke R; Härdle, Wolfgang K

    2014-07-01

    Decision making usually involves uncertainty and risk. Understanding which parts of the human brain are activated during decisions under risk and which neural processes underly (risky) investment decisions are important goals in neuroeconomics. Here, we analyze functional magnetic resonance imaging (fMRI) data on 17 subjects who were exposed to an investment decision task from Mohr, Biele, Krugel, Li, and Heekeren (in NeuroImage 49, 2556-2563, 2010b). We obtain a time series of three-dimensional images of the blood-oxygen-level dependent (BOLD) fMRI signals. We apply a panel version of the dynamic semiparametric factor model (DSFM) presented in Park, Mammen, Wolfgang, and Borak (in Journal of the American Statistical Association 104(485), 284-298, 2009) and identify task-related activations in space and dynamics in time. With the panel DSFM (PDSFM) we can capture the dynamic behavior of the specific brain regions common for all subjects and represent the high-dimensional time-series data in easily interpretable low-dimensional dynamic factors without large loss of variability. Further, we classify the risk attitudes of all subjects based on the estimated low-dimensional time series. Our classification analysis successfully confirms the estimated risk attitudes derived directly from subjects' decision behavior.

  7. Modeling of Dynamic Behavior of Carbon Fiber-Reinforced Polymer (CFRP) Composite under X-ray Radiation

    PubMed Central

    Zhang, Kun; Tang, Wenhui; Fu, Kunkun

    2018-01-01

    Carbon fiber-reinforced polymer (CFRP) composites have been increasingly used in spacecraft applications. Spacecraft may encounter highenergy-density X-ray radiation in outer space that can cause severe damage. To protect spacecraft from such unexpected damage, it is essential to predict the dynamic behavior of CFRP composites under X-ray radiation. In this study, we developed an in-house three-dimensional explicit finite element (FEM) code to investigate the dynamic responses of CFRP composite under X-ray radiation for the first time, by incorporating a modified PUFF equation-of-state. First, the blow-off impulse (BOI) momentum of an aluminum panel was predicted by our FEM code and compared with an existing radiation experiment. Then, the FEM code was utilized to determine the dynamic behavior of a CFRP composite under various radiation conditions. It was found that the numerical result was comparable with the experimental one. Furthermore, the CFRP composite was more effective than the aluminum panel in reducing radiation-induced pressure and BOI momentum. The numerical results also revealed that a 1 keV X-ray led to vaporization of surface materials and a high-magnitude compressive stress wave, whereas a low-magnitude stress wave was generated with no surface vaporization when a 3 keV X-ray was applied. PMID:29337891

  8. A semi-empirical approach for the modelling and analysis of microvibration sources on-board spacecraft

    NASA Astrophysics Data System (ADS)

    Addari, Daniele

    The term microvibrations generally refers to accelerations in the order of micro-gs and which manifest in a bandwidth from a few Hz up to say 500-1000 Hz. The need to accurately characterise this small disturbances acting on-board modern satellites, thus allowing the design of dedicated minimisation and control systems, is nowadays a major concern for the success of some space missions. The main issues related to microvibrations are the feasibility to analytically describe the microvibration sources using a series of analysis tools and test experiments and the prediction of how the dynamics of the microvibration sources couple with those of the satellite structure. In this thesis, a methodology to facilitate the modelling of these phenomena is described. Two aspects are investigated: the characterisation of the microvibration sources with a semi-empirical procedure which allows derivation of the dynamic mass properties of the source, also including the gyroscopic effect, with a significantly simpler test configuration and lower computational effort compared to traditional approaches; and the modelling of the coupled dynamics when the source is mounted on a representative supporting structure of a spacecraft, including the passive and active effects of the source, which allows prediction of the structure response at any location. The methodology has been defined conducting an extensive study, both experimental and numerical, on a reaction wheel assembly, as this is usually identified as the main contributory factor among all microvibration sources. The contributions to the state-of-the-art made during this work include: i) the development of a cantilever configured reaction wheel analytical model able to reproduce all the configurations in which the mechanism may operate and inclusive of the gyroscopic effect; ii) the reformulation of the coupling theory which allows retrieving the dynamic mass of a microvibration source over a wide range of frequencies and speeds, by means of the experimental data obtained from measurements of the forces generated when the source is rigidly secured on a dynamometric platform and measurements of the accelerations at the source mounting interface in a freefree suspended boundary condition; iii) a practical example of coupling between a reaction wheel and a honeycomb structural panel, where the coupled loads and the panel response have been estimated using the mathematical model and compared with test results, obtained during the physical microvibration testing of the structural panel, showing a good level of agreement when the gyroscopic effect is also taken into account.

  9. Is inequality harmful for the environment? An empirical analysis applied to developing and transition countries.

    PubMed

    Clement, Matthieu; Meunie, Andre

    2010-01-01

    The object of this article is to examine the relation between social inequalities and pollution. First of all we provide a survey demonstrating that, from a theoretical point of view, a decrease in inequality has an uncertain impact on the environment. Second, on the basis of these conceptual considerations, we propose an econometric analysis based on panel data (fixed-effects and dynamic panel data models) concerning developing and transition countries for the 1988-2003 period. We examine specifically the effect of inequality on the extent of local pollution (sulphur dioxide emissions and organic water pollution) by integrating the Gini index into the formulation of the environmental Kuznets' curve.

  10. Technical evaluation report on the fluid dynamics panel Symposium on High Angle of attack aerodynamics. [slender wings, bodies of revolution, and body-wing configurations

    NASA Technical Reports Server (NTRS)

    Polhamus, E. C.

    1979-01-01

    An overview is presented of 32 formal papers and 7 open session papers. Topics covered include: (1) studies of configurations of practical interest; (2) mathematical modelling and supporting investigations of slender wings, bodies of revolution, and body-wing configurations; (3) design methods; and (4) air intakes.

  11. Childhood Income Volatility and Adult Outcomes. University of Kentucky Center for Poverty Research Discussion Paper Series, DP2012-03

    ERIC Educational Resources Information Center

    Hardy, Bradley

    2012-01-01

    Using data linked across generations in the Panel Study of Income Dynamics, I estimate the relationship between exposure to volatile income during childhood and a set of socioeconomic outcomes in adulthood. The empirical framework is an augmented intergenerational income mobility model that includes controls for income volatility. I measure income…

  12. Model-based time-series analysis of FIA panel data absent re-measurements

    Treesearch

    Raymond L. Czaplewski; Mike T. Thompson

    2013-01-01

    An epidemic of lodgepole pine (Pinus contorta) mortality from the mountain pine beetle (Dendroctonus ponderosae) has swept across the Interior West. Aerial surveys monitor the areal extent of the epidemic, but only Forest Inventory and Analysis (FIA) field data support a detailed assessment at the tree level. Dynamics of the lodgepole pine population occur at a more...

  13. Is the Rational Addiction model inherently impossible to estimate?

    PubMed

    Laporte, Audrey; Dass, Adrian Rohit; Ferguson, Brian S

    2017-07-01

    The Rational Addiction (RA) model is increasingly often estimated using individual level panel data with mixed results; in particular, with regard to the implied rate of time discount. This paper suggests that the odd values of the rate of discount frequently found in the literature may in fact be a consequence of the saddle-point dynamics associated with individual level inter-temporal optimization problems. We report the results of Monte Carlo experiments estimating RA-type difference equations that seem to suggest the possibility that the presence of both a stable and an unstable root in the dynamic process may create serious problems for the estimation of RA equations. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Coupled optical-thermal-fluid and structural analyses of novel light-trapping tubular panels for concentrating solar power receivers

    NASA Astrophysics Data System (ADS)

    Ortega, Jesus D.; Christian, Joshua M.; Yellowhair, Julius E.; Ho, Clifford K.

    2015-09-01

    Traditional tubular receivers used in concentrating solar power are formed using tubes connected to manifolds to form panels; which in turn are arranged in cylindrical or rectangular shapes. Previous and current tubular receivers, such as the ones used in Solar One, Solar Two, and most recently the Ivanpah solar plants, have used a black paint coating to increase the solar absorptance of the receiver. However, these coatings degrade over time and must be reapplied, increasing the receiver maintenance cost. This paper presents the thermal efficiency evaluation of novel receiver tubular panels that have a higher effective solar absorptance due to a light-trapping effect created by arranging the tubes in each panel into unique geometric configurations. Similarly, the impact of the incidence angle on the effective solar absorptance and thermal efficiency is evaluated. The overarching goal of this work is to achieve effective solar absorptances of ~90% and thermal efficiencies above 85% without using an absorptance coating. Several panel geometries were initially proposed and were down-selected based on structural analyses considering the thermal and pressure loading requirements of molten salt and supercritical carbon-dioxide receivers. The effective solar absorptance of the chosen tube geometries and panel configurations were evaluated using the ray-tracing modeling capabilities of SolTrace. The thermal efficiency was then evaluated by coupling computational fluid dynamics with the ray-tracing results using ANSYS Fluent. Compared to the base case analysis (flat tubular panel), the novel tubular panels have shown an increase in effective solar absorptance and thermal efficiency by several percentage points.

  15. The dynamics of consumer behaviour. On habit, discontent, and other fish to fry.

    PubMed

    Scholderer, Joachim; Trondsen, Torbjørn

    2008-11-01

    Recent research has drawn attention to the role of past behaviour and habit in the overall structure of consumer behaviour. We argue that in cross-sectional data past behaviour and habit must be confounded with present beliefs and attitudes when the behaviour in question has been enacted numerous times before. To disentangle the effects, longitudinal data were collected from a large panel of Norwegian consumers (effective N=4184) in 1996, 2000, and 2004. Cross-lagged panel analysis indicated that higher consumption of traditional seafood led to increasingly negative evaluations of the product supply. These negative evaluations, in turn, prompted substitution of traditional seafood with newly available, processed seafood products and an increasing dominance of aqua-cultured species. The theoretical discussion focuses on the inability of static models of consumer behaviour (in particular, the theory of planned behaviour) to capture such dynamic effects. Marketing and policy implications related to the changing structure of the seafood market are outlined.

  16. Assessing links between energy consumption, freight transport, and economic growth: evidence from dynamic simultaneous equation models.

    PubMed

    Nasreen, Samia; Saidi, Samir; Ozturk, Ilhan

    2018-06-01

    We investigate this study to examine the relationship between economic growth, freight transport, and energy consumption for 63 developing countries over the period of 1990-2016. In order to make the panel data analysis more homogeneous, we apply the income level of countries to divide the global panel into three sub-panels, namely, lower-middle income countries (LMIC), upper-middle income countries (UMIC), and high-income countries (HIC). Using the generalized method of moments (GMM), the results prove evidence of bidirectional causal relationship between economic growth and freight transport for all selected panels and between economic growth and energy consumption for the high- and upper-middle income panels. For the lower-middle income panel, the causality is unidirectional running from energy consumption to economic growth. Also, the results indicate that the relationship between freight transport and energy use is bidirectional for the high-income countries and unidirectional from freight transport to energy consumption for the upper-middle and lower-middle income countries. Empirical evidence demonstrates the importance of energy for economic activity and rejects the neo-classical assumption that energy is neutral for growth. An important policy recommendation is that there is need of advancements in vehicle technology which can reduce energy intensity from transport sector and improve the energy efficiency in transport activity which in turn allows a greater positive role of transport in global economic activity.

  17. Conference Proceedings of Applications of Mesh Generation to Complex 3-D Configurations Held at the Specialists’ Meeting of the Fluid Dynamics Panel in Leon, Norway on 24th-25th May 1989

    DTIC Science & Technology

    1990-03-01

    Computations, edited by I. Babu ka, 0. C . Zienkiewicz, J. Gago, and E. R. de A. Oliveira ( John Wiley and Sons, New York, 1986), p. 281. [4] B. Wedan and J...GENERATION TO COMPLEX 3-D CONFIGURATIONS ., " c 1- For Papers presented and discussion- held at the Specialists’ Meeting of the Fluid Dynamics Panel in...the Panels which are composed of experts appointed by the National Delegates. the Consultant and Fxch., ., c Progi amime and the Aerospace Applications

  18. Technical Evaluation Report on the Flight Mechanics Panel Symposium on the Flight Mechanics Panel Symposium on Space Vehicle Flight Mechanics (La Mecanique du Vol des Vehicules Spatiaux)

    DTIC Science & Technology

    1990-11-01

    control and including final recovery for a wide range of space vehicles from tethered satellite systems and flexible space structures to the space plane...flight mechanics, members from the Fluid Dynamics Panel, the Guidance and Control Panel, the Propulsion and Energetics Panel and the Structures and... Structures and Materials which should be overcome for a successful realization of a human Space Transportation System in the 21st century. He

  19. Solid earth science in the 1990s. Volume 2: Panel reports

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This is the second volume of a three-volume report. Volume 2, Panel Reports, outlines a plan for solid Earth science research for the next decade. The science panels addressed the following fields: plate motion and deformation, lithospheric structure and evolution, volcanology, Earth structure and dynamics, Earth rotation and reference frames, and geopotential fields.

  20. Five Thousand American Families--Patterns of Economic Progress. Volume III: Analyses of the First Six Years of the Panel Study of Income Dynamics.

    ERIC Educational Resources Information Center

    Duncan, Greg J., Ed.; Morgan, James N., Ed.

    This volume focuses on the main issues to which the Panel Study of Income Dynamics was directed--the determinants of the changing economic fortunes of black and white families. The economic status of the families studied, patterns of transition, and changes in the structure of the families and their relationship to changes in economic activity are…

  1. Dynamics of Adult Participation in Part-Time Education and Training: Results from the British Household Panel Survey

    ERIC Educational Resources Information Center

    Macleod, Flora; Lambe, Paul

    2008-01-01

    In this paper we analyse the dynamics of adult participation in part-time education and training throughout the 90s and into the 2000s using data from 14 waves (1992-2005) of the British Household Panel Survey (BHPS). We study the volume (stocks) of participation and non-participation and the gross flows between states. This analysis provides a…

  2. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao Wei; Li Dan; Reznik, Alla

    2005-09-15

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoidmore » pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.« less

  3. Prediction and Measurement of the Vibration and Acoustic Radiation of Panels Subjected to Acoustic Loading

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Rizzi, Stephen A.

    1995-01-01

    Interior noise and sonic fatigue are important issues in the development and design of advanced subsonic and supersonic aircraft. Conventional aircraft typically employ passive treatments, such as constrained layer damping and acoustic absorption materials, to reduce the structural response and resulting acoustic levels in the aircraft interior. These techniques require significant addition of mass and only attenuate relatively high frequency noise transmitted through the fuselage. Although structural acoustic coupling is in general very important in the study of aircraft fuselage interior noise, analysis of noise transmission through a panel supported in an infinite rigid baffle (separating two semi-infinite acoustic domains) can be useful in evaluating the effects of active/adaptive materials, complex loading, etc. Recent work has been aimed at developing adaptive and/or active methods of controlling the structural acoustic response of panels to reduce the transmitted noise1. A finite element formulation was recently developed to study the dynamic response of shape memory alloy (SMA) hybrid composite panels (conventional composite panel with embedded SMA fibers) subject to combined acoustic and thermal loads2. Further analysis has been performed to predict the far-field acoustic radiation using the finite element dynamic panel response prediction3. The purpose of the present work is to validate the panel vibration and acoustic radiation prediction methods with baseline experimental results obtained from an isotropic panel, without the effect of SMA.

  4. Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak

    NASA Astrophysics Data System (ADS)

    Agarwal, Ashish; Irtaza, Hassan

    2018-06-01

    Analysis of airflow through elevated windbreaks is presented in this paper. Permeable nets and impermeable film increases considerable wind forces on the windbreaks which is susceptible to damage during high wind. A comprehensive numerical investigation has been carried out to analyze the effects of wind on standalone elevated windbreak clad with various permeable nets and an impermeable film. The variation of airflow behavior around and through permeable nets and airflow behavior around impermeable film were also been investigated. Computational fluid dynamics techniques using Reynolds Averaged Navier-Stokes equations has been used to predict the wind force coefficient and thus wind forces on panels supporting permeable nets and impermeable film for turbulent wind flow. Elevated windbreak panels were analyzed for seven different permeable nets having various solidity ratio, specific permeability and aerodynamic resistant coefficients. The permeable nets were modelled as porous jump media obeying Forchheimer's law and an impermeable film modelled as rigid wall.

  5. The effects of HIV/AIDS on economic growth and human capitals: a panel study evidence from Asian countries.

    PubMed

    Roy, Shongkour

    2014-01-01

    Human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS) affects economic growths by reducing the human capitals are among the most poorly understood aspect of the AIDS epidemic. This article analyzes the effects of the prevalence of HIV and full-blown AIDS on a country's human capitals and economic growths. Using a fixed effect model for panel data 1990-2010 from the Asia, I explored the dynamic relationships among HIV/AIDS, economic growths, and human capitals within countries over time. The econometric effects concerned that HIV/AIDS plays an important role in the field of economic growths and it is measured as a change in real gross domestic product (GDP) per capita and human capitals. The modeling results for the Asian countries indicates HIV/AIDS prevalence that has a hurtful effect on GDP per capita by reducing human capitals within countries over time.

  6. The relationship between pollutant emissions, renewable energy, nuclear energy and GDP: empirical evidence from 18 developed and developing countries

    NASA Astrophysics Data System (ADS)

    Ben Mbarek, Mounir; Saidi, Kais; Amamri, Mounira

    2018-07-01

    This document investigates the causal relationship between nuclear energy (NE), pollutant emissions (CO2 emissions), gross domestic product (GDP) and renewable energy (RE) using dynamic panel data models for a global panel consisting of 18 countries (developed and developing) covering the 1990-2013 period. Our results indicate that there is a co-integration between variables. The unit root test suggests that all the variables are stationary in first differences. The paper further examines the link using the Granger causality analysis of vector error correction model, which indicates a unidirectional relationship running from GDP per capita to pollutant emissions for the developed and developing countries. However, there is a unidirectional causality from GDP per capita to RE in the short and long run. This finding confirms the conservation hypothesis. Similarly, there is no causality between NE and GDP per capita.

  7. Numerical Investigation of the Turbulent Wind Flow Through Elevated Windbreak

    NASA Astrophysics Data System (ADS)

    Agarwal, Ashish; Irtaza, Hassan

    2018-04-01

    Analysis of airflow through elevated windbreaks is presented in this paper. Permeable nets and impermeable film increases considerable wind forces on the windbreaks which is susceptible to damage during high wind. A comprehensive numerical investigation has been carried out to analyze the effects of wind on standalone elevated windbreak clad with various permeable nets and an impermeable film. The variation of airflow behavior around and through permeable nets and airflow behavior around impermeable film were also been investigated. Computational fluid dynamics techniques using Reynolds Averaged Navier-Stokes equations has been used to predict the wind force coefficient and thus wind forces on panels supporting permeable nets and impermeable film for turbulent wind flow. Elevated windbreak panels were analyzed for seven different permeable nets having various solidity ratio, specific permeability and aerodynamic resistant coefficients. The permeable nets were modelled as porous jump media obeying Forchheimer's law and an impermeable film modelled as rigid wall.

  8. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    PubMed Central

    Yang, Shu; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606

  9. Dynamic response and optimal design of curved metallic sandwich panels under blast loading.

    PubMed

    Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  10. Health and Wealth of Elderly Couples: Causality Tests Using Dynamic Panel Data Models*

    PubMed Central

    Michaud, Pierre-Carl; van Soest, Arthur

    2010-01-01

    A positive relationship between socio-economic status (SES) and health, the “health-wealth gradient”, is repeatedly found in many industrialized countries. This study analyzes competing explanations for this gradient: causal effects from health to wealth (health causation) and causal effects from wealth to health (wealth or social causation). Using six biennial waves of couples aged 51–61 in 1992 from the U.S. Health and Retirement Study, we test for causality in panel data models incorporating unobserved heterogeneity and a lag structure supported by specification tests. In contrast to tests relying on models with only first order lags or without unobserved heterogeneity, these tests provide no evidence of causal wealth health effects. On the other hand, we find strong evidence of causal effects from both spouses’ health on household wealth. We also find an effect of the husband’s health on the wife’s mental health, but no other effects from one spouse’s health to health of the other spouse. PMID:18513809

  11. Final Report for Dynamic Models for Causal Analysis of Panel Data. Methods for Temporal Analysis. Part I, Chapter 1.

    ERIC Educational Resources Information Center

    Hannan, Michael T.; Tuma, Nancy Brandon

    This document is part of a series of chapters described in SO 011 759. Working from the premise that temporal analysis is indispensable for the study of change, the document examines major alternatives in research design of this nature. Five sections focus on the features, advantages, and limitations of temporal analysis. Four designs which…

  12. Moving Out: Transition to Non-Residence among Resident Fathers in the United States, 1968-1997

    ERIC Educational Resources Information Center

    Gupta, Sanjiv; Smock, Pamela J.; Manning, Wendy D.

    2004-01-01

    This article provides the first individual-level estimates of the change over time in the probability of non-residence for initially resident fathers in the United States. Drawing on the 1968-1997 waves of the Panel Study of Income Dynamics, we used discrete-time event history models to compute the probabilities of non-residence for six 5-year…

  13. Panel Resource Management (PRM) Implementation and Effects within Safety Review Panel Settings and Dynamics

    NASA Technical Reports Server (NTRS)

    Taylor, Robert W.; Nash, Sally K.

    2007-01-01

    While technical training and advanced degree's assure proficiency at specific tasks within engineering disciplines, they fail to address the potential for communication breakdown and decision making errors familiar to multicultural environments where language barriers, intimidating personalities and interdisciplinary misconceptions exist. In an effort to minimize these pitfalls to effective panel review, NASA's lead safety engineers to the ISS Safety Review Panel (SRP), and Payload Safety Review Panel (PSRP) initiated training with their engineers, in conjunction with the panel chairs, and began a Panel Resource Management (PRM) program. The intent of this program focuses on the ability to reduce the barriers inhibiting effective participation from all panel attendees by bolstering participants confidence levels through increased communication skills, situational awareness, debriefing, and a better technical understanding of requirements and systems.

  14. Slewing control experiment for a flexible panel

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan

    1987-01-01

    Technology areas are identified in which better analytical and/or experimental methods are needed to adequately and accurately control the dynamic responses of multibody space platforms such as the space station. A generic space station solar panel is used to experimentally evaluate current control technologies. Active suppression of solar panel vibrations induced by large angle maneuvers is studied with a torque actuator at the root of the solar panel. These active suppression tests will identify the hardware requirements and adequacy of various controller designs.

  15. PAN AIR: A computer program for predicting subsonic or supersonic linear potential flows about arbitrary configurations using a higher order panel method. Volume 1: Theory document (version 1.1)

    NASA Technical Reports Server (NTRS)

    Magnus, A. E.; Epton, M. A.

    1981-01-01

    Panel aerodynamics (PAN AIR) is a system of computer programs designed to analyze subsonic and supersonic inviscid flows about arbitrary configurations. A panel method is a program which solves a linear partial differential equation by approximating the configuration surface by a set of panels. An overview of the theory of potential flow in general and PAN AIR in particular is given along with detailed mathematical formulations. Fluid dynamics, the Navier-Stokes equation, and the theory of panel methods were also discussed.

  16. The Space Station Photovoltaic Panels Plasma Interaction Test Program: Test plan and results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1989-01-01

    The Plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  17. The Space Station photovoltaic panels plasma interaction test program - Test plan and results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Felder, Marian C.; Sater, Bernard L.; Staskus, John V.

    1990-01-01

    The plasma Interaction Test performed on two space station solar array panels is addressed. This includes a discussion of the test requirements, test plan, experimental set-up, and test results. It was found that parasitic current collection was insignificant (0.3 percent of the solar array delivered power). The measured arcing threshold ranged from -210 to -457 V with respect to the plasma potential. Furthermore, the dynamic response of the panels showed the panel time constant to range between 1 and 5 microsec, and the panel capacitance to be between .01 and .02 microF.

  18. Convective dynamics - Panel report

    NASA Technical Reports Server (NTRS)

    Carbone, Richard; Foote, G. Brant; Moncrieff, Mitch; Gal-Chen, Tzvi; Cotton, William; Heymsfield, Gerald

    1990-01-01

    Aspects of highly organized forms of deep convection at midlatitudes are reviewed. Past emphasis in field work and cloud modeling has been directed toward severe weather as evidenced by research on tornadoes, hail, and strong surface winds. A number of specific issues concerning future thrusts, tactics, and techniques in convective dynamics are presented. These subjects include; convective modes and parameterization, global structure and scale interaction, convective energetics, transport studies, anvils and scale interaction, and scale selection. Also discussed are analysis workshops, four-dimensional data assimilation, matching models with observations, network Doppler analyses, mesoscale variability, and high-resolution/high-performance Doppler. It is also noted, that, classical surface measurements and soundings, flight-level research aircraft data, passive satellite data, and traditional photogrammetric studies are examples of datasets that require assimilation and integration.

  19. The Influence of Model Complexity on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jones, Lisa E. (Technical Monitor); Stockwell, Alan E.

    2005-01-01

    LS-DYNA simulations were conducted to study the influence of model complexity on the response of a typical Reinforced Carbon-Carbon (RCC) panel to a foam impact at a location approximately midway between the ribs. A structural model comprised of Panels 10, 11, and TSeal 11 was chosen as the baseline model for the study. A simulation was conducted with foam striking Panel 10 at Location 4 at an alpha angle of 10 degrees, with an impact velocity of 1000 ft/sec. A second simulation was conducted after removing Panel 11 from the model, and a third simulation was conducted after removing both Panel 11 and T-Seal 11. All three simulations showed approximately the same response for Panel 10, and the simplified simulation model containing only Panel 10 was shown to be significantly less expensive to execute than the other two more complex models.

  20. The reciprocal relationship between work characteristics and employee burnout and engagement: a longitudinal study of firefighters.

    PubMed

    Ângelo, R P; Chambel, M J

    2015-04-01

    The paradigm of this study is positive occupational psychology, with the job demands-resources model as the research model and the Conservation of Resources theory as the general stress theory. The research design analyses the job demands-resources model's dynamic nature with normal and reversed causation effects between work characteristics and psychological well-being among Portuguese firefighters. In addition, we analyse a positive (engagement) dimension and a negative (burnout) dimension in the firefighters' well-being, because previously, studies have merely focused on the strain or stress of these professionals. The research questionnaire was distributed to a sample of 651 firefighters, and a two-wave full panel design was used. Cross-lagged panel analyses indicated that the causal direction of the relationship between organizational demands and burnout is reciprocal. Also, we found that the reciprocal model, including cross-lagged reciprocal relationships between organizational demands/supervisory support and burnout/engagement, respectively, is what fits the data best. Practical implications to develop organizational change programmes and suggestions for future research regarding the promotion of occupational health are discussed. Copyright © 2013 John Wiley & Sons, Ltd.

  1. Supersonic Panel Flutter Test Results for Flat Fiber-Glass Sandwich Panels with Foamed Cores

    NASA Technical Reports Server (NTRS)

    Tuovila, W. J.; Presnell, John G., Jr.

    1961-01-01

    Flutter tests have been made on flat panels having a 1/4 inch-thick plastic-foam core covered with thin fiber-glass laminates. The testing was done in the Langley Unitary Plan wind tunnel at Mach numbers from 1.76 t o 2.87. The flutter boundary for these panels was found to be near the flutter boundary of thin metal panels when compared on the basis of an equivalent panel stiffness. The results also demonstrated that the depth of the cavity behind the panel has a pronounced influence on flutter. Changing the cavity depth from 1 1/2 inches to 1/2 inch reduced the dynamic pressure at start of flutter by 40 percent. No flutter was obtained when the spacers on the back of the panel were against the bottom of the cavity.

  2. Dynamic-Data Driven Modeling of Uncertainties and 3D Effects of Porous Shape Memory Alloys

    DTIC Science & Technology

    2014-02-03

    takes longer since cooling is required. In fact, five to ten times longer is common. Porous SMAs using an appropriately cold liquid is one of the...deploying solar panels, space station component joining, vehicular docking, and numerous Mars rover components. On airplanes or drones, jet engine...Presho, G. Li. Generalized multiscale finite element methods. Nonlinear elliptic equations, Communication in Computational Physics, 15 (2014), pp

  3. The Effect of Poverty, Gender Exclusion, and Child Labor on Out-of-School Rates for Female Children

    ERIC Educational Resources Information Center

    Laborda Castillo, Leopoldo; Sotelsek Salem, Daniel; Sarr, Leopold Remi

    2014-01-01

    In this article, the authors analyze the effect of poverty, social exclusion, and child labor on out-of-school rates for female children. This empirical study is based on a dynamic panel model for a sample of 216 countries over the period 1970 to 2010. Results based on the generalized method of moments (GMM) of Arellano and Bond (1991) and the…

  4. Integrated analysis on static/dynamic aeroelasticity of curved panels based on a modified local piston theory

    NASA Astrophysics Data System (ADS)

    Yang, Zhichun; Zhou, Jian; Gu, Yingsong

    2014-10-01

    A flow field modified local piston theory, which is applied to the integrated analysis on static/dynamic aeroelastic behaviors of curved panels, is proposed in this paper. The local flow field parameters used in the modification are obtained by CFD technique which has the advantage to simulate the steady flow field accurately. This flow field modified local piston theory for aerodynamic loading is applied to the analysis of static aeroelastic deformation and flutter stabilities of curved panels in hypersonic flow. In addition, comparisons are made between results obtained by using the present method and curvature modified method. It shows that when the curvature of the curved panel is relatively small, the static aeroelastic deformations and flutter stability boundaries obtained by these two methods have little difference, while for curved panels with larger curvatures, the static aeroelastic deformation obtained by the present method is larger and the flutter stability boundary is smaller compared with those obtained by the curvature modified method, and the discrepancy increases with the increasing of curvature of panels. Therefore, the existing curvature modified method is non-conservative compared to the proposed flow field modified method based on the consideration of hypersonic flight vehicle safety, and the proposed flow field modified local piston theory for curved panels enlarges the application range of piston theory.

  5. An overview of the crash dynamics failure behavior of metal and composite aircraft structures

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.; Jones, Lisa E.

    1991-01-01

    An overview of failure behavior results is presented from some of the crash dynamics research conducted with concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. Experimental and analytical data are presented that indicate some general trends in the failure behavior of a class of composite structures that includes fuselage panels, individual fuselage sections, fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame stringer structure. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  6. The development of a closed-loop flight controller with panel method integration for gust alleviation using biomimetic feathers on aircraft wings

    NASA Astrophysics Data System (ADS)

    Blower, Christopher J.; Lee, Woody; Wickenheiser, Adam M.

    2012-04-01

    This paper presents the development of a biomimetic closed-loop flight controller that integrates gust alleviation and flight control into a single distributed system. Modern flight controllers predominantly rely on and respond to perturbations in the global states, resulting in rotation or displacement of the entire aircraft prior to the response. This bio-inspired gust alleviation system (GAS) employs active deflection of electromechanical feathers that react to changes in the airflow, i.e. the local states. The GAS design is a skeletal wing structure with a network of featherlike panels installed on the wing's surfaces, creating the airfoil profile and replacing the trailing-edge flaps. In this study, a dynamic model of the GAS-integrated wing is simulated to compute gust-induced disturbances. The system implements continuous adjustment to flap orientation to perform corrective responses to inbound gusts. MATLAB simulations, using a closed-loop LQR integrated with a 2D adaptive panel method, allow analysis of the morphing structure's aerodynamic data. Non-linear and linear dynamic models of the GAS are compared to a traditional single control surface baseline wing. The feedback loops synthesized rely on inertial changes in the global states; however, variations in number and location of feather actuation are compared. The bio-inspired system's distributed control effort allows the flight controller to interchange between the single and dual trailing edge flap profiles, thereby offering an improved efficiency to gust response in comparison to the traditional wing configuration. The introduction of aero-braking during continuous gusting flows offers a 25% reduction in x-velocity deviation; other flight parameters can be reduced in magnitude and deviation through control weighting optimization. Consequently, the GAS demonstrates enhancements to maneuverability and stability in turbulent intensive environments.

  7. Dynamic modeling, experimental evaluation, optimal design and control of integrated fuel cell system and hybrid energy systems for building demands

    NASA Astrophysics Data System (ADS)

    Nguyen, Gia Luong Huu

    Fuel cells can produce electricity with high efficiency, low pollutants, and low noise. With the advent of fuel cell technologies, fuel cell systems have since been demonstrated as reliable power generators with power outputs from a few watts to a few megawatts. With proper equipment, fuel cell systems can produce heating and cooling, thus increased its overall efficiency. To increase the acceptance from electrical utilities and building owners, fuel cell systems must operate more dynamically and integrate well with renewable energy resources. This research studies the dynamic performance of fuel cells and the integration of fuel cells with other equipment in three levels: (i) the fuel cell stack operating on hydrogen and reformate gases, (ii) the fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit, and (iii) the hybrid energy system consisting of photovoltaic panels, fuel cell system, and energy storage. In the first part, this research studied the steady-state and dynamic performance of a high temperature PEM fuel cell stack. Collaborators at Aalborg University (Aalborg, Denmark) conducted experiments on a high temperature PEM fuel cell short stack at steady-state and transients. Along with the experimental activities, this research developed a first-principles dynamic model of a fuel cell stack. The dynamic model developed in this research was compared to the experimental results when operating on different reformate concentrations. Finally, the dynamic performance of the fuel cell stack for a rapid increase and rapid decrease in power was evaluated. The dynamic model well predicted the performance of the well-performing cells in the experimental fuel cell stack. The second part of the research studied the dynamic response of a high temperature PEM fuel cell system consisting of a fuel reformer, a fuel cell stack, and a heat recovery unit with high thermal integration. After verifying the model performance with the obtained experimental data, the research studied the control of airflow to regulate the temperature of reactors within the fuel processor. The dynamic model provided a platform to test the dynamic response for different control gains. With sufficient sensing and appropriate control, a rapid response to maintain the temperature of the reactor despite an increase in power was possible. The third part of the research studied the use of a fuel cell in conjunction with photovoltaic panels, and energy storage to provide electricity for buildings. This research developed an optimization framework to determine the size of each device in the hybrid energy system to satisfy the electrical demands of buildings and yield the lowest cost. The advantage of having the fuel cell with photovoltaic and energy storage was the ability to operate the fuel cell at baseload at night, thus reducing the need for large battery systems to shift the solar power produced in the day to the night. In addition, the dispatchability of the fuel cell provided an extra degree of freedom necessary for unforeseen disturbances. An operation framework based on model predictive control showed that the method is suitable for optimizing the dispatch of the hybrid energy system.

  8. Modeling the Effects of Solar Cell Distribution on Optical Cross Section for Solar Panel Simulation

    DTIC Science & Technology

    2012-09-01

    cell material. The solar panel was created as a CAD model and simulated with the imaging facility parameters with TASAT. TASAT uses a BRDF to apply...1 MODELING THE EFFECTS OF SOLAR CELL DISTRIBUTION ON OPTICAL CROSS SECTION FOR SOLAR PANEL SIMULATION Kelly Feirstine Meiling Klein... model of a solar panel with various solar cell tip and tilt distribution statistics. Modeling a solar panel as a single sheet of “solar cell” material

  9. Thermally-Induced Structural Disturbances of Rigid Panel Solar Arrays

    NASA Technical Reports Server (NTRS)

    Johnston, John D.; Thornton, Earl A.

    1997-01-01

    The performance of a significant number of spacecraft has been impacted negatively by attitude disturbances resulting from thermally-induced motions of flexible structures. Recent examples of spacecraft affected by these disturbances include the Hubble Space Telescope (HST) and the Upper Atmosphere Research Satellite (UARS). Thermally-induced structural disturbances occur as the result of rapid changes in thermal loading typically initiated as a satellite exits or enters the Earth's shadow. Temperature differences in flexible appendages give rise to structural deformations, which in turn result in disturbance torques reacting back on the spacecraft. Structures which have proven susceptible to these disturbances include deployable booms and solar arrays. This paper investigates disturbances resulting from thermally-induced deformations of rigid panel solar arrays. An analytical model for the thermal-structural response of the solar array and the corresponding disturbance torque are presented. The effect of these disturbances on the attitude dynamics of a simple spacecraft is then investigated using a coupled system of governing equations which includes the effects of thermally-induced deformations. Numerical results demonstrate the effect of varying solar array geometry on the dynamic response of the system.

  10. The dynamics of radical right-wing populist party preferences and perceived group threat: A comparative panel analysis of three competing hypotheses in the Netherlands and Germany.

    PubMed

    Berning, Carl C; Schlueter, Elmar

    2016-01-01

    Existing cross-sectional research considers citizens' preferences for radical right-wing populist (RRP) parties to be centrally driven by their perception that immigrants threaten the well-being of the national ingroup. However, longitudinal evidence for this relationship is largely missing. To remedy this gap in the literature, we developed three competing hypotheses to investigate: (a) whether perceived group threat is temporally prior to RRP party preferences, (b) whether RRP party preferences are temporally prior to perceived group threat, or (c) whether the relation between perceived group threat and RRP party preferences is bidirectional. Based on multiwave panel data from the Netherlands for the years 2008-2013 and from Germany spanning the period 1994-2002, we examined the merits of these hypotheses using autoregressive cross-lagged structural equation models. The results show that perceptions of threatened group interests precipitate rather than follow citizens' preferences for RRP parties. These findings help to clarify our knowledge of the dynamic structure underlying RRP party preferences. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Five Thousand American Families--Patterns of Economic Progress. Volume V: Components of Change in Family Well-Being and Other Analyses of the First Eight Years of the Panel Study of Income Dynamics.

    ERIC Educational Resources Information Center

    Duncan, Greg J., Ed.; Morgan, James N., Ed.

    This volume contains analyses of data from the first eight waves of the Panel Study of Income Dynamics. The first part of this volume attempts to evaluate the relative importance of family composition changes, labor force participation decisions, and changes in earnings for the black and white families studied. The second part deals with a variety…

  12. Mechanical Mixer for Rudder/Braking Wedge

    NASA Technical Reports Server (NTRS)

    Grimm, D.

    1985-01-01

    Right and left rudder panels moved separately. Mechanical mixer enables panels of two-panel rudder to rotate in same direction for steering or in opposite directions for dynamic braking. Steering and braking inputs separate so any combination of steering and braking motions executed simultaneously. Developed for aerodynamic braking of Space Shuttle orbiter, steering/braking drive train and rudder arrangement used for similar purposes on aircraft, thereby reducing sizes of thrust reversers.

  13. From single cells to tissue architecture-a bottom-up approach to modelling the spatio-temporal organisation of complex multi-cellular systems.

    PubMed

    Galle, J; Hoffmann, M; Aust, G

    2009-01-01

    Collective phenomena in multi-cellular assemblies can be approached on different levels of complexity. Here, we discuss a number of mathematical models which consider the dynamics of each individual cell, so-called agent-based or individual-based models (IBMs). As a special feature, these models allow to account for intracellular decision processes which are triggered by biomechanical cell-cell or cell-matrix interactions. We discuss their impact on the growth and homeostasis of multi-cellular systems as simulated by lattice-free models. Our results demonstrate that cell polarisation subsequent to cell-cell contact formation can be a source of stability in epithelial monolayers. Stroma contact-dependent regulation of tumour cell proliferation and migration is shown to result in invasion dynamics in accordance with the migrating cancer stem cell hypothesis. However, we demonstrate that different regulation mechanisms can equally well comply with present experimental results. Thus, we suggest a panel of experimental studies for the in-depth validation of the model assumptions.

  14. Investigation to advance prediction techniques of the low-speed aerodynamics of V/STOL aircraft

    NASA Technical Reports Server (NTRS)

    Maskew, B.; Strash, D.; Nathman, J.; Dvorak, F. A.

    1985-01-01

    A computer program, VSAERO, has been applied to a number of V/STOL configurations with a view to advancing prediction techniques for the low-speed aerodynamic characteristics. The program couples a low-order panel method with surface streamline calculation and integral boundary layer procedures. The panel method--which uses piecewise constant source and doublet panels-includes an iterative procedure for wake shape and models boundary layer displacement effect using the source transpiration technique. Certain improvements to a basic vortex tube jet model were installed in the code prior to evaluation. Very promising results were obtained for surface pressures near a jet issuing at 90 deg from a flat plate. A solid core model was used in the initial part of the jet with a simple entrainment model. Preliminary representation of the downstream separation zone significantly improve the correlation. The program accurately predicted the pressure distribution inside the inlet on the Grumman 698-411 design at a range of flight conditions. Furthermore, coupled viscous/potential flow calculations gave very close correlation with experimentally determined operational boundaries dictated by the onset of separation inside the inlet. Experimentally observed degradation of these operational boundaries between nacelle-alone tests and tests on the full configuration were also indicated by the calculation. Application of the program to the General Dynamics STOL fighter design were equally encouraging. Very close agreement was observed between experiment and calculation for the effects of power on pressure distribution, lift and lift curve slope.

  15. Characterization and application of shape-changing panels with embedded rubber muscle actuators

    NASA Astrophysics Data System (ADS)

    Peel, Larry D.; Molina, Enrique, Jr.; Baur, Jeffery W.; Justice, Ryan S.

    2013-09-01

    Cylindrical soft actuators efficiently convert fluid pressure into mechanical energy and thus offer excellent force-to-weight ratios while behaving similar to biological muscle. McKibben-like rubber muscle actuators (RMAs) were embedded into neat elastomer and act as shape-changing panels. The effect of actuator spacing and modeling methods on the performance of these panels was investigated. Simulations from nonlinear finite element models were compared with results from test panels containing four RMAs that were spaced 0, 1/2, 1, and 1.3 RMA diameters apart. Nonlinear ‘laminated plate’ and ‘rod & plate’ finite element (FE) models of individual (non-embedded) RMAs and panels with embedded RMAs were developed. Due to model complexity and resource limitations, several simplified 2D and 3D FE model types, including a 3D ‘Unit Cell’ were created. After subtracting the ‘activation pressure’ needed to initiate contraction, all the models for the individual actuators produced forces consistent with experimental values, but only the more resource-intensive rod & plate models replicated fiber/braid re-orientation and produced more realistic values for actuator contraction. For panel models, the Full 3D rod & plate model appeared to be the most accurate for panel contraction and force, but was not completed for all configurations due to resource limitations. Most embedded panel FE models produced maximum panel actuator force and maximum contraction when the embedded actuators are spaced between 1/2 and 1 diameter apart. Seven panels with embedded RMAs were experimentally fabricated and tested. Panel tests confirmed that maximum or optimal performance occurs when the RMAs are spaced between 1/2 and 1 diameter apart. The tested actuator force was fairly constant in this range, suggesting that minor design or manufacturing differences may not significantly affect panel performance. However, the amount of axial force and contraction decreases significantly at greater than optimal spacing. This multi-faceted work provides useful design, simulation fabrication, and test characteristics for shape-adaptive panels. Bending panels were demonstrated but not modeled. Developers of future shape-adaptive air vehicles have been provided with additional simulation and design tools.

  16. Clinical time series prediction: Toward a hierarchical dynamical system framework.

    PubMed

    Liu, Zitao; Hauskrecht, Milos

    2015-09-01

    Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. We tested our framework by first learning the time series model from data for the patients in the training set, and then using it to predict future time series values for the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Pulsed differential holographic measurements of vibration modes of high temperature panels

    NASA Technical Reports Server (NTRS)

    Evensen, D. A.; Aprahamian, R.; Overoye, K. R.

    1972-01-01

    Holography is a lensless imaging technique which can be applied to measure static or dynamic displacements of structures. Conventional holography cannot be readily applied to measure vibration modes of high-temperature structures, due to difficulties caused by thermal convection currents. The present report discusses the use of pulsed differential holography, which is a technique for recording structural motions in the presence of random fluctuations such as turbulence. An analysis of the differential method is presented, and demonstration experiments were conducted using heated stainless steel plates. Vibration modes were successfully recorded for the heated plates at temperatures of 1000, 1600, and 2000 F. The technique appears promising for such future measurments as vibrations of the space shuttle TPS panels or recording flutter of aeroelastic models in a wind-tunnel.

  18. Time is money: Rational life cycle inertia and the delegation of investment management.

    PubMed

    Kim, Hugh Hoikwang; Maurer, Raimond; Mitchell, Olivia S

    2016-08-01

    Many households display inertia in investment management over their life cycles. Our calibrated dynamic life cycle portfolio choice model can account for such an apparently 'irrational' outcome, by incorporating the fact that investors must forgo acquiring job-specific skills when they spend time managing their money, and their efficiency in financial decision making varies with age. Resulting inertia patterns mesh well with findings from prior studies and our own empirical results from Panel Study of Income Dynamics (PSID) data. We also analyze how people optimally choose between actively managing their assets versus delegating the task to financial advisors. Delegation proves valuable to both the young and the old. Our calibrated model quantifies welfare gains from including investment time and money costs as well as delegation in a life cycle setting.

  19. SMA Hybrid Composites for Dynamic Response Abatement Applications

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2000-01-01

    A recently developed constitutive model and a finite element formulation for predicting the thermomechanical response of Shape Memory Alloy (SMA) hybrid composite (SMAHC) structures is briefly described. Attention is focused on constrained recovery behavior in this study, but the constitutive formulation is also capable of modeling restrained or free recovery. Numerical results are shown for glass/epoxy panel specimens with embedded Nitinol actuators subjected to thermal and acoustic loads. Control of thermal buckling, random response, sonic fatigue, and transmission loss are demonstrated and compared to conventional approaches including addition of conventional composite layers and a constrained layer damping treatment. Embedded SMA actuators are shown to be significantly more effective in dynamic response abatement applications than the conventional approaches and are attractive for combination with other passive and/or active approaches.

  20. Power conversion and control methods for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  1. First order coupled dynamic model of flexible space structures with time-varying configurations

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Li, Dongxu; Jiang, Jianping

    2017-03-01

    This paper proposes a first order coupled dynamic modeling method for flexible space structures with time-varying configurations for the purpose of deriving the characteristics of the system. The model considers the first time derivative of the coordinate transformation matrix between the platform's body frame and the appendage's floating frame. As a result it can accurately predict characteristics of the system even if flexible appendages rotate with complex trajectory relative to the rigid part. In general, flexible appendages are fixed on the rigid platform or forced to rotate with a slow angular velocity. So only the zero order of the transformation matrix is considered in conventional models. However, due to neglecting of time-varying terms of the transformation matrix, these models introduce severe error when appendages, like antennas, for example, rotate with a fast speed relative to the platform. The first order coupled dynamic model for flexible space structures proposed in this paper resolve this problem by introducing the first time derivative of the transformation matrix. As a numerical example, a central core with a rotating solar panel is considered and the results are compared with those given by the conventional model. It has been shown that the first order terms are of great importance on the attitude of the rigid body and dynamic response of the flexible appendage.

  2. Composite panel development at JPL

    NASA Technical Reports Server (NTRS)

    Mcelroy, Paul; Helms, Rich

    1988-01-01

    Parametric computer studies can be use in a cost effective manner to determine optimized composite mirror panel designs. An InterDisciplinary computer Model (IDM) was created to aid in the development of high precision reflector panels for LDR. The materials properties, thermal responses, structural geometries, and radio/optical precision are synergistically analyzed for specific panel designs. Promising panels designs are fabricated and tested so that comparison with panel test results can be used to verify performance prediction models and accommodate design refinement. The iterative approach of computer design and model refinement with performance testing and materials optimization has shown good results for LDR panels.

  3. Technical Evaluation Report on the Fluid Dynamics Panel Symposium on Aerodynamics and Acoustics of Propellers.

    DTIC Science & Technology

    1985-07-01

    vortex filaments instead of the continuous sheet of vorticity used by Goldstein the propeller-nacelle interaction analysis also represents the wake by...the US Manufacturers in parallel with the development of the experimental propeller models , illustrated on Figre 0, these analysis methods range from...still poor, the difference between the two methods being mainly due to .,ifferent approaches used for obtaining lift. The Euler analysis of swirl angle

  4. Flutter of Hybrid Laminated Flat Panels with Simply Supported Edges in Supersonic Flow

    NASA Astrophysics Data System (ADS)

    Barai, A.; Durvasula, S.

    1994-01-01

    Flutter of hybrid laminated flat panels in supersonic flow is studied by using first order shear deformation theory in conjunction with the assumed mode method. Both the quasi-static approximation and piston theory are used for aerodynamic force calculations at supersonic speeds. The flutter stability boundaries are determined by using the frequency coalescence criterion with the quasi-static approximation and Movchan-Krumhaar's criterion with the piston theory aerodynamics. Numerical calculations are presented for hybrid laminates consisting of graphite, Kevlar and glass fibres in an epoxy matrix. The effects of hybridization, shear deformation, ply orientation and aspect ratio are studied. The critical dynamic pressure parameter of a hybrid laminate lies between the values for laminates made with all plies of higher stiffness and with all plies of lower stiffness, respectively. The role of aerodynamic damping is found to be particularly important in determining the aeroelastic stability boundaries of laminated composite panels. Shear flexibility reduces the critical dynamic pressure parameter, but the reduction is insignificant for thin panels.

  5. An efficient model for coupling structural vibrations with acoustic radiation

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Maestrello, Lucio; Ting, LU

    1993-01-01

    The scattering of an incident wave by a flexible panel is studied. The panel vibration is governed by the nonlinear plate equations while the loading on the panel, which is the pressure difference across the panel, depends on the reflected and transmitted waves. Two models are used to calculate this structural-acoustic interaction problem. One solves the three dimensional nonlinear Euler equations for the flow-field coupled with the plate equations (the fully coupled model). The second uses the linear wave equation for the acoustic field and expresses the load as a double integral involving the panel oscillation (the decoupled model). The panel oscillation governed by a system of integro-differential equations is solved numerically and the acoustic field is then defined by an explicit formula. Numerical results are obtained using the two models for linear and nonlinear panel vibrations. The predictions given by these two models are in good agreement but the computational time needed for the 'fully coupled model' is 60 times longer than that for 'the decoupled model'.

  6. A modelling approach for the vibroacoustic behaviour of aluminium extrusions used in railway vehicles

    NASA Astrophysics Data System (ADS)

    Xie, G.; Thompson, D. J.; Jones, C. J. C.

    2006-06-01

    Modern railway vehicles are often constructed from double walled aluminium extrusions, which give a stiff, light construction. However, the acoustic performance of such panels is less satisfactory, with the airborne sound transmission being considerably worse than the mass law for the equivalent simple panel. To compensate for this, vehicle manufacturers are forced to add treatments such as damping layers, absorptive layers and floating floors. Moreover, a model for extruded panels that is both simple and reliable is required to assist in the early stages of design. An statistical energy analysis (SEA) model to predict the vibroacoustic behaviour of aluminium extrusions is presented here. An extruded panel is represented by a single global mode subsystem and three subsystems representing local modes of the various strips which occur for frequencies typically above 500 Hz. An approximate model for the modal density of extruded panels is developed and this is verified using an FE model. The coupling between global and local modes is approximated with the coupling between a travelling global wave and uncorrelated local waves. This model enables the response difference across the panels to be predicted. For the coupling with air, the average radiation efficiency of a baffled extruded panel is modelled in terms of the contributions from global and local modes. Experimental studies of a sample extruded panel have also been carried out. The vibration of an extruded panel under mechanical excitation is measured for various force positions and the vibration distribution over the panel is obtained in detail. The radiation efficiencies of a free extruded panel have also been measured. The complete SEA model of a panel is finally used to predict the response of the extruded panel under mechanical and acoustic excitations. Especially for mechanical excitation, the proposed SEA model gives a good prediction compared with the measurement results.

  7. Research on Shock Responses of Three Types of Honeycomb Cores

    NASA Astrophysics Data System (ADS)

    Peng, Fei; Yang, Zhiguang; Jiang, Liangliang; Ren, Yanting

    2018-03-01

    The shock responses of three kinds of honeycomb cores have been investigated and analyzed based on explicit dynamics analysis. According to the real geometric configuration and the current main manufacturing methods of aluminum alloy honeycomb cores, the finite element models of honeycomb cores with three different cellular configurations (conventional hexagon honeycomb core, rectangle honeycomb core and auxetic honeycomb core with negative Poisson’s ratio) have been established through FEM parametric modeling method based on Python and Abaqus. In order to highlight the impact response characteristics of the above three honeycomb cores, a 5 mm thick panel with the same mass and material was taken as contrast. The analysis results showed that the peak values of longitudinal acceleration history curves of the three honeycomb cores were lower than those of the aluminum alloy panel in all three reference points under the loading of a longitudinal pulse pressure load with the peak value of 1 MPa and the pulse width of 1 μs. It could be concluded that due to the complex reflection and diffraction of stress wave induced by shock in honeycomb structures, the impact energy was redistributed which led to a decrease in the peak values of the longitudinal acceleration at the measuring points of honeycomb cores relative to the panel.

  8. Comparison of the quasi-static method and the dynamic method for simulating fracture processes in concrete

    NASA Astrophysics Data System (ADS)

    Liu, J. X.; Deng, S. C.; Liang, N. G.

    2008-02-01

    Concrete is heterogeneous and usually described as a three-phase material, where matrix, aggregate and interface are distinguished. To take this heterogeneity into consideration, the Generalized Beam (GB) lattice model is adopted. The GB lattice model is much more computationally efficient than the beam lattice model. Numerical procedures of both quasi-static method and dynamic method are developed to simulate fracture processes in uniaxial tensile tests conducted on a concrete panel. Cases of different loading rates are compared with the quasi-static case. It is found that the inertia effect due to load increasing becomes less important and can be ignored with the loading rate decreasing, but the inertia effect due to unstable crack propagation remains considerable no matter how low the loading rate is. Therefore, an unrealistic result will be obtained if a fracture process including unstable cracking is simulated by the quasi-static procedure.

  9. Active control of turbulent boundary layer-induced sound transmission through the cavity-backed double panels

    NASA Astrophysics Data System (ADS)

    Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.

    2018-05-01

    This paper presents a theoretical study of active control of turbulent boundary layer (TBL) induced sound transmission through the cavity-backed double panels. The aerodynamic model used is based on the Corcos wall pressure distribution. The structural-acoustic model encompasses a source panel (skin panel), coupled through an acoustic cavity to the radiating panel (trim panel). The radiating panel is backed by a larger acoustic enclosure (the back cavity). A feedback control unit is located inside the acoustic cavity between the two panels. It consists of a control force actuator and a sensor mounted at the actuator footprint on the radiating panel. The control actuator can react off the source panel. It is driven by an amplified velocity signal measured by the sensor. A fully coupled analytical structural-acoustic model is developed to study the effects of the active control on the sound transmission into the back cavity. The stability and performance of the active control system are firstly studied on a reduced order model. In the reduced order model only two fundamental modes of the fully coupled system are assumed. Secondly, a full order model is considered with a number of modes large enough to yield accurate simulation results up to 1000 Hz. It is shown that convincing reductions of the TBL-induced vibrations of the radiating panel and the sound pressure inside the back cavity can be expected. The reductions are more pronounced for a certain class of systems, which is characterised by the fundamental natural frequency of the skin panel larger than the fundamental natural frequency of the trim panel.

  10. Study of noise reduction characteristics of composite fiber-reinforced panels, interior panel configurations, and the application of the tuned damper concept

    NASA Technical Reports Server (NTRS)

    Lameris, J.; Stevenson, S.; Streeter, B.

    1982-01-01

    The application of fiber reinforced composite materials, such as graphite epoxy and Kevlar, for secondary or primary structures developing in the commercial airplane industry was investigated. A composite panel program was initiated to study the effects of some of the parameters that affect noise reduction of these panels. The fiber materials and the ply orientation were chosen to be variables in the test program. It was found that increasing the damping characteristics of a structural panel will reduce the vibration amplitudes at resonant frequencies with attendant reductions in sound reduction. Test results for a dynamic absorber, a tuned damper, are presented and evaluated.

  11. Dynamic modeling of potentially conflicting energy reduction strategies for residential structures in semi-arid climates.

    PubMed

    Hester, Nathan; Li, Ke; Schramski, John R; Crittenden, John

    2012-04-30

    Globally, residential energy consumption continues to rise due to a variety of trends such as increasing access to modern appliances, overall population growth, and the overall increase of electricity distribution. Currently, residential energy consumption accounts for approximately one-fifth of total U.S. energy consumption. This research analyzes the effectiveness of a range of energy-saving measures for residential houses in semi-arid climates. These energy-saving measures include: structural insulated panels (SIP) for exterior wall construction, daylight control, increased window area, efficient window glass suitable for the local weather, and several combinations of these. Our model determined that energy consumption is reduced by up to 6.1% when multiple energy savings technologies are combined. In addition, pre-construction technologies (structural insulated panels (SIPs), daylight control, and increased window area) provide roughly 4 times the energy savings when compared to post-construction technologies (window blinds and efficient window glass). The model also illuminated the importance variations in local climate and building configuration; highlighting the site-specific nature of this type of energy consumption quantification for policy and building code considerations. Published by Elsevier Ltd.

  12. The Effect of Widowhood on Mental Health - an Analysis of Anticipation Patterns Surrounding the Death of a Spouse.

    PubMed

    Siflinger, Bettina

    2017-12-01

    This study explores the effects of widowhood on mental health by taking into account the anticipation and adaptation to the partner's death. The empirical analysis uses representative panel data from the USA that are linked to administrative death records of the National Death Index. I estimate static and dynamic specifications of the panel probit model in which unobserved heterogeneity is modeled with correlated random effects. I find strong anticipation effects of the partner's death on the probability of depression, implying that the partner's death event cannot be assumed to be exogenous in econometric models. In the absence of any anticipation effects, the partner's death has long-lasting mental health consequences, leading to a significantly slower adaptation to widowhood. The results suggest that both anticipation effects and adaptation effects can be attributed to a caregiver burden and to the cause of death. The findings of this study have important implications for designing adequate social policies for the elderly US population that alleviate the negative consequences of bereavement. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  13. Integrated modeling analysis of a novel hexapod and its application in active surface

    NASA Astrophysics Data System (ADS)

    Yang, Dehua; Zago, Lorenzo; Li, Hui; Lambert, Gregory; Zhou, Guohua; Li, Guoping

    2011-09-01

    This paper presents the concept and integrated modeling analysis of a novel mechanism, a 3-CPS/RPPS hexapod, for supporting segmented reflectors for radio telescopes and eventually segmented mirrors of optical telescopes. The concept comprises a novel type of hexapod with an original organization of actuators hence degrees of freedom, based on a swaying arm based design concept. Afterwards, with specially designed connecting joints between panels/segments, an iso-static master-slave active surface concept can be achieved for any triangular and/or hexagonal panel/segment pattern. The integrated modeling comprises all the multifold sizing and performance aspects which must be evaluated concurrently in order to optimize and validate the design and the configuration. In particular, comprehensive investigation of kinematic behavior, dynamic analysis, wave-front error and sensitivity analysis are carried out, where, frequently used tools like MATLAB/SimMechanics, CALFEM and ANSYS are used. Especially, we introduce the finite element method as a competent approach for analyses of the multi-degree of freedom mechanism. Some experimental verifications already performed validating single aspects of the integrated concept are also presented with the results obtained.

  14. Frequency domain analysis of the random loading of cracked panels

    NASA Technical Reports Server (NTRS)

    Doyle, James F.

    1994-01-01

    The primary effort concerned the development of analytical methods for the accurate prediction of the effect of random loading on a panel with a crack. Of particular concern was the influence of frequency on the stress intensity factor behavior. Many modern structures, such as those found in advanced aircraft, are lightweight and susceptible to critical vibrations, and consequently dynamic response plays a very important role in their analysis. The presence of flaws and cracks can have catastrophic consequences. The stress intensity factor, K, emerges as a very significant parameter that characterizes the crack behavior. In analyzing the dynamic response of panels that contain cracks, the finite element method is used, but because this type of problem is inherently computationally intensive, a number of ways of calculating K more efficiently are explored.

  15. Multi-objective optimal design of sandwich panels using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow

    2017-10-01

    In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.

  16. A finite-element study of a piezoelectric/poroelastic sound package concept

    NASA Astrophysics Data System (ADS)

    Batifol, C.; Zielinski, T. G.; Ichchou, M. N.; Galland, M.-A.

    2007-02-01

    This paper presents a complete finite-element description of a hybrid passive/active sound package concept for acoustic insulation. The sandwich created includes a poroelastic core and piezoelectric patches to ensure high panel performance over the medium/high and low frequencies, respectively. All layers are modelled thanks to a Comsol environmentComsol is the new name of the finite element software previously called Femlab.. The piezoelectric/elastic and poroelastic/elastic coupling are fully considered. The study highlights the reliability of the model by comparing results with those obtained from the Ansys finite-element software and with analytical developments. The chosen shape functions and mesh convergence rate for each layer are discussed in terms of dynamic behaviour. Several layer configurations are then tested, with the aim of designing the panel and its hybrid functionality in an optimal manner. The differences in frequency responses are discussed from a physical perspective. Lastly, an initial experimental test shows the concept to be promising.

  17. Experimental Investigation at Mach Number 3.0 of the Effects of Thermal Stress and Buckling on the Flutter of Four-Bay Aluminum Alloy Panels with Length-Width Ratios of 10

    NASA Technical Reports Server (NTRS)

    Dixon, Sidney C.; Griffith, George E.; Bohon, Herman L.

    1961-01-01

    Skin-stiffener aluminum alloy panels consisting of four bays, each bay having a length-width ratio of 10, were tested at a Mach number of 3.0 at dynamic pressures ranging from 1,500 psf to 5,000 psf and at stagnation temperatures from 300 F to 655 F. The panels were restrained by the supporting structure in such a manner that partial thermal expansion of the skins could occur in both the longitudinal and lateral directions. A boundary faired through the experimental flutter points consisted of a flat-panel portion, a buckled-panel portion, and a transition point at the intersection of the two boundaries. In the region where a panel must be flat when flutter occurs, an increase in panel skin temperature (or midplane compressive stress) makes the panel more susceptible to flutter. In the region where a panel must be buckled when flutter occurs, the flutter trend is reversed. This reversal in trend is attributed to the panel postbuckling behavior.

  18. NASA LaRC Workshop on Guidance, Navigation, Controls, and Dynamics for Atmospheric Flight, 1993

    NASA Technical Reports Server (NTRS)

    Buttrill, Carey S. (Editor)

    1993-01-01

    This publication is a collection of materials presented at a NASA workshop on guidance, navigation, controls, and dynamics (GNC&D) for atmospheric flight. The workshop was held at the NASA Langley Research Center on March 18-19, 1993. The workshop presentations describe the status of current research in the GNC&D area at Langley over a broad spectrum of research branches. The workshop was organized in eight sessions: overviews, general, controls, military aircraft, dynamics, guidance, systems, and a panel discussion. A highlight of the workshop was the panel discussion which addressed the following issue: 'Direction of guidance, navigation, and controls research to ensure U.S. competitiveness and leadership in aerospace technologies.'

  19. Future Defence Budget Constraints: Challenges and Opportunities (Contraintes futures sur les budgets de defense: Defis et opportunites)

    DTIC Science & Technology

    2016-12-01

    collaborative effort is addressed by six Technical Panels who manage a wide range of scientific research activities, a Group specialising in modelling and...HFM Human Factors and Medicine Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS System Analysis...and Studies Panel • SCI Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These Panels and Group are the

  20. Effect of body aerodynamics on the dynamic flight stability of the hawkmoth Manduca sexta.

    PubMed

    Nguyen, Anh Tuan; Han, Jong-Seob; Han, Jae-Hung

    2016-12-14

    This study explores the effects of the body aerodynamics on the dynamic flight stability of an insect at various different forward flight speeds. The insect model, whose morphological parameters are based on measurement data from the hawkmoth Manduca sexta, is treated as an open-loop six-degree-of-freedom dynamic system. The aerodynamic forces and moments acting on the insect are computed by an aerodynamic model that combines the unsteady panel method and the extended unsteady vortex-lattice method. The aerodynamic model is then coupled to a multi-body dynamic code to solve the system of motion equations. First, the trimmed flight conditions of insect models with and without consideration of the body aerodynamics are obtained using a trim search algorithm. Subsequently, the effects of the body aerodynamics on the dynamic flight stability are analysed through modal structures, i.e., eigenvalues and eigenvectors in this case, which are based on linearized equations of motion. The solutions from the nonlinear and linearized equations of motion due to gust disturbances are obtained, and the effects of the body aerodynamics are also investigated through these solutions. The results showed the important effect of the body aerodynamics at high-speed forward flight (in this paper at 4.0 and 5.0 m s -1 ) and the movement trends of eigenvalues when the body aerodynamics is included.

  1. Lightweight Phase-Change Material For Solar Power

    NASA Technical Reports Server (NTRS)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  2. Sound transmission loss of composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the statistical energy analysis model.

  3. Health, Economic Resources and the Work Decisions of Older Men

    PubMed Central

    Bound, John; Stinebrickner, Todd; Waidmann, Timothy

    2016-01-01

    We specify a dynamic programming model that addresses the interplay among health, financial resources, and the labor market behavior of men late in their working lives. We model health as a latent variable, for which self reported disability status is an indicator, and allow self-reported disability to be endogenous to labor market behavior. We use panel data from the Health and Retirement Study. While we find large impacts of health on behavior, they are substantially smaller than in models that treat self-reports as exogenous. We also simulate the impacts of several potential reforms to the Social Security program. PMID:27158180

  4. Installation of dynamic travel time signs and efforts to obtain and test a graphical route information panel (GRIP) sign in Austin.

    DOT National Transportation Integrated Search

    2016-08-01

    Graphic Route Information Panel (GRIP) signs use a combination of text, colors, and representative maps of : the roadway system to convey real-time roadway congestion location and severity information. The intent of : this project was to facilitate t...

  5. Wind tunnel study of natural ventilation of building integrated photovoltaics double skin façade

    NASA Astrophysics Data System (ADS)

    Hudişteanu, Sebastian Valeriu; Popovici, Cătălin George; Cherecheş, Nelu-Cristian

    2018-02-01

    The paper presents a wind tunnel experimental analysis of a small-scale building model (1:30). The objective of the study is to determine the wind influence on the ventilation of a double skin façade channel (DSF) and the cooling effect over integrated photovoltaic panels. The tests were achieved by conceiving and implementation of an experimental program using a wind tunnel with atmospheric boundary layer. The effect of the wind over the ventilation of the horizontal channels of double skin façades is evaluated for different incident velocities. The results are generalized for the average steady state values of the velocities analysed. The experimental results put in evidence the correlation between the reference wind velocity and the dynamics of the air movement inside the double skin façade. These values are used to determine the convective heat transfer and the cooling effect of the air streams inside the channel upon the integrated photovoltaic panels. The decrease of the photovoltaic panels temperature determines a raise of 11% in efficiency and power generated.

  6. Numerical Evaluation of Dynamic Response for Flexible Composite Structures under Slamming Impact for Naval Applications

    NASA Astrophysics Data System (ADS)

    Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.

    2018-06-01

    The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.

  7. Numerical Evaluation of Dynamic Response for Flexible Composite Structures under Slamming Impact for Naval Applications

    NASA Astrophysics Data System (ADS)

    Hassoon, O. H.; Tarfaoui, M.; El Moumen, A.; Benyahia, H.; Nachtane, M.

    2017-10-01

    The deformable composite structures subjected to water-entry impact can be caused a phenomenon called hydroelastic effect, which can modified the fluid flow and estimated hydrodynamic loads comparing with rigid body. This is considered very important for ship design engineers to predict the global and the local hydrodynamic loads. This paper presents a numerical model to simulate the slamming water impact of flexible composite panels using an explicit finite element method. In order to better describe the hydroelastic influence and mechanical properties, composite materials panels with different stiffness and under different impact velocities with deadrise angle of 100 have been studied. In the other hand, the inertia effect was observed in the early stage of the impact that relative to the loading rate. Simulation results have been indicated that the lower stiffness panel has a higher hydroelastic effect and becomes more important when decreasing of the deadrise angle and increasing the impact velocity. Finally, the simulation results were compared with the experimental data and the analytical approaches of the rigid body to describe the behavior of the hydroelastic influence.

  8. Geometric analysis of pathways dynamics: Application to versatility of TGF-β receptors.

    PubMed

    Samal, Satya Swarup; Naldi, Aurélien; Grigoriev, Dima; Weber, Andreas; Théret, Nathalie; Radulescu, Ovidiu

    2016-11-01

    We propose a new geometric approach to describe the qualitative dynamics of chemical reactions networks. By this method we identify metastable regimes, defined as low dimensional regions of the phase space close to which the dynamics is much slower compared to the rest of the phase space. These metastable regimes depend on the network topology and on the orders of magnitude of the kinetic parameters. Benchmarking of the method on a computational biology model repository suggests that the number of metastable regimes is sub-exponential in the number of variables and equations. The dynamics of the network can be described as a sequence of jumps from one metastable regime to another. We show that a geometrically computed connectivity graph restricts the set of possible jumps. We also provide finite state machine (Markov chain) models for such dynamic changes. Applied to signal transduction models, our approach unravels dynamical and functional capacities of signalling pathways, as well as parameters responsible for specificity of the pathway response. In particular, for a model of TGFβ signalling, we find that the ratio of TGFBR2 to TGFBR1 receptors concentrations can be used to discriminate between metastable regimes. Using expression data from the NCI60 panel of human tumor cell lines, we show that aggressive and non-aggressive tumour cell lines function in different metastable regimes and can be distinguished by measuring the relative concentrations of receptors of the two types. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  9. A financial network perspective of financial institutions' systemic risk contributions

    NASA Astrophysics Data System (ADS)

    Huang, Wei-Qiang; Zhuang, Xin-Tian; Yao, Shuang; Uryasev, Stan

    2016-08-01

    This study considers the effects of the financial institutions' local topology structure in the financial network on their systemic risk contribution using data from the Chinese stock market. We first measure the systemic risk contribution with the Conditional Value-at-Risk (CoVaR) which is estimated by applying dynamic conditional correlation multivariate GARCH model (DCC-MVGARCH). Financial networks are constructed from dynamic conditional correlations (DCC) with graph filtering method of minimum spanning trees (MSTs). Then we investigate dynamics of systemic risk contributions of financial institution. Also we study dynamics of financial institution's local topology structure in the financial network. Finally, we analyze the quantitative relationships between the local topology structure and systemic risk contribution with panel data regression analysis. We find that financial institutions with greater node strength, larger node betweenness centrality, larger node closeness centrality and larger node clustering coefficient tend to be associated with larger systemic risk contributions.

  10. A Dynamic Competition Simulation for Worldwide Big-size TV Market Using Lotka-Volterra Model

    NASA Astrophysics Data System (ADS)

    Chen, Wu-Tung Terry; Li, Yiming; Hung, Chih-Young

    2009-08-01

    Technological innovation is characterized by the substitution of new technologies for full-fledged ones in the development of new products, processes and techniques. Global TV market is seeing a price down-spiral for FPD(Flat Panel Display)-TVs, replacement of CRT by LCD, and consumer's defection to larger screen. The LCD-TV market started in Japan from 2003 and took off globally from 2005. LCD panel production is moving toward larger sizes. In the 35″-39″ size market, the price/performance ratio of LCD-TV is better than that of PDP. The purpose of this paper is to estimate the demand function of worldwide big-size (35″-39″) TVs including LCD and PDP with an explicit consideration of market competition. The demand function was estimated using Lotka-Volterra model, a famous competitive diffusion model. The results exhibit a kind of predator-prey relationship, in which the PDP market was hunted by LCD product. In addition, the coefficients of difference equations of Lotka-Volterra model in this analysis are also used to forecast the future market of the big-size LCD and PDP.

  11. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  12. Toward more realistic projections of soil carbon dynamics by Earth system models

    USGS Publications Warehouse

    Luo, Y.; Ahlström, Anders; Allison, Steven D.; Batjes, Niels H.; Brovkin, V.; Carvalhais, Nuno; Chappell, Adrian; Ciais, Philippe; Davidson, Eric A.; Finzi, Adien; Georgiou, Katerina; Guenet, Bertrand; Hararuk, Oleksandra; Harden, Jennifer; He, Yujie; Hopkins, Francesca; Jiang, L.; Koven, Charles; Jackson, Robert B.; Jones, Chris D.; Lara, M.; Liang, J.; McGuire, A. David; Parton, William; Peng, Changhui; Randerson, J.; Salazar, Alejandro; Sierra, Carlos A.; Smith, Matthew J.; Tian, Hanqin; Todd-Brown, Katherine E. O; Torn, Margaret S.; van Groenigen, Kees Jan; Wang, Ying; West, Tristram O.; Wei, Yaxing; Wieder, William R.; Xia, Jianyang; Xu, Xia; Xu, Xiaofeng; Zhou, T.

    2016-01-01

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe the environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.

  13. Final Report for Dynamic Models for Causal Analysis of Panel Data. Approaches to the Censoring Problem in Analysis of Event Histories. Part III, Chapter 2.

    ERIC Educational Resources Information Center

    Tuma, Nancy Brandon; Hannan, Michael T.

    The document, part of a series of chapters described in SO 011 759, considers the problem of censoring in the analysis of event-histories (data on dated events, including dates of change from one qualitative state to another). Censoring refers to the lack of information on events that occur before or after the period for which data are available.…

  14. Designing dual-plate meteoroid shields: A new analysis

    NASA Technical Reports Server (NTRS)

    Swift, H. F.; Bamford, R.; Chen, R.

    1982-01-01

    Physics governing ultrahigh velocity impacts onto dual-plate meteor armor is discussed. Meteoroid shield design methodologies are considered: failure mechanisms, qualitative features of effective meteoroid shield designs, evaluating/processing meteoroid threat models, and quantitative techniques for optimizing effective meteoroid shield designs. Related investigations are included: use of Kevlar cloth/epoxy panels in meteoroid shields for the Halley's Comet intercept vehicle, mirror exposure dynamics, and evaluation of ion fields produced around the Halley Intercept Mission vehicle by meteoroid impacts.

  15. Advances and trends in structures and dynamics; Proceedings of the Symposium, Washington, DC, October 22-25, 1984

    NASA Technical Reports Server (NTRS)

    Noor, A. K. (Editor); Hayduk, R. J. (Editor)

    1985-01-01

    Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.

  16. Planform curvature effects on flutter characteristics of a wing with 56 deg leading-edge sweep and panel aspect ratio of 1.14

    NASA Technical Reports Server (NTRS)

    Keller, Donald F.; Sandford, Maynard C.; Pinkerton, Theresa L.

    1991-01-01

    An experimental and analytical investigation was initiated to determine the effects of planform curvature (curving the leading and trailing edges of a wing in the X-Y plane) on the transonic flutter characteristics of a series of three moderately swept wing models. Experimental flutter results were obtained in the Langley Transonic Dynamics Tunnel for Mach numbers from 0.60-1.00, with air as the test medium. The models were semispan cantilevered wings with a 3 percent biconvex airfoil and a panel aspect ratio of 1.14. The baseline model had straight leading and trailing edges (i.e., no planform curvature). The radii of curvature of the leading edges for these two models were 200 and 80 inches. The radii of curvature of the leading edges of the other two models were determined so that the root and tip chords were identical for all three models. Experimental results showed that flutter-speed index and flutter frequency ratio increased as planform curvature increase (radius of curvature of the leading edge was decreased) over the test range of Mach numbers. Analytical flutter results were calculated with a subsonic flutter-prediction program, and they agreed well with the experimental results.

  17. Workshop on Computational Turbulence Modeling

    NASA Technical Reports Server (NTRS)

    Shabbir, A. (Compiler); Shih, T.-H. (Compiler); Povinelli, L. A. (Compiler)

    1994-01-01

    The purpose of this meeting was to discuss the current status and future development of turbulence modeling in computational fluid dynamics for aerospace propulsion systems. Various turbulence models have been developed and applied to different turbulent flows over the past several decades and it is becoming more and more urgent to assess their performance in various complex situations. In order to help users in selecting and implementing appropriate models in their engineering calculations, it is important to identify the capabilities as well as the deficiencies of these models. This also benefits turbulence modelers by permitting them to further improve upon the existing models. This workshop was designed for exchanging ideas and enhancing collaboration between different groups in the Lewis community who are using turbulence models in propulsion related CFD. In this respect this workshop will help the Lewis goal of excelling in propulsion related research. This meeting had seven sessions for presentations and one panel discussion over a period of two days. Each presentation session was assigned to one or two branches (or groups) to present their turbulence related research work. Each group was asked to address at least the following points: current status of turbulence model applications and developments in the research; progress and existing problems; and requests about turbulence modeling. The panel discussion session was designed for organizing committee members to answer management and technical questions from the audience and to make concluding remarks.

  18. Optimisation of support stiffness at railway crossings

    NASA Astrophysics Data System (ADS)

    Grossoni, Ilaria; Bezin, Yann; Neves, Sergio

    2018-07-01

    Turnouts are a key element of the railway system. They are also the part of the system with the highest number of degradation modes and associated failures. There are a number of reasons for this, including high dynamic loads resulting from non-uniform rail geometry and track support stiffness. The main aim of this study is to propose a methodology to optimise the pad stiffness along a crossing panel in order to achieve a decrease in the indicators of the most common failure modes. A three-dimensional vehicle/track interaction model has been established, considering a detailed description of the crossing panel support structure. A genetic algorithm has been applied to two main types of constructions, namely direct and indirect fixing, to find the optimum combinations of resilient pad characteristics for various cases of travelling direction, travelling speed and support conditions.

  19. SIBLING GENDER COMPOSITION'S EFFECT ON EDUCATION: EVIDENCE FROM CHINA

    PubMed Central

    Lei, Xiaoyan; Shen, Yan; Smith, James P.; Zhou, Guangsu

    2016-01-01

    We use a population survey of the Chinese adult population—2010 Chinese Family Panel Studies (CFPS) modelled after the Panel Study of Income Dynamics. We find that being the oldest child gives an education benefit to male and not female children who are often assigned supervisory roles for younger siblings. Most importantly, an increase in the fraction of female siblings leads to a significant increase in education of Chinese men and to a lesser extent Chinese women. This effect is concentrated among those with rural Hukou. In China male children absorbed more education resources so that in a credit constrained family, increases in fraction of siblings who are sisters frees up resources for educating boys. This is less so for girls since their education was lower and additional resources would not be used for them. PMID:28479674

  20. Time is money: Rational life cycle inertia and the delegation of investment management

    PubMed Central

    Kim, Hugh Hoikwang; Maurer, Raimond; Mitchell, Olivia S.

    2016-01-01

    Many households display inertia in investment management over their life cycles. Our calibrated dynamic life cycle portfolio choice model can account for such an apparently ‘irrational’ outcome, by incorporating the fact that investors must forgo acquiring job-specific skills when they spend time managing their money, and their efficiency in financial decision making varies with age. Resulting inertia patterns mesh well with findings from prior studies and our own empirical results from Panel Study of Income Dynamics (PSID) data. We also analyze how people optimally choose between actively managing their assets versus delegating the task to financial advisors. Delegation proves valuable to both the young and the old. Our calibrated model quantifies welfare gains from including investment time and money costs as well as delegation in a life cycle setting. PMID:28344380

  1. Aerodynamics of Combat Aircraft Controls and of Ground Effects: Conference Proceedings of the Symposium of the Fluid Dynamics Panel Held in Madrid, Spain on 2-5 October 1989

    DTIC Science & Technology

    1989-10-01

    1817, 1983. 3 A. Jean Ross, G.E.A. Reid, The development of mathematical models for a high incidence research model, Part 1 - analysis of static data...Iniginicur diEssais TUNNEL. AERO-HYDROUYNAMIQUI3 (’EAT -- (Toulouse) 23 Avenue I lcni Gullaurnic 310356 ijoulouse. Cedex ct . Jacque % Deschamaps Ingnimeur...one tonctino do t’lntldonc. La dooxiase oat tie isceour d’sninrtiasomout ’jut rend coopte do loefiot d’islrLudo an-doascai do 1s pinto . Cetto

  2. Space Shuttle Orbiter Wing-Leading-Edge Panel Thermo-Mechanical Analysis for Entry Conditions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Raju, Ivatury S.

    2010-01-01

    Linear elastic, thermo-mechanical stress analyses of the Space Shuttle Orbiter wing-leading-edge panels is presented for entry heating conditions. The wing-leading-edge panels are made from reinforced carbon-carbon and serve as a part of the overall thermal protection system. Three-dimensional finite element models are described for three configurations: integrated configuration, an independent single-panel configuration, and a local lower-apex joggle segment. Entry temperature conditions are imposed and the through-the-thickness response is examined. From the integrated model, it was concluded that individual panels can be analyzed independently since minimal interaction between adjacent components occurred. From the independent single-panel model, it was concluded that increased through-the-thickness stress levels developed all along the chord of a panel s slip-side joggle region, and hence isolated local joggle sections will exhibit the same trend. From the local joggle models, it was concluded that two-dimensional plane-strain models can be used to study the influence of subsurface defects along the slip-side joggle region of these panels.

  3. The analysis of factors of management of safety of critical information infrastructure with use of dynamic models

    NASA Astrophysics Data System (ADS)

    Trostyansky, S. N.; Kalach, A. V.; Lavlinsky, V. V.; Lankin, O. V.

    2018-03-01

    Based on the analysis of the dynamic model of panel data by region, including fire statistics for surveillance sites and statistics of a set of regional socio-economic indicators, as well as the time of rapid response of the state fire service to fires, the probability of fires in the surveillance sites and the risk of human death in The result of such fires from the values of the corresponding indicators for the previous year, a set of regional social-economics factors, as well as regional indicators time rapid response of the state fire service in the fire. The results obtained are consistent with the results of the application to the fire risks of the model of a rational offender. Estimation of the economic equivalent of human life from data on surveillance objects for Russia, calculated on the basis of the analysis of the presented dynamic model of fire risks, correctly agrees with the known literary data. The results obtained on the basis of the econometric approach to fire risks allow us to forecast fire risks at the supervisory sites in the regions of Russia and to develop management solutions to minimize such risks.

  4. The Impact of Educational Mismatch on Firm Productivity: Evidence from Linked Panel Data

    ERIC Educational Resources Information Center

    Kampelmann, Stephan; Rycx, Francois

    2012-01-01

    We provide first evidence regarding the direct impact of educational mismatch on firm productivity. To do so, we rely on representative linked employer-employee panel data for Belgium covering the period 1999-2006. Controlling for simultaneity issues, time-invariant unobserved workplace characteristics, cohort effects and dynamics in the…

  5. First-charge instabilities of layered-layered lithium-ion-battery materials

    DOE PAGES

    Croy, Jason R.; Iddir, Hakim; Gallagher, Kevin; ...

    2015-09-03

    Dynamical simulation at 1000 K shows the migration of oxygen ions in delithiated Li 7/6-xNi 1/4Mn 7/12O 2(withx= 1) from oxygen layers (lower panel, att= 0) to form O–O pairs (upper panel att= 35 ps) thereby lowering the energy of charged cathode material.

  6. Cyclical Dynamics in Idiosyncratic Labor Market Risk.

    ERIC Educational Resources Information Center

    Storesletten, Kjetil; Telmer, Chris I.; Yaron, Amir

    2004-01-01

    Is individual labor income more risky in recessions? This is a difficult question to answer because existing panel data sets are so short. To address this problem, we develop a generalized method of moments estimator that conditions on the macroeeonomic history that each member of the panel has experienced. Variation in the cross-sectional…

  7. Study on mechanical properties of steel honeycomb panel three-point bending specimen under in-plane and out-plane transverse dynamic impact load

    NASA Astrophysics Data System (ADS)

    Zou, Guangping; Chang, Zhongliang; Xia, Xingyou; Zhang, Xueyi

    2010-03-01

    The metal honeycomb material has high strength and high stiffness, as a high-performance sandwich panel, it is an ideal lightweight structural material, and widely used in aviation, aerospace, shipbuilding and other fields. In this paper, the improved SHPB instrument is used for testing the in-plane and out-plane mechanical properties of the steel honeycomb panel three-point bending specimen, and also compare the results with the static in-plane and out-plane three-point bending experiments results which is tested by the INSTRON 4505 electronic universal testing machine, and then study the mechanical properties of the steel honeycomb panel three-point bending specimen under transverse dynamic impact load. From the results it can be see that, for the out-plane three point bending experiment, L direction mechanical properties is better than the W direction, and the honeycomb core play an important role during the specimen deformation, while for the in-plane three point bending experiment, the honeycomb core mechanical role is not distinctness.

  8. Optimization of a Simple Ship Structural Model Using MAESTRO

    DTIC Science & Technology

    1999-03-01

    Substructures MAESTRO Model Modules . . . MAESTRO Model Girders . . . . MAESTRO Model Tranverse Frames 9 10 11 12 13 Structural and Non-Structural...Weight Distribution 14 Longitudinal Load Distribution on the Model . 15 Tranverse Load Distribution on the Model . . . 16 Hogging Displacement of...Compression, Flange PYCP Panel Yield - Compression, Plate PSPBT Panel Serviceability- Plate Bending Tranverse PSPBL Panel Serviceability - Plate

  9. 2015 Occupant Protection Standing Review Panel

    NASA Technical Reports Server (NTRS)

    Steinberg, Susan

    2015-01-01

    The 2015 Occupant Protection (OP) Risk Standing Review Panel (from here on referred to as the SRP) participated in a WebEx/teleconference with members of the Space Human Factors and Habitability (SHFH) Element, representatives from the Human Research Program (HRP), NASA Headquarters, and NASA Research and Education Support Services on November 3, 2015 (list of participants is in Section VII of this report). The SRP reviewed the updated research plans for the Risk of Injury from Dynamic Loads (OP Risk). The SRP agrees that the Gaps are relevant and appropriate to mitigate the injury risk. All the appropriate and relevant Tasks have been identified to fill the Gaps. Depending upon the findings, additional tasks may need to be identified or modified. Excellent progress has been made since the 2014 SRP meeting. Publications in peer-reviewed journals validate the scientific merit of the research findings. As detailed in this report, the SRP has specific comments, guidance, and information in the following areas: human finite element modeling, human vs. surrogate dynamic responses, chest injury risk curves, matched pair testing of Test device for Human Occupant Restraint (THOR) and Hybrid III, and disc herniation risk analysis.

  10. Elevated-Temperature Tests Under Static and Aerodynamic Conditions on Honeycomb-Core Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Groen, Joseph M.; Johnson, Aldie E., Jr.

    1959-01-01

    Stainless-steel honeycomb-core sandwich panels which differed primarily in skin thicknesses were tested at elevated temperatures under static and aerodynamic conditions. The results of these tests were evaluated to determine the insulating effectiveness and structural integrity of the panels. The static radiant-heating tests were performed in front of a quartz-tube radiant heater at panel skin temperatures up to 1,5000 F. The aerodynamic tests were made in a Mach 1.4 heated blowdown wind tunnel. The tunnel temperature was augmented by additional heat supplied by a radiant heater which raised the panel surface temperature above 8000 F during air flow. Static radiant-heating tests of 2 minutes duration showed that all the panels protected the load-carrying structure about equally well. Thin-skin panels showed an advantage for this short-time test over thick-skin panels from a standpoint of weight against insulation. Permanent inelastic strains in the form of local buckles over each cell of the honeycomb core caused an increase in surface roughness. During the aero- dynamic tests all of the panels survived with little or no damage, and panel flutter did not occur.

  11. Rain concentration and sheltering effect of solar panels on cultivated plots

    NASA Astrophysics Data System (ADS)

    Elamri, Yassin; Cheviron, Bruno; Mange, Annabelle; Dejean, Cyril; Liron, François; Belaud, Gilles

    2018-02-01

    Agrivoltaism is the association of agricultural and photovoltaic energy production on the same land area, coping with the increasing pressure on land use and water resources while delivering clean and renewable energy. However, the solar panels located above the cultivated plots also have a seemingly yes unexplored effect on rain redistribution, sheltering large parts of the plot but redirecting concentrated fluxes on a few locations. The spatial heterogeneity in water amounts observed on the ground is high in the general case; its dynamical patterns are directly attributable to the mobile panels through their geometrical characteristics (dimensions, height, coverage percentage) and the strategies selected to rotate them around their support tube. A coefficient of variation is used to measure this spatial heterogeneity and to compare it with the coefficient of uniformity that classically describes the efficiency of irrigation systems. A rain redistribution model (AVrain) was derived from literature elements and theoretical grounds and then validated from experiments in both field and controlled conditions. AVrain simulates the effective rain amounts on the plot from a few forcing data (rainfall, wind velocity and direction) and thus allows real-time strategies that consist in operating the panels so as to limit the rain interception mainly responsible for the spatial heterogeneities. Such avoidance strategies resulted in a sharp decrease in the coefficient of variation, e.g. 0.22 vs. 2.13 for panels held flat during one of the monitored rain events, which is a fairly good uniformity score for irrigation specialists. Finally, the water amounts predicted by AVrain were used as inputs to Hydrus-2D for a brief exploratory study on the impact of the presence of solar panels on rain redistribution at shallow depths within soils: similar, more diffuse patterns were simulated and were coherent with field measurements.

  12. Energy dissipation/transfer and stable attitude of spatial on-orbit tethered system

    NASA Astrophysics Data System (ADS)

    Hu, Weipeng; Song, Mingzhe; Deng, Zichen

    2018-01-01

    For the Tethered Satellite System, the coupling between the platform system and the solar panel is a challenge in the dynamic analysis. In this paper, the coupling dynamic behaviors of the Tethered Satellite System that is idealized as a planar flexible damping beam-spring-mass composite system are investigated via a structure-preserving method. Considering the coupling between the plane motion of the system, the oscillation of the spring and the transverse vibration of the beam, the dynamic model of the composite system is established based on the Hamiltonian variational principle. A symplectic dimensionality reduction method is proposed to decouple the dynamic system into two subsystems approximately. Employing the complex structure-preserving approach presented in our previous work, numerical iterations are performed between the two subsystems with weak damping to study the energy dissipation/transfer in the composite system, the effect of the spring stiffness on the energy distribution and the effect of the particle mass on the stability of the composite system. The numerical results show that: the energy transfer approach is uniquely determined by the initial attitude angle, while the energy dissipation speed is mainly depending on the initial attitude angle and the spring stiffness besides the weak damping. In addition, the mass ratio between the platform system and the solar panel determines the stable state as well as the time needed to reach the stable state of the composite system. The numerical approach presented in this paper provides a new way to deal with the coupling dynamic system and the conclusions obtained give some useful advices on the overall design of the Tethered Satellite System.

  13. Predictability of the North Atlantic Oscillation on Intraseasonal Time Scales

    DTIC Science & Technology

    2013-09-30

    skill when realistic MJO-related tropical diabatic heating is added to the models. (4) To diagnose the dynamical mechanisms by which the tropical...was added to each of the 50 simulations, has also been completed. Figure 1 shows the 50-member ensemble mean of the 500 hPa diabatic heating (averaged...contour interval of 2 oC/day. Separately, the added MJO diabatic heating is shown in black contours in the left panel with a contour interval of 0.5 oC

  14. Deployment and retraction of a cable-driven solar array: Testing and simulation

    NASA Technical Reports Server (NTRS)

    Kumar, P.; Pellegrino, S.

    1995-01-01

    The paper investigates three critical areas in cable-driven rigid-panel solar arrays: First, the variation of deployment and retraction cable tensions due to friction at the hinges; Second, the change in deployment dynamics associated with different deployment histories; Third, the relationship between the level of pre-tension in the closed contact loops and the synchronization of deployment. A small scale model array has been made and tested, and its behavior has been compared to numerical simulations.

  15. Nonlinear vibration and radiation from a panel with transition to chaos induced by acoustic waves

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Frendi, Abdelkader; Brown, Donald E.

    1992-01-01

    The dynamic response of an aircraft panel forced at resonance and off-resonance by plane acoustic waves at normal incidence is investigated experimentally and numerically. Linear, nonlinear (period doubling) and chaotic responses are obtained by increasing the sound pressure level of the excitation. The response time history is sensitive to the input level and to the frequency of excitation. The change in response behavior is due to a change in input conditions, triggered either naturally or by modulation of the bandwidth of the incident waves. Off-resonance, bifurcation is diffused and difficult to maintain, thus the panel response drifts into a linear behavior. The acoustic pressure emanated by the panel is either linear or nonlinear as is the vibration response. The nonlinear effects accumulate during the propagation with distance. Results are also obtained on the control of the panel response using damping tape on aluminum panel and using a graphite epoxy panel having the same size and weight. Good agreement is obtained between the experimental and numerical results.

  16. Nonlinear vibration and radiation from a panel with transition to chaos

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio; Frendi, Abdelkader; Brown, Donald E.

    1992-01-01

    The dynamic response of an aircraft panel forced at resonance and off-resonance by plane acoustic waves at normal incidence is investigated experimentally and numerically. Linear, nonlinear (period doubling), and chaotic responses are obtained by increasing the sound pressure level of the excitation. The response time history is sensitive to the input level and to the frequency of excitation. The change in response behavior is due to a change in input conditions, triggered either naturally or by modulation of the bandwidth of the incident waves. Off-resonance bifurcation is diffused and difficult to maintain; thus the panel response drifts into a linear behavior. The acoustic pressure emanated by the panel is either linear or nonlinear as is the vibration response. The nonlinear effects accumulate during the propagation with distance. Results are also obtained on the control of the panel response using damping tape on an aluminum panel and a graphite epoxy panel having the same size and weight. Good agreement is obtained betwen the experimental and numerical results.

  17. The method of neutron imaging as a tool for the study of the dynamics of water movement in wet aramid-based ballistic body armour panels

    NASA Astrophysics Data System (ADS)

    Reifler, Felix A.; Lehmann, Eberhard H.; Frei, Gabriel; May, Hans; Rossi, René

    2006-07-01

    A new non-destructive method based on neutron imaging (neutron radiography) to determine the exact water content in aramid-based soft body armour panels is presented. While investigating the ballistic resistance of aramid-based body armour panels under a wet condition, it is important to precisely determine their water content and its chronological development. Using the presented method, the influence of water amount and location on impact testing as well as its time dependence was shown. In the ballistic panels used, spreading of water strongly depended on the kind of quilting. Very fast water migration could be observed when the panels were held vertically. Some first results regarding the water distribution in wet panels immediately after the impact are presented. On the basis of the presented results, requirements for a standard for testing the performance of ballistic panels in the wet state are deduced.

  18. Solar-diffuser panel and ratioing radiometer approach to satellite sensor on-board calibration

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.; Palmer, James M.

    1991-01-01

    The use of a solar-diffuser panel is a desirable approach to the on-board absolute radiometric calibration of satellite multispectral sensors used for earth observation in the solar reflective spectral range. It provides a full aperture, full field, end-to-end calibration near the top of the sensor's dynamic range and across its entire spectral response range. A serious drawback is that the panel's reflectance, and the response of any simple detector used to monitor its reflectance may change with time. This paper briefly reviews some preflight and on-board methods for absolute calibration and introduces the ratioing-radiometer concept in which the radiance of the panel is ratioed with respect to the solar irradiance at the time the multispectral sensor is viewing the panel in its calibration mode.

  19. Clinical time series prediction: towards a hierarchical dynamical system framework

    PubMed Central

    Liu, Zitao; Hauskrecht, Milos

    2014-01-01

    Objective Developing machine learning and data mining algorithms for building temporal models of clinical time series is important for understanding of the patient condition, the dynamics of a disease, effect of various patient management interventions and clinical decision making. In this work, we propose and develop a novel hierarchical framework for modeling clinical time series data of varied length and with irregularly sampled observations. Materials and methods Our hierarchical dynamical system framework for modeling clinical time series combines advantages of the two temporal modeling approaches: the linear dynamical system and the Gaussian process. We model the irregularly sampled clinical time series by using multiple Gaussian process sequences in the lower level of our hierarchical framework and capture the transitions between Gaussian processes by utilizing the linear dynamical system. The experiments are conducted on the complete blood count (CBC) panel data of 1000 post-surgical cardiac patients during their hospitalization. Our framework is evaluated and compared to multiple baseline approaches in terms of the mean absolute prediction error and the absolute percentage error. Results We tested our framework by first learning the time series model from data for the patient in the training set, and then applying the model in order to predict future time series values on the patients in the test set. We show that our model outperforms multiple existing models in terms of its predictive accuracy. Our method achieved a 3.13% average prediction accuracy improvement on ten CBC lab time series when it was compared against the best performing baseline. A 5.25% average accuracy improvement was observed when only short-term predictions were considered. Conclusion A new hierarchical dynamical system framework that lets us model irregularly sampled time series data is a promising new direction for modeling clinical time series and for improving their predictive performance. PMID:25534671

  20. Stress analysis and buckling of J-stiffened graphite-epoxy panel

    NASA Technical Reports Server (NTRS)

    Davis, R. C.

    1980-01-01

    A graphite epoxy shear panel with bonded on J stiffeners was investigated. The panel, loaded to buckling in a picture frame shear test is described. Two finite element models, each of which included the doubler material bonded to the panel skin under the stiffeners and at the panel edges, were used to make a stress analysis of the panel. The shear load distributions in the panel from two commonly used boundary conditions, applied shear load and applied displacement, were compared with the results from one of the finite element models that included the picture frame test fixture.

  1. ISPAN (Interactive Stiffened Panel Analysis): A tool for quick concept evaluation and design trade studies

    NASA Technical Reports Server (NTRS)

    Hairr, John W.; Dorris, William J.; Ingram, J. Edward; Shah, Bharat M.

    1993-01-01

    Interactive Stiffened Panel Analysis (ISPAN) modules, written in FORTRAN, were developed to provide an easy to use tool for creating finite element models of composite material stiffened panels. The modules allow the user to interactively construct, solve and post-process finite element models of four general types of structural panel configurations using only the panel dimensions and properties as input data. Linear, buckling and post-buckling solution capability is provided. This interactive input allows rapid model generation and solution by non finite element users. The results of a parametric study of a blade stiffened panel are presented to demonstrate the usefulness of the ISPAN modules. Also, a non-linear analysis of a test panel was conducted and the results compared to measured data and previous correlation analysis.

  2. A Dynamic Panel Model of the Associations of Sweetened Beverage Purchases With Dietary Quality and Food-Purchasing Patterns

    PubMed Central

    Piernas, Carmen; Ng, Shu Wen; Mendez, Michelle A.; Gordon-Larsen, Penny; Popkin, Barry M.

    2015-01-01

    Investigating the association between consumption of sweetened beverages and dietary quality is challenging because issues such as reverse causality and unmeasured confounding might result in biased and inconsistent estimates. Using a dynamic panel model with instrumental variables to address those issues, we examined the independent associations of beverages sweetened with caloric and low-calorie sweeteners with dietary quality and food-purchasing patterns. We analyzed purchase data from the Homescan survey, an ongoing, longitudinal, nationally representative US survey, from 2000 to 2010 (n = 34,294). Our model included lagged measures of dietary quality and beverage purchases (servings/day in the previous year) as exposures to predict the outcomes (macronutrient (kilocalories per capita per day; %), total energy, and food purchases) in the next year after adjustment for other sociodemographic covariates. Despite secular declines in purchases (kilocalories per capita per day) from all sources, each 1-serving/day increase in consumption of either beverage type resulted in higher purchases of total daily kilocalories and kilocalories from food, carbohydrates, total sugar, and total fat. Each 1-serving/day increase in consumption of either beverage was associated with more purchases of caloric-sweetened desserts or sweeteners, which accounted for a substantial proportion of the increase in total kilocalories. We concluded that consumers of both beverages sweetened with low-calorie sweeteners and beverages sweetened with caloric sweeteners had poorer dietary quality, exhibited higher energy from all purchases, sugar, and fat, and purchased more caloric-sweetened desserts/caloric sweeteners compared with nonconsumers. PMID:25834139

  3. Economic growth, combustible renewables and waste consumption, and CO₂ emissions in North Africa.

    PubMed

    Ben Jebli, Mehdi; Ben Youssef, Slim

    2015-10-01

    This paper uses panel cointegration techniques and Granger causality tests to examine the dynamic causal link between per capita real gross domestic product (GDP), combustible renewables and waste (CRW) consumption, and CO2 emissions for a panel of five North African countries during the period 1971-2008. Granger causality test results suggest short- and long-run unidirectional causalities running from CO2 emissions and CRW consumption to real GDP and a short-run unidirectional causality running from CRW to CO2 emissions. The results from panel long-run fully modified ordinary least squares (FMOLS) and dynamic ordinary least squares (DOLS) estimates show that CO2 emissions and CRW consumption have a positive and statistically significant impact on GDP. Our policy recommendations are that these countries should use more CRW because this increases their output, reduces their energy dependency on fossil energy, and may decrease their CO2 emissions.

  4. Heaven Knows I'm Miserable Now: Overeducation and Reduced Life Satisfaction

    ERIC Educational Resources Information Center

    Piper, Alan

    2015-01-01

    Recently the supply of young graduates entering the UK labour market has undergone a sharp increase. A possible consequence of this is an increase in the number of individuals who are overeducated for the jobs that they do subsequent to participating in higher education. Using British panel data and dynamic panel analysis, I demonstrate that…

  5. Formaldehyde emission from particleboard and plywood paneling : measurement, mechanism, and product standards

    Treesearch

    George E. Myers

    1983-01-01

    A number of commercial panel products, primarily particleboard and hardwood plywood, were tested for their formaldehyde emission behavior using desiccator, perforator, and dynamic chamber methods. The results were analyzed in terms of the source of formaldehyde observed in the tests (free vs. hydrolytically produced) and the potential utility of the testa as product...

  6. Analysis of Palm Oil Production, Export, and Government Consumption to Gross Domestic Product of Five Districts in West Kalimantan by Panel Regression

    NASA Astrophysics Data System (ADS)

    Sulistianingsih, E.; Kiftiah, M.; Rosadi, D.; Wahyuni, H.

    2017-04-01

    Gross Domestic Product (GDP) is an indicator of economic growth in a region. GDP is a panel data, which consists of cross-section and time series data. Meanwhile, panel regression is a tool which can be utilised to analyse panel data. There are three models in panel regression, namely Common Effect Model (CEM), Fixed Effect Model (FEM) and Random Effect Model (REM). The models will be chosen based on results of Chow Test, Hausman Test and Lagrange Multiplier Test. This research analyses palm oil about production, export, and government consumption to five district GDP are in West Kalimantan, namely Sanggau, Sintang, Sambas, Ketapang and Bengkayang by panel regression. Based on the results of analyses, it concluded that REM, which adjusted-determination-coefficient is 0,823, is the best model in this case. Also, according to the result, only Export and Government Consumption that influence GDP of the districts.

  7. Dynamic relationship between CO2 emissions, energy consumption and economic growth in three North African countries

    NASA Astrophysics Data System (ADS)

    Kais, Saidi; Ben Mbarek, Mounir

    2017-10-01

    This paper investigated the causal relationship between energy consumption (EC), carbon dioxide (CO2) emissions and economic growth for three selected North African countries. It uses a panel co-integration analysis to determine this econometric relationship using data during 1980-2012. Recently developed tests for panel unit root and co-integration tests are applied. In order to test the Granger causality, a panel Vector Error Correction Model is used. The conservation hypothesis is found; the short run panel results show that there is a unidirectional relationship from economic growth to EC. In addition, there is a unidirectional causality running from economic growth to CO2 emissions. A unidirectional relationship from EC to CO2 emissions is detected. Findings shown that there is a big interdependence between EC and economic growth in the long run, which indicates the level of economic activity and EC mutually influence each other in that a high level of economic growth leads to a high level of EC and vice versa. Similarly, a unidirectional causal relationship from EC to CO2 emissions is detected. This study opens up new insights for policy-makers to design comprehensive economic, energy and environmental policy to keep the economic green and a sustainable environment, implying that these three variables could play an important role in the adjustment process as the system changes from the long run equilibrium.

  8. Control of Thermal Deflection, Panel Flutter and Acoustic Fatigue at Elevated Temperatures Using Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mei, Chuh; Huang, Jen-Kuang

    1996-01-01

    The High Speed Civil Transport (HSCT) will have to be designed to withstand high aerodynamic load at supersonic speeds (panel flutter) and high acoustic load (acoustic or sonic fatigue) due to fluctuating boundary layer or jet engine acoustic pressure. The thermal deflection of the skin panels will also alter the vehicle's configuration, thus it may affect the aerodynamic characteristics of the vehicle and lead to poor performance. Shape memory alloys (SMA) have an unique ability to recover large strains completely when the alloy is heated above the characteristic transformation (austenite finish T(sub f)) temperature. The recovery stress and elastic modulus are both temperature dependent, and the recovery stress also depends on the initial strain. An innovative concept is to utilize the recovery stress by embedding the initially strained SMA wire in a graphite/epoxy composite laminated panel. The SMA wires are thus restrained and large inplane forces are induced in the panel at elevated temeperatures. By embedding SMA in composite panel, the panel becomes much stiffer at elevated temperatures. That is because the large tensile inplane forces induced in the panel from the SMA recovery stress. A stiffer panel would certainly yield smaller dynamic responses.

  9. Work environment satisfaction and employee health: panel evidence from Denmark, France and Spain, 1994-2001.

    PubMed

    Datta Gupta, Nabanita; Kristensen, Nicolai

    2008-02-01

    This paper investigates whether a satisfactory work environment can promote employee health even after controlling for socioeconomic status and life style factors. A dynamic panel model of health is estimated from worker samples from Denmark, France and Spain, employing both self-assessed general health and the presence of a functional limitation. In all three countries and for both types of health measures, a good perceived work environment is found to be a highly significant determinant of worker health even after controlling for unobserved heterogeneity and minimizing reverse causality. The marginal effect is, however, larger in France and Denmark than in Spain. Several potential explanations for this finding are discussed. Further, a satisfactory working environment is found to be at least as important for employee health as socioeconomic status. Thus, investing in giving workers a satisfying work environment could be a low-cost way of improving employee health.

  10. Gender, justice and work: a distributive approach to perceptions of housework fairness.

    PubMed

    Perales, Francisco; Baxter, Janeen; Tai, Tsui-o

    2015-05-01

    Most women and men report that the division of domestic labor in their household is fair, despite women undertaking approximately seventy percent of housework. This raises questions about how fairness is evaluated within partnerships. We explore how parenthood and relationship transitions affect perceptions of housework fairness using panel data from the Household, Income and Labour Dynamics in Australia Survey and panel regression models. Our results indicate that net of actual housework divisions, socio-demographic factors, time availability and relative resources, the transition to parenthood increases women's perceptions of housework fairness immediately following the birth of a child, but decreases them in the long run. Relationship transitions have no independent effects. Our findings suggest that parenthood transitions are associated with changes in women's identity, cognitive evaluations of fairness and feelings of entitlement, as indicated by distributive justice theory. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. A two dimensional interface element for coupling of independently modeled three dimensional finite element meshes and extensions to dynamic and non-linear regimes

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad

    1995-01-01

    The work reported here pertains only to the first year of research for a three year proposal period. As a prelude to this two dimensional interface element, the one dimensional element was tested and errors were discovered in the code for built-up structures and curved interfaces. These errors were corrected and the benchmark Boeing composite crown panel was analyzed successfully. A study of various splines led to the conclusion that cubic B-splines best suit this interface element application. A least squares approach combined with cubic B-splines was constructed to make a smooth function from the noisy data obtained with random error in the coordinate data points of the Boeing crown panel analysis. Preliminary investigations for the formulation of discontinuous 2-D shell and 3-D solid elements were conducted.

  12. A dynamic response and eye scanning data base useful in the development of theories and methods for the description of control/display relationships

    NASA Technical Reports Server (NTRS)

    Klein, R.

    1972-01-01

    A set of specially prepared digital tapes is reported which contain synchronized measurements of pilot scanning behavior, control response, and vehicle response obtained during instrument landing system approaches made in a fixed-base DC-8 transport simulator. The objective of the master tape is to provide a common data base which can be used by the research community to test theories, models, and methods for describing and analyzing control/display relations and interactions. The experimental conditions and tasks used to obtain the data and the detailed format of the tapes are described. Conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Continuous pilot eye fixations and scan traffic on the panel were measured. Both flight director and standard localizer/glide slope types of approaches were made, with both fixed and variable instrument range sensitivities.

  13. Vibroacoustic Characterization of Corrugated-Core and Honeycomb-Core Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Allen, Albert; Schiller, Noah

    2016-01-01

    The vibroacoustic characteristics of two candidate launch vehicle fairing structures, corrugated- core and honeycomb-core sandwich designs, were studied. The study of these structures has been motivated by recent risk reduction efforts focused on mitigating high noise levels within the payload bays of large launch vehicles during launch. The corrugated-core sandwich concept is of particular interest as a dual purpose structure due to its ability to harbor resonant noise control systems without appreciably adding mass or taking up additional volume. Specifically, modal information, wavelength dispersion, and damping were determined from a series of vibrometer measurements and subsequent analysis procedures carried out on two test panels. Numerical and analytical modeling techniques were also used to assess assumed material properties and to further illuminate underlying structural dynamic aspects. Results from the tests and analyses described herein may serve as a reference for additional vibroacoustic studies involving these or similar structures.

  14. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    NASA Astrophysics Data System (ADS)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are identified in the 100 Hz to 10 kHz frequency range for double-walls under diffuse acoustic field and under point-force excitations. Non-resonant transmission is higher at low frequencies (frequencies lower than 1 kHz) while the structure-borne and the airborne paths dominate at mid- and high-frequencies, around 1 kHz and higher, respectively. An experimental validation on double-walls shows that the model is able to predict changes in the overall transmission caused by different structural couplings (rigid coupling, coupling via isolators and structurally uncoupled). Noise reduction means adapted to each transmission path, such as absorption, dissipation and structural decoupling, may be then derived. Keywords: Statistical energy analysis, Vibration isolator, Double-wall, Transfer path analysis, Transmission Loss.

  15. Sound transmission through stiffened double-panel structures lined with elastic porous materials

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal P.; Tran, Boi N.; Bolton, J. S.; Shiau, Nae-Ming

    This paper presents transmission loss prediction models for a periodically stiffened panel and stiffened double-panel structures using the periodic structure theory. The inter-panel cavity in the double-panels structures can be modeled as being separated by an airspace or filled with an elastic porous layer in various configurations. The acoustic behavior of elastic porous layer is described by a theory capable of accounting fully for multi-dimensional wave propagation in such materials. The predicted transmission loss of a single stiffened panel is compared with the measured data.

  16. Bayesian dynamical systems modelling in the social sciences.

    PubMed

    Ranganathan, Shyam; Spaiser, Viktoria; Mann, Richard P; Sumpter, David J T

    2014-01-01

    Data arising from social systems is often highly complex, involving non-linear relationships between the macro-level variables that characterize these systems. We present a method for analyzing this type of longitudinal or panel data using differential equations. We identify the best non-linear functions that capture interactions between variables, employing Bayes factor to decide how many interaction terms should be included in the model. This method punishes overly complicated models and identifies models with the most explanatory power. We illustrate our approach on the classic example of relating democracy and economic growth, identifying non-linear relationships between these two variables. We show how multiple variables and variable lags can be accounted for and provide a toolbox in R to implement our approach.

  17. Sliding down the U-shape? A dynamic panel investigation of the age-well-being relationship, focusing on young adults.

    PubMed

    Piper, Alan T

    2015-10-01

    Much of the work within economics attempting to understand the relationship between age and well-being has focused on the U-shape, whether it exists and, more recently, potential reasons for its existence. This paper focuses on one part of the lifecycle rather than the whole: young people. This focus offers a better understanding of the age-well-being relationship for young people, and helps with increasing general understanding regarding the U-shape itself. The empirical estimations employ both static and dynamic panel estimations, with the latter preferred for several reasons. The empirical results are in line with the U-shape, and the results from the dynamic analysis indicate that this result is a lifecycle effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Structural and Acoustic Numerical Modeling of a Curved Composite Honeycomb Panel

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Buehrle, Ralph D.; Robinson, Jay H.

    2001-01-01

    The finite and boundary element modeling of the curved section of a composite honeycomb aircraft fuselage sidewall was validated for both structural response and acoustic radiation. The curved panel was modeled in the pre-processor MSC/PATRAN. Geometry models of the curved panel were constructed based on the physical dimensions of the test article. Material properties were obtained from the panel manufacturer. Finite element models were developed to predict the modal parameters for free and supported panel boundary conditions up to a frequency of 600 Hz. Free boundary conditions were simulated by providing soft foam support under the four comers of the panel or by suspending the panel from elastic bands. Supported boundary conditions were obtained by clamping the panel between plastic tubing seated in grooves along the perimeter of a stiff and heavy frame. The frame was installed in the transmission loss window of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center. The structural response of the curved panel due to point force excitation was predicted using MSC/NASTRAN and the radiated sound was computed with COMET/Acoustics. The predictions were compared with the results from experimental modal surveys and forced response tests on the fuselage panel. The finite element models were refined and updated to provide optimum comparison with the measured modal data. Excellent agreement was obtained between the numerical and experimental modal data for the free as well as for the supported boundary conditions. Frequency response functions (FRF) were computed relating the input force excitation at one panel location to the surface acceleration response at five panel locations. Frequency response functions were measured at the same locations on the test specimen and were compared with the calculated FRF values. Good agreement was obtained for the real and imaginary parts of the transfer functions when modal participation was allowed up to 3000 Hz. The validated finite element model was used to predict the surface velocities due to the point force excitation. Good agreement was obtained between the spatial characteristics of the predicted and measured surface velocities. The measured velocity data were input into the acoustic boundary element code to compute the sound radiated by the panel. The predicted sound pressure levels in the far-field of the panel agreed well with the sound pressure levels measured at the same location.

  19. And justice for all: Examining corruption as a contextual source of mental illness.

    PubMed

    van Deurzen, Ioana

    2017-01-01

    In the present study, I focus on the relationship between corruption and mental health as measured by the level of depressive symptoms. I use data collected by the European Social Survey in 2006, 2012 and 2014 from 99,159 individuals that lived in 24 European countries. I employ two types of analyses: static analyses, i.e., multilevel models estimated in each wave, and dynamic analyses, i.e., fixed effects models for pseudo-panel data. Both static and dynamic analyses suggested that corruption had a detrimental effect on mental health. However, the results were not robust in models where the country's wealth was accounted for. Furthermore, this study presents evidence that the level of societal corruption is detrimental especially for the mental health of religious persons and individuals that experience material adversity. Regarding a potentially different effect of corruption on mental health between western and eastern European countries, no significant differences were found. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Dynamic Performance Comparison for MPPT-PV Systems using Hybrid Pspice/Matlab Simulation

    NASA Astrophysics Data System (ADS)

    Aouchiche, N.; Becherif, M.; HadjArab, A.; Aitcheikh, M. S.; Ramadan, H. S.; Cheknane, A.

    2016-10-01

    The power generated by solar photovoltaic (PV) module depends on the surrounding irradiance and temperature. This paper presents a hybrid Matlab™/Pspice™ simulation model of PV system, combined with Cadence software SLPS. The hybridization is performed in order to gain the advantages of both simulation tools such as accuracy and efficiency in both Pspice electronic circuit and Matlab™ mathematical modelling respectively. For this purpose, the PV panel and the boost converter are developed using Pspice™ and hybridized with the mathematical Matlab™ model of maximum power point method controller (MPPT) through SLPS. The main objective is verify the significance of using the proposed hybrid simulation techniques in comparing the different MPPT algorithms such as the perturbation and observation (P&O), incremental of conductance (Inc-Cond) and counter reaction voltage using pilot cell (Pilot-Cell). Various simulations are performed under different atmospheric conditions in order to evaluate the dynamic behaviour for the system under study in terms of stability, efficiency and rapidity.

  1. A model of the dynamics of household vegetarian and vegan rates in the U.K.

    PubMed

    Waters, James

    2018-08-01

    Although there are many studies of determinants of vegetarianism and veganism, there have been no previous studies of how their rates in a population jointly change over time. In this paper, we present a flexible model of vegetarian and vegan dietary choices, and derive the joint dynamics of rates of consumption. We fit our model to a pseudo-panel with 23 years of U.K. household data, and find that while vegetarian rates are largely determined by current household characteristics, vegan rates are additionally influenced by their own lagged value. We solve for equilibrium rates of vegetarianism and veganism, show that rates of consumption return to their equilibrium levels following a temporary event which changes those rates, and estimate the effects of campaigns to promote non-meat diets. We find that a persistent vegetarian campaign has a significantly positive effect on the rate of vegan consumption, in answer to an active debate among vegan campaigners. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. A new arrangement with nonlinear sidewalls for tanker ship storage panels

    NASA Astrophysics Data System (ADS)

    Ketabdari, M. J.; Saghi, H.

    2013-03-01

    Sloshing phenomenon in a moving container is a complicated free surface flow problem. It has a wide range of engineering applications, especially in tanker ships and Liquefied Natural Gas (LNG) carriers. When the tank in these vehicles is partially filled, it is essential to be able to evaluate the fluid dynamic loads on tank perimeter. Different geometric shapes such as rectangular, cylindrical, elliptical, spherical and circular conical have been suggested for ship storage tanks by previous researchers. In this paper a numerical model is developed based on incompressible and inviscid fluid motion for the liquid sloshing phenomenon. The coupled BEM-FEM is used to solve the governing equations and nonlinear free surface boundary conditions. The results are validated for rectangular container using data obtained for a horizontal periodic sway motion. Using the results of this model a new arrangement of trapezoidal shapes with quadratic sidewalls is suggested for tanker ship storage panels. The suggested geometric shape not only has a maximum surrounded tank volume to the constant available volume, but also reduces the sloshing effects more efficiently than the existing geometric shapes.

  3. Composite panels based on woven sandwich-fabric preforms

    NASA Astrophysics Data System (ADS)

    van Vuure, Aart Willem

    A new type of sandwich material was investigated, based on woven sandwich-fabric preforms. Because of the integrally woven nature of the sandwich-fabric the skin-core debonding resistance of panels and structures based on the preform is very high. As the sandwich-fabrics are produced by a large scale textile weaving process (velvet weaving or distance weaving) and already a preform of a sandwich is available, the cost of the final panel or structure can potentially stay limited. Most attention in this work is focussed on the mechanical performance of sandwich-fabric panels. The high skin-core debonding resistance was verified and also indications were found of a good damage tolerance. Both unfoamed and foamed panels were evaluated and compared with existing sandwich panels. Microstructural parameters investigated for unfoamed cores are pile length, pile density, woven pile angles, degree of pile stretching, tilt angles of the piles induced during panel production and resin content and distribution. For foamed panels it is especially the foam density which has an important influence. There appears to be a synergistic effect between piles and foam in the sandwich core, leading to very acceptable mechanical properties. For panels for (semi) structural applications, foaming is almost indispensable once the panel thickness is higher than about 15 mm. To understand the behaviour of foamed panels, attention was paid to the modelling of the mechanics of pure foam. The foam microstructure was modelled with the model of an anisotropic tetrakaidecahedron. The mechanical properties of unfoamed panels were modelled with the help of finite elements. A detailed geometrical description of the core layout was made which was incorporated into a preprocessing program for a finite element code. Attention is paid to the production of panels based on the woven preforms. A newly developed Adhesive Foil Stretching process was investigated. Also the foaming of panels was studied. A lot of attention was paid to a special application in the field of structural damping, where sandwich-fabric panels could be used as spacer in a constrained layer application. The vibrations and damping were modelled with the help of finite elements.

  4. 3D Modelling of Urban Terrain (Modelisation 3D de milieu urbain)

    DTIC Science & Technology

    2011-09-01

    Panel • IST Information Systems Technology Panel • NMSG NATO Modelling and Simulation Group • SAS System Analysis and Studies Panel • SCI... Systems Concepts and Integration Panel • SET Sensors and Electronics Technology Panel These bodies are made up of national representatives as well as...of a part of it may be made for individual use only. The approval of the RTA Information Management Systems Branch is required for more than one

  5. The New APS Topical Group on the Physics of Climate: History, Objectives and Panel Discussion

    NASA Astrophysics Data System (ADS)

    Brasseur, James; Behringer, Robert

    2013-03-01

    The GPC Chair will introduce the new APS Topical Group on the Physics of Climate (GPC), describe its history and objectives, and introduce the current GPC leadership before opening the floor to a panel discussion. The GPC resulted from two petitions that emerged from the controversy that followed the APS Statement on Climate Change (see APS website). The two proposals were merged and an organization committee formed by the APS leadership. After a long organizational period in 2011, the GPC bylaws were finalized with the following key objective: The objective of the GPC shall be to promote the advancement and diffusion of knowledge concerning the physics, measurement, and modeling of climate processes, within the domain of natural science and outside the domains of societal impact and policy, legislation and broader societal issues. The objective includes the integration of scientific knowledge and analysis methods across disciplines to address the dynamical complexities and uncertainties of climate physics. The GPC Invited and Focus Sessions at this March meeting are the inaugural GPC events. The Program Committee Chair will moderate a panel between the attending GPC leadership and audience to solicit suggestions for potential future GPC events that advance the GPC objectives.

  6. A finite difference analysis of the field present behind an acoustically impenetrable two-layer barrier.

    PubMed

    Hurrell, Andrew M

    2008-06-01

    The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface.

  7. A sheet metal forming simulation of automotive outer panels considering the behavior of air in die cavity

    NASA Astrophysics Data System (ADS)

    Choi, Kwang Yong; Kim, Yun Chang; Choi, Hee Kwan; Kang, Chul Ho; Kim, Heon Young

    2013-12-01

    During a sheet metal forming process of automotive outer panels, the air trapped between a blank sheet and a die tool can become highly compressed, ultimately influencing the blank deformation and the press force. To prevent this problem, vent holes are drilled into die tools and needs several tens to hundreds according to the model size. The design and the drilling of vent holes are based on expert's experience and try-out result and thus the process can be one of reasons increasing development cycle. Therefore the study on the size, the number, and the position of vent holes is demanded for reducing development cycle, but there is no simulation technology for analyzing forming defects, making numerical sheet metal forming process simulations that incorporate the fluid dynamics of air. This study presents a sheet metal forming simulation of automotive outer panels (a roof and a body side outer) that simultaneously simulates the behavior of air in a die cavity. Through CAE results, the effect of air behavior and vent holes to blank deformation was analyzed. For this study, the commercial software PAM-STAMP{trade mark, serif} and PAM-SAFE{trade mark, serif} was used.

  8. Dynamic publication model for neurophysiology databases.

    PubMed

    Gardner, D; Abato, M; Knuth, K H; DeBellis, R; Erde, S M

    2001-08-29

    We have implemented a pair of database projects, one serving cortical electrophysiology and the other invertebrate neurones and recordings. The design for each combines aspects of two proven schemes for information interchange. The journal article metaphor determined the type, scope, organization and quantity of data to comprise each submission. Sequence databases encouraged intuitive tools for data viewing, capture, and direct submission by authors. Neurophysiology required transcending these models with new datatypes. Time-series, histogram and bivariate datatypes, including illustration-like wrappers, were selected by their utility to the community of investigators. As interpretation of neurophysiological recordings depends on context supplied by metadata attributes, searches are via visual interfaces to sets of controlled-vocabulary metadata trees. Neurones, for example, can be specified by metadata describing functional and anatomical characteristics. Permanence is advanced by data model and data formats largely independent of contemporary technology or implementation, including Java and the XML standard. All user tools, including dynamic data viewers that serve as a virtual oscilloscope, are Java-based, free, multiplatform, and distributed by our application servers to any contemporary networked computer. Copyright is retained by submitters; viewer displays are dynamic and do not violate copyright of related journal figures. Panels of neurophysiologists view and test schemas and tools, enhancing community support.

  9. Variable Stiffness Panel Structural Analyses With Material Nonlinearity and Correlation With Tests

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Gurdal, Zafer

    2006-01-01

    Results from structural analyses of three tow-placed AS4/977-3 composite panels with both geometric and material nonlinearities are presented. Two of the panels have variable stiffness layups where the fiber orientation angle varies as a continuous function of location on the panel planform. One variable stiffness panel has overlapping tow bands of varying thickness, while the other has a theoretically uniform thickness. The third panel has a conventional uniform-thickness [plus or minus 45](sub 5s) layup with straight fibers, providing a baseline for comparing the performance of the variable stiffness panels. Parametric finite element analyses including nonlinear material shear are first compared with material characterization test results for two orthotropic layups. This nonlinear material model is incorporated into structural analysis models of the variable stiffness and baseline panels with applied end shortenings. Measured geometric imperfections and mechanical prestresses, generated by forcing the variable stiffness panels from their cured anticlastic shapes into their flatter test configurations, are also modeled. Results of these structural analyses are then compared to the measured panel structural response. Good correlation is observed between the analysis results and displacement test data throughout deep postbuckling up to global failure, suggesting that nonlinear material behavior is an important component of the actual panel structural response.

  10. The efficacy of a panel study for assessing the temporal stability of hunting participation and constraints

    Treesearch

    Ellen B. Drogin Rodgers; Brett A. Wright; Kenneth F. Backman

    2003-01-01

    The intent of this study of Virginia hunters/nonhunters was to test the efficacy of panel research for assessing the temporal stability of hunting participation and constraints. Findings suggest that participation/nonparticipation patterns were stable across time periods for the population, yet dynamic at the individual level. Although the structure of perceived...

  11. Physical Activity and BMI: Evidence from the Panel Study of Income Dynamics Child Development Supplement

    ERIC Educational Resources Information Center

    Hohensee, Caroline W.; Nies, Mary A.

    2012-01-01

    Background: This study assessed the association between amount of physical activity and body mass index (BMI) percentile among middle and high school children. Total daily physical activity needs to include both in and out of school physical activity. Methods: A secondary data analysis was performed on 1306 children drawn from the Panel Study of…

  12. Who Decides in Giving to Education? A Study of Charitable Giving by Married Couples

    ERIC Educational Resources Information Center

    Rooney, Patrick; Brown, Eleanor; Mesch, Debra

    2007-01-01

    Using data from the Center on Philanthropy Panel Study and the Panel Study on Income Dynamics, we analyzed whether husbands or wives were more likely to determine whether and how much money to donate to educational institutions. Among donor households, we are able to examine what socio-economic-demographic factors explain differences in whether…

  13. Bling My Research! A Mock Grant Panel Activity Illustrating the Importance of Basic Research

    ERIC Educational Resources Information Center

    Leander, Celeste A.; Whitton, Jeannette

    2010-01-01

    First-year university students have misconceptions about the source and dynamics of publicly funded research money. We designed an activity in which students take part in a mock grant panel. The results indicated a strong tendency toward student funding of applied medical research at the expense of basic research. Exposure to a few examples of…

  14. Recent CESAR (Center for Engineering Systems Advanced Research) research activities in sensor based reasoning for autonomous machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pin, F.G.; de Saussure, G.; Spelt, P.F.

    1988-01-01

    This paper describes recent research activities at the Center for Engineering Systems Advanced Research (CESAR) in the area of sensor based reasoning, with emphasis being given to their application and implementation on our HERMIES-IIB autonomous mobile vehicle. These activities, including navigation and exploration in a-priori unknown and dynamic environments, goal recognition, vision-guided manipulation and sensor-driven machine learning, are discussed within the framework of a scenario in which an autonomous robot is asked to navigate through an unknown dynamic environment, explore, find and dock at the panel, read and understand the status of the panel's meters and dials, learn the functioningmore » of a process control panel, and successfully manipulate the control devices of the panel to solve a maintenance emergency problems. A demonstration of the successful implementation of the algorithms on our HERMIES-IIB autonomous robot for resolution of this scenario is presented. Conclusions are drawn concerning the applicability of the methodologies to more general classes of problems and implications for future work on sensor-driven reasoning for autonomous robots are discussed. 8 refs., 3 figs.« less

  15. Orthogonal model and experimental data for analyzing wood-fiber-based tri-axial ribbed structural panels in bending

    Treesearch

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2017-01-01

    This paper presents an analysis of 3-dimensional engineered structural panels (3DESP) made from wood-fiber-based laminated paper composites. Since the existing models for calculating the mechanical behavior of core configurations within sandwich panels are very complex, a new simplified orthogonal model (SOM) using an equivalent element has been developed. This model...

  16. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography.

  17. Determination of Oriented Strandboard properties from a three-dimensional density distribution using the finite element method

    NASA Astrophysics Data System (ADS)

    Tackie, Alan Derek Nii

    Computer modeling of Oriented Strand Board (OSB) properties has gained widespread attention with numerous models created to better understand OBS behavior. Recent models allow researchers to observe multiple variables such as changes in moisture content, density and resin effects on panel performance. Thickness-swell variation influences panel durability and often has adverse effects on a structural panel's bending stiffness. The prediction of out-of-plane swell under changing moisture conditions was, therefore, the essence for developing a model in this research. The finite element model accounted for both vertical and horizontal density variations, the three-dimensional (3D) density variation of the board. The density variation, resulting from manufacturing processes, affects the uniformity of thickness-swell in OSB and is often exacerbated by continuous sorption of moisture that leads to potentially damaging internal stresses in the panel. The overall thickness-swell (the cumulative swell from non-uniform horizontal density profile, panel swell from free water, and spring-back from panel compression) was addressed through the finite element model in this research. The pursued goals in this study were, first and foremost, the development of a robust and comprehensive finite element model which integrated several component studies to investigate the effects of moisture variation on the out-of-plane thickness-swell of OSB panels, and second, the extension of the developed model to predict panel stiffness. It is hoped that this paper will encourage researchers to adopt the 3D density distribution approach as a viable approach to analyzing the physical and mechanical properties of OSB.

  18. Field-incidence transmission of treated orthotropic and laminated composite panels

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1983-01-01

    In an effort to improve understanding of the phenomenon of noise transmission through the sidewalls of an aircraft fuselage, an analytical model was developed for the field incidence transmission loss of an orthotropic or laminated composite infinite panel with layers of various noise insulation treatments. The model allows for four types of treatments, impervious limp septa, orthotropic trim panels, porous blankets, and air spaces, while it also takes into account the effects of forward speed. Agreement between the model and transmission loss data for treated panels is seen to be fairly good overall. In comparison with transmission loss data for untreated composite panels, excellent agreement occurred.

  19. THE LONG-TERM DYNAMICS OF RACIAL/ETHNIC INEQUALITY IN NEIGHBORHOOD AIR POLLUTION EXPOSURE, 1990-2009.

    PubMed

    Kravitz-Wirtz, Nicole; Crowder, Kyle; Hajat, Anjum; Sass, Victoria

    2016-01-01

    Research examining racial/ethnic disparities in pollution exposure often relies on cross-sectional data. These analyses are largely insensitive to exposure trends and rarely account for broader contextual dynamics. To provide a more comprehensive assessment of racial-environmental inequality over time, we combine the 1990 to 2009 waves of the Panel Study of Income Dynamics (PSID) with spatially- and temporally-resolved measures of nitrogen dioxide (NO 2 ) and particulate matter (PM 2.5 and PM 10 ) in respondents' neighborhoods, as well as census data on the characteristics of respondents' metropolitan areas. Results based on multilevel repeated measures models indicate that Blacks and Latinos are, on average, more likely to be exposed to higher levels of NO 2 , PM 2.5 , and PM 10 than Whites. Despite nationwide declines in levels of pollution over time, racial and ethnic disparities persist and cannot be fully explained by individual-, household-, or metropolitan-level factors.

  20. Finite Element Model Development and Validation for Aircraft Fuselage Structures

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.

    2000-01-01

    The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.

  1. Low-cost production of solar-cell panels

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.; Gallagher, B. D.; Sanchez, L. E.

    1980-01-01

    Large-scale production model combines most modern manufacturing techniques to produce silicon-solar-cell panels of low costs by 1982. Model proposes facility capable of operating around the clock with annual production capacity of 20 W of solar cell panels.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Yiqi; Ahlström, Anders; Allison, Steven D.

    Soil carbon (C) is a critical component of Earth system models (ESMs) and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the 3rd to 5th assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. Firstly, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by 1st-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic SOC dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Secondly, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool- and flux-based datasets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Thirdly, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. We recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable datasets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less

  3. Projected continent-wide declines of the emperor penguin under climate change

    NASA Astrophysics Data System (ADS)

    Jenouvrier, Stéphanie; Holland, Marika; Stroeve, Julienne; Serreze, Mark; Barbraud, Christophe; Weimerskirch, Henri; Caswell, Hal

    2014-08-01

    Climate change has been projected to affect species distribution and future trends of local populations, but projections of global population trends are rare. We analyse global population trends of the emperor penguin (Aptenodytes forsteri), an iconic Antarctic top predator, under the influence of sea ice conditions projected by coupled climate models assessed in the Intergovernmental Panel on Climate Change (IPCC) effort. We project the dynamics of all 45 known emperor penguin colonies by forcing a sea-ice-dependent demographic model with local, colony-specific, sea ice conditions projected through to the end of the twenty-first century. Dynamics differ among colonies, but by 2100 all populations are projected to be declining. At least two-thirds are projected to have declined by >50% from their current size. The global population is projected to have declined by at least 19%. Because criteria to classify species by their extinction risk are based on the global population dynamics, global analyses are critical for conservation. We discuss uncertainties arising in such global projections and the problems of defining conservation criteria for species endangered by future climate change.

  4. Packaging, deployment, and panel design concepts for a truss-stiffened 7-panel precision deployable reflector with feed boom

    NASA Technical Reports Server (NTRS)

    Heard, Walter L., Jr.; Collins, Timothy J.; Dyess, James W.; Kenner, Scott; Bush, Harold G.

    1993-01-01

    A concept is presented for achieving a remotely deployable truss-stiffened reflector consisting of seven integrated sandwich panels that form the reflective surface, and an integrated feed boom. The concept has potential for meeting aperture size and surface precision requirements for some high-frequency microwave remote sensing applications. The packaged reflector/feed boom configuration is a self-contained unit that can be conveniently attached to a spacecraft bus. The package has a cylindrical envelope compatible with typical launch vehicle shrouds. Dynamic behavior of a deployed configuration having a 216-inch focal length and consisting of 80-inch-diameter, two-inch-thick panels is examined through finite-element analysis. Results show that the feed boom and spacecraft bus can have a large impact on the fundamental frequency of the deployed configuration. Two candidate rib-stiffened sandwich panel configurations for this application are described, and analytical results for panel mass and stiffness are presented. Results show that the addition of only a few rib stiffeners, if sufficiently deep, can efficiently improve sandwich panel stiffness.

  5. Simple go/no-go test for subcritical damage in body armor panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fisher, Jason; Chimenti, D. E.

    2011-06-23

    The development of a simple test for subcritical damage in body armor panels using pressure-sensitive dye-indicator film has been performed and demonstrated effective. Measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Impacts from hard blunt impactors instrumented with an accelerometer and embedded force transducer were studied. Reliable correlations between the indicator film and instrumented impact force are shown for a range of impact energies. Force and acceleration waveforms with corresponding indicator film results are presented for impact events onto damaged and undamaged panels. We find that panel damage can occur at impact levels farmore » below the National Institute of Justice acceptance test standard.« less

  6. Dynamic cone beam CT angiography of carotid and cerebral arteries using canine model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai Weixing; Zhao Binghui; Conover, David

    2012-01-15

    Purpose: This research is designed to develop and evaluate a flat-panel detector-based dynamic cone beam CT system for dynamic angiography imaging, which is able to provide both dynamic functional information and dynamic anatomic information from one multirevolution cone beam CT scan. Methods: A dynamic cone beam CT scan acquired projections over four revolutions within a time window of 40 s after contrast agent injection through a femoral vein to cover the entire wash-in and wash-out phases. A dynamic cone beam CT reconstruction algorithm was utilized and a novel recovery method was developed to correct the time-enhancement curve of contrast flow.more » From the same data set, both projection-based subtraction and reconstruction-based subtraction approaches were utilized and compared to remove the background tissues and visualize the 3D vascular structure to provide the dynamic anatomic information. Results: Through computer simulations, the new recovery algorithm for dynamic time-enhancement curves was optimized and showed excellent accuracy to recover the actual contrast flow. Canine model experiments also indicated that the recovered time-enhancement curves from dynamic cone beam CT imaging agreed well with that of an IV-digital subtraction angiography (DSA) study. The dynamic vascular structures reconstructed using both projection-based subtraction and reconstruction-based subtraction were almost identical as the differences between them were comparable to the background noise level. At the enhancement peak, all the major carotid and cerebral arteries and the Circle of Willis could be clearly observed. Conclusions: The proposed dynamic cone beam CT approach can accurately recover the actual contrast flow, and dynamic anatomic imaging can be obtained with high isotropic 3D resolution. This approach is promising for diagnosis and treatment planning of vascular diseases and strokes.« less

  7. Toward more realistic projections of soil carbon dynamics by Earth system models

    DOE PAGES

    Luo, Yiqi; Ahlstrom, Anders; Allison, Steven D.; ...

    2016-01-21

    Soil carbon (C) is a critical component of Earth system models (ESMs), and its diverse representations are a major source of the large spread across models in the terrestrial C sink from the third to fifth assessment reports of the Intergovernmental Panel on Climate Change (IPCC). Improving soil C projections is of a high priority for Earth system modeling in the future IPCC and other assessments. To achieve this goal, we suggest that (1) model structures should reflect real-world processes, (2) parameters should be calibrated to match model outputs with observations, and (3) external forcing variables should accurately prescribe themore » environmental conditions that soils experience. First, most soil C cycle models simulate C input from litter production and C release through decomposition. The latter process has traditionally been represented by first-order decay functions, regulated primarily by temperature, moisture, litter quality, and soil texture. While this formulation well captures macroscopic soil organic C (SOC) dynamics, better understanding is needed of their underlying mechanisms as related to microbial processes, depth-dependent environmental controls, and other processes that strongly affect soil C dynamics. Second, incomplete use of observations in model parameterization is a major cause of bias in soil C projections from ESMs. Optimal parameter calibration with both pool-and flux-based data sets through data assimilation is among the highest priorities for near-term research to reduce biases among ESMs. Third, external variables are represented inconsistently among ESMs, leading to differences in modeled soil C dynamics. Furthermore, we recommend the implementation of traceability analyses to identify how external variables and model parameterizations influence SOC dynamics in different ESMs. Overall, projections of the terrestrial C sink can be substantially improved when reliable data sets are available to select the most representative model structure, constrain parameters, and prescribe forcing fields.« less

  8. Size Effects in Impact Damage of Composite Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Dobyns, Alan; Jackson, Wade

    2003-01-01

    Panel size has a large effect on the impact response and resultant damage level of honeycomb sandwich panels. It has been observed during impact testing that panels of the same design but different panel sizes will show large differences in damage when impacted with the same impact energy. To study this effect, a test program was conducted with instrumented impact testing of three different sizes of sandwich panels to obtain data on panel response and residual damage. In concert with the test program. a closed form analysis method was developed that incorporates the effects of damage on the impact response. This analysis method will predict both the impact response and the residual damage of a simply-supported sandwich panel impacted at any position on the panel. The damage is incorporated by the use of an experimental load-indentation curve obtained for the face-sheet/honeycomb and indentor combination under study. This curve inherently includes the damage response and can be obtained quasi-statically from a rigidly-backed specimen or a specimen with any support conditions. Good correlation has been obtained between the test data and the analysis results for the maximum force and residual indentation. The predictions can be improved by using a dynamic indentation curve. Analyses have also been done using the MSC/DYTRAN finite element code.

  9. Nonlinear elastic behavior of sub-critically damaged body armor panel

    NASA Astrophysics Data System (ADS)

    Fisher, Jason T.; Chimenti, D. E.

    2012-05-01

    A simple go/no-go test for body armor panels using pressure-sensitive, dye-indicator film (PSF) has been shown to be statistically effective in revealing subcritical damage to body armor panels. Previous measurements have shown that static indicator levels are accurately reproduced in dynamic loading events. Further impact tests on armor worn by a human resuscitation dummy using instrumented masses with an attached accelerometer and embedded force transducer have been performed and analyzed. New impact tests have shown a reliable correlation between PSF indication (as digitized images) and impact force for a wide range of impactor energies and masses. Numerical evaluation of digital PSF images is presented and correlated with impact parameters. Relationships between impactor mass and energy, and corresponding measured force are shown. We will also report on comparisons between ballistic testing performed on panels damaged under various impact conditions and tests performed on undamaged panels.

  10. Aeroelastic Analysis Of Versatile Thermal Insulation Panels For Launchers Applications

    NASA Astrophysics Data System (ADS)

    Carrera, E.; Zappino, E.; Augello, G.; Ferrarese, A.; Montabone, M.

    2011-05-01

    The aeroelastic behavior of a Versatile Thermal Insulation (VTI) has been investigated. Among the various loadings acting on the panels in this work the attention is payed to fluid structure interaction. e.g. panel flutter phenomena. Known available results from open literature, related to similar problems, permit to analyze the effect of various Mach regimes, including boundary layers thickness effects, in-plane mechanical and thermal loadings, nonlinear effect and amplitude of so called limit cycle oscillations. Dedicated finite element model is developed for the supersonic regime. The model used for coupling orthotropic layered structural model with to Piston Theory aerodynamic models allows the calculations of flutter conditions in case of curved panels supported in a dis- crete number of points. Through this approach the flutter boundaries of the VTI-panel have been investigated.

  11. Predicting bending stiffness of randomly oriented hybrid panels

    Treesearch

    Laura Moya; William T.Y. Tze; Jerrold E. Winandy

    2010-01-01

    This study was conducted to develop a simple model to predict the bending modulus of elasticity (MOE) of randomly oriented hybrid panels. The modeling process involved three modules: the behavior of a single layer was computed by applying micromechanics equations, layer properties were adjusted for densification effects, and the entire panel was modeled as a three-...

  12. A dynamic panel model of the associations of sweetened beverage purchases with dietary quality and food-purchasing patterns.

    PubMed

    Piernas, Carmen; Ng, Shu Wen; Mendez, Michelle A; Gordon-Larsen, Penny; Popkin, Barry M

    2015-05-01

    Investigating the association between consumption of sweetened beverages and dietary quality is challenging because issues such as reverse causality and unmeasured confounding might result in biased and inconsistent estimates. Using a dynamic panel model with instrumental variables to address those issues, we examined the independent associations of beverages sweetened with caloric and low-calorie sweeteners with dietary quality and food-purchasing patterns. We analyzed purchase data from the Homescan survey, an ongoing, longitudinal, nationally representative US survey, from 2000 to 2010 (n = 34,294). Our model included lagged measures of dietary quality and beverage purchases (servings/day in the previous year) as exposures to predict the outcomes (macronutrient (kilocalories per capita per day; %), total energy, and food purchases) in the next year after adjustment for other sociodemographic covariates. Despite secular declines in purchases (kilocalories per capita per day) from all sources, each 1-serving/day increase in consumption of either beverage type resulted in higher purchases of total daily kilocalories and kilocalories from food, carbohydrates, total sugar, and total fat. Each 1-serving/day increase in consumption of either beverage was associated with more purchases of caloric-sweetened desserts or sweeteners, which accounted for a substantial proportion of the increase in total kilocalories. We concluded that consumers of both beverages sweetened with low-calorie sweeteners and beverages sweetened with caloric sweeteners had poorer dietary quality, exhibited higher energy from all purchases, sugar, and fat, and purchased more caloric-sweetened desserts/caloric sweeteners compared with nonconsumers. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Process Improvement Through Tool Integration in Aero-Mechanical Design

    NASA Technical Reports Server (NTRS)

    Briggs, Clark

    2010-01-01

    Emerging capabilities in commercial design tools promise to significantly improve the multi-disciplinary and inter-disciplinary design and analysis coverage for aerospace mechanical engineers. This paper explores the analysis process for two example problems of a wing and flap mechanical drive system and an aircraft landing gear door panel. The examples begin with the design solid models and include various analysis disciplines such as structural stress and aerodynamic loads. Analytical methods include CFD, multi-body dynamics with flexible bodies and structural analysis. Elements of analysis data management, data visualization and collaboration are also included.

  14. Helios Dynamics A Potential Future Power Source for the Greek Islands

    DTIC Science & Technology

    2007-06-01

    offer an apparent understanding of the capabilities of the emerging Photovoltaic Power Converter (PVPC) technology used in panels for electricity... powering method that uses fueled generators and the alternative option is photovoltaic panels with the Atira technology embedded. This analysis is... POWER SOURCE FOR THE GREEK ISLANDS ABSTRACT The use of Alternative Renewable Energy Sources is becoming an increasing possibility to

  15. An Examination of Persistence in Charitable Giving to Education through the 2002 Economic Downturn

    ERIC Educational Resources Information Center

    Wu, Ke; Brown, Melissa S.

    2010-01-01

    Using three waves of the Center on Philanthropy Panel Study, a module of the Panel Study of Income Dynamics, fielded by the Institute for Social Research at the University of Michigan, we examine characteristics of donors who gave to any level of education in each of the years studied (2000, 2002 and 2004). We find that these persistent donors to…

  16. Cantilever Beam Static and Dynamic Response Comparison with Mid-Point Bending for Thin MDF composite Panels

    Treesearch

    John F. Hunt; Houjiang Zhang; Zhiren Guo; Feng Fu

    2013-01-01

    A new cantilever beam apparatus has been developed to measure static and vibrational properties of small and thin samples of wood or composite panels. The apparatus applies a known displacement to a cantilever beam, measures its static load, then releases it into its natural first mode of transverse vibration. Free vibrational tip displacements as a function of time...

  17. Electromagnetic panel deployment and retraction using the geomagnetic field in LEO satellite missions

    NASA Astrophysics Data System (ADS)

    Inamori, Takaya; Sugawara, Yoshiki; Satou, Yasutaka

    2015-12-01

    Increasingly, spacecraft are installed with large-area structures that are extended and deployed post-launch. These extensible structures have been applied in several missions for power generation, thermal radiation, and solar propulsion. Here, we propose a deployment and retraction method using the electromagnetic force generated when the geomagnetic field interacts with electric current flowing on extensible panels. The panels are installed on a satellite in low Earth orbit. Specifically, electrical wires placed on the extensible panels generate magnetic moments, which interfere with the geomagnetic field. The resulting repulsive and retraction forces enable panel deployment and retraction. In the proposed method, a satellite realizes structural deployment using simple electrical wires. Furthermore, the satellite can achieve not only deployment but also retraction for avoiding damage from space debris and for agile attitude maneuvers. Moreover, because the proposed method realizes quasi-static deployment and the retraction of panels by electromagnetic forces, low impulsive force is exerted on fragile panels. The electrical wires can also be used to detect the panel deployment and retraction and generate a large magnetic moment for attitude control. The proposed method was assessed in numerical simulations based on multibody dynamics. Simulation results shows that a small cubic satellite with a wire current of 25 AT deployed 4 panels (20 cm × 20 cm) in 500 s and retracted 4 panels in 100 s.

  18. Low and High Frequency Models of Response Statistics of a Cylindrical Orthogrid Vehicle Panel to Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Teague, David; Gardner, Bryce; Cotoni, Vincent

    2010-01-01

    This presentation further develops the orthogrid vehicle panel work. Employed Hybrid Module capabilities to assess both low/mid frequency and high frequency models in the VA One simulation environment. The response estimates from three modeling approaches are compared to ground test measurements. Detailed Finite Element Model of the Test Article -Expect to capture both the global panel modes and the local pocket mode response, but at a considerable analysis expense (time & resources). A Composite Layered Construction equivalent global stiffness approximation using SEA -Expect to capture response of the global panel modes only. An SEA approximation using the Periodic Subsystem Formulation. A finite element model of a single periodic cell is used to derive the vibroacoustic properties of the entire periodic structure (modal density, radiation efficiency, etc. Expect to capture response at various locations on the panel (on the skin and on the ribs) with less analysis expense

  19. Active control of panel vibrations induced by boundary-layer flow

    NASA Technical Reports Server (NTRS)

    Chow, Pao-Liu

    1991-01-01

    Some problems in active control of panel vibration excited by a boundary layer flow over a flat plate are studied. In the first phase of the study, the optimal control problem of vibrating elastic panel induced by a fluid dynamical loading was studied. For a simply supported rectangular plate, the vibration control problem can be analyzed by a modal analysis. The control objective is to minimize the total cost functional, which is the sum of a vibrational energy and the control cost. By means of the modal expansion, the dynamical equation for the plate and the cost functional are reduced to a system of ordinary differential equations and the cost functions for the modes. For the linear elastic plate, the modes become uncoupled. The control of each modal amplitude reduces to the so-called linear regulator problem in control theory. Such problems can then be solved by the method of adjoint state. The optimality system of equations was solved numerically by a shooting method. The results are summarized.

  20. Pseudo-dynamic tests on masonry residential buildings seismically retrofitted by precast steel reinforced concrete walls

    NASA Astrophysics Data System (ADS)

    Li, Wenfeng; Wang, Tao; Chen, Xi; Zhong, Xiang; Pan, Peng

    2017-07-01

    A retrofitting technology using precast steel reinforced concrete (PSRC) panels is developed to improve the seismic performance of old masonry buildings. The PSRC panels are built up as an external PSRC wall system surrounding the existing masonry building. The PSRC walls are well connected to the existing masonry building, which provides enough confinement to effectively improve the ductility, strength, and stiffenss of old masonry structures. The PSRC panels are prefabricated in a factory, significantly reducing the situ work and associated construction time. To demonstrate the feasibility and mechanical effectivenss of the proposed retrofitting system, a full-scale five-story specimen was constructed. The retrofitting process was completed within five weeks with very limited indoor operation. The specimen was then tested in the lateral direction, which could potentially suffer sigifnicant damage in a large earthquake. The technical feasibility, construction workability, and seismic performance were thoroughly demonstrated by a full-scale specimen construction and pseudo-dynamic tests.

  1. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  2. Modeling and Control of the Redundant Parallel Adjustment Mechanism on a Deployable Antenna Panel

    PubMed Central

    Tian, Lili; Bao, Hong; Wang, Meng; Duan, Xuechao

    2016-01-01

    With the aim of developing multiple input and multiple output (MIMO) coupling systems with a redundant parallel adjustment mechanism on the deployable antenna panel, a structural control integrated design methodology is proposed in this paper. Firstly, the modal information from the finite element model of the structure of the antenna panel is extracted, and then the mathematical model is established with the Hamilton principle; Secondly, the discrete Linear Quadratic Regulator (LQR) controller is added to the model in order to control the actuators and adjust the shape of the panel. Finally, the engineering practicality of the modeling and control method based on finite element analysis simulation is verified. PMID:27706076

  3. Sound transmission through lined, composite panel structures: Transversely isotropic poro-elastic model

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Woo

    A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a parameter study based both on the STL and free wave propagation speeds, the mass, stiffness and damping-controlled regions of the STL were identified. The structural factors that can be adjusted to improve STL performance were also identified.

  4. Analysis of stationary and dynamic factors affecting highway accident occurrence: A dynamic correlated grouped random parameters binary logit approach.

    PubMed

    Fountas, Grigorios; Sarwar, Md Tawfiq; Anastasopoulos, Panagiotis Ch; Blatt, Alan; Majka, Kevin

    2018-04-01

    Traditional accident analysis typically explores non-time-varying (stationary) factors that affect accident occurrence on roadway segments. However, the impact of time-varying (dynamic) factors is not thoroughly investigated. This paper seeks to simultaneously identify pre-crash stationary and dynamic factors of accident occurrence, while accounting for unobserved heterogeneity. Using highly disaggregate information for the potential dynamic factors, and aggregate data for the traditional stationary elements, a dynamic binary random parameters (mixed) logit framework is employed. With this approach, the dynamic nature of weather-related, and driving- and pavement-condition information is jointly investigated with traditional roadway geometric and traffic characteristics. To additionally account for the combined effect of the dynamic and stationary factors on the accident occurrence, the developed random parameters logit framework allows for possible correlations among the random parameters. The analysis is based on crash and non-crash observations between 2011 and 2013, drawn from urban and rural highway segments in the state of Washington. The findings show that the proposed methodological framework can account for both stationary and dynamic factors affecting accident occurrence probabilities, for panel effects, for unobserved heterogeneity through the use of random parameters, and for possible correlation among the latter. The comparative evaluation among the correlated grouped random parameters, the uncorrelated random parameters logit models, and their fixed parameters logit counterpart, demonstrate the potential of the random parameters modeling, in general, and the benefits of the correlated grouped random parameters approach, specifically, in terms of statistical fit and explanatory power. Published by Elsevier Ltd.

  5. Origami-Inspired Folding of Thick, Rigid Panels

    NASA Technical Reports Server (NTRS)

    Trease, Brian P.; Thomson, Mark W.; Sigel, Deborah A.; Walkemeyer, Phillip E.; Zirbel, Shannon; Howell, Larry; Lang, Robert

    2014-01-01

    To achieve power of 250 kW or greater, a large compression ratio of stowed-to-deployed area is needed. Origami folding patterns were used to inspire the folding of a solar array to achieve synchronous deployment; however, origami models are generally created for near-zero-thickness material. Panel thickness is one of the main challenges of origami-inspired design. Three origami-inspired folding techniques (flasher, square twist, and map fold) were created with rigid panels and hinges. Hinge components are added to the model to enable folding of thick, rigid materials. Origami models are created assuming zero (or near zero) thickness. When a material with finite thickness is used, the panels are required to bend around an increasingly thick fold as they move away from the center of the model. The two approaches for dealing with material thickness are to use membrane hinges to connect the panels, or to add panel hinges, or hinges of the same thickness, at an appropriate width to enable folding.

  6. Radiated Sound Power from a Curved Honeycomb Panel

    NASA Technical Reports Server (NTRS)

    Robinson, Jay H.; Buehrle, Ralph D.; Klos, Jacob; Grosveld, Ferdinand W.

    2003-01-01

    The validation of finite element and boundary element model for the vibro-acoustic response of a curved honeycomb core composite aircraft panel is completed. The finite element and boundary element models were previously validated separately. This validation process was hampered significantly by the method in which the panel was installed in the test facility. The fixture used was made primarily of fiberboard and the panel was held in a groove in the fiberboard by a compression fitting made of plastic tubing. The validated model is intended to be used to evaluate noise reduction concepts from both an experimental and analytic basis simultaneously. An initial parametric study of the influence of core thickness on the radiated sound power from this panel, using this numerical model was subsequently conducted. This study was significantly influenced by the presence of strong boundary condition effects but indicated that the radiated sound power from this panel was insensitive to core thickness primarily due to the offsetting effects of added mass and added stiffness in the frequency range investigated.

  7. Ergonomic Redesign of an Industrial Control Panel.

    PubMed

    Raeisi, S; Osqueizadeh, R; Maghsoudipour, M; Jafarpisheh, A S

    2016-07-01

    Operator's role in industrial control centers takes place in time, which is one of the most important determinants of whether an expected action is going to be successful or not. In certain situations, due to the complex nature of the work, the existing interfaces and already prepared procedures do not meet the dynamic requirements of operator's cognitive demands, making the control tasks unnecessarily difficult. This study was conducted to identify ergonomic issues with a specific industrial control panel, and redesign its layout and elements to enhance its usability. Task and link analysis methodologies were implemented. All essential functions and supporting operations were identified at the required trivial levels. Next, the weight of any possible link between the elements of the panel was computed as a composite index of frequency and importance. Finally, all components were rearranged within a new layout, and a computerized mockup was generated. A total of 8 primary tasks was identified, including 4 system failure handling tasks, switching between manual and automated modes, and 3 types of routine vigilance and control tasks. These tasks were broken down into 28 functions and 145 supporting operations, accordingly. Higher link values were observed between hand rest position and 2 elements. Also, 6 other components showed robust linkages. In conclusion, computer modeling can reduce the likelihood of accidents and near misses in industrial control rooms by considering the operators' misperception or mental burden and correcting poor design of the panels and inappropriate task allocation.

  8. Bayesian Estimation of Panel Data Fractional Response Models with Endogeneity: An Application to Standardized Test Rates

    ERIC Educational Resources Information Center

    Kessler, Lawrence M.

    2013-01-01

    In this paper I propose Bayesian estimation of a nonlinear panel data model with a fractional dependent variable (bounded between 0 and 1). Specifically, I estimate a panel data fractional probit model which takes into account the bounded nature of the fractional response variable. I outline estimation under the assumption of strict exogeneity as…

  9. Effect of panel shape on hydrodynamic performances of vertical v-shaped double- slotted cambered otter-board

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhang, Xun; Wang, Lu Min; Huang, Hong Liang; Zhang, Yu; Liu, Yong Li; Feng, Wei Dong; Zhang, Rong Jun

    2018-06-01

    The effect of panel shape on hydrodynamic performances of a vertical v-shaped double-slotted cambered otter-board was investigated using engineering models in a wind tunnel. Three different shape panels (rhomboid, left trapezoid and isosceles trapezoid) were evaluated at a wind speed of 28 m/s. Parameters measured included: drag coefficient Cx, lift coefficient Cy, pitch moment coefficient Cm, center of pressure coefficient Cp , over a range of angle of attack (0° to 70°). These coefficients were used in analyzing the differences in the performance among the three otter-board models. Results showed that the maximum lift coefficient Cy of the otter-board model with the isosceles trapezoid shape panels was highest (2.103 at α=45°). The maximum Cy/Cx of the otter-board with the rhomboid shape panels was highest (3.976 at α=15°). A comparative analysis of Cm and Cp showed that the stability of otter-board model with the isosceles trapezoid shape panels is better in pitch, and the stability of otter-board model with the left trapezoid shape panels is better in roll. The findings of this study can offer useful reference data for the structural optimization of otter-boards for trawling.

  10. Energy transmission through a double-wall curved stiffened panel using Green's theorem

    NASA Astrophysics Data System (ADS)

    Ghosh, Subha; Bhattacharya, Partha

    2015-04-01

    It is a common practice in aerospace and automobile industries to use double wall panels as fuselage skins or in window panels to improve acoustic insulation. However, the scientific community is yet to develop a reliable prediction method for a suitable vibro-acoustic model for sound transmission through a curved double-wall panel. In this quest, the present work tries to delve into the modeling of energy transmission through a double-wall curved panel. Subsequently the radiation of sound power into the free field from the curved panel in the low to mid frequency range is also studied. In the developed model to simulate a stiffened aircraft fuselage configuration, the outer wall is provided with longitudinal stiffeners. A modal expansion theory based on Green's theorem is implemented to model the energy transmission through an acoustically coupled double-wall curved panel. An elemental radiator approach is implemented to calculate the radiated energy from the curved surface in to the free field. The developed model is first validated with various numerical models available. It has been observed in the present study that the radius of curvature of the surface has a prominent effect on the behavior of radiated sound power into the free field. Effect of the thickness of the air gap between the two curved surfaces on the sound power radiation has also been noted.

  11. Molecular DYNAmics of Soil Organic carbon (DYNAMOS ): a project focusing on soils and carbon through data and modeling

    NASA Astrophysics Data System (ADS)

    Mendez-Millan, Mercedes

    2010-05-01

    Here we present the first results of the DynaMOS project whose main issue is the build-up of a new generation of soil carbon model. The modeling will describe together soil organic geochemistry and soil carbon dynamics in a generalized, quantitative representation. The carbon dynamics time scale envisaged here will cover the 1 to 1000 yr range and describe molecule behaviours (i.e.)carbohydrate, peptide, amino acid, lignin, lipids, their products of biodegradation and uncharacterized carbonaceous species of biological origin. Three main characteristics define DYNAMOS model originalities: it will consider organic matter at the molecular scale, integrate back to global scale and account for component vertical movements. In a first step, specific data acquisition will concern the production, fate and age of carbon of individual organic compounds. Dynamic parameters will be acquired by compound-specific carbon isotope analysis of both 13C and 14C, by GC/C/IR-MS and AMS. Sites for data acquisition, model calibration and model validation will be chosen on the base of their isotopic history and environmental constraints: 13C natural labeling (with and without C3/C4 vegetation changes), 13C/15N-labelled litter application in both forest and cropland. They include some long-term experiments owned by the partners themselves plus a worldwide panel of sites. In a second step the depth distribution of organic species, isotopes and ages in soils (1D representation) will be modeled by coupling carbon dynamics and vertical movement. Besides the main objective of providing a robust soil carbon dynamics model, DYNAMOS will assess and model the alteration of the isotopic signature of molecules throughout decay and create a shared database of both already published and new data of compound specific information. Issues of the project will concern different scientific fields: global geochemical cycles by refining the description of the terrestrial carbon cycle and entering the chemical composition of organic matter in carbon models; forestry or agriculture by offering a chemical frame for the management of crop residues or organic wastes; geochronology, paleoecology and paleo climatology by modeling the alteration of isotope signature and the preservation of terrestrial biomarkers.

  12. Alcohol and liver cirrhosis mortality in the United States: comparison of methods for the analyses of time-series panel data models.

    PubMed

    Ye, Yu; Kerr, William C

    2011-01-01

    To explore various model specifications in estimating relationships between liver cirrhosis mortality rates and per capita alcohol consumption in aggregate-level cross-section time-series data. Using a series of liver cirrhosis mortality rates from 1950 to 2002 for 47 U.S. states, the effects of alcohol consumption were estimated from pooled autoregressive integrated moving average (ARIMA) models and 4 types of panel data models: generalized estimating equation, generalized least square, fixed effect, and multilevel models. Various specifications of error term structure under each type of model were also examined. Different approaches controlling for time trends and for using concurrent or accumulated consumption as predictors were also evaluated. When cirrhosis mortality was predicted by total alcohol, highly consistent estimates were found between ARIMA and panel data analyses, with an average overall effect of 0.07 to 0.09. Less consistent estimates were derived using spirits, beer, and wine consumption as predictors. When multiple geographic time series are combined as panel data, none of existent models could accommodate all sources of heterogeneity such that any type of panel model must employ some form of generalization. Different types of panel data models should thus be estimated to examine the robustness of findings. We also suggest cautious interpretation when beverage-specific volumes are used as predictors. Copyright © 2010 by the Research Society on Alcoholism.

  13. Aeroelastic characteristics of a rapid prototype multi-material wind tunnel model of a mechanically deployable aerodynamic decelerator

    NASA Astrophysics Data System (ADS)

    Raskin, Boris

    Scaled wind tunnel models are necessary for the development of aircraft and spacecraft to simulate aerodynamic behavior. This allows for testing multiple iterations of a design before more expensive full-scale aircraft and spacecraft are built. However, the cost of building wind tunnel models can still be high because they normally require costly subtractive manufacturing processes, such as machining, which can be time consuming and laborious due to the complex surfaces of aerodynamic models. Rapid prototyping, commonly known as 3D printing, can be utilized to save on wind tunnel model manufacturing costs. A rapid prototype multi-material wind tunnel model was manufactured for this thesis to investigate the possibility of using PolyJet 3D printing to create a model that exhibits aeroelastic behavior. The model is of NASA's Adaptable Deployable entry and Placement (ADEPT) aerodynamic decelerator, used to decelerate a spacecraft during reentry into a planet's atmosphere. It is a 60° cone with a spherically blunted nose that consists of a 12 flexible panels supported by a rigid structure of nose, ribs, and rim. The novel rapid prototype multi-material model was instrumented and tested in two flow conditions. Quantitative comparisons were made of the average forces and dynamic forces on the model, demonstrating that the model matched expected behavior for average drag, but not Strouhal number, indicating that there was no aeroelastic behavior in this particular case. It was also noted that the dynamic properties (e.g., resonant frequency) associated with the mounting scheme are very important and may dominate the measured dynamic response.

  14. The directivity of the sound radiation from panels and openings.

    PubMed

    Davy, John L

    2009-06-01

    This paper presents a method for calculating the directivity of the radiation of sound from a panel or opening, whose vibration is forced by the incidence of sound from the other side. The directivity of the radiation depends on the angular distribution of the incident sound energy in the room or duct in whose wall or end the panel or opening occurs. The angular distribution of the incident sound energy is predicted using a model which depends on the sound absorption coefficient of the room or duct surfaces. If the sound source is situated in the room or duct, the sound absorption coefficient model is used in conjunction with a model for the directivity of the sound source. For angles of radiation approaching 90 degrees to the normal to the panel or opening, the effect of the diffraction by the panel or opening, or by the finite baffle in which the panel or opening is mounted, is included. A simple empirical model is developed to predict the diffraction of sound into the shadow zone when the angle of radiation is greater than 90 degrees to the normal to the panel or opening. The method is compared with published experimental results.

  15. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel. Part 3; 8-ply Out-of-Autoclave Facesheets

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Myers, David E.; Kosareo, Daniel N.; Kellas, Sotiris

    2014-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10 m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800B/5320-1. Smaller 3- by 5-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of the 3- by 5-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, T40-800B/5320-1 facesheets (referred to as Panel C). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear, two-dimensional (2-D) and three-dimensional (3-D), models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength.

  16. Application of Interface Technology in Progressive Failure Analysis of Composite Panels

    NASA Technical Reports Server (NTRS)

    Sleight, D. W.; Lotts, C. G.

    2002-01-01

    A progressive failure analysis capability using interface technology is presented. The capability has been implemented in the COMET-AR finite element analysis code developed at the NASA Langley Research Center and is demonstrated on composite panels. The composite panels are analyzed for damage initiation and propagation from initial loading to final failure using a progressive failure analysis capability that includes both geometric and material nonlinearities. Progressive failure analyses are performed on conventional models and interface technology models of the composite panels. Analytical results and the computational effort of the analyses are compared for the conventional models and interface technology models. The analytical results predicted with the interface technology models are in good correlation with the analytical results using the conventional models, while significantly reducing the computational effort.

  17. Hybrid Active/Passive Control of Sound Radiation from Panels with Constrained Layer Damping and Model Predictive Feedback Control

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.; Gibbs, Gary P.

    2000-01-01

    There has been considerable interest over the past several years in applying feedback control methods to problems of structural acoustics. One problem of particular interest is the control of sound radiation from aircraft panels excited on one side by a turbulent boundary layer (TBL). TBL excitation appears as many uncorrelated sources acting on the panel, which makes it difficult to find a single reference signal that is coherent with the excitation. Feedback methods have no need for a reference signal, and are thus suited to this problem. Some important considerations for the structural acoustics problem include the fact that the required controller bandwidth can easily extend to several hundred Hertz, so a digital controller would have to operate at a few kilohertz. In addition, aircraft panel structures have a reasonably high modal density over this frequency range. A model based controller must therefore handle the modally dense system, or have some way to reduce the bandwidth of the problem. Further complicating the problem is the fact that the stiffness and dynamic properties of an aircraft panel can vary considerably during flight due to altitude changes resulting in significant resonant frequency shifts. These considerations make the tradeoff between robustness to changes in the system being controlled and controller performance especially important. Recent papers concerning the design and implementation of robust controllers for structural acoustic problems highlight the need to consider both performance and robustness when designing the controller. While robust control methods such as H1 can be used to balance performance and robustness, their implementation is not easy and requires assumptions about the types of uncertainties in the plant being controlled. Achieving a useful controller design may require many tradeoff studies of different types of parametric uncertainties in the system. Another approach to achieving robustness to plant changes is to make the controller adaptive. For example, a mathematical model of the plant could be periodically updated as the plant changes, and the feedback gains recomputed from the updated model. To be practical, this approach requires a simple plant model that can be updated quickly with reasonable computational requirements. A recent paper by the authors discussed one way to simplify a feedback controller, by reducing the number of actuators and sensors needed for good performance. The work was done on a tensioned aircraft-style panel excited on one side by TBL flow in a low speed wind tunnel. Actuation was provided by a piezoelectric (PZT) actuator mounted on the center of the panel. For sensing, the responses of four accelerometers, positioned to approximate the response of the first radiation mode of the panel, were summed and fed back through the controller. This single input-single output topology was found to have nearly the same noise reduction performance as a controller with fifteen accelerometers and three PZT patches. This paper extends the previous results by looking at how constrained layer damping (CLD) on a panel can be used to enhance the performance of the feedback controller thus providing a more robust and efficient hybrid active/passive system. The eventual goal is to use the CLD to reduce sound radiation at high frequencies, then implement a very simple, reduced order, low sample rate adaptive controller to attenuate sound radiation at low frequencies. Additionally this added damping smoothes phase transitions over the bandwidth which promotes robustness to natural frequency shifts. Experiments were conducted in a transmission loss facility on a clamped-clamped aluminum panel driven on one side by a loudspeaker. A generalized predictive control (GPC) algorithm, which is suited to online adaptation of its parameters, was used in single input-single output and multiple input-single output configurations. Because this was a preliminary look at the potential constrained layer damping for adaptive control, static feedback control with no online adaptation was used. Two configurations of CLD in addition to a bare panel configuration were studied. For each CLD configuration, two sensor arrangements for the feedback controller were compared. The first arrangement used fifteen accelerometers on the panel to estimate the responses of the first six radiation modes of the panel. The second sensor arrangement was simpler, using the summed responses of only four accelerometers to approximate the response of the first radiation mode of the panel. In all cases a PZT patch was mounted at the center of the panel for control input. The performance of the controller was quantified using the responses of the fifteen accelerometers on the panel to estimate radiated sound power. The paper begins with a brief discussion of the GPC algorithm and the experimental setup. The experimental results are discussed next, comparing the CLD and sensor configurations, followed by discussion and conclusions.

  18. CFD Simulations for Arc-Jet Panel Testing Capability Development Using Semi-Elliptical Nozzles

    NASA Technical Reports Server (NTRS)

    Gokcen, Tahir; Balboni, John A.; Hartman, G. Joseph

    2016-01-01

    This paper reports computational simulations in support of arc-jet panel testing capability development using semi-elliptical nozzles in a high enthalpy arc-jet facility at NASA Ames Research Center. Two different semi-elliptical nozzle configurations are proposed for testing panel test articles. Computational fluid dynamics simulations are performed to provide estimates of achievable panel surface conditions and useful test area for each configuration. The present analysis comprises three-dimensional simulations of the nonequilibrium flowfields in the semi-elliptical nozzles, test box and flowfield over the panel test articles. Computations show that useful test areas for the proposed two nozzle options are 20.32 centimeters by 20.32 centimeters (8 inches by 8 inches) and 43.18 centimeters by 43.18 centimeters (17 inches by 17 inches). Estimated values of the maximum cold-wall heat flux and surface pressure are 155 watts per centimeters squared and 39 kilopascals for the smaller panel test option, and 44 watts per centimeters squared and 7 kilopascals for the larger panel test option. Other important properties of the predicted flowfields are presented, and factors that limit the useful test area in the semi-free jet test configuration are discussed.

  19. The Influence of Mesh Density on the Impact Response of a Shuttle Leading-Edge Panel Finite Element Simulation

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2004-01-01

    A study was performed to examine the influence of varying mesh density on an LS-DYNA simulation of a rectangular-shaped foam projectile impacting the space shuttle leading edge Panel 6. The shuttle leading-edge panels are fabricated of reinforced carbon-carbon (RCC) material. During the study, nine cases were executed with all possible combinations of coarse, baseline, and fine meshes of the foam and panel. For each simulation, the same material properties and impact conditions were specified and only the mesh density was varied. In the baseline model, the shell elements representing the RCC panel are approximately 0.2-in. on edge, whereas the foam elements are about 0.5-in. on edge. The element nominal edge-length for the baseline panel was halved to create a fine panel (0.1-in. edge length) mesh and doubled to create a coarse panel (0.4-in. edge length) mesh. In addition, the element nominal edge-length of the baseline foam projectile was halved (0.25-in. edge length) to create a fine foam mesh and doubled (1.0- in. edge length) to create a coarse foam mesh. The initial impact velocity of the foam was 775 ft/s. The simulations were executed in LS-DYNA version 960 for 6 ms of simulation time. Contour plots of resultant panel displacement and effective stress in the foam were compared at five discrete time intervals. Also, time-history responses of internal and kinetic energy of the panel, kinetic and hourglass energy of the foam, and resultant contact force were plotted to determine the influence of mesh density. As a final comparison, the model with a fine panel and fine foam mesh was executed with slightly different material properties for the RCC. For this model, the average degraded properties of the RCC were replaced with the maximum degraded properties. Similar comparisons of panel and foam responses were made for the average and maximum degraded models.

  20. Variable-intercept panel model for deformation zoning of a super-high arch dam.

    PubMed

    Shi, Zhongwen; Gu, Chongshi; Qin, Dong

    2016-01-01

    This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.

  1. Overskilling Dynamics and Education Pathways

    ERIC Educational Resources Information Center

    Mavromaras, Kostas; McGuinness, Seamus

    2012-01-01

    This paper uses panel data and econometric methods to estimate the incidence and the dynamic properties of overskilling among employed individuals. The paper begins by asking whether there is extensive overskilling in the labour market, and whether overskilling differs by education pathway. The answer to both questions is yes. The paper continues…

  2. Advanced Helicopter Structural Design Investigation. Volume I. Investigation of Advanced Structural Component Design Concepts

    DTIC Science & Technology

    1976-03-01

    section is closed off by a sandwich skin panel. At Eisenmann , J.R., Stress Distribution Around Cutouts, General Dynamics Report No. FZM-5555, August... Eisenmann , J.R., Stress Distribution Around Cutouts, General Dynamics Report No. FZM-5555, August 1970. 6. Laasko, J. II., and

  3. Behavior of sandwich panels subjected to bending fatigue, axial compression loading and in-plane bending

    NASA Astrophysics Data System (ADS)

    Mathieson, Haley Aaron

    This thesis investigates experimentally and analytically the structural performance of sandwich panels composed of glass fibre reinforced polymer (GFRP) skins and a soft polyurethane foam core, with or without thin GFRP ribs connecting skins. The study includes three main components: (a) out-of-plane bending fatigue, (b) axial compression loading, and (c) in-plane bending of sandwich beams. Fatigue studies included 28 specimens and looked into establishing service life (S-N) curves of sandwich panels without ribs, governed by soft core shear failure and also ribbed panels governed by failure at the rib-skin junction. Additionally, the study compared fatigue life curves of sandwich panels loaded under fully reversed bending conditions (R=-1) with panels cyclically loaded in one direction only (R=0) and established the stiffness degradation characteristics throughout their fatigue life. Mathematical models expressing fatigue life and stiffness degradation curves were calibrated and expanded forms for various loading ratios were developed. Approximate fatigue thresholds of 37% and 23% were determined for non-ribbed panels loaded at R=0 and -1, respectively. Digital imaging techniques showed significant shear contribution significantly (90%) to deflections if no ribs used. Axial loading work included 51 specimens and examined the behavior of panels of various lengths (slenderness ratios), skin thicknesses, and also panels of similar length with various rib configurations. Observed failure modes governing were global buckling, skin wrinkling or skin crushing. In-plane bending involved testing 18 sandwich beams of various shear span-to-depth ratios and skin thicknesses, which failed by skin wrinkling at the compression side. The analytical modeling components of axially loaded panels include; a simple design-oriented analytical failure model and a robust non-linear model capable of predicting the full load-displacement response of axially loaded slender sandwich panels, accounting for P-Delta effects, inherent out-of-straightness profile of any shape at initial conditions, and the excessive shear deformation of soft core and its effect on buckling capacity. Another model was developed to predict the load-deflection response and failure modes of in-plane loaded sandwich beams. After successful verification of the models using experimental results, comprehensive parametric studies were carried out using these models to cover parameters beyond the limitations of the experimental program.

  4. Research on Storm-Tide Disaster Losses in China Using a New Grey Relational Analysis Model with the Dispersion of Panel Data.

    PubMed

    Yin, Kedong; Zhang, Ya; Li, Xuemei

    2017-11-01

    Owing to the difference of the sequences' orders and the surface structure in the current panel grey relational models, research results will not be unique. In addition, individual measurement of indicators and objects and the subjectivity of combined weight would significantly weaken the effective information of panel data and reduce the reliability and accuracy of research results. Therefore, we propose the concept and calculation method of dispersion of panel data, establish the grey relational model based on dispersion of panel data (DPGRA), and prove that DPGRA exhibits the effective properties of uniqueness, symmetry, and normality. To demonstrate its applicability, the proposed DPGRA model is used to research on storm-tide disaster losses in China's coastal areas. Comparing research results of three models, which are DPGRA, Euclidean distance grey relational model, and grey grid relational model, it was shown that DPGRA is more effective, feasible, and stable. It is indicated that DPGRA can entirely utilize the effective information of panel data; what's more, it can not only handle the non-uniqueness of the grey relational model's results but also improve the reliability and accuracy of research results. The research results are of great significance for coastal areas to focus on monitoring storm-tide disasters hazards, strengthen the protection measures of natural disasters, and improve the ability of disaster prevention and reduction.

  5. Finite Element Development of Honeycomb Panel Configurations with Improved Transmission Loss

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Palumbo, Daniel L.; Klos, Jacob; Castle, William D.

    2006-01-01

    The higher stiffness-to-mass ratio of a honeycomb panel compared to a homogeneous panel results in a lower acoustic critical frequency. Above the critical frequency the panel flexural wave speed is acoustically fast and the structure becomes a more efficient radiator with associated lower sound transmission loss. Finite element models of honeycomb sandwich structures are presented featuring areas where the core is removed from the radiating face sheet disrupting the supersonic flexural and shear wave speeds that exist in the baseline honeycomb panel. These modified honeycomb panel structures exhibit improved transmission loss for a pre-defined diffuse field sound excitation. The models were validated by the sound transmission loss of honeycomb panels measured in the Structural Acoustic Loads and Transmission (SALT) facility at the NASA Langley Research Center. A honeycomb core panel configuration is presented exhibiting a transmission loss improvement of 3-11 dB compared to a honeycomb baseline panel over a frequency range from 170 Hz to 1000 Hz. The improved transmission loss panel configuration had a 5.1% increase in mass over the baseline honeycomb panel, and approximately twice the deflection when excited by a static force.

  6. Solar concentrators for advanced solar-dynamic power systems in space

    NASA Technical Reports Server (NTRS)

    Rockwell, Richard

    1993-01-01

    This report summarizes the results of a study performed by Hughes Danbury Optical Systems, HDOS, (formerly Perkin-Elmer) to design, fabricate, and test a lightweight (2 kg/sq M), self supporting, and highly reflective sub-scale concentrating mirror panel suitable for use in space. The HDOS panel design utilizes Corning's 'micro sheet' glass as the top layer of a composite honeycomb sandwich. This approach, whose manufacturability was previously demonstrated under an earlier NASA contract, provides a smooth (specular) reflective surface without the weight of a conventional glass panel. The primary result of this study is a point design and it's performance assessment.

  7. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining

    PubMed Central

    Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of “cantilever beam and elastic foundation beam” was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation direction will be roughly along the central line between the initial broken point and the support position. Otherwise, the roof strata will bend with the support shields moving forward, then the fracture angle will be close to the initiation angle and the fault surface will be stepped. PMID:29513703

  8. Physical simulation and theoretical evolution for ground fissures triggered by underground coal mining.

    PubMed

    Yang, Jing-Hu; Yu, Xiang; Yang, Yi; Yang, Zeng-Qiang

    2018-01-01

    Underground coal mining activities are prone to cause movement and breakage in geological strata and also lead to mining subsidence and even ground fissures. Along the direction working panel advancing, ground fissures may occur in roof in front and/or behind working panel. However, the investigations of previous similarity tests in lab only emphasize on the region behind working panel. By improving strata material property in construction and mounting artificial pressure devices, two physical simulation tests were conducted and successfully investigated the simulated results. Then, the mechanical model of "cantilever beam and elastic foundation beam" was proposed to calculate the stress distribution and the crack initiation angle in overlying strata and it well explains the mechanisms of ground fissures generation and propagation. Results show that, the maximum internal force in roof always occurred in front of working panel. However, because the void space in gob due to excavation is large enough to cause the bend and rotation of roof strata, compare to the triaxially compressed region in front of working panel, the roof always broke off at some positions above gob since the stress concentration resulting from such bend and rotation of strata could easily reach the limit strength of strata rocks. Also, the length of cantilever beam changed dynamically as respect to the panel advancing and the breakage intervals. Thus, the breakage position where the internal force first reached the limit tensile strength is not fixed and there will be two different kinds of relative positions between the crack initiation point and the working panel. The crack initiation direction is always perpendicular to the internal force, and the crack propagation direction is affected by the initiation angle, overburden-separation degree and the position of the hydraulic shields. If there is no overburden-separation or less, the roofs will break off as a composite beam and the propagation direction will be roughly along the central line between the initial broken point and the support position. Otherwise, the roof strata will bend with the support shields moving forward, then the fracture angle will be close to the initiation angle and the fault surface will be stepped.

  9. Analysis of Composite Panel-Stiffener Debonding Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Minguet, Pierre J.

    2006-01-01

    Interlaminar fracture mechanics has proven useful for characterizing the onset of delaminations in composites and has been used with limited success primarily to investigate onset in fracture toughness specimens and laboratory size coupon type specimens. Future acceptance of the methodology by industry and certification authorities however, requires the successful demonstration of the methodology on structural level. For this purpose a panel was selected that was reinforced with stringers. Shear loading cases the panel to buckle and the resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. For finite element analysis, the panel and surrounding load fixture were modeled with shell element. A small section of the stringer foot and the panel in the vicinity of the embedded defect were modeled with a local 3D solid model. A failure index was calculated by correlating computed mixed-mode failure criterion of the graphite/epoxy material.

  10. Hybrid passive/active damping for robust multivariable acoustic control in composite plates

    NASA Astrophysics Data System (ADS)

    Veeramani, Sudha; Wereley, Norman M.

    1996-05-01

    Noise transmission through a flexible kevlar-epoxy composite trim panel into an acoustic cavity or box is studied with the intent of controlling the interior sound fields. A hybrid noise attenuation technique is proposed which uses viscoelastic damping layers in the composite plate for passive attenuation of high frequency noise transmission, and uses piezo-electric patch actuators for active control in the low frequency range. An adaptive feedforward noise control strategy is applied. The passive structural damping augmentation incorporated in the composite plates is also intended to increase stability robustness of the active noise control strategy. A condenser microphone in the interior of the enclosure functions as the error sensor. Three composite plates were experimentally evaluated: one with no damping layer, the second with a 10 mil damping layer, and the third with a 15 mil damping layer. The damping layer was cocured in the kevlar-epoxy trim panels. Damping in the plates was increased from 1.6% for the plate with no damping layer, to 5.9% for the plate with a 15 mil damping layer. In experimental studies, the improved stability robustness of the controller was demonstrated by improved adaptive feedforward control algorithm convergence. A preliminary analytical model is presented that describes the dynamic behavior of a composite panel actuated by piezoelectric actuators bonded to its surface.

  11. Data Resource Profile: The Survey of Health, Ageing and Retirement in Europe (SHARE)

    PubMed Central

    Börsch-Supan, Axel; Brandt, Martina; Hunkler, Christian; Kneip, Thorsten; Korbmacher, Julie; Malter, Frederic; Schaan, Barbara; Stuck, Stephanie; Zuber, Sabrina

    2013-01-01

    SHARE is a unique panel database of micro data on health, socio-economic status and social and family networks covering most of the European Union and Israel. To date, SHARE has collected three panel waves (2004, 2006, 2010) of current living circumstances and retrospective life histories (2008, SHARELIFE); 6 additional waves are planned until 2024. The more than 150 000 interviews give a broad picture of life after the age of 50 years, measuring physical and mental health, economic and non-economic activities, income and wealth, transfers of time and money within and outside the family as well as life satisfaction and well-being. The data are available to the scientific community free of charge at www.share-project.org after registration. SHARE is harmonized with the US Health and Retirement Study (HRS) and the English Longitudinal Study of Ageing (ELSA) and has become a role model for several ageing surveys worldwide. SHARE’s scientific power is based on its panel design that grasps the dynamic character of the ageing process, its multidisciplinary approach that delivers the full picture of individual and societal ageing, and its cross-nationally ex-ante harmonized design that permits international comparisons of health, economic and social outcomes in Europe and the USA. PMID:23778574

  12. Space Shuttle AFRSI OMS pod environment test using model 81-0 test fixture in the Ames Research Center 9x7-foot supersonic wind tunnel (OS-314A/B/C)

    NASA Technical Reports Server (NTRS)

    Collette, J. G. R.

    1984-01-01

    A test was conducted in the NASA/Ames Research Center 9x7-foot Supersonic Wind Tunnel to help resolve an anomaly that developed during the STS-6 orbiter flight wherein sections of the Advanced Flexible Reusable Surface Insulation (AFRSI) covering the OMS pods suffered some damage. A one-third scale two-dimensional shell structure model of an OMS pod cross-section was employed to support the test articles. These consisted of 15 AFRSI blanket panels form-fitted over the shell structures for exposure to simulated flight conditions. Of six baseline blankets, two were treated with special surface coatings. Two other panels were configured with AFRSI sections removed from the OV099 orbiter vehicle after the STS-6 flight. Seven additional specimens incorporated alternative designs and repairs. Following a series of surface pressure calibration runs, the specimens were exposed to simulated ascent and entry dynamic pressure profiles. Entry conditions included the use of a vortex generator to evaluate the effect of shed vortices on the AFRSI located in the area of concern.

  13. Panel Stiffener Debonding Analysis using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.

    2008-01-01

    A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out -of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer fo to, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.

  14. Panel-Stiffener Debonding and Analysis Using a Shell/3D Modeling Technique

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Ratcliffe, James G.; Minguet, Pierre J.

    2007-01-01

    A shear loaded, stringer reinforced composite panel is analyzed to evaluate the fidelity of computational fracture mechanics analyses of complex structures. Shear loading causes the panel to buckle. The resulting out-of-plane deformations initiate skin/stringer separation at the location of an embedded defect. The panel and surrounding load fixture were modeled with shell elements. A small section of the stringer foot, web and noodle as well as the panel skin near the delamination front were modeled with a local 3D solid model. Across the width of the stringer foot, the mixed-mode strain energy release rates were calculated using the virtual crack closure technique. A failure index was calculated by correlating the results with a mixed-mode failure criterion of the graphite/epoxy material. The objective was to study the effect of the fidelity of the local 3D finite element model on the computed mixed-mode strain energy release rates and the failure index.

  15. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel. Part 2; 6-Ply In-Autoclave Facesheets

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Meyers, David E.; Kosareo, Daniel N.; Zalewski, Bart F.; Dixon, Genevieve D.

    2013-01-01

    Four honeycomb sandwich panel types, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle (HLLV), were manufactured and tested under the NASA Composites for Exploration program and the NASA Constellation Ares V program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3- by 5-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center (LaRC). Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3- by 5-ft panel. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panels composed of 6-ply, IM7/977-3 facesheets (referred to as Panels B-1 and B-2). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional (3-D) effects on the compressive response of the panel.

  16. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel Part 1: 8-Ply In-Autoclave Facesheets. Part 1; 8-Ply In-Autoclave Facesheets

    NASA Technical Reports Server (NTRS)

    Myers, David E.; Pineda, Evan J.; Zalewski, Bart F.; Kosareo, Daniel N.; Kellas, Sotiris

    2013-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the heavy lift launch vehicle, were manufactured under the NASA Composites for Exploration program and the NASA Space Launch Systems program. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.000 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: inautoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3.00- by 5.00-ft panels were cut from the 1/16th barrel sections. These panels were tested under compressive loading at the NASA Langley Research Center. Furthermore, linear eigenvalue and geometrically nonlinear finite element analysis was performed to predict the compressive response of the 3.00- by 5.00-ft panels. This manuscript summarizes the experimental and analytical modeling efforts pertaining to the panel composed of 8-ply, IM7/977-3 facesheets (referred to Panel A). To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yield good qualitative and quantitative predictions. Additionally, it was predicted correctly that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber misalignments, and three-dimensional (3 D) effects on the compressive response of the panel.

  17. Testing for Marshall-Lerner hypothesis: A panel approach

    NASA Astrophysics Data System (ADS)

    Azizan, Nur Najwa; Sek, Siok Kun

    2014-12-01

    The relationship between real exchange rate and trade balances are documented in many theories. One of the theories is the so-called Marshall-Lerner condition. In this study, we seek to test for the validity of Marshall-Lerner hypothesis, i.e. to reveal if the depreciation of real exchange rate leads to the improvement in trade balances. We focus our study in ASEAN-5 countries and their main trade partners of U.S., Japan and China. The dynamic panel data of pooled mean group (PMG) approach is used to detect the Marshall-Lerner hypothesis among ASEAN-5, between ASEAN-5 and U.S., between ASEAN-5 and Japan and between ASEAN-5 and China respectively. The estimation is based on the autoregressive Distributed Lag or ARDL model for the period of 1970-2012. The paper concludes that Marshal Lerner theory does not hold in bilateral trades in four groups of countries. The trade balances of ASEAN5 are mainly determined by the domestic income level and foreign production cost.

  18. Do racial disparities in private transfers help explain the racial wealth gap? New evidence from longitudinal data.

    PubMed

    McKernan, Signe-Mary; Ratcliffe, Caroline; Simms, Margaret; Zhang, Sisi

    2014-06-01

    How do private transfers differ by race and ethnicity, and do such differences explain the racial and ethnic disparity in wealth? Using the Panel Study of Income Dynamics, this study examines private transfers by race and ethnicity in the United States and explores a causal relationship between private transfers and wealth. Panel data and a family-level fixed-effect model are used to control for the endogeneity of private transfers. Private transfers in the form of financial support received and given from extended families and friends, as well as large gifts and inheritances, are examined. We find that African Americans and Hispanics (both immigrant and nonimmigrant) receive less in both types of private transfers than whites. Large gifts and inheritances, but not net financial support received, are related to wealth increases for African American and white families. Overall, we estimate that the African American shortfall in large gifts and inheritances accounts for 12 % of the white-black racial wealth gap.

  19. Panel method for the wake effects on the aerodynamics of vertical-axis wind turbines

    NASA Astrophysics Data System (ADS)

    Goyal, Udit; Rempfer, Dietmar

    2011-11-01

    A formulation based on the panel method is implemented for studying the unsteady aerodynamics of straight-bladed vertical-axis wind turbines. A combination of source and vortex distributions is used to represent an airfoil in Darrieus type motion. Our approach represents a low-cost computational technique that takes into account the dynamic changes in angle of attack of the blade during a cycle. A time-stepping mechanism is introduced for the wake convection, and its effects on the aerodynamic forces on the blade are discussed. The focus of the study is to describe the effect of the trailing wakes on the upstream flow conditions and coefficient of performance of the turbines. Results show a decrease in Cp until the wake structure develops and assumes a quasi-steady behavior. A comparison with other models such as single and multiple streamtubes is discussed, and optimization of the blade pitch angle is performed to increase the instantaneous torque and hence the power output from the turbine.

  20. Hardware-Based Non-Optimum Factors for Launch Vehicle Structural Design

    NASA Technical Reports Server (NTRS)

    Wu, K. Chauncey; Cerro, Jeffrey A.

    2010-01-01

    During aerospace vehicle conceptual and preliminary design, empirical non-optimum factors are typically applied to predicted structural component weights to account for undefined manufacturing and design details. Non-optimum factors are developed here for 32 aluminum-lithium 2195 orthogrid panels comprising the liquid hydrogen tank barrel of the Space Shuttle External Tank using measured panel weights and manufacturing drawings. Minimum values for skin thickness, axial and circumferential blade stiffener thickness and spacing, and overall panel thickness are used to estimate individual panel weights. Panel non-optimum factors computed using a coarse weights model range from 1.21 to 1.77, and a refined weights model (including weld lands and skin and stiffener transition details) yields non-optimum factors of between 1.02 and 1.54. Acreage panels have an average 1.24 non-optimum factor using the coarse model, and 1.03 with the refined version. The observed consistency of these acreage non-optimum factors suggests that relatively simple models can be used to accurately predict large structural component weights for future launch vehicles.

  1. HOW POPULATION STRUCTURE SHAPES NEIGHBORHOOD SEGREGATION*

    PubMed Central

    Bruch, Elizabeth E.

    2014-01-01

    This study investigates how choices about social affiliation based on one attribute can exacerbate or attenuate segregation on another correlated attribute. The specific application is the role of racial and economic factors in generating patterns of racial residential segregation. I identify three population parameters—between-group inequality, within-group inequality, and relative group size—that determine how income inequality between race groups affects racial segregation. I use data from the Panel Study of Income Dynamics to estimate models of individual-level residential mobility, and incorporate these estimates into agent-based models. I then simulate segregation dynamics under alternative assumptions about: (1) the relative size of minority groups; and (2) the degree of correlation between race and income among individuals. I find that income inequality can have offsetting effects at the high and low ends of the income distribution. I demonstrate the empirical relevance of the simulation results using fixed-effects, metro-level regressions applied to 1980-2000 U.S. Census data. PMID:25009360

  2. Transient Thermal Testing and Analysis of a Thermally Insulating Structural Sandwich Panel

    NASA Technical Reports Server (NTRS)

    Blosser, Max L.; Daryabeigi, Kamran; Bird, Richard K.; Knutson, Jeffrey R.

    2015-01-01

    A core configuration was devised for a thermally insulating structural sandwich panel. Two titanium prototype panels were constructed to illustrate the proposed sandwich panel geometry. The core of one of the titanium panels was filled with Saffil(trademark) alumina fibrous insulation and the panel was tested in a series of transient thermal tests. Finite element analysis was used to predict the thermal response of the panel using one- and two-dimensional models. Excellent agreement was obtained between predicted and measured temperature histories.

  3. Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI

    PubMed Central

    Wronski, M. M.; Rowlands, J. A.

    2008-01-01

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10−7–10−2 R∕frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction of x rays in the gain region. Thus, HARP-AMFPI is a promising flat-panel imager structure that enables high-resolution fully quantum noise limited x-ray imaging over a wide exposure range. PMID:19175080

  4. Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, M. M.; Rowlands, J. A.

    2008-12-15

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmablemore » avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10{sup -7}-10{sup -2} R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction of x rays in the gain region. Thus, HARP-AMFPI is a promising flat-panel imager structure that enables high-resolution fully quantum noise limited x-ray imaging over a wide exposure range.« less

  5. Factors Influencing the Accuracy of Aerodynamic Hinge-Moment Prediction

    DTIC Science & Technology

    1978-08-01

    condition on the aft lifting surfaces and flaps. A new modeling technique for trailing-edge wake analysis using a potential- flow program based on the...control surface as depicLed in figure 21.. Three different models are used to simulate the flow on the wing, the flap, and the gaps. In the first two panel...ized sense, similar to that implemented in the FLEXSTAB program. The modeling of the wake on the side-edge gaps differs in the first two panel models

  6. New modeling method and mechanism analyses for active control of interior noise in an irregular enclosure using piezoelectric actuators.

    PubMed

    Geng, Hou C; Rao, Zhu S; Han, Zu S

    2003-03-01

    A new modeling method is developed in this paper for the active minimization of noise within a three-dimensional irregular enclosure using distributed lead zirconate titanate piezoelectric (PZT) actuators, and the control mechanisms for irregular enclosure are analyzed. The irregular enclosure is modeled with four rigid walls and two simply supported flexible panels, and PZT actuators are bound to one of the flexible panels. The process of the new modeling method is as follows. First, the modal coupling method is used to establish the motion equations, which contain important coefficients such as modal masses and modal coupling coefficients, etc., of acoustic-structural-piezoelectric coupling system. Then, the acoustic modes and the modal masses of irregular enclosure are calculated by numerical methods. Last, the modal coupling coefficients in motion equations are calculated according to the numerical results of the acoustic modes of irregular enclosure and the modes of two panels. The validity of this modeling method is verified by a regular hexahedron enclosure. Two cost functions are applied to this model. With the two cost functions, good results are obtained in minimizing the sound-pressure level (SPL) within irregular enclosure according to numerical investigations. By comparing the results obtained under controlled and uncontrolled states, the control mechanisms of the system are discussed. It is found that the control mechanisms vary with disturbance frequencies. At most disturbance frequencies, the SPL within enclosure is reduced by restructuring the modes of two panels simultaneously. When the disturbance frequency comes close to one of the natural frequencies of panel a, the dominant mode of panel a is suppressed, while the modes of panel b are reconstructed. While the disturbance frequency is near one of the natural frequencies of panel b, the modes of two panels are restructured at the same time.

  7. Modeling the impact of simulated educational interventions on the use and abuse of pharmaceutical opioids in the United States: a report on initial efforts.

    PubMed

    Wakeland, Wayne; Nielsen, Alexandra; Schmidt, Teresa D; McCarty, Dennis; Webster, Lynn R; Fitzgerald, John; Haddox, J David

    2013-10-01

    Three educational interventions were simulated in a system dynamics model of the medical use, trafficking, and nonmedical use of pharmaceutical opioids. The study relied on secondary data obtained in the literature for the period of 1995 to 2008 as well as expert panel recommendations regarding model parameters and structure. The behavior of the resulting systems-level model was tested for fit against reference behavior data. After the base model was tested, logic to represent three educational interventions was added and the impact of each intervention on simulated overdose deaths was evaluated over a 7-year evaluation period, 2008 to 2015. Principal findings were that a prescriber education intervention not only reduced total overdose deaths in the model but also reduced the total number of persons who receive opioid analgesic therapy, medical user education not only reduced overdose deaths among medical users but also resulted in increased deaths from nonmedical use, and a "popularity" intervention sharply reduced overdose deaths among nonmedical users while having no effect on medical use. System dynamics modeling shows promise for evaluating potential interventions to ameliorate the adverse outcomes associated with the complex system surrounding the use of opioid analgesics to treat pain.

  8. The comparison of numerical models of a sandwich panel in the context of the core deformations at the supports

    NASA Astrophysics Data System (ADS)

    Pozorska, Jolanta; Pozorski, Zbigniew

    2018-01-01

    The paper presents the problem of static structural behavior of sandwich panels at the supports. The panels have a soft core and correspond to typical structures applied in civil engineering. To analyze the problem, five different 3-D numerical models were created. The results were compared in the context of core compression and stress redistribution. The numerical solutions verify methods of evaluating the capacity of the sandwich panel that are known from the literature.

  9. Modeling the human Nav1.5 sodium channel: structural and mechanistic insights of ion permeation and drug blockade

    PubMed Central

    Ahmed, Marawan; Jalily Hasani, Horia; Ganesan, Aravindhan; Houghton, Michael; Barakat, Khaled

    2017-01-01

    Abnormalities in the human Nav1.5 (hNav1.5) voltage-gated sodium ion channel (VGSC) are associated with a wide range of cardiac problems and diseases in humans. Current structural models of hNav1.5 are still far from complete and, consequently, their ability to study atomistic interactions of this channel is very limited. Here, we report a comprehensive atomistic model of the hNav1.5 ion channel, constructed using homology modeling technique and refined through long molecular dynamics simulations (680 ns) in the lipid membrane bilayer. Our model was comprehensively validated by using reported mutagenesis data, comparisons with previous models, and binding to a panel of known hNav1.5 blockers. The relatively long classical MD simulation was sufficient to observe a natural sodium permeation event across the channel’s selectivity filters to reach the channel’s central cavity, together with the identification of a unique role of the lysine residue. Electrostatic potential calculations revealed the existence of two potential binding sites for the sodium ion at the outer selectivity filters. To obtain further mechanistic insight into the permeation event from the central cavity to the intracellular region of the channel, we further employed “state-of-the-art” steered molecular dynamics (SMD) simulations. Our SMD simulations revealed two different pathways through which a sodium ion can be expelled from the channel. Further, the SMD simulations identified the key residues that are likely to control these processes. Finally, we discuss the potential binding modes of a panel of known hNav1.5 blockers to our structural model of hNav1.5. We believe that the data presented here will enhance our understanding of the structure–property relationships of the hNav1.5 ion channel and the underlying molecular mechanisms in sodium ion permeation and drug interactions. The results presented here could be useful for designing safer drugs that do not block the hNav1.5 channel. PMID:28831242

  10. Dynamic Financial Constraints: Distinguishing Mechanism Design from Exogenously Incomplete Regimes*

    PubMed Central

    Karaivanov, Alexander; Townsend, Robert M.

    2014-01-01

    We formulate and solve a range of dynamic models of constrained credit/insurance that allow for moral hazard and limited commitment. We compare them to full insurance and exogenously incomplete financial regimes (autarky, saving only, borrowing and lending in a single asset). We develop computational methods based on mechanism design, linear programming, and maximum likelihood to estimate, compare, and statistically test these alternative dynamic models with financial/information constraints. Our methods can use both cross-sectional and panel data and allow for measurement error and unobserved heterogeneity. We estimate the models using data on Thai households running small businesses from two separate samples. We find that in the rural sample, the exogenously incomplete saving only and borrowing regimes provide the best fit using data on consumption, business assets, investment, and income. Family and other networks help consumption smoothing there, as in a moral hazard constrained regime. In contrast, in urban areas, we find mechanism design financial/information regimes that are decidedly less constrained, with the moral hazard model fitting best combined business and consumption data. We perform numerous robustness checks in both the Thai data and in Monte Carlo simulations and compare our maximum likelihood criterion with results from other metrics and data not used in the estimation. A prototypical counterfactual policy evaluation exercise using the estimation results is also featured. PMID:25246710

  11. Research on Storm-Tide Disaster Losses in China Using a New Grey Relational Analysis Model with the Dispersion of Panel Data

    PubMed Central

    Yin, Kedong; Zhang, Ya; Li, Xuemei

    2017-01-01

    Owing to the difference of the sequences’ orders and the surface structure in the current panel grey relational models, research results will not be unique. In addition, individual measurement of indicators and objects and the subjectivity of combined weight would significantly weaken the effective information of panel data and reduce the reliability and accuracy of research results. Therefore, we propose the concept and calculation method of dispersion of panel data, establish the grey relational model based on dispersion of panel data (DPGRA), and prove that DPGRA exhibits the effective properties of uniqueness, symmetry, and normality. To demonstrate its applicability, the proposed DPGRA model is used to research on storm-tide disaster losses in China’s coastal areas. Comparing research results of three models, which are DPGRA, Euclidean distance grey relational model, and grey grid relational model, it was shown that DPGRA is more effective, feasible, and stable. It is indicated that DPGRA can entirely utilize the effective information of panel data; what’s more, it can not only handle the non-uniqueness of the grey relational model’s results but also improve the reliability and accuracy of research results. The research results are of great significance for coastal areas to focus on monitoring storm–tide disasters hazards, strengthen the protection measures of natural disasters, and improve the ability of disaster prevention and reduction. PMID:29104262

  12. JANNAF Rocket Nozzle Technology Subcommittee Executive Committee Report

    NASA Technical Reports Server (NTRS)

    Lawrence, Timothy W.; Munafo, Paul M. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on the structure and activities of the panels of the Joint Army Navy NASA Air Force (JANNAF) Rocket Nozzle Technology Subcommittee. The panels profiled are the Processing Science and Materials Panel, the Nozzle Design, Test, and Evaluation Panel, the Nozzle Analysis and Modeling Panel, and the Nozzle Control Systems Panel. The presentation also lists meetings, workshops, and publications in which the subcommittee participated during the reporting period.

  13. Aviation Simulators for the Desktop: Panel and Demonstrations

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Rosekind, Marl R. (Technical Monitor)

    1997-01-01

    Panel Members are: Christine M. Mitchell (Georgia Tech), Michael T. Palmer (NASA Langley), Greg Pisani (NASA Ames), and Amy R. Pritchett (MIT). The Panel members are affiliated with aviation human factors groups from NASA Ames, NASA Langley, MITCHELL Department of Aerospace and Aeronautical Engineering, and Georgia Technics Center for Human-Machine Systems Research. Panelists will describe the simulator(s) used in their respective institutions including a description of the FMS aircraft models, software, hardware, and displays. Panelists will summarize previous, on-going, and planned empirical studies conducted with the simulators. Greg Pisanich will describe two NASA Ames simulation systems: the Stone Soup Simulator (SSS), and the Airspace Operations Human Factors Simulation Laboratory. The the Stone Soup Simulator is a desktop-based, research flight simulator that includes mode control, flight management, and datalink functionality. It has been developed as a non-proprietary simulator that can be easily distributed to academic and industry researchers who are collaborating on NASA research projects. It will be used and extended by research groups represented by at least two panelists (Mitchell and Palmer). The Airspace Operations Simulator supports the study of air traffic control in conjunction with the flight deck. This simulator will be used provide an environment in which many AATT and free flight concepts can be demonstrated and evaluated. Mike Palmer will describe two NASA Langley efforts: The Langley Simulator and MD-11 extensions to the NASA Amesbury simulator. The first simulator is publicly available and combines a B-737 model with a high fidelity flight management system. The second simulator enhances the S3 simulator with MD-11 electronic flight displays together with modifications to the flight and FMS models to emulate MD-11 dynamics and operations. Chris Mitchell will describe GT-EFIRT (Georgia Tech-Electronic Flight Instrument Research Tool) and B-757 enhancements to the NASA Ames S3. GT-EFIRT is a medium fidelity simulator used to conduct preliminary studies of the CATS (crew activity tracking system). Like the Langley efforts with S3, the Georgia Tech enhancements will allow it to emulate the dynamics and operations of a widely used glass cockpit. Amy Pritchett will describe the MIT simulator(s) that have been used in a range of research investigating cockpit displays, warning devices, and flight deck-ATC interaction.

  14. Current leakage for low altitude satellites - Modeling applications. [simulation of high voltage solar cell array in ionospheric plasma environment

    NASA Technical Reports Server (NTRS)

    Konradi, A.; Mccoy, J. E.; Garriott, O. K.

    1979-01-01

    To simulate the behavior of a high voltage solar cell array in the ionospheric plasma environment, the large (90 ft x 55 ft diameter) vacuum chamber was used to measure the high-voltage plasma interactions of a 3 ft x 30 ft conductive panel. The chamber was filled with Nitrogen and Argon plasma at electron densities of up to 1,000,000 per cu cm. Measurements of current flow to the plasma were made in three configurations: (a) with one end of the panel grounded, (b) with the whole panel floating while a high bias was applied between the ends of the panel, and (c) with the whole panel at high negative voltage with respect to the chamber walls. The results indicate that a simple model with a constant panel conductivity and plasma resistance can adequately describe the voltage distribution along the panel and the plasma current flow. As expected, when a high potential difference is applied to the panel ends more than 95% of the panel floats negative with respect to the plasma.

  15. Integrated Technology Rotor Methodology Assessment Workshop

    NASA Technical Reports Server (NTRS)

    Mcnulty, Michael J. (Editor); Bousman, William G. (Editor)

    1988-01-01

    The conference proceedings contains 14 formal papers and the results of two panel discussions. In addition, a transcript of discussion that followed the paper presentations and panels is included. The papers are of two kinds. The first seven papers were directed specifically to the correlation of industry and government mathematical models with data for rotorcraft stability from six experiments. The remaining 7 papers dealt with related topics in the prediction of rotor aeroelastic or aeromechanical stability. The first of the panels provided an evaluation of the correlation that was shown between the mathematical models and the experimental data. The second panel addressed the general problems of the validation of mathematical models.

  16. Scattering Effects of Solar Panels on Space Station Antenna Performance

    NASA Technical Reports Server (NTRS)

    Panneton, Robert J.; Ngo, John C.; Hwu, Shian U.; Johnson, Larry A.; Elmore, James D.; Lu, Ba P.; Kelley, James S.

    1994-01-01

    Characterizing the scattering properties of the solar array panels is important in predicting Space Station antenna performance. A series of far-field, near-field, and radar cross section (RCS) scattering measurements were performed at S-Band and Ku-Band microwave frequencies on Space Station solar array panels. Based on investigation of the measured scattering patterns, the solar array panels exhibit similar scattering properties to that of the same size aluminum or copper panel mockup. As a first order approximation, and for worse case interference simulation, the solar array panels may be modeled using perfect reflecting plates. Numerical results obtained using the Geometrical Theory of Diffraction (GTD) modeling technique are presented for Space Station antenna pattern degradation due to solar panel interference. The computational and experimental techniques presented in this paper are applicable for antennas mounted on other platforms such as ship, aircraft, satellite, and space or land vehicle.

  17. The dynamic relationships between economic status and health measures among working-age adults in the United States.

    PubMed

    Meraya, Abdulkarim M; Dwibedi, Nilanjana; Tan, Xi; Innes, Kim; Mitra, Sophie; Sambamoorthi, Usha

    2018-04-18

    We examine the dynamic relationships between economic status and health measures using data from 8 waves of the Panel Study of Income Dynamics from 1999 to 2013. Health measures are self-rated health (SRH) and functional limitations; economic status measures are labor income (earnings), family income, and net wealth. We use 3 different types of models: (a) ordinary least squares regression, (b) first-difference, and (c) system-generalized method of moment (GMM). Using ordinary least squares regression and first difference models, we find that higher levels of economic status are associated with better SRH and functional status among both men and women, although declines in income and wealth are associated with a decline in health for men only. Using system-GMM estimators, we find evidence of a causal link from labor income to SRH and functional status for both genders. Among men only, system-GMM results indicate that there is a causal link from net wealth to SRH and functional status. Results overall highlight the need for integrated economic and health policies, and for policies that mitigate the potential adverse health effects of short-term changes in economic status. Copyright © 2018 John Wiley & Sons, Ltd.

  18. Modelling of electric characteristics of 150-watt peak solar panel using Boltzmann sigmoid function under various temperature and irradiance

    NASA Astrophysics Data System (ADS)

    Sapteka, A. A. N. G.; Narottama, A. A. N. M.; Winarta, A.; Amerta Yasa, K.; Priambodo, P. S.; Putra, N.

    2018-01-01

    Solar energy utilized with solar panel is a renewable energy that needs to be studied further. The site nearest to the equator, it is not surprising, receives the highest solar energy. In this paper, a modelling of electrical characteristics of 150-Watt peak solar panels using Boltzmann sigmoid function under various temperature and irradiance is reported. Current, voltage, temperature and irradiance data in Denpasar, a city located at just south of equator, was collected. Solar power meter is used to measure irradiance level, meanwhile digital thermometer is used to measure temperature of front and back panels. Short circuit current and open circuit voltage data was also collected at different temperature and irradiance level. Statistically, the electrical characteristics of 150-Watt peak solar panel can be modelled using Boltzmann sigmoid function with good fit. Therefore, it can be concluded that Boltzmann sigmoid function might be used to determine current and voltage characteristics of 150-Watt peak solar panel under various temperature and irradiance.

  19. Modeling Ballistic Response of Ultra-High-Molecular-Weight Polyethylene (UHMWPE)

    DTIC Science & Technology

    2016-07-01

    posttest panels. Fig. 5 Variables to be compared between model and experiments The 6 tests and available test data are listed in Table 2. The first 3...Time history of center BFD for the 3 BFD tests Figure 24 shows the damages in the panels from posttest CT scan of the UHMWPE panels and the

  20. The Dynamics and Correlates of Religious Service Attendance in Adolescence

    ERIC Educational Resources Information Center

    Hardie, Jessica Halliday; Pearce, Lisa D.; Denton, Melinda Lundquist

    2016-01-01

    This study examines changes in religious service attendance over time for a contemporary cohort of adolescents moving from middle to late adolescence. We use two waves of a nationally representative panel survey of youth from the National Study of Youth and Religion (NSYR) to examine the dynamics of religious involvement during adolescence. We…

  1. Troubleshooting Instruction in Vocational-Technical Education Via Dynamic Simulation. Final Report.

    ERIC Educational Resources Information Center

    Finch, Curtis R.

    This study was designed to examine the feasibility of using simulation as a means of teaching vocational-technical students to detect and identify malfunctions in selected electrical and mechanical systems. A dynamic simulator was employed which features interchangeable panels and logic that permits the simulation of electrical or mechanical…

  2. A two-dimensional iterative panel method and boundary layer model for bio-inspired multi-body wings

    NASA Astrophysics Data System (ADS)

    Blower, Christopher J.; Dhruv, Akash; Wickenheiser, Adam M.

    2014-03-01

    The increased use of Unmanned Aerial Vehicles (UAVs) has created a continuous demand for improved flight capabilities and range of use. During the last decade, engineers have turned to bio-inspiration for new and innovative flow control methods for gust alleviation, maneuverability, and stability improvement using morphing aircraft wings. The bio-inspired wing design considered in this study mimics the flow manipulation techniques performed by birds to extend the operating envelope of UAVs through the installation of an array of feather-like panels across the airfoil's upper and lower surfaces while replacing the trailing edge flap. Each flap has the ability to deflect into both the airfoil and the inbound airflow using hinge points with a single degree-of-freedom, situated at 20%, 40%, 60% and 80% of the chord. The installation of the surface flaps offers configurations that enable advantageous maneuvers while alleviating gust disturbances. Due to the number of possible permutations available for the flap configurations, an iterative constant-strength doublet/source panel method has been developed with an integrated boundary layer model to calculate the pressure distribution and viscous drag over the wing's surface. As a result, the lift, drag and moment coefficients for each airfoil configuration can be calculated. The flight coefficients of this numerical method are validated using experimental data from a low speed suction wind tunnel operating at a Reynolds Number 300,000. This method enables the aerodynamic assessment of a morphing wing profile to be performed accurately and efficiently in comparison to Computational Fluid Dynamics methods and experiments as discussed herein.

  3. Knowledge engineering in volcanology: Practical claims and general approach

    NASA Astrophysics Data System (ADS)

    Pshenichny, Cyril A.

    2014-10-01

    Knowledge engineering, being a branch of artificial intelligence, offers a variety of methods for elicitation and structuring of knowledge in a given domain. Only a few of them (ontologies and semantic nets, event/probability trees, Bayesian belief networks and event bushes) are known to volcanologists. Meanwhile, the tasks faced by volcanology and the solutions found so far favor a much wider application of knowledge engineering, especially tools for handling dynamic knowledge. This raises some fundamental logical and mathematical problems and requires an organizational effort, but may strongly improve panel discussions, enhance decision support, optimize physical modeling and support scientific collaboration.

  4. SEP solar array Shuttle flight experiment

    NASA Technical Reports Server (NTRS)

    Elms, R. V., Jr.; Young, L. E.; Hill, H. C.

    1981-01-01

    An experiment to verify the operational performance of a full-scale Solar Electric Propulsion (SEP) solar array is described. Scheduled to fly on the Shuttle in 1983, the array will be deployed from the bay for ten orbits, with dynamic excitation to test the structural integrity being furnished by the Orbiter verniers; thermal, electrical, and sun orientation characteristics will be monitored, in addition to safety, reliability, and cost effective performance. The blanket, with aluminum and glass as solar cell mass simulators, is 4 by 32 m, with panels (each 0.38 by 4 m) hinged together; two live Si cell panels will be included. The panels are bonded to stiffened graphite-epoxy ribs and are storable in a box in the bay. The wing support structure is detailed, noting the option of releasing the wing into space by use of the Remote Manipulator System if the wing cannot be refolded. Procedures and equipment for monitoring the array behavior are outlined, and comprise both analog data and TV recording for later playback and analysis. The array wing experiment will also aid in developing measurement techniques for large structure dynamics in space.

  5. On the Coupling Between a Supersonic Turbulent Boundary Layer and a Flexible Structure

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader

    1996-01-01

    A mathematical model and a computer code have been developed to fully couple the vibration of an aircraft fuselage panel to the surrounding flow field, turbulent boundary layer and acoustic fluid. The turbulent boundary layer model is derived using a triple decomposition of the flow variables and applying a conditional averaging to the resulting equations. Linearized panel and acoustic equations are used. Results from this model are in good agreement with existing experimental and numerical data. It is shown that in the supersonic regime, full coupling of the flexible panel leads to lower response and radiation from the panel. This is believed to be due to an increase in acoustic damping on the panel in this regime. Increasing the Mach number increases the acoustic damping, which is in agreement with earlier work.

  6. The added value of percentage of free to total prostate-specific antigen, PCA3, and a kallikrein panel to the ERSPC risk calculator for prostate cancer in prescreened men.

    PubMed

    Vedder, Moniek M; de Bekker-Grob, Esther W; Lilja, Hans G; Vickers, Andrew J; van Leenders, Geert J L H; Steyerberg, Ewout W; Roobol, Monique J

    2014-12-01

    Prostate-specific antigen (PSA) testing has limited accuracy for the early detection of prostate cancer (PCa). To assess the value added by percentage of free to total PSA (%fPSA), prostate cancer antigen 3 (PCA3), and a kallikrein panel (4k-panel) to the European Randomised Study of Screening for Prostate Cancer (ERSPC) multivariable prediction models: risk calculator (RC) 4, including transrectal ultrasound, and RC 4 plus digital rectal examination (4+DRE) for prescreened men. Participants were invited for rescreening between October 2007 and February 2009 within the Dutch part of the ERSPC study. Biopsies were taken in men with a PSA level ≥3.0 ng/ml or a PCA3 score ≥10. Additional analyses of the 4k-panel were done on serum samples. Outcome was defined as PCa detectable by sextant biopsy. Receiver operating characteristic curve and decision curve analyses were performed to compare the predictive capabilities of %fPSA, PCA3, 4k-panel, the ERSPC RCs, and their combinations in logistic regression models. PCa was detected in 119 of 708 men. The %fPSA did not perform better univariately or added to the RCs compared with the RCs alone. In 202 men with an elevated PSA, the 4k-panel discriminated better than PCA3 when modelled univariately (area under the curve [AUC]: 0.78 vs. 0.62; p=0.01). The multivariable models with PCA3 or the 4k-panel were equivalent (AUC: 0.80 for RC 4+DRE). In the total population, PCA3 discriminated better than the 4k-panel (univariate AUC: 0.63 vs. 0.56; p=0.05). There was no statistically significant difference between the multivariable model with PCA3 (AUC: 0.73) versus the model with the 4k-panel (AUC: 0.71; p=0.18). The multivariable model with PCA3 performed better than the reference model (0.73 vs. 0.70; p=0.02). Decision curves confirmed these patterns, although numbers were small. Both PCA3 and, to a lesser extent, a 4k-panel have added value to the DRE-based ERSPC RC in detecting PCa in prescreened men. We studied the added value of novel biomarkers to previously developed risk prediction models for prostate cancer. We found that inclusion of these biomarkers resulted in an increase in predictive ability. Copyright © 2014. Published by Elsevier B.V.

  7. Implementation of 3-D isoparametric finite elements on supercomputer for the formulation of recursive dynamical equations of multi-body systems

    NASA Technical Reports Server (NTRS)

    Shareef, N. H.; Amirouche, F. M. L.

    1991-01-01

    A computational algorithmic procedure is developed and implemented for the dynamic analysis of a multibody system with rigid/flexible interconnected bodies. The algorithm takes into consideration the large rotation/translation and small elastic deformations associated with the rigid-body degrees of freedom and the flexibility of the bodies in the system respectively. Versatile three-dimensional isoparametric brick elements are employed for the modeling of the geometric configurations of the bodies. The formulation of the recursive dynamical equations of motion is based on the recursive Kane's equations, strain energy concepts, and the techniques of component mode synthesis. In order to minimize CPU-intensive matrix multiplication operations and speed up the execution process, the concepts of indexed arrays is utilized in the formulation of the equations of motion. A spin-up maneuver of a space robot with three flexible links carrying a solar panel is used as an illustrative example.

  8. Properties of pressure-sensitive adhesive tapes with soft adhesives to human skin and their mechanism.

    PubMed

    Tokumura, Fumio; Homma, Takeyasu; Tomiya, Toshiki; Kobayashi, Yuko; Matsuda, Tetsuaki

    2007-05-01

    The use of soft adhesives in the manufacture of pressure-sensitive adhesive tapes has recently increased. The dermal peeling force of adhesive tapes with soft adhesives was studied. Four kinds of adhesive tapes with adhesives of different softness were made, by adding varying amounts of isopropyl myristate as a softener. The tapes were applied on the flexor side of the forearm of six healthy male volunteers. The dermal peeling force, the amount of stripped corneocytes, the level of pain when the tapes were removed and the degree of penetration of adhesives into the sulcus cutis (skin furrows) were evaluated at 1 and 24 h after application of the tapes. Furthermore, a skin model panel (a sulcus cutis and crista cutis model panel) and a crista cutis model panel were constructed from a general stainless-steel panel, and the peeling force of the tapes against the model panels was measured. As the softness of adhesives increased, the peeling force against a general stainless-steel panel with a flat surface decreased, although the peeling force against human skin did not significantly change. The amount of stripped corneocytes on the removed tapes and the level of pain when the tapes were removed decreased with the increase in softness of the adhesives. These results suggest that adhesive tapes with soft adhesives that contain isopropyl myristate as a softener are suitable for the skin. Furthermore, the degree of penetration of adhesive into the sulcus cutis increased as the softness of adhesives increased. Upon evaluation of the peeling force against the model panels, as the softness of adhesives increased, there was a slight decrease in the peeling force against the skin model panel, while there was a remarkable decrease in the peeling force against the crista cutis model panel. These results suggest that the lack of change in the dermal peeling force as the softness of adhesives increased was caused by penetration of soft adhesive into the sulcus cutis, and that the decrease in the amount of stripped corneocytes was caused by a decrease in the peeling force against the crista cutis, which consists of corneocytes mainly removed by the tapes.

  9. Acoustic fatigue and sound transmission characteristics of a ram composite panel design

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.; Chang, K. Y.; Kao, G. C.

    1972-01-01

    An experimental study to determine the acoustic fatigue characteristics of a flat multi-layered structural panel is described. The test panel represented a proposed design for the outer skin of a research application module to be housed within the space shuttle orbiter vehicle. The test specimen was mounted in one wall of the Wyle 100,000 cu ft reverberation room and exposed to a broadband acoustic environment having an overall level of 145 db. The test panel was exposed to nine separate applications of the acoustic environment, each application consisting of 250 seconds duration. Upon completion of the ninth test run, the specimen was exposed to a simulated micrometeoroid impact near the panel center. One additional test run of 250 seconds duration was then performed to complete the overall simulation of 50 flight missions. The experimental results show that no significant fatigue damage occurred until the test specimen was exposed to a simulated micrometeoroid impact. The intermediate foam layer forming the core of the test specimen suffered considerable damage due to this impact, causing a marked variation in the dynamic characteristics of the overall test panel. During the final application of the acoustic environment, the strain and acceleration response spectra showed considerable variation from those spectra obtained prior to impact of the panel. Fatigue damage from acoustic loading however, was limited to partial de-bonding around the edges of the composite panel.

  10. Panel regressions to estimate low-flow response to rainfall variability in ungaged basins

    USGS Publications Warehouse

    Bassiouni, Maoya; Vogel, Richard M.; Archfield, Stacey A.

    2016-01-01

    Multicollinearity and omitted-variable bias are major limitations to developing multiple linear regression models to estimate streamflow characteristics in ungaged areas and varying rainfall conditions. Panel regression is used to overcome limitations of traditional regression methods, and obtain reliable model coefficients, in particular to understand the elasticity of streamflow to rainfall. Using annual rainfall and selected basin characteristics at 86 gaged streams in the Hawaiian Islands, regional regression models for three stream classes were developed to estimate the annual low-flow duration discharges. Three panel-regression structures (random effects, fixed effects, and pooled) were compared to traditional regression methods, in which space is substituted for time. Results indicated that panel regression generally was able to reproduce the temporal behavior of streamflow and reduce the standard errors of model coefficients compared to traditional regression, even for models in which the unobserved heterogeneity between streams is significant and the variance inflation factor for rainfall is much greater than 10. This is because both spatial and temporal variability were better characterized in panel regression. In a case study, regional rainfall elasticities estimated from panel regressions were applied to ungaged basins on Maui, using available rainfall projections to estimate plausible changes in surface-water availability and usable stream habitat for native species. The presented panel-regression framework is shown to offer benefits over existing traditional hydrologic regression methods for developing robust regional relations to investigate streamflow response in a changing climate.

  11. Panel regressions to estimate low-flow response to rainfall variability in ungaged basins

    NASA Astrophysics Data System (ADS)

    Bassiouni, Maoya; Vogel, Richard M.; Archfield, Stacey A.

    2016-12-01

    Multicollinearity and omitted-variable bias are major limitations to developing multiple linear regression models to estimate streamflow characteristics in ungaged areas and varying rainfall conditions. Panel regression is used to overcome limitations of traditional regression methods, and obtain reliable model coefficients, in particular to understand the elasticity of streamflow to rainfall. Using annual rainfall and selected basin characteristics at 86 gaged streams in the Hawaiian Islands, regional regression models for three stream classes were developed to estimate the annual low-flow duration discharges. Three panel-regression structures (random effects, fixed effects, and pooled) were compared to traditional regression methods, in which space is substituted for time. Results indicated that panel regression generally was able to reproduce the temporal behavior of streamflow and reduce the standard errors of model coefficients compared to traditional regression, even for models in which the unobserved heterogeneity between streams is significant and the variance inflation factor for rainfall is much greater than 10. This is because both spatial and temporal variability were better characterized in panel regression. In a case study, regional rainfall elasticities estimated from panel regressions were applied to ungaged basins on Maui, using available rainfall projections to estimate plausible changes in surface-water availability and usable stream habitat for native species. The presented panel-regression framework is shown to offer benefits over existing traditional hydrologic regression methods for developing robust regional relations to investigate streamflow response in a changing climate.

  12. How do stakeholder groups vary in a Delphi technique about primary mental health care and what factors influence their ratings?

    PubMed

    Campbell, S M; Shield, T; Rogers, A; Gask, L

    2004-12-01

    While mental health is a core part of primary care, there are few validated quality measures and little relevant internationally published research. Consensus panel methods are a useful means of developing quality measures where evidence is sparse and/or opinions are diverse. However, little is known about the dynamics of consensus techniques and the factors that influence the judgements and ratings of panels and individual panelists. (1) To describe differences in panel ratings on the quality of primary mental health care services by patient, carer, professional and managerial panels within a Delphi procedure; and (2) to explore why different panels and panelists rate quality indicators of primary mental health care differently. Two round postal Delphi technique and exploratory semi-structured interviews. 115 panelists across 11 panels. Eleven panelists were subsequently interviewed. 87 of 334 indicators (26%) were rated face valid by all 11 panels. There was little disagreement within panel ratings but significant differences between panels. The GP panel rated the least number of indicators valid (n = 138, 41%) and carers the most (n = 304, 91%). The way in which panelists interpreted and conceptualised the indicators and their definition of quality of mental health care affected the way in which participants made their ratings. Stakeholders in primary mental health care have diverse views of quality of care and these differences translate into how they rate quality indicators. Exploratory interviews suggest that ratings are influenced by past experience, expectations, definitions of quality of care, and perceived power relationships between stakeholders.

  13. Electrical design for origami solar panels and a small spacecraft test mission

    NASA Astrophysics Data System (ADS)

    Drewelow, James; Straub, Jeremy

    2017-05-01

    Efficient power generation is crucial to the design of spacecraft. Mass, volume, and other limitations prevent the use of traditional spacecraft support structures from being suitable for the size of solar array required for some missions. Folding solar panel / panel array systems, however, present a number of design challenges. This paper considers the electrical design of an origami system. Specifically, it considers how to provide low impedance, durable channels for the generated power and the electrical aspects of the deployment system and procedure. The ability to dynamically reconfigure the electrical configuration of the solar cells is also discussed. Finally, a small satellite test mission to demonstrate the technology is proposed, before concluding.

  14. Sound transmission through a double panel structure periodically coupled with vibration insulators

    NASA Astrophysics Data System (ADS)

    Legault, Julien; Atalla, Noureddine

    2010-07-01

    In this paper, sound transmission through an aircraft sidewall representative double panel structure is investigated theoretically and parametric and validation studies are conducted. The studied configuration is composed of a trim panel (receiver side panel) attached to a ribbed skin panel (source side panel) with periodically spaced resilient mounts. The structure is considered infinite in order to use space harmonic expansion. The partition is also assumed planar for simplicity. The model allows for a 3D incident field and the panels can be metallic and/or composite. A four-pole formulation is employed for modeling of the mounts and the absorption provided by the fiberglass that fills the cavity between the leaves is addressed with an equivalent fluid model. The investigation of mount stiffness, damping and spacing show that properly designed mounts can increase the TL significantly (up to 20 dB of difference between rigid and resilient mounts). However, they can create undesirable resonances resulting from their interaction with the panels. The influence of cavity absorption is also studied and results illustrate the fact that it is not worth investing in a highly absorbent fiber if the structure-borne transmission path is not adequately insulated, and likewise that it is not worth investing in highly resilient mounts without sufficient cavity absorption. Moreover, the investigation of panel damping confirms that when structure-borne transmission is present, raising skin damping can increase the TL even below coincidence, but that on average, greater improvements are achieved by raising trim damping. Finally, comparison between the periodic model and finite element simulations for structure-borne transmission shows that the average level of transmitted energy is well reproduced with the periodic approach. However, the modes are only captured approximately due to the assumption of an infinite structure.

  15. The Influence of Clocking Angle of the Projectile on the Simulated Impact Response of a Shuttle Leading Edge Wing Panel

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Lyle, Karen H.; Spellman, Regina L.

    2005-01-01

    An analytical study was conducted to determine the influence of clocking angle of a foam projectile impacting a space shuttle leading edge wing panel. Four simulations were performed using LS-DYNA. The leading edge panels are fabricated of multiple layers of reinforced carbon-carbon (RCC) material. The RCC material was represented using Mat 58, which is a material property that can be used for laminated composite fabrics. Simulations were performed of a rectangular-shaped foam block, weighing 0.23-lb., impacting RCC Panel 9 on the top surface. The material properties of the foam were input using Mat 83. The impact velocity was 1,000 ft/s along the Orbiter X-axis. In two models, the foam impacted on a corner, in one model the foam impacted the panel initially on the 2-in.-long edge, and in the last model the foam impacted the panel on the 7-in.- long edge. The simulation results are presented as contour plots of first principal infinitesimal strain and time history plots of contact force and internal and kinetic energy of the foam and RCC panel.

  16. Vibroacoustic Model Validation for a Curved Honeycomb Composite Panel

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Robinson, Jay H.; Grosveld, Ferdinand W.

    2001-01-01

    Finite element and boundary element models are developed to investigate the vibroacoustic response of a curved honeycomb composite sidewall panel. Results from vibroacoustic tests conducted in the NASA Langley Structural Acoustic Loads and Transmission facility are used to validate the numerical predictions. The sidewall panel is constructed from a flexible honeycomb core sandwiched between carbon fiber reinforced composite laminate face sheets. This type of construction is being used in the development of an all-composite aircraft fuselage. In contrast to conventional rib-stiffened aircraft fuselage structures, the composite panel has nominally uniform thickness resulting in a uniform distribution of mass and stiffness. Due to differences in the mass and stiffness distribution, the noise transmission mechanisms for the composite panel are expected to be substantially different from those of a conventional rib-stiffened structure. The development of accurate vibroacoustic models will aide in the understanding of the dominant noise transmission mechanisms and enable optimization studies to be performed that will determine the most beneficial noise control treatments. Finite element and boundary element models of the sidewall panel are described. Vibroacoustic response predictions are presented for forced vibration input and the results are compared with experimental data.

  17. Designing low cost LED display for the billboard

    NASA Astrophysics Data System (ADS)

    Hong, Yi-Jian; Uang, Chii-Maw; Wang, Ping-Chieh; Ho, Zu-Sheng

    2011-10-01

    With quickly advance of the computer, microelectronics and photonics technologies, LED display panel becomes a new electronic advertising media. It can be used to show any information whatever characters or graphics. Most LED display panels are built of many Light-Emitting Diodes arranged in a matrix form. The display has many advantages such as low power, low cost, long life and high definition. Because the display panel is asked to show rich color, the LED display panel's driving system becomes very complex. The design methodology of LED display panel's driver becomes more and more important to meet the market requirements. Cost is always the most important issue in public market domain. In this paper, we report a design methodology of LED display panel's driver based on the microprocessor control unit (MCU) system and LED display controller IC, HT1632C, to control three colors, RGB, color LED display panel and the modular panel size is 24*16 in matrix form. The HT1632C is a memory mapping LED display controller, it can be used on many applications, such as digital clock, thermometer, counter, voltmeter or other instrumentation readouts. Three pieces of HT1632C are used to drive a 24*16 RGB LED display panel, in our design case. Each HT163C chip is used to control one of the R, G and B color. As the drive mode is driven in DC mode, the RGB display panel can create and totally of seven colors under the control of MCU. The MCU generates the control signal to drive HT1632C. In this study, the software design methodology is adopted with dynamic display principle. When the scan frequency is 60Hz, LED display panel will get the clear picture and be able to display seven colors.

  18. Stress Behaviour in Compression of Contact-Monolithic Joint of Self-Supporting Wall of Large Panel Multi-Storey Building

    NASA Astrophysics Data System (ADS)

    Derbentsev, I.; Karyakin, A. A.; Volodin, A.

    2017-11-01

    The article deals with the behaviour of a contact-monolithic joint of large-panel buildings under compression. It gives a detailed analysis and the descriptions of the stages of such joints failure based on the results of the tests and computational modelling. The article is of interest to specialists who deal with computational modelling or the research of large-panel multi-storey buildings. The text gives a valuable information on the values of their bearing capacity and flexibility, the eccentricity of load transfer from upper panel to lower, the value of thrust passed to a ceiling panel. Recommendations are given to estimate all the above-listed parameters.

  19. Evaluation of detector dynamic range in the x-ray exposure domain in mammography: a comparison between film-screen and flat panel detector systems.

    PubMed

    Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V

    2003-10-01

    Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.

  20. Science Advisory Panel Meeting on PBPK Modeling Postponed

    EPA Pesticide Factsheets

    EPA is postponing the Federal Insecticide, Fungicide, and Rodenticide Act Scientific Advisory Panel (SAP) meeting scheduled for October 24-27, 2017 due to the unavailability of experts for the peer review panel.

  1. Evolution of integrated panel structural design and interfaces for PV power plants

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Anderson, A. J.; Robertson, R. E.

    1983-01-01

    The evolution of integrated photovoltaic (PV) panel design at ARCO Solar is discussed. Historically, framed PV modules of about 1 x 4-ft size were individually mounted in the field on fixed support structures and interconnected electrically with cables to build higher-power arrays. When ARCO Solar saw the opportunity in 1982 to marry its PV modules with state-of-the-art heliostat trackers developed by ARCO Power Systems, it became obvious that mounting individual modules was impractical. For this project, the framed modules were factory-assembled into panels and interconnected with cables before being mounted on the trackers. Since then, ARCO Solar made considerable progress and gained substantial experience in the design and fabrication of large PV panels. Constraints and criteria considered in these design activities included static and dynamic loads; assembly and transportation equipment and logistics, structural and electrical interfaces, and safety and grounding concerns.

  2. Structural Acoustic Response of a Shape Memory Alloy Hybrid Composite Panel (Lessons Learned)

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.

    2002-01-01

    This study presents results from an effort to fabricate a shape memory alloy hybrid composite (SMAHC) panel specimen and test the structure for dynamic response and noise transmission characteristics under the action of thermal and random acoustic loads. A method for fabricating a SMAHC laminate with bi-directional SMA reinforcement is described. Glass-epoxy unidirectional prepreg tape and Nitinol ribbon comprise the material system. Thermal activation of the Nitinol actuators was achieved through resistive heating. The experimental hardware required for mechanical support of the panel/actuators and for establishing convenient electrical connectivity to the actuators is presented. Other experimental apparatus necessary for controlling the panel temperature and acquiring structural acoustic data are also described. Deficiency in the thermal control system was discovered in the process of performing the elevated temperature tests. Discussion of the experimental results focuses on determining the causes for the deficiency and establishing means for rectifying the problem.

  3. Development of heat-storage building materials for passive-solar applications

    NASA Astrophysics Data System (ADS)

    Fletcher, J. W.

    A heat storage building material to be used for passive solar applications and general load leveling within building spaces was developed. Specifically, PCM-filled plastic panels are to be developed as wallboard and ceiling panels. Three PCMs (CaCl2, 6H2O; Na2SO4, 10H2O; LiNO3, 3H2O are to be evaluated for use in the double walled, hollow channeled plastic panels. Laboratory development of the panels will include determination of filling and sealing techniques, behavior of the PCMs, container properties and materials compatibility. Testing will include vapor transmission, thermal cycle, dynamic performance, accelerated life and durability tests. In addition to development and testing, an applications analysis will be performed for specific passive solar applications. Conceptual design of a single family passive solar residence will be prepared and performance evaluated. Screening of the three PCM candidates is essentially complete.

  4. Structural acoustic response of a shape memory alloy hybrid composite panel (lessons learned)

    NASA Astrophysics Data System (ADS)

    Turner, Travis L.

    2002-07-01

    This study presents results from an effort to fabricate a shape memory alloy hybrid composite (SMAHC) panel specimen and test the structure for dynamic response and noise transmission characteristics under the action of thermal and random acoustic loads. A method for fabricating a SMAHC laminate with bi-directional SMA reinforcement is described. Glass-epoxy unidirectional prepreg tape and Nitinol ribbon comprise the material system. Thermal activation of the Nitinol actuators was achieved through resistive heating. The experimental hardware required for mechanical support of the panel/actuators and for establishing convenient electrical connectivity to the actuators is presented. Other experimental apparatus necessary for controlling the panel temperature and acquiring structural acoustic data are also described. Deficiency in the thermal control system was discovered in the process of performing the elevated temperature tests. Discussion of the experimental results focuses on determining the causes for the deficiency and establishing means for rectifying the problem.

  5. The dynamics of gene expression changes in a mouse model of oral tumorigenesis may help refine prevention and treatment strategies in patients with oral cancer.

    PubMed

    Foy, Jean-Philippe; Tortereau, Antonin; Caulin, Carlos; Le Texier, Vincent; Lavergne, Emilie; Thomas, Emilie; Chabaud, Sylvie; Perol, David; Lachuer, Joël; Lang, Wenhua; Hong, Waun Ki; Goudot, Patrick; Lippman, Scott M; Bertolus, Chloé; Saintigny, Pierre

    2016-06-14

    A better understanding of the dynamics of molecular changes occurring during the early stages of oral tumorigenesis may help refine prevention and treatment strategies. We generated genome-wide expression profiles of microdissected normal mucosa, hyperplasia, dysplasia and tumors derived from the 4-NQO mouse model of oral tumorigenesis. Genes differentially expressed between tumor and normal mucosa defined the "tumor gene set" (TGS), including 4 non-overlapping gene subsets that characterize the dynamics of gene expression changes through different stages of disease progression. The majority of gene expression changes occurred early or progressively. The relevance of these mouse gene sets to human disease was tested in multiple datasets including the TCGA and the Genomics of Drug Sensitivity in Cancer project. The TGS was able to discriminate oral squamous cell carcinoma (OSCC) from normal oral mucosa in 3 independent datasets. The OSCC samples enriched in the mouse TGS displayed high frequency of CASP8 mutations, 11q13.3 amplifications and low frequency of PIK3CA mutations. Early changes observed in the 4-NQO model were associated with a trend toward a shorter oral cancer-free survival in patients with oral preneoplasia that was not seen in multivariate analysis. Progressive changes observed in the 4-NQO model were associated with an increased sensitivity to 4 different MEK inhibitors in a panel of 51 squamous cell carcinoma cell lines of the areodigestive tract. In conclusion, the dynamics of molecular changes in the 4-NQO model reveal that MEK inhibition may be relevant to prevention and treatment of a specific molecularly-defined subgroup of OSCC.

  6. Multiple Indicator Stationary Time Series Models.

    ERIC Educational Resources Information Center

    Sivo, Stephen A.

    2001-01-01

    Discusses the propriety and practical advantages of specifying multivariate time series models in the context of structural equation modeling for time series and longitudinal panel data. For time series data, the multiple indicator model specification improves on classical time series analysis. For panel data, the multiple indicator model…

  7. Broadband Transmission Loss Due to Reverberant Excitation

    NASA Technical Reports Server (NTRS)

    Barisciano, Lawrence P. Jr.

    1999-01-01

    The noise transmission characteristics of candidate curved aircraft sidewall panel constructions is examined analytically using finite element models of the selected panel geometries. The models are validated by experimental modal analyses and transmission loss testing. The structural and acoustic response of the models are then examined when subjected to random or reverberant excitation, the simulation of which is also discussed. For a candidate curved honeycomb panel, the effect of add-on trim panel treatments is examined. Specifically, two different mounting configurations are discussed and their effect on the transmission loss of the panel is presented. This study finds that the add-on acoustical treatments do improve on the primary structures transmission loss characteristics, however, much more research is necessary to draw any valid conclusions about the optimal configuration for the maximum noise transmission loss. This paper describes several directions for the extension of this work.

  8. Experimental Evaluation of Tuned Chamber Core Panels for Payload Fairing Noise Control

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Herlan, Jonathan W.; Rosenthal, Bruce N.

    2015-01-01

    Analytical models have been developed to predict the sound absorption and sound transmission loss of tuned chamber core panels. The panels are constructed of two facesheets sandwiching a corrugated core. When ports are introduced through one facesheet, the long chambers within the core can be used as an array of low-frequency acoustic resonators. To evaluate the accuracy of the analytical models, absorption and sound transmission loss tests were performed on flat panels. Measurements show that the acoustic resonators embedded in the panels improve both the absorption and transmission loss of the sandwich structure at frequencies near the natural frequency of the resonators. Analytical predictions for absorption closely match measured data. However, transmission loss predictions miss important features observed in the measurements. This suggests that higher-fidelity analytical or numerical models will be needed to supplement transmission loss predictions in the future.

  9. Modelling the drying of three-dimensional pulp moulded structures. Part II, Drying data obtained from flat panels using virgin and recycled paper fibre

    Treesearch

    John F. Hunt; Margit Tamasy-Bano; Heike Nyist

    1999-01-01

    A three-dimensional structural panel, called FPL Spaceboard, was developed at the USDA Forest Products Laboratory. Spaceboard panels have been formed using a variety of fibrous materials using either a wet- or dry-forming process. Geometrically, the panel departs from the traditional two-dimensional flat panel by integrally forming an array of perpendicular ribs and...

  10. The Gender Equity Expert Panel: A Dissemination Model.

    ERIC Educational Resources Information Center

    Fox, Lynn; Ortman, Patricia

    2000-01-01

    Describes the purposes and evolution of the Gender Equity Expert Panel, a federally sponsored effort to recognize interventions, products, and practices promoting gender equity. Explains key aspects of the Panel, shares lessons learned, and explores the Panel's potential value for furthering the cause of gender equity in education and as a model…

  11. Coordination of Mesoscale Meteorological Research between ASL and European Group

    DTIC Science & Technology

    1993-12-01

    have been influenced by the Panel’s advice. Attention is drawn to the role of the Panel in involving the wider mesomet modelling community in ASL’s...during the contract period It is difficult to measure precisely the influence which the Panel has brought to bear on ASL’s policy-making and activities...the Arm-y"s Mesoscale Model Comparison Project. Their use has led to considerably increased insight into the behaviour of the models tested and

  12. Comparative analysis of heat dissipation panels for a hybrid cooling system integrated in buildings

    NASA Astrophysics Data System (ADS)

    Zuazua-Ros, A.; Ramos, JC; Martín-Gómez, C.; Gómez-Acebo, Tomás; Pisano, A.

    2018-05-01

    The use of cooling panels as heat dissipation elements integrated in buildings has been previously investigated by the authors. Those elements would be connected to the condenser and would dissipate the heat in a passive form. Following the research, this study analyses and compares the thermal performance of two heat dissipation panels as part of a hybrid cooling system. Both panels were experimentally tested under different variables, thus having nine scenarios for each panel. Additionally, an already validated model was applied. The empirical results show a considerable difference between the cooling capacity among them, doubling the daily average ratio in one scenario. The heat dissipation ratios vary between 106 and 227 W/m2 in the first case and 140 and 413 W/m2 in the second. Regarding the model applicability, the average error for each panel was 4.0% and 8.5%. The bond between the metal sheet and the pipes of the panels has proven to be the main parameter to assure the highest heat dissipation potential of each panel.

  13. High temperature structural sandwich panels

    NASA Astrophysics Data System (ADS)

    Papakonstantinou, Christos G.

    High strength composites are being used for making lightweight structural panels that are being employed in aerospace, naval and automotive structures. Recently, there is renewed interest in use of these panels. The major problem of most commercial available sandwich panels is the fire resistance. A recently developed inorganic matrix is investigated for use in cases where fire and high temperature resistance are necessary. The focus of this dissertation is the development of a fireproof composite structural system. Sandwich panels made with polysialate matrices have an excellent potential for use in applications where exposure to high temperatures or fire is a concern. Commercial available sandwich panels will soften and lose nearly all of their compressive strength temperatures lower than 400°C. This dissertation consists of the state of the art, the experimental investigation and the analytical modeling. The state of the art covers the performance of existing high temperature composites, sandwich panels and reinforced concrete beams strengthened with Fiber Reinforced Polymers (FRP). The experimental part consists of four major components: (i) Development of a fireproof syntactic foam with maximum specific strength, (ii) Development of a lightweight syntactic foam based on polystyrene spheres, (iii) Development of the composite system for the skins. The variables are the skin thickness, modulus of elasticity of skin and high temperature resistance, and (iv) Experimental evaluation of the flexural behavior of sandwich panels. Analytical modeling consists of a model for the flexural behavior of lightweight sandwich panels, and a model for deflection calculations of reinforced concrete beams strengthened with FRP subjected to fatigue loading. The experimental and analytical results show that sandwich panels made with polysialate matrices and ceramic spheres do not lose their load bearing capability during severe fire exposure, where temperatures reach several hundred degrees Centigrade. Hence the material has excellent potential for various types of applications. The analytical predictions from both models provide reasonably accurate results. Glass, AR-glass, carbon and Nicalon tows and carbon fabrics could be successfully used as skin reinforcements increasing the flexural stiffness and strength of the core. No occurrence of fiber delamination was observed.

  14. Dynamics of Economic Well-Being: Poverty 1996-1999. Current Population Reports.

    ERIC Educational Resources Information Center

    Iceland, John

    This report examines patterns of poverty using seven different measures: average monthly poverty, episodic poverty, chronic poverty, annual poverty, poverty spells, poverty entry rates, and poverty exit rates. Data come from the 1996 panel of the Survey of Income and Program Participation (SIPP) and reflect the dynamics of poverty from 1996-1999.…

  15. Design and analysis of grid stiffened fuselage panel with curved stiffeners

    NASA Astrophysics Data System (ADS)

    Hemanth, Bharath; Babu, N. C. Mahendra; Shivakumar, H. G.; Srikari, S.

    2018-04-01

    Designing and analyzing grid stiffened panel to understand the effect of stiffeners on stiffness of the panel is crucial in designing grid stiffened cylinder for fuselage application. Traditionally only straight stiffeners were used due to limited manufacturing capabilities and in recent years GSS with curved stiffeners have become a reality. The present work is on flat grid stiffened panel and the focus is to realize the change in stiffness by converting straight stiffeners in an isogrid panel to curved stiffeners. An isogrid stiffened panel is identified from literature for which experimental results were available and was considered for replacing straight stiffeners with curved stiffeners. Defining and designing the curve for curved stiffeners which can be used to replace straight stiffeners in isogrid pattern is crucial. FE model of the grid stiffened fuselage panel with isogrid pattern identified from the literature for which experimental data was available was developed and evaluated for stiffness. For the same panel, curved grid pattern to enhance stiffness of the panel was designed following existing design procedure. FE model of the grid stiffened fuselage panel with designed curved stiffeners was developed and evaluated for stiffness. It is established that the stiffness of panel can be increased by minimum of 2.82% to maximum of 11.93% by using curved stiffeners of particular curvature as a replacement for straight stiffeners in isogrid pattern with a slight mass penalty.

  16. Transmission loss of orthogonally rib-stiffened double-panel structures with cavity absorption.

    PubMed

    Xin, F X; Lu, T J

    2011-04-01

    The transmission loss of sound through infinite orthogonally rib-stiffened double-panel structures having cavity-filling fibrous sound absorptive materials is theoretically investigated. The propagation of sound across the fibrous material is characterized using an equivalent fluid model, and the motions of the rib-stiffeners are described by including all possible vibrations, i.e., flexural displacements, bending, and torsional rotations. The effects of fluid-structure coupling are account for by enforcing velocity continuity conditions at fluid-panel interfaces. By taking full advantage of the periodic nature of the double-panel, the space-harmonic approach and virtual work principle are applied to solve the sets of resultant governing equations, which are eventually truncated as a finite system of simultaneous algebraic equations and numerically solved insofar as the solution converges. To validate the proposed model, a comparison between the present model predictions and existing numerical and experimental results for a simplified version of the double-panel structure is carried out, with overall agreement achieved. The model is subsequently employed to explore the influence of the fluid-structure coupling between fluid in the cavity and the two panels on sound transmission across the orthogonally rib-stiffened double-panel structure. Obtained results demonstrate that this fluid-structure coupling affects significantly sound transmission loss (STL) at low frequencies and cannot be ignored when the rib-stiffeners are sparsely distributed. As a highlight of this research, an integrated optimal algorithm toward lightweight, high-stiffness and superior sound insulation capability is proposed, based on which a preliminary optimal design of the double-panel structure is performed.

  17. Material damage modeling and detection in a thin metallic sheet and sandwich panel using passive acoustic transmission

    NASA Astrophysics Data System (ADS)

    Jiang, Hao

    A method is developed for modeling, detecting, and locating material damage in homogeneous thin metallic sheets and sandwich panels. Analytical and numerical models are used along with non-contact, passive acoustic transmission measurements. It is shown that global and local damage mechanisms characterized by both material and geometrical changes in structural components can be detected using passive acoustic transmission measurements. Theoretical models of a flat sheet and sandwich panel are developed to describe the effects of global material damage due to density, modulus, or thickness changes on backplane radiated sound pressure level distributions. To describe the effects of local material damage, a three-segment stepped beam model and finite element beam, plate, and sandwich panel models are developed and analyzed using the acoustic transmission approach. It is shown that increases or decreases in transmitted sound energy occur behind a damaged material component that exhibits changes in thickness or other geometric or material properties. The damage due to thickness and density changes can be detected from the acoustic transmission, but modulus changes cannot. If the damage is located at an anti-node of a certain forced vibration pattern, the damage can be more readily observed in the data. Higher excitation frequencies within the operating spectrum are preferred to lower frequencies for damage detection. With the finite element beam, plate, and sandwich panel models, local damage detection has been performed in simulations. Experiments on a baffled homogeneous sheet and sandwich panel subjected to broadband acoustic energy show that transmitted intensity measurements with non-contact probes can be used to identify and locate material defects in the sheet and sandwich panel. Material damage is most readily identified where the changes in transmitted sound intensity are largest in the resonant frequency range of the panel. The three main contributions of this research are: (1) the use of non-contact sensing to detect global and localized damage in structural components; (2) the analytical and numerical modeling of material and geometrical damage mechanisms in structural components; and, (3) the experimental verification of acoustic transmission measurements for detecting both material and geometric damage mechanisms.

  18. Changes in Circulating B Cell Subsets Associated with Aging and Acute SIV Infection in Rhesus Macaques.

    PubMed

    Chang, W L William; Gonzalez, Denise F; Kieu, Hung T; Castillo, Luis D; Messaoudi, Ilhem; Shen, Xiaoying; Tomaras, Georgia D; Shacklett, Barbara L; Barry, Peter A; Sparger, Ellen E

    2017-01-01

    Aging and certain viral infections can negatively impact humoral responses in humans. To further develop the nonhuman primate (NHP) model for investigating B cell dynamics in human aging and infectious disease, a flow cytometric panel was developed to characterize circulating rhesus B cell subsets. Significant differences between human and macaque B cells included the proportions of cells within IgD+ and switched memory populations and a prominent CD21-CD27+ unswitched memory population detected only in macaques. We then utilized the expanded panel to analyze B cell alterations associated with aging and acute simian immunodeficiency virus (SIV) infection in the NHP model. In the aging study, distinct patterns of B cell subset frequencies were observed for macaques aged one to five years compared to those between ages 5 and 30 years. In the SIV infection study, B cell frequencies and absolute number were dramatically reduced following acute infection, but recovered within four weeks of infection. Thereafter, the frequencies of activated memory B cells progressively increased; these were significantly correlated with the magnitude of SIV-specific IgG responses, and coincided with impaired maturation of anti-SIV antibody avidity, as previously reported for HIV-1 infection. These observations further validate the NHP model for investigation of mechanisms responsible for B cells alterations associated with immunosenescence and infectious disease.

  19. Description of Panel Method Code ANTARES

    NASA Technical Reports Server (NTRS)

    Ulbrich, Norbert; George, Mike (Technical Monitor)

    2000-01-01

    Panel method code ANTARES was developed to compute wall interference corrections in a rectangular wind tunnel. The code uses point doublets to represent blockage effects and line doublets to represent lifting effects of a wind tunnel model. Subsonic compressibility effects are modeled by applying the Prandtl-Glauert transformation. The closed wall, open jet, or perforated wall boundary condition may be assigned to a wall panel centroid. The tunnel walls can be represented by using up to 8000 panels. The accuracy of panel method code ANTARES was successfully investigated by comparing solutions for the closed wall and open jet boundary condition with corresponding Method of Images solutions. Fourier transform solutions of a two-dimensional wind tunnel flow field were used to check the application of the perforated wall boundary condition. Studies showed that the accuracy of panel method code ANTARES can be improved by increasing the total number of wall panels in the circumferential direction. It was also shown that the accuracy decreases with increasing free-stream Mach number of the wind tunnel flow field.

  20. Real time health monitoring and control system methodology for flexible space structures

    NASA Astrophysics Data System (ADS)

    Jayaram, Sanjay

    This dissertation is concerned with the Near Real-time Autonomous Health Monitoring of Flexible Space Structures. The dynamics of multi-body flexible systems is uncertain due to factors such as high non-linearity, consideration of higher modal frequencies, high dimensionality, multiple inputs and outputs, operational constraints, as well as unexpected failures of sensors and/or actuators. Hence a systematic framework of developing a high fidelity, dynamic model of a flexible structural system needs to be understood. The fault detection mechanism that will be an integrated part of an autonomous health monitoring system comprises the detection of abnormalities in the sensors and/or actuators and correcting these detected faults (if possible). Applying the robust control law and the robust measures that are capable of detecting and recovering/replacing the actuators rectifies the actuator faults. The fault tolerant concept applied to the sensors will be in the form of an Extended Kalman Filter (EKF). The EKF is going to weigh the information coming from multiple sensors (redundant sensors used to measure the same information) and automatically identify the faulty sensors and weigh the best estimate from the remaining sensors. The mechanization is comprised of instrumenting flexible deployable panels (solar array) with multiple angular position and rate sensors connected to the data acquisition system. The sensors will give position and rate information of the solar panel in all three axes (i.e. roll, pitch and yaw). The position data corresponds to the steady state response and the rate data will give better insight on the transient response of the system. This is a critical factor for real-time autonomous health monitoring. MATLAB (and/or C++) software will be used for high fidelity modeling and fault tolerant mechanism.

  1. Molecular DYNAmics of Soil Organic carbon (DYNAMOS *): a project focusing on soils and carbon through data and modeling

    NASA Astrophysics Data System (ADS)

    Hatté, C.; Balesdent, J.; Derenne, S.; Derrien, D.; Dignac, M.; Egasse, C.; Ezat, U.; Gauthier, C.; Mendez-Millan, M.; Nguyen Tu, T.; Rumpel, C.; Sicre, M.; Zeller, B.

    2009-12-01

    Here we present the first results of the DynaMOS project whose main issue is the build-up of a new generation of soil carbon model. The modeling will describe together soil organic geochemistry and soil carbon dynamics in a generalized, quantitative representation. The carbon dynamics time scale envisaged here will cover the 1 to 1000 yr range and described molecules will be carbohydrate, peptide, amino acid, lignin, lipids, their products of biodegradation and uncharacterized carbonaceous species of biological origin. Three main characteristics define DYNAMOS model originalities: it will consider organic matter at the molecular scale, integrate back to global scale and account for component vertical movements. In a first step, specific data acquisition will concern the production, fate and age of carbon of individual organic compounds. Dynamic parameters will be acquired by compound-specific carbon isotope analysis of both 13C and 14C, by GC/C/IR-MS and AMS. Sites for data acquisition, model calibration and model validation will be chosen on the base of their isotopic history and environmental constraints: 13C natural labeling (with and without C3/C4 vegetation changes), 13C/15N-labelled litter application in both forest and cropland. They include some long-term experiments owned by the partners themselves plus a worldwide panel of sites. In a second step the depth distribution of organic species, isotopes and ages in soils (1D representation) will be modeled by coupling carbon dynamics and vertical movement. Besides the main objective of providing a robust soil carbon dynamics model, DYNAMOS will assess and model the alteration of the isotopic signature of molecules throughout decay and create a shared database of both already published and new data of compound specific information. Issues of the project will concern different scientific fields: global geochemical cycles by refining the description of the terrestrial carbon cycle and entering the chemical composition of organic matter in carbon models; forestry or agriculture by offering a chemical frame for the management of crop residues or organic wastes; geochronology, paleoecology and paleo climatology by modeling the alteration of isotope signature and the preservation of terrestrial biomarkers. (*) funded by the French National Agency of Research (ANR): ANR-07-Blan-0222-01, http://dynamos.lsce.ipsl.fr

  2. A full-spectrum analysis of high-speed train interior noise under multi-physical-field coupling excitations

    NASA Astrophysics Data System (ADS)

    Zheng, Xu; Hao, Zhiyong; Wang, Xu; Mao, Jie

    2016-06-01

    High-speed-railway-train interior noise at low, medium, and high frequencies could be simulated by finite element analysis (FEA) or boundary element analysis (BEA), hybrid finite element analysis-statistical energy analysis (FEA-SEA) and statistical energy analysis (SEA), respectively. First, a new method named statistical acoustic energy flow (SAEF) is proposed, which can be applied to the full-spectrum HST interior noise simulation (including low, medium, and high frequencies) with only one model. In an SAEF model, the corresponding multi-physical-field coupling excitations are firstly fully considered and coupled to excite the interior noise. The interior noise attenuated by sound insulation panels of carriage is simulated through modeling the inflow acoustic energy from the exterior excitations into the interior acoustic cavities. Rigid multi-body dynamics, fast multi-pole BEA, and large-eddy simulation with indirect boundary element analysis are first employed to extract the multi-physical-field excitations, which include the wheel-rail interaction forces/secondary suspension forces, the wheel-rail rolling noise, and aerodynamic noise, respectively. All the peak values and their frequency bands of the simulated acoustic excitations are validated with those from the noise source identification test. Besides, the measured equipment noise inside equipment compartment is used as one of the excitation sources which contribute to the interior noise. Second, a full-trimmed FE carriage model is firstly constructed, and the simulated modal shapes and frequencies agree well with the measured ones, which has validated the global FE carriage model as well as the local FE models of the aluminum alloy-trim composite panel. Thus, the sound transmission loss model of any composite panel has indirectly been validated. Finally, the SAEF model of the carriage is constructed based on the accurate FE model and stimulated by the multi-physical-field excitations. The results show that the trend of the simulated 1/3 octave band sound pressure spectrum agrees well with that of the on-site-measured one. The deviation between the simulated and measured overall sound pressure level (SPL) is 2.6 dB(A) and well controlled below the engineering tolerance limit, which has validated the SAEF model in the full-spectrum analysis of the high speed train interior noise.

  3. A human ether-á-go-go-related (hERG) ion channel atomistic model generated by long supercomputer molecular dynamics simulations and its use in predicting drug cardiotoxicity.

    PubMed

    Anwar-Mohamed, Anwar; Barakat, Khaled H; Bhat, Rakesh; Noskov, Sergei Y; Tyrrell, D Lorne; Tuszynski, Jack A; Houghton, Michael

    2014-11-04

    Acquired cardiac long QT syndrome (LQTS) is a frequent drug-induced toxic event that is often caused through blocking of the human ether-á-go-go-related (hERG) K(+) ion channel. This has led to the removal of several major drugs post-approval and is a frequent cause of termination of clinical trials. We report here a computational atomistic model derived using long molecular dynamics that allows sensitive prediction of hERG blockage. It identified drug-mediated hERG blocking activity of a test panel of 18 compounds with high sensitivity and specificity and was experimentally validated using hERG binding assays and patch clamp electrophysiological assays. The model discriminates between potent, weak, and non-hERG blockers and is superior to previous computational methods. This computational model serves as a powerful new tool to predict hERG blocking thus rendering drug development safer and more efficient. As an example, we show that a drug that was halted recently in clinical development because of severe cardiotoxicity is a potent inhibitor of hERG in two different biological assays which could have been predicted using our new computational model. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  4. Effects of structural flexibility of wings in flapping flight of butterfly.

    PubMed

    Senda, Kei; Obara, Takuya; Kitamura, Masahiko; Yokoyama, Naoto; Hirai, Norio; Iima, Makoto

    2012-06-01

    The objective of this paper is to clarify the effects of structural flexibility of wings of a butterfly in flapping flight. For this purpose, a dynamics model of a butterfly is derived by Lagrange's method, where the butterfly is considered as a rigid multi-body system. The panel method is employed to simulate the flow field and the aerodynamic forces acting on the wings. The mathematical model is validated by the agreement of the numerical result with the experimentally measured data. Then, periodic orbits of flapping-of-wings flights are parametrically searched in order to fly the butterfly models. Almost periodic orbits are found, but they are unstable. Deformation of the wings is modeled in two ways. One is bending and its effect on the aerodynamic forces is discussed. The other is passive wing torsion caused by structural flexibility. Numerical simulations demonstrate that flexible torsion reduces the flight instability.

  5. Evapotranspiration trends over the eastern United States during the 20th century

    USGS Publications Warehouse

    Kramer, Ryan J.; Bounoua, Lahouari; Zhang, Ping; Wolfe, Robert E.; Huntington, Thomas G.; Imhoff, Marc L.; Thome, Kurtis; Noyce, Genevieve L.

    2015-01-01

    Most models evaluated by the Intergovernmental Panel for Climate change estimate projected increases in temperature and precipitation with rising atmospheric CO2 levels. Researchers have suggested that increases in CO2 and associated increases in temperature and precipitation may stimulate vegetation growth and increase evapotranspiration (ET), which acts as a cooling mechanism, and on a global scale, may slow the climate-warming trend. This hypothesis has been modeled under increased CO2 conditions with models of different vegetation-climate dynamics. The significance of this vegetation negative feedback, however, has varied between models. Here we conduct a century-scale observational analysis of the Eastern US water balance to determine historical evapotranspiration trends and whether vegetation greening has affected these trends. We show that precipitation has increased significantly over the twentieth century while runoff has not. We also show that ET has increased and vegetation growth is partially responsible.

  6. Future Projections of Air Temperature and Precipitation for the CORDEX-MENA Domain by Using RegCM4.3.5

    NASA Astrophysics Data System (ADS)

    Ozturk, Tugba; Turp, M. Tufan; Türkeş, Murat; Kurnaz, M. Levent

    2015-04-01

    In this study, the projected changes for the periods of 2016 - 2035, 2046 - 2065, and 2081 - 2100 in the seasonal averages of air temperature and precipitation variables with respect to the reference period of 1981 - 2000 were examined for the Middle East and North Africa region. In this context, Regional Climate Model (RegCM4.3.5) of ICTP (International Centre for Theoretical Physics) was run by using two different global climate models. MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology and HadGEM2 of the Met Office Hadley Centre were dynamically downscaled to 50 km for the CORDEX-MENA domain. The projections were realized according to the RCP4.5 and the RCP8.5 emission scenarios of the IPCC (Intergovernmental Panel of Climate Change).

  7. Design concerns of room and pillar retreat panels

    PubMed Central

    Klemetti, Ted M.; Sears, Morgan M.; Tulu, Ihsan B.

    2017-01-01

    Why do some room and pillar retreat panels encounter abnormal conditions? What factors deserve the most consideration during the planning and execution phases of mining and what can be done to mitigate those abnormal conditions when they are encountered? To help answer these questions, and to determine some of the relevant factors influencing the conditions of room and pillar (R & P) retreat mining entries, four consecutive R & P retreat panels were evaluated. This evaluation was intended to reinforce the influence of topographic changes, depth of cover, multiple-seam interactions, geological conditions, and mining geometry. This paper details observations were made in four consecutive R & P retreat panels and the data were collected from an instrumentation site during retreat mining. The primary focus was on the differences observed among the four panels and within the panels themselves. The instrumentation study was initially planned to evaluate the interactions between primary and secondary support, but produced rather interesting results relating to the loading encountered under the current mining conditions. In addition to the observation and instrumentation, numerical modeling was performed to evaluate the stress conditions. Both the LaModel 3.0 and Rocscience Phase 2 programs were used to evaluate these four panels. The results of both models indicated a drastic reduction in the vertical stresses experienced in these panels due to the full extraction mining in overlying seams when compared to the full overburden load. Both models showed a higher level of stress associated with the outside entries of the panels. These results agree quite well with the observations and instrumentation studies performed at the mine. These efforts provided two overarching conclusions concerning R & P retreat mine planning and execution. The first was that there are four areas that should not be overlooked during R & P retreat mining: topographic relief, multiple-seam stress relief, stress concentrations near the gob edge, and geologic changes in the immediate roof. The second is that in order to successfully retreat an R & P panel, a three-phased approach to the design and analysis of the panel should be conducted: the planning phase, evaluation phase, and monitoring phase. PMID:28626598

  8. Nonparametric estimation and testing of fixed effects panel data models

    PubMed Central

    Henderson, Daniel J.; Carroll, Raymond J.; Li, Qi

    2009-01-01

    In this paper we consider the problem of estimating nonparametric panel data models with fixed effects. We introduce an iterative nonparametric kernel estimator. We also extend the estimation method to the case of a semiparametric partially linear fixed effects model. To determine whether a parametric, semiparametric or nonparametric model is appropriate, we propose test statistics to test between the three alternatives in practice. We further propose a test statistic for testing the null hypothesis of random effects against fixed effects in a nonparametric panel data regression model. Simulations are used to examine the finite sample performance of the proposed estimators and the test statistics. PMID:19444335

  9. Evaluating Multiple Imputation Models for the Southern Annual Forest Inventory

    Treesearch

    Gregory A. Reams; Joseph M. McCollum

    1999-01-01

    The USDA Forest Service's Southern Research Station is implementing an annualized forest survey in thirteen states. The sample design is a systematic sample of five interpenetrating grids (panels), where each panel is measured sequentially. For example, panel one information is collected in year one, and panel five in year five. The area representative and time...

  10. 75 FR 61987 - Airworthiness Directives; Bombardier, Inc. Model DHC-8 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... the access panel involving the use of excessive force. Failure of the latch assembly can result in the... closure of the access panel involving the use of excessive force. Failure of the latch assembly can result... panel involving the use of excessive force. Failure of the latch assembly can result in the access panel...

  11. 75 FR 38064 - Airworthiness Directives; Bombardier, Inc. Model DHC-8 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-01

    ... involving the use of excessive force. Failure of the latch assembly can result in the access panel being... excessive force. Failure of the latch assembly can result in the access panel being jammed in the closed... panel involving the use of excessive force. Failure of the latch assembly can result in the access panel...

  12. General dependencies and causality analysis of road traffic fatalities in OECD countries.

    PubMed

    Yaseen, Muhammad Rizwan; Ali, Qamar; Khan, Muhammad Tariq Iqbal

    2018-05-07

    The road traffic accidents were responsible for material and human loss which was equal to 2.8 to 5% of gross national product (GNP). However, literature does not explore the elasticity coefficients and nexus of road traffic fatalities with foreign direct investment, health expenditures, trade openness, mobile subscriptions, the number of researchers in R&D department, and environmental particulate matter. This study filled this research gap by exploring the nexus between road traffic fatalities, foreign direct investment, health expenditures, trade openness, mobile subscriptions, the number of researchers, and environmental particulate matter in Organization for Economic Cooperation and Development (OECD) countries by using panel data from 1995 to 2015. The panel Autoregressive Distributed Lag (ARDL) bound test was used for the detection of cointegration between the variables after checking the stationarity in selected variables with different panel unit root tests. Panel vector error correction model explored the causality of road traffic fatalities, foreign direct investment, PM2.5 in the environment, and trade openness in the long run. Road traffic fatalities showed short run bi-directional causality with foreign direct investment and health expenditures. The short run bi-directional causality was also observed between trade and foreign direct investment and cellular mobile subscriptions and foreign direct investment. The panel fully modified ordinary least square (FMOLS) and panel dynamic ordinary least square (DOLS) showed the 0.947% reduction in road fatalities for 1% increase in the health expenditures in OECD countries. The significant reduction in road fatalities was also observed due to 1% increase in trade openness and researchers in R&D, which implies the importance of trade and research for road safety. It is required to invest in the health sector for the safety of precious human lives like the hospitals with latest medical equipment and improvement in the emergency services in the country. The research and development activities should be enhanced especially for the health and transportation sectors. The trade of environment-friendly technology should be promoted for the protection of environment.

  13. Utilization of waste of chicken feathers and waste of cardboard as the material of acoustic panel maker

    NASA Astrophysics Data System (ADS)

    Ansarullah; Rahim, Ramli; Kusno, Asniawaty; Baharuddin; Jamala, Nurul

    2018-03-01

    In The existence of chicken fur is a waste of chicken slaughterhouse Which is produced daily and still not widely used. Likewise cartons everywhere we can see its being because its function is so great in all human activities In the fulfillment of the need for storage and packaging of goods for human purposes such as electronic goods, commodity, Because it has a relatively large thickness of paper. Several studies have proven that Quill and cardboard can be used for acoustic materials. This study aims to identify the potential of chicken fur and cardboard to be created as panel materials Which acts as an acoustic panel. . This study uses an experimental method by combining two materials, Including waste Quill and carton waste by performing several stages in the formation of panels, Such as the selection of chicken fur material and cardboard cleaning process, drying process, enumeration process, panel modeling process. The result of this research is acoustic panel model with size 20x20cm2 with thickness 9 and 18 mm, The study also produced a Ø9,8 cm diameter-shaped panel model with 1.5cm, 2.5cm, and 5cm thickness for use in testing absorption coefficients using impedance tubes.

  14. Sound transmission analysis of partially treated MR fluid-based sandwich panels using finite element method

    NASA Astrophysics Data System (ADS)

    Hemmatian, M.; Sedaghati, R.

    2017-04-01

    This study aims at developing a finite element model to predict the sound transmission loss (STL) of a multilayer panel partially treated with a Magnetorheological (MR) fluid core layer. MR fluids are smart materials with promising controllable rheological characteristics in which the application of an external magnetic field instantly changes their rheological properties. Partial treatment of sandwich panels with MR fluid core layer provides an opportunity to change stiffness and damping of the structure without significantly increasing the mass. The STL of a finite sandwich panel partially treated with MR fluid is modeled using the finite element (FE) method. Circular sandwich panels with clamped boundary condition and elastic face sheets in which the core layer is segmented circumferentially is considered. The MR fluid core layer is considered as a viscoelastic material with complex shear modulus with the magnetic field and frequency dependent storage and loss moduli. Neglecting the effect of the panel's vibration on the pressure forcing function, the work done by the acoustic pressure is expressed as a function of the blocked pressure in order to calculate the force vector in the equation of the motion of the panel. The governing finite element equation of motion of the MR sandwich panel is then developed to predict the transverse vibration of the panel which can then be utilized to obtain the radiated sound using Green's function. The developed model is used to conduct a systematic parametric study on the effect of different locations of MR fluid treatment on the natural frequencies and the STL.

  15. Modal analysis and dynamic stresses for acoustically excited shuttle insulation tiles

    NASA Technical Reports Server (NTRS)

    Ojalvo, I. U.; Ogilvie, P. L.

    1975-01-01

    Improvements and extensions to the RESIST computer program developed for determining the normalized modal stress response of shuttle insulation tiles are described. The new version of RESIST can accommodate primary structure panels with closed-cell stringers, in addition to the capability for treating open-cell stringers. In addition, the present version of RESIST numerically solves vibration problems several times faster than its predecessor. A new digital computer program, titled ARREST (Acoustic Response of Reusable Shuttle Tiles) is also described. Starting with modal information contained on output tapes from RESIST computer runs, ARREST determines RMS stresses, deflections and accelerations of shuttle panels with reusable surface insulation tiles. Both programs are applicable to stringer stiffened structural panels with or without reusable surface insulation titles.

  16. Attitude determination using an adaptive multiple model filtering Scheme

    NASA Technical Reports Server (NTRS)

    Lam, Quang; Ray, Surendra N.

    1995-01-01

    Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown quantities such as spacecraft dynamics parameters, gyro biases, dynamic disturbances, or environment variations.

  17. Attitude determination using an adaptive multiple model filtering Scheme

    NASA Astrophysics Data System (ADS)

    Lam, Quang; Ray, Surendra N.

    1995-05-01

    Attitude determination has been considered as a permanent topic of active research and perhaps remaining as a forever-lasting interest for spacecraft system designers. Its role is to provide a reference for controls such as pointing the directional antennas or solar panels, stabilizing the spacecraft or maneuvering the spacecraft to a new orbit. Least Square Estimation (LSE) technique was utilized to provide attitude determination for the Nimbus 6 and G. Despite its poor performance (estimation accuracy consideration), LSE was considered as an effective and practical approach to meet the urgent need and requirement back in the 70's. One reason for this poor performance associated with the LSE scheme is the lack of dynamic filtering or 'compensation'. In other words, the scheme is based totally on the measurements and no attempts were made to model the dynamic equations of motion of the spacecraft. We propose an adaptive filtering approach which employs a bank of Kalman filters to perform robust attitude estimation. The proposed approach, whose architecture is depicted, is essentially based on the latest proof on the interactive multiple model design framework to handle the unknown of the system noise characteristics or statistics. The concept fundamentally employs a bank of Kalman filter or submodel, instead of using fixed values for the system noise statistics for each submodel (per operating condition) as the traditional multiple model approach does, we use an on-line dynamic system noise identifier to 'identify' the system noise level (statistics) and update the filter noise statistics using 'live' information from the sensor model. The advanced noise identifier, whose architecture is also shown, is implemented using an advanced system identifier. To insure the robust performance for the proposed advanced system identifier, it is also further reinforced by a learning system which is implemented (in the outer loop) using neural networks to identify other unknown quantities such as spacecraft dynamics parameters, gyro biases, dynamic disturbances, or environment variations.

  18. On the influence of frequency-dependent elastic properties in vibro-acoustic modelling of porous materials under structural excitation

    NASA Astrophysics Data System (ADS)

    Van der Kelen, C.; Göransson, P.; Pluymers, B.; Desmet, W.

    2014-12-01

    The aspects related to modelling the frequency dependence of the elastic properties of air-saturated porous materials have been largely neglected in the past for several reasons. For acoustic excitation of porous materials, the material behaviour can be quite well represented by models where the properties of the solid frame have little influence. Only recently has the importance of the dynamic moduli of the frame come into focus. This is related to a growing interest in the material behaviour due to structural excitation. Two aspects stand out in connection with the elastic-dynamic behaviour. The first is related to methods for the characterisation of the dynamic moduli of porous materials. The second is a perceived lack of numerical methods able to model the complex material behaviour under structural excitation, in particular at higher frequencies. In the current paper, experimental data from a panel under structural excitation, coated with a porous material, are presented. In an attempt to correlate the experimental data to numerical predictions, it is found that the measured quasi-static material parameters do not suffice for an accurate prediction of the measured results. The elastic material parameters are then estimated by correlating the numerical prediction to the experimental data, following the physical behaviour predicted by the augmented Hooke's law. The change in material behaviour due to the frequency-dependent properties is illustrated in terms of the propagation of the slow wave and the shear wave in the porous material.

  19. Babes in the Woods: The Wanderings of the National Reading Panel.

    ERIC Educational Resources Information Center

    Yatvin, Joanne

    2002-01-01

    Former member of the National Reading Panel criticizes the composition, deliberations, and decisions of the panel, authorized by Congress in 1997, leading to its April 2000 report supporting the hierarchy-of-skills reading model. (PKP)

  20. Orbiter radiator panel solar focusing test

    NASA Technical Reports Server (NTRS)

    Howell, H. R.; Rankin, J. G.

    1983-01-01

    Test data are presented which define the area around the Orbiter radiator panels for which the solar reflections are concentrated to one-sun or more. The concave shape of the panels and their specular silver/Teflon coating causes focusing of the reflected solar energy which could have adverse heating effects on equipment or astronaut extravehicular activity (EVA) in the vicinity of the radiator panels. A room ambient test method was utilized with a one-tenth scale model of the radiator panels.

  1. Combination of CT scanning and fluoroscopy imaging on a flat-panel CT scanner

    NASA Astrophysics Data System (ADS)

    Grasruck, M.; Gupta, R.; Reichardt, B.; Suess, Ch.; Schmidt, B.; Stierstorfer, K.; Popescu, S.; Brady, T.; Flohr, T.

    2006-03-01

    We developed and evaluated a prototype flat-panel detector based Volume CT (fpVCT) scanner. The fpVCT scanner consists of a Varian 4030CB a-Si flat-panel detector mounted in a multi slice CT-gantry (Siemens Medical Solutions). It provides a 25 cm field of view with 18 cm z-coverage at the isocenter. In addition to the standard tomographic scanning, fpVCT allows two new scan modes: (1) fluoroscopic imaging from any arbitrary rotation angle, and (2) continuous, time-resolved tomographic scanning of a dynamically changing viewing volume. Fluoroscopic imaging is feasible by modifying the standard CT gantry so that the imaging chain can be oriented along any user-selected rotation angle. Scanning with a stationary gantry, after it has been oriented, is equivalent to a conventional fluoroscopic examination. This scan mode enables combined use of high-resolution tomography and real-time fluoroscopy with a clinically usable field of view in the z direction. The second scan mode allows continuous observation of a timeevolving process such as perfusion. The gantry can be continuously rotated for up to 80 sec, with the rotation time ranging from 3 to 20 sec, to gather projection images of a dynamic process. The projection data, that provides a temporal log of the viewing volume, is then converted into multiple image stacks that capture the temporal evolution of a dynamic process. Studies using phantoms, ex vivo specimens, and live animals have confirmed that these new scanning modes are clinically usable and offer a unique view of the anatomy and physiology that heretofore has not been feasible using static CT scanning. At the current level of image quality and temporal resolution, several clinical applications such a dynamic angiography, tumor enhancement pattern and vascularity studies, organ perfusion, and interventional applications are in reach.

  2. Changes in intranuclear mobility of mature snRNPs provide a mechanism for splicing defects in spinal muscular atrophy

    PubMed Central

    Clelland, Allyson Kara; Bales, Alexandra Beatrice E.; Sleeman, Judith Elizabeth

    2012-01-01

    It is becoming increasingly clear that defects in RNA metabolism can lead to disease. Spinal muscular atrophy (SMA), a leading genetic cause of infant mortality, results from insufficient amounts of survival motor neuron (SMN) protein. SMN is required for the biogenesis of small nuclear ribonucleoproteins (snRNPs): essential components of the spliceosome. Splicing abnormalities have been detected in models of SMA but it is unclear how lowered SMN affects the fidelity of pre-mRNA splicing. We have examined the dynamics of mature snRNPs in cells depleted of SMN and demonstrated that SMN depletion increases the mobility of mature snRNPs within the nucleus. To dissect the molecular mechanism by which SMN deficiency affects intranuclear snRNP mobility, we employed a panel of inhibitors of different stages of pre-mRNA processing. This in vivo modelling demonstrates that snRNP mobility is altered directly as a result of impaired snRNP maturation. Current models of nuclear dynamics predict that subnuclear structures, including the spliceosome, form by self-organization mediated by stochastic interactions between their molecular components. Thus, alteration of the intranuclear mobility of snRNPs provides a molecular mechanism for splicing defects in SMA. PMID:22393244

  3. Design and implementation of the flight dynamics system for COMS satellite mission operations

    NASA Astrophysics Data System (ADS)

    Lee, Byoung-Sun; Hwang, Yoola; Kim, Hae-Yeon; Kim, Jaehoon

    2011-04-01

    The first Korean multi-mission geostationary Earth orbit satellite, Communications, Ocean, and Meteorological Satellite (COMS) was launched by an Ariane 5 launch vehicle in June 26, 2010. The COMS satellite has three payloads including Ka-band communications, Geostationary Ocean Color Imager, and Meteorological Imager. Although the COMS spacecraft bus is based on the Astrium Eurostar 3000 series, it has only one solar array to the south panel because all of the imaging sensors are located on the north panel. In order to maintain the spacecraft attitude with 5 wheels and 7 thrusters, COMS should perform twice a day wheel off-loading thruster firing operations, which affect on the satellite orbit. COMS flight dynamics system provides the general on-station functions such as orbit determination, orbit prediction, event prediction, station-keeping maneuver planning, station-relocation maneuver planning, and fuel accounting. All orbit related functions in flight dynamics system consider the orbital perturbations due to wheel off-loading operations. There are some specific flight dynamics functions to operate the spacecraft bus such as wheel off-loading management, oscillator updating management, and on-station attitude reacquisition management. In this paper, the design and implementation of the COMS flight dynamics system is presented. An object oriented analysis and design methodology is applied to the flight dynamics system design. Programming language C# within Microsoft .NET framework is used for the implementation of COMS flight dynamics system on Windows based personal computer.

  4. Modeling drying of three-dimensional pulp molded structures. Part I, Experimental program

    Treesearch

    Heike Nyist; John F. Hunt; Margit Tamasy-Bano

    1998-01-01

    Researchers at the USDA Forest Products Laboratory have developed a new three-dimensional structural panel, called FPL Spaceboard. This panel is formed using a U.S. patented three-dimensional mold capable of using a variety of fibrous materials with either the wet- or dry-forming process. Structurally, the panel departs from the traditional two-dimensional panel by...

  5. Attitude and vibration control of a satellite containing flexible solar arrays by using reaction wheels, and piezoelectric transducers as sensors and actuators

    NASA Astrophysics Data System (ADS)

    da Fonseca, Ijar M.; Rade, Domingos A.; Goes, Luiz C. S.; de Paula Sales, Thiago

    2017-10-01

    The primary purpose of this paper is to provide insight into control-structure interaction for satellites comprising flexible appendages and internal moving components. The physical model considered herein aiming to attend such purpose is a rigid-flexible satellite consisting of a rigid platform containing two rotating flexible solar panels. The solar panels rotation is assumed to be in a sun-synchronous configuration mode. The panels contain surface-bonded piezoelectric patches that can be used either as sensors for the elastic displacements or as actuators to counteract the vibration motion. It is assumed that in the normal mode operation the satellite platform points towards the Earth while the solar arrays rotate so as to follow the Sun. The vehicle moves in a low Earth polar orbit. The technique used to obtain the mathematical model combines the Lagrangian formulation with the Finite Elements Method used to describe the dynamics of the solar panel. The gravity-gradient torque as well as the torque due to the interaction of the Earth magnetic field and the satellite internal residual magnetic moment is included as environmental perturbations. The actuators are three reaction wheels for attitude control and piezoelectric actuators to control the flexible motion of the solar arrays. Computer simulations are performed using the MATLAB® software package. The following on-orbit satellite operating configurations are object of analysis: i) Satellite pointing towards the Earth (Earth acquisition maneuver) by considering the initial conditions in the elastic displacement equal to zero, aiming the assessment of the flexible modes excitation by the referred maneuver; ii) the satellite pointing towards the Earth with the assumption of an initial condition different from zero for the flexible motion such that the attitude alterations are checked against the elastic motion disturbance; and iii) attitude acquisition accomplished by taking into account initial conditions different from zero for both attitude and elastic vibrations. Additionally, the control efforts for the three cases are compared. Results indicate that the attitude control is able to excite the solar panels' vibration modes and vice-versa. The piezoelectric vibration control shows significant performance improvement when compared to contributions of the attitude control to the vibration damping.

  6. CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests

    NASA Astrophysics Data System (ADS)

    Pichon, T.; Barreteau, R.; Soyris, P.; Foucault, A.; Parenteau, J. M.; Prel, Y.; Guedron, S.

    2009-07-01

    Experimental re-entry demonstrators are currently being developed in Europe, with the objective of increasing the technology readiness level (TRL) of technologies applicable to future reusable launch vehicles. Among these are the Pre-X programme, currently funded by CNES, the French Space Agency, and which is about to enter into development phase B, and the IXV, within the future launcher preparatory programme (FLPP) funded by ESA. One of the major technologies necessary for such vehicles is the thermal protection system (TPS), and in particular the ceramic matrix composites (CMC) based windward TPS. In support of this goal, technology maturation activities named "generic shingle" were initiated beginning of 2003 by SPS, under a CNES contract, with the objective of performing a test campaign of a complete shingle of generic design, in preparation of the development of a re-entry experimental vehicle decided in Europe. The activities performed to date include: the design, manufacturing of two C/SiC panels, finite element model (FEM) calculation of the design, testing of technological samples extracted from a dedicated panel, mechanical pressure testing of a panel, and a complete study of the attachment system. Additional testing is currently under preparation on the panel equipped with its insulation, seal, attachment device, and representative portion of cold structure, to further assess its behaviour in environments relevant to its application The paper will present the activities that will have been performed in 2006 on the prediction and preparation of these modal characterization, dynamic, acoustic as well as thermal and thermo-mechanical tests. Results of these tests will be presented and the lessons learned will be discussed.

  7. Medical expenditure and unmet need of the pre-elderly and the elderly according to job status in Korea: Are the elderly indeed most vulnerable?

    PubMed Central

    Lee, Hwa-Young; Kondo, Naoki

    2018-01-01

    Increase in the elderly population and early retirement imposes immense economic burden on societies. Previous studies on the association between medical expenditure and working status in the elderly population have not adequately addressed reverse causality problem. In addition, the pre-elderly group has hardly been discussed in this regard. This study assessed possible causal association between employment status and medical expenditure as well as employment status and medical unmet needs in a representative sample of the Korean elderly (aged≧65) and the pre-elderly (aged ≧50 and < 65) adults from the Korea Health Panel Data (KHP). Dynamic panel Generalized Method of Moments (GMM) estimation was employed for the analysis of medical expenditure to address reverse causality, and fixed effect panel logistic regression was used for the analysis of unmet need. The results showed no significant association between job status and medical expenditure in the elderly, but a negative and significant influence on the level of medical expenditure in the pre-elderly. Unemployment was a significant determinant of lowering unmet need from lack of time while it was not associated with unmet need from financial burden in the fixed-effect panel model for both the elderly and pre-elderly groups. The pre-elderly adults were more likely to reduce necessary health service utilization due to unemployment compared to the elderly group because there is no proper financial safety net for the pre-elderly, which may cause non-adherence to treatment and therefore lead to negative health effects. The policy dialogue on safety net currently centers only on the elderly, but should be extended to the pre-elderly population. PMID:29570736

  8. A panel analysis of the strategic association between information and communication technology and public health delivery.

    PubMed

    Wu, Sarah Jinhui; Raghupathi, Wullianallur

    2012-10-22

    In this exploratory research, we use panel data analysis to examine the correlation between Information and Communication Technology (ICTs) and public health delivery at the country level. The goal of this exploratory research is to examine the strategic association over time between ICTs and country-level public health. Using data from the World Development Indicators, we construct a panel data set of countries of five different income levels and look closely at the period from 2000 to 2008. The panel data analysis allows us to explore this dynamic relationship under the control for unobserved country-specific effects by using a fixed-effects estimation method. In particular,, we examine the association of five ICT factors with five public health indicators: adolescent fertility rate, child immunization coverage, tuberculosis case detected, life expectancy, and adult mortality rate. First, overall ICTs' factors substantially improve a country's public health delivery on the top of wealth effect. Second, among all the ICTs' factors, accessibility is the only one that is associated with improvements in all aspects of public health delivery, while the contributions from the usage, quality, and applications are negligible. ICTs' accessibility factor is associated with a considerable extension to life expectancy and reduced adult mortality rate. Third, all entity-specific factors are significant in each model, indicating that countries' economic development level does influence their public health delivery. Our results indicate that ICT accessibility has a strong association with effective delivery of public health. There are others, but the key strategic applications are eHealth and mHealth. The findings of this study will help government officials and public health policy makers to formulate strategic decisions regarding the best ICT investments and deployment. For example, the study shows that providing accessibility should be a critical focus.

  9. Dynamic Inefficiencies in an Employment-Based Health Insurance System: Theory and Evidence.

    PubMed

    Fang, Hanming; Gavazza, Alessandro

    2011-12-01

    We investigate the effects of the institutional settings of the US health care system on individuals' life-cycle medical expenditures. Health is a form of general human capital; labor turnover and labor-market frictions prevent an employer-employee pair from capturing the entire surplus from investment in an employee’s health. Thus, the pair underinvests in health during working years, thereby increasing medical expenditures during retirement. We provide empirical evidence consistent with the comparative statics predictions of our model using the Medical Expenditure Panel Survey (MEPS) and the Health and Retirement Study (HRS). Our estimates suggest significant inefficiencies in health investment in the United States.

  10. Associations of various family characteristics and time use with children's body mass index.

    PubMed

    Forshee, Richard A; Anderson, Patricia A; Storey, Maureen L

    2009-04-01

    This study used multiple regression models to estimate associations of various family characteristics and time use with the body mass index (BMI) z-scores of 734 boys and 725 girls aged 5-18y from the Panel Study of Income Dynamics Child Development Supplement 2003. The strongest relationship in the data was between the BMI of the head of household and a child's BMI z-score (p < 0.001). Time spent sleeping, performing sedentary behaviors, and participating in physical activities was not associated with a child's BMI z-score. This suggests that a family-oriented approach to prevent and treat childhood and adolescent overweight is required.

  11. Recent developments in rotary-wing aerodynamic theory

    NASA Technical Reports Server (NTRS)

    Johnson, W.

    1986-01-01

    Current progress in the computational analysis of rotary-wing flowfields is surveyed, and some typical results are presented in graphs. Topics examined include potential theory, rotating coordinate systems, lifting-surface theory (moving singularity, fixed wing, and rotary wing), panel methods (surface singularity representations, integral equations, and compressible flows), transonic theory (the small-disturbance equation), wake analysis (hovering rotor-wake models and transonic blade-vortex interaction), limitations on computational aerodynamics, and viscous-flow methods (dynamic-stall theories and lifting-line theory). It is suggested that the present algorithms and advanced computers make it possible to begin working toward the ultimate goal of turbulent Navier-Stokes calculations for an entire rotorcraft.

  12. Life cycle theory and the residential mobility of older Canadians.

    PubMed

    Ostrovsky, Yuri

    2004-01-01

    This paper outlines a debate in the economics literature about the role of housing wealth in post-retirement consumption choices and provides a description of the patterns of the residential mobility, tenure, and dwelling-type transitions of older Canadians, using the newly available Statistics Canada Survey of Labour and Income Dynamics (SLID). The paper also presents estimation results for a panel data model that accounts for individual heterogeneity. The patterns of residential mobility of older adults in Canada appear to be similar to those in the United States and some European countries and do not seem to be motivated by the desire to use housing wealth for general consumption.

  13. For operation of the Computer Software Management and Information Center (COSMIC)

    NASA Technical Reports Server (NTRS)

    Carmon, J. L.

    1983-01-01

    Computer programs for degaussing, magnetic field calculation, low speed wing flap systems aerodynamics, structural panel analysis, dynamic stress/strain data acquisition, allocation and network scheduling, and digital filters are discussed.

  14. Multiple Biomarker Panels for Early Detection of Breast Cancer in Peripheral Blood

    PubMed Central

    Zhang, Fan; Deng, Youping; Drabier, Renee

    2013-01-01

    Detecting breast cancer at early stages can be challenging. Traditional mammography and tissue microarray that have been studied for early breast cancer detection and prediction have many drawbacks. Therefore, there is a need for more reliable diagnostic tools for early detection of breast cancer due to a number of factors and challenges. In the paper, we presented a five-marker panel approach based on SVM for early detection of breast cancer in peripheral blood and show how to use SVM to model the classification and prediction problem of early detection of breast cancer in peripheral blood. We found that the five-marker panel can improve the prediction performance (area under curve) in the testing data set from 0.5826 to 0.7879. Further pathway analysis showed that the top four five-marker panels are associated with signaling, steroid hormones, metabolism, immune system, and hemostasis, which are consistent with previous findings. Our prediction model can serve as a general model for multibiomarker panel discovery in early detection of other cancers. PMID:24371830

  15. Robust estimation procedure in panel data model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shariff, Nurul Sima Mohamad; Hamzah, Nor Aishah

    2014-06-19

    The panel data modeling has received a great attention in econometric research recently. This is due to the availability of data sources and the interest to study cross sections of individuals observed over time. However, the problems may arise in modeling the panel in the presence of cross sectional dependence and outliers. Even though there are few methods that take into consideration the presence of cross sectional dependence in the panel, the methods may provide inconsistent parameter estimates and inferences when outliers occur in the panel. As such, an alternative method that is robust to outliers and cross sectional dependencemore » is introduced in this paper. The properties and construction of the confidence interval for the parameter estimates are also considered in this paper. The robustness of the procedure is investigated and comparisons are made to the existing method via simulation studies. Our results have shown that robust approach is able to produce an accurate and reliable parameter estimates under the condition considered.« less

  16. A panel method study of vortex sheets with special emphasis on sheets of axisymmetric geometry. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Sugioka, I.; Widnall, S. E.

    1985-01-01

    The self induced evolution of a vortex sheet was simulated by modeling the sheet using an integration of discrete elements of vorticity. Replacing small sections of a vortex sheet by flat panels of constant vorticity is found to reproduce more accurately the initial conditions for the Lagrangian simulation technique than replacement by point vortices. The flat panel method for the vortex sheet was then extended to model axisymmetric vortex sheets. The local and far field velocities induced by the axisymmetric panels were obtained using matched asymptotic analysis, and some of the uncertainties involved in other models of the axisymmetric vortex sheet have been eliminated. One important result of this analysis is the determination of the proper choice of core size for a circular vortex filament which may replace a section of an axisymmetric vortex sheet. Roll-up of both two dimensional and axisymmetric vortex sheets was computed using the panel methods developed in the report.

  17. Multiple biomarker panels for early detection of breast cancer in peripheral blood.

    PubMed

    Zhang, Fan; Deng, Youping; Drabier, Renee

    2013-01-01

    Detecting breast cancer at early stages can be challenging. Traditional mammography and tissue microarray that have been studied for early breast cancer detection and prediction have many drawbacks. Therefore, there is a need for more reliable diagnostic tools for early detection of breast cancer due to a number of factors and challenges. In the paper, we presented a five-marker panel approach based on SVM for early detection of breast cancer in peripheral blood and show how to use SVM to model the classification and prediction problem of early detection of breast cancer in peripheral blood. We found that the five-marker panel can improve the prediction performance (area under curve) in the testing data set from 0.5826 to 0.7879. Further pathway analysis showed that the top four five-marker panels are associated with signaling, steroid hormones, metabolism, immune system, and hemostasis, which are consistent with previous findings. Our prediction model can serve as a general model for multibiomarker panel discovery in early detection of other cancers.

  18. The implications of selective attrition for estimates of intergenerational elasticity of family income

    PubMed Central

    Schoeni, Robert F.

    2015-01-01

    Numerous studies have estimated a high intergenerational correlation in economic status. Such studies do not typically attend to potential biases that may arise due to survey attrition. Using the Panel Study of Income Dynamics – the data source most commonly used in prior studies – we demonstrate that attrition is particularly high for low-income adult children with low-income parents and particularly low for high-income adult children with high-income parents. Because of this pattern of attrition, intergenerational upward mobility has been overstated for low-income families and downward mobility has been understated for high-income families. The bias among low-income families is greater than the bias among high-income families implying that intergenerational elasticity in family income is higher than previous estimates with the Panel Study of Income Dynamics would suggest. PMID:26251655

  19. Modal analysis and dynamic stresses for acoustically excited Shuttle insulation tiles

    NASA Technical Reports Server (NTRS)

    Ojalvo, I. U.; Ogilvie, P. I.

    1976-01-01

    The thermal protection system of the Space Shuttle consists of thousands of separate insulation tiles, of varying thicknesses, bonded to the orbiter's surface through a soft strain-isolation pad which is bonded, in turn, to the vehicle's stiffened metallic skin. A modal procedure for obtaining the acoustically induced RMS stress in these comparatively thick tiles is described. The modes employed are generated by a previously developed iterative procedure which converges rapidly for the combined system of tiles and primary structure considered. Each tile is idealized by several hundred three-dimensional finite elements and all tiles on a given panel interact dynamically. Acoustic response results from the present analyses are presented. Comparisons with other analytical results and measured modal data for a typical Shuttle panel, both with and without tiles, are made, and the agreement is good.

  20. Issues and challenges in resource management and its interaction with levels 2/3 fusion with applications to real-world problems: an annotated perspective

    NASA Astrophysics Data System (ADS)

    Blasch, Erik; Kadar, Ivan; Hintz, Kenneth; Biermann, Joachim; Chong, Chee-Yee; Salerno, John; Das, Subrata

    2007-04-01

    Resource management (or process refinement) is critical for information fusion operations in that users, sensors, and platforms need to be informed, based on mission needs, on how to collect, process, and exploit data. To meet these growing concerns, a panel session was conducted at the International Society of Information Fusion Conference in 2006 to discuss the various issues surrounding the interaction of Resource Management with Level 2/3 Situation and Threat Assessment. This paper briefly consolidates the discussion of the invited panel panelists. The common themes include: (1) Addressing the user in system management, sensor control, and knowledge based information collection (2) Determining a standard set of fusion metrics for optimization and evaluation based on the application (3) Allowing dynamic and adaptive updating to deliver timely information needs and information rates (4) Optimizing the joint objective functions at all information fusion levels based on decision-theoretic analysis (5) Providing constraints from distributed resource mission planning and scheduling; and (6) Defining L2/3 situation entity definitions for knowledge discovery, modeling, and information projection

  1. An experimental investigation of a Mach 3.0 high-speed civil transport at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hernandez, Gloria; Covell, Peter F.; Mcgraw, Marvin E., Jr.

    1993-01-01

    An experimental study was conducted to determine the aerodynamic characteristics of a proposed high speed civil transport. This configuration was designed to cruise at Mach 3.0 and sized to carry 250 passengers for 6500 n.mi. The configuration consists of a highly blended wing body and features a blunt parabolic nose planform, a highly swept inboard wing panel, a moderately swept outboard wing panel, and a curved wingtip. Wind tunnel tests were conducted in the Langley Unitary Plan Wind Tunnel on a 0.0098-scale model. Force, moment, and pressure data were obtained for Mach numbers ranging from 1.6 to 3.6 and at angles of attack ranging from -4 to 10 deg. Extensive flow visualization studies (vapor screen and oil flow) were obtained in the experimental program. Both linear and advanced computational fluid dynamics (CFD) theoretical comparisons are shown to assess the ability to predict forces, moments, and pressures on configurations of this type. In addition, an extrapolation of the wind tunnel data, based on empirical principles, to full-scale conditions is compared with the theoretical aerodynamic predictions.

  2. Does financial development reduce environmental degradation? Evidence from a panel study of 129 countries.

    PubMed

    Al-Mulali, Usama; Tang, Chor Foon; Ozturk, Ilhan

    2015-10-01

    The purpose of this study is to explore the effect of financial development on CO2 emission in 129 countries classified by the income level. A panel CO2 emission model using urbanisation, GDP growth, trade openness, petroleum consumption and financial development variables that are major determinants of CO2 emission was constructed for the 1980-2011 period. The results revealed that the variables are cointegrated based on the Pedroni cointegration test. The dynamic ordinary least squares (OLS) and the Granger causality test results also show that financial development can improve environmental quality in the short run and long run due to its negative effect on CO2 emission. The rest of the determinants, especially petroleum consumption, are determined to be the major source of environmental damage in most of the income group countries. Based on the results obtained, the investigated countries should provide banking loans to projects and investments that can promote energy savings, energy efficiency and renewable energy to help these countries reduce environmental damage in both the short and long run.

  3. Using Static Percentiles of AE9/AP9 to Approximate Dynamic Monte Carlo Runs for Radiation Analysis of Spiral Transfer Orbits

    NASA Astrophysics Data System (ADS)

    Kwan, Betty P.; O'Brien, T. Paul

    2015-06-01

    The Aerospace Corporation performed a study to determine whether static percentiles of AE9/AP9 can be used to approximate dynamic Monte Carlo runs for radiation analysis of spiral transfer orbits. Solar panel degradation is a major concern for solar-electric propulsion because solar-electric propulsion depends on the power output of the solar panel. Different spiral trajectories have different radiation environments that could lead to solar panel degradation. Because the spiral transfer orbits only last weeks to months, an average environment does not adequately address the possible transient enhancements of the radiation environment that must be accounted for in optimizing the transfer orbit trajectory. Therefore, to optimize the trajectory, an ensemble of Monte Carlo simulations of AE9/AP9 would normally be run for every spiral trajectory to determine the 95th percentile radiation environment. To avoid performing lengthy Monte Carlo dynamic simulations for every candidate spiral trajectory in the optimization, we found a static percentile that would be an accurate representation of the full Monte Carlo simulation for a representative set of spiral trajectories. For 3 LEO to GEO and 1 LEO to MEO trajectories, a static 90th percentile AP9 is a good approximation of the 95th percentile fluence with dynamics for 4-10 MeV protons, and a static 80th percentile AE9 is a good approximation of the 95th percentile fluence with dynamics for 0.5-2 MeV electrons. While the specific percentiles chosen cannot necessarily be used in general for other orbit trade studies, the concept of determining a static percentile as a quick approximation to a full Monte Carlo ensemble of simulations can likely be applied to other orbit trade studies. We expect the static percentile to depend on the region of space traversed, the mission duration, and the radiation effect considered.

  4. Factors Influencing the Incidence of Obesity in Australia: A Generalized Ordered Probit Model.

    PubMed

    Avsar, Gulay; Ham, Roger; Tannous, W Kathy

    2017-02-10

    The increasing health costs of and the risks factors associated with obesity are well documented. From this perspective, it is important that the propensity of individuals towards obesity is analyzed. This paper uses longitudinal data from the Household Income and Labour Dynamics in Australia (HILDA) Survey for 2005 to 2010 to model those variables which condition the probability of being obese. The model estimated is a random effects generalized ordered probit, which exploits two sources of heterogeneity; the individual heterogeneity of panel data models and heterogeneity across body mass index (BMI) categories. The latter is associated with non-parallel thresholds in the generalized ordered model, where the thresholds are functions of the conditioning variables, which comprise economic, social, and demographic and lifestyle variables. To control for potential predisposition to obesity, personality traits augment the empirical model. The results support the view that the probability of obesity is significantly determined by the conditioning variables. Particularly, personality is found to be important and these outcomes reinforce other work examining personality and obesity.

  5. The Efficiency of Split Panel Designs in an Analysis of Variance Model

    PubMed Central

    Wang, Wei-Guo; Liu, Hai-Jun

    2016-01-01

    We consider split panel design efficiency in analysis of variance models, that is, the determination of the cross-sections series optimal proportion in all samples, to minimize parametric best linear unbiased estimators of linear combination variances. An orthogonal matrix is constructed to obtain manageable expression of variances. On this basis, we derive a theorem for analyzing split panel design efficiency irrespective of interest and budget parameters. Additionally, relative estimator efficiency based on the split panel to an estimator based on a pure panel or a pure cross-section is present. The analysis shows that the gains from split panel can be quite substantial. We further consider the efficiency of split panel design, given a budget, and transform it to a constrained nonlinear integer programming. Specifically, an efficient algorithm is designed to solve the constrained nonlinear integer programming. Moreover, we combine one at time designs and factorial designs to illustrate the algorithm’s efficiency with an empirical example concerning monthly consumer expenditure on food in 1985, in the Netherlands, and the efficient ranges of the algorithm parameters are given to ensure a good solution. PMID:27163447

  6. Estimating a Reasonable Patient Panel Size for Primary Care Physicians With Team-Based Task Delegation

    PubMed Central

    Altschuler, Justin; Margolius, David; Bodenheimer, Thomas; Grumbach, Kevin

    2012-01-01

    PURPOSE Primary care faces the dilemma of excessive patient panel sizes in an environment of a primary care physician shortage. We aimed to estimate primary care panel sizes under different models of task delegation to nonphysician members of the primary care team. METHODS We used published estimates of the time it takes for a primary care physician to provide preventive, chronic, and acute care for a panel of 2,500 patients, and modeled how panel sizes would change if portions of preventive and chronic care services were delegated to nonphysician team members. RESULTS Using 3 assumptions about the degree of task delegation that could be achieved (77%, 60%, and 50% of preventive care, and 47%, 30%, and 25% of chronic care), we estimated that a primary care team could reasonably care for a panel of 1,947, 1,523, or 1,387 patients. CONCLUSIONS If portions of preventive and chronic care services are delegated to nonphysician team members, primary care practices can provide recommended preventive and chronic care with panel sizes that are achievable with the available primary care workforce. PMID:22966102

  7. Estimating a reasonable patient panel size for primary care physicians with team-based task delegation.

    PubMed

    Altschuler, Justin; Margolius, David; Bodenheimer, Thomas; Grumbach, Kevin

    2012-01-01

    PURPOSE Primary care faces the dilemma of excessive patient panel sizes in an environment of a primary care physician shortage. We aimed to estimate primary care panel sizes under different models of task delegation to nonphysician members of the primary care team. METHODS We used published estimates of the time it takes for a primary care physician to provide preventive, chronic, and acute care for a panel of 2,500 patients, and modeled how panel sizes would change if portions of preventive and chronic care services were delegated to nonphysician team members. RESULTS Using 3 assumptions about the degree of task delegation that could be achieved (77%, 60%, and 50% of preventive care, and 47%, 30%, and 25% of chronic care), we estimated that a primary care team could reasonably care for a panel of 1,947, 1,523, or 1,387 patients. CONCLUSIONS If portions of preventive and chronic care services are delegated to nonphysician team members, primary care practices can provide recommended preventive and chronic care with panel sizes that are achievable with the available primary care workforce.

  8. Obesity trend in the United States and economic intervention options to change it: A simulation study linking ecological epidemiology and system dynamics modeling.

    PubMed

    Chen, H-J; Xue, H; Liu, S; Huang, T T K; Wang, Y C; Wang, Y

    2018-05-29

    To study the country-level dynamics and influences between population weight status and socio-economic distribution (employment status and family income) in the US and to project the potential impacts of socio-economic-based intervention options on obesity prevalence. Ecological study and simulation. Using the longitudinal data from the 2001-2011 Medical Expenditure Panel Survey (N = 88,453 adults), we built and calibrated a system dynamics model (SDM) capturing the feedback loops between body weight status and socio-economic status distribution and simulated the effects of employment- and income-based intervention options. The SDM-based simulation projected rising overweight/obesity prevalence in the US in the future. Improving people's income from lower to middle-income group would help control the rising prevalence, while only creating jobs for the unemployed did not show such effect. Improving people from low- to middle-income levels may be effective, instead of solely improving reemployment rate, in curbing the rising obesity trend in the US adult population. This study indicates the value of the SDM as a virtual laboratory to evaluate complex distributive phenomena of the interplay between population health and economy. Copyright © 2018 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  9. Hotspot of accelerated sea-level rise on the Atlantic coast of North America

    USGS Publications Warehouse

    Sallenger,, Asbury H.; Doran, Kara S.; Howd, Peter A.

    2012-01-01

    Climate warming does not force sea-level rise (SLR) at the same rate everywhere. Rather, there are spatial variations of SLR superimposed on a global average rise. These variations are forced by dynamic processes, arising from circulation and variations in temperature and/or salinity, and by static equilibrium processes, arising from mass redistributions changing gravity and the Earth's rotation and shape. These sea-level variations form unique spatial patterns, yet there are very few observations verifying predicted patterns or fingerprints. Here, we present evidence of recently accelerated SLR in a unique 1,000-km-long hotspot on the highly populated North American Atlantic coast north of Cape Hatteras and show that it is consistent with a modelled fingerprint of dynamic SLR. Between 1950–1979 and 1980–2009, SLR rate increases in this northeast hotspot were ~ 3–4 times higher than the global average. Modelled dynamic plus steric SLR by 2100 at New York City ranges with Intergovernmental Panel on Climate Change scenario from 36 to 51 cm (ref. 3); lower emission scenarios project 24–36 cm (ref. 7). Extrapolations from data herein range from 20 to 29 cm. SLR superimposed on storm surge, wave run-up and set-up will increase the vulnerability of coastal cities to flooding, and beaches and wetlands to deterioration.

  10. Modeling Force Transfer around Openings in Wood-Frame Shear Walls

    Treesearch

    Minghao Li; Frank Lam; Borjen Yeh; Tom Skaggs; Doug Rammer; James Wacker

    2012-01-01

    This paper presented a modeling study on force transfer around openings (FTAO) in wood-frame shear walls detailed for FTAO. To understand the load transfer in the walls, this study used a finite-element model WALL2D, which is able to model individual wall components, including framing members, sheathing panels, oriented panel-frame nailed connections, framing...

  11. On an integro-differential equation model for the study of the response of an acoustically coupled panel

    NASA Technical Reports Server (NTRS)

    Yen, D. H. Y.; Maestrello, L.; Padula, S.

    1975-01-01

    The response of a clamped panel to supersonically convected turbulence is considered. A theoretical model in the form of an integro-differential equation is employed that takes into account the coupling between the panel motion and the surrounding acoustic medium. The kernels of the integrals, which represent induced pressures due to the panel motion, are Green's functions for sound radiations under various moving and stationary sources. An approximate analysis is made by following a finite-element Ritz-Galerkin procedure. Preliminary numerical results, in agreement with experimental findings, indicate that the acoustic damping is the controlling mechanism of the response.

  12. An Object Oriented Extensible Architecture for Affordable Aerospace Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Follen, Gregory J.

    2003-01-01

    Driven by a need to explore and develop propulsion systems that exceeded current computing capabilities, NASA Glenn embarked on a novel strategy leading to the development of an architecture that enables propulsion simulations never thought possible before. Full engine 3 Dimensional Computational Fluid Dynamic propulsion system simulations were deemed impossible due to the impracticality of the hardware and software computing systems required. However, with a software paradigm shift and an embracing of parallel and distributed processing, an architecture was designed to meet the needs of future propulsion system modeling. The author suggests that the architecture designed at the NASA Glenn Research Center for propulsion system modeling has potential for impacting the direction of development of affordable weapons systems currently under consideration by the Applied Vehicle Technology Panel (AVT).

  13. Method and system for monitoring and displaying engine performance parameters

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S. (Inventor); Person, Lee H., Jr. (Inventor)

    1988-01-01

    The invention is believed a major improvement that will have a broad application in governmental and commercial aviation. It provides a dynamic method and system for monitoring and simultaneously displaying in easily scanned form the available, predicted, and actual thrust of a jet aircraft engine under actual operating conditions. The available and predicted thrusts are based on the performance of a functional model of the aircraft engine under the same operating conditions. Other critical performance parameters of the aircraft engine and functional model are generated and compared, the differences in value being simultaneously displayed in conjunction with the displayed thrust values. Thus, the displayed information permits the pilot to make power adjustments directly while keeping him aware of total performance at a glance of a single display panel.

  14. Design of a Shape Memory Alloy deployment hinge for reflector facets

    NASA Technical Reports Server (NTRS)

    Anders, W. S.; Rogers, C. A.

    1991-01-01

    A design concept for a Shape Memory Alloy (SMA) actuated hinge mechanism for deploying segmented facet-type reflector surfaces on antenna truss structures is presented. The mechanism uses nitinol, a nickel-titanium shape memory alloy, as a displacement-force micro-actuator. An electrical current is used to resistively heat a 'plastically' elongated SMA actuator wire, causing it to contract in response to a thermally-induced phase transformation. The resulting tension creates a moment, imparting rotary motion between two adjacent panels. Mechanical stops are designed into the device to limit its range of motion and to establish positioning accuracy at the termination of deployment. The concept and its operation are discussed in detail, and an analytical dynamic simulation model is presented. The model has been used to perform nondimensionalized parametric design studies.

  15. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study

    PubMed Central

    Xu, Tong; Ducote, Justin L.; Wong, Jerry T.; Molloi, Sabee

    2011-01-01

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual energy system used in this study can acquire up to 15 frame of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1 to 3.0 frames /sec). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual-energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy. PMID:21285477

  16. Dynamic dual-energy chest radiography: a potential tool for lung tissue motion monitoring and kinetic study.

    PubMed

    Xu, Tong; Ducote, Justin L; Wong, Jerry T; Molloi, Sabee

    2011-02-21

    Dual-energy chest radiography has the potential to provide better diagnosis of lung disease by removing the bone signal from the image. Dynamic dual-energy radiography is now possible with the introduction of digital flat-panel detectors. The purpose of this study is to evaluate the feasibility of using dynamic dual-energy chest radiography for functional lung imaging and tumor motion assessment. The dual-energy system used in this study can acquire up to 15 frames of dual-energy images per second. A swine animal model was mechanically ventilated and imaged using the dual-energy system. Sequences of soft-tissue images were obtained using dual-energy subtraction. Time subtracted soft-tissue images were shown to be able to provide information on regional ventilation. Motion tracking of a lung anatomic feature (a branch of pulmonary artery) was performed based on an image cross-correlation algorithm. The tracking precision was found to be better than 1 mm. An adaptive correlation model was established between the above tracked motion and an external surrogate signal (temperature within the tracheal tube). This model is used to predict lung feature motion using the continuous surrogate signal and low frame rate dual-energy images (0.1-3.0 frames per second). The average RMS error of the prediction was (1.1 ± 0.3) mm. The dynamic dual energy was shown to be potentially useful for lung functional imaging such as regional ventilation and kinetic studies. It can also be used for lung tumor motion assessment and prediction during radiation therapy.

  17. Experimental Verification of Buffet Calculation Procedure Using Unsteady PSP

    NASA Technical Reports Server (NTRS)

    Panda, Jayanta

    2016-01-01

    Typically a limited number of dynamic pressure sensors are employed to determine the unsteady aerodynamic forces on large, slender aerospace structures. The estimated forces are known to be very sensitive to the number of the dynamic pressure sensors and the details of the integration scheme. This report describes a robust calculation procedure, based on frequency-specific correlation lengths, that is found to produce good estimation of fluctuating forces from a few dynamic pressure sensors. The validation test was conducted on a flat panel, placed on the floor of a wind tunnel, and was subjected to vortex shedding from a rectangular bluff-body. The panel was coated with fast response Pressure Sensitive Paint (PSP), which allowed time-resolved measurements of unsteady pressure fluctuations on a dense grid of spatial points. The first part of the report describes the detail procedure used to analyze the high-speed, PSP camera images. The procedure includes steps to reduce contamination by electronic shot noise, correction for spatial non-uniformities, and lamp brightness variation, and finally conversion of fluctuating light intensity to fluctuating pressure. The latter involved applying calibration constants from a few dynamic pressure sensors placed at selective points on the plate. Excellent comparison in the spectra, coherence and phase, calculated via PSP and dynamic pressure sensors validated the PSP processing steps. The second part of the report describes the buffet validation process, for which the first step was to use pressure histories from all PSP points to determine the "true" force fluctuations. In the next step only a selected number of pixels were chosen as "virtual sensors" and a correlation-length based buffet calculation procedure was applied to determine "modeled" force fluctuations. By progressively decreasing the number of virtual sensors it was observed that the present calculation procedure was able to make a close estimate of the "true" unsteady forces only from four sensors. It is believed that the present work provides the first validation of the buffet calculation procedure which has been used for the development of many space vehicles.

  18. On the dimension of complex responses in nonlinear structural vibrations

    NASA Astrophysics Data System (ADS)

    Wiebe, R.; Spottswood, S. M.

    2016-07-01

    The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to model.

  19. Test-Anchored Vibration Response Predictions for an Acoustically Energized Curved Orthogrid Panel with Mounted Components

    NASA Technical Reports Server (NTRS)

    Frady, Gregory P.; Duvall, Lowery D.; Fulcher, Clay W. G.; Laverde, Bruce T.; Hunt, Ronald A.

    2011-01-01

    A rich body of vibroacoustic test data was recently generated at Marshall Space Flight Center for a curved orthogrid panel typical of launch vehicle skin structures. Several test article configurations were produced by adding component equipment of differing weights to the flight-like vehicle panel. The test data were used to anchor computational predictions of a variety of spatially distributed responses including acceleration, strain and component interface force. Transfer functions relating the responses to the input pressure field were generated from finite element based modal solutions and test-derived damping estimates. A diffuse acoustic field model was employed to describe the assumed correlation of phased input sound pressures across the energized panel. This application demonstrates the ability to quickly and accurately predict a variety of responses to acoustically energized skin panels with mounted components. Favorable comparisons between the measured and predicted responses were established. The validated models were used to examine vibration response sensitivities to relevant modeling parameters such as pressure patch density, mesh density, weight of the mounted component and model form. Convergence metrics include spectral densities and cumulative root-mean squared (RMS) functions for acceleration, velocity, displacement, strain and interface force. Minimum frequencies for response convergence were established as well as recommendations for modeling techniques, particularly in the early stages of a component design when accurate structural vibration requirements are needed relatively quickly. The results were compared with long-established guidelines for modeling accuracy of component-loaded panels. A theoretical basis for the Response/Pressure Transfer Function (RPTF) approach provides insight into trends observed in the response predictions and confirmed in the test data. The software modules developed for the RPTF method can be easily adapted for quick replacement of the diffuse acoustic field with other pressure field models; for example a turbulent boundary layer (TBL) model suitable for vehicle ascent. Wind tunnel tests have been proposed to anchor the predictions and provide new insight into modeling approaches for this type of environment. Finally, component vibration environments for design were developed from the measured and predicted responses and compared with those derived from traditional techniques such as Barrett scaling methods for unloaded and component-loaded panels.

  20. Dynamic fracture mechanics analysis for an edge delamination crack

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Doyle, James F.

    1994-01-01

    A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.

  1. Damage tolerance of woven graphite-epoxy buffer strip panels

    NASA Technical Reports Server (NTRS)

    Kennedy, John M.

    1990-01-01

    Graphite-epoxy panels with S glass buffer strips were tested in tension and shear to measure their residual strengths with crack-like damage. The buffer strips were regularly spaced narrow strips of continuous S glass. Panels were made with a uniweave graphite cloth where the S glass buffer material was woven directly into the cloth. Panels were made with different width and thickness buffer strips. The panels were loaded to failure while remote strain, strain at the end of the slit, and crack opening displacement were monitoring. The notched region and nearby buffer strips were radiographed periodically to reveal crack growth and damage. Except for panels with short slits, the buffer strips arrested the propagating crack. The strength (or failing strain) of the panels was significantly higher than the strength of all-graphite panels with the same length slit. Panels with wide, thick buffer strips were stronger than panels with thin, narrow buffer strips. A shear-lag model predicted the failing strength of tension panels with wide buffer strips accurately, but over-estimated the strength of the shear panels and the tension panels with narrow buffer strips.

  2. Simulation based analysis of laser beam brazing

    NASA Astrophysics Data System (ADS)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  3. Colorimetric characterization models based on colorimetric characteristics evaluation for active matrix organic light emitting diode panels.

    PubMed

    Gong, Rui; Xu, Haisong; Tong, Qingfen

    2012-10-20

    The colorimetric characterization of active matrix organic light emitting diode (AMOLED) panels suffers from their poor channel independence. Based on the colorimetric characteristics evaluation of channel independence and chromaticity constancy, an accurate colorimetric characterization method, namely, the polynomial compensation model (PC model) considering channel interactions was proposed for AMOLED panels. In this model, polynomial expressions are employed to calculate the relationship between the prediction errors of XYZ tristimulus values and the digital inputs to compensate the XYZ prediction errors of the conventional piecewise linear interpolation assuming the variable chromaticity coordinates (PLVC) model. The experimental results indicated that the proposed PC model outperformed other typical characterization models for the two tested AMOLED smart-phone displays and for the professional liquid crystal display monitor as well.

  4. Modelisation de materiaux composites adaptatifs munis d'actionneurs en alliage a memoire de forme

    NASA Astrophysics Data System (ADS)

    Simoneau, Charles

    Technological development of structures having the capabilities to adapt themselves to different operating conditions is increasing in many areas of research such as aerospace. In fact, numerous works are now oriented toward the design of adaptive aircraft wings where the goal is to enhance the aerodynamic properties of the wing. Following this approach, the work realised in the framework of this master thesis presents the steps leading to the creation of a numerical model that can be used to predict the behavior of an adaptive panel, and therefore, eventually of an adaptive aircraft wing. Foremost, the adaptive panel of this project has been designed from a carbon-epoxy composite, acting as host structure, where shape memory alloy (SMA) wires, acting as actuators, have been inserted in it. SMA actuators have also been embedded asymmetrically along the direction of the panel thickness in order to generate a bending moment when the SMA wires are activated. To achieve the modeling of such structure it has been firstly shown that a numerical model composed of only solid finite elements could be used to represent the panel. However, a second numerical model composed of shell, beam and link finite elements showed that identical results can be obtained with much less nodes (the first model was composed of more than 300 000 nodes compared with 1 000 nodes for the second). The combination of shell-beam-link elements has then been chosen. Secondly, a constitutive relation had to be used for modeling the particular behavior of SMA. For the present work, a uniaxial version of the Likhachev's model is used. Due to its fairly straightforward mathematical formulation, this material law is able to model the main functional properties of SMA including the two-way shape memory effect (TWSME) at zero stress obtained after a thermomechanical education treatment. The last step was to compare the results of the numerical simulations with those obtained with a prototype where 19 actuators were embedded in a composite panel of 425 mm x 425 mm. Various load cases were performed. However, during experimental tests, it has been found that the measured actuator temperature was systematically underestimated. Therefore, by comparing the radius of curvature (rho) of the panel as a function of the activation temperature (T) of the actuators, an offset (in temperature) between the curves numerically and experimentally obtained is observable. Aside from this technological difficulty, the experimental and numerical results are very similar and therefore, this numerical model can be used for predicting the behavior of an adaptive panel. In addition, one the main advantages of this numerical model resides in its versatility where it has been shown that a "warping" of the panel could be realized by controlling independently each actuator. Future works should now obviously focus on the temperature measurement while considering the improvement of the numerical model and the possibility to model an initially curved adaptive panel whose form could resemble an aircraft wing.

  5. Buckling Testing and Analysis of Honeycomb Sandwich Panel Arc Segments of a Full-Scale Fairing Barrel: Comparison of In- and Out-of-Autoclave Facesheet Configurations

    NASA Technical Reports Server (NTRS)

    Pineda, Evan Jorge; Myers, David E.; Kosareo, Daniel N.; Zalewski, Bart F.; Kellas, Sotiris; Dixon, Genevieve D.; Krivanek, Thomas M.; Gyekenyesi, Thomas G.

    2014-01-01

    Four honeycomb sandwich panels, representing 1/16th arc segments of a 10-m diameter barrel section of the Heavy Lift Launch Vehicle, were manufactured and tested under the NASA Composites for Exploration and the NASA Constellation Ares V programs. Two configurations were chosen for the panels: 6-ply facesheets with 1.125 in. honeycomb core and 8-ply facesheets with 1.0 in. honeycomb core. Additionally, two separate carbon fiber/epoxy material systems were chosen for the facesheets: in-autoclave IM7/977-3 and out-of-autoclave T40-800b/5320-1. Smaller 3 ft. by 5 ft. panels were cut from the 1/16th barrel sections and tested under compressive loading. Furthermore, linear eigenvalue and geometrically nonlinear finite element analyses were performed to predict the compressive response of each 3 ft. by 5 ft. panel. To improve the robustness of the geometrically nonlinear finite element model, measured surface imperfections were included in the geometry of the model. Both the linear and nonlinear models yielded good qualitative and quantitative predictions. Additionally, it was correctly predicted that the panel would fail in buckling prior to failing in strength. Furthermore, several imperfection studies were performed to investigate the influence of geometric imperfections, fiber angle misalignments, and three-dimensional effects on the compressive response of the panel.

  6. Development of panel loudspeaker system: design, evaluation and enhancement.

    PubMed

    Bai, M R; Huang, T

    2001-06-01

    Panel speakers are investigated in terms of structural vibration and acoustic radiation. A panel speaker primarily consists of a panel and an inertia exciter. Contrary to conventional speakers, flexural resonance is encouraged such that the panel vibrates as randomly as possible. Simulation tools are developed to facilitate system integration of panel speakers. In particular, electro-mechanical analogy, finite element analysis, and fast Fourier transform are employed to predict panel vibration and the acoustic radiation. Design procedures are also summarized. In order to compare the panel speakers with the conventional speakers, experimental investigations were undertaken to evaluate frequency response, directional response, sensitivity, efficiency, and harmonic distortion of both speakers. The results revealed that the panel speakers suffered from a problem of sensitivity and efficiency. To alleviate the problem, a woofer using electronic compensation based on H2 model matching principle is utilized to supplement the bass response. As indicated in the result, significant improvement over the panel speaker alone was achieved by using the combined panel-woofer system.

  7. 78 FR 26667 - Sunshine Act Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-07

    ... first panel will examine issues in connection with the possibility of developing a credit rating assignment system. The second panel will discuss the effectiveness of the Commission's current system under.... The third panel will focus on other potential alternatives to the current issuer pay business model...

  8. Test and Analysis of Sub-Components of Aluminum-Lithium Alloy Cylinders

    NASA Technical Reports Server (NTRS)

    Haynie, Waddy T.; Chunchu, Prasad B.; Satyanarayana, Arunkumar; Hilburger, Mark W.; Smith, Russell W.

    2012-01-01

    Integrally machined blade-stiffened panels subjected to an axial compressive load were tested and analyzed to observe the buckling, crippling, and postcrippling response of the panels. The panels were fabricated from aluminum-lithium alloys 2195 and 2050, and both alloys have reduced material properties in the short transverse material direction. The tests were designed to capture a failure mode characterized by the stiffener separating from the panel in the postbuckling range. This failure mode is attributed to the reduced properties in the short transverse direction. Full-field measurements of displacements and strains using three-dimensional digital image correlation systems and local measurements using strain gages were used to capture the deformation of the panel leading up to the failure of the panel for specimens fabricated from 2195. High-speed cameras were used to capture the initiation of the failure. Finite element models were developed using an isotropic strain-hardening material model. Good agreement was observed between the measured and predicted responses for both alloys.

  9. Finite Element Development and Specifications of a Patched, Recessed Nomex Core Honeycomb Panel for Increased Sound Transmission Loss

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    2007-01-01

    This informal report summarizes the development and the design specifications of a recessed nomex core honeycomb panel in fulfillment of the deliverable in Task Order 13RBE, Revision 10, Subtask 17. The honeycomb panel, with 0.020-inch thick aluminum face sheets, has 0.016-inch thick aluminum patches applied to twenty-five, 6 by 6 inch, quarter inch thick recessed cores. A 10 dB higher transmission loss over the frequency range 250 - 1000 Hz was predicted by a MSC/NASTRAN finite element model when compared with the transmission loss of the base nomex core honeycomb panel. The static displacement, due to a unit force applied at either the core or recessed core area, was of the same order of magnitude as the static displacement of the base honeycomb panel when exposed to the same unit force. The mass of the new honeycomb design is 5.1% more than the base honeycomb panel. A physical model was constructed and is being tested.

  10. Foam metal metamaterial panel for mechanical waves isolation

    NASA Astrophysics Data System (ADS)

    Hua, Lei; Sun, Hongwei; Gu, Jinliang

    2016-04-01

    This paper presents modeling, analysis techniques and experiment of foam metal metamaterial panel for Broadband Vibration Absorption. For a unit cell of an infinite foam metal metamaterial panel, governing equations are derived using the extended Hamilton principle. The concepts of negative effective mass and stiffness and how the spring-mass-damper subsystems create a stopband are explained in detail. Numerical simulations reveal that the actual working mechanism of the proposed metamaterial panel is based on the concept of conventional mechanical vibration absorbers. It uses the incoming elastic wave in the panel to resonate the integrated membrane-mass-damper absorbers to vibrate in their optical mode at frequencies close to but above their local resonance frequencies to create shear forces and bending moments to straighten the panel and stop the wave propagation. Moreover, a two-dimension acoustic foam metal metamaterial panel consisting of lumped mass and elastic membrane is proposed in the lab. We do experiments on the model and The results validate the concept and show that, for two-dimension acoustic foam metal metamaterial panel do exist two vibration modes. For the wave absorption, the mass of each cell should be considered in the design. With appropriate design calculations, the proposed two-dimension acoustic foam metal metamaterial panel can be used for absorption of low-frequency waves and hence expensive micro-manufacturing techniques are not needed for design and manufacturing of such foam metal metamaterial panel for low-frequency waves absorption/isolation.

  11. Fabrication and Testing of Carbon Fiber, Graphite-Epoxy Panels for Submillimeter Telescope Use

    NASA Astrophysics Data System (ADS)

    Rieger, H.; Helwig, G.; Parks, R. E.; Ulich, B. L.

    1983-12-01

    An experimental carbon-fiber, graphite-epoxy, aluminum Flexcore sandwich panel roughly 1-m square was made by Dornier System, Friedrichshafen, West Germany. The panel was a pre-prototype of the panels to be used in the dish of the 10-m diameter Sub-Millimeter Telescope, a joint project of the Max-Planck-Institute fur Radioastronomie, Bonn, West Germany, and Steward Observatory, the University of Arizona in Tucson. This paper outlines the fabrication process for the panel and indicates the surface accuracy of the panel replication process. To predict the behavior of the panel under various environmental loads, the panel was modeled structurally using anisotropic elements for the core material. Results of this analysis along with experimental verification of these predictions are also given.

  12. An empirical investigation of spatial differentiation and price floor regulations in retail markets for gasoline

    NASA Astrophysics Data System (ADS)

    Houde, Jean-Francois

    In the first essay of this dissertation, I study an empirical model of spatial competition. The main feature of my approach is to formally specify commuting paths as the "locations" of consumers in a Hotelling-type model of spatial competition. The main consequence of this location assumption is that the substitution patterns between stations depend in an intuitive way on the structure of the road network and the direction of traffic flows. The demand-side of the model is estimated by combining a model of traffic allocation with econometric techniques used to estimate models of demand for differentiated products (Berry, Levinsohn and Pakes (1995)). The estimated parameters are then used to evaluate the importance of commuting patterns in explaining the distribution of gasoline sales, and compare the economic predictions of the model with the standard home-location model. In the second and third essays, I examine empirically the effect of a price floor regulation on the dynamic and static equilibrium outcomes of the gasoline retail industry. In particular, in the second essay I study empirically the dynamic entry and exit decisions of gasoline stations, and measure the impact of a price floor on the continuation values of staying in the industry. In the third essay, I develop and estimate a static model of quantity competition subject to a price floor regulation. Both models are estimated using a rich panel dataset on the Quebec gasoline retail market before and after the implementation of a price floor regulation.

  13. Structural health monitoring of Lindquist bridge

    NASA Astrophysics Data System (ADS)

    Sargent, D. D.; Murison, E. R.; Bakht, B.; Mufti, A. A.

    2007-04-01

    Many forestry bridges in Canada are typically single-lane, single span structures with two steel plate girders and a deck comprising of precast reinforced concrete panels. The concept of arching in deck slabs was utilized in the steel-free precast panels used in the Lindquist Bridge in British Columbia, Canada. The panels were completely devoid of tensile reinforcement and transverse confinement to the panels was provided by external steel straps. After the bridge was constructed in 1998, electrical strain gauges were installed on the girders and straps. Static and dynamic load tests were performed. The cracks on the top and bottom of the deck were mapped in 1999 and 2003. In 2006, a load test and crack mapping were performed on the bridge. The strain readings in the straps were compared with the data obtained 8 years prior. After analysis of the strain gauge readings, conclusions were drawn on the performance of the bridge. The cracks were formed to accommodate arching action and it was concluded that the bridge is still performing as it was designed.

  14. Impact damage resistance of composite fuselage structure, part 1

    NASA Technical Reports Server (NTRS)

    Dost, E. F.; Avery, W. B.; Ilcewicz, L. B.; Grande, D. H.; Coxon, B. R.

    1992-01-01

    The impact damage resistance of laminated composite transport aircraft fuselage structures was studied experimentally. A statistically based designed experiment was used to examine numerous material, laminate, structural, and extrinsic (e.g., impactor type) variables. The relative importance and quantitative measure of the effect of each variable and variable interactions on responses including impactor dynamic response, visibility, and internal damage state were determined. The study utilized 32 three-stiffener panels, each with a unique combination of material type, material forms, and structural geometry. Two manufacturing techniques, tow placement and tape lamination, were used to build panels representative of potential fuselage crown, keel, and lower side-panel designs. Various combinations of impactor variables representing various foreign-object-impact threats to the aircraft were examined. Impacts performed at different structural locations within each panel (e.g., skin midbay, stiffener attaching flange, etc.) were considered separate parallel experiments. The relationship between input variables, measured damage states, and structural response to this damage are presented including recommendations for materials and impact test methods for fuselage structure.

  15. Orion Active Thermal Control System Dynamic Modeling Using Simulink/MATLAB

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen J.; Yuko, James

    2010-01-01

    This paper presents dynamic modeling of the crew exploration vehicle (Orion) active thermal control system (ATCS) using Simulink (Simulink, developed by The MathWorks). The model includes major components in ATCS, such as heat exchangers and radiator panels. The mathematical models of the heat exchanger and radiator are described first. Four different orbits were used to validate the radiator model. The current model results were compared with an independent Thermal Desktop (TD) (Thermal Desktop, PC/CAD-based thermal model builder, developed in Cullimore & Ring (C&R) Technologies) model results and showed good agreement for all orbits. In addition, the Orion ATCS performance was presented for three orbits and the current model results were compared with three sets of solutions- FloCAD (FloCAD, PC/CAD-based thermal/fluid model builder, developed in C&R Technologies) model results, SINDA/FLUINT (SINDA/FLUINT, a generalized thermal/fluid network-style solver ) model results, and independent Simulink model results. For each case, the fluid temperatures at every component on both the crew module and service module sides were plotted and compared. The overall agreement is reasonable for all orbits, with similar behavior and trends for the system. Some discrepancies exist because the control algorithm might vary from model to model. Finally, the ATCS performance for a 45-hr nominal mission timeline was simulated to demonstrate the capability of the model. The results show that the ATCS performs as expected and approximately 2.3 lb water was consumed in the sublimator within the 45 hr timeline before Orion docked at the International Space Station.

  16. Dynamics of Marine Zooplankton: Social Behavior, Ecological Interactions, and Physically-Induced Variability

    DTIC Science & Technology

    2008-02-01

    97 3.3.2 Steady-state solutions ..... ........................ 100 3.4 Ecosystem dynamics ...... ............................. 102 3.4.1 Fast ...zooplankton motion is decoupled from biological ac- tivities, as calculated in Flier] et al. (1999). When the diffusion rate is fast compared to phytoplankton...homogenize the zooplankton distribution, which remains spatially more intermit - tent than a passive scalar field. The last panel shows the index for

  17. Dynamics of Rate of Returns for Postgraduate Education in Taiwan: The Impact of Higher Education Expansion

    ERIC Educational Resources Information Center

    Yang, Chih-Hai; Lin, Chun-Hung A.; Lin, Chien-Ru

    2011-01-01

    This paper analyzes the dynamics of rate of returns for postgraduate education and the determinants of wage premiums for postgraduate labor, especially for the impact of higher education expansions, in terms of quantity and quality, since the late 1990s in Taiwan. Utilizing quasi-panel data over the 1990-2004 period and employing the double fixed…

  18. Concentration of solar radiation by white backed photovoltaic panels.

    PubMed

    Smestad, G; Hamill, P

    1984-12-01

    In this paper, we present an analysis of the concentration achieved by white backed photovoltaic panels. Concentration is due to the trapping by light scattered in the refractive plate to which the solar cell is bonded. Using the reciprocity relation and assuming the ideal case of a Lambertian distribution, a detailed model is formulated that includes the effects of the thickness and walls of the concentrator. This model converges to the thermodynamic limit and is found to be consistent with experimental results for a wide range of cell sizes. Finally, the model is generalized to multiple-cell photovoltaic panels.

  19. Model-size reduction for the buckling and vibration analyses of anisotropic panels

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Whitworth, S. L.

    1986-01-01

    A computational procedure is presented for reducing the size of the model used in the buckling and vibration analyses of symmetric anisotropic panels to that of the corresponding orthotropic model. The key elements of the procedure are the application of an operator splitting technique through the decomposition of the material stiffness matrix of the panel into the sum of orthotropic and nonorthotropic (anisotropic) parts and the use of a reduction method through successive application of the finite element method and the classical Rayleigh-Ritz technique. The effectiveness of the procedure is demonstrated by numerical examples.

  20. Thermo-elastoviscoplastic snapthrough behavior of cylindrical panels

    NASA Technical Reports Server (NTRS)

    Song, Y.; Simitses, G. J.

    1992-01-01

    The thermo-elastoviscoplastic snapthrough behavior of simply supported cylindrical panels is investigated. The analysis is based on nonlinear kinematic relations and nonlinear rate-dependent unified constitutive equations which include both Bodner-Partom's and Walker's material models. A finite element approach is employed to predict the inelastic buckling behavior. Numerical examples are given to demonstrate the effects of several parameters which include the temperature, thickness and flatness of the panel. Comparisons of buckling responses between Bodner-Partom's model and Walker's model are given. The creep buckling behavior, as an example of time-dependent inelastic deformation, is also presented.

  1. Diagnosis of rheumatoid arthritis: multivariate analysis of biomarkers.

    PubMed

    Wild, Norbert; Karl, Johann; Grunert, Veit P; Schmitt, Raluca I; Garczarek, Ursula; Krause, Friedemann; Hasler, Fritz; van Riel, Piet L C M; Bayer, Peter M; Thun, Matthias; Mattey, Derek L; Sharif, Mohammed; Zolg, Werner

    2008-02-01

    To test if a combination of biomarkers can increase the classification power of autoantibodies to cyclic citrullinated peptides (anti-CCP) in the diagnosis of rheumatoid arthritis (RA) depending on the diagnostic situation. Biomarkers were subject to three inclusion/exclusion criteria (discrimination between RA patients and healthy blood donors, ability to identify anti-CCP-negative RA patients, specificity in a panel with major non-rheumatological diseases) before univariate ranking and multivariate analysis was carried out using a modelling panel (n = 906). To enable the evaluation of the classification power in different diagnostic settings the disease controls (n = 542) were weighted according to the admission rates in rheumatology clinics modelling a clinic panel or according to the relative prevalences of musculoskeletal disorders in the general population seen by general practitioners modelling a GP panel. Out of 131 biomarkers considered originally, we evaluated 32 biomarkers in this study, of which only seven passed the three inclusion/exclusion criteria and were combined by multivariate analysis using four different mathematical models. In the modelled clinic panel, anti-CCP was the lead marker with a sensitivity of 75.8% and a specificity of 94.0%. Due to the lack in specificity of the markers other than anti-CCP in this diagnostic setting, any gain in sensitivity by any marker combination is off-set by a corresponding loss in specificity. In the modelled GP panel, the best marker combination of anti-CCP and interleukin (IL)-6 resulted in a sensitivity gain of 7.6% (85.9% vs. 78.3%) at a minor loss in specificity of 1.6% (90.3% vs. 91.9%) compared with anti-CCP as the best single marker. Depending on the composition of the sample panel, anti-CCP alone or anti-CCP in combination with IL-6 has the highest classification power for the diagnosis of established RA.

  2. Valve-regulated lead/acid batteries

    NASA Astrophysics Data System (ADS)

    Rand, D. A. J.; Holden, L. S.; May, G. J.; Newnham, R. H.; Peters, K.

    Given the growing importance of valve-regulated lead/acid technology in many existing and emerging market areas, an expert panel was assembled at the Sixth Asian Battery Conference to answer questions from delegates on various technical and operational aspects of such batteries. Key issues included: advantantages; performance and reliability; thermal runaway; and failure modes. The interaction between the audience and the panel was both vigorous and informative. Overwhelmingly, it was agreed that valve-regulated technology has come of age and offers a dynamic solution to many of the world's energy-storage requirements and opportunities.

  3. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: robust virtual sensor design.

    PubMed

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-03-01

    The work was aimed to develop a robust virtual sensing design methodology for sensing and active control applications of vibro-acoustic systems. The proposed virtual sensor was designed to estimate a broadband acoustic interior sound pressure using structural sensors, with robustness against certain dynamic uncertainties occurring in an acoustic-structural coupled enclosure. A convex combination of Kalman sub-filters was used during the design, accommodating different sets of perturbed dynamic model of the vibro-acoustic enclosure. A minimax optimization problem was set up to determine an optimal convex combination of Kalman sub-filters, ensuring an optimal worst-case virtual sensing performance. The virtual sensing and active noise control performance was numerically investigated on a rectangular panel-cavity system. It was demonstrated that the proposed virtual sensor could accurately estimate the interior sound pressure, particularly the one dominated by cavity-controlled modes, by using a structural sensor. With such a virtual sensing technique, effective active noise control performance was also obtained even for the worst-case dynamics. © 2011 Acoustical Society of America

  4. Online attitude determination of a passively magnetically stabilized spacecraft

    NASA Astrophysics Data System (ADS)

    Burton, R.; Rock, S.; Springmann, J.; Cutler, J.

    2017-04-01

    An online attitude determination filter is developed for a nano satellite that has no onboard attitude sensors or gyros. Specifically, the attitude of NASA Ames Research Center's O/OREOS, a passively magnetically stabilized 3U CubeSat, is determined using only an estimate of the solar vector obtained from solar panel currents. The filter is based upon the existing multiplicative extended Kalman filter (MEKF) but instead of relying on gyros to drive the motion model, the filter instead incorporates a model of the spacecraft's attitude dynamics in the motion model. An attitude determination accuracy of five degrees is demonstrated, a performance verified using flight data from the University of Michigan's RAX-1. Although the filter was designed for the specific problem of a satellite without gyros or attitude determination it could also be used to provide smoothing of noisy gyro signals or to provide a backup in the event of gyro failures.

  5. Modeling and Control of a Fixed Wing Tilt-Rotor Tri-Copter

    NASA Astrophysics Data System (ADS)

    Summers, Alexander

    The following thesis considers modeling and control of a fixed wing tilt-rotor tri-copter. An emphasis of the conceptual design is made toward payload transport. Aerodynamic panel code and CAD design provide the base aerodynamic, geometric, mass, and inertia properties. A set of non-linear dynamics are created considering gravity, aerodynamics in vertical takeoff and landing (VTOL) and forward flight, and propulsion applied to a three degree of freedom system. A transition strategy, that removes trajectory planning by means of scheduled inputs, is theorized. Three discrete controllers, utilizing separate control techniques, are applied to ensure stability in the aerodynamic regions of VTOL, transition, and forward flight. The controller techniques include linear quadratic regulation, full state integral action, gain scheduling, and proportional integral derivative (PID) flight control. Simulation of the model control system for flight from forward to backward transition is completed with mass and center of gravity variation.

  6. Simplified analytical model and balanced design approach for light-weight wood-based structural panel in bending

    Treesearch

    Jinghao Li; John F. Hunt; Shaoqin Gong; Zhiyong Cai

    2016-01-01

    This paper presents a simplified analytical model and balanced design approach for modeling lightweight wood-based structural panels in bending. Because many design parameters are required to input for the model of finite element analysis (FEA) during the preliminary design process and optimization, the equivalent method was developed to analyze the mechanical...

  7. Acoustic Treatment Design Scaling Methods. Volume 3; Test Plans, Hardware, Results, and Evaluation

    NASA Technical Reports Server (NTRS)

    Yu, J.; Kwan, H. W.; Echternach, D. K.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The ability to design, build, and test miniaturized acoustic treatment panels on scale-model fan rigs representative of the full-scale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. To be able to use scale model treatment as a full-scale design tool, it is necessary that the designer be able to reliably translate the scale model design and performance to an equivalent full-scale design. The primary objective of the study presented in this volume of the final report was to conduct laboratory tests to evaluate liner acoustic properties and validate advanced treatment impedance models. These laboratory tests include DC flow resistance measurements, normal incidence impedance measurements, DC flow and impedance measurements in the presence of grazing flow, and in-duct liner attenuation as well as modal measurements. Test panels were fabricated at three different scale factors (i.e., full-scale, half-scale, and one-fifth scale) to support laboratory acoustic testing. The panel configurations include single-degree-of-freedom (SDOF) perforated sandwich panels, SDOF linear (wire mesh) liners, and double-degree-of-freedom (DDOF) linear acoustic panels.

  8. PMARC - PANEL METHOD AMES RESEARCH CENTER

    NASA Technical Reports Server (NTRS)

    Ashby, D. L.

    1994-01-01

    Panel methods are moderate cost tools for solving a wide range of engineering problems. PMARC (Panel Method Ames Research Center) is a potential flow panel code that numerically predicts flow fields around complex three-dimensional geometries. PMARC's predecessor was a panel code named VSAERO which was developed for NASA by Analytical Methods, Inc. PMARC is a new program with many additional subroutines and a well-documented code suitable for powered-lift aerodynamic predictions. The program's open architecture facilitates modifications or additions of new features. Another improvement is the adjustable size code which allows for an optimum match between the computer hardware available to the user and the size of the problem being solved. PMARC can be resized (the maximum number of panels can be changed) in a matter of minutes. Several other state-of-the-art PMARC features include internal flow modeling for ducts and wind tunnel test sections, simple jet plume modeling essential for the analysis and design of powered-lift aircraft, and a time-stepping wake model which allows the study of both steady and unsteady motions. PMARC is a low-order panel method, which means the singularities are distributed with constant strength over each panel. In many cases low-order methods can provide nearly the same accuracy as higher order methods (where the singularities are allowed to vary linearly or quadratically over each panel). Low-order methods have the advantage of a shorter computation time and do not require exact matching between panels. The flow problem is solved by assuming that the body is at rest in a moving flow field. The body is modeled as a closed surface which divides space into two regions -- one region contains the flow field of interest and the other contains a fictitious flow. External flow problems, such as a wing in a uniform stream, have the external region as the flow field of interest and the internal flow as the fictitious flow. This arrangement is reversed for internal flow problems where the internal region contains the flow field of interest and the external flow field is fictitious. In either case it is assumed that the velocity potentials in both regions satisfy Laplace's equation. PMARC has extensive geometry modeling capabilities for handling complex, three-dimensional surfaces. As with all panel methods, the geometry must be modeled by a set of panels. For convenience, the geometry is usually subdivided into several pieces and modeled with sets of panels called patches. A patch may be folded over on itself so that opposing sides of the patch form a common line. For example, wings are normally modeled with a folded patch to form the trailing edge of the wing. PMARC also has the capability to automatically generate a closing tip patch. In the case of a wing, a tip patch could be generated to close off the wing's third side. PMARC has a simple jet model for simulating a jet plume in a crossflow. The jet plume shape, trajectory, and entrainment velocities are computed using the Adler/Baron jet in crossflow code. This information is then passed back to PMARC. The wake model in PMARC is a time-stepping wake model. The wake is convected downstream from the wake separation line by the local velocity flowfield. With each time step, a new row of wake panels is added to the wake at the wake separation line. PMARC also allows an initial wake to be specified if desired, or, as a third option, no wakes need be modeled. The effective presentation of results for aerodynamics problems requires the generation of report-quality graphics. PMAPP (ARC-12751), the Panel Method Aerodynamic Plotting Program, (Sterling Software), was written for scientists at NASA's Ames Research Center to plot the aerodynamic analysis results (flow data) from PMARC. PMAPP is an interactive, color-capable graphics program for the DEC VAX or MicroVAX running VMS. It was designed to work with a variety of terminal types and hardcopy devices. PMAPP is available separately from COSMIC. PMARC was written in standard FORTRAN77 using adjustable size arrays throughout the code. Redimensioning PMARC will change the amount of disk space and memory the code requires to be able to run; however, due to its memory requirements, this program does not readily lend itself to implementation on MS-DOS based machines. The program was implemented on an Apple Macintosh (using 2.5 MB of memory) and tested on a VAX/VMS computer. The program is available on a 3.5 inch Macintosh format diskette (standard media) or in VAX BACKUP format on TK50 tape cartridge or 9-track magnetic tape. PMARC was developed in 1989.

  9. A computer model of solar panel-plasma interactions

    NASA Technical Reports Server (NTRS)

    Cooke, D. L.; Freeman, J. W.

    1980-01-01

    High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.

  10. Study of noise reduction characteristics of multilayered panels and dual pane windows with Helmholtz resonators

    NASA Technical Reports Server (NTRS)

    Navaneethan, R.

    1981-01-01

    The experimental noise attenuation characteristics of flat, general aviation type, multilayered panels are discussed. Experimental results of stiffened panels, damping tape, honeycomb materials and sound absorption materials are presented. Single degree of freedom theoretical models were developed for sandwich type panels with both shear resistant and non-shear resistant core material. The concept of Helmholtz resonators used in conjunction with dual panel windows in increasing the noise reduction around a small range of frequency was tested. It is concluded that the stiffening of the panels either by stiffeners or by sandwich construction increases the low frequency noise reduction.

  11. The “Virtual” Panel: A Computerized Model for LGBT Speaker Panels

    PubMed Central

    Beasley, Christopher; Torres-Harding, Susan; Pedersen, Paula J.

    2012-01-01

    Recent societal trends indicate more tolerance for homosexuality, but prejudice remains on college campuses. Speaker panels are commonly used in classrooms as a way to educate students about sexual diversity and decrease negative attitudes toward sexual diversity. The advent of computer delivered instruction presents a unique opportunity to broaden the impact of traditional speaker panels. The current investigation examined the influence of an interactive “virtual” gay and lesbian speaker panel on cognitive, affective, and behavioral homonegativity. Findings suggest the computer-administered panel is lowers homonegativity, particularly for affective experiential homonegativity. The implications of these findings for research and practice are discussed. PMID:23646036

  12. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  13. Dynamic imaging of adaptive stress response pathway activation for prediction of drug induced liver injury.

    PubMed

    Wink, Steven; Hiemstra, Steven W; Huppelschoten, Suzanne; Klip, Janna E; van de Water, Bob

    2018-05-01

    Drug-induced liver injury remains a concern during drug treatment and development. There is an urgent need for improved mechanistic understanding and prediction of DILI liabilities using in vitro approaches. We have established and characterized a panel of liver cell models containing mechanism-based fluorescent protein toxicity pathway reporters to quantitatively assess the dynamics of cellular stress response pathway activation at the single cell level using automated live cell imaging. We have systematically evaluated the application of four key adaptive stress pathway reporters for the prediction of DILI liability: SRXN1-GFP (oxidative stress), CHOP-GFP (ER stress/UPR response), p21 (p53-mediated DNA damage-related response) and ICAM1 (NF-κB-mediated inflammatory signaling). 118 FDA-labeled drugs in five human exposure relevant concentrations were evaluated for reporter activation using live cell confocal imaging. Quantitative data analysis revealed activation of single or multiple reporters by most drugs in a concentration and time dependent manner. Hierarchical clustering of time course dynamics and refined single cell analysis allowed the allusion of key events in DILI liability. Concentration response modeling was performed to calculate benchmark concentrations (BMCs). Extracted temporal dynamic parameters and BMCs were used to assess the predictive power of sub-lethal adaptive stress pathway activation. Although cellular adaptive responses were activated by non-DILI and severe-DILI compounds alike, dynamic behavior and lower BMCs of pathway activation were sufficiently distinct between these compound classes. The high-level detailed temporal- and concentration-dependent evaluation of the dynamics of adaptive stress pathway activation adds to the overall understanding and prediction of drug-induced liver liabilities.

  14. Development of patient collation system by kinetic analysis for chest dynamic radiogram with flat panel detector

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie

    2006-03-01

    In the picture archiving and communication system (PACS) environment, it is important that all images be stored in the correct location. However, if information such as the patient's name or identification number has been entered incorrectly, it is difficult to notice the error. The present study was performed to develop a system of patient collation automatically for dynamic radiogram examination by a kinetic analysis, and to evaluate the performance of the system. Dynamic chest radiographs during respiration were obtained by using a modified flat panel detector system. Our computer algorithm developed in this study was consisted of two main procedures, kinetic map imaging processing, and collation processing. Kinetic map processing is a new algorithm to visualize a movement for dynamic radiography; direction classification of optical flows and intensity-density transformation technique was performed. Collation processing consisted of analysis with an artificial neural network (ANN) and discrimination for Mahalanobis' generalized distance, those procedures were performed to evaluate a similarity of combination for the same person. Finally, we investigated the performance of our system using eight healthy volunteers' radiographs. The performance was shown as a sensitivity and specificity. The sensitivity and specificity for our system were shown 100% and 100%, respectively. This result indicated that our system has excellent performance for recognition of a patient. Our system will be useful in PACS management for dynamic chest radiography.

  15. The impact of marriage and parenthood on male body mass index: Static and dynamic effects.

    PubMed

    Syrda, Joanna

    2017-08-01

    Numerous cross-sectional studies investigated the link between marital status and BMI in the context of competing social science theories (marriage market, marriage selection, marriage protection and social obligation), frequently offering conflicting theoretical predictions and conflicting empirical findings. This study analysed the effects of marriage, divorce, pregnancy, and parenthood on male BMI in a longitudinal setting, avoiding the estimation bias of cross-sectional studies and allowing for an analysis of BMI fluctuation over time and the dynamic effects of these events. Using the Panel Study of Income Dynamics 1999-2013 dataset (N = 8729), this study was the first to employ a dynamic panel-data estimation to examine the static and dynamic effects of marriage, divorce, and fatherhood on male BMI. The study showed that married men have higher BMI, but marital status changes largely drove this static effect, namely, an increase in BMI in the period following marriage, and a decrease in BMI preceding and following divorce. Thus, this study found marked evidence in support of the marriage market and social obligation theories' predictions about male BMI, and supports neither marriage protection theory nor marriage selection theory. Wives' pregnancies had no significant effect on BMI; instead, men tend to have higher BMI in the periods following childbirth. Finally, analyses showed marked contemporaneous correlations between husband and wife BMI over the course of marriage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. PAN AIR modeling studies. [higher order panel method for aircraft design

    NASA Technical Reports Server (NTRS)

    Towne, M. C.; Strande, S. M.; Erickson, L. L.; Kroo, I. M.; Enomoto, F. Y.; Carmichael, R. L.; Mcpherson, K. F.

    1983-01-01

    PAN AIR is a computer program that predicts subsonic or supersonic linear potential flow about arbitrary configurations. The code's versatility and generality afford numerous possibilities for modeling flow problems. Although this generality provides great flexibility, it also means that studies are required to establish the dos and don'ts of modeling. The purpose of this paper is to describe and evaluate a variety of methods for modeling flows with PAN AIR. The areas discussed are effects of panel density, internal flow modeling, forebody modeling in subsonic flow, propeller slipstream modeling, effect of wake length, wing-tail-wake interaction, effect of trailing-edge paneling on the Kutta condition, well- and ill-posed boundary-value problems, and induced-drag calculations. These nine topics address problems that are of practical interest to the users of PAN AIR.

  17. A Rotatable Quality Control Phantom for Evaluating the Performance of Flat Panel Detectors in Imaging Moving Objects.

    PubMed

    Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki

    2016-02-01

    As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily.

  18. Dose-Response Relation between Work Hours and Cardiovascular Disease Risk: Findings from the Panel Study of Income Dynamics

    PubMed Central

    Conway, Sadie H.; Pompeii, Lisa A.; Roberts, Robert E.; Follis, Jack L.; Gimeno, David

    2015-01-01

    Objectives To examine the presence of a dose-response relationship between work hours and incident cardiovascular disease (CVD) in a representative sample of U.S. workers. Methods Retrospective cohort study of 1,926 individuals from the Panel Study of Income Dynamics (1986–2011) employed for at least 10 years. Restricted cubic spline regression was used to estimate the dose-response relationship of work hours with CVD. Results A dose-response relationship was observed in which an average workweek of 46 hours or more for at least 10 years was associated with increased risk of CVD. Compared to working 45 hours per week, working an additional 10 hours per week or more for at least 10 years increased CVD risk by at least 16%. Conclusions Working more than 45 work hours per week for at least 10 years may be an independent risk factor for CVD. PMID:26949870

  19. Design, Optimization and Evaluation of Integrally Stiffened Al 7050 Panel with Curved Stiffeners

    NASA Technical Reports Server (NTRS)

    Slemp, Wesley C. H.; Bird, R. Keith; Kapania, Rakesh K.; Havens, David; Norris, Ashley; Olliffe, Robert

    2011-01-01

    A curvilinear stiffened panel was designed, manufactured, and tested in the Combined Load Test Fixture at NASA Langley Research Center. The panel was optimized for minimum mass subjected to constraints on buckling load, yielding, and crippling or local stiffener failure using a new analysis tool named EBF3PanelOpt. The panel was designed for a combined compression-shear loading configuration that is a realistic load case for a typical aircraft wing panel. The panel was loaded beyond buckling and strains and out-of-plane displacements were measured. The experimental data were compared with the strains and out-of-plane deflections from a high fidelity nonlinear finite element analysis and linear elastic finite element analysis of the panel/test-fixture assembly. The numerical results indicated that the panel buckled at the linearly elastic buckling eigenvalue predicted for the panel/test-fixture assembly. The experimental strains prior to buckling compared well with both the linear and nonlinear finite element model.

  20. The "Virtual" Panel: A Computerized Model for LGBT Speaker Panels

    ERIC Educational Resources Information Center

    Beasley, Christopher; Torres-Harding, Susan; Pedersen, Paula J.

    2012-01-01

    Recent societal trends indicate more tolerance for homosexuality, but prejudice remains on college campuses. Speaker panels are commonly used in classrooms as a way to educate students about sexual diversity and decrease negative attitudes toward sexual diversity. The advent of computer-delivered instruction presents a unique opportunity to…

Top