Sample records for dynamic performance analysis

  1. Dynamic performances analysis of a real vehicle driving

    NASA Astrophysics Data System (ADS)

    Abdullah, M. A.; Jamil, J. F.; Salim, M. A.

    2015-12-01

    Vehicle dynamic is the effects of movement of a vehicle generated from the acceleration, braking, ride and handling activities. The dynamic behaviours are determined by the forces from tire, gravity and aerodynamic which acting on the vehicle. This paper emphasizes the analysis of vehicle dynamic performance of a real vehicle. Real driving experiment on the vehicle is conducted to determine the effect of vehicle based on roll, pitch, and yaw, longitudinal, lateral and vertical acceleration. The experiment is done using the accelerometer to record the reading of the vehicle dynamic performance when the vehicle is driven on the road. The experiment starts with weighing a car model to get the center of gravity (COG) to place the accelerometer sensor for data acquisition (DAQ). The COG of the vehicle is determined by using the weight of the vehicle. A rural route is set to launch the experiment and the road conditions are determined for the test. The dynamic performance of the vehicle are depends on the road conditions and driving maneuver. The stability of a vehicle can be controlled by the dynamic performance analysis.

  2. Performance analysis and dynamic modeling of a single-spool turbojet engine

    NASA Astrophysics Data System (ADS)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  3. Transient analysis techniques in performing impact and crash dynamic studies

    NASA Technical Reports Server (NTRS)

    Pifko, A. B.; Winter, R.

    1989-01-01

    Because of the emphasis being placed on crashworthiness as a design requirement, increasing demands are being made by various organizations to analyze a wide range of complex structures that must perform safely when subjected to severe impact loads, such as those generated in a crash event. The ultimate goal of crashworthiness design and analysis is to produce vehicles with the ability to reduce the dynamic forces experienced by the occupants to specified levels, while maintaining a survivable envelope around them during a specified crash event. DYCAST is a nonlinear structural dynamic finite element computer code that started from the plans systems of a finite element program for static nonlinear structural analysis. The essential features of DYCAST are outlined.

  4. Comparative analysis of on-orbit dynamic performance of several large antenna concepts

    NASA Technical Reports Server (NTRS)

    Andersen, G. C.; Garrett, L. B.; Calleson, R. E.

    1985-01-01

    A comparative analysis of the on-orbit dynamic performance of four large anetanna concepts is presented. Among the antenna concepts evaluated are: the box truss; tetrahedral truss; warp-radial rib; and the hoop and column antenna designs. The characteristics and magnitudes of the antennas' dynamic response were evaluated in terms of structural displacements and member loads incurred during various slew-rate maneuvers. The results of the dynamic response analysis are compared to the design requirements of the Land Mobile Satellite System (LMSS) with respect to surface accuracy, decenter, defocus, and angular rocking. Comments are made on the effectiveness of structural damping and the application of active controls for vibrational response reduction. Schematic illustrations of the antenna design concepts are provided.

  5. Analysis of Rail Transit Vehicle Dynamic Curving Performance

    DOT National Transportation Integrated Search

    1984-06-01

    An analytical model is developed for determining the dynamic curving performance of rail transit vehicles. The dynamic wheel/rail interaction forces, vehicle suspension and body motions and track displacement are computed, as well as wheel and rail w...

  6. Performance of Koyna dam based on static and dynamic analysis

    NASA Astrophysics Data System (ADS)

    Azizan, Nik Zainab Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar

    2017-10-01

    This paper discusses the performance of Koyna dam based on static pushover analysis (SPO) and incremental dynamic analysis (IDA). The SPO in this study considered two type of lateral load which is inertial load and hydrodynamic load. The structure was analyse until the damage appears on the structure body. The IDA curves were develop based on 7 ground motion, where the characteristic of the ground motions: i) the distance from the epicenter is less than 15km, (ii) the magnitude is equal to or greater than 5.5 and (iii) the PGA is equal to or greater than 0.15g. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. Elastic respond spectrum developed based on soil type B by using Eurocode 8. By using SPO and IDA method are able to determine the limit states of the dam. The limit state proposed in this study are yielding and ultimate state which is identified base on crack pattern perform on the structure model. The comparison of maximum crest displacement for both methods is analysed to define the limit state of the dam. The displacement of yielding state for Koyna dam is 23.84mm and 44.91mm for the ultimate state. The results are able to be used as a guideline to monitor Koyna dam under seismic loadings which are considering static and dynamic.

  7. Performance Evaluation of Counter-Based Dynamic Load Balancing Schemes for Massive Contingency Analysis with Different Computing Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Huang, Zhenyu; Chavarría-Miranda, Daniel

    Contingency analysis is a key function in the Energy Management System (EMS) to assess the impact of various combinations of power system component failures based on state estimation. Contingency analysis is also extensively used in power market operation for feasibility test of market solutions. High performance computing holds the promise of faster analysis of more contingency cases for the purpose of safe and reliable operation of today’s power grids with less operating margin and more intermittent renewable energy sources. This paper evaluates the performance of counter-based dynamic load balancing schemes for massive contingency analysis under different computing environments. Insights frommore » the performance evaluation can be used as guidance for users to select suitable schemes in the application of massive contingency analysis. Case studies, as well as MATLAB simulations, of massive contingency cases using the Western Electricity Coordinating Council power grid model are presented to illustrate the application of high performance computing with counter-based dynamic load balancing schemes.« less

  8. Session 6: Dynamic Modeling and Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  9. Causality analysis in business performance measurement system using system dynamics methodology

    NASA Astrophysics Data System (ADS)

    Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah

    2014-07-01

    One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.

  10. Dynamic performance and mechanical model analysis of a shear thickening fluid damper

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; He, Yonghui; Yao, Hongliang; Wen, Bangchun

    2018-07-01

    This paper presents an experimental study of the dynamic performance of a self-developed shear thickening fluid (STF) damper and its mechanical model was proposed by nonlinear fitting. First, STF samples with different mass fraction and dispersion medium were fabricated by nano fumed silica and polyethylene glycol, and its rheological properties were investigated by a rheometer. Second, a smart STF damper was developed and manufactured. Its dynamic properties were experimentally investigated by establishing a vibration test bench, and results indicated that the STF damper can output variable damping force by controlling the loading frequency, loading amplitude and fluid gap. Third, the Bouc–Wen model was proposed to address the dynamic properties of STF damper, and mechanical model analysis was carried out by comparing several fitting functions. It verified that the Bouc–Wen hysteresis model can be better used to describe the nonlinear stiffness, nonlinear damping and rate-dependence characteristics of the STF damper. All these investigations can offer an effective guidance for further theoretical and application study of the smart STF damper in energy dissipation fields.

  11. Man/Machine Interaction Dynamics And Performance (MMIDAP) capability

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.

  12. Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis

    NASA Astrophysics Data System (ADS)

    Aizzat Zakaria, Muhammad; Zamzuri, Hairi; Amri Mazlan, Saiful

    2016-02-01

    This paper discusses the design of dynamic curvature steering control for autonomous vehicle. The lateral control and longitudinal control are discussed in this paper. The controller is designed based on the dynamic curvature calculation to estimate the path condition and modify the vehicle speed and steering wheel angle accordingly. In this paper, the simulation results are presented to show the capability of the controller to track the reference path. The controller is able to predict the path and modify the vehicle speed to suit the path condition. The effectiveness of the controller is shown in this paper whereby identical performance is achieved with the benchmark but with extra curvature adaptation capabilites.

  13. School Expenditure and School Performance: Evidence from New South Wales Schools Using a Dynamic Panel Analysis

    ERIC Educational Resources Information Center

    Pugh, G.; Mangan, J.; Blackburn, V.; Radicic, D.

    2015-01-01

    This article estimates the effects of school expenditure on school performance in government secondary schools in New South Wales, Australia over the period 2006-2010. It uses dynamic panel analysis to exploit time series data on individual schools that only recently has become available. We find a significant but small effect of expenditure on…

  14. Analysis of dynamics and fit of diving suits

    NASA Astrophysics Data System (ADS)

    Mahnic Naglic, M.; Petrak, S.; Gersak, J.; Rolich, T.

    2017-10-01

    Paper presents research on dynamical behaviour and fit analysis of customised diving suits. Diving suits models are developed using the 3D flattening method, which enables the construction of a garment model directly on the 3D computer body model and separation of discrete 3D surfaces as well as transformation into 2D cutting parts. 3D body scanning of male and female test subjects was performed with the purpose of body measurements analysis in static and dynamic postures and processed body models were used for construction and simulation of diving suits prototypes. All necessary parameters, for 3D simulation were applied on obtained cutting parts, as well as parameters values for mechanical properties of neoprene material. Developed computer diving suits prototypes were used for stretch analysis on areas relevant for body dimensional changes according to dynamic anthropometrics. Garment pressures against the body in static and dynamic conditions was also analysed. Garments patterns for which the computer prototype verification was conducted were used for real prototype production. Real prototypes were also used for stretch and pressure analysis in static and dynamic conditions. Based on the obtained results, correlation analysis between body changes in dynamic positions and dynamic stress, determined on computer and real prototypes, was performed.

  15. Dynamic sensitivity analysis of biological systems

    PubMed Central

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2008-01-01

    Background A mathematical model to understand, predict, control, or even design a real biological system is a central theme in systems biology. A dynamic biological system is always modeled as a nonlinear ordinary differential equation (ODE) system. How to simulate the dynamic behavior and dynamic parameter sensitivities of systems described by ODEs efficiently and accurately is a critical job. In many practical applications, e.g., the fed-batch fermentation systems, the system admissible input (corresponding to independent variables of the system) can be time-dependent. The main difficulty for investigating the dynamic log gains of these systems is the infinite dimension due to the time-dependent input. The classical dynamic sensitivity analysis does not take into account this case for the dynamic log gains. Results We present an algorithm with an adaptive step size control that can be used for computing the solution and dynamic sensitivities of an autonomous ODE system simultaneously. Although our algorithm is one of the decouple direct methods in computing dynamic sensitivities of an ODE system, the step size determined by model equations can be used on the computations of the time profile and dynamic sensitivities with moderate accuracy even when sensitivity equations are more stiff than model equations. To show this algorithm can perform the dynamic sensitivity analysis on very stiff ODE systems with moderate accuracy, it is implemented and applied to two sets of chemical reactions: pyrolysis of ethane and oxidation of formaldehyde. The accuracy of this algorithm is demonstrated by comparing the dynamic parameter sensitivities obtained from this new algorithm and from the direct method with Rosenbrock stiff integrator based on the indirect method. The same dynamic sensitivity analysis was performed on an ethanol fed-batch fermentation system with a time-varying feed rate to evaluate the applicability of the algorithm to realistic models with time

  16. Aging analysis of high performance FinFET flip-flop under Dynamic NBTI simulation configuration

    NASA Astrophysics Data System (ADS)

    Zainudin, M. F.; Hussin, H.; Halim, A. K.; Karim, J.

    2018-03-01

    A mechanism known as Negative-bias Temperature Instability (NBTI) degrades a main electrical parameters of a circuit especially in terms of performance. So far, the circuit design available at present are only focussed on high performance circuit without considering the circuit reliability and robustness. In this paper, the main circuit performances of high performance FinFET flip-flop such as delay time, and power were studied with the presence of the NBTI degradation. The aging analysis was verified using a 16nm High Performance Predictive Technology Model (PTM) based on different commands available at Synopsys HSPICE. The results shown that the circuit under the longer dynamic NBTI simulation produces the highest impact in the increasing of gate delay and decrease in the average power reduction from a fresh simulation until the aged stress time under a nominal condition. In addition, the circuit performance under a varied stress condition such as temperature and negative stress gate bias were also studied.

  17. Probabilistic assessment of dynamic system performance. Part 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belhadj, Mohamed

    1993-01-01

    Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safemore » operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.« less

  18. Toward a dynamical theory of body movement in musical performance

    PubMed Central

    Demos, Alexander P.; Chaffin, Roger; Kant, Vivek

    2014-01-01

    Musicians sway expressively as they play in ways that seem clearly related to the music, but quantifying the relationship has been difficult. We suggest that a complex systems framework and its accompanying tools for analyzing non-linear dynamical systems can help identify the motor synergies involved. Synergies are temporary assemblies of parts that come together to accomplish specific goals. We assume that the goal of the performer is to convey musical structure and expression to the audience and to other performers. We provide examples of how dynamical systems tools, such as recurrence quantification analysis (RQA), can be used to examine performers' movements and relate them to the musical structure and to the musician's expressive intentions. We show how detrended fluctuation analysis (DFA) can be used to identify synergies and discover how they are affected by the performer's expressive intentions. PMID:24904490

  19. The role of ecological dynamics in analysing performance in team sports.

    PubMed

    Vilar, Luís; Araújo, Duarte; Davids, Keith; Button, Chris

    2012-01-01

    Performance analysis is a subdiscipline of sports sciences and one-approach, notational analysis, has been used to objectively audit and describe behaviours of performers during different subphases of play, providing additional information for practitioners to improve future sports performance. Recent criticisms of these methods have suggested the need for a sound theoretical rationale to explain performance behaviours, not just describe them. The aim of this article was to show how ecological dynamics provides a valid theoretical explanation of performance in team sports by explaining the formation of successful and unsuccessful patterns of play, based on symmetry-breaking processes emerging from functional interactions between players and the performance environment. We offer the view that ecological dynamics is an upgrade to more operational methods of performance analysis that merely document statistics of competitive performance. In support of our arguments, we refer to exemplar data on competitive performance in team sports that have revealed functional interpersonal interactions between attackers and defenders, based on variations in the spatial positioning of performers relative to each other in critical performance areas, such as the scoring zones. Implications of this perspective are also considered for practice task design and sport development programmes.

  20. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  1. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Zinnecker, Alicia

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.

  2. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  3. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey Thomas; Zinnecker, Alicia Mae

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.

  4. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.

    An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less

  5. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems

    DOE PAGES

    Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.

    2016-06-17

    An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less

  6. Dynamism in Electronic Performance Support Systems.

    ERIC Educational Resources Information Center

    Laffey, James

    1995-01-01

    Describes a model for dynamic electronic performance support systems based on NNAble, a system developed by the training group at Apple Computer. Principles for designing dynamic performance support are discussed, including a systems approach, performer-centered design, awareness of situated cognition, organizational memory, and technology use.…

  7. Methodologies for launcher-payload coupled dynamic analysis

    NASA Astrophysics Data System (ADS)

    Fransen, S. H. J. A.

    2012-06-01

    An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.

  8. Investigation of Control Inceptor Dynamics and Effect on Human Subject Performance

    NASA Technical Reports Server (NTRS)

    Stanco, Anthony A.; Cardullo, Frank M.; Houck, Jacob A.; Grube, Richard C.; Kelly, Lon C.

    2013-01-01

    The control inceptor used in a vehicle simulation is an important part of adequately representing the dynamics of the vehicle. The inceptor characteristics are typically based on a second order spring mass damper system with damping, force gradient, breakout force, and natural frequency parameters. Changing these parameters can have a great effect on pilot control of the vehicle. A quasi transfer of training experiment was performed employing a high fidelity and a low fidelity control inceptor. A disturbance compensatory task was employed which involved a simple horizon line disturbed in roll by a sum of sinusoids presented in an out-the-window display. Vehicle dynamics were modeled as 1/s and 1/s2. The task was to maintain level flight. Twenty subjects were divided between the high and the low fidelity training groups. Each group was trained to a performance asymptote, and then transferred to the high fidelity simulation. RMS tracking error, a PSD analysis, and a workload analysis were performed to quantify the transfer of training effect. Quantitative results of the experiments show that there is no significant difference between the high and low fidelity training groups for 1/s plant dynamics. For 1/s2 plant dynamics there is a greater difference in tracking performance and PSD; and the subjects are less correlated with the input disturbance function

  9. Nonlinear dynamics of team performance and adaptability in emergency response.

    PubMed

    Guastello, Stephen J

    2010-04-01

    The impact of team size and performance feedback on adaptation levels and performance of emergency response (ER) teams was examined to introduce a metric for quantifying adaptation levels based on nonlinear dynamical systems (NDS) theory. NDS principles appear in reports surrounding Hurricane Katrina, earthquakes, floods, a disease epidemic, and the Southeast Asian tsunami. They are also intrinsic to coordination within teams, adaptation levels, and performance in dynamic decision processes. Performance was measured in a dynamic decision task in which ER teams of different sizes worked against an attacker who was trying to destroy a city (total N = 225 undergraduates). The complexity of teams' and attackers' adaptation strategies and the role of the opponents' performance were assessed by nonlinear regression analysis. An optimal group size for team performance was identified. Teams were more readily influenced by the attackers' performance than vice versa. The adaptive capabilities of attackers and teams were impaired by their opponents in some conditions. ER teams should be large enough to contribute a critical mass of ideas but not so large that coordination would be compromised. ER teams used self-organized strategies that could have been more adaptive, whereas attackers used chaotic strategies. The model and results are applicable to ER processes or training maneuvers involving dynamic decisions but could be limited to nonhierarchical groups.

  10. OSI Network-layer Abstraction: Analysis of Simulation Dynamics and Performance Indicators

    NASA Astrophysics Data System (ADS)

    Lawniczak, Anna T.; Gerisch, Alf; Di Stefano, Bruno

    2005-06-01

    The Open Systems Interconnection (OSI) reference model provides a conceptual framework for communication among computers in a data communication network. The Network Layer of this model is responsible for the routing and forwarding of packets of data. We investigate the OSI Network Layer and develop an abstraction suitable for the study of various network performance indicators, e.g. throughput, average packet delay, average packet speed, average packet path-length, etc. We investigate how the network dynamics and the network performance indicators are affected by various routing algorithms and by the addition of randomly generated links into a regular network connection topology of fixed size. We observe that the network dynamics is not simply the sum of effects resulting from adding individual links to the connection topology but rather is governed nonlinearly by the complex interactions caused by the existence of all randomly added and already existing links in the network. Data for our study was gathered using Netzwerk-1, a C++ simulation tool that we developed for our abstraction.

  11. Random Matrix Theory in molecular dynamics analysis.

    PubMed

    Palese, Luigi Leonardo

    2015-01-01

    It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  13. Prediction of Muscle Performance During Dynamic Repetitive Exercise

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2002-01-01

    A method for predicting human muscle performance was developed. Eight test subjects performed a repetitive dynamic exercise to failure using a Lordex spinal machine. Electromyography (EMG) data was collected from the erector spinae. Evaluation of the EMG data using a 5th order Autoregressive (AR) model and statistical regression analysis revealed that an AR parameter, the mean average magnitude of AR poles, can predict performance to failure as early as the second repetition of the exercise. Potential applications to the space program include evaluating on-orbit countermeasure effectiveness, maximizing post-flight recovery, and future real-time monitoring capability during Extravehicular Activity.

  14. Application of the Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.

  15. Acute Effects of Dynamic Stretching on Muscle Flexibility and Performance: An Analysis of the Current Literature.

    PubMed

    Opplert, Jules; Babault, Nicolas

    2018-02-01

    Stretching has long been used in many physical activities to increase range of motion (ROM) around a joint. Stretching also has other acute effects on the neuromuscular system. For instance, significant reductions in maximal voluntary strength, muscle power or evoked contractile properties have been recorded immediately after a single bout of static stretching, raising interest in other stretching modalities. Thus, the effects of dynamic stretching on subsequent muscular performance have been questioned. This review aimed to investigate performance and physiological alterations following dynamic stretching. There is a substantial amount of evidence pointing out the positive effects on ROM and subsequent performance (force, power, sprint and jump). The larger ROM would be mainly attributable to reduced stiffness of the muscle-tendon unit, while the improved muscular performance to temperature and potentiation-related mechanisms caused by the voluntary contraction associated with dynamic stretching. Therefore, if the goal of a warm-up is to increase joint ROM and to enhance muscle force and/or power, dynamic stretching seems to be a suitable alternative to static stretching. Nevertheless, numerous studies reporting no alteration or even performance impairment have highlighted possible mitigating factors (such as stretch duration, amplitude or velocity). Accordingly, ballistic stretching, a form of dynamic stretching with greater velocities, would be less beneficial than controlled dynamic stretching. Notwithstanding, the literature shows that inconsistent description of stretch procedures has been an important deterrent to reaching a clear consensus. In this review, we highlight the need for future studies reporting homogeneous, clearly described stretching protocols, and propose a clarified stretching terminology and methodology.

  16. Experimental Testing and Computational Fluid Dynamics Simulation of Maple Seeds and Performance Analysis as a Wind Turbine

    NASA Astrophysics Data System (ADS)

    Holden, Jacob R.

    Descending maple seeds generate lift to slow their fall and remain aloft in a blowing wind; have the wings of these seeds evolved to descend as slowly as possible? A unique energy balance equation, experimental data, and computational fluid dynamics simulations have all been developed to explore this question from a turbomachinery perspective. The computational fluid dynamics in this work is the first to be performed in the relative reference frame. Maple seed performance has been analyzed for the first time based on principles of wind turbine analysis. Application of the Betz Limit and one-dimensional momentum theory allowed for empirical and computational power and thrust coefficients to be computed for maple seeds. It has been determined that the investigated species of maple seeds perform near the Betz limit for power conversion and thrust coefficient. The power coefficient for a maple seed is found to be in the range of 48-54% and the thrust coefficient in the range of 66-84%. From Betz theory, the stream tube area expansion of the maple seed is necessary for power extraction. Further investigation of computational solutions and mechanical analysis find three key reasons for high maple seed performance. First, the area expansion is driven by maple seed lift generation changing the fluid momentum and requiring area to increase. Second, radial flow along the seed surface is promoted by a sustained leading edge vortex that centrifuges low momentum fluid outward. Finally, the area expansion is also driven by the spanwise area variation of the maple seed imparting a radial force on the flow. These mechanisms result in a highly effective device for the purpose of seed dispersal. However, the maple seed also provides insight into fundamental questions about how turbines can most effectively change the momentum of moving fluids in order to extract useful power or dissipate kinetic energy.

  17. A simplified method in comparison with comprehensive interaction incremental dynamic analysis to assess seismic performance of jacket-type offshore platforms

    NASA Astrophysics Data System (ADS)

    Zolfaghari, M. R.; Ajamy, A.; Asgarian, B.

    2015-12-01

    The primary goal of seismic reassessment procedures in oil platform codes is to determine the reliability of a platform under extreme earthquake loading. Therefore, in this paper, a simplified method is proposed to assess seismic performance of existing jacket-type offshore platforms (JTOP) in regions ranging from near-elastic to global collapse. The simplified method curve exploits well agreement between static pushover (SPO) curve and the entire summarized interaction incremental dynamic analysis (CI-IDA) curve of the platform. Although the CI-IDA method offers better understanding and better modelling of the phenomenon, it is a time-consuming and challenging task. To overcome the challenges, the simplified procedure, a fast and accurate approach, is introduced based on SPO analysis. Then, an existing JTOP in the Persian Gulf is presented to illustrate the procedure, and finally a comparison is made between the simplified method and CI-IDA results. The simplified method is very informative and practical for current engineering purposes. It is able to predict seismic performance elasticity to global dynamic instability with reasonable accuracy and little computational effort.

  18. Performance Analysis of Control Signal Transmission Technique for Cognitive Radios in Dynamic Spectrum Access Networks

    NASA Astrophysics Data System (ADS)

    Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro

    When cognitive radio (CR) systems dynamically use the frequency band, a control signal is necessary to indicate which carrier frequencies are currently available in the network. In order to keep efficient spectrum utilization, this control signal also should be transmitted based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers have to receive control signals without knowledge of their carrier frequencies. To enable such transmission and reception, this paper proposes a novel scheme called DCPT (Differential Code Parallel Transmission). With DCPT, receivers can receive low-rate information with no knowledge of the carrier frequencies. The transmitter transmits two signals whose carrier frequencies are spaced by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver acquires the DCPT signal, it multiplies the signal by a frequency-shifted version of the signal; this yields a DC component that represents the data signal which is then demodulated. The performance was evaluated by means of numerical analysis and computer simulation. We confirmed that DCPT operates successfully even under severe interference if its parameters are appropriately configured.

  19. Prediction of muscle performance during dynamic repetitive movement

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2003-01-01

    BACKGROUND: During long-duration spaceflight, astronauts experience progressive muscle atrophy and often perform strenuous extravehicular activities. Post-flight, there is a lengthy recovery period with an increased risk for injury. Currently, there is a critical need for an enabling tool to optimize muscle performance and to minimize the risk of injury to astronauts while on-orbit and during post-flight recovery. Consequently, these studies were performed to develop a method to address this need. METHODS: Eight test subjects performed a repetitive dynamic exercise to failure at 65% of their upper torso weight using a Lordex spinal machine. Surface electromyography (SEMG) data was collected from the erector spinae back muscle. The SEMG data was evaluated using a 5th order autoregressive (AR) model and linear regression analysis. RESULTS: The best predictor found was an AR parameter, the mean average magnitude of AR poles, with r = 0.75 and p = 0.03. This parameter can predict performance to failure as early as the second repetition of the exercise. CONCLUSION: A method for predicting human muscle performance early during dynamic repetitive exercise was developed. The capability to predict performance to failure has many potential applications to the space program including evaluating countermeasure effectiveness on-orbit, optimizing post-flight recovery, and potential future real-time monitoring capability during extravehicular activity.

  20. Dynamic lighting system for the learning environment: performance of elementary students.

    PubMed

    Choi, Kyungah; Suk, Hyeon-Jeong

    2016-05-16

    This study aims to investigate the effects of lighting color temperatures on elementary students' performance, and thereby propose a dynamic lighting system for a smart learning environment. Three empirical studies were conducted: First, physiological responses were measured as a potential mediator of performance. Second, cognitive and behavioral responses were observed during academic and recess activities. Lastly, the experiment was carried out in a real-life setting with prolonged exposure. With a comprehensive analysis of the three studies, three lighting presets-3500 K, 5000 K, and 6500 K-are suggested for easy, standard, and intensive activity, respectively. The study is expected to act as a good stepping stone for developing dynamic lighting systems to support students' performance in learning environments.

  1. Solar Dynamic Power System Stability Analysis and Control

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  2. Dynamic Task Performance, Cohesion, and Communications in Human Groups.

    PubMed

    Giraldo, Luis Felipe; Passino, Kevin M

    2016-10-01

    In the study of the behavior of human groups, it has been observed that there is a strong interaction between the cohesiveness of the group, its performance when the group has to solve a task, and the patterns of communication between the members of the group. Developing mathematical and computational tools for the analysis and design of task-solving groups that are not only cohesive but also perform well is of importance in social sciences, organizational management, and engineering. In this paper, we model a human group as a dynamical system whose behavior is driven by a task optimization process and the interaction between subsystems that represent the members of the group interconnected according to a given communication network. These interactions are described as attractions and repulsions among members. We show that the dynamics characterized by the proposed mathematical model are qualitatively consistent with those observed in real-human groups, where the key aspect is that the attraction patterns in the group and the commitment to solve the task are not static but change over time. Through a theoretical analysis of the system we provide conditions on the parameters that allow the group to have cohesive behaviors, and Monte Carlo simulations are used to study group dynamics for different sets of parameters, communication topologies, and tasks to solve.

  3. Summary of EOS flight dynamics analysis

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.

    1995-01-01

    From a flight dynamics perspective, the Earth Observing System (EOS) spacecraft present a number of challenges to mission designers. The Flight Dynamics Support Branch of NASA GSFC has examined a number of these challenges, including managing the EOS constellation, disposing of the spacecraft at the end-of-life (EOL), and achieving the appropriate mission orbit given launch vehicle and ascent propulsion constraints. The EOS program consists of a number of spacecraft including EOS-AM, an ascending node spacecraft, EOS-PM, a descending node spacecraft, the EOS Chemistry mission (EOS-CHEM), the EOS Altimetry Laser (EOS-LALT), and the EOS-Altimetry Radar (EOS-RALT). The orbit characteristics of these missions are presented. In order to assure that downlinking data from each spacecraft will be possible without interference between any two spacecraft, a careful examination of the relationships between spacecraft and how to maintain the spacecraft in a configuration which would minimize these communications problems must be made. The FDSB has performed various analyses to determine whether the spacecraft will be in a position to interfere with each other, how the orbit dynamics will change the relative positioning of the spacecraft over their lifetimes, and how maintenance maneuvers could be performed, if needed, to minimize communications problems. Prompted by an activity at NASA HQ to set guidelines for spacecraft regarding their end-of-life dispositions, much analysis has also been performed to determine the spacecraft lifetime of EOS-AM1 under various conditions, and to make suggestions regarding the spacecraft disposal. In performing this analysis, some general trends have been observed in lifetime calculations. The paper will present the EOS-AM1 lifetime results, comment on general reentry conclusions, and discuss how these analyses reflect on the HQ NMI. Placing the EOS spacecraft into their respective mission orbits involves some intricate maneuver planning to

  4. Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; Boschi, Federico

    2011-12-01

    Clustering analysis (CA) and principal component analysis (PCA) were applied to dynamic Cerenkov luminescence images (dCLI). In order to investigate the performances of the proposed approaches, two distinct dynamic data sets obtained by injecting mice with 32P-ATP and 18F-FDG were acquired using the IVIS 200 optical imager. The k-means clustering algorithm has been applied to dCLI and was implemented using interactive data language 8.1. We show that cluster analysis allows us to obtain good agreement between the clustered and the corresponding emission regions like the bladder, the liver, and the tumor. We also show a good correspondence between the time activity curves of the different regions obtained by using CA and manual region of interest analysis on dCLIT and PCA images. We conclude that CA provides an automatic unsupervised method for the analysis of preclinical dynamic Cerenkov luminescence image data.

  5. Simplified Dynamic Analysis of Grinders Spindle Node

    NASA Astrophysics Data System (ADS)

    Demec, Peter

    2014-12-01

    The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.

  6. Dynamic Web Pages: Performance Impact on Web Servers.

    ERIC Educational Resources Information Center

    Kothari, Bhupesh; Claypool, Mark

    2001-01-01

    Discussion of Web servers and requests for dynamic pages focuses on experimentally measuring and analyzing the performance of the three dynamic Web page generation technologies: CGI, FastCGI, and Servlets. Develops a multivariate linear regression model and predicts Web server performance under some typical dynamic requests. (Author/LRW)

  7. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  8. Investigation on dynamic performance of concrete column crumb rubber steel and fiber concrete

    NASA Astrophysics Data System (ADS)

    Siti Nurul Nureda, M. Z.; Mariyana, A. K.; Khiyon, M. Iqbal; Rahman, M. S. Abdul; Nurizaty, Z.

    2017-11-01

    In general the Normal Concrete (NC) are by quasi-brittle failure, where, the nearly complete loss of loading capacity, once failure is initiated especially under dynamic loadings. The significance of this study is to improve the damping properties of concrete structure by utilization of the recycled materials from waste tires to be used in concrete as structural materials that improve seismic performance. In this study, the concrete containing 10% of fine crumb rubber and 1 % volume fraction of steel fiber from waste tires is use to investigate the dynamic performance (natural frequency and damping ratio).A small scale column were fabricated from Treated Crumb Rubber and Steel Fiber Concrete (TCRSFC) and NC were cast and cured for 28 days to investigate the dynamic performance. Based on analysis, dynamic modulus, damping ratio and natural frequency of TCRSFC has improved considerably by 5.18%, 109% and 10.94% when compared with NC. The TCRSFC producing concrete with the desired properties as well as to introduce the huge potential as dynamic resistance structure from severe damage especially prevention on catastrophic failure.

  9. Dynamic performance of high speed solenoid valve with parallel coils

    NASA Astrophysics Data System (ADS)

    Kong, Xiaowu; Li, Shizhen

    2014-07-01

    The methods of improving the dynamic performance of high speed on/off solenoid valve include increasing the magnetic force of armature and the slew rate of coil current, decreasing the mass and stroke of moving parts. The increase of magnetic force usually leads to the decrease of current slew rate, which could increase the delay time of the dynamic response of solenoid valve. Using a high voltage to drive coil can solve this contradiction, but a high driving voltage can also lead to more cost and a decrease of safety and reliability. In this paper, a new scheme of parallel coils is investigated, in which the single coil of solenoid is replaced by parallel coils with same ampere turns. Based on the mathematic model of high speed solenoid valve, the theoretical formula for the delay time of solenoid valve is deduced. Both the theoretical analysis and the dynamic simulation show that the effect of dividing a single coil into N parallel sub-coils is close to that of driving the single coil with N times of the original driving voltage as far as the delay time of solenoid valve is concerned. A specific test bench is designed to measure the dynamic performance of high speed on/off solenoid valve. The experimental results also prove that both the delay time and switching time of the solenoid valves can be decreased greatly by adopting the parallel coil scheme. This research presents a simple and practical method to improve the dynamic performance of high speed on/off solenoid valve.

  10. Flight Dynamics Analysis Branch End of Fiscal Year 1999 Report

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas; Flores-Amaya, Felipe

    1999-01-01

    This document summarizes the major activities and accomplishments carried out by the Goddard Space Flight Center (GSFC)'s Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 1999. The document is intended to serve as both an introduction to the type of support carried out by the FDAB (Flight Dynamics Analysis Branch), as well as a concise reference summarizing key analysis results and mission experience derived from the various mission support roles assumed over the past year. The major accomplishments in the FDAB in FY99 were: 1) Provided flight dynamics support to the Lunar Prospector and TRIANA missions among a variety of spacecraft missions; 2) Sponsored the Flight Mechanics Symposium; 3) Supported the Consultative Committee for Space Data Systems (CCSDS) workshops; 4) Performed numerous analyses and studies for future missions; 5) Started the Flight Dynamics Analysis Branch Lab for in-house mission analysis and support; and 6) Complied with all requirements in support of GSFC IS09000 certification.

  11. Research on dynamic performance design of mobile phone application based on context awareness

    NASA Astrophysics Data System (ADS)

    Bo, Zhang

    2018-05-01

    It aims to explore the dynamic performance of different mobile phone applications and the user's cognitive differences, reduce the cognitive burden, and enhance the sense of experience. By analyzing the dynamic design performance in four different interactive contexts, and constructing the framework of information service process in the interactive context perception and the two perception principles of the cognitive consensus between designer and user, and the two kinds of knowledge in accordance with the perception principles. The analysis of the context will help users sense the dynamic performance more intuitively, so that the details of interaction will be performed more vividly and smoothly, thus enhance user's experience in the interactive process. The common perception experience enables designers and users to produce emotional resonance in different interactive contexts, and help them achieve rapid understanding of interactive content and perceive the logic and hierarchy of the content and the structure, therefore the effectiveness of mobile applications will be improved.

  12. A Waved Journal Bearing Concept-Evaluating Steady-State and Dynamic Performance with a Potential Active Control Alternative

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1993-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. The performance of generic waved bearings having either three or four waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of fluid film stability and dynamic coefficients. It was found that the bearing wave amplitude has an important influence on both the steady-state and the dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases.

  13. Canonical and symplectic analysis for three dimensional gravity without dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escalante, Alberto, E-mail: aescalan@ifuap.buap.mx; Osmart Ochoa-Gutiérrez, H.

    2017-03-15

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev–Jackiw symplectic approach is developed; we report the complete set of Faddeev–Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev–Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev–Jackiw and Dirac’s formalism are briefly discussed. - Highlights: • We report the symplectic analysis for three dimensional gravity without dynamics. • We report the Faddeev–Jackiwmore » constraints. • A pure Dirac’s analysis is performed. • The complete structure of Dirac’s constraints is reported. • We show that symplectic and Dirac’s brackets coincide to each other.« less

  14. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  15. Multivariate frequency domain analysis of protein dynamics

    NASA Astrophysics Data System (ADS)

    Matsunaga, Yasuhiro; Fuchigami, Sotaro; Kidera, Akinori

    2009-03-01

    Multivariate frequency domain analysis (MFDA) is proposed to characterize collective vibrational dynamics of protein obtained by a molecular dynamics (MD) simulation. MFDA performs principal component analysis (PCA) for a bandpass filtered multivariate time series using the multitaper method of spectral estimation. By applying MFDA to MD trajectories of bovine pancreatic trypsin inhibitor, we determined the collective vibrational modes in the frequency domain, which were identified by their vibrational frequencies and eigenvectors. At near zero temperature, the vibrational modes determined by MFDA agreed well with those calculated by normal mode analysis. At 300 K, the vibrational modes exhibited characteristic features that were considerably different from the principal modes of the static distribution given by the standard PCA. The influences of aqueous environments were discussed based on two different sets of vibrational modes, one derived from a MD simulation in water and the other from a simulation in vacuum. Using the varimax rotation, an algorithm of the multivariate statistical analysis, the representative orthogonal set of eigenmodes was determined at each vibrational frequency.

  16. Bayesian dynamic mediation analysis.

    PubMed

    Huang, Jing; Yuan, Ying

    2017-12-01

    Most existing methods for mediation analysis assume that mediation is a stationary, time-invariant process, which overlooks the inherently dynamic nature of many human psychological processes and behavioral activities. In this article, we consider mediation as a dynamic process that continuously changes over time. We propose Bayesian multilevel time-varying coefficient models to describe and estimate such dynamic mediation effects. By taking the nonparametric penalized spline approach, the proposed method is flexible and able to accommodate any shape of the relationship between time and mediation effects. Simulation studies show that the proposed method works well and faithfully reflects the true nature of the mediation process. By modeling mediation effect nonparametrically as a continuous function of time, our method provides a valuable tool to help researchers obtain a more complete understanding of the dynamic nature of the mediation process underlying psychological and behavioral phenomena. We also briefly discuss an alternative approach of using dynamic autoregressive mediation model to estimate the dynamic mediation effect. The computer code is provided to implement the proposed Bayesian dynamic mediation analysis. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Steady-state and dynamic performance of a gas-lubricated seal

    NASA Technical Reports Server (NTRS)

    Colsher, R.; Shapiro, W.

    1972-01-01

    Steady-state and dynamic performance of a gas-lubricated, self-acting face seal was determined using numerical methods based on a variable grid, finite-difference, time-transient procedure. Results were obtained for a gas turbine main shaft seal operating at 206.9 newton per square centimeter (300 psi) sealed air pressure and 152.4 meters per second (500 ft/sec) sliding velocity. Analysis of the seal dynamics revealed that the response of the seal nosepiece to runout of the seat face is markedly affected by secondary seal friction and by nosepiece inertia. The nosepiece response was determined for various levels of secondary seal friction and seat face runout magnitudes.

  18. Hydraulic dynamic analysis

    NASA Technical Reports Server (NTRS)

    Gale, R. L.; Nease, A. W.; Nelson, D. J.

    1978-01-01

    Computer program mathematically describes complete hydraulic systems to study their dynamic performance. Program employs subroutines that simulate components of hydraulic system, which are then controlled by main program. Program is useful to engineers working with detailed performance results of aircraft, spacecraft, or similar hydraulic systems.

  19. Organizing Performance Requirements For Dynamical Systems

    NASA Technical Reports Server (NTRS)

    Malchow, Harvey L.; Croopnick, Steven R.

    1990-01-01

    Paper describes methodology for establishing performance requirements for complicated dynamical systems. Uses top-down approach. In series of steps, makes connections between high-level mission requirements and lower-level functional performance requirements. Provides systematic delineation of elements accommodating design compromises.

  20. Job Performance as Multivariate Dynamic Criteria: Experience Sampling and Multiway Component Analysis.

    PubMed

    Spain, Seth M; Miner, Andrew G; Kroonenberg, Pieter M; Drasgow, Fritz

    2010-08-06

    Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of analyzing momentary work behavior using experience sampling methods. The article also examines a previously unused set of methods for analyzing data produced by experience sampling. These methods are known collectively as multiway component analysis. Two archetypal techniques of multimode factor analysis, the Parallel factor analysis and the Tucker3 models, are used to analyze data from Miner, Glomb, and Hulin's (2010) experience sampling study of work behavior. The efficacy of these techniques for analyzing experience sampling data is discussed as are the substantive multimode component models obtained.

  1. A nanobiosensor for dynamic single cell analysis during microvascular self-organization.

    PubMed

    Wang, S; Sun, J; Zhang, D D; Wong, P K

    2016-10-14

    The formation of microvascular networks plays essential roles in regenerative medicine and tissue engineering. Nevertheless, the self-organization mechanisms underlying the dynamic morphogenic process are poorly understood due to a paucity of effective tools for mapping the spatiotemporal dynamics of single cell behaviors. By establishing a single cell nanobiosensor along with live cell imaging, we perform dynamic single cell analysis of the morphology, displacement, and gene expression during microvascular self-organization. Dynamic single cell analysis reveals that endothelial cells self-organize into subpopulations with specialized phenotypes to form microvascular networks and identifies the involvement of Notch1-Dll4 signaling in regulating the cell subpopulations. The cell phenotype correlates with the initial Dll4 mRNA expression level and each subpopulation displays a unique dynamic Dll4 mRNA expression profile. Pharmacological perturbations and RNA interference of Notch1-Dll4 signaling modulate the cell subpopulations and modify the morphology of the microvascular network. Taken together, a nanobiosensor enables a dynamic single cell analysis approach underscoring the importance of Notch1-Dll4 signaling in microvascular self-organization.

  2. Dynamic test/analysis correlation using reduced analytical models

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Angelucci, A. Filippo; Javeed, Mehzad

    1992-01-01

    Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System (IRS) reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.

  3. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  4. Dynamic stretching and golf swing performance.

    PubMed

    Moran, K A; McGrath, T; Marshall, B M; Wallace, E S

    2009-02-01

    The aim of the present study was to examine the effect of dynamic stretching, static stretching and no stretching, as part of a general warm-up, on golf swing performance with a five-iron. Measures of performance were taken 0 min, 5 min, 15 min and 30 min after stretching. Dynamic stretching produced significantly greater club head speeds than both static stretching (Delta=1.9m.s (-1); p=0.000) and no stretching (Delta=1.7 m.s (-1); p=0.000), and greater ball speeds than both static stretching (Delta=3.5m.s (-1); p=0.003) and no stretching (Delta=3.3m.s (-1); p=0.001). Dynamic stretching produced significantly straighter swing-paths than both static stretching (Delta=-0.61 degrees , p=0.000) and no stretching (Delta=-0.72 degrees , p=0.01). Dynamic stretching also produced more central impact points than the static stretch (Delta=0.7 cm, p=0.001). For the club face angle, there was no effect of either stretch or time. For all of the variables measured, there was no significant difference between the static stretch and no stretch conditions. All of the results were unaffected by the time of measurement after stretching. The results indicate that dynamic stretching should be used as part of a general warm-up in golf.

  5. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. K.

    1985-01-01

    Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.

  6. SPAR improved structure-fluid dynamic analysis capability, phase 2

    NASA Technical Reports Server (NTRS)

    Pearson, M. L.

    1984-01-01

    An efficient and general method of analyzing a coupled dynamic system of fluid flow and elastic structures is investigated. The improvement of Structural Performance Analysis and Redesign (SPAR) code is summarized. All error codes are documented and the SPAR processor/subroutine cross reference is included.

  7. Develop feedback system for intelligent dynamic resource allocation to improve application performance.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gentile, Ann C.; Brandt, James M.; Tucker, Thomas

    2011-09-01

    This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the facemore » of the ever increasing size and complexity of HPC systems.« less

  8. Study on dynamic performance of SOFC

    NASA Astrophysics Data System (ADS)

    Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai

    2017-05-01

    In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.

  9. Dynamic analysis of space structures including elastic, multibody, and control behavior

    NASA Technical Reports Server (NTRS)

    Pinson, Larry; Soosaar, Keto

    1989-01-01

    The problem is to develop analysis methods, modeling stategies, and simulation tools to predict with assurance the on-orbit performance and integrity of large complex space structures that cannot be verified on the ground. The problem must incorporate large reliable structural models, multi-body flexible dynamics, multi-tier controller interaction, environmental models including 1g and atmosphere, various on-board disturbances, and linkage to mission-level performance codes. All areas are in serious need of work, but the weakest link is multi-body flexible dynamics.

  10. A waved journal bearing concept with improved steady-state and dynamic performance

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1994-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. A three wave, waved journal bearing geometry is used to show the geometry of this concept. The performance of generic waved bearings having either three, four, six, or eight waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of dynamic coefficients and fluid film stability. It was found that the bearing wave amplitude has an important influence on both steady-state and dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases. Also, the waved bearing becomes more stable as the wave amplitude increases. In addition, increasing the number of waves reduces the waved bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the waved bearing design for a specific application. It is concluded that the stiffness of an air bearing, due to the hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  11. Structural dynamic analysis of turbine blade

    NASA Astrophysics Data System (ADS)

    Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.

    2017-10-01

    In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.

  12. Dynamics-A explorer RIMS data analysis

    NASA Technical Reports Server (NTRS)

    Banks, P. M.; Clauer, C. R.

    1985-01-01

    Activities of the RIMS instrument during the extended mission are planned. The modes of operation for RIMS to achieve the science requirements utilizing the new and exciting information on the composition and dynamics of the low energy (0-50eV) ions in the Earth's ionosphere and magnetosphere are determined. The specific science problems and the required RIMS operational modes needed to acquire the desired data are identified. The analysis was performed on the RIMS data to achieve the science results and this new information was used in determining RIMS operations during the latter part of the mission. Necessary sensitivity tests of RIMS operating modes and instrument performance was suggested. The inflight results was compared with theoretical models.

  13. Dynamic Open Inquiry Performances of High-School Biology Students

    ERIC Educational Resources Information Center

    Zion, Michal; Sadeh, Irit

    2010-01-01

    In examining open inquiry projects among high-school biology students, we found dynamic inquiry performances expressed in two criteria: "changes occurring during inquiry" and "procedural understanding". Characterizing performances in a dynamic open inquiry project can shed light on both the procedural and epistemological…

  14. Passivhaus: indoor comfort and energy dynamic analysis.

    NASA Astrophysics Data System (ADS)

    Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca

    2013-04-01

    The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous

  15. Dynamic analysis of Space Shuttle/RMS configuration using continuum approach

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, Jayant; Taylor, Lawrence W., Jr.

    1994-01-01

    The initial assembly of Space Station Freedom involves the Space Shuttle, its Remote Manipulation System (RMS) and the evolving Space Station Freedom. The dynamics of this coupled system involves both the structural and the control system dynamics of each of these components. The modeling and analysis of such an assembly is made even more formidable by kinematic and joint nonlinearities. The current practice of modeling such flexible structures is to use finite element modeling in which the mass and interior dynamics is ignored between thousands of nodes, for each major component. The model characteristics of only tens of modes are kept out of thousands which are calculated. The components are then connected by approximating the boundary conditions and inserting the control system dynamics. In this paper continuum models are used instead of finite element models because of the improved accuracy, reduced number of model parameters, the avoidance of model order reduction, and the ability to represent the structural and control system dynamics in the same system of equations. Dynamic analysis of linear versions of the model is performed and compared with finite element model results. Additionally, the transfer matrix to continuum modeling is presented.

  16. Toward Capturing Momentary Changes of Heart Rate Variability by a Dynamic Analysis Method

    PubMed Central

    Zhang, Haoshi; Zhu, Mingxing; Zheng, Yue; Li, Guanglin

    2015-01-01

    The analysis of heart rate variability (HRV) has been performed on long-term electrocardiography (ECG) recordings (12~24 hours) and short-term recordings (2~5 minutes), which may not capture momentary change of HRV. In this study, we present a new method to analyze the momentary HRV (mHRV). The ECG recordings were segmented into a series of overlapped HRV analysis windows with a window length of 5 minutes and different time increments. The performance of the proposed method in delineating the dynamics of momentary HRV measurement was evaluated with four commonly used time courses of HRV measures on both synthetic time series and real ECG recordings from human subjects and dogs. Our results showed that a smaller time increment could capture more dynamical information on transient changes. Considering a too short increment such as 10 s would cause the indented time courses of the four measures, a 1-min time increment (4-min overlapping) was suggested in the analysis of mHRV in the study. ECG recordings from human subjects and dogs were used to further assess the effectiveness of the proposed method. The pilot study demonstrated that the proposed analysis of mHRV could provide more accurate assessment of the dynamical changes in cardiac activity than the conventional measures of HRV (without time overlapping). The proposed method may provide an efficient means in delineating the dynamics of momentary HRV and it would be worthy performing more investigations. PMID:26172953

  17. Ongoing Analyses of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; Holt, James B.; Canabal, Francisco

    2001-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle (RBCC) configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics (CFD) analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes (FDNS) code for ejector mode fluid dynamics. The Draco analysis was a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  18. Seismic performance evaluation of an historical concrete deck arch bridge using survey and drawing of the damages, in situ tests, dynamic identification and pushover analysis

    NASA Astrophysics Data System (ADS)

    Bergamo, Otello; Russo, Eleonora; Lodolo, Fabio

    2017-07-01

    The paper describes the performance evaluation of a retrofit historical multi-span (RC) deck arch bridge analyzed with in situ tests, dynamic identification and FEM analysis. The peculiarity of this case study lies in the structural typology of "San Felice" bridge, an historical concrete arch bridge built in the early 20th century, a quite uncommon feature in Italy. The preservation and retrofit of historic cultural heritage and infrastructures has been carefully analyzed in the international codes governing seismic response. A complete survey of the bridge was carried out prior to sketching a drawing of the existing bridge. Subsequently, the study consists in four steps: material investigation and dynamic vibration tests, FEM analysis and calibration, retrofit assessment, pushover analysis. The aim is to define an innovative approach to calibrate the FEM analysis through modern experimental investigations capable of taking structural deterioration into account, and to offer an appropriate and cost-effective retrofitting strategy.

  19. Characterization of Thin Film Polymers Through Dynamic Mechanical Analysis and Permeation

    NASA Technical Reports Server (NTRS)

    Herring, Helen

    2003-01-01

    Thin polymer films are being considered, as candidate materials to augment the permeation resistance of cryogenic hydrogen fuel tanks such as would be required for future reusable launch vehicles. To evaluate performance of candidate films after environmental exposure, an experimental study was performed to measure the thermal/mechanical and permeation performance of six, commercial-grade materials. Dynamic storage modulus, as measured by Dynamic Mechanical Analysis, was found over a range of temperatures. Permeability, as measured by helium gas diffusion, was found at room temperature. Test data was correlated with respect to film type and pre-test exposure to moisture, elevated temperature, and cryogenic temperature. Results indicated that the six films were comparable in performance and their resistance to environmental degradation.

  20. Computational Analysis of Dynamic SPK(S8)-JP8 Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Ryder, R.; Hendricks, Roberts C.; Huber, M. L.; Shouse, D. T.

    2010-01-01

    Civil and military flight tests using blends of synthetic and biomass fueling with jet fuel up to 50:50 are currently considered as "drop-in" fuels. They are fully compatible with aircraft performance, emissions and fueling systems, yet the design and operations of such fueling systems and combustors must be capable of running fuels from a range of feedstock sources. This paper provides Smart Combustor or Fuel Flexible Combustor designers with computational tools, preliminary performance, emissions and particulates combustor sector data. The baseline fuel is kerosene-JP-8+100 (military) or Jet A (civil). Results for synthetic paraffinic kerosene (SPK) fuel blends show little change with respect to baseline performance, yet do show lower emissions. The evolution of a validated combustor design procedure is fundamental to the development of dynamic fueling of combustor systems for gas turbine engines that comply with multiple feedstock sources satisfying both new and legacy systems.

  1. Dynamic analysis using superelements for a large helicopter model

    NASA Technical Reports Server (NTRS)

    Patel, M. P.; Shah, L. C.

    1978-01-01

    Using superelements (substructures), modal and frequency response analysis was performed for a large model of the Advanced Attack Helicopter developed for the U.S. Army. Whiffletree concept was employed so that the residual structure along with the various superelements could be represented as beam-like structures for economical and accurate dynamic analysis. A very large DMAP alter to the rigid format was developed so that the modal analysis, the frequency response, and the strain energy in each component could be computed in the same run.

  2. Nonlinear analysis of pupillary dynamics.

    PubMed

    Onorati, Francesco; Mainardi, Luca Tommaso; Sirca, Fabiola; Russo, Vincenzo; Barbieri, Riccardo

    2016-02-01

    Pupil size reflects autonomic response to different environmental and behavioral stimuli, and its dynamics have been linked to other autonomic correlates such as cardiac and respiratory rhythms. The aim of this study is to assess the nonlinear characteristics of pupil size of 25 normal subjects who participated in a psychophysiological experimental protocol with four experimental conditions, namely “baseline”, “anger”, “joy”, and “sadness”. Nonlinear measures, such as sample entropy, correlation dimension, and largest Lyapunov exponent, were computed on reconstructed signals of spontaneous fluctuations of pupil dilation. Nonparametric statistical tests were performed on surrogate data to verify that the nonlinear measures are an intrinsic characteristic of the signals. We then developed and applied a piecewise linear regression model to detrended fluctuation analysis (DFA). Two joinpoints and three scaling intervals were identified: slope α0, at slow time scales, represents a persistent nonstationary long-range correlation, whereas α1 and α2, at middle and fast time scales, respectively, represent long-range power-law correlations, similarly to DFA applied to heart rate variability signals. Of the computed complexity measures, α0 showed statistically significant differences among experimental conditions (p<0.001). Our results suggest that (a) pupil size at constant light condition is characterized by nonlinear dynamics, (b) three well-defined and distinct long-memory processes exist at different time scales, and (c) autonomic stimulation is partially reflected in nonlinear dynamics. (c) autonomic stimulation is partially reflected in nonlinear dynamics.

  3. Systems-Dynamic Analysis for Neighborhood Study

    EPA Science Inventory

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  4. Dynamic analysis of process reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shadle, L.J.; Lawson, L.O.; Noel, S.D.

    1995-06-01

    The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process modelsmore » are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.« less

  5. A high performance system for molecular dynamics simulation of biomolecules using a special-purpose computer.

    PubMed

    Komeiji, Y; Yokoyama, H; Uebayasi, M; Taiji, M; Fukushige, T; Sugimoto, D; Takata, R; Shimizu, A; Itsukashi, K

    1996-01-01

    GRAPE (GRavity PipE) processors are special purpose computers for simulation of classical particles. The performance of MD-GRAPE, one of the GRAPEs developed for molecular dynamics, was investigated. The effective speed of MD-GRAPE was equivalent to approximately 6 Gflops. The precision of MD-GRAPE was good judging from the acceptable fluctuation of the total energy. Then a software named PEACH (Program for Energetic Analysis of bioCHemical molecules) was developed for molecular dynamics of biomolecules in combination with MD-GRAPE. Molecular dynamics simulation was performed for several protein-solvent systems with different sizes. Simulation of the largest system investigated (27,000 atoms) took only 5 sec/step. Thus, the PEACH-GRAPE system is expected to be useful in accurate and reliable simulation of large biomolecules.

  6. Dynamical system analysis of interacting models

    NASA Astrophysics Data System (ADS)

    Carneiro, S.; Borges, H. A.

    2018-01-01

    We perform a dynamical system analysis of a cosmological model with linear dependence between the vacuum density and the Hubble parameter, with constant-rate creation of dark matter. We show that the de Sitter spacetime is an asymptotically stable critical point, future limit of any expanding solution. Our analysis also shows that the Minkowski spacetime is an unstable critical point, which eventually collapses to a singularity. In this way, such a prescription for the vacuum decay not only predicts the correct future de Sitter limit, but also forbids the existence of a stable Minkowski universe. We also study the effect of matter creation on the growth of structures and their peculiar velocities, showing that it is inside the current errors of redshift space distortions observations.

  7. Effect of Eccentricity on the Static and Dynamic Performance of a Turbulent Hybrid Bearing

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis A.

    1991-01-01

    The effect of journal eccentricity on the static and dynamic performance of a water lubricated, 5-recess hybrid bearing is presented in detail. The hydrostatic bearing has been designed to operate at a high speed and with a large level of external pressurization. The operating conditions determine the flow in the bearing to be highly turbulent and strongly dominated by fluid inertia effects. The analysis covers the spectrum of journal center displacements directed towards the middle of a recess and towards the mid-land portion between two consecutive recesses. Predicted dynamic force coefficients are uniform for small to moderate eccentricities. For large journal center displacements, fluid cavitation and recess position determine large changes in the bearing dynamic performance. The effect of fluid inertia force coefficients on the threshold speed of instability and whirl ratio of a single mass flexible rotor is discussed.

  8. Validation of instrumentation to monitor dynamic performance of olympic weightlifters.

    PubMed

    Bruenger, Adam J; Smith, Sarah L; Sands, William A; Leigh, Michael R

    2007-05-01

    The purpose of this study was to validate the accuracy and reliability of the Weightlifting Video Overlay System (WVOS) used by coaches and sport biomechanists at the United States Olympic Training Center. Static trials with the bar set at specific positions and dynamic trials of a power snatch were performed. Static and dynamic values obtained by the WVOS were compared with values obtained by tape measure and standard video kinematic analysis. Coordinate positions (horizontal [X] and vertical [Y]) were compared on both ends (left and right) of the bar. Absolute technical error of measurement between WVOS and kinematic values were calculated (0.97 cm [left X], 0.98 cm [right X], 0.88 cm [left Y], and 0.53 cm [right Y]) for the static data. Pearson correlations for all dynamic trials exceeded r = 0.88. The greatest discrepancies between the 2 measuring systems were found to occur when there was twisting of the bar during the performance. This error was probably due to the location on the bar where the coordinates were measured. The WVOS appears to provide accurate position information when compared with standard kinematics; however, care must be taken in evaluating position measurements if there is a significant amount of twisting in the movement. The WVOS appears to be reliable and valid within reasonable error limits for the determination of weightlifting movement technique.

  9. NERVA 400E thrust train dynamic analysis

    NASA Technical Reports Server (NTRS)

    Vronay, D. F.

    1972-01-01

    The natural frequencies and dynamic responses of the NERVA 400E engine thrust train were determined for nuclear space operations (NSO), and earth-orbital shuttle (EOS) during launch and boost conditions. For NSO, a mini-tank configuration was analyzed with the forward end of the upper truss assumed fixed at the stage/mini-tank interface. For EOS, both a mini-tank and an engine only configuration were analyzed for a specific engine assembly support (EAS) stiffness. For all cases the effect of the shield on dynamic response characteristics was determined by performing parallel analyses with and without the shield. Gimbaling loads were not generated as that effort was scheduled after the termination date. The analysis, while demonstrating the adequacy of the engine design, revealed serious deficiencies in the EAS. Responses at the unsupported ends of the engine are excessive. Responses at the nuclear subsystem interface appear acceptable. It is recommended that additional analysis and design effort be expended upon the EAS to ensure that all engine responses stay within reasonable bounds.

  10. Hydrocoil Turbine Performance at 3 m, 4 m, and 5 m Head Analysis Using Computational Fluid Dynamics Method

    NASA Astrophysics Data System (ADS)

    Luthfie, A. A.; Pratiwi, S. E.; Hidayatulloh, P.

    2018-03-01

    Indonesia is a country which has abundant renewable energy resources, comprises of water, solar, geothermal, wind, bioenergy, and ocean energy. Utilization of water energy through MHP is widely applied in remote areas in Indonesia. This utilization requires a water-converting device known as a water turbine. Rosefsky (2010) developed a water turbine known as the Hydrocoil turbine. This turbine is an axial turbine which is a modification of screw turbine. This turbine has a pitch length that decreases in the direction of the water flow and is able to work at relatively low water flow and head. The use of Hydrocoil turbine has not been widely applied in Indonesia, therefore this research is focused on analyzing the performance of Hydrocoil turbine. The analysis was performed using Computational Fluid Dynamics (CFD) method. Hydrocoil turbine performance analysis was performed at 3 m, 4 m, and 5 m head respectively as well as rotational speed variations of 100 rpm, 300 rpm, 500 rpm, 700 rpm, 900 rpm, 1,100 rpm, 1,300 rpm, 1,500 rpm, 1,700 rpm, and 1,900 rpm. Based on simulation result, the largest power generated by the turbine at 3 m head is 1,134.06 W, while at 4 m and 5 m are 1,722.39 W and 2,231.49 W respectively. It is also found that the largest turbine’s efficiency at 3 m head is 93.22% while at 4 m and 5 m head are 94.6% and 89.88% respectively. The result also shows that the larger the head the greater the operational rotational speed range.

  11. Adaptive control schemes for improving dynamic performance of efficiency-optimized induction motor drives.

    PubMed

    Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P

    2015-07-01

    Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  12. Floating-point performance of ARM cores and their efficiency in classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nikolskiy, V.; Stegailov, V.

    2016-02-01

    Supercomputing of the exascale era is going to be inevitably limited by power efficiency. Nowadays different possible variants of CPU architectures are considered. Recently the development of ARM processors has come to the point when their floating point performance can be seriously considered for a range of scientific applications. In this work we present the analysis of the floating point performance of the latest ARM cores and their efficiency for the algorithms of classical molecular dynamics.

  13. A comparative analysis of alternative approaches for quantifying nonlinear dynamics in cardiovascular system.

    PubMed

    Chen, Yun; Yang, Hui

    2013-01-01

    Heart rate variability (HRV) analysis has emerged as an important research topic to evaluate autonomic cardiac function. However, traditional time and frequency-domain analysis characterizes and quantify only linear and stationary phenomena. In the present investigation, we made a comparative analysis of three alternative approaches (i.e., wavelet multifractal analysis, Lyapunov exponents and multiscale entropy analysis) for quantifying nonlinear dynamics in heart rate time series. Note that these extracted nonlinear features provide information about nonlinear scaling behaviors and the complexity of cardiac systems. To evaluate the performance, we used 24-hour HRV recordings from 54 healthy subjects and 29 heart failure patients, available in PhysioNet. Three nonlinear methods are evaluated not only individually but also in combination using three classification algorithms, i.e., linear discriminate analysis, quadratic discriminate analysis and k-nearest neighbors. Experimental results show that three nonlinear methods capture nonlinear dynamics from different perspectives and the combined feature set achieves the best performance, i.e., sensitivity 97.7% and specificity 91.5%. Collectively, nonlinear HRV features are shown to have the promise to identify the disorders in autonomic cardiovascular function.

  14. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  15. Dynamic self-guiding analysis of Alzheimer's disease

    PubMed Central

    Kurakin, Alexei; Bredesen, Dale E.

    2015-01-01

    We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease. PMID:26041885

  16. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  17. Performance Analysis of Multilevel Parallel Applications on Shared Memory Architectures

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Caubet, Jordi; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In this paper we describe how to apply powerful performance analysis techniques to understand the behavior of multilevel parallel applications. We use the Paraver/OMPItrace performance analysis system for our study. This system consists of two major components: The OMPItrace dynamic instrumentation mechanism, which allows the tracing of processes and threads and the Paraver graphical user interface for inspection and analyses of the generated traces. We describe how to use the system to conduct a detailed comparative study of a benchmark code implemented in five different programming paradigms applicable for shared memory

  18. Dynamic Blowout Risk Analysis Using Loss Functions.

    PubMed

    Abimbola, Majeed; Khan, Faisal

    2018-02-01

    Most risk analysis approaches are static; failing to capture evolving conditions. Blowout, the most feared accident during a drilling operation, is a complex and dynamic event. The traditional risk analysis methods are useful in the early design stage of drilling operation while falling short during evolving operational decision making. A new dynamic risk analysis approach is presented to capture evolving situations through dynamic probability and consequence models. The dynamic consequence models, the focus of this study, are developed in terms of loss functions. These models are subsequently integrated with the probability to estimate operational risk, providing a real-time risk analysis. The real-time evolving situation is considered dependent on the changing bottom-hole pressure as drilling progresses. The application of the methodology and models are demonstrated with a case study of an offshore drilling operation evolving to a blowout. © 2017 Society for Risk Analysis.

  19. Application of tire dynamics to aircraft landing gear design analysis

    NASA Technical Reports Server (NTRS)

    Black, R. J.

    1983-01-01

    The tire plays a key part in many analyses used for design of aircraft landing gear. Examples include structural design of wheels, landing gear shimmy, brake whirl, chatter and squeal, complex combination of chatter and shimmy on main landing gear (MLG) systems, anti-skid performance, gear walk, and rough terrain loads and performance. Tire parameters needed in the various analyses are discussed. Two tire models are discussed for shimmy analysis, the modified Moreland approach and the von Schlippe-Dietrich approach. It is shown that the Moreland model can be derived from the Von Schlippe-Dietrich model by certain approximations. The remaining analysis areas are discussed in general terms and the tire parameters needed for each are identified. Accurate tire data allows more accurate design analysis and the correct prediction of dynamic performance of aircraft landing gear.

  20. Musical structure analysis using similarity matrix and dynamic programming

    NASA Astrophysics Data System (ADS)

    Shiu, Yu; Jeong, Hong; Kuo, C.-C. Jay

    2005-10-01

    Automatic music segmentation and structure analysis from audio waveforms based on a three-level hierarchy is examined in this research, where the three-level hierarchy includes notes, measures and parts. The pitch class profile (PCP) feature is first extracted at the note level. Then, a similarity matrix is constructed at the measure level, where a dynamic time warping (DTW) technique is used to enhance the similarity computation by taking the temporal distortion of similar audio segments into account. By processing the similarity matrix, we can obtain a coarse-grain music segmentation result. Finally, dynamic programming is applied to the coarse-grain segments so that a song can be decomposed into several major parts such as intro, verse, chorus, bridge and outro. The performance of the proposed music structure analysis system is demonstrated for pop and rock music.

  1. Performance Analysis of Surfing: A Review.

    PubMed

    Farley, Oliver R L; Abbiss, Chris R; Sheppard, Jeremy M

    2017-01-01

    Farley, ORL, Abbiss, CR, and Sheppard, JM. Performance Analysis of Surfing: A Review. J Strength Cond Res 31(1): 260-271, 2017-Despite the increased professionalism and substantial growth of surfing worldwide, there is limited information available to practitioners and coaches in terms of key performance analytics that are common in other field-based sports. Indeed, research analyzing surfing performance is limited to a few studies examining male surfers' heart rates, surfing activities through time-motion analysis (TMA) using video recordings and Global Positioning Satellite (GPS) data during competition and recreational surfing. These studies have indicated that specific activities undertaken during surfing are unique with a variety of activities (i.e., paddling, resting, wave riding, breath holding, and recovery of surfboard in the surf). Furthermore, environmental and wave conditions also seem to influence the physical demands of competition surfing. It is due to these demands that surfers are required to have a high cardiorespiratory fitness, high muscular endurance, and considerable strength and anaerobic power, particular within the upper torso. By exploring various methods of performance analysis used within other sports, it is possible to improve our understanding of surfing demands. In so doing this will assist in the development of protocols and strategies to assess physiological characteristics of surfers, monitor athlete performance, improve training prescription, and identify talent. Therefore, this review explores the current literature to provide insights into methodological protocols, delimitations of research into athlete analysis and an overview of surfing dynamics. Specifically, this review will describe and review the use of TMA, GPS, and other technologies (i.e., HR) that are used in external and internal load monitoring as they pertain to surfing.

  2. A modal analysis of flexible aircraft dynamics with handling qualities implications

    NASA Technical Reports Server (NTRS)

    Schmidt, D. K.

    1983-01-01

    A multivariable modal analysis technique is presented for evaluating flexible aircraft dynamics, focusing on meaningful vehicle responses to pilot inputs and atmospheric turbulence. Although modal analysis is the tool, vehicle time response is emphasized, and the analysis is performed on the linear, time-domain vehicle model. In evaluating previously obtained experimental pitch tracking data for a family of vehicle dynamic models, it is shown that flexible aeroelastic effects can significantly affect pitch attitude handling qualities. Consideration of the eigenvalues alone, of both rigid-body and aeroelastic modes, does not explain the simulation results. Modal analysis revealed, however, that although the lowest aeroelastic mode frequency was still three times greater than the short-period frequency, the rigid-body attitude response was dominated by this aeroelastic mode. This dominance was defined in terms of the relative magnitudes of the modal residues in selected vehicle responses.

  3. Slow dynamics of a protein backbone in molecular dynamics simulation revealed by time-structure based independent component analysis

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2013-12-01

    We recently proposed the method of time-structure based independent component analysis (tICA) to examine the slow dynamics involved in conformational fluctuations of a protein as estimated by molecular dynamics (MD) simulation [Y. Naritomi and S. Fuchigami, J. Chem. Phys. 134, 065101 (2011)]. Our previous study focused on domain motions of the protein and examined its dynamics by using rigid-body domain analysis and tICA. However, the protein changes its conformation not only through domain motions but also by various types of motions involving its backbone and side chains. Some of these motions might occur on a slow time scale: we hypothesize that if so, we could effectively detect and characterize them using tICA. In the present study, we investigated slow dynamics of the protein backbone using MD simulation and tICA. The selected target protein was lysine-, arginine-, ornithine-binding protein (LAO), which comprises two domains and undergoes large domain motions. MD simulation of LAO in explicit water was performed for 1 μs, and the obtained trajectory of Cα atoms in the backbone was analyzed by tICA. This analysis successfully provided us with slow modes for LAO that represented either domain motions or local movements of the backbone. Further analysis elucidated the atomic details of the suggested local motions and confirmed that these motions truly occurred on the expected slow time scale.

  4. Flight Dynamics Analysis Branch

    NASA Technical Reports Server (NTRS)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  5. Thermodynamic performance analysis of ramjet engine at wide working conditions

    NASA Astrophysics Data System (ADS)

    Ou, Min; Yan, Li; Tang, Jing-feng; Huang, Wei; Chen, Xiao-qian

    2017-03-01

    Although ramjet has the advantages of high-speed flying and higher specific impulse, the performance parameters will decline seriously with the increase of flight Mach number and flight height. Therefore, the investigation on the thermodynamic performance of ramjet is very crucial for broadening the working range. In the current study, a typical ramjet model has been employed to investigate the performance characteristics at wide working conditions. First of all, the compression characteristic analysis is carried out based on the Brayton cycle. The obtained results show that the specific cross-section area (A2 and A5) and the air-fuel ratio (f) have a great influence on the ramjet performance indexes. Secondly, the thermodynamic calculation process of ramjet is given from the view of the pneumatic thermal analysis. Then, the variable trends of the ramjet performance indexes with the flow conditions, the air-fuel ratio (f), the specific cross-sectional area (A2 and A5) under the fixed operating condition, equipotential dynamic pressure condition and variable dynamic pressure condition have been discussed. Finally, the optimum value of the specific cross-sectional area (A5) and the air-fuel ratio (f) of the ramjet model at a fixed work condition (Ma=3.5, H=12 km) are obtained.

  6. An Efficient Crankshaft Dynamic Analysis Using Substructuring with Ritz Vectors

    NASA Astrophysics Data System (ADS)

    MOURELATOS, Z. P.

    2000-11-01

    A structural analysis using dynamic substructuring with Ritz vectors is presented for predicting the dynamic response of an engine crankshaft, based on the finite-element method. A two-level dynamic substructuring is performed using a set of load-dependent Ritz vectors. The rotating crankshaft is properly coupled with the non-rotating, compliant engine block. The block compliance is represented by a distributed linear elastic foundation at each main bearing location. The stiffness of the elastic foundation can be different in the vertical and horizontal planes, thereby considering the anisotropy of the engine block compliance with respect to the crankshaft rotation. The analysis accounts for the kinematic non-linearity resulting from the crankangle-dependent circumferential contact location between each journal and the corresponding bore of the engine block. Crankshaft “bent” and block “misboring” effects due to manufacturing imperfections are considered in the analysis. The superior accuracy and reduced computational effort of the present method as compared with the equivalent superelement analysis in MSC/NASTRAN, are demonstrated using the free and forced vibrations of a slender cylindrical beam and free vibrations of a four-cylinder engine crankshaft. Subsequently, the accuracy of the present method in calculating the dynamic response of engine crankshafts is shown through comparisons between the analytical predictions and experimental results for the torsional vibrations of an in-line five cylinder engine and the bending vibrations of the crankshaft-flywheel assembly of a V6 engine.

  7. Understanding the dynamic interactions driving Zambian health centre performance: a case-based health systems analysis

    PubMed Central

    Topp, Stephanie M; Chipukuma, Julien M; Hanefeld, Johanna

    2015-01-01

    Background Despite being central to achieving improved population health outcomes, primary health centres in low- and middle-income settings continue to underperform. Little research exists to adequately explain how and why this is the case. This study aimed to test the relevance and usefulness of an adapted conceptual framework for improving our understanding of the mechanisms and causal pathways influencing primary health centre performance. Methods A theory-driven, case-study approach was adopted. Four Zambian health centres were purposefully selected with case data including health-care worker interviews (n = 60); patient interviews (n = 180); direct observation of facility operations (2 weeks/centre) and key informant interviews (n = 14). Data were analysed to understand how the performance of each site was influenced by the dynamic interactions between system ‘hardware’ and ‘software’ acting on mechanisms of accountability. Findings Structural constraints including limited resources created challenging service environments in which work overload and stockouts were common. Health workers’ frustration with such conditions interacted with dissatisfaction with salary levels eroding service values and acting as a catalyst for different forms of absenteeism. Such behaviours exacerbated patient–provider ratios and increased the frequency of clinical and administrative shortcuts. Weak health information systems and lack of performance data undermined providers’ answerability to their employer and clients, and a lack of effective sanctions undermined supervisors’ ability to hold providers accountable for these transgressions. Weak answerability and enforceability contributed to a culture of impunity that masked and condoned weak service performance in all four sites. Conclusions Health centre performance is influenced by mechanisms of accountability, which are in turn shaped by dynamic interactions between system hardware and system software. Our

  8. Understanding the dynamic interactions driving Zambian health centre performance: a case-based health systems analysis.

    PubMed

    Topp, Stephanie M; Chipukuma, Julien M; Hanefeld, Johanna

    2015-05-01

    Despite being central to achieving improved population health outcomes, primary health centres in low- and middle-income settings continue to underperform. Little research exists to adequately explain how and why this is the case. This study aimed to test the relevance and usefulness of an adapted conceptual framework for improving our understanding of the mechanisms and causal pathways influencing primary health centre performance. A theory-driven, case-study approach was adopted. Four Zambian health centres were purposefully selected with case data including health-care worker interviews (n = 60); patient interviews (n = 180); direct observation of facility operations (2 weeks/centre) and key informant interviews (n = 14). Data were analysed to understand how the performance of each site was influenced by the dynamic interactions between system 'hardware' and 'software' acting on mechanisms of accountability. Structural constraints including limited resources created challenging service environments in which work overload and stockouts were common. Health workers' frustration with such conditions interacted with dissatisfaction with salary levels eroding service values and acting as a catalyst for different forms of absenteeism. Such behaviours exacerbated patient-provider ratios and increased the frequency of clinical and administrative shortcuts. Weak health information systems and lack of performance data undermined providers' answerability to their employer and clients, and a lack of effective sanctions undermined supervisors' ability to hold providers accountable for these transgressions. Weak answerability and enforceability contributed to a culture of impunity that masked and condoned weak service performance in all four sites. Health centre performance is influenced by mechanisms of accountability, which are in turn shaped by dynamic interactions between system hardware and system software. Our findings confirm the usefulness of combining Sheikh et al

  9. Starting Performance Analysis for Universal Motors by FEM

    NASA Astrophysics Data System (ADS)

    Kurihara, Kazumi; Sakamoto, Shin-Ichi

    This paper presents a novel transient analysis of the universal motors taking into account the time-varying brush-contact resistance and mechanical loss. The transient current, torque and speed during the starting process are computed by solving the electromagnetic, circuit and dynamic motion equations, simultaneously. The computed performances have been validated by tests in a 500-W, 2-pole, 50Hz, 100V universal motor.

  10. Computational analysis of Variable Thrust Engine (VTE) performance

    NASA Technical Reports Server (NTRS)

    Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.

    1993-01-01

    The Variable Thrust Engine (VTE) of the Orbital Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The performance of the VTE depends on a number of complex interacting phenomena such as atomization, spray dynamics, vaporization, turbulent mixing, convective/radiative heat transfer, and hypergolic combustion. This study involved the development of a comprehensive numerical methodology to facilitate detailed analysis of the VTE. An existing Computational Fluid Dynamics (CFD) code was extensively modified to include the following models: a two-liquid, two-phase Eulerian-Lagrangian spray model; a chemical equilibrium model; and a discrete ordinate radiation heat transfer model. The modified code was used to conduct a series of simulations to assess the effects of various physical phenomena and boundary conditions on the VTE performance. The details of the models and the results of the simulations are presented.

  11. Shoreline Position Dynamics: Measurement and Analysis

    NASA Astrophysics Data System (ADS)

    Barton, C. C.; Rigling, B.; Hunter, N.; Tebbens, S. F.

    2012-12-01

    The dynamics of sandy shoreline position is a fundamental property of complex beach face processes and is characterized by the power scaling exponent. Spectral analysis was performed on the temporal position of four sandy shorelines extracted from four shore perpendicular profiles each resurveyed approximately seven times per year over twenty-seven years at the Field Research Facility (FRF) by the U.S. Army Corps of Engineers, located at Kitty Hawk, NC. The four shorelines we studied are mean-higher-high-water (MHHW), mean-high-water (MHW), and mean-low-water (MLW) and mean-lower-low-water (MLLW) with elevations of 0.75m, 0.65m, -0.33m, and -0.37m respectively, relative to the NGVD29 geodetic datum. Spectral analysis used to quantify scaling exponents requires data evenly spaced in time. Our previous studies of shoreline dynamics used the Lomb Periodogram method for spectral analysis, which we now show does not return the correct scaling exponent for unevenly spaced data. New to this study is the use of slotted resampling and a linear predictor to construct an evenly spaced data set from an unevenly spaced data set which has been shown with synthetic data to return correct values of the scaling exponents. A periodogram linear regression (PLR) estimate is used to determine the scaling exponent β of the constructed evenly spaced time series. This study shows that sandy shoreline position exhibits nonlinear self-affine dynamics through time. The times series of each of the four shorelines has scaling exponents ranging as follows: MHHW, β = 1.3-2.2; MHW, β = 1.3-2.1; MLW, β = 1.2-1.6; and MLLW, β = 1.2-1.6. Time series with β greater than 1 are non-stationary (mean and standard deviation are not constant through time) and are increasingly internally correlated with increasing β. The range of scaling exponents of the MLW and MLLW shorelines, near β = 1.5, is indicative of a diffusion process. The range of scaling exponents for the MHW and MHHW shorelines

  12. Performance Analysis of Garbage Collection and Dynamic Reordering in a Lisp System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Llames, Rene Lim

    1991-01-01

    Generation based garbage collection and dynamic reordering of objects are two techniques for improving the efficiency of memory management in Lisp and similar dynamic language systems. An analysis of the effect of generation configuration is presented, focusing on the effect of a number of generations and generation capabilities. Analytic timing and survival models are used to represent garbage collection runtime and to derive structural results on its behavior. The survival model provides bounds on the age of objects surviving a garbage collection at a particular level. Empirical results show that execution time is most sensitive to the capacity of the youngest generation. A technique called scanning for transport statistics, for evaluating the effectiveness of reordering independent of main memory size, is presented.

  13. Fast Auroral Snapshot performance using a multi-body dynamic simulation

    NASA Technical Reports Server (NTRS)

    Zimbelman, Darrell; Walker, Mary

    1993-01-01

    This paper examines the complex dynamic interaction between two 2.6 m long stacer booms, four 30 m long flexible wire booms and the attitude control system of the Fast Auroral SnapshoT (FAST) spacecraft. The FAST vehicle will nominally operate as a negative orbit spinner, positioned in a 83 deg inclination, 350 x 4200 km orbit. For this study, a three-axis, non-linear, seven body dynamic simulation is developed using the TREETOPS software package. The significance of this approach is the ability to model each component of the FAST spacecraft as an individual member and connect them together in order to better understand the dynamic coupling between structures and the control system. Both the wire and stacer booms are modeled as separate bodies attached to a rigid central body. The wire booms are oriented perpendicular to the spin axis at right angles relative to each other, whereas the stacer booms are aligned with the spin axis. The analysis consists of a comparison between the simulated in-plane and out-of-plane boom motions with theoretically derived frequencies, and an examination of the dynamic coupling between the control system and boom oscillations. Results show that boom oscillations of up to 0.36 deg are acceptable in order to meet the performance requirements. The dynamic motion is well behaved when the precession coil is operating, however, activation of the spin coil produces an erratic trend in the spin rate which approaches the spin rate requirement.

  14. Dynamic stress analysis of smooth and notched fiber composite flexural specimens

    NASA Technical Reports Server (NTRS)

    Murthy, P. L. N.; Chamis, C. C.

    1984-01-01

    A detailed analysis of the dynamic stress field in smooth and notched fiber composite (Charpy-type) specimens is reported in this paper. The analysis is performed with the aid of the direct transient response analysis solution sequence of MSC/NASTRAN. Three unidirectional composites were chosen for the study. They are S-Glass/Epoxy, Kevlar/Epoxy and T-300/Epoxy composite systems. The specimens are subjected to an impact load which is modeled as a triangular impulse with a maximum of 2000 lb and a duration of 1 ms. The results are compared with those of static analysis of the specimens subjected to a peak load of 2000 lb. For the geometry and type of materials studied, the static analysis results gave close conservative estimates for the dynamic stresses. Another interesting inference from the study is that the impact induced effects are felt by S-Glass/Epoxy specimens sooner than Kevlar/Epoxy or T-300/Epoxy specimens.

  15. Development of patient collation system by kinetic analysis for chest dynamic radiogram with flat panel detector

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie

    2006-03-01

    In the picture archiving and communication system (PACS) environment, it is important that all images be stored in the correct location. However, if information such as the patient's name or identification number has been entered incorrectly, it is difficult to notice the error. The present study was performed to develop a system of patient collation automatically for dynamic radiogram examination by a kinetic analysis, and to evaluate the performance of the system. Dynamic chest radiographs during respiration were obtained by using a modified flat panel detector system. Our computer algorithm developed in this study was consisted of two main procedures, kinetic map imaging processing, and collation processing. Kinetic map processing is a new algorithm to visualize a movement for dynamic radiography; direction classification of optical flows and intensity-density transformation technique was performed. Collation processing consisted of analysis with an artificial neural network (ANN) and discrimination for Mahalanobis' generalized distance, those procedures were performed to evaluate a similarity of combination for the same person. Finally, we investigated the performance of our system using eight healthy volunteers' radiographs. The performance was shown as a sensitivity and specificity. The sensitivity and specificity for our system were shown 100% and 100%, respectively. This result indicated that our system has excellent performance for recognition of a patient. Our system will be useful in PACS management for dynamic chest radiography.

  16. Computational Fluid Dynamics Analysis of Thoracic Aortic Dissection

    NASA Astrophysics Data System (ADS)

    Tang, Yik; Fan, Yi; Cheng, Stephen; Chow, Kwok

    2011-11-01

    Thoracic Aortic Dissection (TAD) is a cardiovascular disease with high mortality. An aortic dissection is formed when blood infiltrates the layers of the vascular wall, and a new artificial channel, the false lumen, is created. The expansion of the blood vessel due to the weakened wall enhances the risk of rupture. Computational fluid dynamics analysis is performed to study the hemodynamics of this pathological condition. Both idealized geometry and realistic patient configurations from computed tomography (CT) images are investigated. Physiological boundary conditions from in vivo measurements are employed. Flow configuration and biomechanical forces are studied. Quantitative analysis allows clinicians to assess the risk of rupture in making decision regarding surgical intervention.

  17. Development of a helicopter rotor/propulsion system dynamics analysis

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Hull, R.

    1982-01-01

    A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.

  18. [Monochromatic aberration in accommodation. Dynamic wavefront analysis].

    PubMed

    Fritzsch, M; Dawczynski, J; Jurkutat, S; Vollandt, R; Strobel, J

    2011-06-01

    Monochromatic aberrations may influence the visual acuity of the eye. They are not stable and can be affected by different factors. The subject of the following paper is the dynamic investigation of the changes in wavefront aberration with accommodation. Dynamic measurement of higher and lower order aberrations was performed with a WASCA Wavefront Analyzer (Carl-Zeiss-Meditec) and a specially constructed target device for aligning objects in far and near distances on 25 subjects aged from 15 to 27 years old. Wavefront aberrations showed some significant changes in accommodation. In addition to the characteristic sphere reaction accompanying miosis and changes in horizontal prism (Z(1) (1)) in the sense of a convergence movement of the eyeball also occurred. Furthermore defocus rose (Z(2) (0)) and astigmatism (Z(2) (-2)) changed. In higher-order aberrations a decrease in coma-like Zernike polynomials (Z(3) (-1), Z(3) (1)) was found. The most obvious change appeared in spherical aberration (Z(4) (0)) which increased and changed from positive to negative. In addition the secondary astigmatism (Z(4) (-2)) and quadrafoil (Z(4) (4)) rise also increased. The total root mean square (RMS), as well as the higher-order aberrations (RMS-HO) significantly increased in accommodation which is associated with a theoretical reduction of visual acuity. An analysis of the influence of pupil size on aberrations showed significant increases in defocus, spherical aberration, quadrafoil, RMS and RMS HO by increasing pupil diameter. By accommodation-associated miosis, the growing aberrations are partially compensated by focusing on near objects. Temporal analysis of the accommodation process with dynamic wavefront analysis revealed significant delays in pupil response and changing of prism in relation to the sphere reaction. In accommodation to near objects a discrete time ahead of third order aberrations in relation to the sphere response was found. Using dynamic wavefront measurement

  19. Incremental Dynamic Analysis of Koyna Dam under Repeated Ground Motions

    NASA Astrophysics Data System (ADS)

    Zainab Nik Azizan, Nik; Majid, Taksiah A.; Nazri, Fadzli Mohamed; Maity, Damodar; Abdullah, Junaidah

    2018-03-01

    This paper discovers the incremental dynamic analysis (IDA) of concrete gravity dam under single and repeated earthquake loadings to identify the limit state of the dam. Seven ground motions with horizontal and vertical direction as seismic input considered in the nonlinear dynamic analysis based on the real repeated earthquake in the worldwide. All the ground motions convert to respond spectrum and scaled according to the developed elastic respond spectrum in order to match the characteristic of the ground motion to the soil type. The scaled was depends on the fundamental period, T1 of the dam. The Koyna dam has been selected as a case study for the purpose of the analysis by assuming that no sliding and rigid foundation, has been estimated. IDA curves for Koyna dam developed for single and repeated ground motions and the performance level of the dam identifies. The IDA curve of repeated ground motion shown stiffer rather than single ground motion. The ultimate state displacement for a single event is 45.59mm and decreased to 39.33mm under repeated events which are decreased about 14%. This showed that the performance level of the dam based on seismic loadings depend on ground motion pattern.

  20. Dynamics modeling and loads analysis of an offshore floating wind turbine

    NASA Astrophysics Data System (ADS)

    Jonkman, Jason Mark

    The vast deepwater wind resource represents a potential to use offshore floating wind turbines to power much of the world with renewable energy. Many floating wind turbine concepts have been proposed, but dynamics models, which account for the wind inflow, aerodynamics, elasticity, and controls of the wind turbine, along with the incident waves, sea current, hydrodynamics, and platform and mooring dynamics of the floater, were needed to determine their technical and economic feasibility. This work presents the development of a comprehensive simulation tool for modeling the coupled dynamic response of offshore floating wind turbines, the verification of the simulation tool through model-to-model comparisons, and the application of the simulation tool to an integrated loads analysis for one of the promising system concepts. A fully coupled aero-hydro-servo-elastic simulation tool was developed with enough sophistication to address the limitations of previous frequency- and time-domain studies and to have the features required to perform loads analyses for a variety of wind turbine, support platform, and mooring system configurations. The simulation capability was tested using model-to-model comparisons. The favorable results of all of the verification exercises provided confidence to perform more thorough analyses. The simulation tool was then applied in a preliminary loads analysis of a wind turbine supported by a barge with catenary moorings. A barge platform was chosen because of its simplicity in design, fabrication, and installation. The loads analysis aimed to characterize the dynamic response and to identify potential loads and instabilities resulting from the dynamic couplings between the turbine and the floating barge in the presence of combined wind and wave excitation. The coupling between the wind turbine response and the barge-pitch motion, in particular, produced larger extreme loads in the floating turbine than experienced by an equivalent land

  1. Conceptual design and analysis of a dynamic scale model of the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Davis, D. A.; Gronet, M. J.; Tan, M. K.; Thorne, J.

    1994-01-01

    This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.

  2. Analysis of material parameter effects on fluidlastic isolators performance

    NASA Astrophysics Data System (ADS)

    Cheng, Q. Y.; Deng, J. H.; Feng, Z. Z.; Qian, F.

    2018-01-01

    Control of vibration in helicopters has always been a complex and challenging task. The fluidlastic isolators become more and more widely used because the fluids are non-toxic, non-corrosive, nonflammable, and compatible with most elastomers and adhesives. In the field of the fluidlastic isolators design, the selection of design parameters of fluid and rubber is very important to obtain efficient vibration-suppressed. Aiming at getting the property of fluidlastic isolator to material design parameters, a dynamic equation is set up based on the dynamic theory. And the dynamic analysis is carried out. The influences of design parameters on the property of fluidlastic isolator are calculated. The material parameters examined are the properties of fluid and rubber. Analysis results showed that the design parameters such as density of fluid, viscosity coefficient of fluid, stiffness of rubber (K1) and loss coefficient of rubber have obvious influence on the performance of isolator. Base on the results of the study it is concluded that the efficient vibration-suppressed can be obtained by the selection of design parameters.

  3. Adaptation and learning: characteristic time scales of performance dynamics.

    PubMed

    Newell, Karl M; Mayer-Kress, Gottfried; Hong, S Lee; Liu, Yeou-Teh

    2009-12-01

    A multiple time scales landscape model is presented that reveals structures of performance dynamics that were not resolved in the traditional power law analysis of motor learning. It shows the co-existence of separate processes during and between practice sessions that evolve in two independent dimensions characterized by time scales that differ by about an order of magnitude. Performance along the slow persistent dimension of learning improves often as much and sometimes more during rest (memory consolidation and/or insight generation processes) than during a practice session itself. In contrast, the process characterized by the fast, transient dimension of adaptation reverses direction between practice sessions, thereby significantly degrading performance at the beginning of the next practice session (warm-up decrement). The theoretical model fits qualitatively and quantitatively the data from Snoddy's [Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10, 1-36] classic learning study of mirror tracing and other averaged and individual data sets, and provides a new account of the processes of change in adaptation and learning. 2009 Elsevier B.V. All rights reserved.

  4. Dynamic Analysis of Spur Gear Transmissions (DANST). PC Version 3.00 User Manual

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Lin, Hsiang Hsi; Delgado, Irebert R.

    1996-01-01

    DANST is a FORTRAN computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the static transmission error, dynamic load, tooth bending stress and other properties of spur gears as they are influenced by operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratios ranging from one to three. It was designed to be easy to use and it is extensively documented in several previous reports and by comments in the source code. This report describes installing and using a new PC version of DANST, covers input data requirements and presents examples.

  5. Structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.

    1985-01-01

    Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.

  6. Employment of CB models for non-linear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  7. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    PubMed

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  8. Dynamic performance of maximum power point tracking circuits using sinusoidal extremum seeking control for photovoltaic generation

    NASA Astrophysics Data System (ADS)

    Leyva, R.; Artillan, P.; Cabal, C.; Estibals, B.; Alonso, C.

    2011-04-01

    The article studies the dynamic performance of a family of maximum power point tracking circuits used for photovoltaic generation. It revisits the sinusoidal extremum seeking control (ESC) technique which can be considered as a particular subgroup of the Perturb and Observe algorithms. The sinusoidal ESC technique consists of adding a small sinusoidal disturbance to the input and processing the perturbed output to drive the operating point at its maximum. The output processing involves a synchronous multiplication and a filtering stage. The filter instance determines the dynamic performance of the MPPT based on sinusoidal ESC principle. The approach uses the well-known root-locus method to give insight about damping degree and settlement time of maximum-seeking waveforms. This article shows the transient waveforms in three different filter instances to illustrate the approach. Finally, an experimental prototype corroborates the dynamic analysis.

  9. The implications of linking the dynamic performance and turnover literatures.

    PubMed

    Sturman, M C; Trevor, C O

    2001-08-01

    This article examines how the literatures of dynamic performance and the performance-turnover relationship inform each other. The nonrandom performance turnover relationship suggests that dynamic performance studies may be biased by their elimination of participants who do not remain for the entire study period. The authors demonstrated that the performance slopes of those who leave an organization differ from the performance slopes of those who remain. This finding suggests that studies of the performance-turnover relationship need to consider employee performance trends when predicting turnover. Replicating and extending the research of D. A. Harrison, M. Virick, and S. William (1996), the authors found that performance changes from the previous month and performance trends measured over a longer time period explained variance in voluntary turnover beyond current performance. Finally, the authors showed that performance trends interacted with current performance in the prediction of voluntary turnover.

  10. Application Analysis and Decision with Dynamic Analysis

    DTIC Science & Technology

    2014-12-01

    pushes the application file and the JSON file containing the metadata from the database . When the 2 files are in place, the consumer thread starts...human analysts and stores it in a database . It would then use some of these data to generate a risk score for the application. However, static analysis...and store them in the primary A2D database for future analysis. 15. SUBJECT TERMS Android, dynamic analysis 16. SECURITY CLASSIFICATION OF: 17

  11. Model-Based Analysis of Cell Cycle Responses to Dynamically Changing Environments

    PubMed Central

    Seaton, Daniel D; Krishnan, J

    2016-01-01

    Cell cycle progression is carefully coordinated with a cell’s intra- and extracellular environment. While some pathways have been identified that communicate information from the environment to the cell cycle, a systematic understanding of how this information is dynamically processed is lacking. We address this by performing dynamic sensitivity analysis of three mathematical models of the cell cycle in Saccharomyces cerevisiae. We demonstrate that these models make broadly consistent qualitative predictions about cell cycle progression under dynamically changing conditions. For example, it is shown that the models predict anticorrelated changes in cell size and cell cycle duration under different environments independently of the growth rate. This prediction is validated by comparison to available literature data. Other consistent patterns emerge, such as widespread nonmonotonic changes in cell size down generations in response to parameter changes. We extend our analysis by investigating glucose signalling to the cell cycle, showing that known regulation of Cln3 translation and Cln1,2 transcription by glucose is sufficient to explain the experimentally observed changes in cell cycle dynamics at different glucose concentrations. Together, these results provide a framework for understanding the complex responses the cell cycle is capable of producing in response to dynamic environments. PMID:26741131

  12. Aurally aided visual search performance in a dynamic environment

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Watamaniuk, Scott N. J.; Gilkey, Robert H.

    2008-04-01

    Previous research has repeatedly shown that people can find a visual target significantly faster if spatial (3D) auditory displays direct attention to the corresponding spatial location. However, previous research has only examined searches for static (non-moving) targets in static visual environments. Since motion has been shown to affect visual acuity, auditory acuity, and visual search performance, it is important to characterize aurally-aided search performance in environments that contain dynamic (moving) stimuli. In the present study, visual search performance in both static and dynamic environments is investigated with and without 3D auditory cues. Eight participants searched for a single visual target hidden among 15 distracting stimuli. In the baseline audio condition, no auditory cues were provided. In the 3D audio condition, a virtual 3D sound cue originated from the same spatial location as the target. In the static search condition, the target and distractors did not move. In the dynamic search condition, all stimuli moved on various trajectories at 10 deg/s. The results showed a clear benefit of 3D audio that was present in both static and dynamic environments, suggesting that spatial auditory displays continue to be an attractive option for a variety of aircraft, motor vehicle, and command & control applications.

  13. Impact of wind generator infed on dynamic performance of a power system

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ahsanul

    Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by

  14. Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code

    DOE PAGES

    Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc

    2018-02-02

    The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less

  15. Dynamic event tree analysis with the SAS4A/SASSYS-1 safety analysis code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jankovsky, Zachary K.; Denman, Matthew R.; Aldemir, Tunc

    The consequences of a transient in an advanced sodium-cooled fast reactor are difficult to capture with the traditional approach to probabilistic risk assessment (PRA). Numerous safety-relevant systems are passive and may have operational states that cannot be represented by binary success or failure. In addition, the specific order and timing of events may be crucial which necessitates the use of dynamic PRA tools such as ADAPT. The modifications to the SAS4A/SASSYS-1 sodium-cooled fast reactor safety analysis code for linking it to ADAPT to perform a dynamic PRA are described. A test case is used to demonstrate the linking process andmore » to illustrate the type of insights that may be gained with this process. Finally, newly-developed dynamic importance measures are used to assess the significance of reactor parameters/constituents on calculated consequences of initiating events.« less

  16. Verification of nonlinear dynamic structural test results by combined image processing and acoustic analysis

    NASA Astrophysics Data System (ADS)

    Tene, Yair; Tene, Noam; Tene, G.

    1993-08-01

    An interactive data fusion methodology of video, audio, and nonlinear structural dynamic analysis for potential application in forensic engineering is presented. The methodology was developed and successfully demonstrated in the analysis of heavy transportable bridge collapse during preparation for testing. Multiple bridge elements failures were identified after the collapse, including fracture, cracks and rupture of high performance structural materials. Videotape recording by hand held camcorder was the only source of information about the collapse sequence. The interactive data fusion methodology resulted in extracting relevant information form the videotape and from dynamic nonlinear structural analysis, leading to full account of the sequence of events during the bridge collapse.

  17. Analysis of the structure and dynamics of human serum albumin.

    PubMed

    Guizado, T R Cuya

    2014-10-01

    Human serum albumin (HSA) is a biologically relevant protein that binds a variety of drugs and other small molecules. No less than 50 structures are deposited in the RCSB Protein Data Bank (PDB). Based on these structures, we first performed a clustering analysis. Despite the diversity of ligands, only two well defined conformations are detected, with a deviation of 0.46 nm between the average structures of the two clusters, while deviations within each cluster are smaller than 0.08 nm. Those two conformations are representative of the apoprotein and the HSA-myristate complex already identified in previous literature. Considering the structures within each cluster as a representative sample of the dynamical states of the corresponding conformation, we scrutinize the structural and dynamical differences between both conformations. Analysis of the fluctuations within each cluster set reveals that domain II is the most rigid one and better matches both structures. Then, taking this domain as reference, we show that the structural difference between both conformations can be expressed in terms of twist and hinge motions of domains I and III, respectively. We also characterize the dynamical difference between conformations by computing correlations and principal components for each set of dynamical states. The two conformations display different collective motions. The results are compared with those obtained from the trajectories of short molecular dynamics simulations, giving consistent outcomes. Let us remark that, beyond the relevance of the results for the structural and dynamical characterization of HAS conformations, the present methodology could be extended to other proteins in the PDB archive.

  18. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  19. Analysis of cerebral vessels dynamics using experimental data with missed segments

    NASA Astrophysics Data System (ADS)

    Pavlova, O. N.; Abdurashitov, A. S.; Ulanova, M. V.; Shihalov, G. M.; Semyachkina-Glushkovskaya, O. V.; Pavlov, A. N.

    2018-04-01

    Physiological signals often contain various bad segments that occur due to artifacts, failures of the recording equipment or varying experimental conditions. The related experimental data need to be preprocessed to avoid such parts of recordings. In the case of few bad segments, they can simply be removed from the signal and its analysis is further performed. However, when there are many extracted segments, the internal structure of the analyzed physiological process may be destroyed, and it is unclear whether such signal can be used in diagnostic-related studies. In this paper we address this problem for the case of cerebral vessels dynamics. We perform analysis of simulated data in order to reveal general features of quantifying scaling features of complex signals with distinct correlation properties and show that the effects of data loss are significantly different for experimental data with long-range correlations and anti-correlations. We conclude that the cerebral vessels dynamics is significantly less sensitive to missed data fragments as compared with signals with anti-correlated statistics.

  20. Analysis of dynamic multiplicity fluctuations at PHOBOS

    NASA Astrophysics Data System (ADS)

    Chai, Zhengwei; PHOBOS Collaboration; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tang, J. L.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wuosmaa, A. H.; Wyslouch, B.

    2005-01-01

    This paper presents the analysis of the dynamic fluctuations in the inclusive charged particle multiplicity measured by PHOBOS for Au+Au collisions at surdsNN = 200GeV within the pseudo-rapidity range of -3 < η < 3. First the definition of the fluctuations observables used in this analysis is presented, together with the discussion of their physics meaning. Then the procedure for the extraction of dynamic fluctuations is described. Some preliminary results are included to illustrate the correlation features of the fluctuation observable. New dynamic fluctuations results will be available in a later publication.

  1. Integrating dynamic fuzzy C-means, data envelopment analysis and artificial neural network to online prediction performance of companies in stock exchange

    NASA Astrophysics Data System (ADS)

    Jahangoshai Rezaee, Mustafa; Jozmaleki, Mehrdad; Valipour, Mahsa

    2018-01-01

    One of the main features to invest in stock exchange companies is their financial performance. On the other hand, conventional evaluation methods such as data envelopment analysis are not only a retrospective process, but are also a process, which are incomplete and ineffective approaches to evaluate the companies in the future. To remove this problem, it is required to plan an expert system for evaluating organizations when the online data are received from stock exchange market. This paper deals with an approach for predicting the online financial performance of companies when data are received in different time's intervals. The proposed approach is based on integrating fuzzy C-means (FCM), data envelopment analysis (DEA) and artificial neural network (ANN). The classical FCM method is unable to update the number of clusters and their members when the data are changed or the new data are received. Hence, this method is developed in order to make dynamic features for the number of clusters and clusters members in classical FCM. Then, DEA is used to evaluate DMUs by using financial ratios to provide targets in neural network. Finally, the designed network is trained and prepared for predicting companies' future performance. The data on Tehran Stock Market companies for six consecutive years (2007-2012) are used to show the abilities of the proposed approach.

  2. Dynamic analysis of the deployment for mesh reflector deployable antennas with the cable-net structure

    NASA Astrophysics Data System (ADS)

    Zhang, Yiqun; Li, Na; Yang, Guigeng; Ru, Wenrui

    2017-02-01

    This paper presents a dynamic analysis approach for the composite structure of a deployable truss and cable-net system. An Elastic Catenary Element is adopted to model the slack/tensioned cables. Then, from the energy standpoint, the kinetic energy, elasticity-potential energy and geopotential energy of the cable-net structure and deployable truss are derived. Thus, the flexible multi-body dynamic model of the deployable antenna is built based on the Lagrange equation. The effect of the cable-net tension on the antenna truss is discussed and compared with previous publications and a dynamic deployment analysis is performed. Both the simulation and experimental results verify the validity of the method presented.

  3. Performance of a docking/molecular dynamics protocol for virtual screening of nutlin-class inhibitors of Mdmx.

    PubMed

    Bharatham, Nagakumar; Finch, Kristin E; Min, Jaeki; Mayasundari, Anand; Dyer, Michael A; Guy, R Kiplin; Bashford, Donald

    2017-06-01

    A virtual screening protocol involving docking and molecular dynamics has been tested against the results of fluorescence polarization assays testing the potency of a series of compounds of the nutlin class for inhibition of the interaction between p53 and Mdmx, an interaction identified as a driver of certain cancers. The protocol uses a standard docking method (AutoDock) with a cutoff based on the AutoDock score (ADscore), followed by molecular dynamics simulation with a cutoff based on root-mean-square-deviation (RMSD) from the docked pose. An analysis of the experimental and computational results shows modest performance of ADscore alone, but dramatically improved performance when RMSD is also used. Published by Elsevier Inc.

  4. Principal component analysis of indocyanine green fluorescence dynamics for diagnosis of vascular diseases

    NASA Astrophysics Data System (ADS)

    Seo, Jihye; An, Yuri; Lee, Jungsul; Choi, Chulhee

    2015-03-01

    Indocyanine green (ICG), a near-infrared fluorophore, has been used in visualization of vascular structure and non-invasive diagnosis of vascular disease. Although many imaging techniques have been developed, there are still limitations in diagnosis of vascular diseases. We have recently developed a minimally invasive diagnostics system based on ICG fluorescence imaging for sensitive detection of vascular insufficiency. In this study, we used principal component analysis (PCA) to examine ICG spatiotemporal profile and to obtain pathophysiological information from ICG dynamics. Here we demonstrated that principal components of ICG dynamics in both feet showed significant differences between normal control and diabetic patients with vascula complications. We extracted the PCA time courses of the first three components and found distinct pattern in diabetic patient. We propose that PCA of ICG dynamics reveal better classification performance compared to fluorescence intensity analysis. We anticipate that specific feature of spatiotemporal ICG dynamics can be useful in diagnosis of various vascular diseases.

  5. Requirements Formulation and Dynamic Jitter Analysis for Fourier-Kelvin Stellar Interferometer

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia; Hyde, Tristram; Blaurock, Carl; Bolognese, Jeff; Howard, Joseph; Danchi, William

    2004-01-01

    The Fourier-Kelvin Stellar Interferometer (FKSI) has been proposed to detect and characterize extra solar giant planets. The baseline configuration for FKSI is a two- aperture, structurally connected nulling interferometer, capable of providing null depth less than lo4 in the infrared. The objective of this paper is to summarize the process for setting the top level requirements and the jitter analysis performed on FKSI to date. The first part of the paper discusses the derivation of dynamic stability requirements, necessary for meeting the FKSI nulling demands. An integrated model including structures, optics, and control systems has been developed to support dynamic jitter analysis and requirements verification. The second part of the paper describes how the integrated model is used to investigate the effects of reaction wheel disturbances on pointing and optical path difference stabilities.

  6. Dynamic neural networks based on-line identification and control of high performance motor drives

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  7. Motif-Synchronization: A new method for analysis of dynamic brain networks with EEG

    NASA Astrophysics Data System (ADS)

    Rosário, R. S.; Cardoso, P. T.; Muñoz, M. A.; Montoya, P.; Miranda, J. G. V.

    2015-12-01

    The major aim of this work was to propose a new association method known as Motif-Synchronization. This method was developed to provide information about the synchronization degree and direction between two nodes of a network by counting the number of occurrences of some patterns between any two time series. The second objective of this work was to present a new methodology for the analysis of dynamic brain networks, by combining the Time-Varying Graph (TVG) method with a directional association method. We further applied the new algorithms to a set of human electroencephalogram (EEG) signals to perform a dynamic analysis of the brain functional networks (BFN).

  8. Double symbolic joint entropy in nonlinear dynamic complexity analysis

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-07-01

    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  9. Locomotive dynamic performance under traction/braking conditions considering effect of gear transmissions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2018-07-01

    Traction or braking operations are usually applied to trains or locomotives for acceleration, speed adjustment, and stopping. During these operations, gear transmission equipment plays a very significant role in the delivery of traction or electrical braking power. Failures of the gear transmissions are likely to cause power loses and even threaten the operation safety of the train. Its dynamic performance is closely related to the normal operation and service safety of the entire train, especially under some emergency braking conditions. In this paper, a locomotive-track coupled vertical-longitudinal dynamics model is employed with considering the dynamic action from the gear transmissions. This dynamics model enables the detailed analysis and more practical simulation on the characteristics of power transmission path, namely motor-gear transmission-wheelset-longitudinal motion of locomotive, especially for traction or braking conditions. Multi-excitation sources, such as time-varying mesh stiffness and nonlinear wheel-rail contact excitations, are considered in this study. This dynamics model is then validated by comparing the simulated results with the experimental test results under braking conditions. The calculated results indicate that involvement of gear transmission could reveal the load reduction of the wheelset due to transmitted forces. Vibrations of the wheelset and the motor are dominated by variation of the gear dynamic mesh forces in the low speed range and by rail geometric irregularity in the higher speed range. Rail vertical geometric irregularity could also cause wheelset longitudinal vibrations, and do modulations to the gear dynamic mesh forces. Besides, the hauling weight has little effect on the locomotive vibrations and the dynamic mesh forces of the gear transmissions for both traction and braking conditions under the same running speed.

  10. Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis E.

    2013-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This proposal describes an approach to validate the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft. The research described here is absolutely cutting edge. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional"validation by test only'' mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computationaf Fluid Dynamics can be used to veritY these requirements; however, the model must be validated by test data. The proposed research project includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT and OPEN FOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid . . . Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around

  11. A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty

    NASA Astrophysics Data System (ADS)

    Kewlani, Gaurav; Crawford, Justin; Iagnemma, Karl

    2012-05-01

    The ability of ground vehicles to quickly and accurately analyse their dynamic response to a given input is critical to their safety and efficient autonomous operation. In field conditions, significant uncertainty is associated with terrain and/or vehicle parameter estimates, and this uncertainty must be considered in the analysis of vehicle motion dynamics. Here, polynomial chaos approaches that explicitly consider parametric uncertainty during modelling of vehicle dynamics are presented. They are shown to be computationally more efficient than the standard Monte Carlo scheme, and experimental results compared with the simulation results performed on ANVEL (a vehicle simulator) indicate that the method can be utilised for efficient and accurate prediction of vehicle motion in realistic scenarios.

  12. Effects of sample injection amount and time-of-flight mass spectrometric detection dynamic range on metabolome analysis by high-performance chemical isotope labeling LC-MS.

    PubMed

    Zhou, Ruokun; Li, Liang

    2015-04-06

    The effect of sample injection amount on metabolome analysis in a chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) platform was investigated. The performance of time-of-flight (TOF) mass spectrometers with and without a high-dynamic-range (HD) detection system was compared in the analysis of (12)C2/(13)C2-dansyl labeled human urine samples. An average of 1635 ± 21 (n = 3) peak pairs or putative metabolites was detected using the HD-TOF-MS, compared to 1429 ± 37 peak pairs from a conventional or non-HD TOF-MS. In both instruments, signal saturation was observed. However, in the HD-TOF-MS, signal saturation was mainly caused by the ionization process, while in the non-HD TOF-MS, it was caused by the detection process. To extend the MS detection range in the non-HD TOF-MS, an automated switching from using (12)C to (13)C-natural abundance peaks for peak ratio calculation when the (12)C peaks are saturated has been implemented in IsoMS, a software tool for processing CIL LC-MS data. This work illustrates that injecting an optimal sample amount is important to maximize the metabolome coverage while avoiding the sample carryover problem often associated with over-injection. A TOF mass spectrometer with an enhanced detection dynamic range can also significantly increase the number of peak pairs detected. In chemical isotope labeling (CIL) LC-MS, relative metabolite quantification is done by measuring the peak ratio of a (13)C2-/(12)C2-labeled peak pair for a given metabolite present in two comparative samples. The dynamic range of peak ratio measurement does not need to be very large, as only subtle changes of metabolite concentrations are encountered in most metabolomic studies where relative metabolome quantification of different groups of samples is performed. However, the absolute concentrations of different metabolites can be very different, requiring a technique to provide a wide detection dynamic range to allow the detection of as

  13. Dynamic Network-Based Epistasis Analysis: Boolean Examples

    PubMed Central

    Azpeitia, Eugenio; Benítez, Mariana; Padilla-Longoria, Pablo; Espinosa-Soto, Carlos; Alvarez-Buylla, Elena R.

    2011-01-01

    In this article we focus on how the hierarchical and single-path assumptions of epistasis analysis can bias the inference of gene regulatory networks. Here we emphasize the critical importance of dynamic analyses, and specifically illustrate the use of Boolean network models. Epistasis in a broad sense refers to gene interactions, however, as originally proposed by Bateson, epistasis is defined as the blocking of a particular allelic effect due to the effect of another allele at a different locus (herein, classical epistasis). Classical epistasis analysis has proven powerful and useful, allowing researchers to infer and assign directionality to gene interactions. As larger data sets are becoming available, the analysis of classical epistasis is being complemented with computer science tools and system biology approaches. We show that when the hierarchical and single-path assumptions are not met in classical epistasis analysis, the access to relevant information and the correct inference of gene interaction topologies is hindered, and it becomes necessary to consider the temporal dynamics of gene interactions. The use of dynamical networks can overcome these limitations. We particularly focus on the use of Boolean networks that, like classical epistasis analysis, relies on logical formalisms, and hence can complement classical epistasis analysis and relax its assumptions. We develop a couple of theoretical examples and analyze them from a dynamic Boolean network model perspective. Boolean networks could help to guide additional experiments and discern among alternative regulatory schemes that would be impossible or difficult to infer without the elimination of these assumption from the classical epistasis analysis. We also use examples from the literature to show how a Boolean network-based approach has resolved ambiguities and guided epistasis analysis. Our article complements previous accounts, not only by focusing on the implications of the hierarchical and

  14. Dynamic Factor Analysis Models with Time-Varying Parameters

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian

    2011-01-01

    Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor…

  15. Structural Dynamics Analysis and Research for FEA Modeling Method of a Light High Resolution CCD Camera

    NASA Astrophysics Data System (ADS)

    Sun, Jiwen; Wei, Ling; Fu, Danying

    2002-01-01

    resolution and wide swath. In order to assure its high optical precision smoothly passing the rigorous dynamic load of launch, it should be of high structural rigidity. Therefore, a careful study of the dynamic features of the camera structure should be performed. Pro/E. An interference examination is performed on the precise CAD model of the camera for mending the structural design. for the first time in China, and the analysis of structural dynamic of the camera is accomplished by applying the structural analysis code PATRAN and NASTRAN. The main research programs include: 1) the comparative calculation of modes analysis of the critical structure of the camera is achieved by using 4 nodes and 10 nodes tetrahedral elements respectively, so as to confirm the most reasonable general model; 2) through the modes analysis of the camera from several cases, the inherent frequencies and modes are obtained and further the rationality of the structural design of the camera is proved; 3) the static analysis of the camera under self gravity and overloads is completed and the relevant deformation and stress distributions are gained; 4) the response calculation of sine vibration of the camera is completed and the corresponding response curve and maximum acceleration response with corresponding frequencies are obtained. software technique is accurate and efficient. sensitivity, the dynamic design and engineering optimization of the critical structure of the camera are discussed. fundamental technology in design of forecoming space optical instruments.

  16. Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom

    2013-04-01

    It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C

  17. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Suarez, Vicente J.; Lewandowski, Edward J.; Callahan, John

    2006-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical RPS launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources was designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  18. SRG110 Stirling Generator Dynamic Simulator Vibration Test Results and Analysis Correlation

    NASA Technical Reports Server (NTRS)

    Lewandowski, Edward J.; Suarez, Vicente J.; Goodnight, Thomas W.; Callahan, John

    2007-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin (LM), and NASA Glenn Research Center (GRC) have been developing the Stirling Radioisotope Generator (SRG110) for use as a power system for space science missions. The launch environment enveloping potential missions results in a random input spectrum that is significantly higher than historical radioisotope power system (RPS) launch levels and is a challenge for designers. Analysis presented in prior work predicted that tailoring the compliance at the generator-spacecraft interface reduced the dynamic response of the system thereby allowing higher launch load input levels and expanding the range of potential generator missions. To confirm analytical predictions, a dynamic simulator representing the generator structure, Stirling convertors and heat sources were designed and built for testing with and without a compliant interface. Finite element analysis was performed to guide the generator simulator and compliant interface design so that test modes and frequencies were representative of the SRG110 generator. This paper presents the dynamic simulator design, the test setup and methodology, test article modes and frequencies and dynamic responses, and post-test analysis results. With the compliant interface, component responses to an input environment exceeding the SRG110 qualification level spectrum were all within design allowables. Post-test analysis included finite element model tuning to match test frequencies and random response analysis using the test input spectrum. Analytical results were in good overall agreement with the test results and confirmed previous predictions that the SRG110 power system may be considered for a broad range of potential missions, including those with demanding launch environments.

  19. The dynamics of shared leadership: building trust and enhancing performance.

    PubMed

    Drescher, Marcus A; Korsgaard, M Audrey; Welpe, Isabell M; Picot, Arnold; Wigand, Rolf T

    2014-09-01

    In this study, we examined how the dynamics of shared leadership are related to group performance. We propose that, over time, the expansion of shared leadership within groups is related to growth in group trust. In turn, growth in group trust is related to performance improvement. Longitudinal data from 142 groups engaged in a strategic simulation game over a 4-month period provide support for positive changes in trust mediating the relationship between positive changes in shared leadership and positive changes in performance. Our findings contribute to the literature on shared leadership and group dynamics by demonstrating how the growth in shared leadership contributes to the emergence of trust and a positive performance trend over time. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Approaches to Cycle Analysis and Performance Metrics

    NASA Technical Reports Server (NTRS)

    Parson, Daniel E.

    2003-01-01

    The following notes were prepared as part of an American Institute of Aeronautics and Astronautics (AIAA) sponsored short course entitled Air Breathing Pulse Detonation Engine (PDE) Technology. The course was presented in January of 2003, and again in July of 2004 at two different AIAA meetings. It was taught by seven instructors, each of whom provided information on particular areas of PDE research. These notes cover two areas. The first is titled Approaches to Cycle Analysis and Performance Metrics. Here, the various methods of cycle analysis are introduced. These range from algebraic, thermodynamic equations, to single and multi-dimensional Computational Fluid Dynamic (CFD) solutions. Also discussed are the various means by which performance is measured, and how these are applied in a device which is fundamentally unsteady. The second topic covered is titled PDE Hybrid Applications. Here the concept of coupling a PDE to a conventional turbomachinery based engine is explored. Motivation for such a configuration is provided in the form of potential thermodynamic benefits. This is accompanied by a discussion of challenges to the technology.

  1. A microcosm of musical expression: II. Quantitative analysis of pianists' dynamics in the initial measures of Chopin's Etude in E major.

    PubMed

    Repp, B H

    1999-03-01

    Patterns of expressive dynamics were measured in bars 1-5 of 115 commercially recorded performances of Chopin's Etude in E major, op. 10, No. 3. The grand average pattern (or dynamic profile) was representative of many performances and highly similar to the average dynamic profile of a group of advanced student performances, which suggests a widely shared central norm of expressive dynamics. The individual dynamic profiles were subjected to principal components analysis, which yielded Varimax-rotated components, each representing a different, nonstandard dynamic profile associated with a small subset of performances. Most performances had dynamic patterns resembling a mixture of several components, and no clustering of of performances into distinct groups was apparent. Some weak relationships of dynamic profiles with sociocultural variables were found, most notably a tendency of female pianists to exhibit a greater dynamic range in the melody. Within the melody, there were no significant relationships between expressive timing [Repp, J. Acoust. Soc. Am. 104, 1085-1100 (1998)] and expressive dynamics. These two important dimensions seemed to be controlled independently at this local level and thus offer the artist many degrees of freedom in giving a melody expressive shape.

  2. The Development of a Handbook for Astrobee F Performance and Stability Analysis

    NASA Technical Reports Server (NTRS)

    Wolf, R. S.

    1982-01-01

    An astrobee F performance and stability analysis is presented, for use by the NASA Sounding Rocket Division. The performance analysis provides information regarding altitude, mach number, dynamic pressure, and velocity as functions of time since launch. It is found that payload weight has the greatest effect on performance, and performance prediction accuracy was calculated to remain within 1%. In addition, to assure sufficient flight stability, a predicted rigid-body static margin of at least 8% of the total vehicle length is required. Finally, fin cant angle predictions are given in order to achieve a 2.5 cycle per second burnout roll rate, based on obtaining 75% of the steady roll rate. It is noted that this method can be used by flight performance engineers to create a similar handbook for any sounding rocket series.

  3. A Cross-Platform Infrastructure for Scalable Runtime Application Performance Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jack Dongarra; Shirley Moore; Bart Miller, Jeffrey Hollingsworth

    2005-03-15

    The purpose of this project was to build an extensible cross-platform infrastructure to facilitate the development of accurate and portable performance analysis tools for current and future high performance computing (HPC) architectures. Major accomplishments include tools and techniques for multidimensional performance analysis, as well as improved support for dynamic performance monitoring of multithreaded and multiprocess applications. Previous performance tool development has been limited by the burden of having to re-write a platform-dependent low-level substrate for each architecture/operating system pair in order to obtain the necessary performance data from the system. Manual interpretation of performance data is not scalable for large-scalemore » long-running applications. The infrastructure developed by this project provides a foundation for building portable and scalable performance analysis tools, with the end goal being to provide application developers with the information they need to analyze, understand, and tune the performance of terascale applications on HPC architectures. The backend portion of the infrastructure provides runtime instrumentation capability and access to hardware performance counters, with thread-safety for shared memory environments and a communication substrate to support instrumentation of multiprocess and distributed programs. Front end interfaces provides tool developers with a well-defined, platform-independent set of calls for requesting performance data. End-user tools have been developed that demonstrate runtime data collection, on-line and off-line analysis of performance data, and multidimensional performance analysis. The infrastructure is based on two underlying performance instrumentation technologies. These technologies are the PAPI cross-platform library interface to hardware performance counters and the cross-platform Dyninst library interface for runtime modification of executable images. The Paradyn and KOJAK

  4. Dynamic Balanced Reach: A Temporal and Spectral Analysis Across Increasing Performance Demands

    PubMed Central

    Barton, Joseph E.; Graci, Valentina; Hafer-Macko, Charlene; Sorkin, John D.; F. Macko, Richard

    2016-01-01

    Standing balanced reach is a fundamental task involved in many activities of daily living that has not been well analyzed quantitatively to assess and characterize the multisegmental nature of the body's movements. We developed a dynamic balanced reach test (BRT) to analyze performance in this activity; in which a standing subject is required to maintain balance while reaching and pointing to a target disk moving across a large projection screen according to a sum-of-sines function. This tracking and balance task is made progressively more difficult by increasing the disk's overall excursion amplitude. Using kinematic and ground reaction force data from 32 young healthy subjects, we investigated how the motions of the tracking finger and whole-body center of mass (CoM) varied in response to the motion of the disk across five overall disk excursion amplitudes. Group representative performance statistics for the cohort revealed a monotonically increasing root mean squared (RMS) tracking error (RMSE) and RMS deviation (RMSD) between whole-body CoM (projected onto the ground plane) and the center of the base of support (BoS) with increasing amplitude (p < 0.03). Tracking and CoM response delays remained constant, however, at 0.5 s and 1.0 s, respectively. We also performed detailed spectral analyses of group-representative response data for each of the five overall excursion amplitudes. We derived empirical and analytical transfer functions between the motion of the disk and that of the tracking finger and CoM, computed tracking and CoM responses to a step input, and RMSE and RMSD as functions of disk frequency. We found that for frequencies less than 1.0 Hz, RMSE generally decreased, while RMSE normalized to disk motion amplitude generally increased. RMSD, on the other hand, decreased monotonically. These findings quantitatively characterize the amplitude- and frequency-dependent nature of young healthy tracking and balance in this task. The BRT is not subject

  5. Metastability and emergent performance of dynamic interceptive actions.

    PubMed

    Pinder, Ross A; Davids, Keith; Renshaw, Ian

    2012-09-01

    Adaptive patterning of human movement is context specific and dependent on interacting constraints of the performer-environment relationship. Flexibility of skilled behaviour is predicated on the capacity of performers to move between different states of movement organisation to satisfy dynamic task constraints, previously demonstrated in studies of visual perception, bimanual coordination, and an interceptive combat task. Metastability is a movement system property that helps performers to remain in a state of relative coordination with their performance environments, poised between multiple co-existing states (stable and distinct movement patterns or responses). The aim of this study was to examine whether metastability could be exploited in externally paced interceptive actions in fast ball sports, such as cricket. Here we report data on metastability in performance of multi-articular hitting actions by skilled junior cricket batters (n=5). Participants' batting actions (key movement timings and performance outcomes) were analysed in four distinct performance regions varied by ball pitching (bounce) location. Results demonstrated that, at a pre-determined distance to the ball, participants were forced into a meta-stable region of performance where rich and varied patterns of functional movement behaviours emerged. Participants adapted the organisation of responses, resulting in higher levels of variability in movement timing in this performance region, without detrimental effects on the quality of interceptive performance outcomes. Findings provide evidence for the emergence of metastability in a dynamic interceptive action in cricket batting. Flexibility and diversity of movement responses were optimised using experiential knowledge and careful manipulation of key task constraints of the specific sport context. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Theoretical and software considerations for nonlinear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1983-01-01

    In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.

  7. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE PAGES

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  8. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets tomore » the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.« less

  9. Perturbation analysis of 6DoF flight dynamics and passive dynamic stability of hovering fruit fly Drosophila melanogaster.

    PubMed

    Gao, Na; Aono, Hikaru; Liu, Hao

    2011-02-07

    Insects exhibit exquisite control of their flapping flight, capable of performing precise stability and steering maneuverability. Here we develop an integrated computational model to investigate flight dynamics of insect hovering based on coupling the equations of 6 degree of freedom (6DoF) motion with the Navier-Stokes (NS) equations. Unsteady aerodynamics is resolved by using a biology-inspired dynamic flight simulator that integrates models of realistic wing-body morphology and kinematics, and a NS solver. We further develop a dynamic model to solve the rigid body equations of 6DoF motion by using a 4th-order Runge-Kutta method. In this model, instantaneous forces and moments based on the NS-solutions are represented in terms of Fourier series. With this model, we perform a systematic simulation-based analysis on the passive dynamic stability of a hovering fruit fly, Drosophila melanogaster, with a specific focus on responses of state variables to six one-directional perturbation conditions during latency period. Our results reveal that the flight dynamics of fruit fly hovering does not have a straightforward dynamic stability in a conventional sense that perturbations damp out in a manner of monotonous convergence. However, it is found to exist a transient interval containing an initial converging response observed for all the six perturbation variables and a terminal instability that at least one state variable subsequently tends to diverge after several wing beat cycles. Furthermore, our results illustrate that a fruit fly does have sufficient time to apply some active mediation to sustain a steady hovering before losing body attitudes. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. The impact of dynamic balance measures on walking performance in multiple sclerosis.

    PubMed

    Fritz, Nora E; Marasigan, Rhul Evans R; Calabresi, Peter A; Newsome, Scott D; Zackowski, Kathleen M

    2015-01-01

    Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, the impact of dynamic standing balance on walking in MS remains unclear. To determine the impact of dynamic balance, static balance, sensation, and strength measures on walking in individuals with MS. Fifty-two individuals with MS (27 women; 26 relapsing-remitting; mean age = 45.6 ± 10.3 years; median Expanded Disability Status Scale score = 3.5) participated in posturography testing (Kistler-9281 force plate), hip flexion, hip extension, ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II), and walk velocity (Optotrak Motion Analysis System). Analyses included, Mann-Whitney, Spearman correlation coefficients, and multiple regression. All measures were abnormal in individuals with MS when compared with norms (P < .05). Static balance (eyes open, feet together [EOFT]), anterior-posterior (AP) dynamic sway, and hip extension strength were strongly correlated with walking velocity (AP sway r = 0.68; hip extension strength r = 0.73; EOFT r = -0.40). Together, AP dynamic sway (ρr = 0.71; P < .001), hip extension strength (ρr = 0.54; P < .001), and EOFT static balance (ρr = -0.41; P = .01) explained more than 70% of the variance in walking velocity (P < .001). AP dynamic sway affects walking performance in MS. A combined evaluation of dynamic balance, static balance, and strength may lead to a better understanding of walking mechanisms and the development of strategies to improve walking. © The Author(s) 2014.

  11. SRM Internal Flow Test and Computational Fluid Dynamic Analysis. Volume 1; Major Task Summaries

    NASA Technical Reports Server (NTRS)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.

    1995-01-01

    During the four year period of performance for NASA contract, NASB-39095, ERC has performed a wide variety of tasks to support the design and continued development of new and existing solid rocket motors and the resolution of operational problems associated with existing solid rocket motor's at NASA MSFC. This report summarizes the support provided to NASA MSFC during the contractual period of performance. The report is divided into three main sections. The first section presents summaries for the major tasks performed. These tasks are grouped into three major categories: full scale motor analysis, subscale motor analysis and cold flow analysis. The second section includes summaries describing the computational fluid dynamics (CFD) tasks performed. The third section, the appendices of the report, presents detailed descriptions of the analysis efforts as well as published papers, memoranda and final reports associated with specific tasks. These appendices are referenced in the summaries. The subsection numbers for the three sections correspond to the same topics for direct cross referencing.

  12. Dynamic analysis of news streams: institutional versus environmental effects.

    PubMed

    Dooley, Kevin; Corman, Steven

    2004-07-01

    Many societal phenomena are studied through analysis of their representation in media-related texts, such as news articles. The dynamics of such data reflect the phenomenon's underlying generative mechanism. Media artifacts are assumed to mirror the social activity occurring in the environment, thus observed dynamics are assumed to reflect environmental dynamics. The institutional mechanics of media production also affect the observed dynamics however. In this study we examine the extent to which institutional versus environmental effects explain the observed dynamics of media content, in particular focusing on semi-continuous "news streams". We examine the dynamics of news streams produced by the electronic news organization Reuters, immediately following the events of September 11, 2001. We find that many of the observed dynamics appear institutionally generated. We conclude with methodological suggestions concerning the dynamic analysis of media content.

  13. Differential Variance Analysis: a direct method to quantify and visualize dynamic heterogeneities

    NASA Astrophysics Data System (ADS)

    Pastore, Raffaele; Pesce, Giuseppe; Caggioni, Marco

    2017-03-01

    Many amorphous materials show spatially heterogenous dynamics, as different regions of the same system relax at different rates. Such a signature, known as Dynamic Heterogeneity, has been crucial to understand the nature of the jamming transition in simple model systems and is currently considered very promising to characterize more complex fluids of industrial and biological relevance. Unfortunately, measurements of dynamic heterogeneities typically require sophisticated experimental set-ups and are performed by few specialized groups. It is now possible to quantitatively characterize the relaxation process and the emergence of dynamic heterogeneities using a straightforward method, here validated on video microscopy data of hard-sphere colloidal glasses. We call this method Differential Variance Analysis (DVA), since it focuses on the variance of the differential frames, obtained subtracting images at different time-lags. Moreover, direct visualization of dynamic heterogeneities naturally appears in the differential frames, when the time-lag is set to the one corresponding to the maximum dynamic susceptibility. This approach opens the way to effectively characterize and tailor a wide variety of soft materials, from complex formulated products to biological tissues.

  14. Lateral dynamic interaction analysis of a train girder pier system

    NASA Astrophysics Data System (ADS)

    Xia, H.; Guo, W. W.; Wu, X.; Pi, Y. L.; Bradford, M. A.

    2008-12-01

    A dynamic model of a coupled train-girder-pier system is developed in this paper. Each vehicle in a train is modeled with 27 degrees-of-freedom for a 4-axle passenger coach or freight car, and 31 for a 6-axle locomotive. The bridge model is applicable to straight and curved bridges. The centrifugal forces of moving vehicles on curved bridges are considered in both the vehicle model and the bridge model. The dynamic interaction between the bridge and train is realized through an assumed wheel-hunting movement. A case study is performed for a test train traversing two straight and two curved multi-span bridges with high piers. The histories of the train traversing the bridges are simulated and the dynamic responses of the piers and the train vehicles are calculated. A field experiment is carried out to verify the results of the analysis, by which the lateral resonant train speed inducing the peak pier-top amplitudes and some other observations are validated.

  15. Vehicle systems: coupled and interactive dynamics analysis

    NASA Astrophysics Data System (ADS)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  16. HabEx Optical Telescope Concepts: Design and Performance Analysis

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip; NASA MSFC HabEx Telescope Design Team

    2018-01-01

    The Habitable-Exoplanet Imaging Mission (HabEx) engineering study team has been tasked by NASA with developing a compelling and feasible exoplanet direct imaging concept as part of the 2020 Decadal Survey. This paper summarizes design concepts for two off-axis unobscured telescope concepts: a 4-meter monolithic aperture and a 6-meter segmented aperutre. HabEx telescopes are designed for launch vehicle accommodation. Analysis includes prediction of on-orbit dynamic structural and thermal optical performance.

  17. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    ERIC Educational Resources Information Center

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  18. Modeling of composite beams and plates for static and dynamic analysis

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Atilgan, Ali R.; Lee, Bok Woo

    1990-01-01

    A rigorous theory and corresponding computational algorithms was developed for a variety of problems regarding the analysis of composite beams and plates. The modeling approach is intended to be applicable to both static and dynamic analysis of generally anisotropic, nonhomogeneous beams and plates. Development of a theory for analysis of the local deformation of plates was the major focus. Some work was performed on global deformation of beams. Because of the strong parallel between beams and plates, the two were treated together as thin bodies, especially in cases where it will clarify the meaning of certain terminology and the motivation behind certain mathematical operations.

  19. Carrier-envelope phase dynamics and noise analysis in octave-spanning Ti:sapphire lasers.

    PubMed

    Matos, Lia; Mücke, Oliver D; Chen, Jian; Kärtner, Franz X

    2006-03-20

    We investigate the carrier-envelope phase dynamics of octave-spanning Ti:sapphire lasers and perform a complete noise analysis of the carrier-envelope phase stabilization. We model the effect of the laser dynamics on the residual carrier-envelope phase noise by deriving a transfer function representation of the octave-spanning frequency comb. The modelled phase noise and the experimental results show excellent agreement. This greatly enhances our capability of predicting the dependence of the residual carrier-envelope phase noise on the feedback loop filter, the carrier-envelope frequency control mechanism and the pump laser used.

  20. Bioinformatics analysis of transcriptome dynamics during growth in angus cattle longissimus muscle.

    PubMed

    Moisá, Sonia J; Shike, Daniel W; Graugnard, Daniel E; Rodriguez-Zas, Sandra L; Everts, Robin E; Lewin, Harris A; Faulkner, Dan B; Berger, Larry L; Loor, Juan J

    2013-01-01

    Transcriptome dynamics in the longissimus muscle (LM) of young Angus cattle were evaluated at 0, 60, 120, and 220 days from early-weaning. Bioinformatic analysis was performed using the dynamic impact approach (DIA) by means of Kyoto Encyclopedia of Genes and Genomes (KEGG) and Database for Annotation, Visualization and Integrated Discovery (DAVID) databases. Between 0 to 120 days (growing phase) most of the highly-impacted pathways (eg, ascorbate and aldarate metabolism, drug metabolism, cytochrome P450 and Retinol metabolism) were inhibited. The phase between 120 to 220 days (finishing phase) was characterized by the most striking differences with 3,784 differentially expressed genes (DEGs). Analysis of those DEGs revealed that the most impacted KEGG canonical pathway was glycosylphosphatidylinositol (GPI)-anchor biosynthesis, which was inhibited. Furthermore, inhibition of calpastatin and activation of tyrosine aminotransferase ubiquitination at 220 days promotes proteasomal degradation, while the concurrent activation of ribosomal proteins promotes protein synthesis. Therefore, the balance of these processes likely results in a steady-state of protein turnover during the finishing phase. Results underscore the importance of transcriptome dynamics in LM during growth.

  1. Dissertation Defense Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional "validation by test only" mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions. Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in "Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations". This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics

  2. Dissertation Defense: Computational Fluid Dynamics Uncertainty Analysis for Payload Fairing Spacecraft Environmental Control Systems

    NASA Technical Reports Server (NTRS)

    Groves, Curtis Edward

    2014-01-01

    Spacecraft thermal protection systems are at risk of being damaged due to airflow produced from Environmental Control Systems. There are inherent uncertainties and errors associated with using Computational Fluid Dynamics to predict the airflow field around a spacecraft from the Environmental Control System. This paper describes an approach to quantify the uncertainty in using Computational Fluid Dynamics to predict airflow speeds around an encapsulated spacecraft without the use of test data. Quantifying the uncertainty in analytical predictions is imperative to the success of any simulation-based product. The method could provide an alternative to traditional validation by test only mentality. This method could be extended to other disciplines and has potential to provide uncertainty for any numerical simulation, thus lowering the cost of performing these verifications while increasing the confidence in those predictions.Spacecraft requirements can include a maximum airflow speed to protect delicate instruments during ground processing. Computational Fluid Dynamics can be used to verify these requirements; however, the model must be validated by test data. This research includes the following three objectives and methods. Objective one is develop, model, and perform a Computational Fluid Dynamics analysis of three (3) generic, non-proprietary, environmental control systems and spacecraft configurations. Several commercially available and open source solvers have the capability to model the turbulent, highly three-dimensional, incompressible flow regime. The proposed method uses FLUENT, STARCCM+, and OPENFOAM. Objective two is to perform an uncertainty analysis of the Computational Fluid Dynamics model using the methodology found in Comprehensive Approach to Verification and Validation of Computational Fluid Dynamics Simulations. This method requires three separate grids and solutions, which quantify the error bars around Computational Fluid Dynamics predictions

  3. Performance analysis of dynamic time-slot allocation system

    NASA Astrophysics Data System (ADS)

    Kong, Hongwei; Ruan, Fang; Feng, Chongxi

    2001-10-01

    Multi-service Access on the narrow-band DDN (Digital Data Network) leased lines to use the bandwidth more efficiently and reduce the cost has attracted much interest. In this paper, one novel multi-service multiplexing scheme based on DTSA (Dynamic Time-Slot Allocation) is given. This scheme can guarantee the QoS of the multiplexed services such as FAX, Voice and data and adapt to different link rates (64kb/s, 128kb/s, 256kb/s), A model is given in this paper to analyze the data behavior under this scheme. The simulation result and the model result have shown that the QoS guarantee to voice and FAX doesn't compromise the QoS of data service much in the meaning of delay and delay variance when the data load is not too high. The simulation result agrees with the model well when data load is not too high.

  4. Integrated dynamic analysis simulation of space stations with controllable solar arrays (supplemental data and analyses)

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    Space station and solar array data and the analyses which were performed in support of the integrated dynamic analysis study. The analysis methods and the formulated digital simulation were developed. Control systems for space station altitude control and solar array orientation control include generic type control systems. These systems have been digitally coded and included in the simulation.

  5. Optimizing performance of hybrid FSO/RF networks in realistic dynamic scenarios

    NASA Astrophysics Data System (ADS)

    Llorca, Jaime; Desai, Aniket; Baskaran, Eswaran; Milner, Stuart; Davis, Christopher

    2005-08-01

    Hybrid Free Space Optical (FSO) and Radio Frequency (RF) networks promise highly available wireless broadband connectivity and quality of service (QoS), particularly suitable for emerging network applications involving extremely high data rate transmissions such as high quality video-on-demand and real-time surveillance. FSO links are prone to atmospheric obscuration (fog, clouds, snow, etc) and are difficult to align over long distances due the use of narrow laser beams and the effect of atmospheric turbulence. These problems can be mitigated by using adjunct directional RF links, which provide backup connectivity. In this paper, methodologies for modeling and simulation of hybrid FSO/RF networks are described. Individual link propagation models are derived using scattering theory, as well as experimental measurements. MATLAB is used to generate realistic atmospheric obscuration scenarios, including moving cloud layers at different altitudes. These scenarios are then imported into a network simulator (OPNET) to emulate mobile hybrid FSO/RF networks. This framework allows accurate analysis of the effects of node mobility, atmospheric obscuration and traffic demands on network performance, and precise evaluation of topology reconfiguration algorithms as they react to dynamic changes in the network. Results show how topology reconfiguration algorithms, together with enhancements to TCP/IP protocols which reduce the network response time, enable the network to rapidly detect and act upon link state changes in highly dynamic environments, ensuring optimized network performance and availability.

  6. The impact of dynamic balance measures on walking performance in multiple sclerosis

    PubMed Central

    Fritz, Nora E.; Marasigan, Rhul Evans R.; Calabresi, Peter A.; Newsome, Scott D.; Zackowski, Kathleen M.

    2014-01-01

    Background Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, little is known about the impact of dynamic standing balance on walking in MS. Objective To determine the impact of dynamic balance, static balance, sensation, and strength measures to walking in individuals with MS. Methods 52 individuals with MS (27 females; 26 relapsing-remitting; mean age 45.6±10.3 years; median EDSS 3.5 (range 0-7) participated in testing for dynamic and static posturography (Kistler 9281 force plate), hip flexion, hip extension, and ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II) and walk velocity (Optotrak Motion Analysis System). Mann-Whitney tests, Spearman correlation coefficients, and forward stepwise multiple regression were used to assess statistical significance. Results All measures were significantly abnormal in MS subjects when compared to age and sex-matched norms (p<0.05 for all). Static balance (eyes open, feet together [EOFT]), anterior- posterior (AP) dynamic sway, and hip extension strength were strongly correlated with fast walking velocity (AP sway r=0.68; hip extension strength r=0.73; EOFT r=-0.40). Together, AP dynamic sway (ρr=0.71, p<0.001), hip extension strength (ρr=0.54, p<0.001), and EOFT static balance (ρr=-0.41, p=0.01) explained more than 70% of the variance in fast walking velocity (p<0.001). Conclusions These data suggest that AP dynamic sway impacts walking performance in MS. A combined evaluation of dynamic balance, static balance and strength may lead to a better understanding of walking mechanisms as well as the development of strategies to improve walking. PMID:24795162

  7. Molecular dynamics analysis of transitions between rotational isomers in polymethylene

    NASA Astrophysics Data System (ADS)

    Zúñiga, Ignacio; Bahar, Ivet; Dodge, Robert; Mattice, Wayne L.

    1991-10-01

    Molecular dynamics trajectories have been computed and analyzed for linear chains, with sizes ranging from C10H22 to C100H202, and for cyclic C100H200. All hydrogen atoms are included discretely. All bond lengths, bond angles, and torsion angles are variable. Hazard plots show a tendency, at very short times, for correlations between rotational isomeric transitions at bond i and i±2, in much the same manner as in the Brownian dynamics simulations reported by Helfand and co-workers. This correlation of next nearest neighbor bonds in isolated polyethylene chains is much weaker than the correlation found for next nearest neighbor CH-CH2 bonds in poly(1,4-trans-butadiene) confined to the channel formed by crystalline perhydrotriphenylene [Dodge and Mattice, Macromolecules 24, 2709 (1991)]. Less than half of the rotational isomeric transitions observed in the entire trajectory for C50H102 can be described as strongly coupled next nearest neighbor transitions. If correlated motions are identified with successive transitions, which occur within a time interval of Δt≤1 ps, only 18% of the transitions occur through cooperative motion of bonds i and i±2. An analysis of the entire data set of 2482 rotational isomeric state transitions, observed in a 3.7 ns trajectory for C50H102 at 400 K, was performed using a formalism that treats the transitions at different bonds as being independent. On time scales of 0.1 ns or longer, the analysis based on independent bonds accounts reasonably well for the results from the molecular dynamics simulations. At shorter times the molecular dynamics simulation reveals a higher mobility than implied by the analysis assuming independent bonds, presumably due to the influence of correlations that are important at shorter times.

  8. Finite element dynamic analysis on CDC STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  9. Guidelines for dynamic data acquisition and analysis

    NASA Technical Reports Server (NTRS)

    Piersol, Allan G.

    1992-01-01

    The recommendations concerning pyroshock data presented in the final draft of a proposed military handbook on Guidelines for Dynamic Data Acquisition and Analysis are reviewed. The structural responses produced by pyroshocks are considered to be one of the most difficult types of dynamic data to accurately measure and analyze.

  10. Stochastic dynamic analysis of marine risers considering Gaussian system uncertainties

    NASA Astrophysics Data System (ADS)

    Ni, Pinghe; Li, Jun; Hao, Hong; Xia, Yong

    2018-03-01

    This paper performs the stochastic dynamic response analysis of marine risers with material uncertainties, i.e. in the mass density and elastic modulus, by using Stochastic Finite Element Method (SFEM) and model reduction technique. These uncertainties are assumed having Gaussian distributions. The random mass density and elastic modulus are represented by using the Karhunen-Loève (KL) expansion. The Polynomial Chaos (PC) expansion is adopted to represent the vibration response because the covariance of the output is unknown. Model reduction based on the Iterated Improved Reduced System (IIRS) technique is applied to eliminate the PC coefficients of the slave degrees of freedom to reduce the dimension of the stochastic system. Monte Carlo Simulation (MCS) is conducted to obtain the reference response statistics. Two numerical examples are studied in this paper. The response statistics from the proposed approach are compared with those from MCS. It is noted that the computational time is significantly reduced while the accuracy is kept. The results demonstrate the efficiency of the proposed approach for stochastic dynamic response analysis of marine risers.

  11. Self similarities in desalination dynamics and performance using capacitive deionization.

    PubMed

    Ramachandran, Ashwin; Hemmatifar, Ali; Hawks, Steven A; Stadermann, Michael; Santiago, Juan G

    2018-09-01

    Charge transfer and mass transport are two underlying mechanisms which are coupled in desalination dynamics using capacitive deionization (CDI). We developed simple reduced-order models based on a mixed reactor volume principle which capture the coupled dynamics of CDI operation using closed-form semi-analytical and analytical solutions. We use the models to identify and explore self-similarities in the dynamics among flow rate, current, and voltage for CDI cell operation including both charging and discharging cycles. The similarity approach identifies the specific combination of cell (e.g. capacitance, resistance) and operational parameters (e.g. flow rate, current) which determine a unique effluent dynamic response. We here demonstrate self-similarity using a conventional flow between CDI (fbCDI) architecture, and we hypothesize that our similarity approach has potential application to a wide range of designs. We performed an experimental study of these dynamics and used well-controlled experiments of CDI cell operation to validate and explore limits of the model. For experiments, we used a CDI cell with five electrode pairs and a standard flow between (electrodes) architecture. Guided by the model, we performed a series of experiments that demonstrate natural response of the CDI system. We also identify cell parameters and operation conditions which lead to self-similar dynamics under a constant current forcing function and perform a series of experiments by varying flowrate, currents, and voltage thresholds to demonstrate self-similarity. Based on this study, we hypothesize that the average differential electric double layer (EDL) efficiency (a measure of ion adsorption rate to EDL charging rate) is mainly dependent on user-defined voltage thresholds, whereas flow efficiency (measure of how well desalinated water is recovered from inside the cell) depends on cell volumes flowed during charging, which is determined by flowrate, current and voltage thresholds

  12. Perform - A performance optimizing computer program for dynamic systems subject to transient loadings

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.

    1973-01-01

    A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.

  13. Relationship of tutors' group-dynamics skills to their performance ratings in problem-based learning.

    PubMed

    Dolmans, D H; Wolfhagen, I H; Scherpbier, A J; Vleuten, C P

    2001-05-01

    A tutor's performance is often investigated as a stable teacher characteristic, isolated from the context in which the tutor functions. This study investigated the influence of a tutor's group-dynamics skills in differently functioning tutorial groups on performance ratings. Students' ratings of tutors' performances collected from 75 tutorial groups at one school over four different academic years were compared with the independent variables, groups' cohesion scores and sponging scores (the degree to which some students let others do the work), and the intervening variable, tutors' group-dynamics skills. Tutors with strong group-dynamics skills were assigned mean tutor's-performance scores of 7.4 (SD = 0.8) and 8.2 (SD = 0.5), respectively, by groups scoring low and high on cohesion. Tutors with low group-dynamics skills were rated 7.0 (SD = 1.1) and 7.4 (SD = 1.1) by the same groups. The same pattern held for sponging scores. Tutors who had strong group-dynamics skills received mean tutor's-performance scores of 8.1 (SD = 0.6) and 7.4 (SD = 0.8), respectively, from groups with low and high sponging scores. Tutors with weak group-dynamics skills were scored 7.6 (SD = 1.0) and 6.9 (SD = 1.1) by the same groups. Tutors possessing group-dynamics skills were rated higher by students than were tutors who lacked these skills, irrespective of the quality of a tutorial group's performance. A tutor who evaluates tutorial-group function on a regular basis and makes appointments with students based on these evaluations is seen as performing better than a tutor who does not.

  14. Application of principal component analysis in protein unfolding: an all-atom molecular dynamics simulation study.

    PubMed

    Das, Atanu; Mukhopadhyay, Chaitali

    2007-10-28

    We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide-ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.

  15. Application of principal component analysis in protein unfolding: An all-atom molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Das, Atanu; Mukhopadhyay, Chaitali

    2007-10-01

    We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide—ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.

  16. Dynamics of safety performance and culture: a group model building approach.

    PubMed

    Goh, Yang Miang; Love, Peter E D; Stagbouer, Greg; Annesley, Chris

    2012-09-01

    The management of occupational health and safety (OHS) including safety culture interventions is comprised of complex problems that are often hard to scope and define. Due to the dynamic nature and complexity of OHS management, the concept of system dynamics (SD) is used to analyze accident prevention. In this paper, a system dynamics group model building (GMB) approach is used to create a causal loop diagram of the underlying factors influencing the OHS performance of a major drilling and mining contractor in Australia. While the organization has invested considerable resources into OHS their disabling injury frequency rate (DIFR) has not been decreasing. With this in mind, rich individualistic knowledge about the dynamics influencing the DIFR was acquired from experienced employees with operations, health and safety and training background using a GMB workshop. Findings derived from the workshop were used to develop a series of causal loop diagrams that includes a wide range of dynamics that can assist in better understanding the causal influences OHS performance. The causal loop diagram provides a tool for organizations to hypothesize the dynamics influencing effectiveness of OHS management, particularly the impact on DIFR. In addition the paper demonstrates that the SD GMB approach has significant potential in understanding and improving OHS management. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. Lifespan differences in nonlinear dynamics during rest and auditory oddball performance.

    PubMed

    Müller, Viktor; Lindenberger, Ulman

    2012-07-01

    Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an indicator of cortical reactivity. During rest, both nonlinear coupling and spectral alpha power decreased with age, whereas dimensional complexity increased. In contrast, when attending to the deviant stimulus, nonlinear coupling increased with age, and complexity decreased. Correlational analyses showed that nonlinear measures assessed during auditory oddball performance were reliably related to an independently assessed measure of perceptual speed. We conclude that cortical dynamics during rest and stimulus processing undergo substantial reorganization from childhood to old age, and propose that lifespan age differences in nonlinear dynamics during stimulus processing reflect lifespan changes in the functional organization of neuronal cell assemblies. © 2012 Blackwell Publishing Ltd.

  18. Nonlinear analysis of dynamic signature

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Fallah, A.; Towhidkhah, F.

    2013-12-01

    Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.

  19. Multiscale Analysis of Structurally-Graded Microstructures Using Molecular Dynamics, Discrete Dislocation Dynamics and Continuum Crystal Plasticity

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri

    2014-01-01

    A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.

  20. SFDT-1 Camera Pointing and Sun-Exposure Analysis and Flight Performance

    NASA Technical Reports Server (NTRS)

    White, Joseph; Dutta, Soumyo; Striepe, Scott

    2015-01-01

    The Supersonic Flight Dynamics Test (SFDT) vehicle was developed to advance and test technologies of NASA's Low Density Supersonic Decelerator (LDSD) Technology Demonstration Mission. The first flight test (SFDT-1) occurred on June 28, 2014. In order to optimize the usefulness of the camera data, analysis was performed to optimize parachute visibility in the camera field of view during deployment and inflation and to determine the probability of sun-exposure issues with the cameras given the vehicle heading and launch time. This paper documents the analysis, results and comparison with flight video of SFDT-1.

  1. Perturbation and Nonlinear Dynamic Analysis of Different Singing Styles

    PubMed Central

    Butte, Caitlin J.; Zhang, Yu; Song, Huangqiang; Jiang, Jack J.

    2012-01-01

    Summary Previous research has used perturbation analysis methods to study the singing voice. Using perturbation and nonlinear dynamic analysis (NDA) methods in conjunction may provide more accurate information on the singing voice and may distinguish vocal usage in different styles. Acoustic samples from different styles of singing were compared using nonlinear dynamic and perturbation measures. Twenty-six songs from different musical styles were obtained from an online music database (Rhapsody, RealNetworks, Inc., Seattle, WA). One-second samples were selected from each song for analysis. Perturbation analyses of jitter, shimmer, and signal-to-noise ratio and NDA of correlation dimension (D2) were performed on samples from each singing style. Percent jitter and shimmer median values were low normal for country (0.32% and 3.82%), musical theater (MT) (0.280% and 2.80%), jazz (0.440% and 2.34%), and soul (0.430% and 6.42%). The popular style had slightly higher median jitter and shimmer values (1.13% and 6.78%) than other singing styles, although this was not statistically significant. The opera singing style had median jitter of 0.520%, and yielded significantly high shimmer (P = 0.001) of 7.72%. All six singing styles were measured reliably using NDA, indicating that operatic singing is notably more chaotic than other singing styles. Median correlation dimension values were low to normal, compared to healthy voices, in country (median D2 = 2.14), jazz (median D2 = 2.24), pop (median D2 = 2.60), MT (median D2 = 2.73), and soul (mean D2 = 3.26). Correlation dimension was significantly higher in opera (P < 0.001) with median D2 = 6.19. In this study, acoustic analysis in opera singing gave significantly high values for shimmer and D2, suggesting that it is more irregular than other singing styles; a previously unknown quality of opera singing. Perturbation analysis also suggested significant differences in vocal output in different singing styles. This preliminary

  2. Flight Dynamics Analysis for Leonardo-BRDF

    NASA Technical Reports Server (NTRS)

    Hughes, Steven P.; Mailhe, Laurie; Bauer, Frank H. (Technical Monitor)

    2000-01-01

    Leonardo-BRDF (Bidirectional Reflectance Distribution Function) is a new NASA mission concept proposed to allow the investigation of radiative transfer and its effect on the Earth's climate and atmospheric phenomenon. Enabled by the recent developments in small-satellite and formation flying technology, the mission is envisioned to be composed of an array of spacecraft in carefully designed orbits. The different perspectives provided by a distributed array of spacecraft offer a unique advantage to study the Earth's albedo. This paper presents the flight dynamics analysis performed in the context of the Leonardo-BRDF science requirements. First, the albedo integral is investigated and the effect of viewing geometry on science return is studied. The method used in this paper, based on Gauss quadrature, provides the optimal formation geometry to ensure that the value of the integral is accurately approximated. An orbit design approach is presented to achieve specific relative orbit geometries while simultaneously satisfying orbit dynamics constraints to reduce formation-keeping fuel expenditure. The relative geometry afforded by the design is discussed in terms of mission requirements. An optimal Lambert initialization scheme is presented with the required Delta-V to distribute all spacecraft from a common parking orbit into their appropriate orbits in the formation. Finally, formation-keeping strategies are developed and the associated Delta-V's are calculated to maintain the formation in the presence of perturbations.

  3. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    PubMed

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  4. Integrating protein structural dynamics and evolutionary analysis with Bio3D.

    PubMed

    Skjærven, Lars; Yao, Xin-Qiu; Scarabelli, Guido; Grant, Barry J

    2014-12-10

    Popular bioinformatics approaches for studying protein functional dynamics include comparisons of crystallographic structures, molecular dynamics simulations and normal mode analysis. However, determining how observed displacements and predicted motions from these traditionally separate analyses relate to each other, as well as to the evolution of sequence, structure and function within large protein families, remains a considerable challenge. This is in part due to the general lack of tools that integrate information of molecular structure, dynamics and evolution. Here, we describe the integration of new methodologies for evolutionary sequence, structure and simulation analysis into the Bio3D package. This major update includes unique high-throughput normal mode analysis for examining and contrasting the dynamics of related proteins with non-identical sequences and structures, as well as new methods for quantifying dynamical couplings and their residue-wise dissection from correlation network analysis. These new methodologies are integrated with major biomolecular databases as well as established methods for evolutionary sequence and comparative structural analysis. New functionality for directly comparing results derived from normal modes, molecular dynamics and principal component analysis of heterogeneous experimental structure distributions is also included. We demonstrate these integrated capabilities with example applications to dihydrofolate reductase and heterotrimeric G-protein families along with a discussion of the mechanistic insight provided in each case. The integration of structural dynamics and evolutionary analysis in Bio3D enables researchers to go beyond a prediction of single protein dynamics to investigate dynamical features across large protein families. The Bio3D package is distributed with full source code and extensive documentation as a platform independent R package under a GPL2 license from http://thegrantlab.org/bio3d/ .

  5. Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.

    2016-01-01

    The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.

  6. Distributed dynamic simulations of networked control and building performance applications.

    PubMed

    Yahiaoui, Azzedine

    2018-02-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.

  7. Distributed dynamic simulations of networked control and building performance applications

    PubMed Central

    Yahiaoui, Azzedine

    2017-01-01

    The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper. PMID:29568135

  8. De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets

    NASA Astrophysics Data System (ADS)

    Hemati, Maziar S.; Rowley, Clarence W.; Deem, Eric A.; Cattafesta, Louis N.

    2017-08-01

    The dynamic mode decomposition (DMD)—a popular method for performing data-driven Koopman spectral analysis—has gained increased popularity for extracting dynamically meaningful spatiotemporal descriptions of fluid flows from snapshot measurements. Often times, DMD descriptions can be used for predictive purposes as well, which enables informed decision-making based on DMD model forecasts. Despite its widespread use and utility, DMD can fail to yield accurate dynamical descriptions when the measured snapshot data are imprecise due to, e.g., sensor noise. Here, we express DMD as a two-stage algorithm in order to isolate a source of systematic error. We show that DMD's first stage, a subspace projection step, systematically introduces bias errors by processing snapshots asymmetrically. To remove this systematic error, we propose utilizing an augmented snapshot matrix in a subspace projection step, as in problems of total least-squares, in order to account for the error present in all snapshots. The resulting unbiased and noise-aware total DMD (TDMD) formulation reduces to standard DMD in the absence of snapshot errors, while the two-stage perspective generalizes the de-biasing framework to other related methods as well. TDMD's performance is demonstrated in numerical and experimental fluids examples. In particular, in the analysis of time-resolved particle image velocimetry data for a separated flow, TDMD outperforms standard DMD by providing dynamical interpretations that are consistent with alternative analysis techniques. Further, TDMD extracts modes that reveal detailed spatial structures missed by standard DMD.

  9. Performance recovery of a class of uncertain non-affine systems with unmodelled dynamics: an indirect dynamic inversion method

    NASA Astrophysics Data System (ADS)

    Yi, Bowen; Lin, Shuyi; Yang, Bo; Zhang, Weidong

    2018-02-01

    This paper presents an output feedback indirect dynamic inversion (IDI) approach for a class of uncertain nonaffine systems with input unmodelled dynamics. Compared with previous approaches to achieve performance recovery, the proposed method aims at dealing with a broader class of nonaffine-in-control systems with triangular structure. An IDI state feedback law is designed first, in which less knowledge of the model plant is needed compared to earlier approximate dynamic inversion methods, thus yielding more robust performance. After that, an extended high-gain observer is designed to accomplish the task with output feedback. Finally, we prove that the designed IDI controller is equivalent to an adaptive proportional-integral (PI) controller, with respect to both time response equivalence and robustness equivalence. The conclusion implies that for the studied strict-feedback non-affine systems with unmodelled dynamics, there always exits a PI controller to stabilise the systems. The effectiveness and benefits of the designed approach are verified by three examples.

  10. Generalized five-dimensional dynamic and spectral factor analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El Fakhri, Georges; Sitek, Arkadiusz; Zimmerman, Robert E.

    2006-04-15

    We have generalized the spectral factor analysis and the factor analysis of dynamic sequences (FADS) in SPECT imaging to a five-dimensional general factor analysis model (5D-GFA), where the five dimensions are the three spatial dimensions, photon energy, and time. The generalized model yields a significant advantage in terms of the ratio of the number of equations to that of unknowns in the factor analysis problem in dynamic SPECT studies. We solved the 5D model using a least-squares approach. In addition to the traditional non-negativity constraints, we constrained the solution using a priori knowledge of both time and energy, assuming thatmore » primary factors (spectra) are Gaussian-shaped with full-width at half-maximum equal to gamma camera energy resolution. 5D-GFA was validated in a simultaneous pre-/post-synaptic dual isotope dynamic phantom study where {sup 99m}Tc and {sup 123}I activities were used to model early Parkinson disease studies. 5D-GFA was also applied to simultaneous perfusion/dopamine transporter (DAT) dynamic SPECT in rhesus monkeys. In the striatal phantom, 5D-GFA yielded significantly more accurate and precise estimates of both primary {sup 99m}Tc (bias=6.4%{+-}4.3%) and {sup 123}I (-1.7%{+-}6.9%) time activity curves (TAC) compared to conventional FADS (biases=15.5%{+-}10.6% in {sup 99m}Tc and 8.3%{+-}12.7% in {sup 123}I, p<0.05). Our technique was also validated in two primate dynamic dual isotope perfusion/DAT transporter studies. Biases of {sup 99m}Tc-HMPAO and {sup 123}I-DAT activity estimates with respect to estimates obtained in the presence of only one radionuclide (sequential imaging) were significantly lower with 5D-GFA (9.4%{+-}4.3% for {sup 99m}Tc-HMPAO and 8.7%{+-}4.1% for {sup 123}I-DAT) compared to biases greater than 15% for volumes of interest (VOI) over the reconstructed volumes (p<0.05). 5D-GFA is a novel and promising approach in dynamic SPECT imaging that can also be used in other modalities. It allows accurate and

  11. Performance Analysis of a Hybrid Overset Multi-Block Application on Multiple Architectures

    NASA Technical Reports Server (NTRS)

    Djomehri, M. Jahed; Biswas, Rupak

    2003-01-01

    This paper presents a detailed performance analysis of a multi-block overset grid compu- tational fluid dynamics app!ication on multiple state-of-the-art computer architectures. The application is implemented using a hybrid MPI+OpenMP programming paradigm that exploits both coarse and fine-grain parallelism; the former via MPI message passing and the latter via OpenMP directives. The hybrid model also extends the applicability of multi-block programs to large clusters of SNIP nodes by overcoming the restriction that the number of processors be less than the number of grid blocks. A key kernel of the application, namely the LU-SGS linear solver, had to be modified to enhance the performance of the hybrid approach on the target machines. Investigations were conducted on cacheless Cray SX6 vector processors, cache-based IBM Power3 and Power4 architectures, and single system image SGI Origin3000 platforms. Overall results for complex vortex dynamics simulations demonstrate that the SX6 achieves the highest performance and outperforms the RISC-based architectures; however, the best scaling performance was achieved on the Power3.

  12. Lifespan Differences in Nonlinear Dynamics during Rest and Auditory Oddball Performance

    ERIC Educational Resources Information Center

    Muller, Viktor; Lindenberger, Ulman

    2012-01-01

    Electroencephalographic recordings (EEG) were used to assess age-associated differences in nonlinear brain dynamics during both rest and auditory oddball performance in children aged 9.0-12.8 years, younger adults, and older adults. We computed nonlinear coupling dynamics and dimensional complexity, and also determined spectral alpha power as an…

  13. TADSim: Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics

    DOE PAGES

    Mniszewski, Susan M.; Junghans, Christoph; Voter, Arthur F.; ...

    2015-04-16

    Next-generation high-performance computing will require more scalable and flexible performance prediction tools to evaluate software--hardware co-design choices relevant to scientific applications and hardware architectures. Here, we present a new class of tools called application simulators—parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation. Parameterized choices for the algorithmic method and hardware options provide a rich space for design exploration and allow us to quickly find well-performing software--hardware combinations. We demonstrate our approach with a TADSim simulator that models the temperature-accelerated dynamics (TAD) method, an algorithmically complex and parameter-rich member of the accelerated molecular dynamics (AMD) family ofmore » molecular dynamics methods. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We accomplish this by identifying the time-intensive elements, quantifying algorithm steps in terms of those elements, abstracting them out, and replacing them by the passage of time. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We extend TADSim to model algorithm extensions, such as speculative spawning of the compute-bound stages, and predict performance improvements without having to implement such a method. Validation against the actual TAD code shows close agreement for the evolution of an example physical system, a silver surface. Finally, focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights and suggested extensions.« less

  14. Dynamic performance analysis of permanent magnet contactor with a flux-weakening control strategy

    NASA Astrophysics Data System (ADS)

    Wang, Xianbing; Lin, Heyun; Fang, Shuhua; Jin, Ping; Wang, Junhua; Ho, S. L.

    2011-04-01

    A new flux-weakening control strategy for permanent magnet contactors is proposed. By matching the dynamic attraction force and the antiforce, the terminal velocity and collision energy of the movable iron in the closing process are significantly reduced. The movable iron displacement is estimated by detecting the closing voltage and current with the proposed control. A dynamic mathematical model is also established under four kinds of excitation scenarios. The attraction force and flux linkage are predicted by finite element method and the dynamics of the closing process is simulated using the 4th-order Runge-Kutta algorithm. Experiments are carried out on a 250A prototype with an intelligent control unit to verify the proposed control strategy.

  15. Dynamic analysis of horizontal axis wind turbine by thin-walled beam theory

    NASA Astrophysics Data System (ADS)

    Wang, Jianhong; Qin, Datong; Lim, Teik C.

    2010-08-01

    A mixed flexible-rigid multi-body mathematical model is applied to predict the dynamic performance of a wind turbine system. Since the tower and rotor are both flexible thin-walled structures, a consistent expression for their deformations is applied, which employs a successive series of transformations to locate any point on the blade and tower relative to an inertial coordinate system. The kinetic and potential energy terms of each flexible body and rigid body are derived for use in the Lagrange approach to formulate the wind turbine system's governing equation. The mode shapes are then obtained from the free vibration solution, while the distributions of dynamic stress and displacement of the tower and rotor are computed from the forced vibration response analysis. Using this dynamic model, the influence of the tower's stiffness on the blade tip deformation is studied. From the analysis, it is evident that the proposed model not only inherits the simplicity of the traditional 1-D beam element, but also able to provide detailed information about the tower and rotor response due to the incorporation of the flexible thin-walled beam theory.

  16. Discrete Event-based Performance Prediction for Temperature Accelerated Dynamics

    NASA Astrophysics Data System (ADS)

    Junghans, Christoph; Mniszewski, Susan; Voter, Arthur; Perez, Danny; Eidenbenz, Stephan

    2014-03-01

    We present an example of a new class of tools that we call application simulators, parameterized fast-running proxies of large-scale scientific applications using parallel discrete event simulation (PDES). We demonstrate our approach with a TADSim application simulator that models the Temperature Accelerated Dynamics (TAD) method, which is an algorithmically complex member of the Accelerated Molecular Dynamics (AMD) family. The essence of the TAD application is captured without the computational expense and resource usage of the full code. We use TADSim to quickly characterize the runtime performance and algorithmic behavior for the otherwise long-running simulation code. We further extend TADSim to model algorithm extensions to standard TAD, such as speculative spawning of the compute-bound stages of the algorithm, and predict performance improvements without having to implement such a method. Focused parameter scans have allowed us to study algorithm parameter choices over far more scenarios than would be possible with the actual simulation. This has led to interesting performance-related insights into the TAD algorithm behavior and suggested extensions to the TAD method.

  17. Dynamic SVL and body bias for low leakage power and high performance in CMOS digital circuits

    NASA Astrophysics Data System (ADS)

    Deshmukh, Jyoti; Khare, Kavita

    2012-12-01

    In this article, a new complementary metal oxide semiconductor design scheme called dynamic self-controllable voltage level (DSVL) is proposed. In the proposed scheme, leakage power is controlled by dynamically disconnecting supply to inactive blocks and adjusting body bias to further limit leakage and to maintain performance. Leakage power measurements at 1.8 V, 75°C demonstrate power reduction by 59.4% in case of 1 bit full adder and by 43.0% in case of a chain of four inverters using SVL circuit as a power switch. Furthermore, we achieve leakage power reduction by 94.7% in case of 1 bit full adder and by 91.8% in case of a chain of four inverters using dynamic body bias. The forward body bias of 0.45 V applied in active mode improves the maximum operating frequency by 16% in case of 1 bit full adder and 5.55% in case of a chain of inverters. Analysis shows that additional benefits of using the DSVL and body bias include high performance, low leakage power consumption in sleep mode, single threshold implementation and state retention even in standby mode.

  18. Conformational and functional analysis of molecular dynamics trajectories by Self-Organising Maps

    PubMed Central

    2011-01-01

    Background Molecular dynamics (MD) simulations are powerful tools to investigate the conformational dynamics of proteins that is often a critical element of their function. Identification of functionally relevant conformations is generally done clustering the large ensemble of structures that are generated. Recently, Self-Organising Maps (SOMs) were reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data mining problems. We present a novel strategy to analyse and compare conformational ensembles of protein domains using a two-level approach that combines SOMs and hierarchical clustering. Results The conformational dynamics of the α-spectrin SH3 protein domain and six single mutants were analysed by MD simulations. The Cα's Cartesian coordinates of conformations sampled in the essential space were used as input data vectors for SOM training, then complete linkage clustering was performed on the SOM prototype vectors. A specific protocol to optimize a SOM for structural ensembles was proposed: the optimal SOM was selected by means of a Taguchi experimental design plan applied to different data sets, and the optimal sampling rate of the MD trajectory was selected. The proposed two-level approach was applied to single trajectories of the SH3 domain independently as well as to groups of them at the same time. The results demonstrated the potential of this approach in the analysis of large ensembles of molecular structures: the possibility of producing a topological mapping of the conformational space in a simple 2D visualisation, as well as of effectively highlighting differences in the conformational dynamics directly related to biological functions. Conclusions The use of a two-level approach combining SOMs and hierarchical clustering for conformational analysis of structural ensembles of proteins was proposed. It can easily be extended to other study cases and to conformational ensembles from

  19. Development of methodology for horizontal axis wind turbine dynamic analysis

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1982-01-01

    Horizontal axis wind turbine dynamics were studied. The following findings are summarized: (1) review of the MOSTAS computer programs for dynamic analysis of horizontal axis wind turbines; (2) review of various analysis methods for rotating systems with periodic coefficients; (3) review of structural dynamics analysis tools for large wind turbine; (4) experiments for yaw characteristics of a rotating rotor; (5) development of a finite element model for rotors; (6) development of simple models for aeroelastics; and (7) development of simple models for stability and response of wind turbines on flexible towers.

  20. Structural dynamic analysis of the Space Shuttle Main Engine

    NASA Technical Reports Server (NTRS)

    Scott, L. P.; Jamison, G. T.; Mccutcheon, W. A.; Price, J. M.

    1981-01-01

    This structural dynamic analysis supports development of the SSME by evaluating components subjected to critical dynamic loads, identifying significant parameters, and evaluating solution methods. Engine operating parameters at both rated and full power levels are considered. Detailed structural dynamic analyses of operationally critical and life limited components support the assessment of engine design modifications and environmental changes. Engine system test results are utilized to verify analytic model simulations. The SSME main chamber injector assembly is an assembly of 600 injector elements which are called LOX posts. The overall LOX post analysis procedure is shown.

  1. Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet

    NASA Technical Reports Server (NTRS)

    McMaster, Matthew S.

    1992-01-01

    Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.

  2. Visibility graph analysis on heartbeat dynamics of meditation training

    NASA Astrophysics Data System (ADS)

    Jiang, Sen; Bian, Chunhua; Ning, Xinbao; Ma, Qianli D. Y.

    2013-06-01

    We apply the visibility graph analysis to human heartbeat dynamics by constructing the complex networks of heartbeat interval time series and investigating the statistical properties of the network before and during chi and yoga meditation. The experiment results show that visibility graph analysis can reveal the dynamical changes caused by meditation training manifested as regular heartbeat, which is closely related to the adjustment of autonomous neural system, and visibility graph analysis is effective to evaluate the effect of meditation.

  3. Incentives and Their Dynamics in Public Sector Performance Management Systems

    ERIC Educational Resources Information Center

    Heinrich, Carolyn J.; Marschke, Gerald

    2010-01-01

    We use the principal-agent model as a focal theoretical frame for synthesizing what we know, both theoretically and empirically, about the design and dynamics of the implementation of performance management systems in the public sector. In this context, we review the growing body of evidence about how performance measurement and incentive systems…

  4. Side-to-side difference in dynamic unilateral balance ability and pitching performance in Japanese collegiate baseball pitchers.

    PubMed

    Yanagisawa, Osamu; Futatsubashi, Genki; Taniguchi, Hidenori

    2018-01-01

    [Purpose] To evaluate the side-to-side difference in dynamic unilateral balance ability and to determine the correlation of the balance ability with pitching performance in collegiate baseball pitchers. [Subjects and Methods] Twenty-five Japanese collegiate baseball pitchers participated in this study. Dynamic balance ability during a unilateral stance was bilaterally evaluated using the star excursion balance test (SEBT). The pitchers threw 20 fastballs at an official pitching distance; the maximal ball velocity and pitching accuracy (the number of strike/20 pitches × 100) were assessed. Side-to-side difference in scores of SEBT was assessed using a paired t-test. Correlations between SEBT scores and pitching performance were evaluated for both legs using a Pearson's correlation analysis. [Results] The pivot side showed significantly higher score of the SEBT in the anteromedial direction than the stride side. On the other hand, the SEBT scores in the pivot and stride legs did not have significant correlations with maximal ball velocity and pitching accuracy. [Conclusion] These findings suggest that marked side-to-side difference does not exist in the dynamic unilateral balance ability of collegiate baseball pitchers and that the dynamic unilateral balance ability of each leg is not directly related to maximal ball velocity and pitching accuracy.

  5. Flight Dynamics Analysis Branch 2005 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  6. Dynamic fractal signature dissimilarity analysis for therapeutic response assessment using dynamic contrast-enhanced MRI

    PubMed Central

    Wang, Chunhao; Subashi, Ergys; Yin, Fang-Fang; Chang, Zheng

    2016-01-01

    Purpose: To develop a dynamic fractal signature dissimilarity (FSD) method as a novel image texture analysis technique for the quantification of tumor heterogeneity information for better therapeutic response assessment with dynamic contrast-enhanced (DCE)-MRI. Methods: A small animal antiangiogenesis drug treatment experiment was used to demonstrate the proposed method. Sixteen LS-174T implanted mice were randomly assigned into treatment and control groups (n = 8/group). All mice received bevacizumab (treatment) or saline (control) three times in two weeks, and one pretreatment and two post-treatment DCE-MRI scans were performed. In the proposed dynamic FSD method, a dynamic FSD curve was generated to characterize the heterogeneity evolution during the contrast agent uptake, and the area under FSD curve (AUCFSD) and the maximum enhancement (MEFSD) were selected as representative parameters. As for comparison, the pharmacokinetic parameter Ktrans map and area under MR intensity enhancement curve AUCMR map were calculated. Besides the tumor’s mean value and coefficient of variation, the kurtosis, skewness, and classic Rényi dimensions d1 and d2 of Ktrans and AUCMR maps were evaluated for heterogeneity assessment for comparison. For post-treatment scans, the Mann–Whitney U-test was used to assess the differences of the investigated parameters between treatment/control groups. The support vector machine (SVM) was applied to classify treatment/control groups using the investigated parameters at each post-treatment scan day. Results: The tumor mean Ktrans and its heterogeneity measurements d1 and d2 values showed significant differences between treatment/control groups in the second post-treatment scan. In contrast, the relative values (in reference to the pretreatment value) of AUCFSD and MEFSD in both post-treatment scans showed significant differences between treatment/control groups. When using AUCFSD and MEFSD as SVM input for treatment/control classification

  7. Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems With Switching [Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems

    DOE PAGES

    Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil; ...

    2017-01-24

    Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less

  8. Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems With Switching [Discrete Adjoint Sensitivity Analysis of Hybrid Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hong; Abhyankar, Shrirang; Constantinescu, Emil

    Sensitivity analysis is an important tool for describing power system dynamic behavior in response to parameter variations. It is a central component in preventive and corrective control applications. The existing approaches for sensitivity calculations, namely, finite-difference and forward sensitivity analysis, require a computational effort that increases linearly with the number of sensitivity parameters. In this paper, we investigate, implement, and test a discrete adjoint sensitivity approach whose computational effort is effectively independent of the number of sensitivity parameters. The proposed approach is highly efficient for calculating sensitivities of larger systems and is consistent, within machine precision, with the function whosemore » sensitivity we are seeking. This is an essential feature for use in optimization applications. Moreover, our approach includes a consistent treatment of systems with switching, such as dc exciters, by deriving and implementing the adjoint jump conditions that arise from state-dependent and time-dependent switchings. The accuracy and the computational efficiency of the proposed approach are demonstrated in comparison with the forward sensitivity analysis approach. In conclusion, this paper focuses primarily on the power system dynamics, but the approach is general and can be applied to hybrid dynamical systems in a broader range of fields.« less

  9. Comprehensive Structural Dynamic Analysis of the SSME/AT Fuel Pump First-Stage Turbine Blade

    NASA Technical Reports Server (NTRS)

    Brown, A. M.

    1998-01-01

    A detailed structural dynamic analysis of the Pratt & Whitney high-pressure fuel pump first-stage turbine blades has been performed to identify the cause of the tip cracking found in the turbomachinery in November 1997. The analysis was also used to help evaluate potential fixes for the problem. Many of the methods available in structural dynamics were applied, including modal displacement and stress analysis, frequency and transient response to tip loading from the first-stage Blade Outer Gas Seals (BOGS), fourier analysis, and shock spectra analysis of the transient response. The primary findings were that the BOGS tip loading is impulsive in nature, thereby exciting many modes of the blade that exhibit high stress at the tip cracking location. Therefore, a proposed BOGS count change would not help the situation because a clearly identifiable resonance situation does not exist. The recommendations for the resolution of the problem are to maintain the existing BOGS count, eliminate the stress concentration in the blade due to its geometric design, and reduce the applied load on the blade by adding shiplaps in the BOGS.

  10. Dynamic analysis of solid propellant grains subjected to ignition pressurization loading

    NASA Astrophysics Data System (ADS)

    Chyuan, Shiang-Woei

    2003-11-01

    Traditionally, the transient analysis of solid propellant grains subjected to ignition pressurization loading was not considered, and quasi-elastic-static analysis was widely adopted for structural integrity because the analytical task gets simplified. But it does not mean that the dynamic effect is not useful and could be neglected arbitrarily, and this effect usually plays a very important role for some critical design. In order to simulate the dynamic response for solid rocket motor, a transient finite element model, accompanied by concepts of time-temperature shift principle, reduced integration and thermorheologically simple material assumption, was used. For studying the dynamic response, diverse ignition pressurization loading cases were used and investigated in the present paper. Results show that the dynamic effect is important for structural integrity of solid propellant grains under ignition pressurization loading. Comparing the effective stress of transient analysis and of quasi-elastic-static analysis, one can see that there is an obvious difference between them because of the dynamic effect. From the work of quasi-elastic-static and transient analyses, the dynamic analysis highlighted several areas of interest and a more accurate and reasonable result could be obtained for the engineer.

  11. Three dimensional modeling and dynamic analysis of four-wheel-steering vehicles

    NASA Astrophysics Data System (ADS)

    Hu, Haiyan; Han, Qiang

    2003-02-01

    The paper presents a nonlinear dynamic model of 9 degrees of freedom for four-wheel-steering vehicles. Compared with those in previous studies, this model includes the pitch and roll of the vehicle body, the motion of 4 wheels in the accelerating or braking process, the nonlinear coupling of vehicle body and unsprung part, as well as the air drag and wind effect. As a result, the model can be used for the analysis of various maneuvers of the four-wheel-steering vehicles. In addition, the previous models can be considered as a special case of this model. The paper gives some case studies for the dynamic performance of a four-wheel-steering vehicle under step input and saw-tooth input of steering angle applied on the front wheels, respectively.

  12. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production.

    PubMed

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role.

  13. Relations between affective music and speech: evidence from dynamics of affective piano performance and speech production

    PubMed Central

    Liu, Xiaoluan; Xu, Yi

    2015-01-01

    This study compares affective piano performance with speech production from the perspective of dynamics: unlike previous research, this study uses finger force and articulatory effort as indexes reflecting the dynamics of affective piano performance and speech production respectively. Moreover, for the first time physical constraints such as piano fingerings and speech articulatory constraints are included due to their potential contribution to different patterns of dynamics. A piano performance experiment and speech production experiment were conducted in four emotions: anger, fear, happiness and sadness. The results show that in both piano performance and speech production, anger and happiness generally have high dynamics while sadness has the lowest dynamics. Fingerings interact with fear in the piano experiment and articulatory constraints interact with anger in the speech experiment, i.e., large physical constraints produce significantly higher dynamics than small physical constraints in piano performance under the condition of fear and in speech production under the condition of anger. Using production experiments, this study firstly supports previous perception studies on relations between affective music and speech. Moreover, this is the first study to show quantitative evidence for the importance of considering motor aspects such as dynamics in comparing music performance and speech production in which motor mechanisms play a crucial role. PMID:26217252

  14. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  15. Working Performance Analysis of Rolling Bearings Used in Mining Electric Excavator Crowd Reducer

    NASA Astrophysics Data System (ADS)

    Zhang, Y. H.; Hou, G.; Chen, G.; Liang, J. F.; Zheng, Y. M.

    2017-12-01

    Refer to the statistical load data of digging process, on the basis of simulation analysis of crowd reducer system dynamics, the working performance simulation analysis of rolling bearings used in crowd reducer of large mining electric excavator is completed. The contents of simulation analysis include analysis of internal load distribution, rolling elements contact stresses and rolling bearing fatigue life. The internal load characteristics of rolling elements in cylindrical roller bearings are obtained. The results of this study identified that all rolling bearings satisfy the requirements of contact strength and fatigue life. The rationality of bearings selection and arrangement is also verified.

  16. Stability analysis and wave dynamics of an extended hybrid traffic flow model

    NASA Astrophysics Data System (ADS)

    Wang, Yu-Qing; Zhou, Chao-Fan; Li, Wei-Kang; Yan, Bo-Wen; Jia, Bin; Wang, Ji-Xin

    2018-02-01

    The stability analysis and wave dynamic properties of an extended hybrid traffic flow model, WZY model, are intensively studied in this paper. The linear stable condition obtained by the linear stability analysis is presented. Besides, by means of analyzing Korteweg-de Vries equation, we present soliton waves in the metastable region. Moreover, the multiscale perturbation technique is applied to derive the traveling wave solution of the model. Furthermore, by means of performing Darboux transformation, the first-order and second-order doubly-periodic solutions and rational solutions are presented. It can be found that analytical solutions match well with numerical simulations.

  17. Dynamic analysis environment for nuclear forensic analyses

    NASA Astrophysics Data System (ADS)

    Stork, C. L.; Ummel, C. C.; Stuart, D. S.; Bodily, S.; Goldblum, B. L.

    2017-01-01

    A Dynamic Analysis Environment (DAE) software package is introduced to facilitate group inclusion/exclusion method testing, evaluation and comparison for pre-detonation nuclear forensics applications. Employing DAE, the multivariate signatures of a questioned material can be compared to the signatures for different, known groups, enabling the linking of the questioned material to its potential process, location, or fabrication facility. Advantages of using DAE for group inclusion/exclusion include built-in query tools for retrieving data of interest from a database, the recording and documentation of all analysis steps, a clear visualization of the analysis steps intelligible to a non-expert, and the ability to integrate analysis tools developed in different programming languages. Two group inclusion/exclusion methods are implemented in DAE: principal component analysis, a parametric feature extraction method, and k nearest neighbors, a nonparametric pattern recognition method. Spent Fuel Isotopic Composition (SFCOMPO), an open source international database of isotopic compositions for spent nuclear fuels (SNF) from 14 reactors, is used to construct PCA and KNN models for known reactor groups, and 20 simulated SNF samples are utilized in evaluating the performance of these group inclusion/exclusion models. For all 20 simulated samples, PCA in conjunction with the Q statistic correctly excludes a large percentage of reactor groups and correctly includes the true reactor of origination. Employing KNN, 14 of the 20 simulated samples are classified to their true reactor of origination.

  18. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  19. Advanced Gun System (AGS) Dynamic Characterization: Modal Test and Analysis, High-Frequency Analysis.

    DTIC Science & Technology

    1999-12-01

    frequency data (to 10 kHz) in the AGS test. 3.2 High-Frequency Damping Determination by Wavelet Transform. The continuous wavelet transform (CWT...ARMY RESEARCH LABORATORY MmOSm Hi Advanced Gun System ( AGS ) Dynamic Characterization: Modal Test and Analysis, High-Frequency Analysis by Morris...this report when it is no longer needed. Do not return it to the originator. ERRATA SHEET re: ARL-TR-2138 "Advanced Gun System ( AGS ) Dynamic

  20. Linearised dynamics and non-modal instability analysis of an impinging under-expanded supersonic jet

    NASA Astrophysics Data System (ADS)

    Karami, Shahram; Stegeman, Paul C.; Theofilis, Vassilis; Schmid, Peter J.; Soria, Julio

    2018-04-01

    Non-modal instability analysis of the shear layer near the nozzle of a supersonic under-expanded impinging jet is studied. The shear layer instability is considered to be one of the main components of the feedback loop in supersonic jets. The feedback loop is observed in instantaneous visualisations of the density field where it is noted that acoustic waves scattered by the nozzle lip internalise as shear layer instabilities. A modal analysis describes the asymptotic limit of the instability disturbances and fails to capture short-time responses. Therefore, a non-modal analysis which allows the quantitative description of the short-time amplification or decay of a disturbance is performed by means of a local far-field pressure pulse. An impulse response analysis is performed which allows a wide range of frequencies to be excited. The temporal and spatial growths of the disturbances in the shear layer near the nozzle are studied by decomposing the response using dynamic mode decomposition and Hilbert transform analysis. The short-time response shows that disturbances with non-dimensionalised temporal frequencies in the range of 1 to 4 have positive growth rates in the shear layer. The Hilbert transform analysis shows that high non-dimensionalised temporal frequencies (>4) are dampened immediately, whereas low non-dimensionalised temporal frequencies (<1) are neutral. Both dynamic mode decomposition and Hilbert transform analysis show that spatial frequencies between 1 and 3 have positive spatial growth rates. Finally, the envelope of the streamwise velocity disturbances reveals the presence of a convective instability.

  1. Dynamic CT myocardial perfusion imaging: performance of 3D semi-automated evaluation software.

    PubMed

    Ebersberger, Ullrich; Marcus, Roy P; Schoepf, U Joseph; Lo, Gladys G; Wang, Yining; Blanke, Philipp; Geyer, Lucas L; Gray, J Cranston; McQuiston, Andrew D; Cho, Young Jun; Scheuering, Michael; Canstein, Christian; Nikolaou, Konstantin; Hoffmann, Ellen; Bamberg, Fabian

    2014-01-01

    To evaluate the performance of three-dimensional semi-automated evaluation software for the assessment of myocardial blood flow (MBF) and blood volume (MBV) at dynamic myocardial perfusion computed tomography (CT). Volume-based software relying on marginal space learning and probabilistic boosting tree-based contour fitting was applied to CT myocardial perfusion imaging data of 37 subjects. In addition, all image data were analysed manually and both approaches were compared with SPECT findings. Study endpoints included time of analysis and conventional measures of diagnostic accuracy. Of 592 analysable segments, 42 showed perfusion defects on SPECT. Average analysis times for the manual and software-based approaches were 49.1 ± 11.2 and 16.5 ± 3.7 min respectively (P < 0.01). There was strong agreement between the two measures of interest (MBF, ICC = 0.91, and MBV, ICC = 0.88, both P < 0.01) and no significant difference in MBF/MBV with respect to diagnostic accuracy between the two approaches for both MBF and MBV for manual versus software-based approach; respectively; all comparisons P > 0.05. Three-dimensional semi-automated evaluation of dynamic myocardial perfusion CT data provides similar measures and diagnostic accuracy to manual evaluation, albeit with substantially reduced analysis times. This capability may aid the integration of this test into clinical workflows. • Myocardial perfusion CT is attractive for comprehensive coronary heart disease assessment. • Traditional image analysis methods are cumbersome and time-consuming. • Automated 3D perfusion software shortens analysis times. • Automated 3D perfusion software increases standardisation of myocardial perfusion CT. • Automated, standardised analysis fosters myocardial perfusion CT integration into clinical practice.

  2. Novel non-contact retina camera for the rat and its application to dynamic retinal vessel analysis

    PubMed Central

    Link, Dietmar; Strohmaier, Clemens; Seifert, Bernd U.; Riemer, Thomas; Reitsamer, Herbert A.; Haueisen, Jens; Vilser, Walthard

    2011-01-01

    We present a novel non-invasive and non-contact system for reflex-free retinal imaging and dynamic retinal vessel analysis in the rat. Theoretical analysis was performed prior to development of the new optical design, taking into account the optical properties of the rat eye and its specific illumination and imaging requirements. A novel optical model of the rat eye was developed for use with standard optical design software, facilitating both sequential and non-sequential modes. A retinal camera for the rat was constructed using standard optical and mechanical components. The addition of a customized illumination unit and existing standard software enabled dynamic vessel analysis. Seven-minute in-vivo vessel diameter recordings performed on 9 Brown-Norway rats showed stable readings. On average, the coefficient of variation was (1.1 ± 0.19) % for the arteries and (0.6 ± 0.08) % for the veins. The slope of the linear regression analysis was (0.56 ± 0.26) % for the arteries and (0.15 ± 0.27) % for the veins. In conclusion, the device can be used in basic studies of retinal vessel behavior. PMID:22076270

  3. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 1: Analysis methods

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. S.

    1985-01-01

    As aircraft become larger and lighter due to design requirements for increased payload and improved fuel efficiency, they will also become more flexible. For highly flexible vehicles, the handling qualities may not be accurately predicted by conventional methods. This study applies two analysis methods to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop model analysis technique. This method considers the effects of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Volume 1 consists of the development and application of the two analysis methods described above.

  4. Development of a Probabilistic Dynamic Synthesis Method for the Analysis of Nondeterministic Structures

    NASA Technical Reports Server (NTRS)

    Brown, A. M.

    1998-01-01

    Accounting for the statistical geometric and material variability of structures in analysis has been a topic of considerable research for the last 30 years. The determination of quantifiable measures of statistical probability of a desired response variable, such as natural frequency, maximum displacement, or stress, to replace experience-based "safety factors" has been a primary goal of these studies. There are, however, several problems associated with their satisfactory application to realistic structures, such as bladed disks in turbomachinery. These include the accurate definition of the input random variables (rv's), the large size of the finite element models frequently used to simulate these structures, which makes even a single deterministic analysis expensive, and accurate generation of the cumulative distribution function (CDF) necessary to obtain the probability of the desired response variables. The research presented here applies a methodology called probabilistic dynamic synthesis (PDS) to solve these problems. The PDS method uses dynamic characteristics of substructures measured from modal test as the input rv's, rather than "primitive" rv's such as material or geometric uncertainties. These dynamic characteristics, which are the free-free eigenvalues, eigenvectors, and residual flexibility (RF), are readily measured and for many substructures, a reasonable sample set of these measurements can be obtained. The statistics for these rv's accurately account for the entire random character of the substructure. Using the RF method of component mode synthesis, these dynamic characteristics are used to generate reduced-size sample models of the substructures, which are then coupled to form system models. These sample models are used to obtain the CDF of the response variable by either applying Monte Carlo simulation or by generating data points for use in the response surface reliability method, which can perform the probabilistic analysis with an order of

  5. Development of Test-Analysis Models (TAM) for correlation of dynamic test and analysis results

    NASA Technical Reports Server (NTRS)

    Angelucci, Filippo; Javeed, Mehzad; Mcgowan, Paul

    1992-01-01

    The primary objective of structural analysis of aerospace applications is to obtain a verified finite element model (FEM). The verified FEM can be used for loads analysis, evaluate structural modifications, or design control systems. Verification of the FEM is generally obtained as the result of correlating test and FEM models. A test analysis model (TAM) is very useful in the correlation process. A TAM is essentially a FEM reduced to the size of the test model, which attempts to preserve the dynamic characteristics of the original FEM in the analysis range of interest. Numerous methods for generating TAMs have been developed in the literature. The major emphasis of this paper is a description of the procedures necessary for creation of the TAM and the correlation of the reduced models with the FEM or the test results. Herein, three methods are discussed, namely Guyan, Improved Reduced System (IRS), and Hybrid. Also included are the procedures for performing these analyses using MSC/NASTRAN. Finally, application of the TAM process is demonstrated with an experimental test configuration of a ten bay cantilevered truss structure.

  6. Temporal Dynamics of Cognitive Performance and Anxiety Across Older Adulthood

    PubMed Central

    Petkus, Andrew J.; Reynolds, Chandra A.; Wetherell, Julie Loebach; Kremen, William S.; Gatz, Margaret

    2017-01-01

    Cognitive decline and anxiety symptoms commonly co-occur in later life, but the temporal order of changes on these two attributes is unclear. Specifically, it is unknown if greater anxiety leads to subsequent declines in cognitive performance or if worse cognitive performance leads to increased anxiety. In this study, we sought to elucidate the temporal dynamics between anxiety symptoms and cognitive performance across old age, that is, the extent to which level and change in one variable influence subsequent changes in a second variable. We examined data from 721 non-demented participants from the Swedish Adoption/Twin Study of Aging. Participants completed as many as eight assessments of cognitive performance and anxiety over a 26-year period. Bivariate dual change score models were fit to examine the dynamic association between anxiety and cognitive performance. Bidirectional associations between anxiety and cognitive performance were found among measures of processing speed, attention, and memory, but not visuospatial abilities. Higher anxiety was associated with greater declines in processing speed over the duration of six years and worsening attention over a span of three years. The reverse direction was also significant in that slower processing speed, worse attention, and poorer nonverbal and working memory performance were associated with larger increases in anxiety three years later. These findings highlight that in cognitively intact older adults, the association between anxiety and worse cognitive performance is bidirectional and complex. PMID:28333502

  7. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2002-01-01

    This viewgraph report presents an overview of activities and accomplishments of NASA's Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group. Expertise in this group focuses on high-fidelity fluids design and analysis with application to space shuttle propulsion and next generation launch technologies. Topics covered include: computational fluid dynamics research and goals, turbomachinery research and activities, nozzle research and activities, combustion devices, engine systems, MDA development and CFD process improvements.

  8. Thermal evaluation of advanced solar dynamic heat receiver performance

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1989-01-01

    The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.

  9. A continuum model for dynamic analysis of the Space Station

    NASA Technical Reports Server (NTRS)

    Thomas, Segun

    1989-01-01

    Dynamic analysis of the International Space Station using MSC/NASTRAN had 1312 rod elements, 62 beam elements, 489 nodes and 1473 dynamic degrees of freedom. A realtime, man-in-the-loop simulation of such a model is impractical. This paper discusses the mathematical model for realtime dynamic simulation of the Space Station. Several key questions in structures and structural dynamics are addressed. First, to achieve a significant reduction in the number of dynamic degrees of freedom, a continuum equivalent representation of the Space Station truss structure which accounted for the unsymmetry of the basic configuration and resulted in the coupling of extensional and transverse deformation, is developed. Next, dynamic equations for the continuum equivalent of the Space Station truss structure are formulated using a matrix version of Kane's dynamical equations. Flexibility is accounted for by using a theory that accommodates extension, bending in two principal planes and shear displacement. Finally, constraint equations suitable for dynamic analysis of flexible bodies with closed loop configuration are developed and solution of the resulting system of equations is based on the zero eigenvalue theorem.

  10. Static, Dynamic, and Fatigue Analysis of the Mechanical System of Ultrasonic Scanner for Inservice Inspection of Research Reactors

    NASA Astrophysics Data System (ADS)

    Awwaluddin, Muhammad; Kristedjo, K.; Handono, Khairul; Ahmad, H.

    2018-02-01

    This analysis is conducted to determine the effects of static and dynamic loads of the structure of mechanical system of Ultrasonic Scanner i.e., arm, column, and connection systems for inservice inspection of research reactors. The analysis is performed using the finite element method with 520 N static load. The correction factor of dynamic loads used is the Gerber mean stress correction (stress life). The results of the analysis show that the value of maximum equivalent von Mises stress is 1.3698E8 Pa for static loading and value of the maximum equivalent alternating stress is 1.4758E7 Pa for dynamic loading. These values are below the upper limit allowed according to ASTM A240 standards i.e. 2.05E8 Pa. The result analysis of fatigue life cycle are at least 1E6 cycle, so it can be concluded that the structure is in the high life cycle category.

  11. Dynamic performance of a suspended reinforced concrete footbridge under pedestrian movements

    NASA Astrophysics Data System (ADS)

    Drygala, I.; Dulinska, J.; Kondrat, K.

    2018-02-01

    In the paper the dynamic analysis of a suspended reinforced concrete footbridge over a national road located in South Poland was carried out. Firstly, modes and values of natural frequencies of vibration of the structure were calculated. The results of the numerical modal investigation shown that the natural frequencies of the structure coincided with the frequency of human beings during motion steps (walking fast or running). Hence, to consider the comfort standards, the dynamic response of the footbridge to a runner dynamic motion should be calculated. Secondly, the dynamic response of the footbridge was calculated taking into consideration two models of dynamic forces produced by a single running pedestrian: a ‘sine’ and ‘half-sine’ model. It occurred that the values of accelerations and displacements obtained for the ‘half-sine’ model of dynamic forces were greater than those obtained for the ‘sine’ model up 20%. The ‘sine’ model is appropriate only for walking users of the walkways, because the nature of their motion has continues characteristic. In the case of running users of walkways this theory is unfitting, since the forces produced by a running pedestrian has a discontinuous nature. In this scenario of calculations, a ‘half-sine’ model seemed to be more effective. Finally, the comfort conditions for the footbridge were evaluated. The analysis proved that the vertical comfort criteria were not exceeded for a single user of footbridge running or walking fast.

  12. Engine dynamic analysis with general nonlinear finite element codes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1991-01-01

    A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.

  13. Robust Structural Analysis and Design of Distributed Control Systems to Prevent Zero Dynamics Attacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weerakkody, Sean; Liu, Xiaofei; Sinopoli, Bruno

    We consider the design and analysis of robust distributed control systems (DCSs) to ensure the detection of integrity attacks. DCSs are often managed by independent agents and are implemented using a diverse set of sensors and controllers. However, the heterogeneous nature of DCSs along with their scale leave such systems vulnerable to adversarial behavior. To mitigate this reality, we provide tools that allow operators to prevent zero dynamics attacks when as many as p agents and sensors are corrupted. Such a design ensures attack detectability in deterministic systems while removing the threat of a class of stealthy attacks in stochasticmore » systems. To achieve this goal, we use graph theory to obtain necessary and sufficient conditions for the presence of zero dynamics attacks in terms of the structural interactions between agents and sensors. We then formulate and solve optimization problems which minimize communication networks while also ensuring a resource limited adversary cannot perform a zero dynamics attacks. Polynomial time algorithms for design and analysis are provided.« less

  14. Dynamic analysis and assessment for sustainable development.

    PubMed

    Shi, Xiao-qing

    2002-01-01

    The assessment of sustainable development is crucial for constituting sustainable development strategies. Assessment methods that exist so far usually only use an indicator system for making sustainable judgement. These indicators rarely reflect dynamic characteristics. However, sustainable development is influenced by changes in the social-economic system and in the eco-environmental system at different times. Besides the spatial character, sustainable development has a temporal character that can not be neglected; therefore the research system should also be dynamic. This paper focuses on this dynamic trait, so that the assessment results obtained provide more information for judgements in decision-making processes. Firstly the dynamic characteristics of sustainable development are analyzed, which point to a track of sustainable development that is an upward undulating curve. According to the dynamic character and the development rules of a social, economic and ecological system, a flexible assessment approach that is based on tendency analysis, restrictive conditions and a feedback system is then proposed for sustainable development.

  15. Dynamic network data envelopment analysis for university hospitals evaluation

    PubMed Central

    Lobo, Maria Stella de Castro; Rodrigues, Henrique de Castro; André, Edgard Caires Gazzola; de Azeredo, Jônatas Almeida; Lins, Marcos Pereira Estellita

    2016-01-01

    ABSTRACT OBJECTIVE To develop an assessment tool to evaluate the efficiency of federal university general hospitals. METHODS Data envelopment analysis, a linear programming technique, creates a best practice frontier by comparing observed production given the amount of resources used. The model is output-oriented and considers variable returns to scale. Network data envelopment analysis considers link variables belonging to more than one dimension (in the model, medical residents, adjusted admissions, and research projects). Dynamic network data envelopment analysis uses carry-over variables (in the model, financing budget) to analyze frontier shift in subsequent years. Data were gathered from the information system of the Brazilian Ministry of Education (MEC), 2010-2013. RESULTS The mean scores for health care, teaching and research over the period were 58.0%, 86.0%, and 61.0%, respectively. In 2012, the best performance year, for all units to reach the frontier it would be necessary to have a mean increase of 65.0% in outpatient visits; 34.0% in admissions; 12.0% in undergraduate students; 13.0% in multi-professional residents; 48.0% in graduate students; 7.0% in research projects; besides a decrease of 9.0% in medical residents. In the same year, an increase of 0.9% in financing budget would be necessary to improve the care output frontier. In the dynamic evaluation, there was progress in teaching efficiency, oscillation in medical care and no variation in research. CONCLUSIONS The proposed model generates public health planning and programming parameters by estimating efficiency scores and making projections to reach the best practice frontier. PMID:27191158

  16. Biomechanical performance of rigid compared to dynamic anterior cervical plating: analysis of adjacent upper and lower level compressive forces.

    PubMed

    Connor, David E; Shamieh, Khader Samer; Ogden, Alan L; Mukherjee, Debi P; Sin, Anthony; Nanda, Anil

    2012-12-01

    Dynamic anterior cervical plating is well established as a means of enhancing graft loading and subsequent arthrodesis. Current concerns center on the degree of adjacent-level stress induced by these systems. The aim of this study was to evaluate and compare the load transferred to adjacent levels for single-level anterior cervical discectomy and fusion utilizing rigid compared to dynamic anterior plating systems. Nine cadaveric adult human cervical spine specimens were subjected to range-of-motion testing prior to and following C5-C6 anterior cervical discectomy and fusion procedures. Interbody grafting was performed with human fibula tissue. Nondestructive biomechanical testing included flexion/extension and lateral bending loading modes. A constant displacement of 5mm was applied in each direction and the applied load was measured in newtons (N). Specimens were tested in the following order: intact, following discectomy, after rigid plating, then after dynamic plating. Adjacent level (C4-C5 [L(S)] and C6-C7 [L(I)]) compressive forces were measured using low profile load cells inserted into each disc space. The measured load values for plating systems were then normalized using values measured for the intact specimens. Mean loads transferred to L(S) and L(I) during forced flexion in specimens with rigid plating were 23.47 N and 8.76 N, respectively; while the corresponding values in specimens with dynamic plating were 18.55 N and 1.03 N, respectively. Dynamic plating yielded no significant change at L(I) and a 21.0% decrease in load at L(S) when compared with rigid plating, although the difference was not significant. The observed trend suggests that dynamic plating may diminish superior adjacent level compressive stresses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Hubble Space Telescope Pointing Performance Due to Micro-Dynamic Disturbances from the NICMOS Cryogenic Cooler

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Sills, Joel W., Jr.; Voorhees, Carl R.; Griffin, Thomas J. (Technical Monitor)

    2002-01-01

    The Vibration Admittance Test (VET) was performed to measure the emitted disturbances of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryogenic Cooler (NCC) in preparation for NCC installation onboard the Hubble Space Telescope (HST) during Servicing Mission 3B (SM3B). Details of the VET ground-test are described, including facility characteristics, sensor complement and configuration, NCC suspension, and background noise measurements. Kinematic equations used to compute NCC mass center displacements and accelerations from raw measurements are presented, and dynamic equations of motion for the NCC VET system are developed and verified using modal test data. A MIMO linear frequency-domain analysis method is used to compute NCC-induced loads and HST boresight jitter from VET measurements. These results are verified by a nonlinear time-domain analysis approach using a high-fidelity structural dynamics and pointing control simulation for HST. NCC emitted acceleration levels not exceeding 35 micro-g rms were measured in the VET and analysis methods herein predict 3.1 milli-areseconds rms jitter for HST on-orbit. Because the NCC is predicted to become the predominant disturbance source for HST, VET results indicate that HST will continue to meet the 7 milli-arcsecond pointing stability mission requirement in the post-SM3B era.

  18. Dynamics of bone healing after osteotomy with piezosurgery or conventional drilling - histomorphometrical, immunohistochemical, and molecular analysis.

    PubMed

    Esteves, Jônatas Caldeira; Marcantonio, Elcio; de Souza Faloni, Ana Paula; Rocha, Fernanda Regina Godoy; Marcantonio, Rosemary Adriana; Wilk, Katarzyna; Intini, Giuseppe

    2013-09-23

    Piezosurgery is an osteotomy system used in medical and dental surgery. Many studies have proven clinical advantages of piezosurgery in terms of quality of cut, maneuverability, ease of use, and safety. However, few investigations have tested its superiority over the traditional osteotomy systems in terms of dynamics of bone healing. Therefore, the aim of this study was to evaluate the dynamics of bone healing after osteotomies with piezosurgery and to compare them with those associated to traditional bone drilling. One hundred and ten rats were divided into two groups with 55 animals each. The animals were anesthetized and the tibiae were surgically exposed to create defects 2 mm in diameter by using piezosurgery (Piezo group) and conventional drilling (Drill group). Animals were sacrificed at 3, 7, 14, 30 and 60 days post-surgery. Bone samples were collected and processed for histological, histomorphometrical, immunohistochemical, and molecular analysis. The histological analysis was performed at all time points (n = 8) whereas the histomorphometrical analysis was performed at 7, 14, 30 and 60 days post-surgery (n = 8). The immunolabeling was performed to detect Vascular Endothelial Growth Factor (VEGF), Caspase-3 (CAS-3), Osteoprotegerin (OPG), Receptor Activator of Nuclear Factor kappa-B Ligand (RANKL), and Osteocalcin (OC) at 3, 7, and 14 days (n = 3). For the molecular analysis, animals were sacrificed at 3, 7 and 14 days, total RNA was collected, and quantification of the expression of 21 genes related to BMP signaling, Wnt signaling, inflammation, osteogenenic and apoptotic pathways was performed by qRT-PCR (n = 5). Histologically and histomorphometrically, bone healing was similar in both groups with the exception of a slightly higher amount of newly formed bone observed at 30 days after piezosurgery (p < 0.05). Immunohistochemical and qRT-PCR analyses didn't detect significant differences in expression of all the proteins and most of the genes tested

  19. Dynamic analysis and control of lightweight manipulators with flexible parallel link mechanisms

    NASA Technical Reports Server (NTRS)

    Lee, Jeh Won

    1991-01-01

    The flexible parallel link mechanism is designed for increased rigidity to sustain the buckling when it carries a heavy payload. Compared to a one link flexible manipulator, a two link flexible manipulator, especially the flexible parallel mechanism, has more complicated characteristics in dynamics and control. The objective of this research is the theoretical analysis and the experimental verification of dynamics and control of a two link flexible manipulator with a flexible parallel link mechanism. Nonlinear equations of motion of the lightweight manipulator are derived by the Lagrangian method in symbolic form to better understand the structure of the dynamic model. A manipulator with a flexible parallel link mechanism is a constrained dynamic system whose equations are sensitive to numerical integration error. This constrained system is solved using singular value decomposition of the constraint Jacobian matrix. The discrepancies between the analytical model and the experiment are explained using a simplified and a detailed finite element model. The step response of the analytical model and the TREETOPS model match each other well. The nonlinear dynamics is studied using a sinusoidal excitation. The actuator dynamic effect on a flexible robot was investigated. The effects are explained by the root loci and the Bode plot theoretically and experimentally. For the base performance for the advanced control scheme, a simple decoupled feedback scheme is applied.

  20. An Analysis on a Dynamic Amplifier and Calibration Methods for a Pseudo-Differential Dynamic Comparator

    NASA Astrophysics Data System (ADS)

    Paik, Daehwa; Miyahara, Masaya; Matsuzawa, Akira

    This paper analyzes a pseudo-differential dynamic comparator with a dynamic pre-amplifier. The transient gain of a dynamic pre-amplifier is derived and applied to equations of the thermal noise and the regeneration time of a comparator. This analysis enhances understanding of the roles of transistor's parameters in pre-amplifier's gain. Based on the calculated gain, two calibration methods are also analyzed. One is calibration of a load capacitance and the other is calibration of a bypass current. The analysis helps designers' estimation for the accuracy of calibration, dead-zone of a comparator with a calibration circuit, and the influence of PVT variation. The analyzed comparator uses 90-nm CMOS technology as an example and each estimation is compared with simulation results.

  1. Applying dynamic data collection to improve dry electrode system performance for a P300-based brain-computer interface

    NASA Astrophysics Data System (ADS)

    Clements, J. M.; Sellers, E. W.; Ryan, D. B.; Caves, K.; Collins, L. M.; Throckmorton, C. S.

    2016-12-01

    Objective. Dry electrodes have an advantage over gel-based ‘wet’ electrodes by providing quicker set-up time for electroencephalography recording; however, the potentially poorer contact can result in noisier recordings. We examine the impact that this may have on brain-computer interface communication and potential approaches for mitigation. Approach. We present a performance comparison of wet and dry electrodes for use with the P300 speller system in both healthy participants and participants with communication disabilities (ALS and PLS), and investigate the potential for a data-driven dynamic data collection algorithm to compensate for the lower signal-to-noise ratio (SNR) in dry systems. Main results. Performance results from sixteen healthy participants obtained in the standard static data collection environment demonstrate a substantial loss in accuracy with the dry system. Using a dynamic stopping algorithm, performance may have been improved by collecting more data in the dry system for ten healthy participants and eight participants with communication disabilities; however, the algorithm did not fully compensate for the lower SNR of the dry system. An analysis of the wet and dry system recordings revealed that delta and theta frequency band power (0.1-4 Hz and 4-8 Hz, respectively) are consistently higher in dry system recordings across participants, indicating that transient and drift artifacts may be an issue for dry systems. Significance. Using dry electrodes is desirable for reduced set-up time; however, this study demonstrates that online performance is significantly poorer than for wet electrodes for users with and without disabilities. We test a new application of dynamic stopping algorithms to compensate for poorer SNR. Dynamic stopping improved dry system performance; however, further signal processing efforts are likely necessary for full mitigation.

  2. Dynamic fuzzy hierarchy analysis for evaluation of professionalization degree

    NASA Astrophysics Data System (ADS)

    Jin, Lin; Min, Luo; Ma, Jingxi

    2016-06-01

    This paper presents the model of dynamic fuzzy hierarchy analysis for evaluation of professionalization degree, as a combination of the dynamic fuzzy theory and the AHP, which can show the changes and trends of the value of each index of professionalization.

  3. Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states

    PubMed Central

    Shakil, Sadia; Lee, Chin-Hui; Keilholz, Shella Dawn

    2016-01-01

    A promising recent development in the study of brain function is the dynamic analysis of resting-state functional MRI scans, which can enhance understanding of normal cognition and alterations that result from brain disorders. One widely used method of capturing the dynamics of functional connectivity is sliding window correlation (SWC). However, in the absence of a “gold standard” for comparison, evaluating the performance of the SWC in typical resting-state data is challenging. This study uses simulated networks (SNs) with known transitions to examine the effects of parameters such as window length, window offset, window type, noise, filtering, and sampling rate on the SWC performance. The SWC time course was calculated for all node pairs of each SN and then clustered using the k-means algorithm to determine how resulting brain states match known configurations and transitions in the SNs. The outcomes show that the detection of state transitions and durations in the SWC is most strongly influenced by the window length and offset, followed by noise and filtering parameters. The effect of the image sampling rate was relatively insignificant. Tapered windows provide less sensitivity to state transitions than rectangular windows, which could be the result of the sharp transitions in the SNs. Overall, the SWC gave poor estimates of correlation for each brain state. Clustering based on the SWC time course did not reliably reflect the underlying state transitions unless the window length was comparable to the state duration, highlighting the need for new adaptive window analysis techniques. PMID:26952197

  4. Analysis of turbulent synthetic jet by dynamic mode decomposition

    NASA Astrophysics Data System (ADS)

    Hyhlík, Tomáš; Netřebská, Hana; Devera, Jakub; Kalinay, Radomír

    The article deals with the analysis of CFD results of the turbulent synthetic jet. The numerical simulation of Large Eddy Simulation (LES) using commercial solver ANSYS CFX has been performed. The unsteady flow field is studied from the point of view of identification of the moving vortex ring, which has been identified both on the snapshots of flow field using swirling-strength criterion and using the Dynamic Mode Decomposition (DMD) of five periods. It is shown that travelling vortex ring vanishes due to interaction with vortex structures in the synthesised turbulent jet. DMD modes with multiple of the basic frequency of synthetic jet, which are connected with travelling vortex structure, have largest DMD amplitudes.

  5. Dynamic mechanical analysis and organization/storage of data for polymetric materials

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Buckley, W.

    1982-01-01

    Dynamic mechanical analysis was performed on a variety of temperature resistant polymers and composite resin matrices. Data on glass transition temperatures and degree of cure attained were derived. In addition a laboratory based computer system was installed and data base set up to allow entry of composite data. The laboratory CPU termed TYCHO is based on a DEC PDP 11/44 CPU with a Datatrieve relational data base. The function of TYCHO is integration of chemical laboratory analytical instrumentation and storage of chemical structures for modeling of new polymeric structures and compounds

  6. Performance of Smagorinsky and dynamic models in near surface turbulence

    NASA Astrophysics Data System (ADS)

    Brasseur, James G.; Juneja, Anurag

    1997-11-01

    In LES of high-Reynolds-number wall bounded turbulence such as the atmospheric boundary layer (ABL), a viscous sublayer either does not exist or is within the first grid cell, and some integral scale motions are necessarily under-resolved at the first few grid locations. Here the subgrid terms dominate the evolution of resolved velocity and the SGS model performance becomes crucial. To develop improved closures for surface layer turbulence (under-resolved and anisotropic), we explore (a) why current SGS closures fail and (b) what needs to be fixed. We evaluate the performance of the Smagorinsky and dynamic models using DNS data from shear- and buoyancy-driven turbulence as a function of filter cutoff location. We find that the underlying assumption of good alignment between the subgrid stress and resolved strain-rate tensors is not correct in general. More importantly, the Smagorinsky model incorrectly predicts a strong preference in the direction of the SGS stress divergence vector, a spurious prediction that is directly related to the anisotropic structure of the resolved turbulence field. This, and its under-estimation of the SGS pressure gradient, are likely sources of the errors observed in LES of the ABL. Whereas the dynamic formulations do a better job predicting some SGS dynamics, the model fails when the filter cutoff is near an integral scale, and predicts unreasonable fluctuation levels-- although performance is sensitive to type of averaging. *supported by ARO grant DAAL03-92-0117.

  7. Integrated modeling environment for systems-level performance analysis of the Next-Generation Space Telescope

    NASA Astrophysics Data System (ADS)

    Mosier, Gary E.; Femiano, Michael; Ha, Kong; Bely, Pierre Y.; Burg, Richard; Redding, David C.; Kissil, Andrew; Rakoczy, John; Craig, Larry

    1998-08-01

    All current concepts for the NGST are innovative designs which present unique systems-level challenges. The goals are to outperform existing observatories at a fraction of the current price/performance ratio. Standard practices for developing systems error budgets, such as the 'root-sum-of- squares' error tree, are insufficient for designs of this complexity. Simulation and optimization are the tools needed for this project; in particular tools that integrate controls, optics, thermal and structural analysis, and design optimization. This paper describes such an environment which allows sub-system performance specifications to be analyzed parametrically, and includes optimizing metrics that capture the science requirements. The resulting systems-level design trades are greatly facilitated, and significant cost savings can be realized. This modeling environment, built around a tightly integrated combination of commercial off-the-shelf and in-house- developed codes, provides the foundation for linear and non- linear analysis on both the time and frequency-domains, statistical analysis, and design optimization. It features an interactive user interface and integrated graphics that allow highly-effective, real-time work to be done by multidisciplinary design teams. For the NGST, it has been applied to issues such as pointing control, dynamic isolation of spacecraft disturbances, wavefront sensing and control, on-orbit thermal stability of the optics, and development of systems-level error budgets. In this paper, results are presented from parametric trade studies that assess requirements for pointing control, structural dynamics, reaction wheel dynamic disturbances, and vibration isolation. These studies attempt to define requirements bounds such that the resulting design is optimized at the systems level, without attempting to optimize each subsystem individually. The performance metrics are defined in terms of image quality, specifically centroiding error and RMS

  8. Dynamic Wireless Power Transfer - Grid Impacts Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markel, Tony; Meintz, Andrew; Gonder, Jeff

    2015-12-04

    This presentation discusses the current status of analysis of the electricity grid impacts of a dynamic wireless power transfer system deployed to the Atlanta region on select high traffic roadway segments.

  9. Roll and pitch independently tuned interconnected suspension: modelling and dynamic analysis

    NASA Astrophysics Data System (ADS)

    Xu, Guangzhong; Zhang, Nong; Roser, Holger M.

    2015-12-01

    In this paper, a roll and pitch independently tuned hydraulically interconnected passive suspension is presented. Due to decoupling of vibration modes and the improved lateral and longitudinal stability, the stiffness of individual suspension spring can be reduced for improving ride comfort and road grip. A generalised 14 degree-of-freedom nonlinear vehicle model with anti-roll bars is established to investigate the vehicle ride and handling dynamic responses. The nonlinear fluidic model of the hydraulically interconnected suspension is developed and integrated with the full vehicle model to investigate the anti-roll and anti-pitch characteristics. Time domain analysis of the vehicle model with the proposed suspension is conducted under different road excitations and steering/braking manoeuvres. The dynamic responses are compared with conventional suspensions to demonstrate the potential of enhanced ride and handling performance. The results illustrate the model-decoupling property of the hydraulically interconnected system. The anti-roll and anti-pitch performance could be tuned independently by the interconnected systems. With the improved anti-roll and anti-pitch characteristics, the bounce stiffness and ride damping can be optimised for better ride comfort and tyre grip.

  10. Dynamic Analysis of Hammer Mechanism "Twin Hammer" of Impact Wrench

    NASA Astrophysics Data System (ADS)

    Konečný, M.; Slavík, J.

    This paper describes function of the hammer mechanism "Twin hammer" the impact wrench, calculation of dynamic forces exerted on the mechanism and determining the contact pressures between the parts of the mechanism. The modelling of parts was performed in system Pro ENGINEER—standard. The simulation and finding dynamic forces was performed in advanced module Pro ENGINEER—mechanism design and finding contacts pressures in modul Pro ENGENEER—mechanica.

  11. Dynamic Impact of Online Word-of-Mouth and Advertising on Supply Chain Performance

    PubMed Central

    Feng, Jian

    2018-01-01

    Cooperative (co-op) advertising investments benefit brand goodwill and further improve supply chain performance. Meanwhile, online word-of-mouth (OWOM) can also play an important role in supply chain performance. On the basis of co-op advertising, this paper considers a single supply chain structure led by a manufacturer and examines a fundamental issue concerning the impact of OWOM on supply chain performance. Firstly, by the method of differential game, this paper analyzes the dynamic impact of OWOM and advertising on supply chain performance (i.e., brand goodwill, sales, and profits) under three different supply chain decisions (i.e., only advertising, and manufacturers with and without sharing cost of OWOM with retailers). We compare and analyze the optimal strategies of advertising and OWOM under the above different supply chain decisions. Secondly, the system dynamics model is established to reflect the dynamic impact of OWOM and advertising on supply chain performance. Finally, three supply chain decisions under two scenarios, strong brand and weak brand, are analyzed through the system dynamics simulation. The results show that the input of OWOM can enhance brand goodwill and improve earnings. It further promotes the OWOM reputation and improves the supply chain performance if manufacturers share the cost of OWOM with retailers. Then, in order to eliminate the retailers from word-of-mouth fraud and establish a fair competition mechanism, the third parties (i.e., regulators or e-commerce platforms) should take appropriate punitive measures against retailers. Furthermore, the effect of OWOM on supply chain performance under a strong brand differed from those under a weak brand. Last but not least, if OWOM is improved, there would be more remarkable performance for the weak brand than that for the strong brand in the supply chain. PMID:29300361

  12. Dynamic Impact of Online Word-of-Mouth and Advertising on Supply Chain Performance.

    PubMed

    Feng, Jian; Liu, Bin

    2018-01-04

    Cooperative (co-op) advertising investments benefit brand goodwill and further improve supply chain performance. Meanwhile, online word-of-mouth (OWOM) can also play an important role in supply chain performance. On the basis of co-op advertising, this paper considers a single supply chain structure led by a manufacturer and examines a fundamental issue concerning the impact of OWOM on supply chain performance. Firstly, by the method of differential game, this paper analyzes the dynamic impact of OWOM and advertising on supply chain performance (i.e., brand goodwill, sales, and profits) under three different supply chain decisions (i.e., only advertising, and manufacturers with and without sharing cost of OWOM with retailers). We compare and analyze the optimal strategies of advertising and OWOM under the above different supply chain decisions. Secondly, the system dynamics model is established to reflect the dynamic impact of OWOM and advertising on supply chain performance. Finally, three supply chain decisions under two scenarios, strong brand and weak brand, are analyzed through the system dynamics simulation. The results show that the input of OWOM can enhance brand goodwill and improve earnings. It further promotes the OWOM reputation and improves the supply chain performance if manufacturers share the cost of OWOM with retailers. Then, in order to eliminate the retailers from word-of-mouth fraud and establish a fair competition mechanism, the third parties (i.e., regulators or e-commerce platforms) should take appropriate punitive measures against retailers. Furthermore, the effect of OWOM on supply chain performance under a strong brand differed from those under a weak brand. Last but not least, if OWOM is improved, there would be more remarkable performance for the weak brand than that for the strong brand in the supply chain.

  13. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Wang, Tee-See; Griffin, Lisa; Turner, James E. (Technical Monitor)

    2001-01-01

    This document is a presentation graphic which reviews the activities of the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center (i.e., Code TD64). The work of this group focused on supporting the space transportation programs. The work of the group is in Computational Fluid Dynamic tool development. This development is driven by hardware design needs. The major applications for the design and analysis tools are: turbines, pumps, propulsion-to-airframe integration, and combustion devices.

  14. Integration of fracturing dynamics and pressure transient analysis for hydraulic fracture evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arihara, N.; Abbaszadeh, M.; Wright, C.A.

    This paper presents pre- and post-fracture pressure transient analysis, combined with net fracture pressure interpretation, for a well in a naturally fractured geothermal reservoir. Integrated analysis was performed to achieve a consistent interpretation of the created fracture geometry, propagation, conductivity, shrinkage, reservoir flow behavior, and formation permeability characteristics. The interpreted data includes two-rate pre-frac injection tests, step-rate injection tests, a series of pressure falloff tests, and the net fracturing pressure from a massive fracture treatment. Pressure transient analyses were performed utilizing advanced well test interpretation techniques and a thermal reservoir simulator with fracture propagation option. Hydraulic fracture propagation analysis wasmore » also performed Milt a generalized 3-D dynamic fracture growth model simulator. Three major conclusions resulted from the combined analysis: (1) that an increasing number of hydraulic fractures were being simultaneously propagated during the fracture treatment. (2) that the reservoir behaved as a composite reservoir Keith the outer region permeability being greater than the permeability of the region immediately surrounding the wellbore, and (3) that the created fractures extended into the outer region during the fracture treatment but retreated to the inner region several days after stimulation had ceased. These conclusions were apparent from independent pressure transient analysis and from independent hydraulic fracture propagation analysis. Integrated interpretation, however, increased the confidence in these conclusions and greatly aided the quantification of the created hydraulic fracture geometry and characterization of the reservoir permeability.« less

  15. Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2004-01-01

    This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.

  16. Dynamic analysis for shuttle design verification

    NASA Technical Reports Server (NTRS)

    Fralich, R. W.; Green, C. E.; Rheinfurth, M. H.

    1972-01-01

    Two approaches that are used for determining the modes and frequencies of space shuttle structures are discussed. The first method, direct numerical analysis, involves finite element mathematical modeling of the space shuttle structure in order to use computer programs for dynamic structural analysis. The second method utilizes modal-coupling techniques of experimental verification made by vibrating only spacecraft components and by deducing modes and frequencies of the complete vehicle from results obtained in the component tests.

  17. Two-tiered design analysis of a radiator for a solar dynamic powered Stirling engine

    NASA Technical Reports Server (NTRS)

    Hainley, Donald C.

    1989-01-01

    Two separate design approaches for a pumped loop radiator used to transfer heat from the cold end of a solar dynamic powered Stirling engine are described. The first approach uses a standard method to determine radiator requirements to meet specified end of mission conditions. Trade-off studies conducted for the analysis are included. Justification of this concept within the specified parameters of the analysis is provided. The second design approach determines the life performance of the radiator/Stirling system. In this approach, the system performance was altered by reducing the radiator heat transfer area. Performance effects and equilibrium points were determined as radiator segments were removed. This simulates the effect of loss of radiator sections due to micro-meteoroid and space debris penetration. The two designs were compared on the basis of overall system requirements and goals.

  18. Two-tiered design analysis of a radiator for a solar dynamic powered Stirling engine

    NASA Technical Reports Server (NTRS)

    Hainley, Donald C.

    1989-01-01

    Two separate design approaches for a pumped loop radiator used to transfer heat from the cold end of a solar dynamic powered Stirling engine are described. The first approach uses a standard method to determine radiator requirements to meet specified end of mission conditions. Trade-off studies conducted for the analysis are included. Justification of this concept within the specified parameters of the analysis is provided. The second design approach determines the life performance of the radiator/Stirling system. In this approach, the system performance was altered by reducing the radiator heat transfer area. Performance effects and equilibrium points were determined as radiator segments were removed. This simulates the effect of loss of radiator sections due to micro-meteoroid and space debris penetration. The two designs are compared on the basis of overall system requirements and goals.

  19. Analysis of protein and lipid dynamics using confocal fluorescence recovery after photobleaching (FRAP)

    PubMed Central

    Day, Charles A.; Kraft, Lewis J.; Kang, Minchul; Kenworthy, Anne K.

    2012-01-01

    Fluorescence recovery after photobleaching (FRAP) is a powerful, versatile and widely accessible tool to monitor molecular dynamics in living cells that can be performed using modern confocal microscopes. Although the basic principles of FRAP are simple, quantitative FRAP analysis requires careful experimental design, data collection and analysis. In this review we discuss the theoretical basis for confocal FRAP, followed by step-by-step protocols for FRAP data acquisition using a laser scanning confocal microscope for (1) measuring the diffusion of a membrane protein, (2) measuring the diffusion of a soluble protein, and (3) analysis of intracellular trafficking. Finally, data analysis procedures are discussed and an equation for determining the diffusion coefficient of a molecular species undergoing pure diffusion is presented. PMID:23042527

  20. Hamiltonian Analysis of Subcritical Stochastic Epidemic Dynamics

    PubMed Central

    2017-01-01

    We extend a technique of approximation of the long-term behavior of a supercritical stochastic epidemic model, using the WKB approximation and a Hamiltonian phase space, to the subcritical case. The limiting behavior of the model and approximation are qualitatively different in the subcritical case, requiring a novel analysis of the limiting behavior of the Hamiltonian system away from its deterministic subsystem. This yields a novel, general technique of approximation of the quasistationary distribution of stochastic epidemic and birth-death models and may lead to techniques for analysis of these models beyond the quasistationary distribution. For a classic SIS model, the approximation found for the quasistationary distribution is very similar to published approximations but not identical. For a birth-death process without depletion of susceptibles, the approximation is exact. Dynamics on the phase plane similar to those predicted by the Hamiltonian analysis are demonstrated in cross-sectional data from trachoma treatment trials in Ethiopia, in which declining prevalences are consistent with subcritical epidemic dynamics. PMID:28932256

  1. Removing Grit During Wastewater Treatment: CFD Analysis of HDVS Performance.

    PubMed

    Meroney, Robert N; Sheker, Robert E

    2016-05-01

    Computational Fluid Dynamics (CFD) was used to simulate the grit and sand separation effectiveness of a typical hydrodynamic vortex separator (HDVS) system. The analysis examined the influences on the separator efficiency of: flow rate, fluid viscosities, total suspended solids (TSS), and particle size and distribution. It was found that separator efficiency for a wide range of these independent variables could be consolidated into a few curves based on the particle fall velocity to separator inflow velocity ratio, Ws/Vin. Based on CFD analysis it was also determined that systems of different sizes with length scale ratios ranging from 1 to 10 performed similarly when Ws/Vin and TSS were held constant. The CFD results have also been compared to a limited range of experimental data.

  2. Performance analysis of jump-gliding locomotion for miniature robotics.

    PubMed

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  3. High-Performance Java Codes for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  4. Active load control during rolling maneuvers. [performed in the Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Woods-Vedeler, Jessica A.; Pototzky, Anthony S.; Hoadley, Sherwood T.

    1994-01-01

    A rolling maneuver load alleviation (RMLA) system has been demonstrated on the active flexible wing (AFW) wind tunnel model in the Langley Transonic Dynamics Tunnel (TDT). The objective was to develop a systematic approach for designing active control laws to alleviate wing loads during rolling maneuvers. Two RMLA control laws were developed that utilized outboard control-surface pairs (leading and trailing edge) to counteract the loads and that used inboard trailing-edge control-surface pairs to maintain roll performance. Rolling maneuver load tests were performed in the TDT at several dynamic pressures that included two below and one 11 percent above open-loop flutter dynamic pressure. The RMLA system was operated simultaneously with an active flutter suppression system above open-loop flutter dynamic pressure. At all dynamic pressures for which baseline results were obtained, torsion-moment loads were reduced for both RMLA control laws. Results for bending-moment load reductions were mixed; however, design equations developed in this study provided conservative estimates of load reduction in all cases.

  5. Operationalizing sustainability in urban coastal systems: a system dynamics analysis.

    PubMed

    Mavrommati, Georgia; Bithas, Kostas; Panayiotidis, Panayiotis

    2013-12-15

    We propose a system dynamics approach for Ecologically Sustainable Development (ESD) in urban coastal systems. A systematic analysis based on theoretical considerations, policy analysis and experts' knowledge is followed in order to define the concept of ESD. The principles underlying ESD feed the development of a System Dynamics Model (SDM) that connects the pollutant loads produced by urban systems' socioeconomic activities with the ecological condition of the coastal ecosystem that it is delineated in operational terms through key biological elements defined by the EU Water Framework Directive. The receiving waters of the Athens Metropolitan area, which bears the elements of typical high population density Mediterranean coastal city but which currently has also new dynamics induced by the ongoing financial crisis, are used as an experimental system for testing a system dynamics approach to apply the concept of ESD. Systems' thinking is employed to represent the complex relationships among the components of the system. Interconnections and dependencies that determine the potentials for achieving ESD are revealed. The proposed system dynamics analysis can facilitate decision makers to define paths of development that comply with the principles of ESD. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Performance Analysis of Scientific and Engineering Applications Using MPInside and TAU

    NASA Technical Reports Server (NTRS)

    Saini, Subhash; Mehrotra, Piyush; Taylor, Kenichi Jun Haeng; Shende, Sameer Suresh; Biswas, Rupak

    2010-01-01

    In this paper, we present performance analysis of two NASA applications using performance tools like Tuning and Analysis Utilities (TAU) and SGI MPInside. MITgcmUV and OVERFLOW are two production-quality applications used extensively by scientists and engineers at NASA. MITgcmUV is a global ocean simulation model, developed by the Estimating the Circulation and Climate of the Ocean (ECCO) Consortium, for solving the fluid equations of motion using the hydrostatic approximation. OVERFLOW is a general-purpose Navier-Stokes solver for computational fluid dynamics (CFD) problems. Using these tools, we analyze the MPI functions (MPI_Sendrecv, MPI_Bcast, MPI_Reduce, MPI_Allreduce, MPI_Barrier, etc.) with respect to message size of each rank, time consumed by each function, and how ranks communicate. MPI communication is further analyzed by studying the performance of MPI functions used in these two applications as a function of message size and number of cores. Finally, we present the compute time, communication time, and I/O time as a function of the number of cores.

  7. Assessing the performance of dynamical trajectory estimates

    NASA Astrophysics Data System (ADS)

    Bröcker, Jochen

    2014-06-01

    Estimating trajectories and parameters of dynamical systems from observations is a problem frequently encountered in various branches of science; geophysicists for example refer to this problem as data assimilation. Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using the same observations for estimation and validation might result in overly optimistic performance assessments. To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a more realistic performance assessment in data assimilation. The presented approach becomes particularly simple for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging, incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high gain observer confirm the theory.

  8. Assessing the performance of dynamical trajectory estimates.

    PubMed

    Bröcker, Jochen

    2014-06-01

    Estimating trajectories and parameters of dynamical systems from observations is a problem frequently encountered in various branches of science; geophysicists for example refer to this problem as data assimilation. Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using the same observations for estimation and validation might result in overly optimistic performance assessments. To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a more realistic performance assessment in data assimilation. The presented approach becomes particularly simple for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging, incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high gain observer confirm the theory.

  9. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes

    PubMed Central

    Kuang, Zheng; Ji, Zhicheng

    2018-01-01

    Abstract Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. PMID:29325176

  10. Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.

    PubMed

    Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan

    2017-06-01

    H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.

  11. Integrated analysis of dynamic FET PET/CT parameters, histology, and methylation profiling of 44 gliomas.

    PubMed

    Röhrich, Manuel; Huang, Kristin; Schrimpf, Daniel; Albert, Nathalie L; Hielscher, Thomas; von Deimling, Andreas; Schüller, Ulrich; Dimitrakopoulou-Strauss, Antonia; Haberkorn, Uwe

    2018-05-07

    Dynamic 18 F-FET PET/CT is a powerful tool for the diagnosis of gliomas. 18 F-FET PET time-activity curves (TAC) allow differentiation between histological low-grade gliomas (LGG) and high-grade gliomas (HGG). Molecular methods such as epigenetic profiling are of rising importance for glioma grading and subclassification. Here, we analysed dynamic 18 F-FET PET data, and the histological and epigenetic features of 44 gliomas. Dynamic 18 F-FET PET was performed in 44 patients with newly diagnosed, untreated glioma: 10 WHO grade II glioma, 13 WHO grade III glioma and 21 glioblastoma (GBM). All patients underwent stereotactic biopsy or tumour resection after 18 F-FET PET imaging. As well as histological analysis of tissue samples, DNA was subjected to epigenetic analysis using the Illumina 850 K methylation array. TACs, standardized uptake values corrected for background uptake in healthy tissue (SUVmax/BG), time to peak (TTP) and kinetic modelling parameters were correlated with histological diagnoses and with epigenetic signatures. Multivariate analyses were performed to evaluate the diagnostic accuracy of 18 F-FET PET in relation to the tumour groups identified by histological and methylation-based analysis. Epigenetic profiling led to substantial tumour reclassification, with six grade II/III gliomas reclassified as GBM. Overlap of HGG-typical TACs and LGG-typical TACs was dramatically reduced when tumours were clustered on the basis of their methylation profile. SUVmax/BG values of GBM were higher than those of LGGs following both histological diagnosis and methylation-based diagnosis. The differences in TTP between GBMs and grade II/III gliomas were greater following methylation-based diagnosis than following histological diagnosis. Kinetic modeling showed that relative K1 and fractal dimension (FD) values significantly differed in histology- and methylation-based GBM and grade II/III glioma between those diagnosed histologically and those diagnosed by

  12. Frequency analysis of a step dynamic pressure calibrator.

    PubMed

    Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon

    2012-09-01

    A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.

  13. Frequency analysis of a step dynamic pressure calibrator

    NASA Astrophysics Data System (ADS)

    Choi, In-Mook; Yang, Inseok; Yang, Tae-Heon

    2012-09-01

    A dynamic high pressure standard is becoming more essential in the fields of mobile engines, space science, and especially the area of defense such as long-range missile development. However, a complication arises when a dynamic high pressure sensor is compared with a reference dynamic pressure gauge calibrated in static mode. Also, it is difficult to determine a reference dynamic pressure signal from the calibrator because a dynamic high pressure calibrator generates unnecessary oscillations in a positive-going pressure step method. A dynamic high pressure calibrator, using a quick-opening ball valve, generates a fast step pressure change within 1 ms; however, the calibrator also generates a big impulse force that can lead to a short life-time of the system and to oscillating characteristics in response to the dynamic sensor to be calibrated. In this paper, unnecessary additional resonant frequencies besides those of the step function are characterized using frequency analysis. Accordingly, the main sources of resonance are described. In order to remove unnecessary frequencies, the post processing results, obtained by a filter, are given; also, a method for the modification of the dynamic calibration system is proposed.

  14. Sleep Neurophysiological Dynamics Through the Lens of Multitaper Spectral Analysis

    PubMed Central

    Prerau, Michael J.; Brown, Ritchie E.; Bianchi, Matt T.; Ellenbogen, Jeffrey M.; Purdon, Patrick L.

    2016-01-01

    During sleep, cortical and subcortical structures within the brain engage in highly structured oscillatory dynamics that can be observed in the electroencephalogram (EEG). The ability to accurately describe changes in sleep state from these oscillations has thus been a major goal of sleep medicine. While numerous studies over the past 50 years have shown sleep to be a continuous, multifocal, dynamic process, long-standing clinical practice categorizes sleep EEG into discrete stages through visual inspection of 30-s epochs. By representing sleep as a coarsely discretized progression of stages, vital neurophysiological information on the dynamic interplay between sleep and arousal is lost. However, by using principled time-frequency spectral analysis methods, the rich dynamics of the sleep EEG are immediately visible—elegantly depicted and quantified at time scales ranging from a full night down to individual microevents. In this paper, we review the neurophysiology of sleep through this lens of dynamic spectral analysis. We begin by reviewing spectral estimation techniques traditionally used in sleep EEG analysis and introduce multitaper spectral analysis, a method that makes EEG spectral estimates clearer and more accurate than traditional approaches. Through the lens of the multitaper spectrogram, we review the oscillations and mechanisms underlying the traditional sleep stages. In doing so, we will demonstrate how multitaper spectral analysis makes the oscillatory structure of traditional sleep states instantaneously visible, closely paralleling the traditional hypnogram, but with a richness of information that suggests novel insights into the neural mechanisms of sleep, as well as novel clinical and research applications. PMID:27927806

  15. Modeling and Analysis of Structural Dynamics for a One-Tenth Scale Model NGST Sunshield

    NASA Technical Reports Server (NTRS)

    Johnston, John; Lienard, Sebastien; Brodeur, Steve (Technical Monitor)

    2001-01-01

    New modeling and analysis techniques have been developed for predicting the dynamic behavior of the Next Generation Space Telescope (NGST) sunshield. The sunshield consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. Modeling the structural dynamic behavior of the sunshield is a challenging aspect of the problem due to the effects of membrane wrinkling. A finite element model of the sunshield was developed using an approximate engineering approach, the cable network method, to account for membrane wrinkling effects. Ground testing of a one-tenth scale model of the NGST sunshield were carried out to provide data for validating the analytical model. A series of analyses were performed to predict the behavior of the sunshield under the ground test conditions. Modal analyses were performed to predict the frequencies and mode shapes of the test article and transient response analyses were completed to simulate impulse excitation tests. Comparison was made between analytical predictions and test measurements for the dynamic behavior of the sunshield. In general, the results show good agreement with the analytical model correctly predicting the approximate frequency and mode shapes for the significant structural modes.

  16. Testing all six person-oriented principles in dynamic factor analysis.

    PubMed

    Molenaar, Peter C M

    2010-05-01

    All six person-oriented principles identified by Sterba and Bauer's Keynote Article can be tested by means of dynamic factor analysis in its current form. In particular, it is shown how complex interactions and interindividual differences/intraindividual change can be tested in this way. In addition, the necessity to use single-subject methods in the analysis of developmental processes is emphasized, and attention is drawn to the possibility to optimally treat developmental psychopathology by means of new computational techniques that can be integrated with dynamic factor analysis.

  17. Low-dimensional dynamical characterization of human performance of cancer patients using motion data.

    PubMed

    Hasnain, Zaki; Li, Ming; Dorff, Tanya; Quinn, David; Ueno, Naoto T; Yennu, Sriram; Kolatkar, Anand; Shahabi, Cyrus; Nocera, Luciano; Nieva, Jorge; Kuhn, Peter; Newton, Paul K

    2018-05-18

    Biomechanical characterization of human performance with respect to fatigue and fitness is relevant in many settings, however is usually limited to either fully qualitative assessments or invasive methods which require a significant experimental setup consisting of numerous sensors, force plates, and motion detectors. Qualitative assessments are difficult to standardize due to their intrinsic subjective nature, on the other hand, invasive methods provide reliable metrics but are not feasible for large scale applications. Presented here is a dynamical toolset for detecting performance groups using a non-invasive system based on the Microsoft Kinect motion capture sensor, and a case study of 37 cancer patients performing two clinically monitored tasks before and after therapy regimens. Dynamical features are extracted from the motion time series data and evaluated based on their ability to i) cluster patients into coherent fitness groups using unsupervised learning algorithms and to ii) predict Eastern Cooperative Oncology Group performance status via supervised learning. The unsupervised patient clustering is comparable to clustering based on physician assigned Eastern Cooperative Oncology Group status in that they both have similar concordance with change in weight before and after therapy as well as unexpected hospitalizations throughout the study. The extracted dynamical features can predict physician, coordinator, and patient Eastern Cooperative Oncology Group status with an accuracy of approximately 80%. The non-invasive Microsoft Kinect sensor and the proposed dynamical toolset comprised of data preprocessing, feature extraction, dimensionality reduction, and machine learning offers a low-cost and general method for performance segregation and can complement existing qualitative clinical assessments. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Analysis and test evaluation of the dynamic response and stability of three advanced turboprop models

    NASA Technical Reports Server (NTRS)

    Bansal, P. N.; Arseneaux, P. J.; Smith, A. F.; Turnberg, J. E.; Brooks, B. M.

    1985-01-01

    Results of dynamic response and stability wind tunnel tests of three 62.2 cm (24.5 in) diameter models of the Prop-Fan, advanced turboprop, are presented. Measurements of dynamic response were made with the rotors mounted on an isolated nacelle, with varying tilt for nonuniform inflow. One model was also tested using a semi-span wing and fuselage configuration for response to realistic aircraft inflow. Stability tests were performed using tunnel turbulence or a nitrogen jet for excitation. Measurements are compared with predictions made using beam analysis methods for the model with straight blades, and finite element analysis methods for the models with swept blades. Correlations between measured and predicted rotating blade natural frequencies for all the models are very good. The IP dynamic response of the straight blade model is reasonably well predicted. The IP response of the swept blades is underpredicted and the wing induced response of the straight blade is overpredicted. Two models did not flutter, as predicted. One swept blade model encountered an instability at a higher RPM than predicted, showing predictions to be conservative.

  19. Dynamic analysis of a geared rotor system considering a slant crack on the shaft

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Zhao, Jingshan; Chu, Fulei

    2012-12-01

    The vibration problems associated with geared systems have been the focus of research in recent years. As the torque is mainly transmitted by the geared system, a slant crack is more likely to appear on the gear shaft. Due to the slant crack and its breathing mechanism, the dynamic behavior of cracked geared system would differ distinctly with that of uncracked system. Relatively less work is reported on slant crack in the geared rotor system during the past research. Thus, the dynamic analysis of a geared rotor-bearing system with a breathing slant crack is performed in the paper. The finite element model of a geared rotor with slant crack is presented. Based on fracture mechanics, the flexibility matrix for the slant crack is derived that accounts for the additional stress intensity factors. Three methods for whirling analysis, parametric instability analysis and steady-state response analysis are introduced. Then, by taking a widely used one-stage geared rotor-bearing system as an example, the whirling frequencies of the equivalent time-invariant system, two types of instability regions and steady-state response under the excitations of unbalance forces and tooth transmission errors, are computed numerically. The effects of crack depth, position and type (transverse or slant) on the system dynamic behaviors are considered in the discussion. The comparative study with slant cracked geared rotor is carried out to explore distinctive features in their modal, parametric instability and frequency response behaviors.

  20. Perturbation analysis for patch occupancy dynamics

    USGS Publications Warehouse

    Martin, Julien; Nichols, James D.; McIntyre, Carol L.; Ferraz, Goncalo; Hines, James E.

    2009-01-01

    Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species.

  1. Cluster analysis of word frequency dynamics

    NASA Astrophysics Data System (ADS)

    Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.

    2015-01-01

    This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.

  2. ASSESSMENT OF DYNAMIC PRA TECHNIQUES WITH INDUSTRY AVERAGE COMPONENT PERFORMANCE DATA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yadav, Vaibhav; Agarwal, Vivek; Gribok, Andrei V.

    In the nuclear industry, risk monitors are intended to provide a point-in-time estimate of the system risk given the current plant configuration. Current risk monitors are limited in that they do not properly take into account the deteriorating states of plant equipment, which are unit-specific. Current approaches to computing risk monitors use probabilistic risk assessment (PRA) techniques, but the assessment is typically a snapshot in time. Living PRA models attempt to address limitations of traditional PRA models in a limited sense by including temporary changes in plant and system configurations. However, information on plant component health are not considered. Thismore » often leaves risk monitors using living PRA models incapable of conducting evaluations with dynamic degradation scenarios evolving over time. There is a need to develop enabling approaches to solidify risk monitors to provide time and condition-dependent risk by integrating traditional PRA models with condition monitoring and prognostic techniques. This paper presents estimation of system risk evolution over time by integrating plant risk monitoring data with dynamic PRA methods incorporating aging and degradation. Several online, non-destructive approaches have been developed for diagnosing plant component conditions in nuclear industry, i.e., condition indication index, using vibration analysis, current signatures, and operational history [1]. In this work the component performance measures at U.S. commercial nuclear power plants (NPP) [2] are incorporated within the various dynamic PRA methodologies [3] to provide better estimates of probability of failures. Aging and degradation is modeled within the Level-1 PRA framework and is applied to several failure modes of pumps and can be extended to a range of components, viz. valves, generators, batteries, and pipes.« less

  3. Improved dynamic analysis method using load-dependent Ritz vectors

    NASA Technical Reports Server (NTRS)

    Escobedo-Torres, J.; Ricles, J. M.

    1993-01-01

    The dynamic analysis of large space structures is important in order to predict their behavior under operating conditions. Computer models of large space structures are characterized by having a large number of degrees of freedom, and the computational effort required to carry out the analysis is very large. Conventional methods of solution utilize a subset of the eigenvectors of the system, but for systems with many degrees of freedom, the solution of the eigenproblem is in many cases the most costly phase of the analysis. For this reason, alternate solution methods need to be considered. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. It is important that the method chosen for the analysis be efficient and that accurate results be obtainable. The load dependent Ritz vector method is presented as an alternative to the classical normal mode methods for obtaining dynamic responses of large space structures. A simplified model of a space station is used to compare results. Results show that the load dependent Ritz vector method predicts the dynamic response better than the classical normal mode method. Even though this alternate method is very promising, further studies are necessary to fully understand its attributes and limitations.

  4. Framing of task performance strategies: effects on performance in a multiattribute dynamic decision making environment.

    PubMed

    Nygren, T E

    1997-09-01

    It is well documented that the way a static choice task is "framed" can dramatically alter choice behavior, often leading to observable preference reversals. This framing effect appears to result from perceived changes in the nature or location of a person's initial reference point, but it is not clear how framing effects might generalize to performance on dynamic decision making tasks that are characterized by high workload, time constraints, risk, or stress. A study was conducted to examine the hypothesis that framing can introduce affective components to the decision making process and can influence, either favorably (positive frame) or adversely (negative frame), the implementation and use of decision making strategies in dynamic high-workload environments. Results indicated that negative frame participants were significantly impaired in developing and employing a simple optimal decision strategy relative to a positive frame group. Discussion focuses on implications of these results for models of dynamic decision making.

  5. SWECS tower dynamics analysis methods and results

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Sexton, J. H.; Butterfield, C. P.; Thresher, R. M.

    1981-01-01

    Several different tower dynamics analysis methods and computer codes were used to determine the natural frequencies and mode shapes of both guyed and freestanding wind turbine towers. These analysis methods are described and the results for two types of towers, a guyed tower and a freestanding tower, are shown. The advantages and disadvantages in the use of and the accuracy of each method are also described.

  6. State machine analysis of sensor data from dynamic processes

    DOEpatents

    Cook, William R.; Brabson, John M.; Deland, Sharon M.

    2003-12-23

    A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.

  7. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective.

    PubMed

    Gong, Zhenxing; Zhang, Na

    2017-01-01

    Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees' perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed.

  8. Using a Feedback Environment to Improve Creative Performance: A Dynamic Affect Perspective

    PubMed Central

    Gong, Zhenxing; Zhang, Na

    2017-01-01

    Prior research on feedback and creative performance has neglected the dynamic nature of affect and has focused only on the influence of positive affect. We argue that creative performance is the result of a dynamic process in which a person experiences a phase of negative affect and subsequently enters a state of high positive affect that is influenced by the feedback environment. Hierarchical regression was used to analyze a sample of 264 employees from seven industry firms. The results indicate that employees’ perceptions of a supportive supervisor feedback environment indirectly influence their level of creative performance through positive affect (t2); the negative affect (t1) moderates the relationship between positive affect (t2) and creative performance (t2), rendering the relationship more positive if negative affect (t1) is high. The change in positive affect mediates the relationship between the supervisor feedback environment and creative performance; a decrease in negative affect moderates the relationship between increased positive affect and creative performance, rendering the relationship more positive if the decrease in negative affect is large. The implications for improving the creative performances of employees are further discussed. PMID:28861025

  9. [3D visualization and analysis of vocal fold dynamics].

    PubMed

    Bohr, C; Döllinger, M; Kniesburges, S; Traxdorf, M

    2016-04-01

    Visual investigation methods of the larynx mainly allow for the two-dimensional presentation of the three-dimensional structures of the vocal fold dynamics. The vertical component of the vocal fold dynamics is often neglected, yielding a loss of information. The latest studies show that the vertical dynamic components are in the range of the medio-lateral dynamics and play a significant role within the phonation process. This work presents a method for future 3D reconstruction and visualization of endoscopically recorded vocal fold dynamics. The setup contains a high-speed camera (HSC) and a laser projection system (LPS). The LPS projects a regular grid on the vocal fold surfaces and in combination with the HSC allows a three-dimensional reconstruction of the vocal fold surface. Hence, quantitative information on displacements and velocities can be provided. The applicability of the method is presented for one ex-vivo human larynx, one ex-vivo porcine larynx and one synthetic silicone larynx. The setup introduced allows the reconstruction of the entire visible vocal fold surfaces for each oscillation status. This enables a detailed analysis of the three dimensional dynamics (i. e. displacements, velocities, accelerations) of the vocal folds. The next goal is the miniaturization of the LPS to allow clinical in-vivo analysis in humans. We anticipate new insight on dependencies between 3D dynamic behavior and the quality of the acoustic outcome for healthy and disordered phonation.

  10. Dynamic Mobility Applications Policy Analysis: Policy and Institutional Issues for Integrated Dynamic Transit Operations (IDTO). [supporting datasets

    DOT National Transportation Integrated Search

    2015-01-27

    The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-14-134, "Dynamic Mobility Applications Policy Analysis: Policy and Institutional Issues for Integrated Dynamic Transit O...

  11. Dynamical density functional theory analysis of the laning instability in sheared soft matter.

    PubMed

    Scacchi, A; Archer, A J; Brader, J M

    2017-12-01

    Using dynamical density functional theory (DDFT) methods we investigate the laning instability of a sheared colloidal suspension. The nonequilibrium ordering at the laning transition is driven by nonaffine particle motion arising from interparticle interactions. Starting from a DDFT which incorporates the nonaffine motion, we perform a linear stability analysis that enables identification of the regions of parameter space where lanes form. We illustrate our general approach by applying it to a simple one-component fluid of soft penetrable particles.

  12. Simplified dynamic analysis to evaluate liquefaction-induced lateral deformation of earth slopes: a computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Jafarian, Yaser; Ghorbani, Ali; Ahmadi, Omid

    2014-09-01

    Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.

  13. Essential dynamics/factor analysis for the interpretation of molecular dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Kaźmierkiewicz, R.; Czaplewski, C.; Lammek, B.; Ciarkowski, J.

    1999-01-01

    Subject of this work is the analysis of molecular dynamics (MD) trajectories of neurophysins I (NPI) and II (NPII) and their complexes with the neurophyseal nonapeptide hormones oxytocin (OT) and vasopresssin (VP), respectively, simulated in water. NPs serve in the neurosecretory granules as carrier proteins for the hormones before their release to the blood. The starting data consisted of two pairs of different trajectories for each of the (NPII/VP)2 and (NPI/OT)2 heterotetramers and two more trajectories for the NPII2 and NPI2 homodimers (six trajectories in total). Using essential dynamics which, to our judgement, is equivalent to factor analysis, we found that only about 10 degrees of freedom per trajectory are necessary and sufficient to describe in full the motions relevant for the function of the protein. This is consistent with these motions to explain about 90% of the total variance of the system. These principal degrees of freedom represent slow anharmonic motional modes, clearly pointing at distinguished mobility of the atoms involved in the protein's functionality.

  14. Reliability and mass analysis of dynamic power conversion systems with parallel of standby redundancy

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Bloomfield, H. S.

    1985-01-01

    A combinatorial reliability approach is used to identify potential dynamic power conversion systems for space mission applications. A reliability and mass analysis is also performed, specifically for a 100 kWe nuclear Brayton power conversion system with parallel redundancy. Although this study is done for a reactor outlet temperature of 1100K, preliminary system mass estimates are also included for reactor outlet temperatures ranging up to 1500 K.

  15. Mood states modulate complexity in heartbeat dynamics: A multiscale entropy analysis

    NASA Astrophysics Data System (ADS)

    Valenza, G.; Nardelli, M.; Bertschy, G.; Lanata, A.; Scilingo, E. P.

    2014-07-01

    This paper demonstrates that heartbeat complex dynamics is modulated by different pathological mental states. Multiscale entropy analysis was performed on R-R interval series gathered from the electrocardiogram of eight bipolar patients who exhibited mood states among depression, hypomania, and euthymia, i.e., good affective balance. Three different methodologies for the choice of the sample entropy radius value were also compared. We show that the complexity level can be used as a marker of mental states being able to discriminate among the three pathological mood states, suggesting to use heartbeat complexity as a more objective clinical biomarker for mental disorders.

  16. Dynamic Effects of Performance-Avoidance Goal Orientation on Student Achievement in Language and Mathematics.

    PubMed

    Stamovlasis, Dimitrios; Gonida, Sofia-Eleftheria N

    2018-07-01

    The present study used achievement goal theory (AGT) as a theoretical framework and examined the role of mastery and performance goals, both performance-approach and performance-avoidance, on school achieve-ment within the nonlinear dynamical systems (NDS) perspective. A series of cusp catastrophe models were applied on students' achievement in a number of school subjects, such as mathematics and language for elementary school and algebra, geometry, ancient and modern Greek language for high school, using achievement goal orientations as control variables. The participants (N=224) were students attending fifth and eighth grade (aged 11 and 14, respectively) in public schools located in northern Greece. Cusp analysis based on the probability density function was carried out by two procedures, the maximum likelihood and the least squares. The results showed that performance-approach goals had no linear effect on achievement, while the cusp models implementing mastery goals as the asymmetry factor and performance-avoidance as the bifurcation, proved superior to their linear alternatives. The results of the study based on NDS support the multiple goal perspective within AGT. Theoretical issues, educational implications and future directions are discussed.

  17. Effect of progressive resistance exercise with neuromuscular joint facilitation on the dynamic balance performance of junior soccer players.

    PubMed

    Wang, Hongzhao; Huo, Ming; Guan, Peipei; Onoda, Ko; Chen, Di; Huang, Qiuchen; Maruyama, Hitoshi

    2015-11-01

    [Purpose] The aim of this study was to investigate the change in dynamic balance performance of junior soccer players after progressive resistance treatment with neuromuscular joint facilitation (NJF). [Subjects] The subjects were 14 healthy males who were divided into two groups, namely the NJF and control groups. The NJF group consisted of 8 subjects, and the control group consisted of 6 subjects. [Methods] The participants in the NJF group received NJF progressive resistance treatment. Dynamic balance performance was measured before and after 3 weeks of exercise. [Results] Significant improvement in dynamic balance performance was observed both in the NJF and control groups. In the NJF group, dynamic balance performance was significantly increased compared with that in the control group. [Conclusion] The NJF intervention shortened movement time, which implies that NJF is effective for dynamic balance performance.

  18. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  19. Faster than Real-Time Dynamic Simulation for Large-Size Power System with Detailed Dynamic Models using High-Performance Computing Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Renke; Jin, Shuangshuang; Chen, Yousu

    This paper presents a faster-than-real-time dynamic simulation software package that is designed for large-size power system dynamic simulation. It was developed on the GridPACKTM high-performance computing (HPC) framework. The key features of the developed software package include (1) faster-than-real-time dynamic simulation for a WECC system (17,000 buses) with different types of detailed generator, controller, and relay dynamic models, (2) a decoupled parallel dynamic simulation algorithm with optimized computation architecture to better leverage HPC resources and technologies, (3) options for HPC-based linear and iterative solvers, (4) hidden HPC details, such as data communication and distribution, to enable development centered on mathematicalmore » models and algorithms rather than on computational details for power system researchers, and (5) easy integration of new dynamic models and related algorithms into the software package.« less

  20. Extracting neuronal functional network dynamics via adaptive Granger causality analysis.

    PubMed

    Sheikhattar, Alireza; Miran, Sina; Liu, Ji; Fritz, Jonathan B; Shamma, Shihab A; Kanold, Patrick O; Babadi, Behtash

    2018-04-24

    Quantifying the functional relations between the nodes in a network based on local observations is a key challenge in studying complex systems. Most existing time series analysis techniques for this purpose provide static estimates of the network properties, pertain to stationary Gaussian data, or do not take into account the ubiquitous sparsity in the underlying functional networks. When applied to spike recordings from neuronal ensembles undergoing rapid task-dependent dynamics, they thus hinder a precise statistical characterization of the dynamic neuronal functional networks underlying adaptive behavior. We develop a dynamic estimation and inference paradigm for extracting functional neuronal network dynamics in the sense of Granger, by integrating techniques from adaptive filtering, compressed sensing, point process theory, and high-dimensional statistics. We demonstrate the utility of our proposed paradigm through theoretical analysis, algorithm development, and application to synthetic and real data. Application of our techniques to two-photon Ca 2+ imaging experiments from the mouse auditory cortex reveals unique features of the functional neuronal network structures underlying spontaneous activity at unprecedented spatiotemporal resolution. Our analysis of simultaneous recordings from the ferret auditory and prefrontal cortical areas suggests evidence for the role of rapid top-down and bottom-up functional dynamics across these areas involved in robust attentive behavior.

  1. Nonlinear static and dynamic finite element analysis of an eccentrically loaded graphite-epoxy beam

    NASA Technical Reports Server (NTRS)

    Fasanella, Edwin L.; Jackson, Karen E.; Jones, Lisa E.

    1991-01-01

    The Dynamic Crash Analysis of Structures (DYCAT) and NIKE3D nonlinear finite element codes were used to model the static and implulsive response of an eccentrically loaded graphite-epoxy beam. A 48-ply unidirectional composite beam was tested under an eccentric axial compressive load until failure. This loading configuration was chosen to highlight the capabilities of two finite element codes for modeling a highly nonlinear, large deflection structural problem which has an exact solution. These codes are currently used to perform dynamic analyses of aircraft structures under impact loads to study crashworthiness and energy absorbing capabilities. Both beam and plate element models were developed to compare with the experimental data using the DYCAST and NIKE3D codes.

  2. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: The case of domain motions

    NASA Astrophysics Data System (ADS)

    Naritomi, Yusuke; Fuchigami, Sotaro

    2011-02-01

    Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.

  3. Slow dynamics in protein fluctuations revealed by time-structure based independent component analysis: the case of domain motions.

    PubMed

    Naritomi, Yusuke; Fuchigami, Sotaro

    2011-02-14

    Protein dynamics on a long time scale was investigated using all-atom molecular dynamics (MD) simulation and time-structure based independent component analysis (tICA). We selected the lysine-, arginine-, ornithine-binding protein (LAO) as a target protein and focused on its domain motions in the open state. A MD simulation of the LAO in explicit water was performed for 600 ns, in which slow and large-amplitude domain motions of the LAO were observed. After extracting domain motions by rigid-body domain analysis, the tICA was applied to the obtained rigid-body trajectory, yielding slow modes of the LAO's domain motions in order of decreasing time scale. The slowest mode detected by the tICA represented not a closure motion described by a largest-amplitude mode determined by the principal component analysis but a twist motion with a time scale of tens of nanoseconds. The slow dynamics of the LAO were well described by only the slowest mode and were characterized by transitions between two basins. The results show that tICA is promising for describing and analyzing slow dynamics of proteins.

  4. Detecting transitions in protein dynamics using a recurrence quantification analysis based bootstrap method.

    PubMed

    Karain, Wael I

    2017-11-28

    Proteins undergo conformational transitions over different time scales. These transitions are closely intertwined with the protein's function. Numerous standard techniques such as principal component analysis are used to detect these transitions in molecular dynamics simulations. In this work, we add a new method that has the ability to detect transitions in dynamics based on the recurrences in the dynamical system. It combines bootstrapping and recurrence quantification analysis. We start from the assumption that a protein has a "baseline" recurrence structure over a given period of time. Any statistically significant deviation from this recurrence structure, as inferred from complexity measures provided by recurrence quantification analysis, is considered a transition in the dynamics of the protein. We apply this technique to a 132 ns long molecular dynamics simulation of the β-Lactamase Inhibitory Protein BLIP. We are able to detect conformational transitions in the nanosecond range in the recurrence dynamics of the BLIP protein during the simulation. The results compare favorably to those extracted using the principal component analysis technique. The recurrence quantification analysis based bootstrap technique is able to detect transitions between different dynamics states for a protein over different time scales. It is not limited to linear dynamics regimes, and can be generalized to any time scale. It also has the potential to be used to cluster frames in molecular dynamics trajectories according to the nature of their recurrence dynamics. One shortcoming for this method is the need to have large enough time windows to insure good statistical quality for the recurrence complexity measures needed to detect the transitions.

  5. Variable Dynamic Testbed Vehicle Dynamics Analysis

    DOT National Transportation Integrated Search

    1996-03-01

    ANTI-ROLL BAR, EMULATION, FOUR-WHEEL-STEERING, LATERAL RESPONSE CHARACTERISTICS, SIMULATION, VARIABLE DYNAMIC TESTBED VEHICLE, INTELLIGENT VEHICLE INITIATIVE OR IVI : THE VARIABLE DYNAMIC TESTBED VEHICLE (VDTV) CONCEPT HAS BEEN PROPOSED AS A TOOL...

  6. Prediction of Cognitive Performance and Subjective Sleepiness Using a Model of Arousal Dynamics.

    PubMed

    Postnova, Svetlana; Lockley, Steven W; Robinson, Peter A

    2018-04-01

    A model of arousal dynamics is applied to predict objective performance and subjective sleepiness measures, including lapses and reaction time on a visual Performance Vigilance Test (vPVT), performance on a mathematical addition task (ADD), and the Karolinska Sleepiness Scale (KSS). The arousal dynamics model is comprised of a physiologically based flip-flop switch between the wake- and sleep-active neuronal populations and a dynamic circadian oscillator, thus allowing prediction of sleep propensity. Published group-level experimental constant routine (CR) and forced desynchrony (FD) data are used to calibrate the model to predict performance and sleepiness. Only the studies using dim light (<15 lux) during alertness measurements and controlling for sleep and entrainment before the start of the protocol are selected for modeling. This is done to avoid the direct alerting effects of light and effects of prior sleep debt and circadian misalignment on the data. The results show that linear combination of circadian and homeostatic drives is sufficient to predict dynamics of a variety of sleepiness and performance measures during CR and FD protocols, with sleep-wake cycles ranging from 20 to 42.85 h and a 2:1 wake-to-sleep ratio. New metrics relating model outputs to performance and sleepiness data are developed and tested against group average outcomes from 7 (vPVT lapses), 5 (ADD), and 8 (KSS) experimental protocols, showing good quantitative and qualitative agreement with the data (root mean squared error of 0.38, 0.19, and 0.35, respectively). The weights of the homeostatic and circadian effects are found to be different between the measures, with KSS having stronger homeostatic influence compared with the objective measures of performance. Using FD data in addition to CR data allows us to challenge the model in conditions of both acute sleep deprivation and structured circadian misalignment, ensuring that the role of the circadian and homeostatic drives in

  7. Nonlinear dynamic mechanism of vocal tremor from voice analysis and model simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Jiang, Jack J.

    2008-09-01

    Nonlinear dynamic analysis and model simulations are used to study the nonlinear dynamic characteristics of vocal folds with vocal tremor, which can typically be characterized by low-frequency modulation and aperiodicity. Tremor voices from patients with disorders such as paresis, Parkinson's disease, hyperfunction, and adductor spasmodic dysphonia show low-dimensional characteristics, differing from random noise. Correlation dimension analysis statistically distinguishes tremor voices from normal voices. Furthermore, a nonlinear tremor model is proposed to study the vibrations of the vocal folds with vocal tremor. Fractal dimensions and positive Lyapunov exponents demonstrate the evidence of chaos in the tremor model, where amplitude and frequency play important roles in governing vocal fold dynamics. Nonlinear dynamic voice analysis and vocal fold modeling may provide a useful set of tools for understanding the dynamic mechanism of vocal tremor in patients with laryngeal diseases.

  8. Dynamic motif occupancy (DynaMO) analysis identifies transcription factors and their binding sites driving dynamic biological processes.

    PubMed

    Kuang, Zheng; Ji, Zhicheng; Boeke, Jef D; Ji, Hongkai

    2018-01-09

    Biological processes are usually associated with genome-wide remodeling of transcription driven by transcription factors (TFs). Identifying key TFs and their spatiotemporal binding patterns are indispensable to understanding how dynamic processes are programmed. However, most methods are designed to predict TF binding sites only. We present a computational method, dynamic motif occupancy analysis (DynaMO), to infer important TFs and their spatiotemporal binding activities in dynamic biological processes using chromatin profiling data from multiple biological conditions such as time-course histone modification ChIP-seq data. In the first step, DynaMO predicts TF binding sites with a random forests approach. Next and uniquely, DynaMO infers dynamic TF binding activities at predicted binding sites using their local chromatin profiles from multiple biological conditions. Another landmark of DynaMO is to identify key TFs in a dynamic process using a clustering and enrichment analysis of dynamic TF binding patterns. Application of DynaMO to the yeast ultradian cycle, mouse circadian clock and human neural differentiation exhibits its accuracy and versatility. We anticipate DynaMO will be generally useful for elucidating transcriptional programs in dynamic processes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. Dynamic performance of the beam position monitor support at the SSRF.

    PubMed

    Wang, Xiao; Cao, Yun; Du, Hanwen; Yin, Lixin

    2009-01-01

    Electron beam stability is very important for third-generation light sources, especially for the Shanghai Synchrotron Radiation Facility whose ground vibrations are much larger than those for other light sources. Beam position monitors (BPMs), used to monitor the position of the electron beam, require a greater stability than other mechanical structures. This paper concentrates on an investigation of the dynamic performance of the BPM support prototype. Modal and response analyses have been carried out by finite-element (FE) calculations and vibration measurements. Inconsistent results between calculation and measurement have motivated a change in the soft connections between the support and the ground from a ground bolt in the initial design to full grout. As a result the mechanical stability of the BPM support is greatly improved, showing an increase in the first eigenfrequency from 20.2 Hz to 50.2 Hz and a decrease in the ratio of the root-mean-square displacement (4-50 Hz) between the ground and the top of the support from 4.36 to 1.23 in the lateral direction. An example is given to show how FE analysis can guide the mechanical design and dynamic measurements (i.e. it is not just used as a verification method). Similar ideas can be applied to improve the stability of other mechanical structures.

  10. SRM Internal Flow Tests and Computational Fluid Dynamic Analysis. Volume 3; Titan, ASRM, and Subscale Motor Analyses

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A computational fluid dynamics (CFD) analysis has been performed on the aft slot region of the Titan 4 Solid Rocket Motor Upgrade (SRMU). This analysis was performed in conjunction with MSFC structural modeling of the propellant grain to determine if the flow field induced stresses would adversely alter the propellant geometry to the extent of causing motor failure. The results of the coupled CFD/stress analysis have shown that there is a continual increase of flow field resistance at the aft slot due to the aft segment propellant grain being progressively moved radially toward the centerline of the motor port. This 'bootstrapping' effect between grain radial movement and internal flow resistance is conducive to causing a rapid motor failure.

  11. Method and apparatus for characterizing and enhancing the dynamic performance of machine tools

    DOEpatents

    Barkman, William E; Babelay, Jr., Edwin F

    2013-12-17

    Disclosed are various systems and methods for assessing and improving the capability of a machine tool. The disclosure applies to machine tools having at least one slide configured to move along a motion axis. Various patterns of dynamic excitation commands are employed to drive the one or more slides, typically involving repetitive short distance displacements. A quantification of a measurable merit of machine tool response to the one or more patterns of dynamic excitation commands is typically derived for the machine tool. Examples of measurable merits of machine tool performance include dynamic one axis positional accuracy of the machine tool, dynamic cross-axis stability of the machine tool, and dynamic multi-axis positional accuracy of the machine tool.

  12. Job Performance as Multivariate Dynamic Criteria: Experience Sampling and Multiway Component Analysis

    ERIC Educational Resources Information Center

    Spain, Seth M.; Miner, Andrew G.; Kroonenberg, Pieter M.; Drasgow, Fritz

    2010-01-01

    Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of…

  13. A non-linear mathematical model for dynamic analysis of spur gears including shaft and bearing dynamics

    NASA Technical Reports Server (NTRS)

    Ozguven, H. Nevzat

    1991-01-01

    A six-degree-of-freedom nonlinear semi-definite model with time varying mesh stiffness has been developed for the dynamic analysis of spur gears. The model includes a spur gear pair, two shafts, two inertias representing load and prime mover, and bearings. As the shaft and bearing dynamics have also been considered in the model, the effect of lateral-torsional vibration coupling on the dynamics of gears can be studied. In the nonlinear model developed several factors such as time varying mesh stiffness and damping, separation of teeth, backlash, single- and double-sided impacts, various gear errors and profile modifications have been considered. The dynamic response to internal excitation has been calculated by using the 'static transmission error method' developed. The software prepared (DYTEM) employs the digital simulation technique for the solution, and is capable of calculating dynamic tooth and mesh forces, dynamic factors for pinion and gear, dynamic transmission error, dynamic bearing forces and torsions of shafts. Numerical examples are given in order to demonstrate the effect of shaft and bearing dynamics on gear dynamics.

  14. What Does Eye-Blink Rate Variability Dynamics Tell Us About Cognitive Performance?

    PubMed Central

    Paprocki, Rafal; Lenskiy, Artem

    2017-01-01

    Cognitive performance is defined as the ability to utilize knowledge, attention, memory, and working memory. In this study, we briefly discuss various markers that have been proposed to predict cognitive performance. Next, we develop a novel approach to characterize cognitive performance by analyzing eye-blink rate variability dynamics. Our findings are based on a sample of 24 subjects. The subjects were given a 5-min resting period prior to a 10-min IQ test. During both stages, eye blinks were recorded from Fp1 and Fp2 electrodes. We found that scale exponents estimated for blink rate variability during rest were correlated with subjects' performance on the subsequent IQ test. This surprising phenomenon could be explained by the person to person variation in concentrations of dopamine in PFC and accumulation of GABA in the visual cortex, as both neurotransmitters play a key role in cognitive processes and affect blinking. This study demonstrates the possibility that blink rate variability dynamics at rest carry information about cognitive performance and can be employed in the assessment of cognitive abilities without taking a test. PMID:29311876

  15. Fast analysis of molecular dynamics trajectories with graphics processing units-Radial distribution function histogramming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levine, Benjamin G., E-mail: ben.levine@temple.ed; Stone, John E., E-mail: johns@ks.uiuc.ed; Kohlmeyer, Axel, E-mail: akohlmey@temple.ed

    2011-05-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU's memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm aremore » presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 s per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis.« less

  16. Fast Analysis of Molecular Dynamics Trajectories with Graphics Processing Units—Radial Distribution Function Histogramming

    PubMed Central

    Stone, John E.; Kohlmeyer, Axel

    2011-01-01

    The calculation of radial distribution functions (RDFs) from molecular dynamics trajectory data is a common and computationally expensive analysis task. The rate limiting step in the calculation of the RDF is building a histogram of the distance between atom pairs in each trajectory frame. Here we present an implementation of this histogramming scheme for multiple graphics processing units (GPUs). The algorithm features a tiling scheme to maximize the reuse of data at the fastest levels of the GPU’s memory hierarchy and dynamic load balancing to allow high performance on heterogeneous configurations of GPUs. Several versions of the RDF algorithm are presented, utilizing the specific hardware features found on different generations of GPUs. We take advantage of larger shared memory and atomic memory operations available on state-of-the-art GPUs to accelerate the code significantly. The use of atomic memory operations allows the fast, limited-capacity on-chip memory to be used much more efficiently, resulting in a fivefold increase in performance compared to the version of the algorithm without atomic operations. The ultimate version of the algorithm running in parallel on four NVIDIA GeForce GTX 480 (Fermi) GPUs was found to be 92 times faster than a multithreaded implementation running on an Intel Xeon 5550 CPU. On this multi-GPU hardware, the RDF between two selections of 1,000,000 atoms each can be calculated in 26.9 seconds per frame. The multi-GPU RDF algorithms described here are implemented in VMD, a widely used and freely available software package for molecular dynamics visualization and analysis. PMID:21547007

  17. Molecular Dynamics and Morphology of High Performance Elastomers and Fibers by Solid State NMR

    DTIC Science & Technology

    2016-06-30

    Distribution Unlimited UU UU UU UU 30-06-2016 1-Sep-2015 31-May-2016 Final Report: Molecular Dynamics and Morphology of High - Performance Elastomers and...non peer-reviewed journals: Final Report: Molecular Dynamics and Morphology of High -Performance Elastomers and Fibers by Solid-State NMR Report Title...Kanbargi 0.50 0.50 1 PERCENT_SUPPORTEDNAME FTE Equivalent: Total Number: Sub Contractors (DD882) Names of Faculty Supported Names of Under Graduate

  18. Effect of Dynamic Light Application on Cognitive Performance and Well-being of Intensive Care Nurses.

    PubMed

    Simons, Koen S; Boeijen, Enzio R K; Mertens, Marlies C; Rood, Paul; de Jager, Cornelis P C; van den Boogaard, Mark

    2018-05-01

    Exposure to bright light has alerting effects. In nurses, alertness may be decreased because of shift work and high work pressure, potentially reducing work performance and increasing the risk for medical errors. To determine whether high-intensity dynamic light improves cognitive performance, self-reported depressive signs and symptoms, fatigue, alertness, and well-being in intensive care unit nurses. In a single-center crossover study in an intensive care unit of a teaching hospital in the Netherlands, 10 registered nurses were randomly divided into 2 groups. Each group worked alternately for 3 to 4 days in patients' rooms with dynamic light and 3 to 4 days in control lighting settings. High-intensity dynamic light was administered through ceiling-mounted fluorescent tubes that delivered bluish white light up to 1700 lux during the daytime, versus 300 lux in control settings. Cognitive performance, self-reported depressive signs and symptoms, fatigue, and well-being before and after each period were assessed by using validated cognitive tests and questionnaires. Cognitive performance, self-reported depressive signs and symptoms, and fatigue did not differ significantly between the 2 light settings. Scores of subjective well-being were significantly lower after a period of working in dynamic light. Daytime lighting conditions did not affect intensive care unit nurses' cognitive performance, perceived depressive signs and symptoms, or fatigue. Perceived quality of life, predominantly in the psychological and environmental domains, was lower for nurses working in dynamic light. © 2018 American Association of Critical-Care Nurses.

  19. Seismic performance evaluation of RC frame-shear wall structures using nonlinear analysis methods

    NASA Astrophysics Data System (ADS)

    Shi, Jialiang; Wang, Qiuwei

    To further understand the seismic performance of reinforced concrete (RC) frame-shear wall structures, a 1/8 model structure is scaled from a main factory structure with seven stories and seven bays. The model with four-stories and two-bays was pseudo-dynamically tested under six earthquake actions whose peak ground accelerations (PGA) vary from 50gal to 400gal. The damage process and failure patterns were investigated. Furthermore, nonlinear dynamic analysis (NDA) and capacity spectrum method (CSM) were adopted to evaluate the seismic behavior of the model structure. The top displacement curve, story drift curve and distribution of hinges were obtained and discussed. It is shown that the model structure had the characteristics of beam-hinge failure mechanism. The two methods can be used to evaluate the seismic behavior of RC frame-shear wall structures well. What’s more, the NDA can be somewhat replaced by CSM for the seismic performance evaluation of RC structures.

  20. Out-of-plane dynamic stability analysis of curved beams subjected to uniformly distributed radial loading

    NASA Astrophysics Data System (ADS)

    Sabuncu, M.; Ozturk, H.; Cimen; S.

    2011-04-01

    In this study, out-of-plane stability analysis of tapered cross-sectioned thin curved beams under uniformly distributed radial loading is performed by using the finite-element method. Solutions referred to as Bolotin's approach are analysed for dynamic stability, and the first unstable regions are examined. Out-of-plane vibration and out-of-plane buckling analyses are also studied. In addition, the results obtained in this study are compared with the published results of other researchers for the fundamental frequency and critical lateral buckling load. The effects of subtended angle, variations of cross-section, and dynamic load parameter on the stability regions are shown in graphics

  1. Gigaflop performance on a CRAY-2: Multitasking a computational fluid dynamics application

    NASA Technical Reports Server (NTRS)

    Tennille, Geoffrey M.; Overman, Andrea L.; Lambiotte, Jules J.; Streett, Craig L.

    1991-01-01

    The methodology is described for converting a large, long-running applications code that executed on a single processor of a CRAY-2 supercomputer to a version that executed efficiently on multiple processors. Although the conversion of every application is different, a discussion of the types of modification used to achieve gigaflop performance is included to assist others in the parallelization of applications for CRAY computers, especially those that were developed for other computers. An existing application, from the discipline of computational fluid dynamics, that had utilized over 2000 hrs of CPU time on CRAY-2 during the previous year was chosen as a test case to study the effectiveness of multitasking on a CRAY-2. The nature of dominant calculations within the application indicated that a sustained computational rate of 1 billion floating-point operations per second, or 1 gigaflop, might be achieved. The code was first analyzed and modified for optimal performance on a single processor in a batch environment. After optimal performance on a single CPU was achieved, the code was modified to use multiple processors in a dedicated environment. The results of these two efforts were merged into a single code that had a sustained computational rate of over 1 gigaflop on a CRAY-2. Timings and analysis of performance are given for both single- and multiple-processor runs.

  2. Theoretical Analysis of Penalized Maximum-Likelihood Patlak Parametric Image Reconstruction in Dynamic PET for Lesion Detection.

    PubMed

    Yang, Li; Wang, Guobao; Qi, Jinyi

    2016-04-01

    Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.

  3. Bootstrap Standard Error Estimates in Dynamic Factor Analysis

    ERIC Educational Resources Information Center

    Zhang, Guangjian; Browne, Michael W.

    2010-01-01

    Dynamic factor analysis summarizes changes in scores on a battery of manifest variables over repeated measurements in terms of a time series in a substantially smaller number of latent factors. Algebraic formulae for standard errors of parameter estimates are more difficult to obtain than in the usual intersubject factor analysis because of the…

  4. A nonlinear model for top fuel dragster dynamic performance assessment

    NASA Astrophysics Data System (ADS)

    Spanos, P. D.; Castillo, D. H.; Kougioumtzoglou, I. A.; Tapia, R. A.

    2012-02-01

    The top fuel dragster is the fastest and quickest vehicle in drag racing. This vehicle is capable of travelling a quarter mile in less than 4.5 s, reaching a final speed in excess of 330 miles per hour. The average power delivered by its engine exceeds 7000 Hp. To analyse and eventually increase the performance of a top fuel dragster, a dynamic model of the vehicle is developed. Longitudinal, vertical, and pitching chassis motions are considered, as well as drive-train dynamics. The aerodynamics of the vehicle, the engine characteristics, and the force due to the combustion gases are incorporated into the model. Further, a simplified model of the traction characteristics of the rear tyres is developed where the traction is calculated as a function of the slip ratio and the velocity. The resulting nonlinear, coupled differential equations of motion are solved using a fourth-order Runge-Kutta numerical integration scheme. Several simulation runs are made to investigate the effects of the aerodynamics and of the engine's initial torque in the performance of the vehicle. The results of the computational simulations are scrutinised by comparisons with data from actual dragster races. Ultimately, the proposed dynamic model of the dragster can be used to improve the aerodynamics, the engine and clutch set-ups of the vehicle, and possibly facilitate the redesign of the dragster.

  5. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Fincannon, James

    1995-01-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other

  6. Analysis of shadowing effects on MIR photovoltaic and solar dynamic power systems

    NASA Astrophysics Data System (ADS)

    Fincannon, James

    1995-05-01

    The NASA Lewis Research Center is currently working with RSC-Energia, the Russian Space Agency, and Allied Signal in developing a flight demonstration solar dynamic power system. This type of power system is dependent upon solar flux that is reflected and concentrated into a thermal storage system to provide the thermal energy input to a closed-cycle Brayton heat engine. The solar dynamic unit will be flown on the Russian Mir space station in anticipation of use on the International Space Station Alpha. By the time the power system is launched, the Mir will be a spatially complex configuration which will have, in addition to the three-gimbaled solar dynamic unit, eleven solar array wings that are either fixed or track the Sun along one axis and a variety or repositionable habitation and experiment modules. The proximity of arrays to modules creates a situation which makes it highly probable that there will be varying solar flux due to shadowing on the solar dynamic unit and some of the arrays throughout the orbit. Shadowing causes fluctuations in the power output from the arrays and the solar dynamic power system, thus reducing the energy capabilities of the spacecraft. An assessment of the capabilities of the power system under these conditions is an important part in influencing the design and operations of the spacecraft and predicting its energy performance. This paper describes the results obtained from using the Orbiting Spacecraft Shadowing Analysis Station program that was integrated into the Station Power Analysis for Capability Evaluation (SPACE) electrical power system computer program. OSSA allows one to consider the numerous complex factors for analyzing the shadowing effects on the electrical power system including the variety of spacecraft hardware geometric configurations, yearly and daily orbital variations in the vehicle attitude and orbital maneuvers (for communications coverage, payload pointing requirements and rendezvous/docking with other

  7. Automatic network coupling analysis for dynamical systems based on detailed kinetic models.

    PubMed

    Lebiedz, Dirk; Kammerer, Julia; Brandt-Pollmann, Ulrich

    2005-10-01

    We introduce a numerical complexity reduction method for the automatic identification and analysis of dynamic network decompositions in (bio)chemical kinetics based on error-controlled computation of a minimal model dimension represented by the number of (locally) active dynamical modes. Our algorithm exploits a generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensitivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling analysis of (bio)chemical species in kinetic models that can be exploited for the piecewise computation of a minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction mechanisms and network dynamics. We present results for the identification of network decompositions in a simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme system.

  8. Analysis of structural dynamic data from Skylab. Volume 1: Technical discussion

    NASA Technical Reports Server (NTRS)

    Demchak, L.; Harcrow, H.

    1976-01-01

    A compendium of Skylab structural dynamics analytical and test programs is presented. These programs are assessed to identify lessons learned from the structural dynamic prediction effort and to provide guidelines for future analysts and program managers of complex spacecraft systems. It is a synopsis of the structural dynamic effort performed under the Skylab Integration contract and specifically covers the development, utilization, and correlation of Skylab Dynamic Orbital Models.

  9. Mathematical Modeling and Nonlinear Dynamical Analysis of Cell Growth in Response to Antibiotics

    NASA Astrophysics Data System (ADS)

    Jin, Suoqin; Niu, Lili; Wang, Gang; Zou, Xiufen

    2015-06-01

    This study is devoted to the revelation of the dynamical mechanisms of cell growth in response to antibiotics. We establish a mathematical model of ordinary differential equations for an antibiotic-resistant growth system with one positive feedback loop. We perform a dynamical analysis of the behavior of this model system. We present adequate sets of conditions that can guarantee the existence and stability of biologically-reasonable steady states. Using bifurcation analysis and numerical simulation, we show that the relative growth rate, which is defined as the ratio of the cell growth rate to the basal cell growth rate in the absence of antibiotics, can exhibit bistable behavior in an extensive range of parameters that correspond to a growth state and a nongrowth state in biology. We discover that both antibiotic and antibiotic resistance genes can cooperatively enhance bistability, whereas the cooperative coefficient of feedback can contribute to the onset of bistability. These results would contribute to a better understanding of not only the evolution of antibiotics but also the emergence of drug resistance in other diseases.

  10. Dynamic analysis and optimal control for a model of hepatitis C with treatment

    NASA Astrophysics Data System (ADS)

    Zhang, Suxia; Xu, Xiaxia

    2017-05-01

    A model for hepatitis C is formulated to study the effects of treatment and public concern on HCV transmission dynamics. The stability of equilibria and persistence of the model are analyzed, and an optimal control measure is performed to prevent the spread of HCV with minimal infected individuals and cost. The dynamical analysis reveals that the disease-free equilibrium of the model is asymptotically stable if the basic reproductive number R0 is less than unity. On the other hand, if R0 > 1 , the disease is uniformly persistent. Numerical simulations are conducted to investigate the influence of different vital parameters on R0. For the corresponding optimality system, the optimal solution is discussed by Pontryagin Maximum Principle, and the comparisons of model-predicted consequences with control or not are presented.

  11. The Dynamic Performance of Flexural Ultrasonic Transducers.

    PubMed

    Feeney, Andrew; Kang, Lei; Rowlands, George; Dixon, Steve

    2018-01-18

    Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems.

  12. The Dynamic Performance of Flexural Ultrasonic Transducers

    PubMed Central

    Kang, Lei; Rowlands, George; Dixon, Steve

    2018-01-01

    Flexural ultrasonic transducers are principally used as proximity sensors and for industrial metrology. Their operation relies on a piezoelectric ceramic to generate a flexing of a metallic membrane, which delivers the ultrasound signal. The performance of flexural ultrasonic transducers has been largely limited to excitation through a short voltage burst signal at a designated mechanical resonance frequency. However, a steady-state amplitude response is not generated instantaneously in a flexural ultrasonic transducer from a drive excitation signal, and differences in the drive characteristics between transmitting and receiving transducers can affect the measured response. This research investigates the dynamic performance of flexural ultrasonic transducers using acoustic microphone measurements and laser Doppler vibrometry, supported by a detailed mechanical analog model, in a process which has not before been applied to the flexural ultrasonic transducer. These techniques are employed to gain insights into the physics of their vibration behaviour, vital for the optimisation of industrial ultrasound systems. PMID:29346297

  13. Dynamics and causalities of atmospheric and oceanic data identified by complex networks and Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Charakopoulos, A. K.; Katsouli, G. A.; Karakasidis, T. E.

    2018-04-01

    Understanding the underlying processes and extracting detailed characteristics of spatiotemporal dynamics of ocean and atmosphere as well as their interaction is of significant interest and has not been well thoroughly established. The purpose of this study was to examine the performance of two main additional methodologies for the identification of spatiotemporal underlying dynamic characteristics and patterns among atmospheric and oceanic variables from Seawatch buoys from Aegean and Ionian Sea, provided by the Hellenic Center for Marine Research (HCMR). The first approach involves the estimation of cross correlation analysis in an attempt to investigate time-lagged relationships, and further in order to identify the direction of interactions between the variables we performed the Granger causality method. According to the second approach the time series are converted into complex networks and then the main topological network properties such as degree distribution, average path length, diameter, modularity and clustering coefficient are evaluated. Our results show that the proposed analysis of complex network analysis of time series can lead to the extraction of hidden spatiotemporal characteristics. Also our findings indicate high level of positive and negative correlations and causalities among variables, both from the same buoy and also between buoys from different stations, which cannot be determined from the use of simple statistical measures.

  14. SEP thrust subsystem performance sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.; Sauer, C. G., Jr.; Kerrisk, D. J.

    1973-01-01

    This is a two-part report on solar electric propulsion (SEP) performance sensitivity analysis. The first part describes the preliminary analysis of the SEP thrust system performance for an Encke rendezvous mission. A detailed description of thrust subsystem hardware tolerances on mission performance is included together with nominal spacecraft parameters based on these tolerances. The second part describes the method of analysis and graphical techniques used in generating the data for Part 1. Included is a description of both the trajectory program used and the additional software developed for this analysis. Part 2 also includes a comprehensive description of the use of the graphical techniques employed in this performance analysis.

  15. Combinatorial-topological framework for the analysis of global dynamics.

    PubMed

    Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł

    2012-12-01

    We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

  16. Combinatorial-topological framework for the analysis of global dynamics

    NASA Astrophysics Data System (ADS)

    Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł

    2012-12-01

    We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.

  17. Efficient sensitivity analysis method for chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Liao, Haitao

    2016-05-01

    The direct differentiation and improved least squares shadowing methods are both developed for accurately and efficiently calculating the sensitivity coefficients of time averaged quantities for chaotic dynamical systems. The key idea is to recast the time averaged integration term in the form of differential equation before applying the sensitivity analysis method. An additional constraint-based equation which forms the augmented equations of motion is proposed to calculate the time averaged integration variable and the sensitivity coefficients are obtained as a result of solving the augmented differential equations. The application of the least squares shadowing formulation to the augmented equations results in an explicit expression for the sensitivity coefficient which is dependent on the final state of the Lagrange multipliers. The LU factorization technique to calculate the Lagrange multipliers leads to a better performance for the convergence problem and the computational expense. Numerical experiments on a set of problems selected from the literature are presented to illustrate the developed methods. The numerical results demonstrate the correctness and effectiveness of the present approaches and some short impulsive sensitivity coefficients are observed by using the direct differentiation sensitivity analysis method.

  18. Look-ahead Dynamic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-10-20

    Look-ahead dynamic simulation software system incorporates the high performance parallel computing technologies, significantly reduces the solution time for each transient simulation case, and brings the dynamic simulation analysis into on-line applications to enable more transparency for better reliability and asset utilization. It takes the snapshot of the current power grid status, functions in parallel computing the system dynamic simulation, and outputs the transient response of the power system in real time.

  19. Kinematics and dynamics analysis of a quadruped walking robot with parallel leg mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Sang, Lingfeng; Hu, Xing; Zhang, Dianfan; Yu, Hongnian

    2013-09-01

    It is desired to require a walking robot for the elderly and the disabled to have large capacity, high stiffness, stability, etc. However, the existing walking robots cannot achieve these requirements because of the weight-payload ratio and simple function. Therefore, Improvement of enhancing capacity and functions of the walking robot is an important research issue. According to walking requirements and combining modularization and reconfigurable ideas, a quadruped/biped reconfigurable walking robot with parallel leg mechanism is proposed. The proposed robot can be used for both a biped and a quadruped walking robot. The kinematics and performance analysis of a 3-UPU parallel mechanism which is the basic leg mechanism of a quadruped walking robot are conducted and the structural parameters are optimized. The results show that performance of the walking robot is optimal when the circumradius R, r of the upper and lower platform of leg mechanism are 161.7 mm, 57.7 mm, respectively. Based on the optimal results, the kinematics and dynamics of the quadruped walking robot in the static walking mode are derived with the application of parallel mechanism and influence coefficient theory, and the optimal coordination distribution of the dynamic load for the quadruped walking robot with over-determinate inputs is analyzed, which solves dynamic load coupling caused by the branches’ constraint of the robot in the walk process. Besides laying a theoretical foundation for development of the prototype, the kinematics and dynamics studies on the quadruped walking robot also boost the theoretical research of the quadruped walking and the practical applications of parallel mechanism.

  20. A domain specific language for performance portable molecular dynamics algorithms

    NASA Astrophysics Data System (ADS)

    Saunders, William Robert; Grant, James; Müller, Eike Hermann

    2018-03-01

    Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a "Separation of Concerns" approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.

  1. Conducting Qualitative Data Analysis: Managing Dynamic Tensions within

    ERIC Educational Resources Information Center

    Chenail, Ronald J.

    2012-01-01

    In the third of a series of "how-to" essays on conducting qualitative data analysis, Ron Chenail examines the dynamic tensions within the process of qualitative data analysis that qualitative researchers must manage in order to produce credible and creative results. These tensions include (a) the qualities of the data and the qualitative data…

  2. Thermal Performance Analysis of Solar Collectors Installed for Combisystem in the Apartment Building

    NASA Astrophysics Data System (ADS)

    Žandeckis, A.; Timma, L.; Blumberga, D.; Rochas, C.; Rošā, M.

    2012-01-01

    The paper focuses on the application of wood pellet and solar combisystem for space heating and hot water preparation at apartment buildings under the climate of Northern Europe. A pilot project has been implemented in the city of Sigulda (N 57° 09.410 E 024° 52.194), Latvia. The system was designed and optimised using TRNSYS - a dynamic simulation tool. The pilot project was continuously monitored. To the analysis the heat transfer fluid flow rate and the influence of the inlet temperature on the performance of solar collectors were subjected. The thermal performance of a solar collector loop was studied using a direct method. A multiple regression analysis was carried out using STATGRAPHICS Centurion 16.1.15 with the aim to identify the operational and weather parameters of the system which cause the strongest influence on the collector's performance. The parameters to be used for the system's optimisation have been evaluated.

  3. Threshold-based queuing system for performance analysis of cloud computing system with dynamic scaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shorgin, Sergey Ya.; Pechinkin, Alexander V.; Samouylov, Konstantin E.

    Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. Formore » better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures.« less

  4. Sensitivity analysis of reactive ecological dynamics.

    PubMed

    Verdy, Ariane; Caswell, Hal

    2008-08-01

    Ecological systems with asymptotically stable equilibria may exhibit significant transient dynamics following perturbations. In some cases, these transient dynamics include the possibility of excursions away from the equilibrium before the eventual return; systems that exhibit such amplification of perturbations are called reactive. Reactivity is a common property of ecological systems, and the amplification can be large and long-lasting. The transient response of a reactive ecosystem depends on the parameters of the underlying model. To investigate this dependence, we develop sensitivity analyses for indices of transient dynamics (reactivity, the amplification envelope, and the optimal perturbation) in both continuous- and discrete-time models written in matrix form. The sensitivity calculations require expressions, some of them new, for the derivatives of equilibria, eigenvalues, singular values, and singular vectors, obtained using matrix calculus. Sensitivity analysis provides a quantitative framework for investigating the mechanisms leading to transient growth. We apply the methodology to a predator-prey model and a size-structured food web model. The results suggest predator-driven and prey-driven mechanisms for transient amplification resulting from multispecies interactions.

  5. DEAN: A Program for Dynamic Engine Analysis.

    DTIC Science & Technology

    1985-01-01

    hardware and memory limitations. DIGTEM (ref. 4), a recently written code allows steady-state as well as transient calculations to be performed. DIGTEM has...Computer Program for Generating Dynamic Turbofan Engine Models ( DIGTEM )," NASA TM-83446. 5. Carnahan, B., Luther, H.A., and Wilkes, J.O., Applied Numerical

  6. More than just the mean: moving to a dynamic view of performance-based compensation.

    PubMed

    Barnes, Christopher M; Reb, Jochen; Ang, Dionysius

    2012-05-01

    Compensation decisions have important consequences for employees and organizations and affect factors such as retention, motivation, and recruitment. Past research has primarily focused on mean performance as a predictor of compensation, promoting the implicit assumption that alternative aspects of dynamic performance are not relevant. To address this gap in the literature, we examined the influence of dynamic performance characteristics on compensation decisions in the National Basketball Association (NBA). We predicted that, in addition to performance mean, performance trend and variability would also affect compensation decisions. Results revealed that performance mean and trend, but not variability, were significantly and positively related to changes in compensation levels of NBA players. Moreover, trend (but not mean or variability) predicted compensation when controlling for future performance, suggesting that organizations overweighted trend in their compensation decisions. Theoretical and practical implications are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

  7. Analysis of Electrowetting Dynamics with Level Set Method

    NASA Astrophysics Data System (ADS)

    Park, Jun Kwon; Hong, Jiwoo; Kang, Kwan Hyoung

    2009-11-01

    Electrowetting is a versatile tool to handle tiny droplets and forms a backbone of digital microfluidics. Numerical analysis is necessary to fully understand the dynamics of electrowetting, especially in designing electrowetting-based liquid lenses and reflective displays. We developed a numerical method to analyze the general contact-line problems, incorporating dynamic contact angle models. The method was applied to the analysis of spreading process of a sessile droplet for step input voltages in electrowetting. The result was compared with experimental data and analytical result which is based on the spectral method. It is shown that contact line friction significantly affects the contact line motion and the oscillation amplitude. The pinning process of contact line was well represented by including the hysteresis effect in the contact angle models.

  8. Structural-Thermal-Optical-Performance (STOP) Analysis

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeffrey; Irish, Sandra

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). A STOP analysis is a multidiscipline analysis, consisting of Structural, Thermal and Optical Performance Analyses, that is performed for all space flight instruments and satellites. This course will explain the different parts of performing this analysis. The student will learn how to effectively interact with each discipline in order to accurately obtain the system analysis results.

  9. Performance Evaluation and Analysis for Gravity Matching Aided Navigation.

    PubMed

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-04-05

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN.

  10. Performance Evaluation and Analysis for Gravity Matching Aided Navigation

    PubMed Central

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-01-01

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN. PMID:28379178

  11. Dynamic stability and bifurcation analysis in fractional thermodynamics

    NASA Astrophysics Data System (ADS)

    Béda, Péter B.

    2018-02-01

    In mechanics, viscoelasticity was the first field of applications in studying geomaterials. Further possibilities arise in spatial non-locality. Non-local materials were already studied in the 1960s by several authors as a part of continuum mechanics and are still in focus of interest because of the rising importance of materials with internal micro- and nano-structure. When material instability gained more interest, non-local behavior appeared in a different aspect. The problem was concerned to numerical analysis, because then instability zones exhibited singular properties for local constitutive equations. In dynamic stability analysis, mathematical aspects of non-locality were studied by using the theory of dynamic systems. There the basic set of equations describing the behavior of continua was transformed to an abstract dynamic system consisting of differential operators acting on the perturbation field variables. Such functions should satisfy homogeneous boundary conditions and act as indicators of stability of a selected state of the body under consideration. Dynamic systems approach results in conditions for cases, when the differential operators have critical eigenvalues of zero real parts (dynamic stability or instability conditions). When the critical eigenvalues have non-trivial eigenspace, the way of loss of stability is classified as a typical (or generic) bifurcation. Our experiences show that material non-locality and the generic nature of bifurcation at instability are connected, and the basic functions of the non-trivial eigenspace can be used to determine internal length quantities of non-local mechanics. Fractional calculus is already successfully used in thermo-elasticity. In the paper, non-locality is introduced via fractional strain into the constitutive relations of various conventional types. Then, by defining dynamic systems, stability and bifurcation are studied for states of thermo-mechanical solids. Stability conditions and genericity

  12. Computer aided analysis and optimization of mechanical system dynamics

    NASA Technical Reports Server (NTRS)

    Haug, E. J.

    1984-01-01

    The purpose is to outline a computational approach to spatial dynamics of mechanical systems that substantially enlarges the scope of consideration to include flexible bodies, feedback control, hydraulics, and related interdisciplinary effects. Design sensitivity analysis and optimization is the ultimate goal. The approach to computer generation and solution of the system dynamic equations and graphical methods for creating animations as output is outlined.

  13. Structure and Topology Dynamics of Hyper-Frequency Networks during Rest and Auditory Oddball Performance.

    PubMed

    Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman

    2016-01-01

    Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies.

  14. Structure and Topology Dynamics of Hyper-Frequency Networks during Rest and Auditory Oddball Performance

    PubMed Central

    Müller, Viktor; Perdikis, Dionysios; von Oertzen, Timo; Sleimen-Malkoun, Rita; Jirsa, Viktor; Lindenberger, Ulman

    2016-01-01

    Resting-state and task-related recordings are characterized by oscillatory brain activity and widely distributed networks of synchronized oscillatory circuits. Electroencephalographic recordings (EEG) were used to assess network structure and network dynamics during resting state with eyes open and closed, and auditory oddball performance through phase synchronization between EEG channels. For this assessment, we constructed a hyper-frequency network (HFN) based on within- and cross-frequency coupling (WFC and CFC, respectively) at 10 oscillation frequencies ranging between 2 and 20 Hz. We found that CFC generally differentiates between task conditions better than WFC. CFC was the highest during resting state with eyes open. Using a graph-theoretical approach (GTA), we found that HFNs possess small-world network (SWN) topology with a slight tendency to random network characteristics. Moreover, analysis of the temporal fluctuations of HFNs revealed specific network topology dynamics (NTD), i.e., temporal changes of different graph-theoretical measures such as strength, clustering coefficient, characteristic path length (CPL), local, and global efficiency determined for HFNs at different time windows. The different topology metrics showed significant differences between conditions in the mean and standard deviation of these metrics both across time and nodes. In addition, using an artificial neural network approach, we found stimulus-related dynamics that varied across the different network topology metrics. We conclude that functional connectivity dynamics (FCD), or NTD, which was found using the HFN approach during rest and stimulus processing, reflects temporal and topological changes in the functional organization and reorganization of neuronal cell assemblies. PMID:27799906

  15. Performance analysis of successive over relaxation method for solving glioma growth model

    NASA Astrophysics Data System (ADS)

    Hussain, Abida; Faye, Ibrahima; Muthuvalu, Mohana Sundaram

    2016-11-01

    Brain tumor is one of the prevalent cancers in the world that lead to death. In light of the present information of the properties of gliomas, mathematical models have been developed by scientists to quantify the proliferation and invasion dynamics of glioma. In this study, one-dimensional glioma growth model is considered, and finite difference method is used to discretize the problem. Then, two stationary methods, namely Gauss-Seidel (GS) and Successive Over Relaxation (SOR) are used to solve the governing algebraic system. The performance of the methods are evaluated in terms of number of iteration and computational time. On the basis of performance analysis, SOR method is shown to be more superior compared to GS method.

  16. Contact dynamics recording and analysis system using an optical fiber sensor approach

    NASA Astrophysics Data System (ADS)

    Anghel, F.; Pavelescu, D.; Grattan, K. T. V.; Palmer, A. W.

    1997-09-01

    A contact dynamics recording and analysis system configured using an optical fiber sensor has been developed having been designed with a particular application to the accurate and time-varying description of moving contact operating during electrical arc breaking, in an experimental platform simulating the operation of a vacuum circuit breaker. The system utilizes dynamic displacement measurement and data recording and a post-process data analysis to reveal the dynamic speed and acceleration data of the equipment.

  17. Vehicle dynamic analysis using neuronal network algorithms

    NASA Astrophysics Data System (ADS)

    Oloeriu, Florin; Mocian, Oana

    2014-06-01

    Theoretical developments of certain engineering areas, the emergence of new investigation tools, which are better and more precise and their implementation on-board the everyday vehicles, all these represent main influence factors that impact the theoretical and experimental study of vehicle's dynamic behavior. Once the implementation of these new technologies onto the vehicle's construction had been achieved, it had led to more and more complex systems. Some of the most important, such as the electronic control of engine, transmission, suspension, steering, braking and traction had a positive impact onto the vehicle's dynamic behavior. The existence of CPU on-board vehicles allows data acquisition and storage and it leads to a more accurate and better experimental and theoretical study of vehicle dynamics. It uses the information offered directly by the already on-board built-in elements of electronic control systems. The technical literature that studies vehicle dynamics is entirely focused onto parametric analysis. This kind of approach adopts two simplifying assumptions. Functional parameters obey certain distribution laws, which are known in classical statistics theory. The second assumption states that the mathematical models are previously known and have coefficients that are not time-dependent. Both the mentioned assumptions are not confirmed in real situations: the functional parameters do not follow any known statistical repartition laws and the mathematical laws aren't previously known and contain families of parameters and are mostly time-dependent. The purpose of the paper is to present a more accurate analysis methodology that can be applied when studying vehicle's dynamic behavior. A method that provides the setting of non-parametrical mathematical models for vehicle's dynamic behavior is relying on neuronal networks. This method contains coefficients that are time-dependent. Neuronal networks are mostly used in various types' system controls, thus

  18. Evaluation of Counter-Based Dynamic Load Balancing Schemes for Massive Contingency Analysis on Over 10,000 Cores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Huang, Zhenyu; Rice, Mark J.

    Contingency analysis studies are necessary to assess the impact of possible power system component failures. The results of the contingency analysis are used to ensure the grid reliability, and in power market operation for the feasibility test of market solutions. Currently, these studies are performed in real time based on the current operating conditions of the grid with a set of pre-selected contingency list, which might result in overlooking some critical contingencies caused by variable system status. To have a complete picture of a power grid, more contingencies need to be studied to improve grid reliability. High-performance computing techniques holdmore » the promise of being able to perform the analysis for more contingency cases within a much shorter time frame. This paper evaluates the performance of counter-based dynamic load balancing schemes for a massive contingency analysis program on 10,000+ cores. One million N-2 contingency analysis cases with a Western Electricity Coordinating Council power grid model have been used to demonstrate the performance. The speedup of 3964 with 4096 cores and 7877 with 10240 cores are obtained. This paper reports the performance of the load balancing scheme with a single counter and two counters, describes disk I/O issues, and discusses other potential techniques for further improving the performance.« less

  19. Flexible rotor dynamics analysis

    NASA Technical Reports Server (NTRS)

    Shen, F. A.

    1973-01-01

    A digital computer program was developed to analyze the general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of a bending- and shear-wise flexible rotor-bearing system under various operating conditions. The effects of rotor material mechanical hysteresis, rotor torsion flexibility, transverse effects of rotor axial and torsional loading and the anisotropic, in-phase and out-of-phase bearing stiffness and damping force and moment coefficients were included in the program to broaden its capability. An optimum solution method was found and incorporated in the computer program. Computer simulation of experimental data was made and qualitative agreements observed. The mathematical formulations, computer program verification, test data simulation, and user instruction was presented and discussed.

  20. Understanding and Modeling Teams As Dynamical Systems

    PubMed Central

    Gorman, Jamie C.; Dunbar, Terri A.; Grimm, David; Gipson, Christina L.

    2017-01-01

    By its very nature, much of teamwork is distributed across, and not stored within, interdependent people working toward a common goal. In this light, we advocate a systems perspective on teamwork that is based on general coordination principles that are not limited to cognitive, motor, and physiological levels of explanation within the individual. In this article, we present a framework for understanding and modeling teams as dynamical systems and review our empirical findings on teams as dynamical systems. We proceed by (a) considering the question of why study teams as dynamical systems, (b) considering the meaning of dynamical systems concepts (attractors; perturbation; synchronization; fractals) in the context of teams, (c) describe empirical studies of team coordination dynamics at the perceptual-motor, cognitive-behavioral, and cognitive-neurophysiological levels of analysis, and (d) consider the theoretical and practical implications of this approach, including new kinds of explanations of human performance and real-time analysis and performance modeling. Throughout our discussion of the topics we consider how to describe teamwork using equations and/or modeling techniques that describe the dynamics. Finally, we consider what dynamical equations and models do and do not tell us about human performance in teams and suggest future research directions in this area. PMID:28744231

  1. Multiple shooting shadowing for sensitivity analysis of chaotic dynamical systems

    NASA Astrophysics Data System (ADS)

    Blonigan, Patrick J.; Wang, Qiqi

    2018-02-01

    Sensitivity analysis methods are important tools for research and design with simulations. Many important simulations exhibit chaotic dynamics, including scale-resolving turbulent fluid flow simulations. Unfortunately, conventional sensitivity analysis methods are unable to compute useful gradient information for long-time-averaged quantities in chaotic dynamical systems. Sensitivity analysis with least squares shadowing (LSS) can compute useful gradient information for a number of chaotic systems, including simulations of chaotic vortex shedding and homogeneous isotropic turbulence. However, this gradient information comes at a very high computational cost. This paper presents multiple shooting shadowing (MSS), a more computationally efficient shadowing approach than the original LSS approach. Through an analysis of the convergence rate of MSS, it is shown that MSS can have lower memory usage and run time than LSS.

  2. Assessment of dynamic and long-term performance of an innovative multi-story timber building via structural monitoring and dynamic testing

    NASA Astrophysics Data System (ADS)

    Omenzetter, Piotr; Morris, Hugh; Worth, Margaret; Gaul, Andrew; Jager, Simon; Desgeorges, Yohann

    2012-04-01

    An innovative three-story timber building, using self-centering, post-tensioned timber shear walls as the main horizontal load resisting system and lightweight non-composite timber-concrete floors, has recently been completed in Nelson, New Zealand. It is expected to be the trailblazer for similar but taller structures to be more widely adopted. Performance based standards require an advanced understanding of building responses and in order to meet the need for in-situ performance data the building has been subjected to forced vibration testing and instrumented for continuous monitoring using a total of approximately 90 data channels to capture its dynamic and long-term responses. The first part of the paper presents a brief discussion of the existing research on the seismic performance of timber frame buildings and footfall induced floor vibrations. An outline of the building structural system, focusing on the novel design solutions, is then discussed. This is followed by the description of the monitoring system. The analysis of monitoring results starts with a discussion of the monitoring of long-term deformations. Next, the assessment of the floor vibration serviceability performance is outlined. Then, the forced vibration tests conducted on the whole building at different construction stages are reviewed. The system identification results from seismic shaking records are also discussed. Finally, updating of a finite element model of the building is conducted.

  3. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics

    PubMed Central

    Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-01-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements. PMID:29875507

  4. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics.

    PubMed

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.

  5. Space shuttle launch vehicle performance trajectory, exchange ratios, and dispersion analysis

    NASA Technical Reports Server (NTRS)

    Toelle, R. G.; Blackwell, D. L.; Lott, L. N.

    1973-01-01

    A baseline space shuttle performance trajectory for Mission 3A launched from WTR has been generated. Design constraints of maximum dynamic pressure, longitudinal acceleration, and delivered payload were satisfied. Payload exchange ratios are presented with explanation on use. Design envelopes of dynamic pressure, SRB staging point, aerodynamic heating and flight performance reserves are calculated and included.

  6. The Shock and Vibration Bulletin. Part 3. Dynamic Analysis, Design Techniques

    DTIC Science & Technology

    1980-09-01

    response at certain discrete frequen- nique for dynamic analysis was pioneered by cies, not over a random-frequence spectrum. Myklestad[l]. Later Pestel and...34Fundamentals of Vibra- v’ angle of rotation due to tion Analysis ," McGraw-Hill, New York, 1956. bending 2. E.C. Pestel and F.A. Leckie, "Matrix o’ angle of...Bulletin 50IC FILE COPY (Part 03ofP,) to THE SHOCK AND VIBRATION BULLETIN Part 3 Dynamic Analysis , Design Techniques IELECTE SEPTEMBER 1980 S NOV 1

  7. Dynamics Analysis of Anti-predator Model on Intermediate Predator With Ratio Dependent Functional Responses

    NASA Astrophysics Data System (ADS)

    Savitri, D.

    2018-01-01

    This articel discusses a predator prey model with anti-predator on intermediate predator using ratio dependent functional responses. Dynamical analysis performed on the model includes determination of equilibrium point, stability and simulation. Three kinds of equilibrium points have been discussed, namely the extinction of prey point, the extinction of intermediate predator point and the extinction of predator point are exists under certain conditions. It can be shown that the result of numerical simulations are in accordance with analitical results

  8. Energy performance analysis of a detached single-family house to be refurbished

    NASA Astrophysics Data System (ADS)

    Aleixo, Kevin; Curado, António

    2017-07-01

    This study was developed with the purpose of analyzing the reinforcement of the energy performance in a detached single-family house to be refurbished, using this building as a case-study for simulation and experimental analysis. The building is located in Viana do Castelo, a city in the northwest of Portugal nearby the Atlantic Ocean. The developed study was carried out in order to characterize the thermal performance of the house, using simulation analysis in a dynamic regime. The energy consumption study was developed in permanent regime analysis, using simulation tools. At the end, the study aimed to propose and define the best retrofitting solutions, both passive and active, and to improve the energy performance of the building. The outcomes of the study provided the importance of passive retrofitting solutions on thermal comfort and energy performance. The use of a set of thermal solutions, as the insulation of the roof, walls and the windows, it is possible to achieve a global gain of 0, 63 °C and to reduce energy consumption in 61, 46 [kWh/m2.year]. The study of the building in a simplified thermal regime, according to the Portuguese energy efficiency regulation, allowed the determination of the energy efficiency class of the house and retrofitting solutions proposed. The initial energy performance class of the building is C. With the application of a passive set of solutions, it's possible to improve the energy performance to a class B. With the implementation of some active solutions, it is possible to reach an energy class A +.

  9. A fractal approach to dynamic inference and distribution analysis

    PubMed Central

    van Rooij, Marieke M. J. W.; Nash, Bertha A.; Rajaraman, Srinivasan; Holden, John G.

    2013-01-01

    Event-distributions inform scientists about the variability and dispersion of repeated measurements. This dispersion can be understood from a complex systems perspective, and quantified in terms of fractal geometry. The key premise is that a distribution's shape reveals information about the governing dynamics of the system that gave rise to the distribution. Two categories of characteristic dynamics are distinguished: additive systems governed by component-dominant dynamics and multiplicative or interdependent systems governed by interaction-dominant dynamics. A logic by which systems governed by interaction-dominant dynamics are expected to yield mixtures of lognormal and inverse power-law samples is discussed. These mixtures are described by a so-called cocktail model of response times derived from human cognitive performances. The overarching goals of this article are twofold: First, to offer readers an introduction to this theoretical perspective and second, to offer an overview of the related statistical methods. PMID:23372552

  10. The impact of chief executive officer personality on top management team dynamics:one mechanism by which leadership affects organizational performance.

    PubMed

    Peterson, Randall S; Smith, D Brent; Martorana, Paul V; Owens, Pamela D

    2003-10-01

    This article explores 1 mechanism by which leader personality affects organizational performance. The authors hypothesized and tested the effects of leader personality on the group dynamics of the top management team (TMT) and of TMT dynamics on organizational performance. To test their hypotheses, the authors used the group dynamics q-sort method, which is designed to permit rigorous, quantitative comparisons of data derived from qualitative sources. Results from independent observations of chief executive officer (CEO) personality and TMT dynamics for 17 CEOs supported the authors' hypothesized relationships both between CEO personality and TMT group dynamics and between TMT dynamics and organizational performance.

  11. Dynamics of bone healing after osteotomy with piezosurgery or conventional drilling – histomorphometrical, immunohistochemical, and molecular analysis

    PubMed Central

    2013-01-01

    Background Piezosurgery is an osteotomy system used in medical and dental surgery. Many studies have proven clinical advantages of piezosurgery in terms of quality of cut, maneuverability, ease of use, and safety. However, few investigations have tested its superiority over the traditional osteotomy systems in terms of dynamics of bone healing. Therefore, the aim of this study was to evaluate the dynamics of bone healing after osteotomies with piezosurgery and to compare them with those associated to traditional bone drilling. Methods One hundred and ten rats were divided into two groups with 55 animals each. The animals were anesthetized and the tibiae were surgically exposed to create defects 2 mm in diameter by using piezosurgery (Piezo group) and conventional drilling (Drill group). Animals were sacrificed at 3, 7, 14, 30 and 60 days post-surgery. Bone samples were collected and processed for histological, histomorphometrical, immunohistochemical, and molecular analysis. The histological analysis was performed at all time points (n = 8) whereas the histomorphometrical analysis was performed at 7, 14, 30 and 60 days post-surgery (n = 8). The immunolabeling was performed to detect Vascular Endothelial Growth Factor (VEGF), Caspase-3 (CAS-3), Osteoprotegerin (OPG), Receptor Activator of Nuclear Factor kappa-B Ligand (RANKL), and Osteocalcin (OC) at 3, 7, and 14 days (n = 3). For the molecular analysis, animals were sacrificed at 3, 7 and 14 days, total RNA was collected, and quantification of the expression of 21 genes related to BMP signaling, Wnt signaling, inflammation, osteogenenic and apoptotic pathways was performed by qRT-PCR (n = 5). Results Histologically and histomorphometrically, bone healing was similar in both groups with the exception of a slightly higher amount of newly formed bone observed at 30 days after piezosurgery (p < 0.05). Immunohistochemical and qRT-PCR analyses didn’t detect significant differences in

  12. Foam Rolling for Delayed-Onset Muscle Soreness and Recovery of Dynamic Performance Measures

    PubMed Central

    Pearcey, Gregory E. P.; Bradbury-Squires, David J.; Kawamoto, Jon-Erik; Drinkwater, Eric J.; Behm, David G.; Button, Duane C.

    2015-01-01

    Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures. PMID:25415413

  13. Optimized "detectors" for dynamics analysis in solid-state NMR

    NASA Astrophysics Data System (ADS)

    Smith, Albert A.; Ernst, Matthias; Meier, Beat H.

    2018-01-01

    Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that modulate anisotropic NMR interactions. Therefore, measurement of relaxation-rate constants can be used to characterize molecular-dynamic processes. The motion is often characterized by Markov processes using an auto-correlation function, which is assumed to be a sum of multiple decaying exponentials. We have recently shown that such a model can lead to severe misrepresentation of the real motion, when the real correlation function is more complex than the model. Furthermore, multiple distributions of motion may yield the same set of dynamics data. Therefore, we introduce optimized dynamics "detectors" to characterize motions which are linear combinations of relaxation-rate constants. A detector estimates the average or total amplitude of motion for a range of motional correlation times. The information obtained through the detectors is less specific than information obtained using an explicit model, but this is necessary because the information contained in the relaxation data is ambiguous, if one does not know the correct motional model. On the other hand, if one has a molecular dynamics trajectory, one may calculate the corresponding detector responses, allowing direct comparison to experimental NMR dynamics analysis. We describe how to construct a set of optimized detectors for a given set of relaxation measurements. We then investigate the properties of detectors for a number of different data sets, thus gaining an insight into the actual information content of the NMR data. Finally, we show an example analysis of ubiquitin dynamics data using detectors, using the DIFRATE software.

  14. Influence of natural fibers on the phase transitions in high-density polyethylene composites using dynamic mechanical analysis

    Treesearch

    Mehdi Tajvidi; Robert H. Falk; John C. Hermanson; Colin Felton

    2003-01-01

    Dynamic mechanical analysis was employed to evaluate the performance of various natural fibers in high-density polyethylene composites. Kenaf, newsprint, rice hulls, and wood flour were sources of fiber. Composites were made at 25 percent and 50 percent by weight fiber contents. Maleic anhydride modified polyethylene was also added at 1:25 ratio to the fiber....

  15. Down syndrome's brain dynamics: analysis of fractality in resting state.

    PubMed

    Hemmati, Sahel; Ahmadlou, Mehran; Gharib, Masoud; Vameghi, Roshanak; Sajedi, Firoozeh

    2013-08-01

    To the best knowledge of the authors there is no study on nonlinear brain dynamics of down syndrome (DS) patients, whereas brain is a highly complex and nonlinear system. In this study, fractal dimension of EEG, as a key characteristic of brain dynamics, showing irregularity and complexity of brain dynamics, was used for evaluation of the dynamical changes in the DS brain. The results showed higher fractality of the DS brain in almost all regions compared to the normal brain, which indicates less centrality and higher irregular or random functioning of the DS brain regions. Also, laterality analysis of the frontal lobe showed that the normal brain had a right frontal laterality of complexity whereas the DS brain had an inverse pattern (left frontal laterality). Furthermore, the high accuracy of 95.8 % obtained by enhanced probabilistic neural network classifier showed the potential of nonlinear dynamic analysis of the brain for diagnosis of DS patients. Moreover, the results showed that the higher EEG fractality in DS is associated with the higher fractality in the low frequencies (delta and theta), in broad regions of the brain, and the high frequencies (beta and gamma), majorly in the frontal regions.

  16. Nonlinear modelling in time domain numerical analysis of stringed instrument dynamics

    NASA Astrophysics Data System (ADS)

    Bielski, Paweł; Kujawa, Marcin

    2017-03-01

    Musical instruments are very various in terms of sound quality with their timbre shaped by materials and geometry. Materials' impact is commonly treated as dominant one by musicians, while it is unclear whether it is true or not. The research proposed in the study focuses on determining influence of both these factors on sound quality based on their impact on harmonic composition. Numerical approach has been chosen to allowed independent manipulation of geometrical and material parameters as opposed to experimental study subjected to natural randomness of instrument construction. Distinctive element of this research is precise modelling of whole instrument and treating it as one big vibrating system instead of performing modal analysis on an isolated part. Finite elements model of a stringed instrument has been built and a series of nonlinear time-domain dynamic analyses were executed to obtain displacement signals and perform subsequent spectral analysis. Precision of computations seems sufficient to determine the influence of instrument's macroscopic mechanical parameters on timbre. Further research should focus on implementation of acoustic medium in attempt to include dissipation and synchronization mechanisms. Outside the musical field this kind of research could be potentially useful in noise reduction problems.

  17. Robust dynamic inversion controller design and analysis (using the X-38 vehicle as a case study)

    NASA Astrophysics Data System (ADS)

    Ito, Daigoro

    A new way to approach robust Dynamic Inversion controller synthesis is addressed in this paper. A Linear Quadratic Gaussian outer-loop controller improves the robustness of a Dynamic Inversion inner-loop controller in the presence of uncertainties. Desired dynamics are given by the dynamic compensator, which shapes the loop. The selected dynamics are based on both performance and stability robustness requirements. These requirements are straightforwardly formulated as frequency-dependent singular value bounds during synthesis of the controller. Performance and robustness of the designed controller is tested using a worst case time domain quadratic index, which is a simple but effective way to measure robustness due to parameter variation. Using this approach, a lateral-directional controller for the X-38 vehicle is designed and its robustness to parameter variations and disturbances is analyzed. It is found that if full state measurements are available, the performance of the designed lateral-directional control system, measured by the chosen cost function, improves by approximately a factor of four. Also, it is found that the designed system is stable up to a parametric variation of 1.65 standard deviation with the set of uncertainty considered. The system robustness is determined to be highly sensitive to the dihedral derivative and the roll damping coefficients. The controller analysis is extended to the nonlinear system where both control input displacements and rates are bounded. In this case, the considered nonlinear system is stable up to 48.1° in bank angle and 1.59° in sideslip angle variations, indicating it is more sensitive to variations in sideslip angle than in bank angle. This nonlinear approach is further extended for the actuator failure mode analysis. The results suggest that the designed system maintains a high level of stability in the event of aileron failure. However, only 35% or less of the original stability range is maintained for the

  18. Off-road motorbike performance analysis using a rear semi-active suspension

    NASA Astrophysics Data System (ADS)

    Lozoya-Santos, Jorge de J.; Cervantes-Muñoz, Damián.; Ramírez Mendoza, Ricardo

    2015-04-01

    The topic of this paper is the analysis of a control system for a semi active rear suspension in an off-road 2-wheel vehicle. Several control methods are studied, as well as the recently proposed Frequency Estimation Based (FEB) algorithm. The test motorcycle dynamics, as well as the passive, semi active, and the algorithm controlled shock absorber models are loaded into BikeSim, a professional two-wheeled vehicle simulation software, and tested in several road conditions. The results show a detailed comparison of the theoretical performance of the different control approaches in a novel environment for semi active dampers.

  19. Dynamic Analysis With Stress Mode Animation by the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.

    1997-01-01

    Dynamic animation of stresses and displacements, which complement each other, can be a useful tool in the analysis and design of structural components. At the present time only displacement-mode animation is available through the popular stiffness formulation. This paper attempts to complete this valuable visualization tool by augmenting the existing art with stress mode animation. The reformulated method of forces, which in the literature is known as the integrated force method (IFM), became the analyzer of choice for the development of stress mode animation because stresses are the primary unknowns of its dynamic analysis. Animation of stresses and displacements, which have been developed successfully through the IFM analyzers, is illustrated in several examples along with a brief introduction to IFM dynamic analysis. The usefulness of animation in design optimization is illustrated considering the spacer structure component of the International Space Station as an example. An overview of the integrated force method analysis code (IFM/ANALYZERS) is provided in the appendix.

  20. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches.

    PubMed

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2010-08-26

    This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports. 2010 Elsevier Ltd. All rights reserved.

  1. Dynamical systems analysis of phantom dark energy models

    NASA Astrophysics Data System (ADS)

    Roy, Nandan; Bhadra, Nivedita

    2018-06-01

    In this work, we study the dynamical systems analysis of phantom dark energy models considering five different potentials. From the analysis of these five potentials we have found a general parametrization of the scalar field potentials which is obeyed by many other potentials. Our investigation shows that there is only one fixed point which could be the beginning of the universe. However, future destiny has many possible options. A detailed numerical analysis of the system has been presented. The observed late time behaviour in this analysis shows very good agreement with the recent observations.

  2. Benefits Analysis of Multi-Center Dynamic Weather Routes

    NASA Technical Reports Server (NTRS)

    Sheth, Kapil; McNally, David; Morando, Alexander; Clymer, Alexis; Lock, Jennifer; Petersen, Julien

    2014-01-01

    Dynamic weather routes are flight plan corrections that can provide airborne flights more than user-specified minutes of flying-time savings, compared to their current flight plan. These routes are computed from the aircraft's current location to a flight plan fix downstream (within a predefined limit region), while avoiding forecasted convective weather regions. The Dynamic Weather Routes automation has been continuously running with live air traffic data for a field evaluation at the American Airlines Integrated Operations Center in Fort Worth, TX since July 31, 2012, where flights within the Fort Worth Air Route Traffic Control Center are evaluated for time savings. This paper extends the methodology to all Centers in United States and presents benefits analysis of Dynamic Weather Routes automation, if it was implemented in multiple airspace Centers individually and concurrently. The current computation of dynamic weather routes requires a limit rectangle so that a downstream capture fix can be selected, preventing very large route changes spanning several Centers. In this paper, first, a method of computing a limit polygon (as opposed to a rectangle used for Fort Worth Center) is described for each of the 20 Centers in the National Airspace System. The Future ATM Concepts Evaluation Tool, a nationwide simulation and analysis tool, is used for this purpose. After a comparison of results with the Center-based Dynamic Weather Routes automation in Fort Worth Center, results are presented for 11 Centers in the contiguous United States. These Centers are generally most impacted by convective weather. A breakdown of individual Center and airline savings is presented and the results indicate an overall average savings of about 10 minutes of flying time are obtained per flight.

  3. RF dynamic and noise performance of Metallic Source/Drain SOI n-MOSFETs

    NASA Astrophysics Data System (ADS)

    Martin, Maria J.; Pascual, Elena; Rengel, Raúl

    2012-07-01

    This paper presents a detailed study of the RF and noise performance of n-type Schottky barrier (SB) MOSFETs with a particular focus on the influence of the Schottky barrier height (SBH) on the main dynamic and noise figures of merit. With this aim, a 2D Monte Carlo simulator including tunnelling transport across Schottky interfaces has been developed, with special care to consider quantum transmission coefficients and the influence of image charge effects at the Schottky junctions. Particular attention is paid to the microscopic transport features, including carrier mean free paths or number of scattering events along the channel for investigating the optimization of the device topology and the strategic concepts related to the noise performance of this new architecture. A more effective control of the gate electrode over drain current for low SBH (discussed in terms of internal physical quantities) is translated into an enhanced transconductance gm, cut-off frequency fT, and non-quasistatic dynamic parameters. The drain and gate intrinsic noise sources show a noteworthy degradation with the SBH reduction due to the increased current, influence of hot carriers and reduced number of phonon scatterings. However, the results evidence that this effect is counterbalanced by the extremely improved dynamic performance in terms of gm and fT. Therefore, the deterioration of the intrinsic noise performance of the SB-MOSFET has no significant impact on high-frequency noise FoMs as NFmin, Rn and Gass for low SBH and large gate overdrive conditions. The role of the SBH on Γopt, optimum noise reactance and susceptance has been also analyzed.

  4. The role of model dynamics in ensemble Kalman filter performance for chaotic systems

    USGS Publications Warehouse

    Ng, G.-H.C.; McLaughlin, D.; Entekhabi, D.; Ahanin, A.

    2011-01-01

    The ensemble Kalman filter (EnKF) is susceptible to losing track of observations, or 'diverging', when applied to large chaotic systems such as atmospheric and ocean models. Past studies have demonstrated the adverse impact of sampling error during the filter's update step. We examine how system dynamics affect EnKF performance, and whether the absence of certain dynamic features in the ensemble may lead to divergence. The EnKF is applied to a simple chaotic model, and ensembles are checked against singular vectors of the tangent linear model, corresponding to short-term growth and Lyapunov vectors, corresponding to long-term growth. Results show that the ensemble strongly aligns itself with the subspace spanned by unstable Lyapunov vectors. Furthermore, the filter avoids divergence only if the full linearized long-term unstable subspace is spanned. However, short-term dynamics also become important as non-linearity in the system increases. Non-linear movement prevents errors in the long-term stable subspace from decaying indefinitely. If these errors then undergo linear intermittent growth, a small ensemble may fail to properly represent all important modes, causing filter divergence. A combination of long and short-term growth dynamics are thus critical to EnKF performance. These findings can help in developing practical robust filters based on model dynamics. ?? 2011 The Authors Tellus A ?? 2011 John Wiley & Sons A/S.

  5. Multi-body Dynamic Contact Analysis Tool for Transmission Design

    DTIC Science & Technology

    2003-04-01

    frequencies were computed in COSMIC NASTRAN, and were validated against the published experimental modal analysis [17]. • Using assumed time domain... modal superposition. • Results from the structural analysis (mode shapes or forced response) were converted into IDEAS universal format (dataset 55...ARMY RESEARCH LABORATORY Multi-body Dynamic Contact Analysis Tool for Transmission Design SBIR Phase II Final Report by

  6. Fractal analysis on human dynamics of library loans

    NASA Astrophysics Data System (ADS)

    Fan, Chao; Guo, Jin-Li; Zha, Yi-Long

    2012-12-01

    In this paper, the fractal characteristic of human behaviors is investigated from the perspective of time series constructed with the amount of library loans. The values of the Hurst exponent and length of non-periodic cycle calculated through rescaled range analysis indicate that the time series of human behaviors and their sub-series are fractal with self-similarity and long-range dependence. Then the time series are converted into complex networks by the visibility algorithm. The topological properties of the networks such as scale-free property and small-world effect imply that there is a close relationship among the numbers of repetitious behaviors performed by people during certain periods of time. Our work implies that there is intrinsic regularity in the human collective repetitious behaviors. The conclusions may be helpful to develop some new approaches to investigate the fractal feature and mechanism of human dynamics, and provide some references for the management and forecast of human collective behaviors.

  7. Mechanical performance of cervical intervertebral body fusion devices: A systematic analysis of data submitted to the Food and Drug Administration.

    PubMed

    Peck, Jonathan H; Sing, David C; Nagaraja, Srinidhi; Peck, Deepa G; Lotz, Jeffrey C; Dmitriev, Anton E

    2017-03-21

    Cervical intervertebral body fusion devices (IBFDs) are utilized to provide stability while fusion occurs in patients with cervical pathology. For a manufacturer to market a new cervical IBFD in the United States, substantial equivalence to a cervical IBFD previously cleared by FDA must be established through the 510(k) regulatory pathway. Mechanical performance data are typically provided as part of the 510(k) process for IBFDs. We reviewed all Traditional 510(k) submissions for cervical IBFDs deemed substantially equivalent and cleared for marketing from 2007 through 2014. To reduce sources of variability in test methods and results, analysis was restricted to cervical IBFD designs without integrated fixation, coatings, or expandable features. Mechanical testing reports were analyzed and results were aggregated for seven commonly performed tests (static and dynamic axial compression, compression-shear, and torsion testing per ASTM F2077, and subsidence testing per ASTM F2267), and percentile distributions of performance measurements were calculated. Eighty-three (83) submissions met the criteria for inclusion in this analysis. The median device yield strength was 10,117N for static axial compression, 3680N for static compression-shear, and 8.6Nm for static torsion. Median runout load was 2600N for dynamic axial compression, 1400N for dynamic compression-shear, and ±1.5Nm for dynamic torsion. In subsidence testing, median block stiffness (Kp) was 424N/mm. The mechanical performance data presented here will aid in the development of future cervical IBFDs by providing a means for comparison for design verification purposes. Published by Elsevier Ltd.

  8. Comparative Implementation of High Performance Computing for Power System Dynamic Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Shuangshuang; Huang, Zhenyu; Diao, Ruisheng

    Dynamic simulation for transient stability assessment is one of the most important, but intensive, computations for power system planning and operation. Present commercial software is mainly designed for sequential computation to run a single simulation, which is very time consuming with a single processer. The application of High Performance Computing (HPC) to dynamic simulations is very promising in accelerating the computing process by parallelizing its kernel algorithms while maintaining the same level of computation accuracy. This paper describes the comparative implementation of four parallel dynamic simulation schemes in two state-of-the-art HPC environments: Message Passing Interface (MPI) and Open Multi-Processing (OpenMP).more » These implementations serve to match the application with dedicated multi-processor computing hardware and maximize the utilization and benefits of HPC during the development process.« less

  9. Sustaining high performance: dynamic balancing in an otherwise unbalanced system.

    PubMed

    Wolf, Jason A

    2011-01-01

    As Ovid said, "There is nothing in the whole world which is permanent." It is this very premise that frames the discoveries in this chapter and the compelling paradox it has raised. What began as a question of how performance is sustained, unveiled a collection of core organizational paradoxes. The findings ultimately suggest that sustained high performance is not a permanent state an organization achieves, but rather it is through perpetual movement and dynamic balance that sustainability occurs. The idea of sustainability as movement is predicated on the ability of organizational members to move beyond the experience of paradox as an impediment to progress. Through holding three critical "movements"--agile/consistency, collective/individualism, and informative/inquiry--not as paradoxical, but as active polarities, the organizations in the study were able to transcend paradox, and take active steps to continuous achievement in outperforming their peers. The study, focused on a collection of hospitals across the Unites States, reveals powerful stories of care and service, of the profound grace of human capacity, and of clear actions taken to create significant results. All of this was achieved in an environment of great volatility, in essence an unbalanced system. It was the discovery of movement and ultimately of dynamic balancing that allowed the organizations to in this study to move beyond stasis to the continuous "state" of sustaining high performance.

  10. Energy and momentum analysis of the deployment dynamics of nets in space

    NASA Astrophysics Data System (ADS)

    Botta, Eleonora M.; Sharf, Inna; Misra, Arun K.

    2017-11-01

    In this paper, the deployment dynamics of nets in space is investigated through a combination of analysis and numerical simulations. The considered net is deployed by ejecting several corner masses and thanks to momentum and energy transfer from those to the innermost threads of the net. In this study, the net is modeled with a lumped-parameter approach, and assumed to be symmetrical, subject to symmetrical initial conditions, and initially slack. The work-energy and momentum conservation principles are employed to carry out centroidal analysis of the net, by conceptually partitioning the net into a system of corner masses and the net proper and applying the aforementioned principles to the corresponding centers of mass. The analysis provides bounds on the values that the velocity of the center of mass of the corner masses and the velocity of the center of mass of the net proper can individually attain, as well as relationships between these and different energy contributions. The analytical results allow to identify key parameters characterizing the deployment dynamics of nets in space, which include the ratio between the mass of the corner masses and the total mass, the initial linear momentum, and the direction of the initial velocity vectors. Numerical tools are employed to validate and interpret further the analytical observations. Comparison of deployment results with and without initial velocity of the net proper suggests that more complete and lasting deployment can be achieved if the corner masses alone are ejected. A sensitivity study is performed for the key parameters identified from the energy/momentum analysis, and the outcome establishes that more lasting deployment and safer capture (i.e., characterized by higher traveled distance) can be achieved by employing reasonably lightweight corner masses, moderate shooting angles, and low shooting velocities. A comparison with current literature on tether-nets for space debris capture confirms overall

  11. Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Luigi; Meixner, Hilda; Sancho, Francisco; Damiano, Antimo; Lazaro, David

    2007-01-01

    The 19th of October 2006 at 16:28 UTC the first MetOp satellite (MetOp A) was successfully launched from the Baykonur cosmodrome by a Soyuz/Fregat launcher. After only three days of LEOP operations, performed by ESOC, the satellite was handed over to EUMETSAT, who is since then taking care of all satellite operations. MetOp A is the first European operational satellite for meteorology flying in a Low Earth Orbit (LEO), all previous satellites operated by EUMETSAT, belonging to the METEOSAT family, being located in the Geo-stationary orbit. To ensure safe operations for a LEO satellite accurate and continuous commanding from ground of the on-board AOCS is required. That makes the operational transition at the end of the LEOP quite challenging, as the continuity of the Flight Dynamics operations is to be maintained. That means that the main functions of the Flight Dynamics have to be fully validated on-flight during the LEOP, before taking over the operational responsibility on the spacecraft, and continuously monitored during the entire mission. Due to the nature of a meteorological operational mission, very stringent requirements in terms of overall service availability (99 % of the collected data), timeliness of processing of the observation data (3 hours after sensing) and accuracy of the geo-location of the meteorological products (1 km) are to be fulfilled. That translates in tight requirements imposed to the Flight Dynamics facility (FDF) in terms of accuracy, timeliness and availability of the generated orbit and clock solutions; a detailed monitoring of the quality of these products is thus mandatory. Besides, being the accuracy of the image geo-location strongly related with the pointing performance of the platform and with the on-board timing stability, monitoring from ground of the behaviour of the on-board sensors and clock is needed. This paper presents an overview of the Flight Dynamics operations performed during the different phases of the MetOp A

  12. Dynamic mobility application policy analysis : policy and institutional issues for Integrated Dynamic Transit Operations (IDTO).

    DOT National Transportation Integrated Search

    2015-07-01

    This report documents policy considerations for Integrate Dynamic Transit (IDTO). IDTO applications provide individualized trip planning, transfer protection, and ridesharing options. The analysis identified the following potential policy issues: dat...

  13. Performance tradeoffs in static and dynamic load balancing strategies

    NASA Technical Reports Server (NTRS)

    Iqbal, M. A.; Saltz, J. H.; Bokhart, S. H.

    1986-01-01

    The problem of uniformly distributing the load of a parallel program over a multiprocessor system was considered. A program was analyzed whose structure permits the computation of the optimal static solution. Then four strategies for load balancing were described and their performance compared. The strategies are: (1) the optimal static assignment algorithm which is guaranteed to yield the best static solution, (2) the static binary dissection method which is very fast but sub-optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme, which estimates the optimal solution to arbitrary accuracy, and (4) the predictive dynamic load balancing heuristic which uses information on the precedence relationships within the program and outperforms any of the static methods. It is also shown that the overhead incurred by the dynamic heuristic is reduced considerably if it is started off with a static assignment provided by either of the other three strategies.

  14. Sensitivity analysis of dynamic biological systems with time-delays.

    PubMed

    Wu, Wu Hsiung; Wang, Feng Sheng; Chang, Maw Shang

    2010-10-15

    Mathematical modeling has been applied to the study and analysis of complex biological systems for a long time. Some processes in biological systems, such as the gene expression and feedback control in signal transduction networks, involve a time delay. These systems are represented as delay differential equation (DDE) models. Numerical sensitivity analysis of a DDE model by the direct method requires the solutions of model and sensitivity equations with time-delays. The major effort is the computation of Jacobian matrix when computing the solution of sensitivity equations. The computation of partial derivatives of complex equations either by the analytic method or by symbolic manipulation is time consuming, inconvenient, and prone to introduce human errors. To address this problem, an automatic approach to obtain the derivatives of complex functions efficiently and accurately is necessary. We have proposed an efficient algorithm with an adaptive step size control to compute the solution and dynamic sensitivities of biological systems described by ordinal differential equations (ODEs). The adaptive direct-decoupled algorithm is extended to solve the solution and dynamic sensitivities of time-delay systems describing by DDEs. To save the human effort and avoid the human errors in the computation of partial derivatives, an automatic differentiation technique is embedded in the extended algorithm to evaluate the Jacobian matrix. The extended algorithm is implemented and applied to two realistic models with time-delays: the cardiovascular control system and the TNF-α signal transduction network. The results show that the extended algorithm is a good tool for dynamic sensitivity analysis on DDE models with less user intervention. By comparing with direct-coupled methods in theory, the extended algorithm is efficient, accurate, and easy to use for end users without programming background to do dynamic sensitivity analysis on complex biological systems with time-delays.

  15. Visualizing Parallel Computer System Performance

    NASA Technical Reports Server (NTRS)

    Malony, Allen D.; Reed, Daniel A.

    1988-01-01

    Parallel computer systems are among the most complex of man's creations, making satisfactory performance characterization difficult. Despite this complexity, there are strong, indeed, almost irresistible, incentives to quantify parallel system performance using a single metric. The fallacy lies in succumbing to such temptations. A complete performance characterization requires not only an analysis of the system's constituent levels, it also requires both static and dynamic characterizations. Static or average behavior analysis may mask transients that dramatically alter system performance. Although the human visual system is remarkedly adept at interpreting and identifying anomalies in false color data, the importance of dynamic, visual scientific data presentation has only recently been recognized Large, complex parallel system pose equally vexing performance interpretation problems. Data from hardware and software performance monitors must be presented in ways that emphasize important events while eluding irrelevant details. Design approaches and tools for performance visualization are the subject of this paper.

  16. Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.

  17. Performance Analysis of MYSEA

    DTIC Science & Technology

    2012-09-01

    Services FSD Federated Services Daemon I&A Identification and Authentication IKE Internet Key Exchange KPI Key Performance Indicator LAN Local Area...spection takes place in different processes in the server architecture. Key Performance Indica- tor ( KPI )s associated with the system need to be...application and risk analysis of security controls. Thus, measurement of the KPIs is needed before an informed tradeoff between the performance penalties

  18. Inverse Transformation: Unleashing Spatially Heterogeneous Dynamics with an Alternative Approach to XPCS Data Analysis.

    PubMed

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.

  19. Dynamic Characteristics of Human Motor Performance in Control Systems.

    DTIC Science & Technology

    1979-01-01

    h drynontrol system . Several lines of inves ___ igaion avebee use inaddiionto nputoutut sudis wth hmansubets LI.- 7 Th (nulreycmriigifrainfosusl...TAB Untjc. ao un c ’ n TTci St rLi b DYNAMIC CHARACTERISTICS OF HUMAN MOTOR PERFORMANCE IN CONTROL SYSTEMS %iOSRTR. 8-0 76 0 Ar3) -O75 -8’O’f FINAL...whereby motor patterns are represented in the nervous system . Findings include a detailing of linear and non-linear features of motor activity in

  20. Nonlinear dynamics of motor learning.

    PubMed

    Mayer-Kress, Gottfried; Newell, Karl M; Liu, Yeou-Teh

    2009-01-01

    In this paper we review recent work from our studies of a nonlinear dynamics of motor learning that is grounded in the construct of an evolving attractor landscape. With the assumption that learning is goal-directed, we can quantify the observed performance as a score or measure of the distance to the learning goal. The structure of the dynamics of how the goal is approached has been traditionally studied through an analysis of learning curves. Recent years have seen a gradual paradigm shift from a 'universal power law of practice' to an analysis of performance dynamics that reveals multiple processes that include adaption and learning as well as changes in performance due to factors such as fatigue. Evidence has also been found for nonlinear phenomena such as bifurcations, hysteresis and even a form of self-organized criticality. Finally, we present a quantitative measure for the dual concepts of skill and difficulty that allows us to unfold a learning process in order to study universal properties of learning transitions.

  1. Dynamical analysis of the global business-cycle synchronization

    PubMed Central

    2018-01-01

    This paper reports the dynamical analysis of the business cycles of 12 (developed and developing) countries over the last 56 years by applying computational techniques used for tackling complex systems. They reveal long-term convergence and country-level interconnections because of close contagion effects caused by bilateral networking exposure. Interconnectivity determines the magnitude of cross-border impacts. Local features and shock propagation complexity also may be true engines for local configuration of cycles. The algorithmic modeling proves to represent a solid approach to study the complex dynamics involved in the world economies. PMID:29408909

  2. Dynamical analysis of the global business-cycle synchronization.

    PubMed

    Lopes, António M; Tenreiro Machado, J A; Huffstot, John S; Mata, Maria Eugénia

    2018-01-01

    This paper reports the dynamical analysis of the business cycles of 12 (developed and developing) countries over the last 56 years by applying computational techniques used for tackling complex systems. They reveal long-term convergence and country-level interconnections because of close contagion effects caused by bilateral networking exposure. Interconnectivity determines the magnitude of cross-border impacts. Local features and shock propagation complexity also may be true engines for local configuration of cycles. The algorithmic modeling proves to represent a solid approach to study the complex dynamics involved in the world economies.

  3. Interactive Finite Elements for General Engine Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1984-01-01

    General nonlinear finite element codes were adapted for the purpose of analyzing the dynamics of gas turbine engines. In particular, this adaptation required the development of a squeeze-film damper element software package and its implantation into a representative current generation code. The ADINA code was selected because of prior use of it and familiarity with its internal structure and logic. This objective was met and the results indicate that such use of general purpose codes is viable alternative to specialized codes for general dynamics analysis of engines.

  4. Single Molecule Cluster Analysis Identifies Signature Dynamic Conformations along the Splicing Pathway

    PubMed Central

    Blanco, Mario R.; Martin, Joshua S.; Kahlscheuer, Matthew L.; Krishnan, Ramya; Abelson, John; Laederach, Alain; Walter, Nils G.

    2016-01-01

    The spliceosome is the dynamic RNA-protein machine responsible for faithfully splicing introns from precursor messenger RNAs (pre-mRNAs). Many of the dynamic processes required for the proper assembly, catalytic activation, and disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood, a challenge that persists for many biomolecular machines. Here, we developed a fluorescence-based Single Molecule Cluster Analysis (SiMCAn) tool to dissect the manifold conformational dynamics of a pre-mRNA through the splicing cycle. By clustering common dynamic behaviors derived from selectively blocked splicing reactions, SiMCAn was able to identify signature conformations and dynamic behaviors of multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in splicing by a 3′ splice site mutant, invoking a mechanism for substrate proofreading. SiMCAn presents a novel framework for interpreting complex single molecule behaviors that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular machines. PMID:26414013

  5. Dynamical modeling and analysis of large cellular regulatory networks

    NASA Astrophysics Data System (ADS)

    Bérenguier, D.; Chaouiya, C.; Monteiro, P. T.; Naldi, A.; Remy, E.; Thieffry, D.; Tichit, L.

    2013-06-01

    The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.

  6. Nonlinear Structural Analysis Methodology and Dynamics Scaling of Inflatable Parabolic Reflector Antenna Concepts

    NASA Technical Reports Server (NTRS)

    Sreekantamurthy, Tham; Gaspar, James L.; Mann, Troy; Behun, Vaughn; Pearson, James C., Jr.; Scarborough, Stephen

    2007-01-01

    Ultra-light weight and ultra-thin membrane inflatable antenna concepts are fast evolving to become the state-of-the-art antenna concepts for deep-space applications. NASA Langley Research Center has been involved in the structural dynamics research on antenna structures. One of the goals of the research is to develop structural analysis methodology for prediction of the static and dynamic response characteristics of the inflatable antenna concepts. This research is focused on the computational studies to use nonlinear large deformation finite element analysis to characterize the ultra-thin membrane responses of the antennas. Recently, structural analyses have been performed on a few parabolic reflector antennas of varying size and shape, which are referred in the paper as 0.3 meters subscale, 2 meters half-scale, and 4 meters full-scale antenna. The various aspects studied included nonlinear analysis methodology and solution techniques, ways to speed convergence in iterative methods, the sensitivities of responses with respect to structural loads, such as inflation pressure, gravity, and pretension loads in the ground and in-space conditions, and the ultra-thin membrane wrinkling characteristics. Several such intrinsic aspects studied have provided valuable insight into evaluation of structural characteristics of such antennas. While analyzing these structural characteristics, a quick study was also made to assess the applicability of dynamics scaling of the half-scale antenna. This paper presents the details of the nonlinear structural analysis results, and discusses the insight gained from the studies on the various intrinsic aspects of the analysis methodology. The predicted reflector surface characteristics of the three inflatable ultra-thin membrane parabolic reflector antenna concepts are presented as easily observable displacement fringe patterns with associated maximum values, and normal mode shapes and associated frequencies. Wrinkling patterns are

  7. Dynamic balance performance and noncontact lower extremity injury in college football players: an initial study.

    PubMed

    Butler, Robert J; Lehr, Michael E; Fink, Michael L; Kiesel, Kyle B; Plisky, Phillip J

    2013-09-01

    Field expedient screening tools that can identify individuals at an elevated risk for injury are needed to minimize time loss in American football players. Previous research has suggested that poor dynamic balance may be associated with an elevated risk for injury in athletes; however, this has yet to be examined in college football players. To determine if dynamic balance deficits are associated with an elevated risk of injury in collegiate football players. It was hypothesized that football players with lower performance and increased asymmetry in dynamic balance would be at an elevated risk for sustaining a noncontact lower extremity injury. Prospective cohort study. Fifty-nine collegiate American football players volunteered for this study. Demographic information, injury history, and dynamic balance testing performance were collected, and noncontact lower extremity injuries were recorded over the course of the season. Receiver operator characteristic curves were calculated based on performance on the Star Excursion Balance Test (SEBT), including composite score and asymmetry, to determine the population-specific risk cut-off point. Relative risk was then calculated based on these variables, as well as previous injury. A cut-off point of 89.6% composite score on the SEBT optimized the sensitivity (100%) and specificity (71.7%). A college football player who scored below 89.6% was 3.5 times more likely to get injured. Poor performance on the SEBT may be related to an increased risk for sustaining a noncontact lower extremity injury over the course of a competitive American football season. College football players should be screened preseason using the SEBT to identify those at an elevated risk for injury based upon dynamic balance performance to implement injury mitigation strategies to this specific subgroup of athletes.

  8. Software Performs Complex Design Analysis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Designers use computational fluid dynamics (CFD) to gain greater understanding of the fluid flow phenomena involved in components being designed. They also use finite element analysis (FEA) as a tool to help gain greater understanding of the structural response of components to loads, stresses and strains, and the prediction of failure modes. Automated CFD and FEA engineering design has centered on shape optimization, which has been hindered by two major problems: 1) inadequate shape parameterization algorithms, and 2) inadequate algorithms for CFD and FEA grid modification. Working with software engineers at Stennis Space Center, a NASA commercial partner, Optimal Solutions Software LLC, was able to utilize its revolutionary, one-of-a-kind arbitrary shape deformation (ASD) capability-a major advancement in solving these two aforementioned problems-to optimize the shapes of complex pipe components that transport highly sensitive fluids. The ASD technology solves the problem of inadequate shape parameterization algorithms by allowing the CFD designers to freely create their own shape parameters, therefore eliminating the restriction of only being able to use the computer-aided design (CAD) parameters. The problem of inadequate algorithms for CFD grid modification is solved by the fact that the new software performs a smooth volumetric deformation. This eliminates the extremely costly process of having to remesh the grid for every shape change desired. The program can perform a design change in a markedly reduced amount of time, a process that would traditionally involve the designer returning to the CAD model to reshape and then remesh the shapes, something that has been known to take hours, days-even weeks or months-depending upon the size of the model.

  9. Statistical analysis of dynamic fibrils observed from NST/BBSO observations

    NASA Astrophysics Data System (ADS)

    Gopalan Priya, Thambaje; Su, Jiang-Tao; Chen, Jie; Deng, Yuan-Yong; Prasad Choudhury, Debi

    2018-02-01

    We present the results obtained from the analysis of dynamic fibrils in NOAA active region (AR) 12132, using high resolution Hα observations from the New Solar Telescope operating at Big Bear Solar Observatory. The dynamic fibrils are seen to be moving up and down, and most of these dynamic fibrils are periodic and have a jet-like appearance. We found from our observations that the fibrils follow almost perfect parabolic paths in many cases. A statistical analysis on the properties of the parabolic paths showing an analysis on deceleration, maximum velocity, duration and kinetic energy of these fibrils is presented here. We found the average maximum velocity to be around 15 kms‑1 and mean deceleration to be around 100 ms‑2. The observed deceleration appears to be a fraction of gravity of the Sun and is not compatible with the path of ballistic motion due to gravity of the Sun. We found a positive correlation between deceleration and maximum velocity. This correlation is consistent with simulations done earlier on magnetoacoustic shock waves propagating upward.

  10. High-performance parallel analysis of coupled problems for aircraft propulsion

    NASA Technical Reports Server (NTRS)

    Felippa, C. A.; Farhat, C.; Lanteri, S.; Gumaste, U.; Ronaghi, M.

    1994-01-01

    Applications are described of high-performance parallel, computation for the analysis of complete jet engines, considering its multi-discipline coupled problem. The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues addressed include: consistent discrete formulation of coupled problems with emphasis on coupling phenomena; effect of partitioning strategies, augmentation and temporal solution procedures; sensitivity of response to problem parameters; and methods for interfacing multiscale discretizations in different single fields. The computer implementation issues addressed include: parallel treatment of coupled systems; domain decomposition and mesh partitioning strategies; data representation in object-oriented form and mapping to hardware driven representation, and tradeoff studies between partitioning schemes and fully coupled treatment.

  11. Numerical analysis of dynamic behavior of pre-stressed shape memory alloy concrete beam-column joints

    NASA Astrophysics Data System (ADS)

    Yan, S.; Xiao, Z. F.; Lin, M. Y.; Niu, J.

    2018-04-01

    Beam-column joints are important parts of a main frame structure. Mechanical properties of beam-column joints have a great influence on dynamic performances of the frame structure. Shape memory alloy (SMA) as a new type of intelligent metal materials has wide applications in civil engineering. The paper aims at proposing a novel beam-column joint reinforced with pre-stressed SMA tendons to increase its dynamic performance. Based on the finite element analysis (FEA) software ABAQUS, a numerical simulation for 6 beam-column scaled models considering different SMA reinforcement ratios and pre-stress levels was performed, focusing on bearing capacities, energy-dissipation and self-centering capacities, etc. These models were numerically tested under a pseudo-static load on the beam end, companying a constant vertical compressive load on the top of the column. The numerical results show that the proposed SMA-reinforced joint has a significantly increased bearing capacity and a good self-centering capability after unloading even though the energy-dissipation capacity becomes smaller due the less residual deformation. The concept and mechanism of the novel joint can be used as an important reference for civil engineering applications.

  12. Solar Dynamics Observatory On-Orbit Jitter Testing, Analysis, and Mitigation Plans

    NASA Technical Reports Server (NTRS)

    Liu, Kuo-Chia; Blaurock, Carl A.; Bourkland, Kristin L.; Morgenstern, Wendy M.; Maghami, Peiman G.

    2011-01-01

    The recently launched Solar Dynamics Observatory (SDO) has two science instruments onboard that required sub-arcsecond pointing stability. Significant effort has been spent pre-launch to characterize the disturbances sources and validating jitter level at the component, sub-assembly, and spacecraft levels. However, an end-to-end jitter test emulating the flight condition was not performed on the ground due to cost and risk concerns. As a result, the true jitter level experienced on orbit remained uncertain prior to launch. Based on the pre-launch analysis, several operational constraints were placed on the observatory aimed to minimize the instrument jitter levels. If the actual jitter is below the analysis predictions, these operational constraints can be relaxed to reduce the burden of the flight operations team. The SDO team designed a three-day jitter test, utilizing the instrument sensors to measure pointing jitter up to 256 Hz. The test results were compared to pre-launch analysis predictions, used to determine which operational constraints can be relaxed, and analyzed for setting the jitter mitigation strategies for future SDO operations.

  13. An independent software system for the analysis of dynamic MR images.

    PubMed

    Torheim, G; Lombardi, M; Rinck, P A

    1997-01-01

    A computer system for the manual, semi-automatic, and automatic analysis of dynamic MR images was to be developed on UNIX and personal computer platforms. The system was to offer an integrated and standardized way of performing both image processing and analysis that was independent of the MR unit used. The system consists of modules that are easily adaptable to special needs. Data from MR units or other diagnostic imaging equipment in techniques such as CT, ultrasonography, or nuclear medicine can be processed through the ACR-NEMA/DICOM standard file formats. A full set of functions is available, among them cine-loop visual analysis, and generation of time-intensity curves. Parameters such as cross-correlation coefficients, area under the curve, peak/maximum intensity, wash-in and wash-out slopes, time to peak, and relative signal intensity/contrast enhancement can be calculated. Other parameters can be extracted by fitting functions like the gamma-variate function. Region-of-interest data and parametric values can easily be exported. The system has been successfully tested in animal and patient examinations.

  14. CONTIN XPCS: software for inverse transform analysis of X-ray photon correlation spectroscopy dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less

  15. CONTIN XPCS: software for inverse transform analysis of X-ray photon correlation spectroscopy dynamics

    DOE PAGES

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) reveal materials dynamics using coherent scattering, with XPCS permitting the investigation of dynamics in a more diverse array of materials than DLS. Heterogeneous dynamics occur in many material systems. The authors' recent work has shown how classic tools employed in the DLS analysis of heterogeneous dynamics can be extended to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. The present work describes the software implementation of inverse transform analysis of XPCS data. This software, calledCONTIN XPCS, is an extension of traditionalCONTINanalysis and accommodates the various dynamics encountered inmore » equilibrium XPCS measurements.« less

  16. Analysis of Bioprocesses. Dynamic Modeling is a Must.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramkrishna, Doraiswami; Song, Hyun-Seob

    2016-01-01

    The goal of this paper is to report on the performance of a promising dynamic framework based on the cybernetic concepts which have evolved over three decades. We present case studies of successful dynamic simulations of wild-type strains as well as specific KO mutants on bacteria and yeast. An extensive metabolic engineering effort, including genome scale networks, is called for to secure the methodology and realize its full potential. Towards this end, the software AUMIC is under active further development to enable speedy applications. Its wide use will be enabled by a publication that is shortly due.

  17. Detection and Dynamic Analysis of Space Debris in the Geo Ring

    NASA Astrophysics Data System (ADS)

    Lacruz, E.; Abad, C.; Downes, J. J.; Casanova, D.; Tresaco, E.

    2018-01-01

    There are different populations of space debris (SD) in the geostationary (GEO) region. It is of great interest to know their dynamics, in order to contribute to aspects such as alerts against possible collisions, repositioning of GEO satellites or placing those satellites that come into service. In this contribution we present a study about the detection and dynamic analysis of SD located in the GEO ring. Using the telescopes of the Venezuelan Obseratory National (VON), a large amount of astrometric observations have been acquired. A preliminary dynamic analysis of them has been carried out, which evidences the average relative motion of these orbiters with a mean absolute error for coordinates of ≍ 0.09 pix.

  18. Development of High Speed Imaging and Analysis Techniques Compressible Dynamics Stall

    NASA Technical Reports Server (NTRS)

    Chandrasekhara, M. S.; Carr, L. W.; Wilder, M. C.; Davis, Sanford S. (Technical Monitor)

    1996-01-01

    Dynamic stall has limited the flight envelope of helicopters for many years. The problem has been studied in the laboratory as well as in flight, but most research, even in the laboratory, has been restricted to surface measurement techniques such as pressure transducers or skin friction gauges, except at low speed. From this research, it became apparent that flow visualization tests performed at Mach numbers representing actual flight conditions were needed if the complex physics associated with dynamic stall was to be properly understood. However, visualization of the flow field during compressible conditions required carefully aligned and meticulously reconstructed holographic interferometry. As part of a long-range effort focused on exposing of the physics of compressible dynamic stall, a research wind tunnel was developed at NASA Ames Research Center which permits visual access to the full flow field surrounding an oscillating airfoil during compressible dynamic stall. Initially, a stroboscopic schlieren technique was used for visualization of the stall process, but the primary research tool has been point diffraction interferometry(PDI), a technique carefully optimized for use in th is project. A review of the process of development of PDI will be presented in the full paper. One of the most valuable aspects of PDI is the fact that interferograms are produced in real time on a continuous basis. The use of a rapidly-pulsed laser makes this practical; a discussion of this approach will be presented in the full paper. This rapid pulsing(up to 40,000 pulses/sec) produces interferograms of the rapidly developing dynamic stall field in sufficient resolution(both in space and time) that the fluid physics of the compressible dynamic stall flowfield can be quantitatively determined, including the gradients of pressure in space and time. This permits analysis of the influence of the effect of pitch rate, Mach number, Reynolds number, amplitude of oscillation, and other

  19. Evaluating performance of stormwater sampling approaches using a dynamic watershed model.

    PubMed

    Ackerman, Drew; Stein, Eric D; Ritter, Kerry J

    2011-09-01

    most efficient method for routine stormwater monitoring in terms of a balance between performance and cost was volume-paced microsampling, with variable sample pacing to ensure that the entirety of the storm was captured. Pollutograph sampling is recommended if the data are to be used for detailed analysis of runoff dynamics.

  20. Dynamic modulus estimation and structural vibration analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, A.

    1998-11-18

    Often the dynamic elastic modulus of a material with frequency dependent properties is difficult to estimate. These uncertainties are compounded in any structural vibration analysis using the material properties. Here, different experimental techniques are used to estimate the properties of a particular elastomeric material over a broad frequency range. Once the properties are determined, various structures incorporating the elastomer are analyzed by an interactive finite element method to determine natural frequencies and mode shapes. Then, the finite element results are correlated with results obtained by experimental modal analysis.

  1. The effects of proprioceptive neuromuscular facilitation and dynamic stretching techniques on vertical jump performance.

    PubMed

    Christensen, Bryan K; Nordstrom, Brad J

    2008-11-01

    The purpose of this study was to investigate the effects of 3 different warm-ups on vertical jump performance. The warm-ups included a 600-m jog, a 600-m jog followed by a dynamic stretching routine, and a 600-m jog followed by a proprioceptive neuromuscular facilitation (PNF) routine. A second purpose was to determine whether the effects of the warm-ups on vertical jump performance varied by gender. Sixty-eight men and women NCAA Division I athletes from North Dakota State University performed 3 vertical jumps on a Just Jump pad after each of the 3 warm-up routines. The subjects were split into 6 groups and rotated between 3 warm-up routines, completing 1 routine each day in a random order. The results of the 1-way repeated measures analysis of variance showed no significant differences in the combined (p = 0.927), men's (p = 0.798), or women's (p = 0.978) results. The results of this study showed that 3 different warm-ups did not have a significant affect on vertical jumping. The results also showed there were no gender differences between the 3 different warm-ups.

  2. Do Dental Students' Personality Types and Group Dynamics Affect Their Performance in Problem-Based Learning?

    PubMed

    Ihm, Jung-Joon; An, So-Youn; Seo, Deog-Gyu

    2017-06-01

    The aim of this study was to determine whether the personality types of dental students and their group dynamics were linked to their problem-based learning (PBL) performance. The Myers-Briggs Type Indicator (MBTI) instrument was used with 263 dental students enrolled in Seoul National University School of Dentistry from 2011 to 2013; the students had participated in PBL in their first year. A four-session PBL setting was designed to analyze how individual personality types and the diversity of their small groups were associated with PBL performance. Overall, the results showed that the personality type of PBL performance that was the most prominent was Judging. As a group became more diverse with its different constituent personality characteristics, there was a tendency for the group to be higher ranked in terms of PBL performance. In particular, the overperforming group was clustered around three major profiles: Extraverted Intuitive Thinking Judging (ENTJ), Introverted Sensing Thinking Judging (ISTJ), and Extraverted Sensing Thinking Judging (ESTJ). Personality analysis would be beneficial for dental faculty members in order for them to understand the extent to which cooperative learning would work smoothly, especially when considering group personalities.

  3. Preliminary analysis of the PreFlexMS molten salt once-through steam generator dynamics and control strategy

    NASA Astrophysics Data System (ADS)

    Trabucchi, Stefano; Casella, Francesco; Maioli, Tommaso; Elsido, Cristina; Franzini, Davide; Ramond, Mathieu

    2017-06-01

    Concentrated Solar Power plants (CSP) coupled with thermal storage have the potential to guarantee both flexible and continuous energy production, thus being competitive with conventional fossil fuel and hydro power plants, in terms of dispatchability and provision of ancillary services. Hence, the plant equipment and control design have to be focused on flexible operation on one hand, and on plant safety concerning the molten salt freezing on the other hand. The PreFlexMS European project aims to introduce a molten salt Once-Through Steam Generator (OTSG) within a Rankine cycle based power unit, a technology that has greater flexibility potential if compared to steam drum boilers, currently used in CSP plants. The dynamic modelling and simulation from the early design stages is, thus, of paramount importance, to assess the plant dynamic behavior and controllability, and to predict the achievable closed-loop dynamic performance, potentially saving money and time during the detailed design, construction and commissioning phases. The present paper reports the main results of the analysis carried out during the first part of the project, regarding the system analysis and control design. In particular, two different control systems have been studied and tested with the plant dynamic model: a decentralized control strategy based on PI controllers and a Linear Model Predictive Control (LMPC).

  4. Bifurcation analysis of an automatic dynamic balancing mechanism for eccentric rotors

    NASA Astrophysics Data System (ADS)

    Green, K.; Champneys, A. R.; Lieven, N. J.

    2006-04-01

    We present a nonlinear bifurcation analysis of the dynamics of an automatic dynamic balancing mechanism for rotating machines. The principle of operation is to deploy two or more masses that are free to travel around a race at a fixed distance from the hub and, subsequently, balance any eccentricity in the rotor. Mathematically, we start from a Lagrangian description of the system. It is then shown how under isotropic conditions a change of coordinates into a rotating frame turns the problem into a regular autonomous dynamical system, amenable to a full nonlinear bifurcation analysis. Using numerical continuation techniques, curves are traced of steady states, limit cycles and their bifurcations as parameters are varied. These results are augmented by simulations of the system trajectories in phase space. Taking the case of a balancer with two free masses, broad trends are revealed on the existence of a stable, dynamically balanced steady-state solution for specific rotation speeds and eccentricities. However, the analysis also reveals other potentially attracting states—non-trivial steady states, limit cycles, and chaotic motion—which are not in balance. The transient effects which lead to these competing states, which in some cases coexist, are investigated.

  5. Integrated dynamic analysis simulation of space stations with controllable solar array

    NASA Technical Reports Server (NTRS)

    Heinrichs, J. A.; Fee, J. J.

    1972-01-01

    A methodology is formulated and presented for the integrated structural dynamic analysis of space stations with controllable solar arrays and non-controllable appendages. The structural system flexibility characteristics are considered in the dynamic analysis by a synthesis technique whereby free-free space station modal coordinates and cantilever appendage coordinates are inertially coupled. A digital simulation of this analysis method is described and verified by comparison of interaction load solutions with other methods of solution. Motion equations are simulated for both the zero gravity and artificial gravity (spinning) orbital conditions. Closed loop controlling dynamics for both orientation control of the arrays and attitude control of the space station are provided in the simulation by various generic types of controlling systems. The capability of the simulation as a design tool is demonstrated by utilizing typical space station and solar array structural representations and a specific structural perturbing force. Response and interaction load solutions are presented for this structural configuration and indicate the importance of using an integrated type analysis for the predictions of structural interactions.

  6. Characterization of local complex structures in a recurrence plot to improve nonlinear dynamic discriminant analysis.

    PubMed

    Ding, Hang

    2014-01-01

    Structures in recurrence plots (RPs), preserving the rich information of nonlinear invariants and trajectory characteristics, have been increasingly analyzed in dynamic discrimination studies. The conventional analysis of RPs is mainly focused on quantifying the overall diagonal and vertical line structures through a method, called recurrence quantification analysis (RQA). This study extensively explores the information in RPs by quantifying local complex RP structures. To do this, an approach was developed to analyze the combination of three major RQA variables: determinism, laminarity, and recurrence rate (DLR) in a metawindow moving over a RP. It was then evaluated in two experiments discriminating (1) ideal nonlinear dynamic series emulated from the Lorenz system with different control parameters and (2) data sets of human heart rate regulations with normal sinus rhythms (n = 18) and congestive heart failure (n = 29). Finally, the DLR was compared with seven major RQA variables in terms of discriminatory power, measured by standardized mean difference (DSMD). In the two experiments, DLR resulted in the highest discriminatory power with DSMD = 2.53 and 0.98, respectively, which were 7.41 and 2.09 times the best performance from RQA. The study also revealed that the optimal RP structures for the discriminations were neither typical diagonal structures nor vertical structures. These findings indicate that local complex RP structures contain some rich information unexploited by RQA. Therefore, future research to extensively analyze complex RP structures would potentially improve the effectiveness of the RP analysis in dynamic discrimination studies.

  7. The effect of loading time on flexible pavement dynamic response: a finite element analysis

    NASA Astrophysics Data System (ADS)

    Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley

    2007-12-01

    Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.

  8. Safety and reliability analysis in a polyvinyl chloride batch process using dynamic simulator-case study: Loss of containment incident.

    PubMed

    Rizal, Datu; Tani, Shinichi; Nishiyama, Kimitoshi; Suzuki, Kazuhiko

    2006-10-11

    In this paper, a novel methodology in batch plant safety and reliability analysis is proposed using a dynamic simulator. A batch process involving several safety objects (e.g. sensors, controller, valves, etc.) is activated during the operational stage. The performance of the safety objects is evaluated by the dynamic simulation and a fault propagation model is generated. By using the fault propagation model, an improved fault tree analysis (FTA) method using switching signal mode (SSM) is developed for estimating the probability of failures. The timely dependent failures can be considered as unavailability of safety objects that can cause the accidents in a plant. Finally, the rank of safety object is formulated as performance index (PI) and can be estimated using the importance measures. PI shows the prioritization of safety objects that should be investigated for safety improvement program in the plants. The output of this method can be used for optimal policy in safety object improvement and maintenance. The dynamic simulator was constructed using Visual Modeler (VM, the plant simulator, developed by Omega Simulation Corp., Japan). A case study is focused on the loss of containment (LOC) incident at polyvinyl chloride (PVC) batch process which is consumed the hazardous material, vinyl chloride monomer (VCM).

  9. Dynamic Numerical Analysis of Steel Footbridge

    NASA Astrophysics Data System (ADS)

    Major, Maciej; Minda, Izabela; Major, Izabela

    2017-06-01

    The study presents a numerical analysis of the arched footbridge designed in two variants, made of steel and aluminium. The first part presents the criteria for evaluation of the comfort of using the footbridges. The study examined the footbridge with arched design with span in the axis of 24 m and width of 1.4 m. Arch geometry was made as a part of the circle with radius of r = 20 m cut off with a chord with length equal to the calculation length of the girders. The model of the analysed footbridge was subjected to the dynamic effect of wind and the pedestrian traffic with variable flexibility. The analyses used Robot Structural Analysis software.

  10. Exploring oxidative ageing behaviour of hydrocarbons using ab initio molecular dynamics analysis

    NASA Astrophysics Data System (ADS)

    Pan, Tongyan; Cheng, Cheng

    2016-06-01

    With a proper approximate solution to the Schrödinger Equation of a multi-electron system, the method of ab initio molecular dynamics (AIMD) performs first-principles molecular dynamics analysis without pre-defining interatomic potentials as are mandatory in traditional molecular dynamics analyses. The objective of this study is to determine the oxidative-ageing pathway of petroleum asphalt as a typical hydrocarbon system, using the AIMD method. This objective was accomplished in three steps, including (1) identifying a group of representative asphalt molecules to model, (2) determining an atomistic modelling method that can effectively simulate the production of critical functional groups in oxidative ageing of hydrocarbons and (3) evaluating the oxidative-ageing pathway of a hydrocarbon system. The determination of oxidative-ageing pathway of hydrocarbons was done by tracking the generations of critical functional groups in the course of oxidative ageing. The chemical elements of carbon, nitrogen and sulphur all experience oxidative reactions, producing polarised functional groups such as ketones, aldehydes or carboxylic acids, pyrrolic groups and sulphoxides. The electrostatic forces of the polarised groups generated in oxidation are responsible for the behaviour of aged hydrocarbons. The developed AIMD model can be used for modelling the ageing of generic hydrocarbon polymers and developing antioxidants without running expensive experiments.

  11. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    This program was developed as an aid in the design and analysis of subsonic wind tunnels. It brings together and refines previously scattered and over-simplified techniques used for the design and loss prediction of the components of subsonic wind tunnels. It implements a system of equations for determining the total pressure losses and provides general guidelines for the design of diffusers, contractions, corners and the inlets and exits of non-return tunnels. The algorithms used in the program are applicable to compressible flow through most closed- or open-throated, single-, double- or non-return wind tunnels or ducts. A comparison between calculated performance and that actually achieved by several existing facilities produced generally good agreement. Any system through which air is flowing which involves turns, fans, contractions etc. (e.g., an HVAC system) may benefit from analysis using this software. This program is an update of ARC-11138 which includes PC compatibility and an improved user interface. The method of loss analysis used by the program is a synthesis of theoretical and empirical techniques. Generally, the algorithms used are those which have been substantiated by experimental test. The basic flow-state parameters used by the program are determined from input information about the reference control section and the test section. These parameters were derived from standard relationships for compressible flow. The local flow conditions, including Mach number, Reynolds number and friction coefficient are determined for each end of each component or section. The loss in total pressure caused by each section is calculated in a form non-dimensionalized by local dynamic pressure. The individual losses are based on the nature of the section, local flow conditions and input geometry and parameter information. The loss forms for typical wind tunnel sections considered by the program include: constant area ducts, open throat ducts, contractions, constant

  12. Statically vs dynamically balanced gait: Analysis of a robotic exoskeleton compared with a human.

    PubMed

    Barbareschi, Giulia; Richards, Rosie; Thornton, Matt; Carlson, Tom; Holloway, Catherine

    2015-01-01

    In recent years exoskeletons able to replicate human gait have begun to attract growing popularity for both assistive and rehabilitative purposes. Although wearable robots often need the use of external support in order to maintain stability, the REX exoskeleton by REX Bionics is able to self-balance through the whole cycle. However this statically balanced gait presents important differences with the dynamically balanced gait of human subjects. This paper will examine kinematic and kinetic differences between the gait analysis performed on a subject wearing the REX exoskeleton and human gait analysis data as presented in literature. We will also provide an insight on the impact that these differences can have for both rehabilitative and assistive applications.

  13. Dynamical glucometry: Use of multiscale entropy analysis in diabetes

    NASA Astrophysics Data System (ADS)

    Costa, Madalena D.; Henriques, Teresa; Munshi, Medha N.; Segal, Alissa R.; Goldberger, Ary L.

    2014-09-01

    Diabetes mellitus (DM) is one of the world's most prevalent medical conditions. Contemporary management focuses on lowering mean blood glucose values toward a normal range, but largely ignores the dynamics of glucose fluctuations. We probed analyte time series obtained from continuous glucose monitor (CGM) sensors. We show that the fluctuations in CGM values sampled every 5 min are not uncorrelated noise. Next, using multiscale entropy analysis, we quantified the complexity of the temporal structure of the CGM time series from a group of elderly subjects with type 2 DM and age-matched controls. We further probed the structure of these CGM time series using detrended fluctuation analysis. Our findings indicate that the dynamics of glucose fluctuations from control subjects are more complex than those of subjects with type 2 DM over time scales ranging from about 5 min to 5 h. These findings support consideration of a new framework, dynamical glucometry, to guide mechanistic research and to help assess and compare therapeutic interventions, which should enhance complexity of glucose fluctuations and not just lower mean and variance of blood glucose levels.

  14. Dynamic Analysis of Geared Rotors by Finite Elements

    NASA Technical Reports Server (NTRS)

    Kahraman, A.; Ozguven, H. Nevzat; Houser, D. R.; Zakrajsek, J. J.

    1992-01-01

    A finite element model of a geared rotor system on flexible bearings has been developed. The model includes the rotary inertia of on shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The coupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiffness was assumed. The analysis procedure can be used for forced vibration analysis geared rotors by calculating the critical speeds and determining the response of any point on the shafts to mass unbalances, geometric eccentricities of gears, and displacement transmission error excitation at the mesh point. The dynamic mesh forces due to these excitations can also be calculated. The model has been applied to several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics.

  15. Analysis of Solar Receiver Flux Distributions for US/Russian Solar Dynamic System Demonstration on the MIR Space Station

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Analyses have been performed at the NASA Lewis Research Center's Power Systems Project Office to support the design and development of the joint U.S./Russian Solar Dynamic Flight Demonstration Project. The optical analysis of the concentrator and solar flux predictions on target receiver surfaces have an important influence on receiver design and control of the Brayton engine.

  16. Dynamic GSCA (Generalized Structured Component Analysis) with Applications to the Analysis of Effective Connectivity in Functional Neuroimaging Data

    ERIC Educational Resources Information Center

    Jung, Kwanghee; Takane, Yoshio; Hwang, Heungsun; Woodward, Todd S.

    2012-01-01

    We propose a new method of structural equation modeling (SEM) for longitudinal and time series data, named Dynamic GSCA (Generalized Structured Component Analysis). The proposed method extends the original GSCA by incorporating a multivariate autoregressive model to account for the dynamic nature of data taken over time. Dynamic GSCA also…

  17. Inverse transformation: unleashing spatially heterogeneous dynamics with an alternative approach to XPCS data analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan

    X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering-vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables XPCS to probe the dynamics in a broad array of materials, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fail. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. This paper proposes an alternative analysis schememore » based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. In conclusion, using XPCS data measured from colloidal gels, it is demonstrated that the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.« less

  18. Inverse transformation: unleashing spatially heterogeneous dynamics with an alternative approach to XPCS data analysis

    DOE PAGES

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; ...

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering-vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables XPCS to probe the dynamics in a broad array of materials, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fail. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. This paper proposes an alternative analysis schememore » based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. In conclusion, using XPCS data measured from colloidal gels, it is demonstrated that the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS.« less

  19. Inverse Transformation: Unleashing Spatially Heterogeneous Dynamics with an Alternative Approach to XPCS Data Analysis

    PubMed Central

    Andrews, Ross N.; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-01-01

    X-ray photon correlation spectroscopy (XPCS), an extension of dynamic light scattering (DLS) in the X-ray regime, detects temporal intensity fluctuations of coherent speckles and provides scattering vector-dependent sample dynamics at length scales smaller than DLS. The penetrating power of X-rays enables probing dynamics in a broad array of materials with XPCS, including polymers, glasses and metal alloys, where attempts to describe the dynamics with a simple exponential fit usually fails. In these cases, the prevailing XPCS data analysis approach employs stretched or compressed exponential decay functions (Kohlrausch functions), which implicitly assume homogeneous dynamics. In this paper, we propose an alternative analysis scheme based upon inverse Laplace or Gaussian transformation for elucidating heterogeneous distributions of dynamic time scales in XPCS, an approach analogous to the CONTIN algorithm widely accepted in the analysis of DLS from polydisperse and multimodal systems. Using XPCS data measured from colloidal gels, we demonstrate the inverse transform approach reveals hidden multimodal dynamics in materials, unleashing the full potential of XPCS. PMID:29875506

  20. Low-temperature protein dynamics: a simulation analysis of interprotein vibrations and the boson peak at 150 k.

    PubMed

    Kurkal-Siebert, Vandana; Smith, Jeremy C

    2006-02-22

    An understanding of low-frequency, collective protein dynamics at low temperatures can furnish valuable information on functional protein energy landscapes, on the origins of the protein glass transition and on protein-protein interactions. Here, molecular dynamics (MD) simulations and normal-mode analyses are performed on various models of crystalline myoglobin in order to characterize intra- and interprotein vibrations at 150 K. Principal component analysis of the MD trajectories indicates that the Boson peak, a broad peak in the dynamic structure factor centered at about approximately 2-2.5 meV, originates from approximately 10(2) collective, harmonic vibrations. An accurate description of the environment is found to be essential in reproducing the experimental Boson peak form and position. At lower energies other strong peaks are found in the calculated dynamic structure factor. Characterization of these peaks shows that they arise from harmonic vibrations of proteins relative to each other. These vibrations are likely to furnish valuable information on the physical nature of protein-protein interactions.

  1. Performance of Optimally Merged Multisatellite Precipitation Products Using the Dynamic Bayesian Model Averaging Scheme Over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Ma, Yingzhao; Hong, Yang; Chen, Yang; Yang, Yuan; Tang, Guoqiang; Yao, Yunjun; Long, Di; Li, Changmin; Han, Zhongying; Liu, Ronghua

    2018-01-01

    Accurate estimation of precipitation from satellites at high spatiotemporal scales over the Tibetan Plateau (TP) remains a challenge. In this study, we proposed a general framework for blending multiple satellite precipitation data using the dynamic Bayesian model averaging (BMA) algorithm. The blended experiment was performed at a daily 0.25° grid scale for 2007-2012 among Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42RT and 3B42V7, Climate Prediction Center MORPHing technique (CMORPH), and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR). First, the BMA weights were optimized using the expectation-maximization (EM) method for each member on each day at 200 calibrated sites and then interpolated to the entire plateau using the ordinary kriging (OK) approach. Thus, the merging data were produced by weighted sums of the individuals over the plateau. The dynamic BMA approach showed better performance with a smaller root-mean-square error (RMSE) of 6.77 mm/day, higher correlation coefficient of 0.592, and closer Euclid value of 0.833, compared to the individuals at 15 validated sites. Moreover, BMA has proven to be more robust in terms of seasonality, topography, and other parameters than traditional ensemble methods including simple model averaging (SMA) and one-outlier removed (OOR). Error analysis between BMA and the state-of-the-art IMERG in the summer of 2014 further proved that the performance of BMA was superior with respect to multisatellite precipitation data merging. This study demonstrates that BMA provides a new solution for blending multiple satellite data in regions with limited gauges.

  2. Dynamic fracture mechanics analysis for an edge delamination crack

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Doyle, James F.

    1994-01-01

    A global/local analysis is applied to the problem of a panel with an edge delamination crack subject to an impulse loading to ascertain the dynamic J integral. The approach uses the spectral element method to obtain the global dynamic response and local resultants to obtain the J integral. The variation of J integral along the crack front is shown. The crack behavior is mixed mode (Mode 2 and Mode 3), but is dominated by the Mode 2 behavior.

  3. Movement Characteristics Analysis and Dynamic Simulation of Collaborative Measuring Robot

    NASA Astrophysics Data System (ADS)

    guoqing, MA; li, LIU; zhenglin, YU; guohua, CAO; yanbin, ZHENG

    2017-03-01

    Human-machine collaboration is becoming increasingly more necessary, and so collaborative robot applications are also in high demand. We selected a UR10 robot as our research subject for this study. First, we applied D-H coordinate transformation of the robot to establish a link system, and we then used inverse transformation to solve the robot’s inverse kinematics and find all the joints. Use Lagrange method to analysis UR robot dynamics; use ADAMS multibody dynamics simulation software to dynamic simulation; verifying the correctness of the derived kinetic models.

  4. Performance of an Axisymmetric Rocket Based Combined Cycle Engine During Rocket Only Operation Using Linear Regression Analysis

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.; Steffen, Christopher J., Jr.; Yungster, Shaye; Keller, Dennis J.

    1998-01-01

    The all rocket mode of operation is shown to be a critical factor in the overall performance of a rocket based combined cycle (RBCC) vehicle. An axisymmetric RBCC engine was used to determine specific impulse efficiency values based upon both full flow and gas generator configurations. Design of experiments methodology was used to construct a test matrix and multiple linear regression analysis was used to build parametric models. The main parameters investigated in this study were: rocket chamber pressure, rocket exit area ratio, injected secondary flow, mixer-ejector inlet area, mixer-ejector area ratio, and mixer-ejector length-to-inlet diameter ratio. A perfect gas computational fluid dynamics analysis, using both the Spalart-Allmaras and k-omega turbulence models, was performed with the NPARC code to obtain values of vacuum specific impulse. Results from the multiple linear regression analysis showed that for both the full flow and gas generator configurations increasing mixer-ejector area ratio and rocket area ratio increase performance, while increasing mixer-ejector inlet area ratio and mixer-ejector length-to-diameter ratio decrease performance. Increasing injected secondary flow increased performance for the gas generator analysis, but was not statistically significant for the full flow analysis. Chamber pressure was found to be not statistically significant.

  5. Perceived Control and Hedonic Tone Dynamics during Performance in Elite Shooters

    ERIC Educational Resources Information Center

    Robazza, Claudio; Bertollo, Maurizio; Filho, Edson; Hanin, Yuri; Bortoli, Laura

    2016-01-01

    Purpose: The purpose of the study was to investigate the individuals' dynamics of perceived control and hedonic tone over time, with respect to the 4 performance states as conceptualized within the multiaction plan (MAP) model. We expected to find idiosyncratic and differentiated trends over time in the scores of perceived control and hedonic…

  6. Analysis of Nonlinear Dynamics by Square Matrix Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Li Hua

    The nonlinear dynamics of a system with periodic structure can be analyzed using a square matrix. In this paper, we show that because the special property of the square matrix constructed for nonlinear dynamics, we can reduce the dimension of the matrix from the original large number for high order calculation to low dimension in the first step of the analysis. Then a stable Jordan decomposition is obtained with much lower dimension. The transformation to Jordan form provides an excellent action-angle approximation to the solution of the nonlinear dynamics, in good agreement with trajectories and tune obtained from tracking. Andmore » more importantly, the deviation from constancy of the new action-angle variable provides a measure of the stability of the phase space trajectories and their tunes. Thus the square matrix provides a novel method to optimize the nonlinear dynamic system. The method is illustrated by many examples of comparison between theory and numerical simulation. Finally, in particular, we show that the square matrix method can be used for optimization to reduce the nonlinearity of a system.« less

  7. A hot dynamic seal rig for measuring hypersonic engine seal durability and flow performance

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.

    1993-01-01

    A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts has been installed at NASA Lewis Research Center. The test fixture has been designed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C (1550 F) and air pressure differentials up to 690 kPa (100 psi). Performance of the seals can be measured while sealing against flat or distorted walls. In the fixture two seals are preloaded against the sides of a 30 cm (1 ft) long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. This report covers the capabilities of this test fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling.

  8. A Hot Dynamic Seal Rig for Measuring Hypersonic Engine Seal Durability and Flow Performance

    NASA Technical Reports Server (NTRS)

    Miller, Jeffrey H.; Steinetz, Bruce M.; Sirocky, Paul J.; Kren, Lawrence A.

    1993-01-01

    A test fixture for measuring the dynamic performance of candidate high-temperature engine seal concepts was installed at NASA Lewis Research Center. The test fixture was designed to evaluate seal concepts under development for advanced hypersonic engines, such as those being considered for the National Aerospace Plane (NASP). The fixture can measure dynamic seal leakage performance from room temperature up to 840 C (1550 F) and air pressure differentials up to 690 kPa (100 psi). Performance of the seals can be measured while sealing against flat or distorted walls. In the fixture two seals are preloaded against the sides of a 30 cm (1 ft) long saber that slides transverse to the axis of the seals, simulating the scrubbing motion anticipated in these engines. The capabilities of this test fixture along with preliminary data showing the dependence of seal leakage performance on high temperature cycling are addressed.

  9. Dynamic analysis of a long span, cable-stayed freeway bridge using NASTRAN

    NASA Technical Reports Server (NTRS)

    Salus, W. L.; Jones, R. E.; Ice, M. W.

    1973-01-01

    The dynamic analysis for earthquake- and wind-induced response of a long span, cable-stayed freeway bridge by NASTRAN in conjunction with post-processors is described. Details of the structural modeling, the input data generation, and numerical results are given. The influence of the dynamic analysis on the bridge design is traced from the project initiation to the development of a successful earthquake and wind resistant configuration.

  10. Reconsideration of dynamic force spectroscopy analysis of streptavidin-biotin interactions.

    PubMed

    Taninaka, Atsushi; Takeuchi, Osamu; Shigekawa, Hidemi

    2010-05-13

    To understand and design molecular functions on the basis of molecular recognition processes, the microscopic probing of the energy landscapes of individual interactions in a molecular complex and their dependence on the surrounding conditions is of great importance. Dynamic force spectroscopy (DFS) is a technique that enables us to study the interaction between molecules at the single-molecule level. However, the obtained results differ among previous studies, which is considered to be caused by the differences in the measurement conditions. We have developed an atomic force microscopy technique that enables the precise analysis of molecular interactions on the basis of DFS. After verifying the performance of this technique, we carried out measurements to determine the landscapes of streptavidin-biotin interactions. The obtained results showed good agreement with theoretical predictions. Lifetimes were also well analyzed. Using a combination of cross-linkers and the atomic force microscope that we developed, site-selective measurement was carried out, and the steps involved in bonding due to microscopic interactions are discussed using the results obtained by site-selective analysis.

  11. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations.

    PubMed

    Michaud-Agrawal, Naveen; Denning, Elizabeth J; Woolf, Thomas B; Beckstein, Oliver

    2011-07-30

    MDAnalysis is an object-oriented library for structural and temporal analysis of molecular dynamics (MD) simulation trajectories and individual protein structures. It is written in the Python language with some performance-critical code in C. It uses the powerful NumPy package to expose trajectory data as fast and efficient NumPy arrays. It has been tested on systems of millions of particles. Many common file formats of simulation packages including CHARMM, Gromacs, Amber, and NAMD and the Protein Data Bank format can be read and written. Atoms can be selected with a syntax similar to CHARMM's powerful selection commands. MDAnalysis enables both novice and experienced programmers to rapidly write their own analytical tools and access data stored in trajectories in an easily accessible manner that facilitates interactive explorative analysis. MDAnalysis has been tested on and works for most Unix-based platforms such as Linux and Mac OS X. It is freely available under the GNU General Public License from http://mdanalysis.googlecode.com. Copyright © 2011 Wiley Periodicals, Inc.

  12. Quantitative analysis of rib movement based on dynamic chest bone images: preliminary results

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Oda, M.; Mitsutaka, M.; Suzuki, K.; Sakuta, K.; Kawashima, H.

    2014-03-01

    Rib movement during respiration is one of the diagnostic criteria in pulmonary impairments. In general, the rib movement is assessed in fluoroscopy. However, the shadows of lung vessels and bronchi overlapping ribs prevent accurate quantitative analysis of rib movement. Recently, an image-processing technique for separating bones from soft tissue in static chest radiographs, called "bone suppression technique", has been developed. Our purpose in this study was to evaluate the usefulness of dynamic bone images created by the bone suppression technique in quantitative analysis of rib movement. Dynamic chest radiographs of 10 patients were obtained using a dynamic flat-panel detector (FPD). Bone suppression technique based on a massive-training artificial neural network (MTANN) was applied to the dynamic chest images to create bone images. Velocity vectors were measured in local areas on the dynamic bone images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as reduced rib velocity vectors. Vector maps in all normal cases exhibited left-right symmetric distributions, whereas those in abnormal cases showed nonuniform distributions. In conclusion, dynamic bone images were useful for accurate quantitative analysis of rib movements: Limited rib movements were indicated as a reduction of rib movement and left-right asymmetric distribution on vector maps. Thus, dynamic bone images can be a new diagnostic tool for quantitative analysis of rib movements without additional radiation dose.

  13. Expert performance in sport and the dynamics of talent development.

    PubMed

    Phillips, Elissa; Davids, Keith; Renshaw, Ian; Portus, Marc

    2010-04-01

    Research on expertise, talent identification and development has tended to be mono-disciplinary, typically adopting genocentric or environmentalist positions, with an overriding focus on operational issues. In this paper, the validity of dualist positions on sport expertise is evaluated. It is argued that, to advance understanding of expertise and talent development, a shift towards a multidisciplinary and integrative science focus is necessary, along with the development of a comprehensive multidisciplinary theoretical rationale. Here we elucidate dynamical systems theory as a multidisciplinary theoretical rationale for capturing how multiple interacting constraints can shape the development of expert performers. This approach suggests that talent development programmes should eschew the notion of common optimal performance models, emphasize the individual nature of pathways to expertise, and identify the range of interacting constraints that impinge on performance potential of individual athletes, rather than evaluating current performance on physical tests referenced to group norms.

  14. Dynamic decision-making for reliability and maintenance analysis of manufacturing systems based on failure effects

    NASA Astrophysics Data System (ADS)

    Zhang, Ding; Zhang, Yingjie

    2017-09-01

    A framework for reliability and maintenance analysis of job shop manufacturing systems is proposed in this paper. An efficient preventive maintenance (PM) policy in terms of failure effects analysis (FEA) is proposed. Subsequently, reliability evaluation and component importance measure based on FEA are performed under the PM policy. A job shop manufacturing system is applied to validate the reliability evaluation and dynamic maintenance policy. Obtained results are compared with existed methods and the effectiveness is validated. Some vague understandings for issues such as network modelling, vulnerabilities identification, the evaluation criteria of repairable systems, as well as PM policy during manufacturing system reliability analysis are elaborated. This framework can help for reliability optimisation and rational maintenance resources allocation of job shop manufacturing systems.

  15. Rocketdyne automated dynamics data analysis and management system

    NASA Technical Reports Server (NTRS)

    Tarn, Robert B.

    1988-01-01

    An automated dynamics data analysis and management systems implemented on a DEC VAX minicomputer cluster is described. Multichannel acquisition, Fast Fourier Transformation analysis, and an online database have significantly improved the analysis of wideband transducer responses from Space Shuttle Main Engine testing. Leakage error correction to recover sinusoid amplitudes and correct for frequency slewing is described. The phase errors caused by FM recorder/playback head misalignment are automatically measured and used to correct the data. Data compression methods are described and compared. The system hardware is described. Applications using the data base are introduced, including software for power spectral density, instantaneous time history, amplitude histogram, fatigue analysis, and rotordynamics expert system analysis.

  16. Improved Dynamic Modeling of the Cascade Distillation Subsystem and Analysis of Factors Affecting Its Performance

    NASA Technical Reports Server (NTRS)

    Perry, Bruce A.; Anderson, Molly S.

    2015-01-01

    The Cascade Distillation Subsystem (CDS) is a rotary multistage distiller being developed to serve as the primary processor for wastewater recovery during long-duration space missions. The CDS could be integrated with a system similar to the International Space Station Water Processor Assembly to form a complete water recovery system for future missions. A preliminary chemical process simulation was previously developed using Aspen Custom Modeler® (ACM), but it could not simulate thermal startup and lacked detailed analysis of several key internal processes, including heat transfer between stages. This paper describes modifications to the ACM simulation of the CDS that improve its capabilities and the accuracy of its predictions. Notably, the modified version can be used to model thermal startup and predicts the total energy consumption of the CDS. The simulation has been validated for both NaC1 solution and pretreated urine feeds and no longer requires retuning when operating parameters change. The simulation was also used to predict how internal processes and operating conditions of the CDS affect its performance. In particular, it is shown that the coefficient of performance of the thermoelectric heat pump used to provide heating and cooling for the CDS is the largest factor in determining CDS efficiency. Intrastage heat transfer affects CDS performance indirectly through effects on the coefficient of performance.

  17. Differentiating between Central Nervous System Lymphoma and High-grade Glioma Using Dynamic Susceptibility Contrast and Dynamic Contrast-enhanced MR Imaging with Histogram Analysis.

    PubMed

    Murayama, Kazuhiro; Nishiyama, Yuya; Hirose, Yuichi; Abe, Masato; Ohyu, Shigeharu; Ninomiya, Ayako; Fukuba, Takashi; Katada, Kazuhiro; Toyama, Hiroshi

    2018-01-10

    We evaluated the diagnostic performance of histogram analysis of data from a combination of dynamic susceptibility contrast (DSC)-MRI and dynamic contrast-enhanced (DCE)-MRI for quantitative differentiation between central nervous system lymphoma (CNSL) and high-grade glioma (HGG), with the aim of identifying useful perfusion parameters as objective radiological markers for differentiating between them. Eight lesions with CNSLs and 15 with HGGs who underwent MRI examination, including DCE and DSC-MRI, were enrolled in our retrospective study. DSC-MRI provides a corrected cerebral blood volume (cCBV), and DCE-MRI provides a volume transfer coefficient (K trans ) for transfer from plasma to the extravascular extracellular space. K trans and cCBV were measured from a round region-of-interest in the slice of maximum size on the contrast-enhanced lesion. The differences in t values between CNSL and HGG for determining the most appropriate percentile of K trans and cCBV were investigated. The differences in K trans , cCBV, and K trans /cCBV between CNSL and HGG were investigated using histogram analysis. Receiver operating characteristic (ROC) analysis of K trans , cCBV, and K trans /cCBV ratio was performed. The 30 th percentile (C30) in K trans and 80 th percentile (C80) in cCBV were the most appropriate percentiles for distinguishing between CNSL and HGG from the differences in t values. CNSL showed significantly lower C80 cCBV, significantly higher C30 K trans , and significantly higher C30 K trans /C80 cCBV than those of HGG. In ROC analysis, C30 K trans /C80 cCBV had the best discriminative value for differentiating between CNSL and HGG as compared to C30 K trans or C80 cCBV. The combination of K trans by DCE-MRI and cCBV by DSC-MRI was found to reveal the characteristics of vascularity and permeability of a lesion more precisely than either K trans or cCBV alone. Histogram analysis of these vascular microenvironments enabled quantitative differentiation between

  18. Numerical performance analysis of quartz tuning fork-based force sensors

    NASA Astrophysics Data System (ADS)

    Dagdeviren, Omur E.; Schwarz, Udo D.

    2017-01-01

    Quartz tuning fork-based force sensors where one prong is immobilized onto a holder while the other one is allowed to oscillate freely (‘qPlus’ configuration) are in widespread use for high-resolution scanning probe microscopy applications. Due to the small size of the tuning forks (≈3 mm) and the complexity of the sensor assemblies, the reliable and repeatable manufacturing of the sensors has been challenging. In this paper, we investigate the contribution of the amount and location of the epoxy glue used to attach the tuning fork to its holder on the sensor’s performance. Towards this end, we use finite element analysis to model the entire sensor assembly and to perform static and dynamic numerical simulations. Our analysis reveals that increasing the thickness of the epoxy layer between prong and holder results in a decrease of the sensor’s spring constant, eigenfrequency, and quality factor while showing an increasing deviation from oscillation in its primary modal shape. Adding epoxy at the sides of the tuning fork also leads to a degradation of the quality factor even though in this case, spring constant and eigenfrequency rise in tandem with a lessening of the deviation from its ideal modal shape.

  19. Measurements and analysis of dynamic effects in the LARP model quadrupole HQ02b during rapid discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorbi, Massimo; Ambrosio, Giorgio; Bajas, Hugo

    This paper presents the analysis of some quench tests addressed to study the dynamic effects in the 1-m-long 120-mm-aperture Nb 3Sn quadrupole magnet, i.e., HQ02b, designed, fabricated, and tested by the LHC Accelerator Research Program. The magnet has a short sample gradient of 205 T/m at 1.9 K and a peak field of 14.2 T. The test campaign has been performed at CERN in April 2014. In the specific tests, which were dedicated to the measurements of the dynamic inductance of the magnet during the rapid current discharge for a quench, the protection heaters were activated only in some windings,more » in order to obtain the measure of the resistive and inductive voltages separately. The analysis of the results confirms a very low value of the dynamic inductance at the beginning of the discharge, which later approaches the nominal value. Indications of dynamic inductance variation were already found from the analysis of current decay during quenches in the previous magnets HQ02a and HQ02a2; however, with this dedicated test of HQ02b, a quantitative measurement and assessment has been possible. An analytical model using interfilament coupling current influence for the inductance lowering has been implemented in the quench calculation code QLASA, and the comparison with experimental data is given. In conclusion, the agreement of the model with the experimental results is very good and allows predicting more accurately the critical parameters in quench analysis (MIITs, hot spot temperature) for the MQXF Nb3Sn quadrupoles, which will be installed in the High Luminosity LHC.« less

  20. Measurements and analysis of dynamic effects in the LARP model quadrupole HQ02b during rapid discharge

    DOE PAGES

    Sorbi, Massimo; Ambrosio, Giorgio; Bajas, Hugo; ...

    2016-06-01

    This paper presents the analysis of some quench tests addressed to study the dynamic effects in the 1-m-long 120-mm-aperture Nb 3Sn quadrupole magnet, i.e., HQ02b, designed, fabricated, and tested by the LHC Accelerator Research Program. The magnet has a short sample gradient of 205 T/m at 1.9 K and a peak field of 14.2 T. The test campaign has been performed at CERN in April 2014. In the specific tests, which were dedicated to the measurements of the dynamic inductance of the magnet during the rapid current discharge for a quench, the protection heaters were activated only in some windings,more » in order to obtain the measure of the resistive and inductive voltages separately. The analysis of the results confirms a very low value of the dynamic inductance at the beginning of the discharge, which later approaches the nominal value. Indications of dynamic inductance variation were already found from the analysis of current decay during quenches in the previous magnets HQ02a and HQ02a2; however, with this dedicated test of HQ02b, a quantitative measurement and assessment has been possible. An analytical model using interfilament coupling current influence for the inductance lowering has been implemented in the quench calculation code QLASA, and the comparison with experimental data is given. In conclusion, the agreement of the model with the experimental results is very good and allows predicting more accurately the critical parameters in quench analysis (MIITs, hot spot temperature) for the MQXF Nb3Sn quadrupoles, which will be installed in the High Luminosity LHC.« less

  1. Comparative analysis of dynamic pricing strategies for managed lanes.

    DOT National Transportation Integrated Search

    2015-06-01

    The objective of this research is to investigate and compare the performances of different : dynamic pricing strategies for managed lanes facilities. These pricing strategies include real-time : traffic responsive methods, as well as refund options a...

  2. Executives' speech expressiveness: analysis of perceptive and acoustic aspects of vocal dynamics.

    PubMed

    Marquezin, Daniela Maria Santos Serrano; Viola, Izabel; Ghirardi, Ana Carolina de Assis Moura; Madureira, Sandra; Ferreira, Léslie Piccolotto

    2015-01-01

    To analyze speech expressiveness in a group of executives based on perceptive and acoustic aspects of vocal dynamics. Four male subjects participated in the research study (S1, S2, S3, and S4). The assessments included the Kingdomality test to obtain the keywords of communicative attitudes; perceptive-auditory assessment to characterize vocal quality and dynamics, performed by three judges who are speech language pathologists; perceptiveauditory assessment to judge the chosen keywords; speech acoustics to assess prosodic elements (Praat software); and a statistical analysis. According to the perceptive-auditory analysis of vocal dynamics, S1, S2, S3, and S4 did not show vocal alterations and all of them were considered with lowered habitual pitch. S1: pointed out as insecure, nonobjective, nonempathetic, and unconvincing with inappropriate use of pauses that are mainly formed by hesitations; inadequate separation of prosodic groups with breaking of syntagmatic constituents. S2: regular use of pauses for respiratory reload, organization of sentences, and emphasis, which is considered secure, little objective, empathetic, and convincing. S3: pointed out as secure, objective, empathetic, and convincing with regular use of pauses for respiratory reload and organization of sentences and hesitations. S4: the most secure, objective, empathetic, and convincing, with proper use of pauses for respiratory reload, planning, and emphasis; prosodic groups agreed with the statement, without separating the syntagmatic constituents. The speech characteristics and communicative attitudes were highlighted in two subjects in a different manner, in such a way that the slow rate of speech and breaks of the prosodic groups transmitted insecurity, little objectivity, and nonpersuasion.

  3. Spectral analysis and slow spreading dynamics on complex networks.

    PubMed

    Odor, Géza

    2013-09-01

    The susceptible-infected-susceptible (SIS) model is one of the simplest memoryless systems for describing information or epidemic spreading phenomena with competing creation and spontaneous annihilation reactions. The effect of quenched disorder on the dynamical behavior has recently been compared to quenched mean-field (QMF) approximations in scale-free networks. QMF can take into account topological heterogeneity and clustering effects of the activity in the steady state by spectral decomposition analysis of the adjacency matrix. Therefore, it can provide predictions on possible rare-region effects, thus on the occurrence of slow dynamics. I compare QMF results of SIS with simulations on various large dimensional graphs. In particular, I show that for Erdős-Rényi graphs this method predicts correctly the occurrence of rare-region effects. It also provides a good estimate for the epidemic threshold in case of percolating graphs. Griffiths Phases emerge if the graph is fragmented or if we apply a strong, exponentially suppressing weighting scheme on the edges. The latter model describes the connection time distributions in the face-to-face experiments. In case of a generalized Barabási-Albert type of network with aging connections, strong rare-region effects and numerical evidence for Griffiths Phase dynamics are shown. The dynamical simulation results agree well with the predictions of the spectral analysis applied for the weighted adjacency matrices.

  4. Network analysis of patient flow in two UK acute care hospitals identifies key sub-networks for A&E performance

    PubMed Central

    Stringer, Clive; Beeknoo, Neeraj

    2017-01-01

    The topology of the patient flow network in a hospital is complex, comprising hundreds of overlapping patient journeys, and is a determinant of operational efficiency. To understand the network architecture of patient flow, we performed a data-driven network analysis of patient flow through two acute hospital sites of King’s College Hospital NHS Foundation Trust. Administration databases were queried for all intra-hospital patient transfers in an 18-month period and modelled as a dynamic weighted directed graph. A ‘core’ subnetwork containing only 13–17% of all edges channelled 83–90% of the patient flow, while an ‘ephemeral’ network constituted the remainder. Unsupervised cluster analysis and differential network analysis identified sub-networks where traffic is most associated with A&E performance. Increased flow to clinical decision units was associated with the best A&E performance in both sites. The component analysis also detected a weekend effect on patient transfers which was not associated with performance. We have performed the first data-driven hypothesis-free analysis of patient flow which can enhance understanding of whole healthcare systems. Such analysis can drive transformation in healthcare as it has in industries such as manufacturing. PMID:28968472

  5. Final Report Computational Analysis of Dynamical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guckenheimer, John

    2012-05-08

    This is the final report for DOE Grant DE-FG02-93ER25164, initiated in 1993. This grant supported research of John Guckenheimer on computational analysis of dynamical systems. During that period, seventeen individuals received PhD degrees under the supervision of Guckenheimer and over fifty publications related to the grant were produced. This document contains copies of these publications.

  6. Flight Dynamics Analysis Branch End of Fiscal Year 2004 Report

    NASA Technical Reports Server (NTRS)

    DeLion, Anne (Editor); Stengle, Thomas

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2004. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  7. Flight Dynamics Analysis Branch End of Fiscal Year 1999 Report

    NASA Technical Reports Server (NTRS)

    Stengle, T.; Flores-Amaya, F.

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 1999. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key analysis results and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the discipline of flight dynamics, which involves spacecraft trajectory (orbit) and attitude analysis, as well as orbit and attitude determination and control. The FDAB currently provides support for missions involving NASA, government, university, and commercial space missions, at various stages in the mission life cycle.

  8. Flight Dynamics Analysis Branch End of Fiscal Year 2005 Report

    NASA Technical Reports Server (NTRS)

    2006-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based), spacecraft trajectory design and maneuver planning, attitude analysis, attitude determination and sensor calibration, and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  9. No Effect of Muscle Stretching within a Full, Dynamic Warm-up on Athletic Performance.

    PubMed

    Blazevich, Anthony J; Gill, Nicholas D; Kvorning, Thue; Kay, Anthony D; Goh, Alvin G; Hilton, Bradley; Drinkwater, Eric J; Behm, David G

    2018-06-01

    This study aimed to examine the effects of static and dynamic stretching routines performed as part of a comprehensive warm-up on flexibility and sprint running, jumping, and change of direction tests in team sport athletes. A randomized, controlled, crossover study design with experimenter blinding was conducted. On separate days, 20 male team sport athletes completed a comprehensive warm-up routine. After a low-intensity warm-up, a 5-s static stretch (5S), a 30-s static stretch (30S; 3 × 10-s stretches), a 5-repetition (per muscle group) dynamic stretch (DYN), or a no-stretch (NS) protocol was completed; stretches were done on seven lower body and two upper body regions. This was followed by test-specific practice progressing to maximum intensity. A comprehensive test battery assessing intervention effect expectations as well as flexibility, vertical jump, sprint running, and change of direction outcomes was then completed in a random order. There were no effects of stretch condition on test performances. Before the study, 18/20 participants nominated DYN as the most likely to improve performance and 15/20 nominated NS as least likely. Immediately before testing, NS was rated less "effective" (4.0 ± 2.2 on a 10-point scale) than 5S, 30S, and DYN (5.3-6.4). Nonetheless, these ratings were not related to test performances. Participants felt they were more likely to perform well when stretching was performed as part of the warm-up, irrespective of stretch type. However, no effect of muscle stretching was observed on flexibility and physical function compared with no stretching. On the basis of the current evidence, the inclusion of short durations of either static or dynamic stretching is unlikely to affect sprint running, jumping, or change of direction performance when performed as part of a comprehensive physical preparation routine.

  10. Performance enhancement for audio-visual speaker identification using dynamic facial muscle model.

    PubMed

    Asadpour, Vahid; Towhidkhah, Farzad; Homayounpour, Mohammad Mehdi

    2006-10-01

    Science of human identification using physiological characteristics or biometry has been of great concern in security systems. However, robust multimodal identification systems based on audio-visual information has not been thoroughly investigated yet. Therefore, the aim of this work to propose a model-based feature extraction method which employs physiological characteristics of facial muscles producing lip movements. This approach adopts the intrinsic properties of muscles such as viscosity, elasticity, and mass which are extracted from the dynamic lip model. These parameters are exclusively dependent on the neuro-muscular properties of speaker; consequently, imitation of valid speakers could be reduced to a large extent. These parameters are applied to a hidden Markov model (HMM) audio-visual identification system. In this work, a combination of audio and video features has been employed by adopting a multistream pseudo-synchronized HMM training method. Noise robust audio features such as Mel-frequency cepstral coefficients (MFCC), spectral subtraction (SS), and relative spectra perceptual linear prediction (J-RASTA-PLP) have been used to evaluate the performance of the multimodal system once efficient audio feature extraction methods have been utilized. The superior performance of the proposed system is demonstrated on a large multispeaker database of continuously spoken digits, along with a sentence that is phonetically rich. To evaluate the robustness of algorithms, some experiments were performed on genetically identical twins. Furthermore, changes in speaker voice were simulated with drug inhalation tests. In 3 dB signal to noise ratio (SNR), the dynamic muscle model improved the identification rate of the audio-visual system from 91 to 98%. Results on identical twins revealed that there was an apparent improvement on the performance for the dynamic muscle model-based system, in which the identification rate of the audio-visual system was enhanced from 87

  11. A Dynamic Network Model to Explain the Development of Excellent Human Performance

    PubMed Central

    Den Hartigh, Ruud J. R.; Van Dijk, Marijn W. G.; Steenbeek, Henderien W.; Van Geert, Paul L. C.

    2016-01-01

    Across different domains, from sports to science, some individuals accomplish excellent levels of performance. For over 150 years, researchers have debated the roles of specific nature and nurture components to develop excellence. In this article, we argue that the key to excellence does not reside in specific underlying components, but rather in the ongoing interactions among the components. We propose that excellence emerges out of dynamic networks consisting of idiosyncratic mixtures of interacting components such as genetic endowment, motivation, practice, and coaching. Using computer simulations we demonstrate that the dynamic network model accurately predicts typical properties of excellence reported in the literature, such as the idiosyncratic developmental trajectories leading to excellence and the highly skewed distributions of productivity present in virtually any achievement domain. Based on this novel theoretical perspective on excellent human performance, this article concludes by suggesting policy implications and directions for future research. PMID:27148140

  12. Effect of Static and Dynamic Stretching on the Diurnal Variations of Jump Performance in Soccer Players

    PubMed Central

    Chtourou, Hamdi; Aloui, Asma; Hammouda, Omar; Chaouachi, Anis; Chamari, Karim; Souissi, Nizar

    2013-01-01

    Purpose The present study addressed the lack of data on the effect of different types of stretching on diurnal variations in vertical jump height - i.e., squat-jump (SJ) and countermovement-jump (CMJ). We hypothesized that dynamic stretching could affect the diurnal variations of jump height by producing a greater increase in short-term maximal performance in the morning than the evening through increasing core temperature at this time-of-day. Methods Twenty male soccer players (age, 18.6±1.3 yrs; height, 174.6±3.8 cm; body-mass, 71.1±8.6 kg; mean ± SD) completed the SJ and CMJ tests either after static stretching, dynamic stretching or no-stretching protocols at two times of day, 07:00 h and 17:00 h, with a minimum of 48 hours between testing sessions. One minute after warming-up for 5 minutes by light jogging and performing one of the three stretching protocols (i.e., static stretching, dynamic stretching or no-stretching) for 8 minutes, each subject completed the SJ and CMJ tests. Jumping heights were recorded and analyzed using a two-way analysis of variance with repeated measures (3 [stretching]×2 [time-of-day]). Results The SJ and CMJ heights were significantly higher at 17:00 than 07:00 h (p<0.01) after the no-stretching protocol. These daily variations disappeared (i.e., the diurnal gain decreased from 4.2±2.81% (p<0.01) to 1.81±4.39% (not-significant) for SJ and from 3.99±3.43% (p<0.01) to 1.51±3.83% (not-significant) for CMJ) after dynamic stretching due to greater increases in SJ and CMJ heights in the morning than the evening (8.4±6.36% vs. 4.4±2.64%, p<0.05 for SJ and 10.61±5.49% vs. 6.03±3.14%, p<0.05 for CMJ). However, no significant effect of static stretching on the diurnal variations of SJ and CMJ heights was observed. Conclusion Dynamic stretching affects the typical diurnal variations of SJ and CMJ and helps to counteract the lower morning values in vertical jump height. PMID:23940589

  13. The Developmental Dynamics of Task-Avoidant Behavior and Math Performance in Kindergarten and Elementary School

    ERIC Educational Resources Information Center

    Hirvonen, Riikka; Tolvanen, Asko; Aunola, Kaisa; Nurmi, Jari-Erik

    2012-01-01

    Besides cognitive factors, children's learning at school may be influenced by more dynamic phenomena, such as motivation and achievement-related task-avoidant behavior. The present study examined the developmental dynamics of task-avoidant behavior and math performance from kindergarten to Grade 4. A total of 225 children were tested for their…

  14. The Analysis of Cell Population Dynamics in Mammary Gland Development and Tumorigenesis

    DTIC Science & Technology

    2005-08-01

    AD Award Number: DAMD17-03-1-0498 TITLE: The Analysis of Cell Population Dynamics in Mammary Gland Development and Tumorigenesis PRINCIPAL...Summary 1 Aug 2004 - 31 Jul 2005 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER The Analysis of Cell Population Dynamics in Mammary Gland Development and...STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The mammary gland is made up of several epithelial cell

  15. Mental workload and motor performance dynamics during practice of reaching movements under various levels of task difficulty.

    PubMed

    Shuggi, Isabelle M; Oh, Hyuk; Shewokis, Patricia A; Gentili, Rodolphe J

    2017-09-30

    The assessment of mental workload can inform attentional resource allocation during task performance that is essential for understanding the underlying principles of human cognitive-motor behavior. While many studies have focused on mental workload in relation to human performance, a modest body of work has examined it in a motor practice/learning context without considering individual variability. Thus, this work aimed to examine mental workload by employing the NASA TLX as well as the changes in motor performance resulting from the practice of a novel reaching task. Two groups of participants practiced a reaching task at a high and low nominal difficulty during which a group-level analysis assessed the mental workload, motor performance and motor improvement dynamics. A secondary cluster analysis was also conducted to identify specific individual patterns of cognitive-motor responses. Overall, both group- and cluster-level analyses revealed that: (i) all participants improved their performance throughout motor practice, and (ii) an increase in mental workload was associated with a reduction of the quality of motor performance along with a slower rate of motor improvement. The results are discussed in the context of the optimal challenge point framework and in particular it is proposed that under the experimental conditions employed here, functional task difficulty: (i) would possibly depend on an individuals' information processing capabilities, and (ii) could be indexed by the level of mental workload which, when excessively heightened can decrease the quality of performance and more generally result in delayed motor improvements. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. The dynamic analysis of drum roll lathe for machining of rollers

    NASA Astrophysics Data System (ADS)

    Qiao, Zheng; Wu, Dongxu; Wang, Bo; Li, Guo; Wang, Huiming; Ding, Fei

    2014-08-01

    An ultra-precision machine tool for machining of the roller has been designed and assembled, and due to the obvious impact which dynamic characteristic of machine tool has on the quality of microstructures on the roller surface, the dynamic characteristic of the existing machine tool is analyzed in this paper, so is the influence of circumstance that a large scale and slender roller is fixed in the machine on dynamic characteristic of the machine tool. At first, finite element model of the machine tool is built and simplified, and based on that, the paper carries on with the finite element mode analysis and gets the natural frequency and shaking type of four steps of the machine tool. According to the above model analysis results, the weak stiffness systems of machine tool can be further improved and the reasonable bandwidth of control system of the machine tool can be designed. In the end, considering the shock which is caused by Z axis as a result of fast positioning frequently to feeding system and cutting tool, transient analysis is conducted by means of ANSYS analysis in this paper. Based on the results of transient analysis, the vibration regularity of key components of machine tool and its impact on cutting process are explored respectively.

  17. Dynamic Performance of Maximum Power Point Trackers in TEG Systems Under Rapidly Changing Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Man, E. A.; Sera, D.; Mathe, L.; Schaltz, E.; Rosendahl, L.

    2016-03-01

    Characterization of thermoelectric generators (TEG) is widely discussed and equipment has been built that can perform such analysis. One method is often used to perform such characterization: constant temperature with variable thermal power input. Maximum power point tracking (MPPT) methods for TEG systems are mostly tested under steady-state conditions for different constant input temperatures. However, for most TEG applications, the input temperature gradient changes, exposing the MPPT to variable tracking conditions. An example is the exhaust pipe on hybrid vehicles, for which, because of the intermittent operation of the internal combustion engine, the TEG and its MPPT controller are exposed to a cyclic temperature profile. Furthermore, there are no guidelines on how fast the MPPT must be under such dynamic conditions. In the work discussed in this paper, temperature gradients for TEG integrated in several applications were evaluated; the results showed temperature variation up to 5°C/s for TEG systems. Electrical characterization of a calcium-manganese oxide TEG was performed at steady-state for different input temperatures and a maximum temperature of 401°C. By using electrical data from characterization of the oxide module, a solar array simulator was emulated to perform as a TEG. A trapezoidal temperature profile with different gradients was used on the TEG simulator to evaluate the dynamic MPPT efficiency. It is known that the perturb and observe (P&O) algorithm may have difficulty accurately tracking under rapidly changing conditions. To solve this problem, a compromise must be found between the magnitude of the increment and the sampling frequency of the control algorithm. The standard P&O performance was evaluated experimentally by using different temperature gradients for different MPPT sampling frequencies, and efficiency values are provided for all cases. The results showed that a tracking speed of 2.5 Hz can be successfully implemented on a TEG

  18. Operational Dynamic Configuration Analysis

    NASA Technical Reports Server (NTRS)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  19. Dynamical analysis of bounded and unbounded orbits in a generalized Hénon-Heiles system

    NASA Astrophysics Data System (ADS)

    Dubeibe, F. L.; Riaño-Doncel, A.; Zotos, Euaggelos E.

    2018-04-01

    The Hénon-Heiles potential was first proposed as a simplified version of the gravitational potential experimented by a star in the presence of a galactic center. Currently, this system is considered a paradigm in dynamical systems because despite its simplicity exhibits a very complex dynamical behavior. In the present paper, we perform a series expansion up to the fifth-order of a potential with axial and reflection symmetries, which after some transformations, leads to a generalized Hénon-Heiles potential. Such new system is analyzed qualitatively in both regimes of bounded and unbounded motion via the Poincaré sections method and plotting the exit basins. On the other hand, the quantitative analysis is performed through the Lyapunov exponents and the basin entropy, respectively. We find that in both regimes the chaoticity of the system decreases as long as the test particle energy gets far from the critical energy. Additionally, we may conclude that despite the inclusion of higher order terms in the series expansion, the new system shows wider zones of regularity (islands) than the ones present in the Hénon-Heiles system.

  20. Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2003-01-01

    TD64, the Applied Fluid Dynamics Analysis Group, is one of several groups with high-fidelity fluids design and analysis expertise in the Space Transportation Directorate at Marshall Space Flight Center (MSFC). TD64 assists personnel working on other programs. The group participates in projects in the following areas: turbomachinery activities, nozzle activities, combustion devices, and the Columbia accident investigation.