Science.gov

Sample records for dynamic performance analysis

  1. Managing Performance Analysis with Dynamic Statistical Projection Pursuit

    SciTech Connect

    Vetter, J.S.; Reed, D.A.

    2000-05-22

    Computer systems and applications are growing more complex. Consequently, performance analysis has become more difficult due to the complex, transient interrelationships among runtime components. To diagnose these types of performance issues, developers must use detailed instrumentation to capture a large number of performance metrics. Unfortunately, this instrumentation may actually influence the performance analysis, leading the developer to an ambiguous conclusion. In this paper, we introduce a technique for focusing a performance analysis on interesting performance metrics. This technique, called dynamic statistical projection pursuit, identifies interesting performance metrics that the monitoring system should capture across some number of processors. By reducing the number of performance metrics, projection pursuit can limit the impact of instrumentation on the performance of the target system and can reduce the volume of performance data.

  2. Dynamic performances analysis of a real vehicle driving

    NASA Astrophysics Data System (ADS)

    Abdullah, M. A.; Jamil, J. F.; Salim, M. A.

    2015-12-01

    Vehicle dynamic is the effects of movement of a vehicle generated from the acceleration, braking, ride and handling activities. The dynamic behaviours are determined by the forces from tire, gravity and aerodynamic which acting on the vehicle. This paper emphasizes the analysis of vehicle dynamic performance of a real vehicle. Real driving experiment on the vehicle is conducted to determine the effect of vehicle based on roll, pitch, and yaw, longitudinal, lateral and vertical acceleration. The experiment is done using the accelerometer to record the reading of the vehicle dynamic performance when the vehicle is driven on the road. The experiment starts with weighing a car model to get the center of gravity (COG) to place the accelerometer sensor for data acquisition (DAQ). The COG of the vehicle is determined by using the weight of the vehicle. A rural route is set to launch the experiment and the road conditions are determined for the test. The dynamic performance of the vehicle are depends on the road conditions and driving maneuver. The stability of a vehicle can be controlled by the dynamic performance analysis.

  3. Transient analysis techniques in performing impact and crash dynamic studies

    NASA Technical Reports Server (NTRS)

    Pifko, A. B.; Winter, R.

    1989-01-01

    Because of the emphasis being placed on crashworthiness as a design requirement, increasing demands are being made by various organizations to analyze a wide range of complex structures that must perform safely when subjected to severe impact loads, such as those generated in a crash event. The ultimate goal of crashworthiness design and analysis is to produce vehicles with the ability to reduce the dynamic forces experienced by the occupants to specified levels, while maintaining a survivable envelope around them during a specified crash event. DYCAST is a nonlinear structural dynamic finite element computer code that started from the plans systems of a finite element program for static nonlinear structural analysis. The essential features of DYCAST are outlined.

  4. Dynamic Curvature Steering Control for Autonomous Vehicle: Performance Analysis

    NASA Astrophysics Data System (ADS)

    Aizzat Zakaria, Muhammad; Zamzuri, Hairi; Amri Mazlan, Saiful

    2016-02-01

    This paper discusses the design of dynamic curvature steering control for autonomous vehicle. The lateral control and longitudinal control are discussed in this paper. The controller is designed based on the dynamic curvature calculation to estimate the path condition and modify the vehicle speed and steering wheel angle accordingly. In this paper, the simulation results are presented to show the capability of the controller to track the reference path. The controller is able to predict the path and modify the vehicle speed to suit the path condition. The effectiveness of the controller is shown in this paper whereby identical performance is achieved with the benchmark but with extra curvature adaptation capabilites.

  5. Simulation analysis of dynamic working performance for star trackers.

    PubMed

    Shen, Juan; Zhang, Guangjun; Wei, Xinguo

    2010-12-01

    The elongated imaging track pertaining to a star spot recorded in the image sensor of a star tracker will diffuse over several pixels at a high angular velocity, leading to an inaccurate, even false, attitude value. A computer simulation of the attitude determination from a dynamic star tracker is developed first, based on a dynamic mathematical model of the star-spot imaging and an efficiency validation of the star centroiding algorithm in the dynamic condition. Then major error sources affecting the attitude accuracy in the dynamic condition are analyzed and discussed systematically based on the simulation results. A mathematical model calculating the average star number detected in the field of view is also deduced, using simulation results and signal processing theory, with image trailing ranging from 0 to 20 pixels during exposure. The summarized regularity is helpful in the system design and accuracy evaluation of a star tracker.

  6. Human Performance Modeling for Dynamic Human Reliability Analysis

    SciTech Connect

    Boring, Ronald Laurids; Joe, Jeffrey Clark; Mandelli, Diego

    2015-08-01

    Part of the U.S. Department of Energy’s (DOE’s) Light Water Reac- tor Sustainability (LWRS) Program, the Risk-Informed Safety Margin Charac- terization (RISMC) Pathway develops approaches to estimating and managing safety margins. RISMC simulations pair deterministic plant physics models with probabilistic risk models. As human interactions are an essential element of plant risk, it is necessary to integrate human actions into the RISMC risk framework. In this paper, we review simulation based and non simulation based human reliability analysis (HRA) methods. This paper summarizes the founda- tional information needed to develop a feasible approach to modeling human in- teractions in RISMC simulations.

  7. Comparison of performance between rescaled range analysis and rescaled variance analysis in detecting abrupt dynamic change

    NASA Astrophysics Data System (ADS)

    He, Wen-Ping; Liu, Qun-Qun; Jiang, Yun-Di; Lu, Ying

    2015-04-01

    In the present paper, a comparison of the performance between moving cutting data-rescaled range analysis (MC-R/S) and moving cutting data-rescaled variance analysis (MC-V/S) is made. The results clearly indicate that the operating efficiency of the MC-R/S algorithm is higher than that of the MC-V/S algorithm. In our numerical test, the computer time consumed by MC-V/S is approximately 25 times that by MC-R/S for an identical window size in artificial data. Except for the difference in operating efficiency, there are no significant differences in performance between MC-R/S and MC-V/S for the abrupt dynamic change detection. MC-R/S and MC-V/S both display some degree of anti-noise ability. However, it is important to consider the influences of strong noise on the detection results of MC-R/S and MC-V/S in practical application processes. Project supported by the National Basic Research Program of China (Grant No. 2012CB955902) and the National Natural Science Foundation of China (Grant Nos. 41275074, 41475073, and 41175084).

  8. School Expenditure and School Performance: Evidence from New South Wales Schools Using a Dynamic Panel Analysis

    ERIC Educational Resources Information Center

    Pugh, G.; Mangan, J.; Blackburn, V.; Radicic, D.

    2015-01-01

    This article estimates the effects of school expenditure on school performance in government secondary schools in New South Wales, Australia over the period 2006-2010. It uses dynamic panel analysis to exploit time series data on individual schools that only recently has become available. We find a significant but small effect of expenditure on…

  9. School Expenditure and School Performance: Evidence from New South Wales Schools Using a Dynamic Panel Analysis

    ERIC Educational Resources Information Center

    Pugh, G.; Mangan, J.; Blackburn, V.; Radicic, D.

    2015-01-01

    This article estimates the effects of school expenditure on school performance in government secondary schools in New South Wales, Australia over the period 2006-2010. It uses dynamic panel analysis to exploit time series data on individual schools that only recently has become available. We find a significant but small effect of expenditure on…

  10. Dynamic Human Reliability Analysis: Benefits and Challenges of Simulating Human Performance

    SciTech Connect

    R. L. Boring

    2007-06-01

    To date, there has been considerable work on dynamic event trees and other areas related to dynamic probabilistic safety assessment (PSA). The counterpart to these efforts in human reliability analysis (HRA) has centered on the development of specific methods to account for the dynamic nature of human performance. In this paper, the author posits that the key to dynamic HRA is not in the development of specific methods but in the utilization of cognitive modeling and simulation to produce a framework of data that may be used in quantifying the likelihood of human error. This paper provides an overview of simulation approaches to HRA; reviews differences between first, second, and dynamic generation HRA; and outlines potential benefits and challenges of this approach.

  11. Performance analysis and dynamic modeling of a single-spool turbojet engine

    NASA Astrophysics Data System (ADS)

    Andrei, Irina-Carmen; Toader, Adrian; Stroe, Gabriela; Frunzulica, Florin

    2017-01-01

    The purposes of modeling and simulation of a turbojet engine are the steady state analysis and transient analysis. From the steady state analysis, which consists in the investigation of the operating, equilibrium regimes and it is based on appropriate modeling describing the operation of a turbojet engine at design and off-design regimes, results the performance analysis, concluded by the engine's operational maps (i.e. the altitude map, velocity map and speed map) and the engine's universal map. The mathematical model that allows the calculation of the design and off-design performances, in case of a single spool turbojet is detailed. An in house code was developed, its calibration was done for the J85 turbojet engine as the test case. The dynamic modeling of the turbojet engine is obtained from the energy balance equations for compressor, combustor and turbine, as the engine's main parts. The transient analysis, which is based on appropriate modeling of engine and its main parts, expresses the dynamic behavior of the turbojet engine, and further, provides details regarding the engine's control. The aim of the dynamic analysis is to determine a control program for the turbojet, based on the results provided by performance analysis. In case of the single-spool turbojet engine, with fixed nozzle geometry, the thrust is controlled by one parameter, which is the fuel flow rate. The design and management of the aircraft engine controls are based on the results of the transient analysis. The construction of the design model is complex, since it is based on both steady-state and transient analysis, further allowing the flight path cycle analysis and optimizations. This paper presents numerical simulations for a single-spool turbojet engine (J85 as test case), with appropriate modeling for steady-state and dynamic analysis.

  12. Dynamic Analysis of Hybrid Energy Systems under Flexible Operation and Variable Renewable Generation -- Part I: Dynamic Performance Analysis and Part II: Dynamic Cost

    SciTech Connect

    Humberto E. Garcia; Amit Mohanty; Wen-Chiao Lin; Robert S. Cherry

    2013-04-01

    Dynamic analysis of hybrid energy systems (HES) under flexible operation and variable renewable generation is considered in order to better understand various challenges and opportunities associated with the high system variability arising from the integration of renewable energy into the power grid. Unique consequences are addressed by devising advanced HES solutions in which multiple forms of energy commodities, such as electricity and chemical products, may be exchanged. Dynamic models of various unit operations are developed and integrated within two different HES options. One HES option, termed traditional, produces electricity only and consists of a primary heat generator (PHG) (e.g., a small modular reactor), a steam turbine generator, a wind farm, and a battery storage. The other HES option, termed advanced, includes not only the components present in the traditional option but also a chemical plant complex to repurpose excess energy for non-electricity services, such as for the production of chemical goods (e.g., transportation fuel). In either case, a given HES is connected to the power grid at a point of common coupling and requested to deliver a certain electricity generation profile as dictated by a regional power grid operator based on a predicted demand curve. Dynamic analysis of these highly-coupled HES are performed to identify their key dynamical properties and limitations and to prescribe solutions for best managing and mitigating the high variability introduced from incorporating renewable energy into the energy mix. A comparative dynamic cost analysis is also conducted to determine best HES options. The cost function includes a set of metrics for computing fixed costs, such as fixed operations and maintenance (O&M) and overnight capital costs, and also variable operational costs, such as cost of variability, variable O&M cost, and cost of environmental impact, together with revenues. Assuming different options for implementing PHG (e

  13. Analysis of the temporal dynamics of model performance and parameter sensitivity for hydrological models

    NASA Astrophysics Data System (ADS)

    Reusser, D.; Zehe, E.

    2009-04-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. We present a method for such a hydrological model performance assessment with a high temporal resolution. Information about possible relevant processes during times with distinct model performance is obtained from parameter sensitivity analysis - also with high temporal resolution. We illustrate the combined approach of temporally resolved model performance and parameter sensitivity for a rainfall-runoff modeling case study. The headwater catchment of the Wilde Weisseritz in the eastern Ore mountains is simulated with the conceptual model WaSiM-ETH. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The temporally resolved sensitivity analysis is based on the FAST algorithm. The final outcome of the proposed method is a time series of the occurrence of dominant error types as well as a time series of the relative parameter sensitivity. For the two case studies analyzed here, 6 error types have been identified. They show clear temporal patterns which can lead to the identification of model structural errors. The parameter sensitivity helps to identify the relevant model parts.

  14. Performance of intensity-based non-normalized pointwise algorithms in dynamic speckle analysis.

    PubMed

    Stoykova, E; Nazarova, D; Berberova, N; Gotchev, A

    2015-09-21

    Intensity-based pointwise non-normalized algorithms for 2D evaluation of activity in optical metrology with dynamic speckle analysis are studied and compared. They are applied to a temporal sequence of correlated speckle patterns formed at laser illumination of the object surface. Performance of each algorithm is assessed through the histogram of estimates it produces. A new algorithm is proposed that provides the same quality of the 2D activity map for less computational effort. The algorithms are applied both to synthetic and experimental data.

  15. Performance Analysis of the AeroTP Transport Protocol for Highly-Dynamic Airborne Telemetry Networks

    DTIC Science & Technology

    2011-06-03

    Acknowledgment Options.” RFC 2018 (Proposed Standard ), Oct. 1996. [11] “The ns- 3 network simulator.” http://www.nsnam.org, July 2009. [12] M. AL-Enazi, S. A. Gogi...AFFTC-PA- 11146 Performance Analysis of the AeroTP Transport Protocol for Highly-Dynamic Airborne Telemetry Networks James P.G. Sterbenz...Kamakshi Sirisha Pathapati, Truc Anh N. Nguyen, Justin P. Rohrer AIR FORCE FLIGHT TEST CENTER EDWARDS AFB, CA JUNE 3 , 2011 A F F T C

  16. Causality analysis in business performance measurement system using system dynamics methodology

    NASA Astrophysics Data System (ADS)

    Yusof, Zainuridah; Yusoff, Wan Fadzilah Wan; Maarof, Faridah

    2014-07-01

    One of the main components of the Balanced Scorecard (BSC) that differentiates it from any other performance measurement system (PMS) is the Strategy Map with its unidirectional causality feature. Despite its apparent popularity, criticisms on the causality have been rigorously discussed by earlier researchers. In seeking empirical evidence of causality, propositions based on the service profit chain theory were developed and tested using the econometrics analysis, Granger causality test on the 45 data points. However, the insufficiency of well-established causality models was found as only 40% of the causal linkages were supported by the data. Expert knowledge was suggested to be used in the situations of insufficiency of historical data. The Delphi method was selected and conducted in obtaining the consensus of the causality existence among the 15 selected expert persons by utilizing 3 rounds of questionnaires. Study revealed that only 20% of the propositions were not supported. The existences of bidirectional causality which demonstrate significant dynamic environmental complexity through interaction among measures were obtained from both methods. With that, a computer modeling and simulation using System Dynamics (SD) methodology was develop as an experimental platform to identify how policies impacting the business performance in such environments. The reproduction, sensitivity and extreme condition tests were conducted onto developed SD model to ensure their capability in mimic the reality, robustness and validity for causality analysis platform. This study applied a theoretical service management model within the BSC domain to a practical situation using SD methodology where very limited work has been done.

  17. Performance evaluation of principal component analysis for dynamic fluorescence tomographic imaging in measurement space

    NASA Astrophysics Data System (ADS)

    Liu, Xin; He, Xiaowei; Yan, Zhuangzhi

    2015-05-01

    Challenges remain in resolving drug (fluorescent biomarkers) distributions within small animals by fluorescence diffuse optical tomography (FDOT). Principal component analysis (PCA) provides the capability of detecting organs (functional structures) from dynamic FDOT images. However, the resolving performance of PCA may be affected by various experimental factors, e.g., the noise levels in measurement data, the variance in optical properties, the number of acquired frames, and so on. To address the problem, based on a simulation model, we analyze and compare the performance of PCA when applied to three typical sets of experimental conditions (frames number, noise level, and optical properties). The results show that the noise is a critical factor affecting the performance of PCA. When input data containing a low noise (<5%), by a short (e.g., 6 frame) projection sequence, we can resolve the poly(DL-lactic-coglycolic acid)/indocynaine green (PLGA/ICG) distributions in heart and lungs, even though there are great variances in optical properties. In contrast, when 20% Gaussian noise is added to the input data, it hardly resolves the distributions of PLGA/ICG in heart and lungs even though accurate optical properties are used. However, with an increased number of frames, the resolving performance of PCA may gradually recover.

  18. Analysis of the Temporal Dynamics of Model Performance for Hydrological Models

    NASA Astrophysics Data System (ADS)

    Reusser, D. E.; Blume, T.; Schaefli, B.; Zehe, E.

    2008-12-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. We present a method for such a hydrological model performance assessment with a high temporal resolution and illustrate its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physics-based model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns which can lead to the identification of model structural errors.

  19. Dynamic model and performance analysis of landing buffer for bionic locust mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Dian-Sheng; Zhang, Zi-Qiang; Chen, Ke-Wei

    2016-06-01

    The landing buffer is an important problem in the research on bionic locust jumping robots, and the different modes of landing and buffering can affect the dynamic performance of the buffering process significantly. Based on an experimental observation, the different modes of landing and buffering are determined, which include the different numbers of landing legs and different motion modes of legs in the buffering process. Then a bionic locust mechanism is established, and the springs are used to replace the leg muscles to achieve a buffering effect. To reveal the dynamic performance in the buffering process of the bionic locust mechanism, a dynamic model is established with different modes of landing and buffering. In particular, to analyze the buffering process conveniently, an equivalent vibration dynamic model of the bionic locust mechanism is proposed. Given the support forces of the ground to the leg links, which can be obtained from the dynamic model, the spring forces of the legs and the impact resistance of each leg are the important parameters affecting buffering performance, and evaluation principles for buffering performance are proposed according to the aforementioned parameters. Based on the dynamic model and these evaluation principles, the buffering performances are analyzed and compared in different modes of landing and buffering on a horizontal plane and an inclined plane. The results show that the mechanism with the ends of the legs sliding can obtain a better dynamic performance. This study offers primary theories for buffering dynamics and an evaluation of landing buffer performance, and it establishes a theoretical basis for studies and engineering applications.

  20. Performance Analysis of Control Signal Transmission Technique for Cognitive Radios in Dynamic Spectrum Access Networks

    NASA Astrophysics Data System (ADS)

    Sakata, Ren; Tomioka, Tazuko; Kobayashi, Takahiro

    When cognitive radio (CR) systems dynamically use the frequency band, a control signal is necessary to indicate which carrier frequencies are currently available in the network. In order to keep efficient spectrum utilization, this control signal also should be transmitted based on the channel conditions. If transmitters dynamically select carrier frequencies, receivers have to receive control signals without knowledge of their carrier frequencies. To enable such transmission and reception, this paper proposes a novel scheme called DCPT (Differential Code Parallel Transmission). With DCPT, receivers can receive low-rate information with no knowledge of the carrier frequencies. The transmitter transmits two signals whose carrier frequencies are spaced by a predefined value. The absolute values of the carrier frequencies can be varied. When the receiver acquires the DCPT signal, it multiplies the signal by a frequency-shifted version of the signal; this yields a DC component that represents the data signal which is then demodulated. The performance was evaluated by means of numerical analysis and computer simulation. We confirmed that DCPT operates successfully even under severe interference if its parameters are appropriately configured.

  1. Performance Evaluation of Counter-Based Dynamic Load Balancing Schemes for Massive Contingency Analysis with Different Computing Environments

    SciTech Connect

    Chen, Yousu; Huang, Zhenyu; Chavarría-Miranda, Daniel

    2010-09-30

    Contingency analysis is a key function in the Energy Management System (EMS) to assess the impact of various combinations of power system component failures based on state estimation. Contingency analysis is also extensively used in power market operation for feasibility test of market solutions. High performance computing holds the promise of faster analysis of more contingency cases for the purpose of safe and reliable operation of today’s power grids with less operating margin and more intermittent renewable energy sources. This paper evaluates the performance of counter-based dynamic load balancing schemes for massive contingency analysis under different computing environments. Insights from the performance evaluation can be used as guidance for users to select suitable schemes in the application of massive contingency analysis. Case studies, as well as MATLAB simulations, of massive contingency cases using the Western Electricity Coordinating Council power grid model are presented to illustrate the application of high performance computing with counter-based dynamic load balancing schemes.

  2. An Examination of the Dynamic Relationship between Self-Efficacy and Performance across Levels of Analysis and Levels of Specificity

    ERIC Educational Resources Information Center

    Yeo, Gillian B.; Neal, Andrew

    2006-01-01

    This research used resource allocation theory to generate predictions regarding dynamic relationships between self-efficacy and task performance from 2 levels of analysis and specificity. Participants were given multiple trials of practice on an air traffic control task. Measures of task-specific self-efficacy and performance were taken at…

  3. An Examination of the Dynamic Relationship between Self-Efficacy and Performance across Levels of Analysis and Levels of Specificity

    ERIC Educational Resources Information Center

    Yeo, Gillian B.; Neal, Andrew

    2006-01-01

    This research used resource allocation theory to generate predictions regarding dynamic relationships between self-efficacy and task performance from 2 levels of analysis and specificity. Participants were given multiple trials of practice on an air traffic control task. Measures of task-specific self-efficacy and performance were taken at…

  4. Understanding the dynamic interactions driving Zambian health centre performance: a case-based health systems analysis

    PubMed Central

    Topp, Stephanie M; Chipukuma, Julien M; Hanefeld, Johanna

    2015-01-01

    Background Despite being central to achieving improved population health outcomes, primary health centres in low- and middle-income settings continue to underperform. Little research exists to adequately explain how and why this is the case. This study aimed to test the relevance and usefulness of an adapted conceptual framework for improving our understanding of the mechanisms and causal pathways influencing primary health centre performance. Methods A theory-driven, case-study approach was adopted. Four Zambian health centres were purposefully selected with case data including health-care worker interviews (n = 60); patient interviews (n = 180); direct observation of facility operations (2 weeks/centre) and key informant interviews (n = 14). Data were analysed to understand how the performance of each site was influenced by the dynamic interactions between system ‘hardware’ and ‘software’ acting on mechanisms of accountability. Findings Structural constraints including limited resources created challenging service environments in which work overload and stockouts were common. Health workers’ frustration with such conditions interacted with dissatisfaction with salary levels eroding service values and acting as a catalyst for different forms of absenteeism. Such behaviours exacerbated patient–provider ratios and increased the frequency of clinical and administrative shortcuts. Weak health information systems and lack of performance data undermined providers’ answerability to their employer and clients, and a lack of effective sanctions undermined supervisors’ ability to hold providers accountable for these transgressions. Weak answerability and enforceability contributed to a culture of impunity that masked and condoned weak service performance in all four sites. Conclusions Health centre performance is influenced by mechanisms of accountability, which are in turn shaped by dynamic interactions between system hardware and system software. Our

  5. Computational Analysis of Dynamic SPK(S8)-JP8 Fueled Combustor-Sector Performance

    NASA Technical Reports Server (NTRS)

    Ryder, R.; Hendricks, Roberts C.; Huber, M. L.; Shouse, D. T.

    2010-01-01

    Civil and military flight tests using blends of synthetic and biomass fueling with jet fuel up to 50:50 are currently considered as "drop-in" fuels. They are fully compatible with aircraft performance, emissions and fueling systems, yet the design and operations of such fueling systems and combustors must be capable of running fuels from a range of feedstock sources. This paper provides Smart Combustor or Fuel Flexible Combustor designers with computational tools, preliminary performance, emissions and particulates combustor sector data. The baseline fuel is kerosene-JP-8+100 (military) or Jet A (civil). Results for synthetic paraffinic kerosene (SPK) fuel blends show little change with respect to baseline performance, yet do show lower emissions. The evolution of a validated combustor design procedure is fundamental to the development of dynamic fueling of combustor systems for gas turbine engines that comply with multiple feedstock sources satisfying both new and legacy systems.

  6. Seismic Performance Evaluation of the Jacket Type Offshore Platforms through Incremental Dynamic Analysis considering Soil-Pile-Structure Interaction

    SciTech Connect

    Asgarian, Behrouz; Shokrgozar, Hamed R.; Talarposhti, Ali Shakeri

    2008-07-08

    Of great interest in Performance-Based Earthquake Engineering (PBEE) is the accurate estimation of the seismic performance of structures. A performance prediction and evaluation procedure is based on nonlinear dynamics and reliability theory. In this method, a full integration over the three key stochastic models is as follow: ground motion hazard curve, nonlinear dynamic displacement demand, and displacement capacity. Further, both epistemic and aleatory uncertainties are evaluated and carried through the analysis.In this paper, jacket and soil-pile system have been modeled using Finite Element program (OpenSees) and the incremental dynamic analysis (IDA) are performed to investigate nonlinear behavior of offshore platforms. The system demand is determined by performing time history response analyses of the jacket under a suite of FEMA/SAC uniform hazard ground motions. The system capacity in terms of the drift ratio against incipient collapse is generally difficult to predict since the structural response goes into nonlinear range before collapse. All the analyses are performed in two directions and the results are compared with each others. The confidence level of a jacket in each direction for a given hazard level is calculated using the procedure described.

  7. Seismic Performance Evaluation of the Jacket Type Offshore Platforms through Incremental Dynamic Analysis considering Soil-Pile-Structure Interaction

    NASA Astrophysics Data System (ADS)

    Asgarian, Behrouz; Shokrgozar, Hamed R.; Talarposhti, Ali Shakeri

    2008-07-01

    Of great interest in Performance-Based Earthquake Engineering (PBEE) is the accurate estimation of the seismic performance of structures. A performance prediction and evaluation procedure is based on nonlinear dynamics and reliability theory. In this method, a full integration over the three key stochastic models is as follow: ground motion hazard curve, nonlinear dynamic displacement demand, and displacement capacity. Further, both epistemic and aleatory uncertainties are evaluated and carried through the analysis. In this paper, jacket and soil-pile system have been modeled using Finite Element program (OpenSees) and the incremental dynamic analysis (IDA) are performed to investigate nonlinear behavior of offshore platforms. The system demand is determined by performing time history response analyses of the jacket under a suite of FEMA/SAC uniform hazard ground motions. The system capacity in terms of the drift ratio against incipient collapse is generally difficult to predict since the structural response goes into nonlinear range before collapse. All the analyses are performed in two directions and the results are compared with each others. The confidence level of a jacket in each direction for a given hazard level is calculated using the procedure described.

  8. Performance Analysis of Garbage Collection and Dynamic Reordering in a Lisp System. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Llames, Rene Lim

    1991-01-01

    Generation based garbage collection and dynamic reordering of objects are two techniques for improving the efficiency of memory management in Lisp and similar dynamic language systems. An analysis of the effect of generation configuration is presented, focusing on the effect of a number of generations and generation capabilities. Analytic timing and survival models are used to represent garbage collection runtime and to derive structural results on its behavior. The survival model provides bounds on the age of objects surviving a garbage collection at a particular level. Empirical results show that execution time is most sensitive to the capacity of the youngest generation. A technique called scanning for transport statistics, for evaluating the effectiveness of reordering independent of main memory size, is presented.

  9. Understanding the dynamic interactions driving Zambian health centre performance: a case-based health systems analysis.

    PubMed

    Topp, Stephanie M; Chipukuma, Julien M; Hanefeld, Johanna

    2015-05-01

    Despite being central to achieving improved population health outcomes, primary health centres in low- and middle-income settings continue to underperform. Little research exists to adequately explain how and why this is the case. This study aimed to test the relevance and usefulness of an adapted conceptual framework for improving our understanding of the mechanisms and causal pathways influencing primary health centre performance. A theory-driven, case-study approach was adopted. Four Zambian health centres were purposefully selected with case data including health-care worker interviews (n = 60); patient interviews (n = 180); direct observation of facility operations (2 weeks/centre) and key informant interviews (n = 14). Data were analysed to understand how the performance of each site was influenced by the dynamic interactions between system 'hardware' and 'software' acting on mechanisms of accountability. Structural constraints including limited resources created challenging service environments in which work overload and stockouts were common. Health workers' frustration with such conditions interacted with dissatisfaction with salary levels eroding service values and acting as a catalyst for different forms of absenteeism. Such behaviours exacerbated patient-provider ratios and increased the frequency of clinical and administrative shortcuts. Weak health information systems and lack of performance data undermined providers' answerability to their employer and clients, and a lack of effective sanctions undermined supervisors' ability to hold providers accountable for these transgressions. Weak answerability and enforceability contributed to a culture of impunity that masked and condoned weak service performance in all four sites. Health centre performance is influenced by mechanisms of accountability, which are in turn shaped by dynamic interactions between system hardware and system software. Our findings confirm the usefulness of combining Sheikh et al

  10. Analysis of dynamic testing performed on structural clay tile infilled frames

    SciTech Connect

    Fowler, Joele Johnston

    1994-12-18

    The behavior of two structural clay tile infilled frames subjected to dynamic loading is investigated. The testing was performed by USACERL using a biaxial shake table machine on which two framed infills were spaced nine feet apart and connected by steel trusses and an eight inch concrete roof slab. The infills were composed of structural clay tile block which were laid with the cores horizontal. The specimen was loaded in both the out-of-plane and in-plane directions using a site specific time history record. The testing focused on determining frame and panel load-deflection behavior, acceleration amplification, and frequency degradation characteristics. The out-of-plane tests resulted in little degradation of frequency which means there was little loss of stiffness. There was no evidence of the infill {open_quotes}walking-out{close_quotes} of the steel frame; in fact the infill still had substantial stability after completion of the out-of-plane tests. As a result of the gradual increase in ground motion in the in-plane testing, the stiffness of the specimen gradually decreased. Strength and stiffness characteristics obtained from the dynamic testing were comparable to results and behavior seen in static tests. Degradation in the panel was much more rapid under the stronger ground motions which were produced during the sine sweep tests.

  11. Performance analysis, dynamic simulation and control of mass-actuated airplane

    NASA Astrophysics Data System (ADS)

    Elhabush, Nada Atiya Omar

    mass and inertia matrix. The dynamics of the electric motor of the propeller and the servos of the actuators are also modeled. The effect of the propeller on the dynamics of the aircraft is also included. Modeling also includes electric power consumption by the electric motor driving the propeller, and servos of the aerodynamic and mass actuators. An integrated simulation environment is developed that includes all these factors and can be switched between the different configurations defined above. Trim analyses of all three configurations of the airplane are carried out in all four flight conditions (steady climb, cruise, steady turn, steady descent). Trim analyses consider all the constraints of the control and state variables such as limits on the deflections of the aerodynamic surfaces, position of the mass actuators, battery provided voltage, and angle of attack. These analyses demonstrate the feasibility of flying the airplane with mass-actuation only within varying speed ranges depending on the actuation mechanism. The results also show the benefit of mass-actuation over the conventional aero-actuation in terms of range and endurance especially in cruise flight, as compared to the other two configurations. In the second phase of the research, controllability of the airplane with each actuation mechanisms is determined and compared over the feasible speed range of each trim condition. A new relative controllability metrics is defined and calculated for this purpose. This analysis, based on the linearized model of the aircraft in each trim flight condition, show that the mass-actuation provides full controllability with various degree over the speed ranges. Once the controllability is verified, an LQR-based gain scheduling controller is designed for each aircraft configuration to track commanded climb/descent rate, altitude, airspeed, and turn rate. These controllers are implemented in the integrated simulation environment to simulate various flight profiles

  12. Dynamics in Epistasis Analysis.

    PubMed

    Awdeh, Aseel; Phenix, Hilary; Kaern, Mads; Perkins, Theodore

    2017-01-16

    Finding regulatory relationships between genes, including the direction and nature of influence between them, is a fundamental challenge in the field of molecular genetics. One classical approach to this problem is epistasis analysis. Broadly speaking, epistasis analysis infers the regulatory relationships between a pair of genes in a genetic pathway by considering the patterns of change in an observable trait resulting from single and double deletion of genes. While classical epistasis analysis has yielded deep insights on numerous genetic pathways, it is not without limitations. Here, we explore the possibility of dynamic epistasis analysis, in which, in addition to performing genetic perturbations of a pathway, we drive the pathway by a time-varying upstream signal. We explore the theoretical power of dynamical epistasis analysis by conducting an identifiability analysis of Boolean models of genetic pathways, comparing static and dynamic approaches. We find that even relatively simple input dynamics greatly increases the power of epistasis analysis to discriminate alternative network structures. Further, we explore the question of experiment design, and show that a subset of short time-varying signals, which we call dynamic primitives, allow maximum discriminative power with a reduced number of experiments.

  13. Dynamic statistical optimization of GNSS radio occultation bending angles: advanced algorithm and performance analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-08-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS)-based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAllenging Minisatellite Payload (CHAMP) and Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC) measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction of random errors (standard deviations) of optimized bending angles down to about half of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; and (4) realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well-characterized and high-quality atmospheric profiles over the entire stratosphere.

  14. Dynamic statistical optimization of GNSS radio occultation bending angles: an advanced algorithm and its performance analysis

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kirchengast, G.; Scherllin-Pirscher, B.; Norman, R.; Yuan, Y. B.; Fritzer, J.; Schwaerz, M.; Zhang, K.

    2015-01-01

    We introduce a new dynamic statistical optimization algorithm to initialize ionosphere-corrected bending angles of Global Navigation Satellite System (GNSS) based radio occultation (RO) measurements. The new algorithm estimates background and observation error covariance matrices with geographically-varying uncertainty profiles and realistic global-mean correlation matrices. The error covariance matrices estimated by the new approach are more accurate and realistic than in simplified existing approaches and can therefore be used in statistical optimization to provide optimal bending angle profiles for high-altitude initialization of the subsequent Abel transform retrieval of refractivity. The new algorithm is evaluated against the existing Wegener Center Occultation Processing System version 5.6 (OPSv5.6) algorithm, using simulated data on two test days from January and July 2008 and real observed CHAMP and COSMIC measurements from the complete months of January and July 2008. The following is achieved for the new method's performance compared to OPSv5.6: (1) significant reduction in random errors (standard deviations) of optimized bending angles down to about two-thirds of their size or more; (2) reduction of the systematic differences in optimized bending angles for simulated MetOp data; (3) improved retrieval of refractivity and temperature profiles; (4) produces realistically estimated global-mean correlation matrices and realistic uncertainty fields for the background and observations. Overall the results indicate high suitability for employing the new dynamic approach in the processing of long-term RO data into a reference climate record, leading to well characterized and high-quality atmospheric profiles over the entire stratosphere.

  15. Analysis of the effect of swimmer's head position on swimming performance using computational fluid dynamics.

    PubMed

    Zaïdi, H; Taïar, R; Fohanno, S; Polidori, G

    2008-01-01

    The aim of this numerical work is to analyze the effect of the position of the swimmer's head on the hydrodynamic performances in swimming. In this initial study, the problem was modeled as 2D and in steady hydrodynamic state. The geometry is generated by the CAD software CATIA and the numerical simulation is carried out by the use of the CFD Fluent code. The standard k-epsilon turbulence model is used with a specific wall law. Three positions of the head were studied, for a range of Reynolds numbers about 10(6). The obtained numerical results revealed that the position of the head had a noticeable effect on the hydrodynamic performances, strongly modifying the wake around the swimmer. The analysis of these results made it possible to propose an optimal position of the head of a swimmer in underwater swimming.

  16. Improved Dynamic Modeling of the Cascade Distillation Subsystem and Analysis of Factors Affecting Its Performance

    NASA Technical Reports Server (NTRS)

    Perry, Bruce A.; Anderson, Molly S.

    2015-01-01

    The Cascade Distillation Subsystem (CDS) is a rotary multistage distiller being developed to serve as the primary processor for wastewater recovery during long-duration space missions. The CDS could be integrated with a system similar to the International Space Station Water Processor Assembly to form a complete water recovery system for future missions. A preliminary chemical process simulation was previously developed using Aspen Custom Modeler® (ACM), but it could not simulate thermal startup and lacked detailed analysis of several key internal processes, including heat transfer between stages. This paper describes modifications to the ACM simulation of the CDS that improve its capabilities and the accuracy of its predictions. Notably, the modified version can be used to model thermal startup and predicts the total energy consumption of the CDS. The simulation has been validated for both NaC1 solution and pretreated urine feeds and no longer requires retuning when operating parameters change. The simulation was also used to predict how internal processes and operating conditions of the CDS affect its performance. In particular, it is shown that the coefficient of performance of the thermoelectric heat pump used to provide heating and cooling for the CDS is the largest factor in determining CDS efficiency. Intrastage heat transfer affects CDS performance indirectly through effects on the coefficient of performance.

  17. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems

    SciTech Connect

    Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.

    2016-06-17

    An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified with the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.

  18. Modeling, control, and dynamic performance analysis of a reverse osmosis desalination plant integrated within hybrid energy systems

    DOE PAGES

    Kim, Jong Suk; Chen, Jun; Garcia, Humberto E.

    2016-06-17

    An RO (reverse osmosis) desalination plant is proposed as an effective, FLR (flexible load resource) to be integrated into HES (hybrid energy systems) to support various types of ancillary services to the electric grid, under variable operating conditions. To study the dynamic (transient) analysis of such system, among the various unit operations within HES, special attention is given here to the detailed dynamic modeling and control design of RO desalination process with a spiral-wound membrane module. The model incorporates key physical phenomena that have been investigated individually into a dynamic integrated model framework. In particular, the solution-diffusion model modified withmore » the concentration polarization theory is applied to predict RO performance over a large range of operating conditions. Simulation results involving several case studies suggest that an RO desalination plant, acting as a FLR, can provide operational flexibility to participate in energy management at the utility scale by dynamically optimizing the use of excess electrical energy. Here, the incorporation of additional commodity (fresh water) produced from a FLR allows a broader range of HES operations for maximizing overall system performance and profitability. For the purpose of assessing the incorporation of health assessment into process operations, an online condition monitoring approach for RO membrane fouling supervision is addressed in the case study presented.« less

  19. Threshold-based queuing system for performance analysis of cloud computing system with dynamic scaling

    SciTech Connect

    Shorgin, Sergey Ya.; Pechinkin, Alexander V.; Samouylov, Konstantin E.; Gaidamaka, Yuliya V.; Gudkova, Irina A.; Sopin, Eduard S.

    2015-03-10

    Cloud computing is promising technology to manage and improve utilization of computing center resources to deliver various computing and IT services. For the purpose of energy saving there is no need to unnecessarily operate many servers under light loads, and they are switched off. On the other hand, some servers should be switched on in heavy load cases to prevent very long delays. Thus, waiting times and system operating cost can be maintained on acceptable level by dynamically adding or removing servers. One more fact that should be taken into account is significant server setup costs and activation times. For better energy efficiency, cloud computing system should not react on instantaneous increase or instantaneous decrease of load. That is the main motivation for using queuing systems with hysteresis for cloud computing system modelling. In the paper, we provide a model of cloud computing system in terms of multiple server threshold-based infinite capacity queuing system with hysteresis and noninstantanuous server activation. For proposed model, we develop a method for computing steady-state probabilities that allow to estimate a number of performance measures.

  20. Dynamical analysis and performance evaluation of a biped robot under multi-source random disturbances

    NASA Astrophysics Data System (ADS)

    Gan, Chun-Biao; Ding, Chang-Tao; Yang, Shi-Xi

    2014-12-01

    During bipedal walking, it is critical to detect and adjust the robot postures by feedback control to maintain its normal state amidst multi-source random disturbances arising from some unavoidable uncertain factors. The radical basis function (RBF) neural network model of a five-link biped robot is established, and two certain disturbances and a randomly uncertain disturbance are then mixed with the optimal torques in the network model to study the performance of the biped robot by several evaluation indices and a specific Poincaré map. In contrast with the simulations, the response varies as desired under optimal inputting while the output is fluctuating in the situation of disturbance driving. Simulation results from noise inputting also show that the dynamics of the robot is less sensitive to the disturbance of knee joint input of the swing leg than those of the other three joints, the response errors of the biped will be increasing with higher disturbance levels, and especially there are larger output fluctuations in the knee and hip joints of the swing leg.

  1. Energy Performance Analysis of Pelotint Dynamic Sun Responsive Thermochromic (SRT) Windows

    NASA Astrophysics Data System (ADS)

    Surel, Ali

    This study presents the energy performance test results of the Pleotint Sun Responsive Thermochromic (SRT) windows by using the Iowa Energy Center Energy Resource Station (ERS) test systems and data acquisition resources. The data includes experimental test results by using the ERS test, instrumentation and data acquisition resources. The experimental procedures were conducted under controlled environments. The controlled environments consists of test rooms, office space, air handling units and air cooled chillers. The weather data were also collected at the facility and used for both experimental and simulation test procedures. The experimental performance results presented in this thesis for the SRT windows include the analysis of natural gas and electricity energy use for heating loads, cooling loads, pump energy, fan energy and lighting energy at the test room level. Considering energy efficiency, the results of this study show that Pleotint SRT window technology can save more energy compared to Low-E dark tinted performance windows while still satisfying comfort level requirements. The results of the study show that most of the energy savings were from lighting energy compared to cooling and heating loads.

  2. Analysis and Evaluation of the Dynamic Performance of SMA Actuators for Prosthetic Hand Design

    NASA Astrophysics Data System (ADS)

    O'Toole, Kevin T.; McGrath, Mark M.; Coyle, Eugene

    2009-08-01

    It is widely acknowledged within the biomedical engineering community that shape memory alloys (SMAs) exhibit great potential for application in the actuation of upper limb prosthesis designs. These lightweight actuators are particularly suitable for prosthetic hand solutions. A four-fingered, 12 degree-of-freedom prosthetic hand has been developed featuring SMA bundle actuators embedded within the palmar structure. Joule heating of the SMA bundle actuators generates sufficient torque at the fingers to allow a wide range of everyday tasks to be carried out. Transient characterization of SMA bundles has shown that performance/response during heating and cooling differs substantially. Natural convection is insufficient to provide for adequate cooling during elongation of the actuators. An experimental test-bed has been developed to facilitate analysis of the heat transfer characteristics of the appropriately sized SMA bundle actuators for use within the prosthetic hand design. Various modes of heat sinking are evaluated so that the most effective wire-cooling solution can be ascertained. SMA bundles of varying size will be used so that a generalized model of the SMA displacement performance under natural and forced cooling conditions can be obtained. The optimum cooling solution will be implemented onto the mechanical hand framework in future work. These results, coupled with phenomenological models of SMA behavior, will be used in the development of an effective control strategy for this application in future work.

  3. Analysis of dynamic interaction between catenary and pantograph with experimental verification and performance evaluation in new high-speed line

    NASA Astrophysics Data System (ADS)

    Lee, Jin Hee; Park, Tae Won; Oh, Hyuck Keun; Kim, Young Guk

    2015-08-01

    Understanding the dynamic interaction between the catenary and pantograph of a high-speed train is the one of the most important technical issues in the railway industry. This is because the catenary-pantograph system plays a crucial role in providing electric power to the railway vehicle for stable operation. The aim of the present paper is to estimate the current-collection performance of this system by using numerical analysis, in particular, the flexible multibody dynamic analysis technique. To implement large deformable catenary wires, an absolute nodal coordinate formulation is used for the cable element. Additionally, an efficient contact element and an interactive model for the catenary-pantograph system are introduced. Each developed model is then used for analytical and experimental verification. Actual on-line test results of existing high-speed railway vehicles are presented and used to verify the analysis model. Finally, the performance characteristics of a new 400 km/h-class high-speed line are estimated and evaluated on the basis of international standards.

  4. Finite element analysis of thermal distortion effects on optical performance of solar dynamic concentrator for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; Dalsania, Vithal

    1990-01-01

    An analysis was performed to predict the thermal distortion of the solar dynamic concentrator for Space Station Freedom in low earth orbit and to evaluate the effects of that thermal distortion on concentrator on-orbit performance. The analysis required substructural finite element modeling of critical concentrator structural subsystems, structural finite element modeling of the concentrator, mapping of thermal loading onto the structural finite element model, and the creation of specialized postprocessors to assist in interpreting results. Concentrator temperature distributions and thermally induced displacements and slope errors and the resulting receiver flux distribution profiles are discussed. Results determined for a typical orbit indicate that concentrator facet rotations are less than 0.2 mrad and that the change in facet radius due to thermal flattening is less than 5 percent. The predicted power loss due to thermal distortion effects is less than 0.3 percent. As a consequence the thermal distortions of the solar dynamic concentrator in low earth orbit will have a negligible effect on the flux distribution profiles within the receiver.

  5. Job Performance as Multivariate Dynamic Criteria: Experience Sampling and Multiway Component Analysis

    ERIC Educational Resources Information Center

    Spain, Seth M.; Miner, Andrew G.; Kroonenberg, Pieter M.; Drasgow, Fritz

    2010-01-01

    Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of…

  6. Job Performance as Multivariate Dynamic Criteria: Experience Sampling and Multiway Component Analysis

    ERIC Educational Resources Information Center

    Spain, Seth M.; Miner, Andrew G.; Kroonenberg, Pieter M.; Drasgow, Fritz

    2010-01-01

    Questions about the dynamic processes that drive behavior at work have been the focus of increasing attention in recent years. Models describing behavior at work and research on momentary behavior indicate that substantial variation exists within individuals. This article examines the rationale behind this body of work and explores a method of…

  7. Experimental Testing and Computational Fluid Dynamics Simulation of Maple Seeds and Performance Analysis as a Wind Turbine

    NASA Astrophysics Data System (ADS)

    Holden, Jacob R.

    Descending maple seeds generate lift to slow their fall and remain aloft in a blowing wind; have the wings of these seeds evolved to descend as slowly as possible? A unique energy balance equation, experimental data, and computational fluid dynamics simulations have all been developed to explore this question from a turbomachinery perspective. The computational fluid dynamics in this work is the first to be performed in the relative reference frame. Maple seed performance has been analyzed for the first time based on principles of wind turbine analysis. Application of the Betz Limit and one-dimensional momentum theory allowed for empirical and computational power and thrust coefficients to be computed for maple seeds. It has been determined that the investigated species of maple seeds perform near the Betz limit for power conversion and thrust coefficient. The power coefficient for a maple seed is found to be in the range of 48-54% and the thrust coefficient in the range of 66-84%. From Betz theory, the stream tube area expansion of the maple seed is necessary for power extraction. Further investigation of computational solutions and mechanical analysis find three key reasons for high maple seed performance. First, the area expansion is driven by maple seed lift generation changing the fluid momentum and requiring area to increase. Second, radial flow along the seed surface is promoted by a sustained leading edge vortex that centrifuges low momentum fluid outward. Finally, the area expansion is also driven by the spanwise area variation of the maple seed imparting a radial force on the flow. These mechanisms result in a highly effective device for the purpose of seed dispersal. However, the maple seed also provides insight into fundamental questions about how turbines can most effectively change the momentum of moving fluids in order to extract useful power or dissipate kinetic energy.

  8. Team performance and collective efficacy in the dynamic psychology of competitive team: a Bayesian network analysis.

    PubMed

    Fuster-Parra, P; García-Mas, A; Ponseti, F J; Leo, F M

    2015-04-01

    The purpose of this paper was to discover the relationships among 22 relevant psychological features in semi-professional football players in order to study team's performance and collective efficacy via a Bayesian network (BN). The paper includes optimization of team's performance and collective efficacy using intercausal reasoning pattern which constitutes a very common pattern in human reasoning. The BN is used to make inferences regarding our problem, and therefore we obtain some conclusions; among them: maximizing the team's performance causes a decrease in collective efficacy and when team's performance achieves the minimum value it causes an increase in moderate/high values of collective efficacy. Similarly, we may reason optimizing team collective efficacy instead. It also allows us to determine the features that have the strongest influence on performance and which on collective efficacy. From the BN two different coaching styles were differentiated taking into account the local Markov property: training leadership and autocratic leadership. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Information Systems, Competitive Dynamics, and Firm Performance: An Interpretive and Centering Resonance Analysis

    ERIC Educational Resources Information Center

    Vannoy, Sandra A.

    2010-01-01

    This dissertation examines, from a managerial interpretive perspective, how information systems contribute to firms' specific competitive actions and responses, and the resultant impacts upon firm performance. The findings from this research suggest that the answer may well lie within the role of information systems in firms' competitive dynamics…

  10. Information Systems, Competitive Dynamics, and Firm Performance: An Interpretive and Centering Resonance Analysis

    ERIC Educational Resources Information Center

    Vannoy, Sandra A.

    2010-01-01

    This dissertation examines, from a managerial interpretive perspective, how information systems contribute to firms' specific competitive actions and responses, and the resultant impacts upon firm performance. The findings from this research suggest that the answer may well lie within the role of information systems in firms' competitive dynamics…

  11. Dynamic information flow analysis in Vascular Dementia patients during the performance of a visual oddball task.

    PubMed

    Wang, Chao; Xu, Jin; Lou, Wutao; Zhao, Songzhen

    2014-09-19

    This study investigated the information flow in patients with Vascular Dementia (VaD). Twelve VaD patients and twelve age-matched controls participated in the study. EEG signal was recorded when subjects were performing a visual oddball task. Information flow was analyzed between 9 electrodes in frontal, central, and parietal lobes using short-window Directed Transfer Function (sDTF). VaD patients presented a significant decline in the information flow from parietal to frontal and central lobes, compared with the healthy elderly. This decline mainly occurred in delta, theta, and lower alpha bands, from about 200ms to 300ms after target stimulus onset. The findings indicated an impaired parietal-to-frontal and parietal-to-central connectivity in VaD patients, which may be one reason for the cognitive deficits in VaD patients.

  12. HAWT performance with dynamic stall

    SciTech Connect

    Hibbs, B.D.

    1986-02-01

    In this report we calculated the effects of flow nonuniformities (wing shear, tower wake, yaw, and large-scale turbulence) on the performance of a horizontal axis wind turbine, accounting for dynamic stall. We modified the PROP program to incorporate and compare these effects with the uniform flow case. The MIT model, which predicts dynamic lift coefficients substantially higher than the static maximum values and includes a crude model of the vortex roll-off phenomenon, represented dynamic stall. As associated model for drag was also used. The dynamic stall model was tested against experimental data for three typical reduced frequencies. Good instantaneous correlation was obtained. The effects of nonuniformities with and without the dynamic stall were calculated using the Westinghouse Mod O and Enertech 44/25 turbines. Modeling the dynamic stall has little effect on performance. Furthermore, the performance with nonuniform flow differed only slightly from the uniform flow case. Thus the now PROP model provides a powerful general capability to handle nonuniform flows.

  13. Confinement Vessel Dynamic Analysis

    SciTech Connect

    R. Robert Stevens; Stephen P. Rojas

    1999-08-01

    A series of hydrodynamic and structural analyses of a spherical confinement vessel has been performed. The analyses used a hydrodynamic code to estimate the dynamic blast pressures at the vessel's internal surfaces caused by the detonation of a mass of high explosive, then used those blast pressures as applied loads in an explicit finite element model to simulate the vessel's structural response. Numerous load cases were considered. Particular attention was paid to the bolted port connections and the O-ring pressure seals. The analysis methods and results are discussed, and comparisons to experimental results are made.

  14. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller.

    PubMed

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; Del Toro Matamoros, Raúl M

    2016-05-12

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.

  15. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller †

    PubMed Central

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; del Toro Matamoros, Raúl M.

    2016-01-01

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value. PMID:27187397

  16. Performance analysis of slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in optical fibers

    NASA Astrophysics Data System (ADS)

    Tu, Xiaobo; Luo, Hong; Sun, Qiao; Hu, Xiaoyang; Meng, Zhou

    2015-10-01

    This paper analyzes the performance of the slope-assisted dynamic BOTDA based on Brillouin gain or phase-shift in an experiment. Dynamic strains with frequency of 60 Hz are successfully measured with an effective sensing rate of 1 kHz over a 46 m sensing fiber in both schemes. The dynamic ranges of these two schemes are measured to be about 47 MHz (940 μ \\varepsilon ), through dynamic strain measurements while linearly sweeping the work point. The optimum work point for Brillouin gain is theoretically and experimentally proved to be {ν }B+/- \\sqrt{3}{{Δ }}{ν }B/6, not {ν }B+/- {{Δ }}{ν }B/2 as commonly known, where {ν }B corresponds to the Brillouin frequency shift and {{Δ }}{ν }B is the Brillouin linewidth. The distortion factors are also measured to stay in a quite low level in the dynamic range. These results will provide guidelines for practical dynamic strain measurements and to further improve the performance of the slope-assisted BOTDA systems.

  17. Seismic performance evaluation of an historical concrete deck arch bridge using survey and drawing of the damages, in situ tests, dynamic identification and pushover analysis

    NASA Astrophysics Data System (ADS)

    Bergamo, Otello; Russo, Eleonora; Lodolo, Fabio

    2017-07-01

    The paper describes the performance evaluation of a retrofit historical multi-span (RC) deck arch bridge analyzed with in situ tests, dynamic identification and FEM analysis. The peculiarity of this case study lies in the structural typology of "San Felice" bridge, an historical concrete arch bridge built in the early 20th century, a quite uncommon feature in Italy. The preservation and retrofit of historic cultural heritage and infrastructures has been carefully analyzed in the international codes governing seismic response. A complete survey of the bridge was carried out prior to sketching a drawing of the existing bridge. Subsequently, the study consists in four steps: material investigation and dynamic vibration tests, FEM analysis and calibration, retrofit assessment, pushover analysis. The aim is to define an innovative approach to calibrate the FEM analysis through modern experimental investigations capable of taking structural deterioration into account, and to offer an appropriate and cost-effective retrofitting strategy.

  18. Performance Analysis of Global Navigation Satellite System Signal Acquisition Aided by Different Grade Inertial Navigation System under Highly Dynamic Conditions

    PubMed Central

    Zhang, Chunxi; Li, Xianmu; Gao, Shuang; Lin, Tie; Wang, Lu

    2017-01-01

    Under the high dynamic conditions, Global Navigation Satellite System (GNSS) signals produce great Doppler frequency shifts, which hinders the fast acquisition of signals. Inertial Navigation System (INS)-aided acquisition can improve the acquisition performance, whereas the accuracy of Doppler shift and code phase estimation are mainly determined by the INS precision. The relation between the INS accuracy and Doppler shift estimation error has been derived, while the relation between the INS accuracy and code phase estimation error has not been deduced. In this paper, in order to theoretically analyze the effects of INS errors on the performance of Doppler shift and code phase estimations, the connections between them are re-deduced. Moreover, the curves of the corresponding relations are given for the first time. Then, in order to have a better verification of the INS-aided acquisition, a high dynamic scenario is designed. Furthermore, by using the deduced mathematical relation, the effects of different grade INS on the GNSS (including Global Positioning System (GPS) and BeiDou Navigation Satellite System (BDS)) signal acquisition are analyzed. Experimental results demonstrate that the INS-aided acquisition can reduce the search range of local frequency and code phase, and achieve fast acquisition. According to the experimental results, a suitable INS can be chosen for the deeply coupled integration. PMID:28452933

  19. Flight Dynamics Analysis Branch

    NASA Technical Reports Server (NTRS)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  20. Computational Fluid Dynamics Analysis of Blade Tip Clearances on Hemodynamic Performance and Blood Damage in a Centrifugal Ventricular Assist Device

    PubMed Central

    Wu, Jingchun; Paden, Bradley E.; Borovetz, Harvey S.; Antaki, James F.

    2011-01-01

    An important challenge facing the design of turbodynamic ventricular assist devices (VADs) intended for long-term support is the optimization of the flow path geometry to maximize hydraulic performance while minimizing shear-stress-induced hemolysis and thrombosis. For unshrouded centrifugal, mixed-flow and axial-flow blood pumps, the complex flow patterns within the blade tip clearance between the lengthwise upper surface of the rotating impeller blades and the stationary pump housing have a dramatic effect on both the hydrodynamic performance and the blood damage production. Detailed computational fluid dynamics (CFD) analyses were performed in this study to investigate such flow behavior in blade tip clearance region for a centrifugal blood pump representing a scaled-up version of a prototype pediatric VAD. Nominal flow conditions were analyzed at a flow rate of 2.5 L/min and rotor speed of 3000 rpm with three blade tip clearances of 50, 100, and 200 μm. CFD simulations predicted a decrease in the averaged tip leakage flow rate and an increase in pump head and axial thrust with decreasing blade tip clearances from 200 to 50 μm. The predicted hemolysis, however, exhibited a unimodal relationship, having a minimum at 100 μm compared to 50 μm and 200 μm. Experimental data corroborate these predictions. Detailed flow patterns observed in this study revealed interesting fluid dynamic features associated with the blade tip clearances, such as the generation and dissipation of tip leakage vortex and its interaction with the primary flow in the blade-blade passages. Quantitative calculations suggested the existence of an optimal blade tip clearance by which hydraulic efficiency can be maximized and hemolysis minimized. PMID:19832736

  1. Computational fluid dynamics analysis of blade tip clearances on hemodynamic performance and blood damage in a centrifugal ventricular assist device.

    PubMed

    Wu, Jingchun; Paden, Bradley E; Borovetz, Harvey S; Antaki, James F

    2010-05-01

    An important challenge facing the design of turbodynamic ventricular assist devices (VADs) intended for long-term support is the optimization of the flow path geometry to maximize hydraulic performance while minimizing shear-stress-induced hemolysis and thrombosis. For unshrouded centrifugal, mixed-flow and axial-flow blood pumps, the complex flow patterns within the blade tip clearance between the lengthwise upper surface of the rotating impeller blades and the stationary pump housing have a dramatic effect on both the hydrodynamic performance and the blood damage production. Detailed computational fluid dynamics (CFD) analyses were performed in this study to investigate such flow behavior in blade tip clearance region for a centrifugal blood pump representing a scaled-up version of a prototype pediatric VAD. Nominal flow conditions were analyzed at a flow rate of 2.5 L/min and rotor speed of 3000 rpm with three blade tip clearances of 50, 100, and 200 microm. CFD simulations predicted a decrease in the averaged tip leakage flow rate and an increase in pump head and axial thrust with decreasing blade tip clearances from 200 to 50 microm. The predicted hemolysis, however, exhibited a unimodal relationship, having a minimum at 100 microm compared to 50 microm and 200 microm. Experimental data corroborate these predictions. Detailed flow patterns observed in this study revealed interesting fluid dynamic features associated with the blade tip clearances, such as the generation and dissipation of tip leakage vortex and its interaction with the primary flow in the blade-blade passages. Quantitative calculations suggested the existence of an optimal blade tip clearance by which hydraulic efficiency can be maximized and hemolysis minimized.

  2. Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches.

    PubMed

    Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Carmeliet, Jan

    2010-08-26

    This study aims at assessing the accuracy of computational fluid dynamics (CFD) for applications in sports aerodynamics, for example for drag predictions of swimmers, cyclists or skiers, by evaluating the applied numerical modelling techniques by means of detailed validation experiments. In this study, a wind-tunnel experiment on a scale model of a cyclist (scale 1:2) is presented. Apart from three-component forces and moments, also high-resolution surface pressure measurements on the scale model's surface, i.e. at 115 locations, are performed to provide detailed information on the flow field. These data are used to compare the performance of different turbulence-modelling techniques, such as steady Reynolds-averaged Navier-Stokes (RANS), with several k-epsilon and k-omega turbulence models, and unsteady large-eddy simulation (LES), and also boundary-layer modelling techniques, namely wall functions and low-Reynolds number modelling (LRNM). The commercial CFD code Fluent 6.3 is used for the simulations. The RANS shear-stress transport (SST) k-omega model shows the best overall performance, followed by the more computationally expensive LES. Furthermore, LRNM is clearly preferred over wall functions to model the boundary layer. This study showed that there are more accurate alternatives for evaluating flow around bluff bodies with CFD than the standard k-epsilon model combined with wall functions, which is often used in CFD studies in sports.

  3. A computer program to perform dynamic thermal analysis for bare overhead conductors during short-time overload conditions

    SciTech Connect

    Shrestha, P.; Pham, K.

    1995-12-31

    Under emergency conditions, a bare overhead conductor can carry an increased amount of current that is well in excess of its normal rating. When there is this increase in current flow on a bare overhead conductor, the temperature does not rise instantaneously. but increases along a curve determined by the current, the conductor properties and the ambient conditions. The conductor temperature at the end of a short-time overload period must be restricted to its maximum design value. This paper presents a simplified approach in analyzing the dynamic performance for bare overhead conductors during short-time overload condition. A computer program was developed to calculate the short-time ratings for bare overhead conductors. The following parameters: current induced heating. solar load, convective/conductive cooling, radiative cooling, altitude, wind velocity and ampacity of the bare conductor were considered. Several sample graphical output lots are included with the paper.

  4. Analysis of the gas-dynamic performance of a vaned diffuser with given velocity distribution along the vane's surfaces

    NASA Astrophysics Data System (ADS)

    Kalinkevych, M.; Obukhov, O.; Obukhova, O.; Miroshnychenko, A.

    2015-08-01

    Extension of the effective range of vaned diffusers is one of the promising ways to improve the centrifugal compressor's stages which are used in numerous fields of industry. The new method of profiling of the diffuser vanes has been developed using Stratford's results and boundary layer theory by Loytsanskiy. The developed method is based on the solution of the inverse task of gas-dynamic using given velocity distribution along the vane's surface. Comparison of the results of numerical simulations for different diffusers has shown that the performance of the diffuser designed with the resulting velocity distribution are better. Influence of the vane profile, number of the vanes, diffuser outlet diameter and the diffuser width on diffuser characteristics has been investigated. The results of the simulations have been used to formulate recommendations on the design of high-effectiveness vaned diffusers for centrifugal stages of different types.

  5. Structural dynamics analysis

    NASA Astrophysics Data System (ADS)

    Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.

    1985-04-01

    Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.

  6. Structural dynamics analysis

    NASA Technical Reports Server (NTRS)

    Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.

    1985-01-01

    Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.

  7. Dependability and Performability Analysis

    DTIC Science & Technology

    1993-11-01

    NASA Contractor Report 191565 ICASE Report No. 93-85 (0) ii ICASE U DEPENDABILITY AND PERFORMABILITY ANALYSIS Kishor S. Trivedi Gianfranco Ciardo...PERFORMABILITY ANALYSIS1 Kishor S. Trivedi Gianfranco Ciardo Manish Malhotra Robin A. Sahner Department of Electrical Engineering, Duke University...Trivedi, Gianfranco Ci&rdo, Manish Maihotra, and Robin A. Sahner 7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION Institute

  8. Dynamic Contingency Analysis Tool

    SciTech Connect

    2016-01-14

    The Dynamic Contingency Analysis Tool (DCAT) is an open-platform and publicly available methodology to help develop applications that aim to improve the capabilities of power system planning engineers to assess the impact and likelihood of extreme contingencies and potential cascading events across their systems and interconnections. Outputs from the DCAT will help find mitigation solutions to reduce the risk of cascading outages in technically sound and effective ways. The current prototype DCAT implementation has been developed as a Python code that accesses the simulation functions of the Siemens PSS/E planning tool (PSS/E). It has the following features: It uses a hybrid dynamic and steady-state approach to simulating the cascading outage sequences that includes fast dynamic and slower steady-state events. It integrates dynamic models with protection scheme models for generation, transmission, and load. It models special protection systems (SPSs)/remedial action schemes (RASs) and automatic and manual corrective actions. Overall, the DCAT attempts to bridge multiple gaps in cascading-outage analysis in a single, unique prototype tool capable of automatically simulating and analyzing cascading sequences in real systems using multiprocessor computers.While the DCAT has been implemented using PSS/E in Phase I of the study, other commercial software packages with similar capabilities can be used within the DCAT framework.

  9. Motorcycle dynamics by multibody dynamics analysis

    SciTech Connect

    Imaizumi, Hirohide; Fujioka, Takehiko

    1995-12-31

    The purpose of this paper is to construct simulation models of a motorcycle with a rider by use of multibody dynamics analysis (MDA). Three types of MDA models are developed for evaluation of the effectiveness of MDA for motorcycle dynamics. Impulse responses with parameter study and lane change maneuvers are calculated. The results of simulations agree with that of experiments well and effectiveness of MDA to the motorcycle dynamics field is shown.

  10. A Sit-to-Stand Training Robot and Its Performance Evaluation: Dynamic Analysis in Lower Limb Rehabilitation Activities

    NASA Astrophysics Data System (ADS)

    Cao, Enguo; Inoue, Yoshio; Liu, Tao; Shibata, Kyoko

    In many countries in which the phenomenon of population aging is being experienced, motor function recovery activities have aroused much interest. In this paper, a sit-to-stand rehabilitation robot utilizing a double-rope system was developed, and the performance of the robot was evaluated by analyzing the dynamic parameters of human lower limbs. For the robot control program, an impedance control method with a training game was developed to increase the effectiveness and frequency of rehabilitation activities, and a calculation method was developed for evaluating the joint moments of hip, knee, and ankle. Test experiments were designed, and four subjects were requested to stand up from a chair with assistance from the rehabilitation robot. In the experiments, body segment rotational angles, trunk movement trajectories, rope tensile forces, ground reaction forces (GRF) and centers of pressure (COP) were measured by sensors, and the moments of ankle, knee and hip joint were real-time calculated using the sensor-measured data. The experiment results showed that the sit-to-stand rehabilitation robot with impedance control method could maintain the comfortable training postures of users, decrease the moments of limb joints, and enhance training effectiveness. Furthermore, the game control method could encourage collaboration between the brain and limbs, and allow for an increase in the frequency and intensity of rehabilitation activities.

  11. Performance Support for Performance Analysis

    ERIC Educational Resources Information Center

    Schaffer, Scott; Douglas, Ian

    2004-01-01

    Over the past several years, there has been a shift in emphasis in many business, industry, government and military training organizations toward human performance technology or HPT (Rossett, 2002; Dean, 1995). This trend has required organizations to increase the human performance knowledge, skills, and abilities of the training workforce.…

  12. Variable Dynamic Testbed Vehicle: Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Lee, A. Y.; Le, N. T.; Marriott, A. T.

    1997-01-01

    The Variable Dynamic Testbed Vehicle (VDTV) concept has been proposed as a tool to evaluate collision avoidance systems and to perform driving-related human factors research. The goal of this study is to analytically investigate to what extent a VDTV with adjustable front and rear anti-roll bar stiffnesses, programmable damping rates, and four-wheel-steering can emulate the lateral dynamics of a broad range of passenger vehicles.

  13. Variable Dynamic Testbed Vehicle: Dynamics Analysis

    NASA Technical Reports Server (NTRS)

    Lee, A. Y.; Le, N. T.; Marriott, A. T.

    1997-01-01

    The Variable Dynamic Testbed Vehicle (VDTV) concept has been proposed as a tool to evaluate collision avoidance systems and to perform driving-related human factors research. The goal of this study is to analytically investigate to what extent a VDTV with adjustable front and rear anti-roll bar stiffnesses, programmable damping rates, and four-wheel-steering can emulate the lateral dynamics of a broad range of passenger vehicles.

  14. A simplified method in comparison with comprehensive interaction incremental dynamic analysis to assess seismic performance of jacket-type offshore platforms

    NASA Astrophysics Data System (ADS)

    Zolfaghari, M. R.; Ajamy, A.; Asgarian, B.

    2015-12-01

    The primary goal of seismic reassessment procedures in oil platform codes is to determine the reliability of a platform under extreme earthquake loading. Therefore, in this paper, a simplified method is proposed to assess seismic performance of existing jacket-type offshore platforms (JTOP) in regions ranging from near-elastic to global collapse. The simplified method curve exploits well agreement between static pushover (SPO) curve and the entire summarized interaction incremental dynamic analysis (CI-IDA) curve of the platform. Although the CI-IDA method offers better understanding and better modelling of the phenomenon, it is a time-consuming and challenging task. To overcome the challenges, the simplified procedure, a fast and accurate approach, is introduced based on SPO analysis. Then, an existing JTOP in the Persian Gulf is presented to illustrate the procedure, and finally a comparison is made between the simplified method and CI-IDA results. The simplified method is very informative and practical for current engineering purposes. It is able to predict seismic performance elasticity to global dynamic instability with reasonable accuracy and little computational effort.

  15. DIDA - Dynamic Image Disparity Analysis.

    DTIC Science & Technology

    1982-12-31

    Understanding, Dynamic Image Analysis , Disparity Analysis, Optical Flow, Real-Time Processing ___ 20. ABSTRACT (Continue on revere side If necessary aid identify...three aspects of dynamic image analysis must be studied: effectiveness, generality, and efficiency. In addition, efforts must be made to understand the...environment. A better understanding of the need for these Limiting constraints is required. Efficiency is obviously important if dynamic image analysis is

  16. Flexible rotor dynamics analysis

    NASA Technical Reports Server (NTRS)

    Shen, F. A.

    1973-01-01

    A digital computer program was developed to analyze the general nonaxisymmetric and nonsynchronous transient and steady-state rotor dynamic performance of a bending- and shear-wise flexible rotor-bearing system under various operating conditions. The effects of rotor material mechanical hysteresis, rotor torsion flexibility, transverse effects of rotor axial and torsional loading and the anisotropic, in-phase and out-of-phase bearing stiffness and damping force and moment coefficients were included in the program to broaden its capability. An optimum solution method was found and incorporated in the computer program. Computer simulation of experimental data was made and qualitative agreements observed. The mathematical formulations, computer program verification, test data simulation, and user instruction was presented and discussed.

  17. Local dynamic mechanical analysis.

    PubMed

    Foschia, Raphael; Jobin, Marc; Hengsberger, Stefan

    2009-01-01

    While new materials with tailored properties appear every day, the need of appropriate characterization tools is still an important concern. Analyses of thin films on thick substrate are often highly influenced by the substrate properties. A dynamical nanoindentation system has been designed and built through the integration of a nanoindenter head equipped with capacitive displacement sensing, scanning probe microscope with related XYZ scanning electronics and an additional transducer for sample actuation. Our Local-Dynamic Mechanical Analysis (L-DMA) setup allows for both, tip and sample modulation mode what somehow contrasts with commercially available systems. This issue allows for direct comparison between both techniques and therefore for consistent quantitative mechanical measurements. The system offers two distinctive measurement techniques, local mechanical spectroscopy and mechanical imaging modes. Bulk materials as well as thin films of ceramics and polymers have been used for testing and validating the setup. The instrument has been modeled in sample modulation mode and experimental results obtained for different materials were compared with simulation data.

  18. Dynamic analysis for the global performance of an SPM-feeder-cage system under waves and currents

    NASA Astrophysics Data System (ADS)

    Cifuentes, Cristian; Kim, M. H.

    2015-06-01

    In the present study, the dynamic response of a coupled SPM-feeder-cage system under irregular waves and shear currents is analyzed. A numerical model is developed by using the commercial software OrcaFlex. Hydrodynamics coefficients of the vessel are calculated by using a 3D diffraction/radiation panel program. First- and second-order wave forces are included in the calculations. Morison equation is used to compute the drag force on line elements representing the net. Drag coefficients are determined at every time step in the simulation considering the relative normal velocity between the structural elements and the fluid flow. The dynamic response of the coupled system is analyzed for various environments and net materials. The results of the study show the effects of solidity ratio of the net and vertical positions of the cage on the overall dynamic response of the system, confirming the viability of this type of configuration for future development of offshore aquaculture in deep waters.

  19. High performance computations using dynamical nucleation theory

    SciTech Connect

    Windus, Theresa L.; Kathmann, Shawn M.; Crosby, Lonnie D.

    2008-07-14

    Chemists continue to explore the use of very large computations to perform simulations that describe the molecular level physics of critical challenges in science. In this paper, the Dynamical Nucleation Theory Monte Carlo (DNTMC) model - a model for determining molecular scale nucleation rate constants - and its parallel capabilities are described. The potential for bottlenecks and the challenges to running on future petascale or larger resources are delineated. A "master-slave" solution is proposed to scale to the petascale and will be developed in the NWChem software. In addition, mathematical and data analysis challenges are also described. This work was supported by the U.S. Department of Energy's (DOE) Office of Basic Energy Sciences, Chemical Sciences program. The Pacific Northwest National Laboratory is operated by Battelle for DOE.

  20. Session 6: Dynamic Modeling and Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Chapman, Jeffryes; May, Ryan

    2013-01-01

    These presentations cover some of the ongoing work in dynamic modeling and dynamic systems analysis. The first presentation discusses dynamic systems analysis and how to integrate dynamic performance information into the systems analysis. The ability to evaluate the dynamic performance of an engine design may allow tradeoffs between the dynamic performance and operability of a design resulting in a more efficient engine design. The second presentation discusses the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS). T-MATS is a Simulation system with a library containing the basic building blocks that can be used to create dynamic Thermodynamic Systems. Some of the key features include Turbo machinery components, such as turbines, compressors, etc., and basic control system blocks. T-MAT is written in the Matlab-Simulink environment and is open source software. The third presentation focuses on getting additional performance from the engine by allowing the limit regulators only to be active when a limit is danger of being violated. Typical aircraft engine control architecture is based on MINMAX scheme, which is designed to keep engine operating within prescribed mechanical/operational safety limits. Using a conditionally active min-max limit regulator scheme, additional performance can be gained by disabling non-relevant limit regulators

  1. Stage Separation Performance Analysis Project

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Zhang, Sijun; Liu, Jiwen; Wang, Ten-See

    2001-01-01

    Stage separation process is an important phenomenon in multi-stage launch vehicle operation. The transient flowfield coupled with the multi-body systems is a challenging problem in design analysis. The thermodynamics environment with burning propellants during the upper-stage engine start in the separation processes adds to the complexity of the-entire system. Understanding the underlying flow physics and vehicle dynamics during stage separation is required in designing a multi-stage launch vehicle with good flight performance. A computational fluid dynamics model with the capability to coupling transient multi-body dynamics systems will be a useful tool for simulating the effects of transient flowfield, plume/jet heating and vehicle dynamics. A computational model using generalize mesh system will be used as the basis of this development. The multi-body dynamics system will be solved, by integrating a system of six-degree-of-freedom equations of motion with high accuracy. Multi-body mesh system and their interactions will be modeled using parallel computing algorithms. Adaptive mesh refinement method will also be employed to enhance solution accuracy in the transient process.

  2. Do the Dynamics of Prior Information Depend on Task Context? An Analysis of Optimal Performance and an Empirical Test

    PubMed Central

    van Ravenzwaaij, Don; Mulder, Martijn J.; Tuerlinckx, Francis; Wagenmakers, Eric-Jan

    2012-01-01

    In speeded two-choice tasks, optimal performance is prescribed by the drift diffusion model. In this model, prior information or advance knowledge about the correct response can manifest itself as a shift in starting point or as a shift in drift rate criterion. These two mechanisms lead to qualitatively different choice behavior. Analyses of optimal performance (i.e., Bogacz et al., 2006; Hanks et al., 2011) have suggested that bias should manifest itself in starting point when difficulty is fixed over trials, whereas bias should (additionally) manifest itself in drift rate criterion when difficulty is variable over trials. In this article, we challenge the claim that a shift in drift criterion is necessary to perform optimally in a biased decision environment with variable stimulus difficulty. This paper consists of two parts. Firstly, we demonstrate that optimal behavior for biased decision problems is prescribed by a shift in starting point, irrespective of variability in stimulus difficulty. Secondly, we present empirical data which show that decision makers do not adopt different strategies when dealing with bias in conditions of fixed or variable across-trial stimulus difficulty. We also perform a test of specific influence for drift rate variability. PMID:22615704

  3. Analysis of carbohydrates in drinks by high-performance liquid chromatography with a dynamically modified amino column and evaporative light scattering detection.

    PubMed

    Wei, Y; Ding, M Y

    2000-12-22

    A high-performance liquid chromatographic method with a dynamically modified amino column and evaporative light-scattering detector (ELSD) was established for the direct analysis of the carbohydrates in some drinks. A separation column (Zorbax Rx-SIL, 250 mm x 4.6 mm I.D., 5 microm, Hewlett-Packard, USA) which was modified by ethylenediamine and a guard column (Zorbax Rx-SIL, 12.5 mm x 4.6 mm I.D., 5 microm) were used. The mobile phase was a mixture of water-acetonitrile (1:2.6, v/v) containing 0.03% (v/v) ethylenediamine. Regression equations revealed linear relationship (correlation coefficients=0.996-0.999) between the mass of carbohydrates injected and the carbohydrates peak areas detected by ELSD. The detection limits of ELSD (S/N=3) were between 0.2 and 1.2 microg for different carbohydrates. This method is simple and sensitive.

  4. New paradigm for task switching strategies while performing multiple tasks: entropy and symbolic dynamics analysis of voluntary patterns.

    PubMed

    Guastello, Stephen J; Gorin, Hillary; Huschen, Samuel; Peters, Natalie E; Fabisch, Megan; Poston, Kirsten

    2012-10-01

    It has become well established in laboratory experiments that switching tasks, perhaps due to interruptions at work, incur costs in response time to complete the next task. Conditions are also known that exaggerate or lessen the switching costs. Although switching costs can contribute to fatigue, task switching can also be an adaptive response to fatigue. The present study introduces a new research paradigm for studying the emergence of voluntary task switching regimes, self-organizing processes therein, and the possibly conflicting roles of switching costs and minimum entropy. Fifty-four undergraduates performed 7 different computer-based cognitive tasks producing sets of 49 responses under instructional conditions requiring task quotas or no quotas. The sequences of task choices were analyzed using orbital decomposition to extract pattern types and lengths, which were then classified and compared with regard to Shannon entropy, topological entropy, number of task switches involved, and overall performance. Results indicated that similar but different patterns were generated under the two instructional conditions, and better performance was associated with lower topological entropy. Both entropy metrics were associated with the amount of voluntary task switching. Future research should explore conditions affecting the trade-off between switching costs and entropy, levels of automaticity between task elements, and the role of voluntary switching regimes on fatigue.

  5. MIR Performance Analysis

    SciTech Connect

    Hazen, Damian; Hick, Jason

    2012-06-12

    We provide analysis of Oracle StorageTek T10000 Generation B (T10KB) Media Information Record (MIR) Performance Data gathered over the course of a year from our production High Performance Storage System (HPSS). The analysis shows information in the MIR may be used to improve tape subsystem operations. Most notably, we found the MIR information to be helpful in determining whether the drive or tape was most suspect given a read or write error, and for helping identify which tapes should not be reused given their history of read or write errors. We also explored using the MIR Assisted Search to order file retrieval requests. We found that MIR Assisted Search may be used to reduce the time needed to retrieve collections of files from a tape volume.

  6. Performance Analysis of ToA-Based Positioning Algorithms for Static and Dynamic Targets with Low Ranging Measurements.

    PubMed

    Ferreira, André G; Fernandes, Duarte; Catarino, André P; Monteiro, João L

    2017-08-19

    Indoor Positioning Systems (IPSs) for emergency responders is a challenging field attracting researchers worldwide. When compared with traditional indoor positioning solutions, the IPSs for emergency responders stand out as they have to operate in harsh and unstructured environments. From the various technologies available for the localization process, ultra-wide band (UWB) is a promising technology for such systems due to its robust signaling in harsh environments, through-wall propagation and high-resolution ranging. However, during emergency responders' missions, the availability of UWB signals is generally low (the nodes have to be deployed as the emergency responders enter a building) and can be affected by the non-line-of-sight (NLOS) conditions. In this paper, the performance of four typical distance-based positioning algorithms (Analytical, Least Squares, Taylor Series, and Extended Kalman Filter methods) with only three ranging measurements is assessed based on a COTS UWB transceiver. These algorithms are compared based on accuracy, precision and root mean square error (RMSE). The algorithms were evaluated under two environments with different propagation conditions (an atrium and a lab), for static and mobile devices, and under the human body's influence. A NLOS identification and error mitigation algorithm was also used to improve the ranging measurements. The results show that the Extended Kalman Filter outperforms the other algorithms in almost every scenario, but it is affected by the low measurement rate of the UWB system.

  7. Performance Analysis of ToA-Based Positioning Algorithms for Static and Dynamic Targets with Low Ranging Measurements

    PubMed Central

    Fernandes, Duarte; Monteiro, João L.

    2017-01-01

    Indoor Positioning Systems (IPSs) for emergency responders is a challenging field attracting researchers worldwide. When compared with traditional indoor positioning solutions, the IPSs for emergency responders stand out as they have to operate in harsh and unstructured environments. From the various technologies available for the localization process, ultra-wide band (UWB) is a promising technology for such systems due to its robust signaling in harsh environments, through-wall propagation and high-resolution ranging. However, during emergency responders’ missions, the availability of UWB signals is generally low (the nodes have to be deployed as the emergency responders enter a building) and can be affected by the non-line-of-sight (NLOS) conditions. In this paper, the performance of four typical distance-based positioning algorithms (Analytical, Least Squares, Taylor Series, and Extended Kalman Filter methods) with only three ranging measurements is assessed based on a COTS UWB transceiver. These algorithms are compared based on accuracy, precision and root mean square error (RMSE). The algorithms were evaluated under two environments with different propagation conditions (an atrium and a lab), for static and mobile devices, and under the human body’s influence. A NLOS identification and error mitigation algorithm was also used to improve the ranging measurements. The results show that the Extended Kalman Filter outperforms the other algorithms in almost every scenario, but it is affected by the low measurement rate of the UWB system. PMID:28825624

  8. Operational Dynamic Configuration Analysis

    NASA Technical Reports Server (NTRS)

    Lai, Chok Fung; Zelinski, Shannon

    2010-01-01

    Sectors may combine or split within areas of specialization in response to changing traffic patterns. This method of managing capacity and controller workload could be made more flexible by dynamically modifying sector boundaries. Much work has been done on methods for dynamically creating new sector boundaries [1-5]. Many assessments of dynamic configuration methods assume the current day baseline configuration remains fixed [6-7]. A challenging question is how to select a dynamic configuration baseline to assess potential benefits of proposed dynamic configuration concepts. Bloem used operational sector reconfigurations as a baseline [8]. The main difficulty is that operational reconfiguration data is noisy. Reconfigurations often occur frequently to accommodate staff training or breaks, or to complete a more complicated reconfiguration through a rapid sequence of simpler reconfigurations. Gupta quantified a few aspects of airspace boundary changes from this data [9]. Most of these metrics are unique to sector combining operations and not applicable to more flexible dynamic configuration concepts. To better understand what sort of reconfigurations are acceptable or beneficial, more configuration change metrics should be developed and their distribution in current practice should be computed. This paper proposes a method to select a simple sequence of configurations among operational configurations to serve as a dynamic configuration baseline for future dynamic configuration concept assessments. New configuration change metrics are applied to the operational data to establish current day thresholds for these metrics. These thresholds are then corroborated, refined, or dismissed based on airspace practitioner feedback. The dynamic configuration baseline selection method uses a k-means clustering algorithm to select the sequence of configurations and trigger times from a given day of operational sector combination data. The clustering algorithm selects a simplified

  9. Bioreactor performance and quantitative analysis of methanogenic and bacterial community dynamics in microbial electrolysis cells during large temperature fluctuations.

    PubMed

    Lu, Lu; Xing, Defeng; Ren, Nanqi

    2012-06-19

    The use of microbial electrolysis cells (MECs) for H(2) production generally finds H(2) sink by undesirable methanogenesis at mesophilic temperatures. Previously reported approaches failed to effectively inhibit methanogenesis without the addition of nongreen chemical inhibitors. Here, we demonstrated that the CH(4) production and the number of methanogens in single-chamber MECs could be restricted steadily to a negligible level by continuously operating reactors at the relatively low temperature of 15 °C. This resulted in a H(2) yield and production rate comparable to those obtained at 30 °C with less CH(4) production (CH(4)% < 1%). However, this operation at 15 °C should be taken from the initial stage of anodic biofilm formation, when the methanogenic community has not yet been established sufficiently. Maintaining MECs operating at 20 °C was not effective for controlling methanogenesis. The varying degrees of methanogenesis observed in MECs at 30 °C could be completely inhibited at 4 and 9 °C, and the total number of methanogens (mainly hydrogenotrophic methanogens) could be reduced by 68-91% during 32-55 days of operation at the low temperatures. However, methanogens cannot be eliminated completely at these temperatures. After the temperature is returned to 30 °C, the CH(4) production and the number of total methanogens can rapidly rise to the prior levels. Analysis of bacterial communities using 454 pyrosequencing showed that changes in temperature had no a substantial impact on composition of dominant electricity-producing bacteria ( Geobacter ). The results of our study provide more information toward understanding the temperature-dependent control of methanogenesis in MECs.

  10. Coupled dynamics analysis of wind energy systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J. A.

    1977-01-01

    A qualitative description of all key elements of a complete wind energy system computer analysis code is presented. The analysis system addresses the coupled dynamics characteristics of wind energy systems, including the interactions of the rotor, tower, nacelle, power train, control system, and electrical network. The coupled dynamics are analyzed in both the frequency and time domain to provide the basic motions and loads data required for design, performance verification and operations analysis activities. Elements of the coupled analysis code were used to design and analyze candidate rotor articulation concepts. Fundamental results and conclusions derived from these studies are presented.

  11. Study on dynamic performance of SOFC

    NASA Astrophysics Data System (ADS)

    Zhan, Haiyang; Liang, Qianchao; Wen, Qiang; Zhu, Runkai

    2017-05-01

    In order to solve the problem of real-time matching of load and fuel cell power, it is urgent to study the dynamic response process of SOFC in the case of load mutation. The mathematical model of SOFC is constructed, and its performance is simulated. The model consider the influence factors such as polarization effect, ohmic loss. It also takes the diffusion effect, thermal effect, energy exchange, mass conservation, momentum conservation. One dimensional dynamic mathematical model of SOFC is constructed by using distributed lumped parameter method. The simulation results show that the I-V characteristic curves are in good agreement with the experimental data, and the accuracy of the model is verified. The voltage response curve, power response curve and the efficiency curve are obtained by this way. It lays a solid foundation for the research of dynamic performance and optimal control in power generation system of high power fuel cell stack.

  12. Performance analysis in saber.

    PubMed

    Aquili, Andrea; Tancredi, Virginia; Triossi, Tamara; De Sanctis, Desiree; Padua, Elvira; DʼArcangelo, Giovanna; Melchiorri, Giovanni

    2013-03-01

    Fencing is a sport practiced by both men and women, which uses 3 weapons: foil, épée, and saber. In general, there are few scientific studies available in international literature; they are limited to the performance analysis of fencing bouts, yet there is nothing about saber. There are 2 kinds of competitions in the World Cup for both men and women: the "FIE GP" and "A." The aim of this study was to carry out a saber performance analysis to gain useful indicators for the definition of a performance model. In addition, it is expected to verify if it could be influenced by the type of competition and if there are differences between men and women. Sixty bouts: 33 FIE GP and 27 "A" competitions (35 men's and 25 women's saber bouts) were analyzed. The results indicated that most actions are offensive (55% for men and 49% for women); the central area of the piste is mostly used (72% for men and 67% for women); the effective fighting time is 13.6% for men and 17.1% for women, and the ratio between the action and break times is 1:6.5 for men and 1:5.1 for women. A lunge is carried out every 23.9 seconds by men and every 20 seconds by women, and a direction change is carried out every 65.3 seconds by men and every 59.7 seconds by women. The data confirm the differences between the saber and the other 2 weapons. There is no significant difference between the data of the 2 different kinds of competitions.

  13. Dynamic Event Tree Analysis Through RAVEN

    SciTech Connect

    A. Alfonsi; C. Rabiti; D. Mandelli; J. Cogliati; R. A. Kinoshita; A. Naviglio

    2013-09-01

    Conventional Event-Tree (ET) based methodologies are extensively used as tools to perform reliability and safety assessment of complex and critical engineering systems. One of the disadvantages of these methods is that timing/sequencing of events and system dynamics is not explicitly accounted for in the analysis. In order to overcome these limitations several techniques, also know as Dynamic Probabilistic Risk Assessment (D-PRA), have been developed. Monte-Carlo (MC) and Dynamic Event Tree (DET) are two of the most widely used D-PRA methodologies to perform safety assessment of Nuclear Power Plants (NPP). In the past two years, the Idaho National Laboratory (INL) has developed its own tool to perform Dynamic PRA: RAVEN (Reactor Analysis and Virtual control ENvironment). RAVEN has been designed in a high modular and pluggable way in order to enable easy integration of different programming languages (i.e., C++, Python) and coupling with other application including the ones based on the MOOSE framework, developed by INL as well. RAVEN performs two main tasks: 1) control logic driver for the new Thermo-Hydraulic code RELAP-7 and 2) post-processing tool. In the first task, RAVEN acts as a deterministic controller in which the set of control logic laws (user defined) monitors the RELAP-7 simulation and controls the activation of specific systems. Moreover, RAVEN also models stochastic events, such as components failures, and performs uncertainty quantification. Such stochastic modeling is employed by using both MC and DET algorithms. In the second task, RAVEN processes the large amount of data generated by RELAP-7 using data-mining based algorithms. This paper focuses on the first task and shows how it is possible to perform the analysis of dynamic stochastic systems using the newly developed RAVEN DET capability. As an example, the Dynamic PRA analysis, using Dynamic Event Tree, of a simplified pressurized water reactor for a Station Black-Out scenario is presented.

  14. Random Matrix Theory in molecular dynamics analysis.

    PubMed

    Palese, Luigi Leonardo

    2015-01-01

    It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes.

  15. Dynamical pathway analysis

    PubMed Central

    Xiong, Hao; Choe, Yoonsuck

    2008-01-01

    Background Although a great deal is known about one gene or protein and its functions under different environmental conditions, little information is available about the complex behaviour of biological networks subject to different environmental perturbations. Observing differential expressions of one or more genes between normal and abnormal cells has been a mainstream method of discovering pertinent genes in diseases and therefore valuable drug targets. However, to date, no such method exists for elucidating and quantifying the differential dynamical behaviour of genetic regulatory networks, which can have greater impact on phenotypes than individual genes. Results We propose to redress the deficiency by formulating the functional study of biological networks as a control problem of dynamical systems. We developed mathematical methods to study the stability, the controllability, and the steady-state behaviour, as well as the transient responses of biological networks under different environmental perturbations. We applied our framework to three real-world datasets: the SOS DNA repair network in E. coli under different dosages of radiation, the GSH redox cycle in mice lung exposed to either poisonous air or normal air, and the MAPK pathway in mammalian cell lines exposed to three types of HIV type I Vpr, a wild type and two mutant types; and we found that the three genetic networks exhibited fundamentally different dynamical properties in normal and abnormal cells. Conclusion Difference in stability, relative stability, degrees of controllability, and transient responses between normal and abnormal cells means considerable difference in dynamical behaviours and different functioning of cells. Therefore differential dynamical properties can be a valuable tool in biomedical research. PMID:18221557

  16. Dynamic stretching and golf swing performance.

    PubMed

    Moran, K A; McGrath, T; Marshall, B M; Wallace, E S

    2009-02-01

    The aim of the present study was to examine the effect of dynamic stretching, static stretching and no stretching, as part of a general warm-up, on golf swing performance with a five-iron. Measures of performance were taken 0 min, 5 min, 15 min and 30 min after stretching. Dynamic stretching produced significantly greater club head speeds than both static stretching (Delta=1.9m.s (-1); p=0.000) and no stretching (Delta=1.7 m.s (-1); p=0.000), and greater ball speeds than both static stretching (Delta=3.5m.s (-1); p=0.003) and no stretching (Delta=3.3m.s (-1); p=0.001). Dynamic stretching produced significantly straighter swing-paths than both static stretching (Delta=-0.61 degrees , p=0.000) and no stretching (Delta=-0.72 degrees , p=0.01). Dynamic stretching also produced more central impact points than the static stretch (Delta=0.7 cm, p=0.001). For the club face angle, there was no effect of either stretch or time. For all of the variables measured, there was no significant difference between the static stretch and no stretch conditions. All of the results were unaffected by the time of measurement after stretching. The results indicate that dynamic stretching should be used as part of a general warm-up in golf.

  17. Dynamic classifiers improve pulverizer performance and more

    SciTech Connect

    Sommerlad, R.E.; Dugdale, K.L.

    2007-07-15

    Keeping coal-fired steam plants running efficiently and cleanly is a daily struggle. An article in the February 2007 issue of Power explained that one way to improve the combustion and emissions performance of a plant is to optimize the performance of its coal pulverizers. By adding a dynamic classifier to the pulverizers, you can better control coal particle sizing and fineness, and increase pulverizer capacity to boot. A dynamic classifier has an inner rotating cage and outer stationary vanes which, acting in concert, provide centrifugal or impinging classification. Replacing or upgrading a pulverizer's classifier from static to dynamic improves grinding performance reducing the level of unburned carbon in the coal in the process. The article describes the project at E.ON's Ratcliffe-on-Soar Power station in the UK to retrofit Loesche LSKS dynamic classifiers. It also mentions other successful projects at Scholven Power Station in Germany, Tilbury Power Station in the UK and J.B. Sims Power Plant in Michigan, USA. 8 figs.

  18. Man/Machine Interaction Dynamics And Performance (MMIDAP) capability

    NASA Technical Reports Server (NTRS)

    Frisch, Harold P.

    1991-01-01

    The creation of an ability to study interaction dynamics between a machine and its human operator can be approached from a myriad of directions. The Man/Machine Interaction Dynamics and Performance (MMIDAP) project seeks to create an ability to study the consequences of machine design alternatives relative to the performance of both machine and operator. The class of machines to which this study is directed includes those that require the intelligent physical exertions of a human operator. While Goddard's Flight Telerobotic's program was expected to be a major user, basic engineering design and biomedical applications reach far beyond telerobotics. Ongoing efforts are outlined of the GSFC and its University and small business collaborators to integrate both human performance and musculoskeletal data bases with analysis capabilities necessary to enable the study of dynamic actions, reactions, and performance of coupled machine/operator systems.

  19. Hierarchical Dynamics Affecting Work Performance in Organizations

    NASA Astrophysics Data System (ADS)

    Guastello, Stephen J.

    This research explored the impact of organizational hierarchies on the dynamics of work performance and profitability. Theoretical expectations from game theory, synergetics, and other work on coupled nonlinear dynamical processes were reviewed and were found to make different predictions regarding the impact of hierarchical organization on behavior at any one level of the organization. University students participated in experimentally contrived organizations that had either two or three levels of hierarchy. The dynamics of work performance and profitability were assessed through nonlinear regression. Results showed that, for a two-level system, work performance was chaotic at both levels of organization, with a decrease in both noise and dimensionality at the upper level. For the three-level system, however, work performance at the lowest level showed gradual, non-asymptotic, and non-chaotic increases over time. The middle and upper management behaviors displayed both dampening and accelerating oscillatory pattern over time, an increase in dimensionality between workers and middle management, and a decrease in dimensionality from middle to top management. Nonlinear models outperformed linear alternatives by a margin upwards of 1.36:1 in variance accounted for.

  20. Acylhydrazone bond dynamic covalent polymer gel monolithic column online coupling to high-performance liquid chromatography for analysis of sulfonamides and fluorescent whitening agents in food.

    PubMed

    Zhang, Chengjiang; Luo, Xialin; Wei, Tianfu; Hu, Yufei; Li, Gongke; Zhang, Zhuomin

    2017-10-13

    A new dynamic covalent polymer (DCP) gel was well designed and constructed based on imine chemistry. Polycondensation of 4,4'-biphenyldicarboxaldehyde and 1,3,5-benzenetricarbohydrazide via Schiff-base reaction resulted in an acylhydrazone bond gel (AB-gel) DCP. AB-gel DCP had three-dimensional network of interconnected nanoparticles with hierarchically porous structure. AB-gel DCP was successfully fabricated as a monolithic column by an in-situ chemical bonding method for online enrichment and separation purpose with excellent permeability. AB-gel DCP based monolithic column showed remarkable adsorption affinity towards target analytes including sulfonamides (SAs) and fluorescent whitening agents (FWAs) due to its strong π-π affinity, hydrophobic effect and hydrogen bonding interaction. Then, AB-gel DCP based monolithic column was applied for online separation and analysis of trace SAs and FWAs in food samples coupled with high-performance liquid chromatography (HPLC). Sulfathiazole (ST) and sulfadimidine (SM2) in one positive weever sample were actually found and determined with concentrations of 273.8 and 286.3μg/kg, respectively. 2,5-Bis(5-tert-butyl-2-benzoxazolyl) thiophene (FWA184) was actually quantified in one tea infusion sample with the concentration of 268.5ng/L. The spiked experiments suggested the good recoveries in range of 74.5-110% for SAs in weever and shrimp samples with relative standard deviations (RSDs) less than 9.7% and in range of 74.0-113% for FWAs in milk and tea infusion samples with RSDs less than 9.0%. AB-gel DCP monolithic column was proved to be a promising sample preparation medium for online separation and analysis of trace analytes in food samples with complex matrices. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Toward a dynamical theory of body movement in musical performance

    PubMed Central

    Demos, Alexander P.; Chaffin, Roger; Kant, Vivek

    2014-01-01

    Musicians sway expressively as they play in ways that seem clearly related to the music, but quantifying the relationship has been difficult. We suggest that a complex systems framework and its accompanying tools for analyzing non-linear dynamical systems can help identify the motor synergies involved. Synergies are temporary assemblies of parts that come together to accomplish specific goals. We assume that the goal of the performer is to convey musical structure and expression to the audience and to other performers. We provide examples of how dynamical systems tools, such as recurrence quantification analysis (RQA), can be used to examine performers' movements and relate them to the musical structure and to the musician's expressive intentions. We show how detrended fluctuation analysis (DFA) can be used to identify synergies and discover how they are affected by the performer's expressive intentions. PMID:24904490

  2. Toward a dynamical theory of body movement in musical performance.

    PubMed

    Demos, Alexander P; Chaffin, Roger; Kant, Vivek

    2014-01-01

    Musicians sway expressively as they play in ways that seem clearly related to the music, but quantifying the relationship has been difficult. We suggest that a complex systems framework and its accompanying tools for analyzing non-linear dynamical systems can help identify the motor synergies involved. Synergies are temporary assemblies of parts that come together to accomplish specific goals. We assume that the goal of the performer is to convey musical structure and expression to the audience and to other performers. We provide examples of how dynamical systems tools, such as recurrence quantification analysis (RQA), can be used to examine performers' movements and relate them to the musical structure and to the musician's expressive intentions. We show how detrended fluctuation analysis (DFA) can be used to identify synergies and discover how they are affected by the performer's expressive intentions.

  3. Dynamic analysis of process reactors

    SciTech Connect

    Shadle, L.J.; Lawson, L.O.; Noel, S.D.

    1995-06-01

    The approach and methodology of conducting a dynamic analysis is presented in this poster session in order to describe how this type of analysis can be used to evaluate the operation and control of process reactors. Dynamic analysis of the PyGas{trademark} gasification process is used to illustrate the utility of this approach. PyGas{trademark} is the gasifier being developed for the Gasification Product Improvement Facility (GPIF) by Jacobs-Siffine Engineering and Riley Stoker. In the first step of the analysis, process models are used to calculate the steady-state conditions and associated sensitivities for the process. For the PyGas{trademark} gasifier, the process models are non-linear mechanistic models of the jetting fluidized-bed pyrolyzer and the fixed-bed gasifier. These process sensitivities are key input, in the form of gain parameters or transfer functions, to the dynamic engineering models.

  4. Nonlinear dynamics of team performance and adaptability in emergency response.

    PubMed

    Guastello, Stephen J

    2010-04-01

    The impact of team size and performance feedback on adaptation levels and performance of emergency response (ER) teams was examined to introduce a metric for quantifying adaptation levels based on nonlinear dynamical systems (NDS) theory. NDS principles appear in reports surrounding Hurricane Katrina, earthquakes, floods, a disease epidemic, and the Southeast Asian tsunami. They are also intrinsic to coordination within teams, adaptation levels, and performance in dynamic decision processes. Performance was measured in a dynamic decision task in which ER teams of different sizes worked against an attacker who was trying to destroy a city (total N = 225 undergraduates). The complexity of teams' and attackers' adaptation strategies and the role of the opponents' performance were assessed by nonlinear regression analysis. An optimal group size for team performance was identified. Teams were more readily influenced by the attackers' performance than vice versa. The adaptive capabilities of attackers and teams were impaired by their opponents in some conditions. ER teams should be large enough to contribute a critical mass of ideas but not so large that coordination would be compromised. ER teams used self-organized strategies that could have been more adaptive, whereas attackers used chaotic strategies. The model and results are applicable to ER processes or training maneuvers involving dynamic decisions but could be limited to nonhierarchical groups.

  5. Probabilistic assessment of dynamic system performance. Part 3

    SciTech Connect

    Belhadj, Mohamed

    1993-01-01

    Accurate prediction of dynamic system failure behavior can be important for the reliability and risk analyses of nuclear power plants, as well as for their backfitting to satisfy given constraints on overall system reliability, or optimization of system performance. Global analysis of dynamic systems through investigating the variations in the structure of the attractors of the system and the domains of attraction of these attractors as a function of the system parameters is also important for nuclear technology in order to understand the fault-tolerance as well as the safety margins of the system under consideration and to insure a safe operation of nuclear reactors. Such a global analysis would be particularly relevant to future reactors with inherent or passive safety features that are expected to rely on natural phenomena rather than active components to achieve and maintain safe shutdown. Conventionally, failure and global analysis of dynamic systems necessitate the utilization of different methodologies which have computational limitations on the system size that can be handled. Using a Chapman-Kolmogorov interpretation of system dynamics, a theoretical basis is developed that unifies these methodologies as special cases and which can be used for a comprehensive safety and reliability analysis of dynamic systems.

  6. DAS performance analysis

    SciTech Connect

    Bates, G.; Bodine, S.; Carroll, T.; Keller, M.

    1984-02-01

    This report begins with an overview of the Data Acquisition System (DAS), which supports several of PPPL's experimental devices. Performance measurements which were taken on DAS and the tools used to make them are then described.

  7. Scaled control moment gyroscope dynamics effects on performance

    NASA Astrophysics Data System (ADS)

    Leve, Frederick A.

    2015-05-01

    The majority of the literature that discusses the dynamics of control moment gyroscopes (CMG) contains formulations that are not derived from first principles and make simplifying assumptions early in the derivation, possibly neglecting important contributions. For small satellites, additional dynamics that are no longer negligible are shown to cause an increase in torque error and loss of torque amplification. The goal of the analysis presented here is to provide the reader with a complete and general analytical derivation of the equations for dynamics of a spacecraft with n-CMG and to discuss the performance degradation imposed to CMG actuators when scaling them for small satellites. The paper first derives the equations of motion from first principles for a very general case of a spacecraft with n-CMG. Each contribution of the dynamics is described with its effect on the performance of CMG and its significance on scaled CMG performance is addressed. It is shown analytically and verified numerically, that CMG do not scale properly with performance and care must be taken in their design to trade performance, size, mass, and power when reducing their scale.

  8. Performance analysis of FDDI

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1988-01-01

    The Fiber Distributed Data Interface (FDDI) is an imerging ANSI and ISO standard for a 100 megabit per second fiber optic token ring. The performance of the FDDI media access control protocol is analyzed using a simulation developed at NASA Ames. Both analyses using standard measures of performance (including average delay for asynchronous traffic, channel utilization, and transmission queue length) and analyses of characteristics of ring behavior which can be attributed to constraints imposed by the timed token protocol on token holding time (including bounded token rotation time, support for synchronous traffic, and fairness of channel access for nodes transmitting asynchronous traffic) are included.

  9. Dependability and performability analysis

    NASA Technical Reports Server (NTRS)

    Trivedi, Kishor S.; Ciardo, Gianfranco; Malhotra, Manish; Sahner, Robin A.

    1993-01-01

    Several practical issues regarding specifications and solution of dependability and performability models are discussed. Model types with and without rewards are compared. Continuous-time Markov chains (CTMC's) are compared with (continuous-time) Markov reward models (MRM's) and generalized stochastic Petri nets (GSPN's) are compared with stochastic reward nets (SRN's). It is shown that reward-based models could lead to more concise model specifications and solution of a variety of new measures. With respect to the solution of dependability and performability models, three practical issues were identified: largeness, stiffness, and non-exponentiality, and a variety of approaches are discussed to deal with them, including some of the latest research efforts.

  10. Assessing the performance of dynamical trajectory estimates

    NASA Astrophysics Data System (ADS)

    Bröcker, Jochen

    2014-06-01

    Estimating trajectories and parameters of dynamical systems from observations is a problem frequently encountered in various branches of science; geophysicists for example refer to this problem as data assimilation. Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using the same observations for estimation and validation might result in overly optimistic performance assessments. To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a more realistic performance assessment in data assimilation. The presented approach becomes particularly simple for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging, incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high gain observer confirm the theory.

  11. Assessing the performance of dynamical trajectory estimates.

    PubMed

    Bröcker, Jochen

    2014-06-01

    Estimating trajectories and parameters of dynamical systems from observations is a problem frequently encountered in various branches of science; geophysicists for example refer to this problem as data assimilation. Unlike as in estimation problems with exchangeable observations, in data assimilation the observations cannot easily be divided into separate sets for estimation and validation; this creates serious problems, since simply using the same observations for estimation and validation might result in overly optimistic performance assessments. To circumvent this problem, a result is presented which allows us to estimate this optimism, thus allowing for a more realistic performance assessment in data assimilation. The presented approach becomes particularly simple for data assimilation methods employing a linear error feedback (such as synchronization schemes, nudging, incremental 3DVAR and 4DVar, and various Kalman filter approaches). Numerical examples considering a high gain observer confirm the theory.

  12. Using Human Dynamics to Improve Operator Performance

    NASA Astrophysics Data System (ADS)

    Antunes, Rui; Coito, Fernando V.; Duarte-Ramos, Hermínio

    Traditionally Man-Machine Interfaces (MMI) are concerned with the ergonomic aspects of the operation, often disregarding other aspects on how humans learn and use machines. The explicit use of the operator dynamics characterization for the definition of the Human-in-the-Loop control system may allow an improved performance for manual control systems. The proposed human model depends on the activity to be performed and the mechanical Man-Machine Interface. As a first approach for model development, a number of 1-D manual tracking experiments were evaluated, using an analog Joystick. A simple linear human model was obtained and used to design an improved closed-loop control structure. This paper describes practical aspects of an ongoing PhD work on cognitive control in Human-Machine systems.

  13. Prediction of Muscle Performance During Dynamic Repetitive Exercise

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2002-01-01

    A method for predicting human muscle performance was developed. Eight test subjects performed a repetitive dynamic exercise to failure using a Lordex spinal machine. Electromyography (EMG) data was collected from the erector spinae. Evaluation of the EMG data using a 5th order Autoregressive (AR) model and statistical regression analysis revealed that an AR parameter, the mean average magnitude of AR poles, can predict performance to failure as early as the second repetition of the exercise. Potential applications to the space program include evaluating on-orbit countermeasure effectiveness, maximizing post-flight recovery, and future real-time monitoring capability during Extravehicular Activity.

  14. Analysis of EDP performance

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The objective of this contract was the investigation of the potential performance gains that would result from an upgrade of the Space Station Freedom (SSF) Data Management System (DMS) Embedded Data Processor (EDP) '386' design with the Intel Pentium (registered trade-mark of Intel Corp.) '586' microprocessor. The Pentium ('586') is the latest member of the industry standard Intel X86 family of CISC (Complex Instruction Set Computer) microprocessors. This contract was scheduled to run in parallel with an internal IBM Federal Systems Company (FSC) Internal Research and Development (IR&D) task that had the goal to generate a baseline flight design for an upgraded EDP using the Pentium. This final report summarizes the activities performed in support of Contract NAS2-13758. Our plan was to baseline performance analyses and measurements on the latest state-of-the-art commercially available Pentium processor, representative of the proposed space station design, and then phase to an IBM capital funded breadboard version of the flight design (if available from IR&D and Space Station work) for additional evaluation of results. Unfortunately, the phase-over to the flight design breadboard did not take place, since the IBM Data Management System (DMS) for the Space Station Freedom was terminated by NASA before the referenced capital funded EDP breadboard could be completed. The baseline performance analyses and measurements, however, were successfully completed, as planned, on the commercial Pentium hardware. The results of those analyses, evaluations, and measurements are presented in this final report.

  15. Performance Analysis of MYSEA

    DTIC Science & Technology

    2012-09-01

    algebra libraries automatically tuned for the target processor. An evaluation of the Denali Isolation kernel [24] made use of web server benchmarks to...the Denali Isolation Kernel’s primitive operations [24]. Network micro benchmarks measure the bandwidth, throughput and network latency ex- perienced...and Software. In Proceedings: IEEE, volume 93, pp. 293–312, 2005. [24] A. Whitaker, M. Shaw, and S. D. Gribble. Scale and performance in the Denali

  16. Dynamical analysis of generalized Galileon cosmology

    SciTech Connect

    Leon, Genly; Saridakis, Emmanuel N. E-mail: Emmanuel_Saridakis@baylor.edu

    2013-03-01

    We perform a detailed dynamical analysis of generalized Galileon cosmology, incorporating also the requirements of ghost and instabilities absence. We find that there are not any new stable late-time solutions apart from those of standard quintessence. Furthermore, depending on the model parameters the Galileons may survive at late times or they may completely disappear by the dynamics, however the corresponding observables are always independent of the Galileon terms, determined only by the usual action terms. Thus, although the Galileons can play an important role at inflationary or at recent times, in the future, when the universe will asymptotically reach its stable state, they will not have any effect on its evolution.

  17. Sensor performance analysis

    NASA Technical Reports Server (NTRS)

    Montgomery, H. E.; Ostrow, H.; Ressler, G. M.

    1990-01-01

    The theory is described and the equations required to design are developed and the performance of electro-optical sensor systems that operate from the visible through the thermal infrared spectral regions are analyzed. Methods to compute essential optical and detector parameters, signal-to-noise ratio, MTF, and figures of merit such as NE delta rho and NE delta T are developed. A set of atmospheric tables are provided to determine scene radiance in the visible spectral region. The Planck function is used to determine radiance in the infrared. The equations developed were incorporated in a spreadsheet so that a wide variety of sensor studies can be rapidly and efficiently conducted.

  18. Nonlinear analysis of dynamic signature

    NASA Astrophysics Data System (ADS)

    Rashidi, S.; Fallah, A.; Towhidkhah, F.

    2013-12-01

    Signature is a long trained motor skill resulting in well combination of segments like strokes and loops. It is a physical manifestation of complex motor processes. The problem, generally stated, is that how relative simplicity in behavior emerges from considerable complexity of perception-action system that produces behavior within an infinitely variable biomechanical and environmental context. To solve this problem, we present evidences which indicate that motor control dynamic in signing process is a chaotic process. This chaotic dynamic may explain a richer array of time series behavior in motor skill of signature. Nonlinear analysis is a powerful approach and suitable tool which seeks for characterizing dynamical systems through concepts such as fractal dimension and Lyapunov exponent. As a result, they can be analyzed in both horizontal and vertical for time series of position and velocity. We observed from the results that noninteger values for the correlation dimension indicates low dimensional deterministic dynamics. This result could be confirmed by using surrogate data tests. We have also used time series to calculate the largest Lyapunov exponent and obtain a positive value. These results constitute significant evidence that signature data are outcome of chaos in a nonlinear dynamical system of motor control.

  19. Symmetry-enhanced performance of dynamical decoupling

    SciTech Connect

    Pasini, S.; Uhrig, G. S.

    2011-10-15

    We consider a system with general decoherence and a quadratic dynamical decoupling sequence (QDD) for the coherence control of a qubit coupled to a bath of spins. We investigate the influence of the geometry and of the initial conditions of the bath on the performance of the sequence. The overall performance is quantified by a distance norm d. It is expected that d scales with {tau}, the total duration of the sequence, as {tau}{sup min{l_brace}N{sub x},N{sub z}{r_brace}+1}, where N{sub x} and N{sub z} are the number of pulses of the outer and of the inner sequence, respectively. We show both numerically and analytically that the state of the bath can boost the performance of QDD under certain conditions: The scaling of QDD for a given number of pulses can be enhanced by a factor of 2 if the bath is prepared in a highly symmetric state and if the system Hamiltonian is SU(2) invariant.

  20. Software Performs Complex Design Analysis

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Designers use computational fluid dynamics (CFD) to gain greater understanding of the fluid flow phenomena involved in components being designed. They also use finite element analysis (FEA) as a tool to help gain greater understanding of the structural response of components to loads, stresses and strains, and the prediction of failure modes. Automated CFD and FEA engineering design has centered on shape optimization, which has been hindered by two major problems: 1) inadequate shape parameterization algorithms, and 2) inadequate algorithms for CFD and FEA grid modification. Working with software engineers at Stennis Space Center, a NASA commercial partner, Optimal Solutions Software LLC, was able to utilize its revolutionary, one-of-a-kind arbitrary shape deformation (ASD) capability-a major advancement in solving these two aforementioned problems-to optimize the shapes of complex pipe components that transport highly sensitive fluids. The ASD technology solves the problem of inadequate shape parameterization algorithms by allowing the CFD designers to freely create their own shape parameters, therefore eliminating the restriction of only being able to use the computer-aided design (CAD) parameters. The problem of inadequate algorithms for CFD grid modification is solved by the fact that the new software performs a smooth volumetric deformation. This eliminates the extremely costly process of having to remesh the grid for every shape change desired. The program can perform a design change in a markedly reduced amount of time, a process that would traditionally involve the designer returning to the CAD model to reshape and then remesh the shapes, something that has been known to take hours, days-even weeks or months-depending upon the size of the model.

  1. MPQC: Performance Analysis and Optimization

    SciTech Connect

    Sarje, Abhinav; Williams, Samuel; Bailey, David

    2013-01-24

    MPQC (Massively Parallel Quantum Chemistry) is a widely used computational quantum chemistry code. It is capable of performing a number of computations commonly occurring in quantum chemistry. In order to achieve better performance of MPQC, in this report we present a detailed performance analysis of this code. We then perform loop and memory access optimizations, and measure performance improvements by comparing the performance of the optimized code with that of the original MPQC code. We observe that the optimized MPQC code achieves a significant improvement in the performance through a better utilization of vector processing and memory hierarchies.

  2. Lidar performance analysis

    NASA Technical Reports Server (NTRS)

    Spiers, Gary D.

    1994-01-01

    Section 1 details the theory used to build the lidar model, provides results of using the model to evaluate AEOLUS design instrument designs, and provides snapshots of the visual appearance of the coded model. Appendix A contains a Fortran program to calculate various forms of the refractive index structure function. This program was used to determine the refractive index structure function used in the main lidar simulation code. Appendix B contains a memo on the optimization of the lidar telescope geometry for a line-scan geometry. Appendix C contains the code for the main lidar simulation and brief instruction on running the code. Appendix D contains a Fortran code to calculate the maximum permissible exposure for the eye from the ANSI Z136.1-1992 eye safety standards. Appendix E contains a paper on the eye safety analysis of a space-based coherent lidar presented at the 7th Coherent Laser Radar Applications and Technology Conference, Paris, France, 19-23 July 1993.

  3. Dynamic performance of slender suspension footbridges under eccentric walking dynamic loads

    NASA Astrophysics Data System (ADS)

    Huang, Ming-Hui; Thambiratnam, David P.; Perera, Nimal J.

    2007-06-01

    This paper treats the vibration of slender suspension footbridges caused by eccentrically distributed walking dynamic loads. A suspension footbridge model with reverse profiled cables in both the vertical and horizontal planes was used in this conceptual study, while SAP2000 package is adopted in the numerical analysis. The dynamic behaviour of slender footbridges under walking dynamic loads is simulated by resonant vibration caused by synchronous excitations. It is found that slender suspension footbridges with shallow cable profiles often have coupled vibration modes such as coupled lateral-torsional or coupled torsional-lateral modes. When these coupled vibration modes are excited by walking pedestrians, excessive lateral vibration can be induced. Results also show that the effects of the reverse profiled cables on the dynamic performance in different vibration modes are complex. Reverse profiled cables in the horizontal plane can significantly suppress the lateral vibration in coupled lateral-torsional modes, but slightly increase the lateral vibration in coupled torsional-lateral modes.

  4. Computational fluid dynamics studies of nuclear rocket performance

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Benson, Thomas J.; Kim, Suk C.

    1991-01-01

    A CFD analysis of a low pressure nuclear rocket concept is presented with the use of an advanced chemical kinetics, Navier-Stokes code. The computations describe the flow field in detail,including gas dynamic, thermodynamic and chemical properties, as well as global performance quantities such as specific impulse. Computational studies of several rocket nozzle shapes are conducted in an attempt to maximize hydrogen recombination. These Navier-Stokes calculations, which include real gas and viscous effects, predict lower performance values than have been reported heretofore.

  5. Computational fluid dynamics studies of nuclear rocket performance

    NASA Technical Reports Server (NTRS)

    Stubbs, Robert M.; Kim, Suk C.; Benson, Thomas J.

    1994-01-01

    A CFD analysis of a low pressure nuclear rocket concept is presented with the use of an advanced chemical kinetics, Navier-Stokes code. The computations describe the flow field in detail, including gas dynamic, thermodynamic and chemical properties, as well as global performance quantities such as specific impulse. Computational studies of several rocket nozzle shapes are conducted in an attempt to maximize hydrogen recombination. These Navier-Stokes calculations, which include real gas and viscous effects, predict lower performance values than have been reported heretofore.

  6. Prediction of muscle performance during dynamic repetitive movement

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2003-01-01

    BACKGROUND: During long-duration spaceflight, astronauts experience progressive muscle atrophy and often perform strenuous extravehicular activities. Post-flight, there is a lengthy recovery period with an increased risk for injury. Currently, there is a critical need for an enabling tool to optimize muscle performance and to minimize the risk of injury to astronauts while on-orbit and during post-flight recovery. Consequently, these studies were performed to develop a method to address this need. METHODS: Eight test subjects performed a repetitive dynamic exercise to failure at 65% of their upper torso weight using a Lordex spinal machine. Surface electromyography (SEMG) data was collected from the erector spinae back muscle. The SEMG data was evaluated using a 5th order autoregressive (AR) model and linear regression analysis. RESULTS: The best predictor found was an AR parameter, the mean average magnitude of AR poles, with r = 0.75 and p = 0.03. This parameter can predict performance to failure as early as the second repetition of the exercise. CONCLUSION: A method for predicting human muscle performance early during dynamic repetitive exercise was developed. The capability to predict performance to failure has many potential applications to the space program including evaluating countermeasure effectiveness on-orbit, optimizing post-flight recovery, and potential future real-time monitoring capability during extravehicular activity.

  7. Prediction of muscle performance during dynamic repetitive movement

    NASA Technical Reports Server (NTRS)

    Byerly, D. L.; Byerly, K. A.; Sognier, M. A.; Squires, W. G.

    2003-01-01

    BACKGROUND: During long-duration spaceflight, astronauts experience progressive muscle atrophy and often perform strenuous extravehicular activities. Post-flight, there is a lengthy recovery period with an increased risk for injury. Currently, there is a critical need for an enabling tool to optimize muscle performance and to minimize the risk of injury to astronauts while on-orbit and during post-flight recovery. Consequently, these studies were performed to develop a method to address this need. METHODS: Eight test subjects performed a repetitive dynamic exercise to failure at 65% of their upper torso weight using a Lordex spinal machine. Surface electromyography (SEMG) data was collected from the erector spinae back muscle. The SEMG data was evaluated using a 5th order autoregressive (AR) model and linear regression analysis. RESULTS: The best predictor found was an AR parameter, the mean average magnitude of AR poles, with r = 0.75 and p = 0.03. This parameter can predict performance to failure as early as the second repetition of the exercise. CONCLUSION: A method for predicting human muscle performance early during dynamic repetitive exercise was developed. The capability to predict performance to failure has many potential applications to the space program including evaluating countermeasure effectiveness on-orbit, optimizing post-flight recovery, and potential future real-time monitoring capability during extravehicular activity.

  8. Dynamic Web Pages: Performance Impact on Web Servers.

    ERIC Educational Resources Information Center

    Kothari, Bhupesh; Claypool, Mark

    2001-01-01

    Discussion of Web servers and requests for dynamic pages focuses on experimentally measuring and analyzing the performance of the three dynamic Web page generation technologies: CGI, FastCGI, and Servlets. Develops a multivariate linear regression model and predicts Web server performance under some typical dynamic requests. (Author/LRW)

  9. Epock: rapid analysis of protein pocket dynamics.

    PubMed

    Laurent, Benoist; Chavent, Matthieu; Cragnolini, Tristan; Dahl, Anna Caroline E; Pasquali, Samuela; Derreumaux, Philippe; Sansom, Mark S P; Baaden, Marc

    2015-05-01

    The volume of an internal protein pocket is fundamental to ligand accessibility. Few programs that compute such volumes manage dynamic data from molecular dynamics (MD) simulations. Limited performance often prohibits analysis of large datasets. We present Epock, an efficient command-line tool that calculates pocket volumes from MD trajectories. A plugin for the VMD program provides a graphical user interface to facilitate input creation, run Epock and analyse the results. Epock C++ source code, Python analysis scripts, VMD Tcl plugin, documentation and installation instructions are freely available at http://epock.bitbucket.org. benoist.laurent@gmail.com or baaden@smplinux.de Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  10. Dynamic Task Performance, Cohesion, and Communications in Human Groups.

    PubMed

    Giraldo, Luis Felipe; Passino, Kevin M

    2016-10-01

    In the study of the behavior of human groups, it has been observed that there is a strong interaction between the cohesiveness of the group, its performance when the group has to solve a task, and the patterns of communication between the members of the group. Developing mathematical and computational tools for the analysis and design of task-solving groups that are not only cohesive but also perform well is of importance in social sciences, organizational management, and engineering. In this paper, we model a human group as a dynamical system whose behavior is driven by a task optimization process and the interaction between subsystems that represent the members of the group interconnected according to a given communication network. These interactions are described as attractions and repulsions among members. We show that the dynamics characterized by the proposed mathematical model are qualitatively consistent with those observed in real-human groups, where the key aspect is that the attraction patterns in the group and the commitment to solve the task are not static but change over time. Through a theoretical analysis of the system we provide conditions on the parameters that allow the group to have cohesive behaviors, and Monte Carlo simulations are used to study group dynamics for different sets of parameters, communication topologies, and tasks to solve.

  11. Nonlinear analysis of drought dynamics

    NASA Astrophysics Data System (ADS)

    Ma, M.

    2015-12-01

    Drought is an extreme natural hazard and becomes a severe problem in the world. It arises as a result of interactions between climate input and human activity, displaying the nonlinearity and complexity. Nonlinear time series analyses open a way to study the underlying dynamic characteristics of drought, and then provide the forward knowledge to understanding the physical mechanism of drought event. The rationale behind this idea is that information about the representation of nonlinear properties could be used as an additional quality indicator. To that end, the correlation dimension method, a powerful nonlinear time series analysis method based on the chaos theory, has been suggested to assess the intrinsic dimensionality or degree of freedom of time series according to Takens (1981). It can provide an assessment of the dominant processes that is required to map the observed dynamics. In this study, daily discharge and hourly groundwater level data of 63 catchments in Germany and China were investigated with correlation dimension method. The results indicated that the correlation dimension values of studied discharge exhibited none clear spatial patterns, but showed significant correlations with the spatial heterogeneity within the catchments. In contrast, the correlation dimension values of groundwater level displayed spatial patterns due to the different aquifer conditions (confined or unconfined). High correlation dimension values indicate partly confined conditions. In addition, Hurst analysis was involved to qualify the persistence of drought. It seems that drought mechanisms can be learnt from the data themselves in an inverse manner.

  12. Cognitive Styles, Dynamic Geometry and Measurement Performance

    ERIC Educational Resources Information Center

    Pitta-Pantazi, Demetra; Christou, Constantinos

    2009-01-01

    This paper reports the outcomes of an empirical study undertaken to investigate the effect of students' cognitive styles on achievement in measurement tasks in a dynamic geometry learning environment, and to explore the ability of dynamic geometry learning in accommodating different cognitive styles and enhancing students' learning. A total of 49…

  13. Analysis of driver performance under reduced visibility

    NASA Technical Reports Server (NTRS)

    Kaeppler, W. D.

    1982-01-01

    Mathematical models describing vehicle dynamics as well as human behavior may be useful in evaluating driver performance and in establishing design criteria for vehicles more compatible with man. In 1977, a two level model of driver steering behavior was developed, but its parameters were identified for clear visibility conditions only. Since driver performance degrades under conditions of reduced visibility, e.g., fog, the two level model should be investigated to determine its applicability to such conditions. The data analysis of a recently performed driving simulation experiment showed that the model still performed reasonably well under fog conditions, although there was a degradation in its predictive capacity during fog. Some additional parameters affecting anticipation and lag time may improve the model's performance for reduced visibility conditions.

  14. Evaluating the influence of physical, economic and managerial factors on sheet erosion in rangelands of SW Spain by performing a sensitivity analysis on an integrated dynamic model.

    PubMed

    Ibáñez, J; Lavado Contador, J F; Schnabel, S; Martínez Valderrama, J

    2016-02-15

    An integrated dynamic model was used to evaluate the influence of climatic, soil, pastoral, economic and managerial factors on sheet erosion in rangelands of SW Spain (dehesas). This was achieved by means of a variance-based sensitivity analysis. Topsoil erodibility, climate change and a combined factor related to soil water storage capacity and the pasture production function were the factors which influenced water erosion the most. Of them, climate change is the main source of uncertainty, though in this study it caused a reduction in the mean and the variance of long-term erosion rates. The economic and managerial factors showed scant influence on soil erosion, meaning that it is unlikely to find such influence in the study area for the time being. This is because the low profitability of the livestock business maintains stocking rates at low levels. However, the potential impact of livestock, through which economic and managerial factors affect soil erosion, proved to be greater in absolute value than the impact of climate change. Therefore, if changes in some economic or managerial factors led to higher stocking rates in the future, significant increases in erosion rates would be expected.

  15. STEP Tether Dynamics Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Glaese, John R.

    2000-01-01

    The General Tethered Object Simulation System (GTOSS) has been successfully converted to the PC environment. GTOSS has been run under Microsoft Windows 95, 98 and NT4.0 with no problems noted. Adaptation to the PC environment and definition of the 3 three body configuration required resizing some of the GTOSS internal data arrays. To allow studies of the tether dynamics accompanying electrodynamic thrust, a tether current flow model has also been developed for GTOSS. This model includes effects due to the earth's magnetic field and ionosphere, tether conductivity, temperature, motion, shape and available power. Sample cases have been defined for a proposed STEP-AIRSEDS (Space Transfer using Electrodynamic Propulsion-The Michigan Technic Corporation proposed tether missions for commercial applications) three body configuration. This required definition of a 6th power scenario for GTOSS. This power scenario allows a user to specify whether orbit raising or orbit lowering is to be performed by selecting the number of the tether. Orbit raising and orbit lowering sample cases have been run successfully. Results from these runs have been included in this report. Results have only been generated so far for a three body configuration. Only point end masses have been represented. No attitude dynamics have been included. Initial results suggest that tether current can have significant and detrimental effects on tether dynamics and provisions will have to be made for control of it. This control will have to be considered in connection with desired target orbits for electrodynamic thrusting, as well as end body attitude control, momentum management of proposed control moment gyros, solar array pointing. All of these items will interact and thus, any system simulation will have to have each of these effects modeled in sufficient detail to display these interactions.

  16. Simplified Dynamic Analysis of Grinders Spindle Node

    NASA Astrophysics Data System (ADS)

    Demec, Peter

    2014-12-01

    The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.

  17. Subspace dynamic mode decomposition for stochastic Koopman analysis

    NASA Astrophysics Data System (ADS)

    Takeishi, Naoya; Kawahara, Yoshinobu; Yairi, Takehisa

    2017-09-01

    The analysis of nonlinear dynamical systems based on the Koopman operator is attracting attention in various applications. Dynamic mode decomposition (DMD) is a data-driven algorithm for Koopman spectral analysis, and several variants with a wide range of applications have been proposed. However, popular implementations of DMD suffer from observation noise on random dynamical systems and generate inaccurate estimation of the spectra of the stochastic Koopman operator. In this paper, we propose subspace DMD as an algorithm for the Koopman analysis of random dynamical systems with observation noise. Subspace DMD first computes the orthogonal projection of future snapshots to the space of past snapshots and then estimates the spectra of a linear model, and its output converges to the spectra of the stochastic Koopman operator under standard assumptions. We investigate the empirical performance of subspace DMD with several dynamical systems and show its utility for the Koopman analysis of random dynamical systems.

  18. Quantitative kinetic analysis of lung nodules using the temporal subtraction technique in dynamic chest radiographies performed with a flat panel detector.

    PubMed

    Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru

    2009-04-01

    Early detection and treatment of lung cancer is one of the most effective means of reducing cancer mortality, and to this end, chest X-ray radiography has been widely used as a screening method. A related technique based on the development of computer analysis and a flat panel detector (FPD) has enabled the functional evaluation of respiratory kinetics in the chest and is expected to be introduced into clinical practice in the near future. In this study, we developed a computer analysis algorithm to detect lung nodules and to evaluate quantitative kinetics. Breathing chest radiographs obtained by modified FPD and breath synchronization utilizing diaphragmatic analysis of vector movement were converted into four static images by sequential temporal subtraction processing, morphological enhancement processing, kinetic visualization processing, and lung region detection processing. An artificial neural network analyzed these density patterns to detect the true nodules and draw their kinetic tracks. Both the algorithm performance and the evaluation of clinical effectiveness of seven normal patients and simulated nodules showed sufficient detecting capability and kinetic imaging function without significant differences. Our technique can quantitatively evaluate the kinetic range of nodules and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.

  19. Analysis of sea ice dynamics

    NASA Technical Reports Server (NTRS)

    Zwally, J.

    1988-01-01

    The ongoing work has established the basis for using multiyear sea ice concentrations from SMMR passive microwave for studies of largescale advection and convergence/divergence of the Arctic sea ice pack. Comparisons were made with numerical model simulations and buoy data showing qualitative agreement on daily to interannual time scales. Analysis of the 7-year SMMR data set shows significant interannual variations in the total area of multiyear ice. The scientific objective is to investigate the dynamics, mass balance, and interannual variability of the Arctic sea ice pack. The research emphasizes the direct application of sea ice parameters derived from passive microwave data (SMMR and SSMI) and collaborative studies using a sea ice dynamics model. The possible causes of observed interannual variations in the multiyear ice area are being examined. The relative effects of variations in the large scale advection and convergence/divergence within the ice pack on a regional and seasonal basis are investigated. The effects of anomolous atmospheric forcings are being examined, including the long-lived effects of synoptic events and monthly variations in the mean geostrophic winds. Estimates to be made will include the amount of new ice production within the ice pack during winter and the amount of ice exported from the pack.

  20. Validation of instrumentation to monitor dynamic performance of olympic weightlifters.

    PubMed

    Bruenger, Adam J; Smith, Sarah L; Sands, William A; Leigh, Michael R

    2007-05-01

    The purpose of this study was to validate the accuracy and reliability of the Weightlifting Video Overlay System (WVOS) used by coaches and sport biomechanists at the United States Olympic Training Center. Static trials with the bar set at specific positions and dynamic trials of a power snatch were performed. Static and dynamic values obtained by the WVOS were compared with values obtained by tape measure and standard video kinematic analysis. Coordinate positions (horizontal [X] and vertical [Y]) were compared on both ends (left and right) of the bar. Absolute technical error of measurement between WVOS and kinematic values were calculated (0.97 cm [left X], 0.98 cm [right X], 0.88 cm [left Y], and 0.53 cm [right Y]) for the static data. Pearson correlations for all dynamic trials exceeded r = 0.88. The greatest discrepancies between the 2 measuring systems were found to occur when there was twisting of the bar during the performance. This error was probably due to the location on the bar where the coordinates were measured. The WVOS appears to provide accurate position information when compared with standard kinematics; however, care must be taken in evaluating position measurements if there is a significant amount of twisting in the movement. The WVOS appears to be reliable and valid within reasonable error limits for the determination of weightlifting movement technique.

  1. Stock index dynamics worldwide: a comparative analysis

    NASA Astrophysics Data System (ADS)

    Cortines, A. A. G.; Anteneodo, C.; Riera, R.

    2008-09-01

    We perform a comparative analysis of twenty-four daily stock indices across the world, encompassing developed and emerging markets. We compute, directly from the return empirical time series, the Kramers-Moyal (KM) expansion coefficients that govern the evolution of the probability density function of returns throughout timelags. Our study discloses universal patterns of the KM coefficients, which can be described in terms of a few microscopic parameters. These parameters allow to quantify features such as deviations from Gaussianity or from efficiency, providing a tool to discriminate market dynamics.

  2. Dynamical analysis of highly excited molecular spectra

    SciTech Connect

    Kellman, M.E.

    1993-12-01

    The goal of this program is new methods for analysis of spectra and dynamics of highly excited vibrational states of molecules. In these systems, strong mode coupling and anharmonicity give rise to complicated classical dynamics, and make the simple normal modes analysis unsatisfactory. New methods of spectral analysis, pattern recognition, and assignment are sought using techniques of nonlinear dynamics including bifurcation theory, phase space classification, and quantization of phase space structures. The emphasis is chaotic systems and systems with many degrees of freedom.

  3. Vehicle systems: coupled and interactive dynamics analysis

    NASA Astrophysics Data System (ADS)

    Vantsevich, Vladimir V.

    2014-11-01

    This article formulates a new direction in vehicle dynamics, described as coupled and interactive vehicle system dynamics. Formalised procedures and analysis of case studies are presented. An analytical consideration, which explains the physics of coupled system dynamics and its consequences for dynamics of a vehicle, is given for several sets of systems including: (i) driveline and suspension of a 6×6 truck, (ii) a brake mechanism and a limited slip differential of a drive axle and (iii) a 4×4 vehicle steering system and driveline system. The article introduces a formal procedure to turn coupled system dynamics into interactive dynamics of systems. A new research direction in interactive dynamics of an active steering and a hybrid-electric power transmitting unit is presented and analysed to control power distribution between the drive axles of a 4×4 vehicle. A control strategy integrates energy efficiency and lateral dynamics by decoupling dynamics of the two systems thus forming their interactive dynamics.

  4. Rumination and Performance in Dynamic, Team Sport

    PubMed Central

    Roy, Michael M.; Memmert, Daniel; Frees, Anastasia; Radzevick, Joseph; Pretz, Jean; Noël, Benjamin

    2016-01-01

    People high in rumination are good at tasks that require persistence whereas people low in rumination is good at tasks that require flexibility. Here we examine real world implications of these differences in dynamic, team sport. In two studies, we found that professional male football (soccer) players from Germany and female field hockey players on the US national team were lower in rumination than were non-athletes. Further, low levels of rumination were associated with a longer career at a higher level in football players. Results indicate that athletes in dynamic, team sport might benefit from the flexibility associated with being low in rumination. PMID:26779110

  5. Dynamic Open Inquiry Performances of High-School Biology Students

    ERIC Educational Resources Information Center

    Zion, Michal; Sadeh, Irit

    2010-01-01

    In examining open inquiry projects among high-school biology students, we found dynamic inquiry performances expressed in two criteria: "changes occurring during inquiry" and "procedural understanding". Characterizing performances in a dynamic open inquiry project can shed light on both the procedural and epistemological…

  6. Dynamics Analysis of Wind Energy Production Development

    NASA Astrophysics Data System (ADS)

    Berg, V. I.; Zakirzakov, A. G.; Gordievskaya, E. F.

    2017-01-01

    The paper presents the analysis of the introduction experience and dynamics development of the world wind energy production. Calculated the amount of wind energy sources investments and the production capacity growth dynamics of the wind turbines. The studies have shown that the introduction dynamics of new wind energy sources is higher than any other energy source.

  7. Techniques for Automated Performance Analysis

    SciTech Connect

    Marcus, Ryan C.

    2014-09-02

    The performance of a particular HPC code depends on a multitude of variables, including compiler selection, optimization flags, OpenMP pool size, file system load, memory usage, MPI configuration, etc. As a result of this complexity, current predictive models have limited applicability, especially at scale. We present a formulation of scientific codes, nodes, and clusters that reduces complex performance analysis to well-known mathematical techniques. Building accurate predictive models and enhancing our understanding of scientific codes at scale is an important step towards exascale computing.

  8. Dynamic liquid-liquid-solid microextraction based on molecularly imprinted polymer filaments on-line coupling to high performance liquid chromatography for direct analysis of estrogens in complex samples.

    PubMed

    Zhong, Qisheng; Hu, Yufei; Hu, Yuling; Li, Gongke

    2012-06-08

    A novel sample preparation technique termed dynamic liquid-liquid-solid microextraction (DLLSME) was developed and on-line coupled to high performance liquid chromatography (HPLC) for direct extraction, desorption, and analysis of trace estrogens in complex samples. The DLLSME consists of the aqueous donor phase, the organic medium phase and the molecularly imprinted polymer filaments (MIPFs) as solid acceptor phase. The organic solvent with lesser density was directly added on top of the aqueous sample, and the dynamic extraction was performed by circulating the organic solvent through the MIPFs inserted into a PEEK tube which served as an extraction and desorption chamber. Afterwards, the extracted analytes on the MIPFs were on-line desorbed and then introduced into the HPLC for analysis. To evaluate the feasibility of the on-line system, a new DLLSME-HPLC method was developed for the analysis of five estrogens in aqueous samples by using 17β-estradiol MIPFs as the solid phase. Under the optimized conditions, the enrichment factors of 51-70, limits of detection of 0.08-0.25 μg/L and precision within 4.5-6.9% were achieved. Furthermore, the proposed method was applied to the analysis of real samples including urine, milk and skin toner, satisfactory recovery (81.9-99.8%) and reproducibility (4.1-7.9%) were obtained. Especially, 0.59 μg/L of 17β-estradiol was determined in female urine sample. The DLLSME offers an attractive alternative for direct analysis of trace analytes in aqueous samples and could potentially be extended to other adsorptive materials.

  9. Causal analysis of academic performance.

    PubMed

    Rao, D C; Morton, N E; Elston, R C; Yee, S

    1977-03-01

    Maximum likelihood methods are presented to test for the relations between causes and effects in linear path diagrams, without assuming that estimates of causes are free of error. Causal analysis is illustrated by published data of the Equal Educational Opportunity Survey, which show that American schools do not significantly modify socioeconomic differences in academic performance and that little of the observed racial difference in academic performance is causal. For two races differing by 15 IQ points, the differential if social class were randomized would be only about 3 points. The principle is stressed that a racial effect in a causal system may be environmental and that its etiology can be studied only by analysis of family resemblance in hybrid populations.

  10. Dynamic Hurricane Data Analysis Tool

    NASA Technical Reports Server (NTRS)

    Knosp, Brian W.; Li, Peggy; Vu, Quoc A.

    2009-01-01

    A dynamic hurricane data analysis tool allows users of the JPL Tropical Cyclone Information System (TCIS) to analyze data over a Web medium. The TCIS software is described in the previous article, Tropical Cyclone Information System (TCIS) (NPO-45748). This tool interfaces with the TCIS database to pull in data from several different atmospheric and oceanic data sets, both observed by instruments. Users can use this information to generate histograms, maps, and profile plots for specific storms. The tool also displays statistical values for the user-selected parameter for the mean, standard deviation, median, minimum, and maximum values. There is little wait time, allowing for fast data plots over date and spatial ranges. Users may also zoom-in for a closer look at a particular spatial range. This is version 1 of the software. Researchers will use the data and tools on the TCIS to understand hurricane processes, improve hurricane forecast models and identify what types of measurements the next generation of instruments will need to collect.

  11. Computational stability analysis of dynamical systems

    NASA Astrophysics Data System (ADS)

    Nikishkov, Yuri Gennadievich

    2000-10-01

    Due to increased available computer power, the analysis of nonlinear flexible multi-body systems, fixed-wing aircraft and rotary-wing vehicles is relying on increasingly complex, large scale models. An important aspect of the dynamic response of flexible multi-body systems is the potential presence of instabilities. Stability analysis is typically performed on simplified models with the smallest number of degrees of freedom required to capture the physical phenomena that cause the instability. The system stability boundaries are then evaluated using the characteristic exponent method or Floquet theory for systems with constant or periodic coefficients, respectively. As the number of degrees of freedom used to represent the system increases, these methods become increasingly cumbersome, and quickly unmanageable. In this work, a novel approach is proposed, the Implicit Floquet Analysis, which evaluates the largest eigenvalues of the transition matrix using the Arnoldi algorithm, without the explicit computation of this matrix. This method is far more computationally efficient than the classical approach and is ideally suited for systems involving a large number of degrees of freedom. The proposed approach is conveniently implemented as a postprocessing step to any existing simulation tool. The application of the method to a geometrically nonlinear multi-body dynamics code is presented. This work also focuses on the implementation of trimming algorithms and the development of tools for the graphical representation of numerical simulations and stability information for multi-body systems.

  12. Dynamic analysis of the Milad Tower

    NASA Astrophysics Data System (ADS)

    Wilhelm, Edwin; Ford, Mitchell; Coelho, Darren; Lawler, Lachlan; Ansourian, Peter; Alonso-Marroquin, Fernando; Tahmasebinia, Faham

    2016-08-01

    This report involves the modelling of the Milad Tower using the finite element analysis program Strand7. A dynamic analysis was performed on the structure in order to understand the deflections and stresses as a result of earthquake and wind loading. In particular, Linear Static as well as Natural Frequency and Spectral Response solvers were used to determine the behaviour of the structure under loading. The findings of the report highlight that the structure was modelled accurately with the outputs representing realistic values. The report suggests that the design of the beams, columns, slabs and all structural members was sufficient enough to support the tower during maximum loading cases. The governing load case was earthquake loading.

  13. Systems-Dynamic Analysis for Neighborhood Study

    EPA Science Inventory

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  14. Systems-Dynamic Analysis for Neighborhood Study

    EPA Science Inventory

    Systems-dynamic analysis (or system dynamics (SD)) helps planners identify interrelated impacts of transportation and land-use policies on neighborhood-scale economic outcomes for households and businesses, among other applications. This form of analysis can show benefits and tr...

  15. Fusion metrics for dynamic situation analysis

    NASA Astrophysics Data System (ADS)

    Blasch, Erik P.; Pribilski, Mike; Daughtery, Bryan; Roscoe, Brian; Gunsett, Josh

    2004-08-01

    To design information fusion systems, it is important to develop metrics as part of a test and evaluation strategy. In many cases, fusion systems are designed to (1) meet a specific set of user information needs (IN), (2) continuously validate information pedigree and updates, and (3) maintain this performance under changing conditions. A fusion system"s performance is evaluated in many ways. However, developing a consistent set of metrics is important for standardization. For example, many track and identification metrics have been proposed for fusion analysis. To evaluate a complete fusion system performance, level 4 sensor management and level 5 user refinement metrics need to be developed simultaneously to determine whether or not the fusion system is meeting information needs. To describe fusion performance, the fusion community needs to agree on a minimum set of metrics for user assessment and algorithm comparison. We suggest that such a minimum set should include feasible metrics of accuracy, confidence, throughput, timeliness, and cost. These metrics can be computed as confidence (probability), accuracy (error), timeliness (delay), throughput (amount) and cost (dollars). In this paper, we explore an aggregate set of metrics for fusion evaluation and demonstrate with information need metrics for dynamic situation analysis.

  16. Generalized neural networks for spectral analysis: dynamics and Liapunov functions.

    PubMed

    Vegas, José M; Zufiria, Pedro J

    2004-03-01

    This paper analyzes local and global behavior of several dynamical systems which generalize some artificial neural network (ANN) semilinear models originally designed for principal component analysis (PCA) in the characterization of random vectors. These systems implicitly performed the spectral analysis of correlation (i.e. symmetric positive definite) matrices. Here, the proposed generalizations cover both nonsymmetric matrices as well as fully nonlinear models. Local stability analysis is performed via linearization and global behavior is analyzed by constructing several Liapunov functions.

  17. Summary of EOS flight dynamics analysis

    NASA Technical Reports Server (NTRS)

    Newman, Lauri Kraft; Folta, David C.

    1995-01-01

    From a flight dynamics perspective, the Earth Observing System (EOS) spacecraft present a number of challenges to mission designers. The Flight Dynamics Support Branch of NASA GSFC has examined a number of these challenges, including managing the EOS constellation, disposing of the spacecraft at the end-of-life (EOL), and achieving the appropriate mission orbit given launch vehicle and ascent propulsion constraints. The EOS program consists of a number of spacecraft including EOS-AM, an ascending node spacecraft, EOS-PM, a descending node spacecraft, the EOS Chemistry mission (EOS-CHEM), the EOS Altimetry Laser (EOS-LALT), and the EOS-Altimetry Radar (EOS-RALT). The orbit characteristics of these missions are presented. In order to assure that downlinking data from each spacecraft will be possible without interference between any two spacecraft, a careful examination of the relationships between spacecraft and how to maintain the spacecraft in a configuration which would minimize these communications problems must be made. The FDSB has performed various analyses to determine whether the spacecraft will be in a position to interfere with each other, how the orbit dynamics will change the relative positioning of the spacecraft over their lifetimes, and how maintenance maneuvers could be performed, if needed, to minimize communications problems. Prompted by an activity at NASA HQ to set guidelines for spacecraft regarding their end-of-life dispositions, much analysis has also been performed to determine the spacecraft lifetime of EOS-AM1 under various conditions, and to make suggestions regarding the spacecraft disposal. In performing this analysis, some general trends have been observed in lifetime calculations. The paper will present the EOS-AM1 lifetime results, comment on general reentry conclusions, and discuss how these analyses reflect on the HQ NMI. Placing the EOS spacecraft into their respective mission orbits involves some intricate maneuver planning to

  18. Scalable Performance Measurement and Analysis

    SciTech Connect

    Gamblin, Todd

    2009-01-01

    Concurrency levels in large-scale, distributed-memory supercomputers are rising exponentially. Modern machines may contain 100,000 or more microprocessor cores, and the largest of these, IBM's Blue Gene/L, contains over 200,000 cores. Future systems are expected to support millions of concurrent tasks. In this dissertation, we focus on efficient techniques for measuring and analyzing the performance of applications running on very large parallel machines. Tuning the performance of large-scale applications can be a subtle and time-consuming task because application developers must measure and interpret data from many independent processes. While the volume of the raw data scales linearly with the number of tasks in the running system, the number of tasks is growing exponentially, and data for even small systems quickly becomes unmanageable. Transporting performance data from so many processes over a network can perturb application performance and make measurements inaccurate, and storing such data would require a prohibitive amount of space. Moreover, even if it were stored, analyzing the data would be extremely time-consuming. In this dissertation, we present novel methods for reducing performance data volume. The first draws on multi-scale wavelet techniques from signal processing to compress systemwide, time-varying load-balance data. The second uses statistical sampling to select a small subset of running processes to generate low-volume traces. A third approach combines sampling and wavelet compression to stratify performance data adaptively at run-time and to reduce further the cost of sampled tracing. We have integrated these approaches into Libra, a toolset for scalable load-balance analysis. We present Libra and show how it can be used to analyze data from large scientific applications scalably.

  19. Analysing the temporal dynamics of model performance for hydrological models

    NASA Astrophysics Data System (ADS)

    Reusser, D. E.; Blume, T.; Schaefli, B.; Zehe, E.

    2009-07-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physics-based model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns, which can lead to the identification of model structural errors.

  20. Analysing the temporal dynamics of model performance for hydrological models

    NASA Astrophysics Data System (ADS)

    Reusser, D. E.; Blume, T.; Schaefli, B.; Zehe, E.

    2008-11-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or model structure. Dealing with a set of performance measures evaluated at a high temporal resolution implies analyzing and interpreting a high dimensional data set. This paper presents a method for such a hydrological model performance assessment with a high temporal resolution and illustrates its application for two very different rainfall-runoff modeling case studies. The first is the Wilde Weisseritz case study, a headwater catchment in the eastern Ore Mountains, simulated with the conceptual model WaSiM-ETH. The second is the Malalcahuello case study, a headwater catchment in the Chilean Andes, simulated with the physics-based model Catflow. The proposed time-resolved performance assessment starts with the computation of a large set of classically used performance measures for a moving window. The key of the developed approach is a data-reduction method based on self-organizing maps (SOMs) and cluster analysis to classify the high-dimensional performance matrix. Synthetic peak errors are used to interpret the resulting error classes. The final outcome of the proposed method is a time series of the occurrence of dominant error types. For the two case studies analyzed here, 6 such error types have been identified. They show clear temporal patterns which can lead to the identification of model structural errors.

  1. Angular-compliant hydrodynamic bearing performance under dynamic loads

    NASA Astrophysics Data System (ADS)

    Harnoy, A.; Rachoor, H.

    1993-07-01

    The study is focused on a dynamically loaded composite bearing, consisting of a hydrodynamic journal bearing inside the internal race of a rolling-element bearing. In this combination, the hydrodynamic bearing has an angular-compliant sleeve with a restricted freedom of rotation around its axis. Under static loads, the improvement is primarily in a significant reduction of friction and wear during the starting and stopping. Under periodical loads, our analysis shows that the performance depends on two dimensionless design parameters. Below particular critical values of these parameters, the results show a considerable improvement, demonstrated by a reduction of the maximum eccentricity. However, above the critical values, the bearing becomes unstable. These results indicate the significance of incorporating this computer assisted computation for each design.

  2. Passivhaus: indoor comfort and energy dynamic analysis.

    NASA Astrophysics Data System (ADS)

    Guida, Antonella; Pagliuca, Antonello; Cardinale, Nicola; Rospi, Gianluca

    2013-04-01

    The research aims to verify the energy performance as well as the indoor comfort of an energy class A+ building, built so that the sum of the heat passive contributions of solar radiation, transmitted through the windows, and the heat generated inside the building, are adeguate to compensate for the envelope loss during the cold season. The building, located in Emilia Romagna (Italy), was built using a wooden structure, an envelope realized using a pinewood sandwich panels (transmittance U = 0.250 W/m2K) and, inside, a wool flax insulation layer and thermal window frame with low-emissivity glass (U = 0524 W/m2K). The building design and construction process has followed the guidelines set by "CasaClima". The building has been modeled in the code of dynamic calculation "Energy Plus" by the Design Builder application and divided it into homogenous thermal zones, characterized by winter indoor temperature set at 20 ° (+ / - 1 °) and summer indoor temperature set at 26 ° (+ / - 1 °). It has modeled: the envelope, as described above, the "free" heat contributions, the air conditioning system, the Mechanical Ventilation system as well as home automation solutions. The air conditioning system is an heat pump, able to guarantee an optimization of energy consumption (in fact, it uses the "free" heat offered by the external environment for conditioning indoor environment). As regards the air recirculation system, it has been used a mechanical ventilation system with internal heat cross-flow exchanger, with an efficiency equal to 50%. The domotic solutions, instead, regard a system for the control of windows external screening using reeds, adjustable as a function of incident solar radiation and a lighting management system adjusted automatically using a dimmer. A so realized building meets the requirement imposed from Italian standard UNI/TS 11300 1, UNI/TS 11300 2 and UNI/TS 11300 3. The analysis was performed according to two different configurations: in "spontaneous

  3. Performance Analysis of Surfing: A Review.

    PubMed

    Farley, Oliver R L; Abbiss, Chris R; Sheppard, Jeremy M

    2017-01-01

    Farley, ORL, Abbiss, CR, and Sheppard, JM. Performance Analysis of Surfing: A Review. J Strength Cond Res 31(1): 260-271, 2017-Despite the increased professionalism and substantial growth of surfing worldwide, there is limited information available to practitioners and coaches in terms of key performance analytics that are common in other field-based sports. Indeed, research analyzing surfing performance is limited to a few studies examining male surfers' heart rates, surfing activities through time-motion analysis (TMA) using video recordings and Global Positioning Satellite (GPS) data during competition and recreational surfing. These studies have indicated that specific activities undertaken during surfing are unique with a variety of activities (i.e., paddling, resting, wave riding, breath holding, and recovery of surfboard in the surf). Furthermore, environmental and wave conditions also seem to influence the physical demands of competition surfing. It is due to these demands that surfers are required to have a high cardiorespiratory fitness, high muscular endurance, and considerable strength and anaerobic power, particular within the upper torso. By exploring various methods of performance analysis used within other sports, it is possible to improve our understanding of surfing demands. In so doing this will assist in the development of protocols and strategies to assess physiological characteristics of surfers, monitor athlete performance, improve training prescription, and identify talent. Therefore, this review explores the current literature to provide insights into methodological protocols, delimitations of research into athlete analysis and an overview of surfing dynamics. Specifically, this review will describe and review the use of TMA, GPS, and other technologies (i.e., HR) that are used in external and internal load monitoring as they pertain to surfing.

  4. Performance Analysis on Fault Tolerant Control System

    NASA Technical Reports Server (NTRS)

    Shin, Jong-Yeob; Belcastro, Christine

    2005-01-01

    In a fault tolerant control (FTC) system, a parameter varying FTC law is reconfigured based on fault parameters estimated by fault detection and isolation (FDI) modules. FDI modules require some time to detect fault occurrences in aero-vehicle dynamics. In this paper, an FTC analysis framework is provided to calculate the upper bound of an induced-L(sub 2) norm of an FTC system with existence of false identification and detection time delay. The upper bound is written as a function of a fault detection time and exponential decay rates and has been used to determine which FTC law produces less performance degradation (tracking error) due to false identification. The analysis framework is applied for an FTC system of a HiMAT (Highly Maneuverable Aircraft Technology) vehicle. Index Terms fault tolerant control system, linear parameter varying system, HiMAT vehicle.

  5. Dynamic Blowout Risk Analysis Using Loss Functions.

    PubMed

    Abimbola, Majeed; Khan, Faisal

    2017-08-11

    Most risk analysis approaches are static; failing to capture evolving conditions. Blowout, the most feared accident during a drilling operation, is a complex and dynamic event. The traditional risk analysis methods are useful in the early design stage of drilling operation while falling short during evolving operational decision making. A new dynamic risk analysis approach is presented to capture evolving situations through dynamic probability and consequence models. The dynamic consequence models, the focus of this study, are developed in terms of loss functions. These models are subsequently integrated with the probability to estimate operational risk, providing a real-time risk analysis. The real-time evolving situation is considered dependent on the changing bottom-hole pressure as drilling progresses. The application of the methodology and models are demonstrated with a case study of an offshore drilling operation evolving to a blowout. © 2017 Society for Risk Analysis.

  6. Dynamic Analysis of AN Automatic Dynamic Balancer for Rotating Mechanisms

    NASA Astrophysics Data System (ADS)

    CHUNG, J.; RO, D. S.

    1999-12-01

    Dynamic stability and behavior of an automatic dynamic balance (ADB) are analyzed by a theoretical approach. Using Lagrange's equation, we derive the non-linear equations of motion for an autonomous system with respect to the polar co-ordinate system. From the equations of motion for the autonomous system, the equilibrium positions and the linear variational equations are obtained by the perturbation method. Based on the variational equations, the dynamic stability of the system in the neighborhood of the equilibrium positions is investigated by the Routh-Hurwitz criteria. The results of the stability analysis provide the design requirements for the ADB to achieve balancing of the system. In addition, in order to verify the stability of the system, time responses are computed by the generalized-α method. We also investigate the dynamic behavior of the system and the effects of damping on balancing.

  7. Manufacturing in space: Fluid dynamics numerical analysis

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.; Nicholson, L. A.; Spradley, L. W.

    1981-01-01

    Natural convection in a spherical container with cooling at the center was numerically simulated using the Lockheed-developed General Interpolants Method (GIM) numerical fluid dynamic computer program. The numerical analysis was simplified by assuming axisymmetric flow in the spherical container, with the symmetry axis being a sphere diagonal parallel to the gravity vector. This axisymmetric spherical geometry was intended as an idealization of the proposed Lal/Kroes growing experiments to be performed on board Spacelab. Results were obtained for a range of Rayleigh numbers from 25 to 10,000. For a temperature difference of 10 C from the cooling sting at the center to the container surface, and a gravitional loading of 0.000001 g a computed maximum fluid velocity of about 2.4 x 0.00001 cm/sec was reached after about 250 sec. The computed velocities were found to be approximately proportional to the Rayleigh number over the range of Rayleigh numbers investigated.

  8. Performance characterization of the dynamic programming obstacle detection algorithm.

    PubMed

    Gandhi, Tarak; Yang, Mau-Tsuen; Kasturi, Rangachar; Camps, Octavia I; Coraor, Lee D; McCandless, Jeffrey

    2006-05-01

    A computer vision-based system using images from an airborne aircraft can increase flight safety by aiding the pilot to detect obstacles in the flight path so as to avoid mid-air collisions. Such a system fits naturally with the development of an external vision system proposed by NASA for use in high-speed civil transport aircraft with limited cockpit visibility. The detection techniques should provide high detection probability for obstacles that can vary from subpixels to a few pixels in size, while maintaining a low false alarm probability in the presence of noise and severe background clutter. Furthermore, the detection algorithms must be able to report such obstacles in a timely fashion, imposing severe constraints on their execution time. For this purpose, we have implemented a number of algorithms to detect airborne obstacles using image sequences obtained from a camera mounted on an aircraft. This paper describes the methodology used for characterizing the performance of the dynamic programming obstacle detection algorithm and its special cases. The experimental results were obtained using several types of image sequences, with simulated and real backgrounds. The approximate performance of the algorithm is also theoretically derived using principles of statistical analysis in terms of the signal-to-noise ration (SNR) required for the probabilities of false alarms and misdetections to be lower than prespecified values. The theoretical and experimental performance are compared in terms of the required SNR.

  9. Guidelines for dynamic data acquisition and analysis

    NASA Technical Reports Server (NTRS)

    Piersol, Allan G.

    1992-01-01

    The recommendations concerning pyroshock data presented in the final draft of a proposed military handbook on Guidelines for Dynamic Data Acquisition and Analysis are reviewed. The structural responses produced by pyroshocks are considered to be one of the most difficult types of dynamic data to accurately measure and analyze.

  10. Guidelines for dynamic data acquisition and analysis

    NASA Technical Reports Server (NTRS)

    Piersol, Allan G.

    1992-01-01

    The recommendations concerning pyroshock data presented in the final draft of a proposed military handbook on Guidelines for Dynamic Data Acquisition and Analysis are reviewed. The structural responses produced by pyroshocks are considered to be one of the most difficult types of dynamic data to accurately measure and analyze.

  11. Guidelines for dynamic data acquisition and analysis

    NASA Astrophysics Data System (ADS)

    Piersol, Allan G.

    1992-10-01

    The recommendations concerning pyroshock data presented in the final draft of a proposed military handbook on Guidelines for Dynamic Data Acquisition and Analysis are reviewed. The structural responses produced by pyroshocks are considered to be one of the most difficult types of dynamic data to accurately measure and analyze.

  12. Dynamic Wireless Power Transfer - Grid Impacts Analysis

    SciTech Connect

    Markel, Tony; Meintz, Andrew; Gonder, Jeff

    2015-12-04

    This presentation discusses the current status of analysis of the electricity grid impacts of a dynamic wireless power transfer system deployed to the Atlanta region on select high traffic roadway segments.

  13. Bimolecular dynamics by computer analysis

    SciTech Connect

    Eilbeck, J.C.; Lomdahl, P.S.; Scott, A.C.

    1984-01-01

    As numerical tools (computers and display equipment) become more powerful and the atomic structures of important biological molecules become known, the importance of detailed computation of nonequilibrium biomolecular dynamics increases. In this manuscript we report results from a well developed study of the hydrogen bonded polypeptide crystal acetanilide, a model protein. Directions for future research are suggested. 9 references, 6 figures.

  14. Incentives and Their Dynamics in Public Sector Performance Management Systems

    ERIC Educational Resources Information Center

    Heinrich, Carolyn J.; Marschke, Gerald

    2010-01-01

    We use the principal-agent model as a focal theoretical frame for synthesizing what we know, both theoretically and empirically, about the design and dynamics of the implementation of performance management systems in the public sector. In this context, we review the growing body of evidence about how performance measurement and incentive systems…

  15. Incentives and Their Dynamics in Public Sector Performance Management Systems

    ERIC Educational Resources Information Center

    Heinrich, Carolyn J.; Marschke, Gerald

    2010-01-01

    We use the principal-agent model as a focal theoretical frame for synthesizing what we know, both theoretically and empirically, about the design and dynamics of the implementation of performance management systems in the public sector. In this context, we review the growing body of evidence about how performance measurement and incentive systems…

  16. Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; Boschi, Federico

    2011-12-01

    Clustering analysis (CA) and principal component analysis (PCA) were applied to dynamic Cerenkov luminescence images (dCLI). In order to investigate the performances of the proposed approaches, two distinct dynamic data sets obtained by injecting mice with 32P-ATP and 18F-FDG were acquired using the IVIS 200 optical imager. The k-means clustering algorithm has been applied to dCLI and was implemented using interactive data language 8.1. We show that cluster analysis allows us to obtain good agreement between the clustered and the corresponding emission regions like the bladder, the liver, and the tumor. We also show a good correspondence between the time activity curves of the different regions obtained by using CA and manual region of interest analysis on dCLIT and PCA images. We conclude that CA provides an automatic unsupervised method for the analysis of preclinical dynamic Cerenkov luminescence image data.

  17. Unsupervised analysis of small animal dynamic Cerenkov luminescence imaging

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; Boschi, Federico

    2011-12-01

    Clustering analysis (CA) and principal component analysis (PCA) were applied to dynamic Cerenkov luminescence images (dCLI). In order to investigate the performances of the proposed approaches, two distinct dynamic data sets obtained by injecting mice with 32P-ATP and 18F-FDG were acquired using the IVIS 200 optical imager. The k-means clustering algorithm has been applied to dCLI and was implemented using interactive data language 8.1. We show that cluster analysis allows us to obtain good agreement between the clustered and the corresponding emission regions like the bladder, the liver, and the tumor. We also show a good correspondence between the time activity curves of the different regions obtained by using CA and manual region of interest analysis on dCLIT and PCA images. We conclude that CA provides an automatic unsupervised method for the analysis of preclinical dynamic Cerenkov luminescence image data.

  18. Mathematical analysis of vortex dynamics

    NASA Astrophysics Data System (ADS)

    Caflisch, Russel E.

    This review paper discusses the mathematical theory of vortex dynamics for incompressible, inviscid flow in two and three dimensions. The surveyed results include existence and uniqueness of time-dependent solutions, instability and singularity formation, convergence of numerical methods, and existence and stability of steady states. A simple integral formulation for the evolution of a three dimensional vortex sheet and a variational principle for the Batchelor flow problem are presented.

  19. Multidimensional (OLAP) Analysis for Designing Dynamic Learning Strategy

    NASA Astrophysics Data System (ADS)

    Rozeva, A.; Deliyska, B.

    2010-10-01

    Learning strategy in an intelligent learning system is generally elaborated on the basis of assessment of the following factors: learner's time for reaction, content of the learning object, amount of learning material in a learning object, learning object specification, e-learning medium and performance control. Current work proposes architecture for dynamic learning strategy design by implementing multidimensional analysis model of learning factors. The analysis model concerns on-line analytical processing (OLAP) of learner's data structured as multidimensional cube. Main components of the architecture are analysis agent for performing the OLAP operations on learner data cube, adaptation generator and knowledge selection agent for performing adaptive navigation in the learning object repository. The output of the analysis agent is involved in dynamic elaboration of learning strategy that fits best to learners profile and behavior. As a result an adaptive learning path for individual learner and for learner groups is generated.

  20. Predictive structural dynamic network analysis.

    PubMed

    Chen, Rong; Herskovits, Edward H

    2015-04-30

    Classifying individuals based on magnetic resonance data is an important task in neuroscience. Existing brain network-based methods to classify subjects analyze data from a cross-sectional study and these methods cannot classify subjects based on longitudinal data. We propose a network-based predictive modeling method to classify subjects based on longitudinal magnetic resonance data. Our method generates a dynamic Bayesian network model for each group which represents complex spatiotemporal interactions among brain regions, and then calculates a score representing that subject's deviation from expected network patterns. This network-derived score, along with other candidate predictors, are used to construct predictive models. We validated the proposed method based on simulated data and the Alzheimer's Disease Neuroimaging Initiative study. For the Alzheimer's Disease Neuroimaging Initiative study, we built a predictive model based on the baseline biomarker characterizing the baseline state and the network-based score which was constructed based on the state transition probability matrix. We found that this combined model achieved 0.86 accuracy, 0.85 sensitivity, and 0.87 specificity. For the Alzheimer's Disease Neuroimaging Initiative study, the model based on the baseline biomarkers achieved 0.77 accuracy. The accuracy of our model is significantly better than the model based on the baseline biomarkers (p-value=0.002). We have presented a method to classify subjects based on structural dynamic network model based scores. This method is of great importance to distinguish subjects based on structural network dynamics and the understanding of the network architecture of brain processes and disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Nonlinear Dynamical Analysis of Fibrillation

    NASA Astrophysics Data System (ADS)

    Kerin, John A.; Sporrer, Justin M.; Egolf, David A.

    2013-03-01

    The development of spatiotemporal chaotic behavior in heart tissue, termed fibrillation, is a devastating, life-threatening condition. The chaotic behavior of electrochemical signals, in the form of spiral waves, causes the muscles of the heart to contract in an incoherent manner, hindering the heart's ability to pump blood. We have applied the mathematical tools of nonlinear dynamics to large-scale simulations of a model of fibrillating heart tissue to uncover the dynamical modes driving this chaos. By studying the evolution of Lyapunov vectors and exponents over short times, we have found that the fibrillating tissue is sensitive to electrical perturbations only in narrow regions immediately in front of the leading edges of spiral waves, especially when these waves collide, break apart, or hit the edges of the tissue sample. Using this knowledge, we have applied small stimuli to areas of varying sensitivity. By studying the evolution of the effects of these perturbations, we have made progress toward controlling the electrochemical patterns associated with heart fibrillation. This work was supported by the U.S. National Science Foundation (DMR-0094178) and Research Corporation.

  2. 4D Dynamic Required Navigation Performance Final Report

    NASA Technical Reports Server (NTRS)

    Finkelsztein, Daniel M.; Sturdy, James L.; Alaverdi, Omeed; Hochwarth, Joachim K.

    2011-01-01

    New advanced four dimensional trajectory (4DT) procedures under consideration for the Next Generation Air Transportation System (NextGen) require an aircraft to precisely navigate relative to a moving reference such as another aircraft. Examples are Self-Separation for enroute operations and Interval Management for in-trail and merging operations. The current construct of Required Navigation Performance (RNP), defined for fixed-reference-frame navigation, is not sufficiently specified to be applicable to defining performance levels of such air-to-air procedures. An extension of RNP to air-to-air navigation would enable these advanced procedures to be implemented with a specified level of performance. The objective of this research effort was to propose new 4D Dynamic RNP constructs that account for the dynamic spatial and temporal nature of Interval Management and Self-Separation, develop mathematical models of the Dynamic RNP constructs, "Required Self-Separation Performance" and "Required Interval Management Performance," and to analyze the performance characteristics of these air-to-air procedures using the newly developed models. This final report summarizes the activities led by Raytheon, in collaboration with GE Aviation and SAIC, and presents the results from this research effort to expand the RNP concept to a dynamic 4D frame of reference.

  3. Contextual analysis framework for bursty dynamics

    NASA Astrophysics Data System (ADS)

    Jo, Hang-Hyun; Pan, Raj Kumar; Perotti, Juan I.; Kaski, Kimmo

    2013-06-01

    To understand the origin of bursty dynamics in natural and social processes we provide a general analysis framework in which the temporal process is decomposed into subprocesses and then the bursts in subprocesses, called contextual bursts, are combined to collective bursts in the original process. For the combination of subprocesses, it is required to consider the distribution of different contexts over the original process. Based on minimal assumptions for interevent time statistics, we present a theoretical analysis for the relationship between contextual and collective interevent time distributions. Our analysis framework helps to exploit contextual information available in decomposable bursty dynamics.

  4. Approaches to Cycle Analysis and Performance Metrics

    NASA Technical Reports Server (NTRS)

    Parson, Daniel E.

    2003-01-01

    The following notes were prepared as part of an American Institute of Aeronautics and Astronautics (AIAA) sponsored short course entitled Air Breathing Pulse Detonation Engine (PDE) Technology. The course was presented in January of 2003, and again in July of 2004 at two different AIAA meetings. It was taught by seven instructors, each of whom provided information on particular areas of PDE research. These notes cover two areas. The first is titled Approaches to Cycle Analysis and Performance Metrics. Here, the various methods of cycle analysis are introduced. These range from algebraic, thermodynamic equations, to single and multi-dimensional Computational Fluid Dynamic (CFD) solutions. Also discussed are the various means by which performance is measured, and how these are applied in a device which is fundamentally unsteady. The second topic covered is titled PDE Hybrid Applications. Here the concept of coupling a PDE to a conventional turbomachinery based engine is explored. Motivation for such a configuration is provided in the form of potential thermodynamic benefits. This is accompanied by a discussion of challenges to the technology.

  5. SPAR improved structure-fluid dynamic analysis capability, phase 2

    NASA Technical Reports Server (NTRS)

    Pearson, M. L.

    1984-01-01

    An efficient and general method of analyzing a coupled dynamic system of fluid flow and elastic structures is investigated. The improvement of Structural Performance Analysis and Redesign (SPAR) code is summarized. All error codes are documented and the SPAR processor/subroutine cross reference is included.

  6. Onsite analysis of data from the Dynamics Explorer (DE) spacecraft

    NASA Technical Reports Server (NTRS)

    Fung, Shing F.; Candey, Robert M.; Humphreys, Josephine N.

    1992-01-01

    The tasks performed by ARC Professional Services Group, Inc. fell into five parts: (1) dynamics explorer (DE) data analysis and modeling; (2) DE project support; (3) chemical release observations support; (4) VLF emissions and plasma instability studies; and (5) modeling of planetary radio emissions. Some recommendations for future considerations are also addressed.

  7. PERFORMANCE ANALYSIS OF MECHANICAL DRAFT COOLING TOWER

    SciTech Connect

    Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

    2009-02-10

    Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has cross-flow and counter-current MDCT's consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to simulate the cooling tower performance for the counter-current cooling tower and to conduct a parametric study under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model and performed the benchmarking analysis against the integral measurement results to accomplish the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of parametric calculations was performed to investigate the impact of wind speeds and ambient conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was also benchmarked against the literature data and the SRS integral test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be published here.

  8. Traffic chaotic dynamics modeling and analysis of deterministic network

    NASA Astrophysics Data System (ADS)

    Wu, Weiqiang; Huang, Ning; Wu, Zhitao

    2016-07-01

    Network traffic is an important and direct acting factor of network reliability and performance. To understand the behaviors of network traffic, chaotic dynamics models were proposed and helped to analyze nondeterministic network a lot. The previous research thought that the chaotic dynamics behavior was caused by random factors, and the deterministic networks would not exhibit chaotic dynamics behavior because of lacking of random factors. In this paper, we first adopted chaos theory to analyze traffic data collected from a typical deterministic network testbed — avionics full duplex switched Ethernet (AFDX, a typical deterministic network) testbed, and found that the chaotic dynamics behavior also existed in deterministic network. Then in order to explore the chaos generating mechanism, we applied the mean field theory to construct the traffic dynamics equation (TDE) for deterministic network traffic modeling without any network random factors. Through studying the derived TDE, we proposed that chaotic dynamics was one of the nature properties of network traffic, and it also could be looked as the action effect of TDE control parameters. A network simulation was performed and the results verified that the network congestion resulted in the chaotic dynamics for a deterministic network, which was identical with expectation of TDE. Our research will be helpful to analyze the traffic complicated dynamics behavior for deterministic network and contribute to network reliability designing and analysis.

  9. Visual Analysis of Dynamic Data Streams

    SciTech Connect

    Chin, George; Singhal, Mudita; Nakamura, Grant C.; Gurumoorthi, Vidhya; Freeman-Cadoret, Natalie A.

    2009-09-01

    For scientific data visualizations, real-time data streams present many interesting challenges when compared to static data. Real-time data are dynamic, transient, high-volume, and temporal. Effective visualizations need to be able to accommodate dynamic data behavior as well as abstract and present the data in ways that make sense to and are usable by humans. The Visual Content Analysis of Real-Time Data Streams project at the Pacific Northwest National Laboratory is researching and prototyping dynamic visualization techniques and tools to help facilitate human understanding and comprehension of high-volume, real-time data. The general strategy of the project is to develop and evolve visual contexts that will organize and orient complex dynamic data in conceptual and perceptive views. The goal is to allow users to quickly grasp dynamic data in forms that are intuitive and natural without requiring intensive training in the use of specific visualization or analysis tools and methods. Thus far, the project has prototyped four different visualization prototypes that represents and convey dynamic data through human-recognizable contexts and paradigms such as hierarchies, relationships, time, and geography. We describe the design considerations and unique features of these dynamic visualization prototypes as well as our findings in the exploration and evaluation of their use.

  10. Intentional thought dynamics during exercise performed until volitional exhaustion.

    PubMed

    Balagué, Natàlia; Hristovski, Robert; Garcia, Sergi; Aragonés, Daniel; Razon, Selen; Tenenbaum, Gershon

    2015-01-01

    Using a non-linear approach, intentional dynamics of thoughts were examined during constant cycling performed until volitional exhaustion. Participants (n = 12) completed two sessions at 80% Wmax. Their (1) intrinsic thought dynamics (i.e., no-imposed thoughts condition) and (2) intentional thought dynamics (i.e., imposed task-unrelated thoughts condition; TUT) were recorded and then classified into four categories: internal and external TUT (TUT-I, TUT-E) and external and internal task-related thoughts (TRT-E, TRT-I). The probability estimates for maintaining each thought category stable, the rate of switching from one category to another, and the entropy dynamics along the testing procedure were assessed and compared through time phase. Friedman ANOVA tests revealed a significant effect of effort increase on thought contents only in the imposed TUT test. While TUT-I probabilities decreased significantly (P < .001) as effort increased, TRT-I probabilities increased (P < .05). Moreover, the entropy to the entire thought dynamics increased at the outset of task performance and decreased upon approaching volitional exhaustion (P < .001). As time spent in constant effort increased, and volitional exhaustion approached, task relatedness (TUT, TRT), direction (internal, external), and entropy of thought contents changed unintentionally providing further evidence for a nonlinear dynamics of attention focus.

  11. Transient meshing performance of gears with different modification coefficients and helical angles using explicit dynamic FEA

    NASA Astrophysics Data System (ADS)

    Hu, Yumei; Shao, Yimin; Chen, Zaigang; Zuo, Ming J.

    2011-07-01

    The gearbox, as the main part of power transmission of many mechanical systems, plays a critical role for the performance of the system. The transient meshing performance of the gears is dependent on their structural parameters like modification coefficient and helical angle among others. In this paper, the effects of modification coefficients and helical angles on the transient meshing performance of the gears are investigated using the method of explicit dynamic finite element analysis (FEA) in an energy point of view. The relationships between the transient meshing performance and modification coefficient or helical angle of gears are obtained by explicit dynamic simulation. The simulation results demonstrate that explicit dynamic FEA can be used for choosing these structural parameters in the design and manufacture of gears to enhance their transient meshing performance.

  12. Analytical signal analysis of strange nonchaotic dynamics.

    PubMed

    Gupta, Kopal; Prasad, Awadhesh; Singh, Harinder P; Ramaswamy, Ramakrishna

    2008-04-01

    We apply an analytical signal analysis to strange nonchaotic dynamics. Through this technique it is possible to obtain the spectrum of instantaneous intrinsic mode frequencies that are present in a given signal. We find that the second-mode frequency and its variance are good order parameters for dynamical transitions from quasiperiodic tori to strange nonchaotic attractors (SNAs) and from SNAs to chaotic attractors. Phase fluctuation analysis shows that SNAs and chaotic attractors behave identically within short time windows as a consequence of local instabilities in the dynamics. In longer time windows, however, the globally stable character of SNAs becomes apparent. This methodology can be of great utility in the analysis of experimental time series, and representative applications are made to signals obtained from Rössler and Duffing oscillators.

  13. Dynamic replanning on demand of UAS constellations performing ISR missions

    NASA Astrophysics Data System (ADS)

    Stouch, Daniel W.; Zeidman, Ernest; Callahan, William; McGraw, Kirk

    2011-05-01

    Unmanned aerial systems (UAS) have proven themselves to be indispensable in providing intelligence, surveillance, and reconnaissance (ISR) over the battlefield. Constellations of heterogeneous, multi-purpose UAS are being tasked to provide ISR in an unpredictable environment. This necessitates the dynamic replanning of critical missions as weather conditions change, new observation targets are identified, aircraft are lost or equipment malfunctions, and new airspace restrictions are introduced. We present a method to generate coordinated mission plans for constellations of UAS with multiple flight goals and potentially competing objectives, and update them on demand as the operational situation changes. We use a fast evolutionary algorithm-based, multi-objective optimization technique. The updated flight routes maintain continuity by considering where the ISR assets have already flown and where they still need to go. Both the initial planning and replanning take into account factors such as area of analysis coverage, restricted operating zones, maximum control station range, adverse weather effects, military terrain value, and sensor performance. Our results demonstrate that by constraining the space of potential solutions using an intelligently-formed air maneuver network with a subset of potential airspace corridors and navigational waypoints, we can ensure global optimization for multiple objectives considering the situation both before and after the replanning is initiated. We employ sophisticated visualization techniques using a geographic information system to help the user 'look under the hood" of the algorithms to understand the effectiveness and viability of the generated ISR mission plans and identify potential gaps in coverage.

  14. Dynamic analysis of grinding using the population balance model

    SciTech Connect

    Williams, M.C. |

    1995-12-31

    The dynamic behavior of batch mill, CSTR mill, and a closed grinding network consisting of a mill, sump, and cyclone was analyzed using the dynamic population balance model (PBM). The dynamic solution of the PBM of a batch, CSTR and a closed grinding network consisting of a mill, sump, and cyclone forms the basis of the dynamic analysis presented here. Two numerical dynamic solution approaches were used. These are: (1) providing additional constraints on breakage selection functions or (2) performing the Arbiter-Bhrany (or other) normalization of the selection functions. Actual experimental anthracite batch grinding data was used to obtain the functionality of the batch dynamic mill selection and breakage functions for a real physical system. The Levenberg-Marquardt algorithm for systems of constrained non-linear equations is used to solve the batch dynamic PBM grinding equations to obtain the grinding selection and breakage rate functions. The mill, sump and hydrocyclone were modeled as a CSTR operating at various retention times. Batch dynamic PBM data was used to provide the mill kinetic and breakage selection function data. Different dynamic solutions were obtained depending on the numerical approach used. Each solution approach to a dynamic PBM with transport, while giving the same prediction for a single batch grinding time, gives different solutions or predictions for mill composition for other grinding times. This fact makes dynamic nodal analysis and control problematic. The fact that the constraint solution approach gives a solution may suggest that normalization for closed networks is not necessary. Differences in solutions to the PBM cannot be excused away by inaccuracies in the data used to model the grinding phenomenon.

  15. Dynamic Systems Analysis for Turbine Based Aero Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.

    2016-01-01

    The aircraft engine design process seeks to optimize the overall system-level performance, weight, and cost for a given concept. Steady-state simulations and data are used to identify trade-offs that should be balanced to optimize the system in a process known as systems analysis. These systems analysis simulations and data may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic systems analysis provides the capability for assessing the dynamic tradeoffs at an earlier stage of the engine design process. The dynamic systems analysis concept, developed tools, and potential benefit are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed to provide the user with an estimate of the closed-loop performance (response time) and operability (high pressure compressor surge margin) for a given engine design and set of control design requirements. TTECTrA along with engine deterioration information, can be used to develop a more generic relationship between performance and operability that can impact the engine design constraints and potentially lead to a more efficient engine.

  16. Application Analysis and Decision with Dynamic Analysis

    DTIC Science & Technology

    2014-12-01

    debugging tool, “ adb ”. The tool, adb , is used several times to interact with the mobile VM, by capturing the screenshot, sending SMS messages, executing...and logcat to watch log files. Analysis is ready to begin in earnest. The application is installed on the phone and then launched, all via adb

  17. Structural Dynamics and Data Analysis

    NASA Technical Reports Server (NTRS)

    Luthman, Briana L.

    2013-01-01

    This project consists of two parts, the first will be the post-flight analysis of data from a Delta IV launch vehicle, and the second will be a Finite Element Analysis of a CubeSat. Shock and vibration data was collected on WGS-5 (Wideband Global SATCOM- 5) which was launched on a Delta IV launch vehicle. Using CAM (CAlculation with Matrices) software, the data is to be plotted into Time History, Shock Response Spectrum, and SPL (Sound Pressure Level) curves. In this format the data is to be reviewed and compared to flight instrumentation data from previous flights of the same launch vehicle. This is done to ensure the current mission environments, such as shock, random vibration, and acoustics, are not out of family with existing flight experience. In family means the peaks on the SRS curve for WGS-5 are similar to the peaks from the previous flights and there are no major outliers. The curves from the data will then be compiled into a useful format so that is can be peer reviewed then presented before an engineering review board if required. Also, the reviewed data will be uploaded to the Engineering Review Board Information System (ERBIS) to archive. The second part of this project is conducting Finite Element Analysis of a CubeSat. In 2010, Merritt Island High School partnered with NASA to design, build and launch a CubeSat. The team is now called StangSat in honor of their mascot, the mustang. Over the past few years, the StangSat team has built a satellite and has now been manifested for flight on a SpaceX Falcon 9 launch in 2014. To prepare for the final launch, a test flight was conducted in Mojave, California. StangSat was launched on a Prospector 18D, a high altitude rocket made by Garvey Spacecraft Corporation, along with their sister satellite CP9 built by California Polytechnic University. However, StangSat was damaged during an off nominal landing and this project will give beneficial insights into what loads the CubeSat experienced during the crash

  18. Dynamical analysis of tachyonic chameleon

    NASA Astrophysics Data System (ADS)

    Banijamali, Ali; Solbi, Milad

    2017-08-01

    In the present paper we investigate tachyonic chameleon scalar field and present the phase space analysis for four different combinations of the tachyonic potential V(φ ) and the coupling function f(φ ) of the chameleon field with matter. We find some stable solution in which accelerated expansion of the universe is satisfied. In one case where both f(φ ) and V(φ ) are exponential a scaling attractor was found that can give rise to the late-time acceleration of the universe and alleviate the coincidence problem.

  19. A dynamic human motion: coordination analysis.

    PubMed

    Pchelkin, Stepan; Shiriaev, Anton S; Freidovich, Leonid B; Mettin, Uwe; Gusev, Sergei V; Kwon, Woong; Paramonov, Leonid

    2015-02-01

    This article is concerned with the generic structure of the motion coordination system resulting from the application of the method of virtual holonomic constraints (VHCs) to the problem of the generation and robust execution of a dynamic humanlike motion by a humanoid robot. The motion coordination developed using VHCs is based on a motion generator equation, which is a scalar nonlinear differential equation of second order. It can be considered equivalent in function to a central pattern generator in living organisms. The relative time evolution of the degrees of freedom of a humanoid robot during a typical motion are specified by a set of coordination functions that uniquely define the overall pattern of the motion. This is comparable to a hypothesis on the existence of motion patterns in biomechanics. A robust control is derived based on a transverse linearization along the configuration manifold defined by the coordination functions. It is shown that the derived coordination and control architecture possesses excellent robustness properties. The analysis is performed on an example of a real human motion recorded in test experiments.

  20. SEP thrust subsystem performance sensitivity analysis

    NASA Technical Reports Server (NTRS)

    Atkins, K. L.; Sauer, C. G., Jr.; Kerrisk, D. J.

    1973-01-01

    This is a two-part report on solar electric propulsion (SEP) performance sensitivity analysis. The first part describes the preliminary analysis of the SEP thrust system performance for an Encke rendezvous mission. A detailed description of thrust subsystem hardware tolerances on mission performance is included together with nominal spacecraft parameters based on these tolerances. The second part describes the method of analysis and graphical techniques used in generating the data for Part 1. Included is a description of both the trajectory program used and the additional software developed for this analysis. Part 2 also includes a comprehensive description of the use of the graphical techniques employed in this performance analysis.

  1. Dynamic simulation models and performance of an OTEC power plant

    SciTech Connect

    Wormley, D.N.; Carmichael, D.A.; Umans, S.

    1983-08-01

    In this study, the aspects of plant performance which influence the potential for integration of an OTEC plant into a utility grid are considered. A set of simulation models have been developed for the evaluation of OTEC dynamic plant performance. A detailed nonlinear dynamic model has been forumlated which is useful for the assessment of component performance including heat exchangers, turbines, pumps and control systems. A reduced order linear model has been developed which is useful for studies of plant stability, control system development and transient performance of the plant connected to a utility grid. This model is particularly suitable for transient dynamic studies of an OTEC plant as a unit in a utility grid. A quasi-steady power availability model has also been developed which is useful to determine plant ouput power as a function of ocean thermal gradients so that the influence of daily and seasonal temperature variations may be easily computed. The study has found no fundamental technical barriers which would prohibit the interconnection of an OTEC plant into a utility grid. It has also shown that detailed consideration of turbine nozzle angle control is merited and such a control has the potential to provide superior performance in comparison to turbine bypass valve control.

  2. Modeling and dynamic performance evaluation of target capture in robotic systems

    SciTech Connect

    Koevecses, J.; Cleghorn, W.L.; Fenton, R.G.

    2000-04-01

    In this paper, a dynamic system consisting of a robot manipulator and a target is analyzed. The target is considered in a general way as a dynamic subsystem having finite mass and moments of inertia (e.g., a rigid body or a second robot). The situation investigated is when the robot establishes interaction with the target in such a way that it intercepts and captures a reference element of the target. The analysis of target capture is divided into three phases in terms of time: the precapture, free motion (finite motion); the transition from free to constrained motion in the vicinity of interception and capture (impulsive motion); and the postcapture, constrained motion (finite motion). The greatest attention is paid to the analysis of the phase of transition, the impulsive motion, and dynamics of the system. Based on the use of impulsive constraints and the Jourdainian formulation of analytical dynamics, a novel approach is proposed for the dynamic modeling of target capture by a robot manipulator. The proposed approach is suitable to handle both finite and impulsive motions in a common analytical framework. Based on the dynamic model developed and using a geometric representation of the system's dynamics, a detailed analysis and a performance evaluation framework are presented for the phase of transition. Both rigid and structurally flexible models of robots are considered. For the performance evaluation analyses, two main concepts are proposed and corresponding performance measures are derived. These tools may be used in the analysis, design, and control of time-varying robotic systems. The dynamic system of a three-link robot arm capturing a rigid body is used to illustrate the material presented.

  3. A Dynamical Analysis of Sea Breeze Hodograph Rotation on Sardinia

    NASA Astrophysics Data System (ADS)

    Moisseeva, Nadya; Steyn, Douw

    2014-05-01

    We investigate the dynamics of diurnal sea-breeze rotation over coastal Sardinia using realistic and idealized model runs and historical observations. Earlier research on sea-breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anticlockwise rotation. A non-hydrostatic fully compressible numerical model (WRF) is used to simulate wind fields on and around the island on previously-studied sea-breeze days. WRF accurately captures the sea breeze circulation on all coasts, as depicted in station data. Diurnal rotation of wind is examined and patterns of clockwise and anti-clockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island of similar dimensions and latitude to Sardinia, but with dramatically simplified topography. Dynamical analysis of the idealized runs reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with complex topography and/or coastline.

  4. Thermal evaluation of advanced solar dynamic heat receiver performance

    NASA Technical Reports Server (NTRS)

    Crane, Roger A.

    1989-01-01

    The thermal performance of a variety of concepts for thermal energy storage as applied to solar dynamic applications is discussed. It is recognized that designs providing large thermal gradients or large temperature swings during orbit are susceptible to early mechanical failure. Concepts incorporating heat pipe technology may encounter operational limitations over sufficiently large ranges. By reviewing the thermal performance of basic designs, the relative merits of the basic concepts are compared. In addition the effect of thermal enhancement and metal utilization as applied to each design provides a partial characterization of the performance improvements to be achieved by developing these technologies.

  5. Conformational analysis of oligosaccharides and polysaccharides using molecular dynamics simulations.

    PubMed

    Frank, Martin

    2015-01-01

    Complex carbohydrates usually have a large number of rotatable bonds and consequently a large number of theoretically possible conformations can be generated (combinatorial explosion). The application of systematic search methods for conformational analysis of carbohydrates is therefore limited to disaccharides and trisaccharides in a routine analysis. An alternative approach is to use Monte-Carlo methods or (high-temperature) molecular dynamics (MD) simulations to explore the conformational space of complex carbohydrates. This chapter describes how to use MD simulation data to perform a conformational analysis (conformational maps, hydrogen bonds) of oligosaccharides and how to build realistic 3D structures of large polysaccharides using Conformational Analysis Tools (CAT).

  6. SWECS tower dynamics analysis methods and results

    NASA Technical Reports Server (NTRS)

    Wright, A. D.; Sexton, J. H.; Butterfield, C. P.; Thresher, R. M.

    1981-01-01

    Several different tower dynamics analysis methods and computer codes were used to determine the natural frequencies and mode shapes of both guyed and freestanding wind turbine towers. These analysis methods are described and the results for two types of towers, a guyed tower and a freestanding tower, are shown. The advantages and disadvantages in the use of and the accuracy of each method are also described.

  7. Final Report Computational Analysis of Dynamical Systems

    SciTech Connect

    Guckenheimer, John

    2012-05-08

    This is the final report for DOE Grant DE-FG02-93ER25164, initiated in 1993. This grant supported research of John Guckenheimer on computational analysis of dynamical systems. During that period, seventeen individuals received PhD degrees under the supervision of Guckenheimer and over fifty publications related to the grant were produced. This document contains copies of these publications.

  8. The role of ecological dynamics in analysing performance in team sports.

    PubMed

    Vilar, Luís; Araújo, Duarte; Davids, Keith; Button, Chris

    2012-01-01

    Performance analysis is a subdiscipline of sports sciences and one-approach, notational analysis, has been used to objectively audit and describe behaviours of performers during different subphases of play, providing additional information for practitioners to improve future sports performance. Recent criticisms of these methods have suggested the need for a sound theoretical rationale to explain performance behaviours, not just describe them. The aim of this article was to show how ecological dynamics provides a valid theoretical explanation of performance in team sports by explaining the formation of successful and unsuccessful patterns of play, based on symmetry-breaking processes emerging from functional interactions between players and the performance environment. We offer the view that ecological dynamics is an upgrade to more operational methods of performance analysis that merely document statistics of competitive performance. In support of our arguments, we refer to exemplar data on competitive performance in team sports that have revealed functional interpersonal interactions between attackers and defenders, based on variations in the spatial positioning of performers relative to each other in critical performance areas, such as the scoring zones. Implications of this perspective are also considered for practice task design and sport development programmes.

  9. Adaptive Optics Communications Performance Analysis

    NASA Technical Reports Server (NTRS)

    Srinivasan, M.; Vilnrotter, V.; Troy, M.; Wilson, K.

    2004-01-01

    The performance improvement obtained through the use of adaptive optics for deep-space communications in the presence of atmospheric turbulence is analyzed. Using simulated focal-plane signal-intensity distributions, uncoded pulse-position modulation (PPM) bit-error probabilities are calculated assuming the use of an adaptive focal-plane detector array as well as an adaptively sized single detector. It is demonstrated that current practical adaptive optics systems can yield performance gains over an uncompensated system ranging from approximately 1 dB to 6 dB depending upon the PPM order and background radiation level.

  10. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    This program was developed as an aid in the design and analysis of subsonic wind tunnels. It brings together and refines previously scattered and over-simplified techniques used for the design and loss prediction of the components of subsonic wind tunnels. It implements a system of equations for determining the total pressure losses and provides general guidelines for the design of diffusers, contractions, corners and the inlets and exits of non-return tunnels. The algorithms used in the program are applicable to compressible flow through most closed- or open-throated, single-, double- or non-return wind tunnels or ducts. A comparison between calculated performance and that actually achieved by several existing facilities produced generally good agreement. Any system through which air is flowing which involves turns, fans, contractions etc. (e.g., an HVAC system) may benefit from analysis using this software. This program is an update of ARC-11138 which includes PC compatibility and an improved user interface. The method of loss analysis used by the program is a synthesis of theoretical and empirical techniques. Generally, the algorithms used are those which have been substantiated by experimental test. The basic flow-state parameters used by the program are determined from input information about the reference control section and the test section. These parameters were derived from standard relationships for compressible flow. The local flow conditions, including Mach number, Reynolds number and friction coefficient are determined for each end of each component or section. The loss in total pressure caused by each section is calculated in a form non-dimensionalized by local dynamic pressure. The individual losses are based on the nature of the section, local flow conditions and input geometry and parameter information. The loss forms for typical wind tunnel sections considered by the program include: constant area ducts, open throat ducts, contractions, constant

  11. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    NASA Technical Reports Server (NTRS)

    Eckert, W. T.

    1994-01-01

    This program was developed as an aid in the design and analysis of subsonic wind tunnels. It brings together and refines previously scattered and over-simplified techniques used for the design and loss prediction of the components of subsonic wind tunnels. It implements a system of equations for determining the total pressure losses and provides general guidelines for the design of diffusers, contractions, corners and the inlets and exits of non-return tunnels. The algorithms used in the program are applicable to compressible flow through most closed- or open-throated, single-, double- or non-return wind tunnels or ducts. A comparison between calculated performance and that actually achieved by several existing facilities produced generally good agreement. Any system through which air is flowing which involves turns, fans, contractions etc. (e.g., an HVAC system) may benefit from analysis using this software. This program is an update of ARC-11138 which includes PC compatibility and an improved user interface. The method of loss analysis used by the program is a synthesis of theoretical and empirical techniques. Generally, the algorithms used are those which have been substantiated by experimental test. The basic flow-state parameters used by the program are determined from input information about the reference control section and the test section. These parameters were derived from standard relationships for compressible flow. The local flow conditions, including Mach number, Reynolds number and friction coefficient are determined for each end of each component or section. The loss in total pressure caused by each section is calculated in a form non-dimensionalized by local dynamic pressure. The individual losses are based on the nature of the section, local flow conditions and input geometry and parameter information. The loss forms for typical wind tunnel sections considered by the program include: constant area ducts, open throat ducts, contractions, constant

  12. Model Performance Evaluation and Scenario Analysis (MPESA)

    EPA Pesticide Factsheets

    Model Performance Evaluation and Scenario Analysis (MPESA) assesses the performance with which models predict time series data. The tool was developed Hydrological Simulation Program-Fortran (HSPF) and the Stormwater Management Model (SWMM)

  13. Dynamic test/analysis correlation using reduced analytical models

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Angelucci, A. F.; Javeed, Mehzad

    1992-01-01

    Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.

  14. Dynamic test/analysis correlation using reduced analytical models

    NASA Technical Reports Server (NTRS)

    Mcgowan, Paul E.; Angelucci, A. Filippo; Javeed, Mehzad

    1992-01-01

    Test/analysis correlation is an important aspect of the verification of analysis models which are used to predict on-orbit response characteristics of large space structures. This paper presents results of a study using reduced analysis models for performing dynamic test/analysis correlation. The reduced test-analysis model (TAM) has the same number and orientation of DOF as the test measurements. Two reduction methods, static (Guyan) reduction and the Improved Reduced System (IRS) reduction, are applied to the test/analysis correlation of a laboratory truss structure. Simulated test results and modal test data are used to examine the performance of each method. It is shown that selection of DOF to be retained in the TAM is critical when large structural masses are involved. In addition, the use of modal test results may provide difficulties in TAM accuracy even if a large number of DOF are retained in the TAM.

  15. Solar Dynamic Power System Stability Analysis and Control

    NASA Technical Reports Server (NTRS)

    Momoh, James A.; Wang, Yanchun

    1996-01-01

    The objective of this research is to conduct dynamic analysis, control design, and control performance test of solar power system. Solar power system consists of generation system and distribution network system. A bench mark system is used in this research, which includes a generator with excitation system and governor, an ac/dc converter, six DDCU's and forty-eight loads. A detailed model is used for modeling generator. Excitation system is represented by a third order model. DDCU is represented by a seventh order system. The load is modeled by the combination of constant power and constant impedance. Eigen-analysis and eigen-sensitivity analysis are used for system dynamic analysis. The effects of excitation system, governor, ac/dc converter control, and the type of load on system stability are discussed. In order to improve system transient stability, nonlinear ac/dc converter control is introduced. The direct linearization method is used for control design. The dynamic analysis results show that these controls affect system stability in different ways. The parameter coordination of controllers are recommended based on the dynamic analysis. It is concluded from the present studies that system stability is improved by the coordination of control parameters and the nonlinear ac/dc converter control stabilize system oscillation caused by the load change and system fault efficiently.

  16. Kuipers performs Water Sample Analysis

    NASA Image and Video Library

    2012-05-15

    ISS031-E-084619 (15 May 2012) --- After collecting samples from the Water Recovery System (WRS), European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, processes the samples for chemical and microbial analysis in the Unity node of the International Space Station.

  17. Experimental investigations of fluid dynamic and thermal performance of nanofluids

    NASA Astrophysics Data System (ADS)

    Kulkarni, Devdatta Prakash

    The goal of this research was to investigate the fluid dynamic and thermal performance of various nanofluids. Nanofluids are dispersions of metallic nanometer size particles (<100 nm) into the base fluids. The choice of base fluid is an ethylene or propylene glycol and water mixture in cold regions. Initially the rheological characterization of copper oxide (CuO) nanofluids in water and in propylene glycol was performed. Results revealed that higher concentrations of CuO nanoparticles (5 to 15%) in water exhibited time-independent pseudoplastic and shear-thinning behavior. Lower concentrations (1 to 6%) of CuO nanofluids in propylene glycol revealed that these nanofluids behaved as Newtonian fluids. Both nanofluids showed that viscosity decreased exponentially with increase in temperature. Subsequent correlations for viscosities as a function of volume concentration and temperature were developed. Effects of different thermophysical properties on the Prandtl number of CuO, silicon dioxide (SiO2) and aluminum oxide (A12O 3) nanofluids were investigated. Results showed that the Prandtl number increased with increasing volume concentrations, which in turn increased the heat transfer coefficients of the nanofluids. Various nanofluids were compared for their heat transfer rates based on the Mouromtseff number, which is a Figure of Merit for heat transfer fluids. From this analysis, the optimal concentrations of nanoparticles in base fluids were found for CuO-water nanofluids. Experiments were performed to investigate the convective heat transfer enhancement and pressure loss of CuO, SiO2 and A12O 3 nanofluids in the turbulent regime. The increases in heat transfer coefficient by nanofluids for various volume concentrations compared to the base fluid were determined. Pressure loss was observed to increase with nanoparticle volume concentration. It was observed that an increase in particle diameter increased the heat transfer coefficient. Calculations showed that

  18. Dynamic interactions between hypersonic vehicle aerodynamics and propulsion system performance

    NASA Technical Reports Server (NTRS)

    Flandro, G. A.; Roach, R. L.; Buschek, H.

    1992-01-01

    Described here is the development of a flexible simulation model for scramjet hypersonic propulsion systems. The primary goal is determination of sensitivity of the thrust vector and other system parameters to angle of attack changes of the vehicle. Such information is crucial in design and analysis of control system performance for hypersonic vehicles. The code is also intended to be a key element in carrying out dynamic interaction studies involving the influence of vehicle vibrations on propulsion system/control system coupling and flight stability. Simple models are employed to represent the various processes comprising the propulsion system. A method of characteristics (MOC) approach is used to solve the forebody and external nozzle flow fields. This results in a very fast computational algorithm capable of carrying out the vast number of simulation computations needed in guidance, stability, and control studies. The three-dimensional fore- and aft body (nozzle) geometry is characterized by the centerline profiles as represented by a series of coordinate points and body cross-section curvature. The engine module geometry is represented by an adjustable vertical grid to accommodate variations of the field parameters throughout the inlet and combustor. The scramjet inlet is modeled as a two-dimensional supersonic flow containing adjustable sidewall wedges and multiple fuel injection struts. The inlet geometry including the sidewall wedge angles, the number of injection struts, their sweepback relative to the vehicle reference line, and strut cross-section are user selectable. Combustion is currently represented by a Rayleigh line calculation including corrections for variable gas properties; improved models are being developed for this important element of the propulsion flow field. The program generates (1) variation of thrust magnitude and direction with angle of attack, (2) pitching moment and line of action of the thrust vector, (3) pressure and temperature

  19. Metastability and emergent performance of dynamic interceptive actions.

    PubMed

    Pinder, Ross A; Davids, Keith; Renshaw, Ian

    2012-09-01

    Adaptive patterning of human movement is context specific and dependent on interacting constraints of the performer-environment relationship. Flexibility of skilled behaviour is predicated on the capacity of performers to move between different states of movement organisation to satisfy dynamic task constraints, previously demonstrated in studies of visual perception, bimanual coordination, and an interceptive combat task. Metastability is a movement system property that helps performers to remain in a state of relative coordination with their performance environments, poised between multiple co-existing states (stable and distinct movement patterns or responses). The aim of this study was to examine whether metastability could be exploited in externally paced interceptive actions in fast ball sports, such as cricket. Here we report data on metastability in performance of multi-articular hitting actions by skilled junior cricket batters (n=5). Participants' batting actions (key movement timings and performance outcomes) were analysed in four distinct performance regions varied by ball pitching (bounce) location. Results demonstrated that, at a pre-determined distance to the ball, participants were forced into a meta-stable region of performance where rich and varied patterns of functional movement behaviours emerged. Participants adapted the organisation of responses, resulting in higher levels of variability in movement timing in this performance region, without detrimental effects on the quality of interceptive performance outcomes. Findings provide evidence for the emergence of metastability in a dynamic interceptive action in cricket batting. Flexibility and diversity of movement responses were optimised using experiential knowledge and careful manipulation of key task constraints of the specific sport context. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Nonlinear dynamics and quantitative EEG analysis.

    PubMed

    Jansen, B H

    1996-01-01

    Quantitative, computerized electroencephalogram (EEG) analysis appears to be based on a phenomenological approach to EEG interpretation, and is primarily rooted in linear systems theory. A fundamentally different approach to computerized EEG analysis, however, is making its way into the laboratories. The basic idea, inspired by recent advances in the area of nonlinear dynamics and chaos theory, is to view an EEG as the output of a deterministic system of relatively simple complexity, but containing nonlinearities. This suggests that studying the geometrical dynamics of EEGs, and the development of neurophysiologically realistic models of EEG generation may produce more successful automated EEG analysis techniques than the classical, stochastic methods. A review of the fundamentals of chaos theory is provided. Evidence supporting the nonlinear dynamics paradigm to EEG interpretation is presented, and the kind of new information that can be extracted from the EEG is discussed. A case is made that a nonlinear dynamic systems viewpoint to EEG generation will profoundly affect the way EEG interpretation is currently done.

  1. Structural-Thermal-Optical-Performance (STOP) Analysis

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeffrey; Irish, Sandra

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). A STOP analysis is a multidiscipline analysis, consisting of Structural, Thermal and Optical Performance Analyses, that is performed for all space flight instruments and satellites. This course will explain the different parts of performing this analysis. The student will learn how to effectively interact with each discipline in order to accurately obtain the system analysis results.

  2. Flight Dynamics Analysis Branch 2005 Technical Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 595, in support of flight projects and technology development initiatives in Fiscal Year (FY) 2005. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics including spacecraft navigation (autonomous and ground based); spacecraft trajectory design and maneuver planning; attitude analysis; attitude determination and sensor calibration; and attitude control subsystem (ACS) analysis and design. The FDAB currently provides support for missions and technology development projects involving NASA, other government agencies, academia, and private industry.

  3. The ARCANE Project: How an Ecological Dynamics Framework Can Enhance Performance Assessment and Prediction in Football.

    PubMed

    Couceiro, Micael S; Dias, Gonçalo; Araújo, Duarte; Davids, Keith

    2016-12-01

    This paper discusses how an ecological dynamics framework can be implemented to interpret data, design practice tasks and interpret athletic performance in collective sports, exemplified here by research ideas within the Augmented peRCeption ANalysis framEwork for Football (ARCANE) project promoting an augmented perception of football teams for scientists and practitioners. An ecological dynamics rationale can provide an interpretation of athletes' positional and physiological data during performance, using new methods to assess athletes' behaviours in real-time and, to some extent, predict health and performance outcomes. The proposed approach signals practical applications for coaches, sports analysts, exercise physiologists and practitioners through merging a large volume of data into a smaller set of variables, resulting in a deeper analysis than typical measures of performance outcomes of competitive games.

  4. Dynamic Connectivity at Rest Predicts Attention Task Performance

    PubMed Central

    Askren, Mary K.; Boord, Peter; Grabowski, Thomas J.

    2015-01-01

    Abstract Consistent spatial patterns of coherent activity, representing large-scale networks, have been reliably identified in multiple populations. Most often, these studies have examined “stationary” connectivity. However, there is a growing recognition that there is a wealth of information in the time-varying dynamics of networks which has neural underpinnings, which changes with age and disease and that supports behavior. Using factor analysis of overlapping sliding windows across 25 participants with Parkinson disease (PD) and 21 controls (ages 41–86), we identify factors describing the covarying correlations of regions (dynamic connectivity) within attention networks and the default mode network, during two baseline resting-state and task runs. Cortical regions that support attention networks are affected early in PD, motivating the potential utility of dynamic connectivity as a sensitive way to characterize physiological disruption to these networks. We show that measures of dynamic connectivity are more reliable than comparable measures of stationary connectivity. Factors in the dorsal attention network (DAN) and fronto-parietal task control network, obtained at rest, are consistently related to the alerting and orienting reaction time effects in the subsequent Attention Network Task. In addition, the same relationship between the same DAN factor and the alerting effect was present during tasks. Although reliable, dynamic connectivity was not invariant, and changes between factor scores across sessions were related to changes in accuracy. In summary, patterns of time-varying correlations among nodes in an intrinsic network have a stability that has functional relevance. PMID:25014419

  5. Performance of statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Davis, R. F.; Hines, D. E.

    1973-01-01

    Statistical energy analysis (SEA) methods have been developed for high frequency modal analyses on random vibration environments. These SEA methods are evaluated by comparing analytical predictions to test results. Simple test methods are developed for establishing SEA parameter values. Techniques are presented, based on the comparison of the predictions with test values, for estimating SEA accuracy as a function of frequency for a general structure.

  6. Dynamic analysis of spur gears using computer program DANST

    NASA Astrophysics Data System (ADS)

    Oswald, Fred B.; Lin, Hsiang Hsi; Liou, Chuen-Huei; Valco, Mark J.

    1993-06-01

    DANST is a computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the effect on dynamic load and tooth bending stress of spur gears due to operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratio ranging from one to three. It was designed to be easy to use, and it is extensively documented by comments in the source code. This report describes the installation and use of DANST. It covers input data requirements and presents examples. The report also compares DANST predictions for gear tooth loads and bending stress to experimental and finite element results.

  7. Dynamic analysis of spur gears using computer program DANST

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Lin, Hsiang Hsi; Liou, Chuen-Huei; Valco, Mark J.

    1993-01-01

    DANST is a computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the effect on dynamic load and tooth bending stress of spur gears due to operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratio ranging from one to three. It was designed to be easy to use, and it is extensively documented by comments in the source code. This report describes the installation and use of DANST. It covers input data requirements and presents examples. The report also compares DANST predictions for gear tooth loads and bending stress to experimental and finite element results.

  8. Dynamic analysis of spur gears using computer program DANST

    SciTech Connect

    Oswald, F.B.; Lin, H.H.; Liou, Chuenheui; Valco, M.J.

    1993-06-01

    DANST is a computer program for static and dynamic analysis of spur gear systems. The program can be used for parametric studies to predict the effect on dynamic load and tooth bending stress of spur gears due to operating speed, torque, stiffness, damping, inertia, and tooth profile. DANST performs geometric modeling and dynamic analysis for low- or high-contact-ratio spur gears. DANST can simulate gear systems with contact ratio ranging from one to three. It was designed to be easy to use, and it is extensively documented by comments in the source code. This report describes the installation and use of DANST. It covers input data requirements and presents examples. The report also compares DANST predictions for gear tooth loads and bending stress to experimental and finite element results. 14 refs.

  9. Evaluation of bio-inspired morphing concepts with regard to aircraft dynamics and performance

    NASA Astrophysics Data System (ADS)

    Wickenheiser, Adam M.; Garcia, Ephrahim; Waszak, Martin

    2004-07-01

    This paper will discuss the application of various bio-inspired morphing concepts to unmanned aerial vehicle (UAV) designs. Several analysis tools will be introduced to calculate the aerodynamic benefits, dynamic response, and mission-level benefits of morphing shape changes. Empirical relations are employed to calculate the effects of various geometry changes on the aerodynamics of the vehicle. A six-degree-of-freedom simulation will evaluate the stability and dynamic response of each vehicle configuration as well as "snapshots" of the morphing change. Subsequently, an aircraft performance analysis will be conducted for various shape configurations. Specifically, the performance of a bio-inspired wing is compared to conventional designs. The aircraft dynamic improvements that morphing technologies introduce will be discussed.

  10. Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance

    DTIC Science & Technology

    2016-02-01

    USAARL Report No. 2016-16 Mild Traumatic Brain Injury and Dynamic Simulated Shooting Performance By Ben Lawson1, Bethany Ranes1, Amanda...Kelley1, Bradley Erickson1, Lana Milam1, Melody King1, Catherine Wrobel1, Jim Chiaramonte1, Timothy Cho1, Brain Laskowski1, John Campbell1,2, Linda... Human Use The USAARL Determination Official determined that the USAARL studies did not constitute research as defined under the human subjects

  11. TERPRED: A Dynamic Structural Data Analysis Tool

    PubMed Central

    Walker, Karl; Cramer, Carole L.; Jennings, Steven F.; Huang, Xiuzhen

    2012-01-01

    Computational protein structure prediction mainly involves the main-chain prediction and the side-chain confirmation determination. In this research, we developed a new structural bioinformatics tool, TERPRED for generating dynamic protein side-chain rotamer libraries. Compared with current various rotamer sampling methods, our work is unique in that it provides a method to generate a rotamer library dynamically based on small sequence fragments of a target protein. The Rotamer Generator provides a means for existing side-chain sampling methods using static pre-existing rotamer libraries, to sample from dynamic target-dependent libraries. Also, existing side-chain packing algorithms that require large rotamer libraries for optimal performance, could possibly utilize smaller, target-relevant libraries for improved speed. PMID:25302339

  12. Develop feedback system for intelligent dynamic resource allocation to improve application performance.

    SciTech Connect

    Gentile, Ann C.; Brandt, James M.; Tucker, Thomas; Thompson, David

    2011-09-01

    This report provides documentation for the completion of the Sandia Level II milestone 'Develop feedback system for intelligent dynamic resource allocation to improve application performance'. This milestone demonstrates the use of a scalable data collection analysis and feedback system that enables insight into how an application is utilizing the hardware resources of a high performance computing (HPC) platform in a lightweight fashion. Further we demonstrate utilizing the same mechanisms used for transporting data for remote analysis and visualization to provide low latency run-time feedback to applications. The ultimate goal of this body of work is performance optimization in the face of the ever increasing size and complexity of HPC systems.

  13. Acceleration of dynamic fluorescence molecular tomography with principal component analysis

    PubMed Central

    Zhang, Guanglei; He, Wei; Pu, Huangsheng; Liu, Fei; Chen, Maomao; Bai, Jing; Luo, Jianwen

    2015-01-01

    Dynamic fluorescence molecular tomography (FMT) is an attractive imaging technique for three-dimensionally resolving the metabolic process of fluorescent biomarkers in small animal. When combined with compartmental modeling, dynamic FMT can be used to obtain parametric images which can provide quantitative pharmacokinetic information for drug development and metabolic research. However, the computational burden of dynamic FMT is extremely huge due to its large data sets arising from the long measurement process and the densely sampling device. In this work, we propose to accelerate the reconstruction process of dynamic FMT based on principal component analysis (PCA). Taking advantage of the compression property of PCA, the dimension of the sub weight matrix used for solving the inverse problem is reduced by retaining only a few principal components which can retain most of the effective information of the sub weight matrix. Therefore, the reconstruction process of dynamic FMT can be accelerated by solving the smaller scale inverse problem. Numerical simulation and mouse experiment are performed to validate the performance of the proposed method. Results show that the proposed method can greatly accelerate the reconstruction of parametric images in dynamic FMT almost without degradation in image quality. PMID:26114027

  14. Acceleration of dynamic fluorescence molecular tomography with principal component analysis.

    PubMed

    Zhang, Guanglei; He, Wei; Pu, Huangsheng; Liu, Fei; Chen, Maomao; Bai, Jing; Luo, Jianwen

    2015-06-01

    Dynamic fluorescence molecular tomography (FMT) is an attractive imaging technique for three-dimensionally resolving the metabolic process of fluorescent biomarkers in small animal. When combined with compartmental modeling, dynamic FMT can be used to obtain parametric images which can provide quantitative pharmacokinetic information for drug development and metabolic research. However, the computational burden of dynamic FMT is extremely huge due to its large data sets arising from the long measurement process and the densely sampling device. In this work, we propose to accelerate the reconstruction process of dynamic FMT based on principal component analysis (PCA). Taking advantage of the compression property of PCA, the dimension of the sub weight matrix used for solving the inverse problem is reduced by retaining only a few principal components which can retain most of the effective information of the sub weight matrix. Therefore, the reconstruction process of dynamic FMT can be accelerated by solving the smaller scale inverse problem. Numerical simulation and mouse experiment are performed to validate the performance of the proposed method. Results show that the proposed method can greatly accelerate the reconstruction of parametric images in dynamic FMT almost without degradation in image quality.

  15. Floating-point performance of ARM cores and their efficiency in classical molecular dynamics

    NASA Astrophysics Data System (ADS)

    Nikolskiy, V.; Stegailov, V.

    2016-02-01

    Supercomputing of the exascale era is going to be inevitably limited by power efficiency. Nowadays different possible variants of CPU architectures are considered. Recently the development of ARM processors has come to the point when their floating point performance can be seriously considered for a range of scientific applications. In this work we present the analysis of the floating point performance of the latest ARM cores and their efficiency for the algorithms of classical molecular dynamics.

  16. Predicting dynamic performance limits for servosystems with saturating nonlinearities

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.; Blech, R. A.

    1979-01-01

    A generalized treatment for a system with a single saturating nonlinearity is presented and compared with frequency response plots obtained from an analog model of the system. Once the amplitude dynamics are predicted with the limit lines, an iterative technique is employed to determine the system phase response. The saturation limit line technique is used in conjunction with velocity and acceleration limits to predict the performance of an electro-hydraulic servosystem containing a single-stage servovalve. Good agreement was obtained between predicted performance and experimental data.

  17. High-Performance Java Codes for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Riley, Christopher; Chatterjee, Siddhartha; Biswas, Rupak; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The computational science community is reluctant to write large-scale computationally -intensive applications in Java due to concerns over Java's poor performance, despite the claimed software engineering advantages of its object-oriented features. Naive Java implementations of numerical algorithms can perform poorly compared to corresponding Fortran or C implementations. To achieve high performance, Java applications must be designed with good performance as a primary goal. This paper presents the object-oriented design and implementation of two real-world applications from the field of Computational Fluid Dynamics (CFD): a finite-volume fluid flow solver (LAURA, from NASA Langley Research Center), and an unstructured mesh adaptation algorithm (2D_TAG, from NASA Ames Research Center). This work builds on our previous experience with the design of high-performance numerical libraries in Java. We examine the performance of the applications using the currently available Java infrastructure and show that the Java version of the flow solver LAURA performs almost within a factor of 2 of the original procedural version. Our Java version of the mesh adaptation algorithm 2D_TAG performs within a factor of 1.5 of its original procedural version on certain platforms. Our results demonstrate that object-oriented software design principles are not necessarily inimical to high performance.

  18. Dynamic impact analysis of the M1 105mm projectile

    SciTech Connect

    Walls, J.C.; Webb, D.S.

    1993-06-01

    Evaluation of the effects of [open quotes]rough-handling[close quotes]-induced stresses in the nose region of a 105mm artillery projectile was performed to determine if these stresses could have contributed to the premature explosion of a projectile during a Desert Shield training mission of the 101st Army Airborne in Saudi Arabia. The rough-handling evaluations were simulated by dynamic impact analysis. It was concluded that the combined residual stress and dynamic impact-induced stress would not be of sufficient magnitude to cause cracking of the projectile in the nose region.

  19. Dynamic impact analysis of the M1 105mm projectile

    SciTech Connect

    Walls, J.C.; Webb, D.S.

    1993-06-01

    Evaluation of the effects of {open_quotes}rough-handling{close_quotes}-induced stresses in the nose region of a 105mm artillery projectile was performed to determine if these stresses could have contributed to the premature explosion of a projectile during a Desert Shield training mission of the 101st Army Airborne in Saudi Arabia. The rough-handling evaluations were simulated by dynamic impact analysis. It was concluded that the combined residual stress and dynamic impact-induced stress would not be of sufficient magnitude to cause cracking of the projectile in the nose region.

  20. Cluster analysis of word frequency dynamics

    NASA Astrophysics Data System (ADS)

    Maslennikova, Yu S.; Bochkarev, V. V.; Belashova, I. A.

    2015-01-01

    This paper describes the analysis and modelling of word usage frequency time series. During one of previous studies, an assumption was put forward that all word usage frequencies have uniform dynamics approaching the shape of a Gaussian function. This assumption can be checked using the frequency dictionaries of the Google Books Ngram database. This database includes 5.2 million books published between 1500 and 2008. The corpus contains over 500 billion words in American English, British English, French, German, Spanish, Russian, Hebrew, and Chinese. We clustered time series of word usage frequencies using a Kohonen neural network. The similarity between input vectors was estimated using several algorithms. As a result of the neural network training procedure, more than ten different forms of time series were found. They describe the dynamics of word usage frequencies from birth to death of individual words. Different groups of word forms were found to have different dynamics of word usage frequency variations.

  1. Flight Dynamics Analysis Branch End of Fiscal Year 1999 Report

    NASA Technical Reports Server (NTRS)

    Stengle, Thomas; Flores-Amaya, Felipe

    1999-01-01

    This document summarizes the major activities and accomplishments carried out by the Goddard Space Flight Center (GSFC)'s Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in Fiscal Year (FY) 1999. The document is intended to serve as both an introduction to the type of support carried out by the FDAB (Flight Dynamics Analysis Branch), as well as a concise reference summarizing key analysis results and mission experience derived from the various mission support roles assumed over the past year. The major accomplishments in the FDAB in FY99 were: 1) Provided flight dynamics support to the Lunar Prospector and TRIANA missions among a variety of spacecraft missions; 2) Sponsored the Flight Mechanics Symposium; 3) Supported the Consultative Committee for Space Data Systems (CCSDS) workshops; 4) Performed numerous analyses and studies for future missions; 5) Started the Flight Dynamics Analysis Branch Lab for in-house mission analysis and support; and 6) Complied with all requirements in support of GSFC IS09000 certification.

  2. Performance Study and Dynamic Optimization Design for Thread Pool Systems

    SciTech Connect

    Xu, Dongping

    2004-12-19

    Thread pools have been widely used by many multithreaded applications. However, the determination of the pool size according to the application behavior still remains problematic. To automate this process, in this thesis we have developed a set of performance metrics for quantitatively analyzing thread pool performance. For our experiments, we built a thread pool system which provides a general framework for thread pool research. Based on this simulation environment, we studied the performance impact brought by the thread pool on different multithreaded applications. Additionally, the correlations between internal characterizations of thread pools and their throughput were also examined. We then proposed and evaluated a heuristic algorithm to dynamically determine the optimal thread pool size. The simulation results show that this approach is effective in improving overall application performance.

  3. Expert performance in sport and the dynamics of talent development.

    PubMed

    Phillips, Elissa; Davids, Keith; Renshaw, Ian; Portus, Marc

    2010-04-01

    Research on expertise, talent identification and development has tended to be mono-disciplinary, typically adopting genocentric or environmentalist positions, with an overriding focus on operational issues. In this paper, the validity of dualist positions on sport expertise is evaluated. It is argued that, to advance understanding of expertise and talent development, a shift towards a multidisciplinary and integrative science focus is necessary, along with the development of a comprehensive multidisciplinary theoretical rationale. Here we elucidate dynamical systems theory as a multidisciplinary theoretical rationale for capturing how multiple interacting constraints can shape the development of expert performers. This approach suggests that talent development programmes should eschew the notion of common optimal performance models, emphasize the individual nature of pathways to expertise, and identify the range of interacting constraints that impinge on performance potential of individual athletes, rather than evaluating current performance on physical tests referenced to group norms.

  4. Precise Analysis of Polymer Rotational Dynamics

    PubMed Central

    Kim, Jun Mo; Baig, Chunggi

    2016-01-01

    Through the analysis of individual chain dynamics alongside the corresponding molecular structures under shear via nonequilibrium molecular dynamics simulations of C178H358 linear and short-chain branched polyethylene melts under shear flow, we observed that the conventional method based on the chain end-to-end vector (and/or the gyration tensor of chain) is susceptible to quantitatively inaccurate measurements and often misleading information in describing the rotational dynamics of polymers. Identifying the flaw as attributed to strong irregular Brownian fluctuations inherent to the chain ends associated with their large free volume and strong molecular collisions, we propose a simple, robust way based on the chain center-to-center vector connecting the two centers of mass of the bisected chain, which is shown to adequately describe polymer rotational dynamics without such shortcomings. We present further consideration that the proposed method can be useful in accurately measuring the overall chain structure and dynamics of polymeric materials with various molecular architectures, including branched and ring polymers. PMID:26743689

  5. Dynamical analysis of sea-breeze hodograph rotation in Sardinia

    NASA Astrophysics Data System (ADS)

    Moisseeva, N.; Steyn, D. G.

    2014-09-01

    This study investigates the diurnal evolution of sea-breeze rotation over an island in the mid-latitudes. Earlier research on sea-breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anti-clockwise rotation. A non-hydrostatic fully compressible numerical model (WRF) is used to simulate wind fields on and around the island on previously-studied sea-breeze days and is shown to accurately capture the circulation on all coasts. Diurnal rotation of wind is examined and patterns of clockwise and anti-clockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island with dramatically simplified topography, yet similar dimensions and latitude to Sardinia. Dynamical analysis of the idealized case reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with complex topography and/or coastline.

  6. Dynamical analysis of sea-breeze hodograph rotation in Sardinia

    NASA Astrophysics Data System (ADS)

    Moisseeva, N.; Steyn, D. G.

    2014-12-01

    This study investigates the diurnal evolution of sea-breeze (SB) rotation over an island at the middle latitudes. Earlier research on sea breezes in Sardinia shows that the onshore winds around various coasts of the island exhibit both the theoretically predicted clockwise rotation as well as seemingly anomalous anticlockwise rotation. A non-hydrostatic fully compressible numerical model (WRF) is used to simulate wind fields on and around the island on previously studied sea-breeze days, and is shown to capture the circulation on all coasts accurately. Diurnal rotation of wind is examined, and patterns of clockwise and anticlockwise rotation are identified. A dynamical analysis is performed by extracting individual forcing terms from the horizontal momentum equations. Analysis of several regions around the island shows that the direction of rotation is a result of a complex interaction between near-surface and synoptic pressure gradient, Coriolis and advection forcings. An idealized simulation is performed over an artificial island with dramatically simplified topography yet similar dimensions and latitude to Sardinia. Dynamical analysis of the idealized case reveals a rather different pattern of hodograph rotation to the real Sardinia, yet similar underlying dynamics. The research provides new insights into the dynamics underlying sea-breeze hodograph rotation, especially in coastal zones with a complex topography and/or coastline.

  7. Propellant Slosh Analysis for the Solar Dynamics Observatory

    NASA Technical Reports Server (NTRS)

    Mason, Paul A. C.; Starin, Scott R.

    2005-01-01

    The Solar Dynamics Observatory (SDO) mission, part of the Living With a Star program, is a geosynchronous satellite with tight pointing requirements. Due to a large amount of liquid propellant, a detailed slosh analysis is required to ensure the tight pointing budget can be satisfied. Much of the high fidelity slosh analysis and simulation has been performed via computational fluid dynamics. Even though this method of simulation is very accurate, it requires significant computational effort and specialized knowledge, limiting the ability of the SDO project to access fluid dynamics simulations at will. Furthermore, it is very difficult to incorporate most of these models into simulations of the overall spacecraft and its environment. Ultimately, the effects of the propellant slosh on the attitude stability and pointing performance of the entire spacecraft are of great interest to attitude control engineers. Equivalent mechanical models, such as models that approximate the fluid slosh effects by analogy to the movements of a point-mass pendulum, are important tools in simulating propellant slosh dynamics as part of the entire attitude determination and control system. This paper describes some of the current methods used to analyze and model slosh. It focuses on equivalent mechanical models and their incorporation into control-based analysis tools such as Simulink. The SDO mission is used as the case study for this work.

  8. Dynamic heave-pitch analysis of air cushion landing systems

    NASA Technical Reports Server (NTRS)

    Captain, K. M.; Boghani, A. B.; Wormley, D. N.

    1975-01-01

    A program to develop analytical tools for evaluating the dynamic performance of Air Cushion Landing Systems (ACLS) is described. The heave (vertical) motion of the ACLS was analyzed, and the analysis was extended to cover coupled heave-pitch motions. The mathematical models developed are based on a fundamental analysis of the body dynamics and fluid mechanics of the aircraft-cushion-runway interaction. The air source characteristics, flow losses in the feeding ducts, trunk and cushion, the effects of fluid compressibility, and dynamic trunk deflections, including ground contact are considered. A computer program, based on the heave-pitch analysis, was developed to simulate the dynamic behavior of an ACLS during landing impact and taxi over an irregular runway. The program outputs include ACLS motions, loadings, pressures, and flows as a function of time. To illustrate program use, three basic types of simulations were carried out. The results provide an initial indication of ACLS performance during (1) a static drop, (2) landing impact, and (3) taxi over a runway irregularity.

  9. Incremental Centrality Algorithms for Dynamic Network Analysis

    DTIC Science & Technology

    2013-08-01

    dynamically. Betweenness is also commonly discussed within the concept of vulnerability of networks to different attacks since it is useful for...perform coordinated attacks . In other words, we issue shrinking network updates and introduce progressive failures to the central nodes. Simulated...protocol ( OLSR ) as the routing protocol. It is a proactive link state routing protocol where each node stores next-hop destinations for all nodes in

  10. Dynamic Thermal Management for High-Performance Storage Systems

    SciTech Connect

    Kim, Youngjae; Gurumurthi, Dr Sudhanva; Sivasubramaniam, Anand

    2012-01-01

    Thermal-aware design of disk drives is important because high temperatures can cause reliability problems. Dynamic Thermal Management (DTM) techniques have been proposed to operate the disk at the average case temperature, rather than at the worse case by modulating the activities to avoid thermal emergencies. The thermal emergencies can be caused by unexpected events, such as fan-breaks, increased inlet air temperature, etc. One of the DTM techniques is a delay-based approach that adjusts the disk seek activities, cooling down the disk drives. Even if such a DTM approach could overcome thermal emergencies without stopping disk activity, it suffers from long delays when servicing the requests. Thus, in this chapter, we investigate the possibility of using a multispeed disk-drive (called dynamic rotations per minute (DRPM)) that dynamically modulates the rotational speed of the platter for implementing the DTM technique. Using a detailed performance and thermal simulator of a storage system, we evaluate two possible DTM policies (- time-based and watermark-based) with a DRPM disk-drive and observe that dynamic RPM modulation is effective in avoiding thermal emergencies. However, we find that the time taken to transition between different rotational speeds of the disk is critical for the effectiveness of the DRPM based DTM techniques.

  11. Echo Ranging/Probe Alert Performance Analysis.

    DTIC Science & Technology

    1982-11-04

    contract included technical analyses of acoustic communication equipment, system performance predictions, sea test design and data analysis, and...proposing functional system design alternatives. 2.0 SUMMARY OF WORK PERFORMED The JAYCOR effort focused on the analysis of the Echo Ranging/ Probe Alert...JAYCOR Document No. J640-020-82-2242, 16 August 1982, CONFIDENTIAL. 13. Probe Alert Design System Performance Estimates (U), J.L. Collins, JAYCOR Document

  12. Parallel beam dynamics calculations on high performance computers

    SciTech Connect

    Ryne, Robert; Habib, Salman

    1997-02-01

    Faced with a backlog of nuclear waste and weapons plutonium, as well as an ever-increasing public concern about safety and environmental issues associated with conventional nuclear reactors, many countries are studying new, accelerator-driven technologies that hold the promise of providing safe and effective solutions to these problems. Proposed projects include accelerator transmutation of waste (ATW), accelerator-based conversion of plutonium (ABC), accelerator-driven energy production (ADEP), and accelerator production of tritium (APT). Also, next-generation spallation neutron sources based on similar technology will play a major role in materials science and biological science research. The design of accelerators for these projects will require a major advance in numerical modeling capability. For example, beam dynamics simulations with approximately 100 million particles will be needed to ensure that extremely stringent beam loss requirements (less than a nanoampere per meter) can be met. Compared with typical present-day modeling using 10,000-100,000 particles, this represents an increase of 3-4 orders of magnitude. High performance computing (HPC) platforms make it possible to perform such large scale simulations, which require 10's of GBytes of memory. They also make it possible to perform smaller simulations in a matter of hours that would require months to run on a single processor workstation. This paper will describe how HPC platforms can be used to perform the numerically intensive beam dynamics simulations required for development of these new accelerator-driven technologies.

  13. Parellel beam dynamics calculations on high performance computers

    SciTech Connect

    Ryne, R.; Habib, S.

    1996-12-01

    Faced with a backlog of nuclear waste and weapons plutonium, as well as an ever-increasing public concern about safety and environmental issues associated with conventional nuclear reactors, many countries are studying new, accelerator-driven technologies that hold the promise of providing safe and effective solutions to these problems. Proposed projects include accelerator transmutation of waste (ATW), accelerator-based conversion of plutonium (ABC), accelerator-driven energy production (ADEP), and accelerator production of tritium (APT). Also, next-generation spallation neutron sources based on similar technology will play a major role in materials science and biological science research. The design of accelerators for these projects will require a major advance in numerical modeling capability. For example, beam dynamics simulations with approximately 100 million particles will be needed to ensure that extremely stringent beam loss requirements (less than a nanoampere per meter) can be met. Compared with typical present-day modeling using 10,000-100,000 particles, this represents an increase of 3-4 orders of magnitude. High performance computing (HPC) platforms make it possible to perform such large scale simulations, which require 10`s of GBytes of memory. They also make it possible to perform smaller simulations in a matter of hours that would require months to run on a single processor workstation. This paper will describe how HPC platforms can be used to perform the numerically intensive beam dynamics simulations required for development of these new accelerator-driven technologies.

  14. Dynamic analysis of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Xu, Bai-Xiang; Mueller, Ralf; Theis, Anika; Klassen, Markus; Gross, Dietmar

    2012-03-01

    An analytical model is proposed for the dynamic analysis of a homogeneously deformed dielectric elastomer actuator (DEA) with a standard sandwich structure. The equation of motion for the DEA is obtained by the Euler-Lagrange equation. Numerical results of the model are presented to show the vibration and oscillation behaviour of the system. Resonance phenomenon and damping effects are investigated. Results are discussed in comparison with those of the related topics in the literature.

  15. A nonlinear model for top fuel dragster dynamic performance assessment

    NASA Astrophysics Data System (ADS)

    Spanos, P. D.; Castillo, D. H.; Kougioumtzoglou, I. A.; Tapia, R. A.

    2012-02-01

    The top fuel dragster is the fastest and quickest vehicle in drag racing. This vehicle is capable of travelling a quarter mile in less than 4.5 s, reaching a final speed in excess of 330 miles per hour. The average power delivered by its engine exceeds 7000 Hp. To analyse and eventually increase the performance of a top fuel dragster, a dynamic model of the vehicle is developed. Longitudinal, vertical, and pitching chassis motions are considered, as well as drive-train dynamics. The aerodynamics of the vehicle, the engine characteristics, and the force due to the combustion gases are incorporated into the model. Further, a simplified model of the traction characteristics of the rear tyres is developed where the traction is calculated as a function of the slip ratio and the velocity. The resulting nonlinear, coupled differential equations of motion are solved using a fourth-order Runge-Kutta numerical integration scheme. Several simulation runs are made to investigate the effects of the aerodynamics and of the engine's initial torque in the performance of the vehicle. The results of the computational simulations are scrutinised by comparisons with data from actual dragster races. Ultimately, the proposed dynamic model of the dragster can be used to improve the aerodynamics, the engine and clutch set-ups of the vehicle, and possibly facilitate the redesign of the dragster.

  16. Flexible body dynamic stability for high performance aircraft

    NASA Technical Reports Server (NTRS)

    Goforth, E. A.; Youssef, H. M.; Apelian, C. V.; Schroeder, S. C.

    1991-01-01

    Dynamic equations which include the effects of unsteady aerodynamic forces and a flexible body structure were developed for a free flying high performance fighter aircraft. The linear and angular deformations are assumed to be small in the body reference frame, allowing the equations to be linearized in the deformation variables. Equations for total body dynamics and flexible body dynamics are formulated using the hybrid coordinate method and integrated in a state space format. A detailed finite element model of a generic high performance fighter aircraft is used to generate the mass and stiffness matrices. Unsteady aerodynamics are represented by a rational function approximation of the doublet lattice matrices. The equations simplify for the case of constant angular rate of the body reference frame, allowing the effect of roll rate to be studied by computing the eigenvalues of the system. It is found that the rigid body modes of the aircraft are greatly affected by introducing a constant roll rate, while the effect on the flexible modes is minimal for this configuration.

  17. Functional holography analysis: Simplifying the complexity of dynamical networks

    NASA Astrophysics Data System (ADS)

    Baruchi, Itay; Grossman, Danny; Volman, Vladislav; Shein, Mark; Hunter, John; Towle, Vernon L.; Ben-Jacob, Eshel

    2006-03-01

    We present a novel functional holography (FH) analysis devised to study the dynamics of task-performing dynamical networks. The latter term refers to networks composed of dynamical systems or elements, like gene networks or neural networks. The new approach is based on the realization that task-performing networks follow some underlying principles that are reflected in their activity. Therefore, the analysis is designed to decipher the existence of simple causal motives that are expected to be embedded in the observed complex activity of the networks under study. First we evaluate the matrix of similarities (correlations) between the activities of the network's components. We then perform collective normalization of the similarities (or affinity transformation) to construct a matrix of functional correlations. Using dimension reduction algorithms on the affinity matrix, the matrix is projected onto a principal three-dimensional space of the leading eigenvectors computed by the algorithm. To retrieve back information that is lost in the dimension reduction, we connect the nodes by colored lines that represent the level of the similarities to construct a holographic network in the principal space. Next we calculate the activity propagation in the network (temporal ordering) using different methods like temporal center of mass and cross correlations. The causal information is superimposed on the holographic network by coloring the nodes locations according to the temporal ordering of their activities. First, we illustrate the analysis for simple, artificially constructed examples. Then we demonstrate that by applying the FH analysis to modeled and real neural networks as well as recorded brain activity, hidden causal manifolds with simple yet characteristic geometrical and topological features are deciphered in the complex activity. The term "functional holography" is used to indicate that the goal of the analysis is to extract the maximum amount of functional

  18. Performance Analysis of Multilevel Parallel Applications on Shared Memory Architectures

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Caubet, Jordi; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    In this paper we describe how to apply powerful performance analysis techniques to understand the behavior of multilevel parallel applications. We use the Paraver/OMPItrace performance analysis system for our study. This system consists of two major components: The OMPItrace dynamic instrumentation mechanism, which allows the tracing of processes and threads and the Paraver graphical user interface for inspection and analyses of the generated traces. We describe how to use the system to conduct a detailed comparative study of a benchmark code implemented in five different programming paradigms applicable for shared memory

  19. Methodologies for launcher-payload coupled dynamic analysis

    NASA Astrophysics Data System (ADS)

    Fransen, S. H. J. A.

    2012-06-01

    An important step in the design and verification process of spacecraft structures is the coupled dynamic analysis with the launch vehicle in the low-frequency domain, also referred to as coupled loads analysis (CLA). The objective of such analyses is the computation of the dynamic environment of the spacecraft (payload) in terms of interface accelerations, interface forces, center of gravity (CoG) accelerations as well as the internal state of stress. In order to perform an efficient, fast and accurate launcher-payload coupled dynamic analysis, various methodologies have been applied and developed. The methods are related to substructuring techniques, data recovery techniques, the effects of prestress and fluids and time integration problems. The aim of this paper was to give an overview of these methodologies and to show why, how and where these techniques can be used in the process of launcher-payload coupled dynamic analysis. In addition, it will be shown how these methodologies fit together in a library of procedures which can be used with the MSC.Nastran™ solution sequences.

  20. Application of tire dynamics to aircraft landing gear design analysis

    NASA Technical Reports Server (NTRS)

    Black, R. J.

    1983-01-01

    The tire plays a key part in many analyses used for design of aircraft landing gear. Examples include structural design of wheels, landing gear shimmy, brake whirl, chatter and squeal, complex combination of chatter and shimmy on main landing gear (MLG) systems, anti-skid performance, gear walk, and rough terrain loads and performance. Tire parameters needed in the various analyses are discussed. Two tire models are discussed for shimmy analysis, the modified Moreland approach and the von Schlippe-Dietrich approach. It is shown that the Moreland model can be derived from the Von Schlippe-Dietrich model by certain approximations. The remaining analysis areas are discussed in general terms and the tire parameters needed for each are identified. Accurate tire data allows more accurate design analysis and the correct prediction of dynamic performance of aircraft landing gear.

  1. Software life cycle dynamic simulation model: The organizational performance submodel

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1985-01-01

    The submodel structure of a software life cycle dynamic simulation model is described. The software process is divided into seven phases, each with product, staff, and funding flows. The model is subdivided into an organizational response submodel, a management submodel, a management influence interface, and a model analyst interface. The concentration here is on the organizational response model, which simulates the performance characteristics of a software development subject to external and internal influences. These influences emanate from two sources: the model analyst interface, which configures the model to simulate the response of an implementing organization subject to its own internal influences, and the management submodel that exerts external dynamic control over the production process. A complete characterization is given of the organizational response submodel in the form of parameterized differential equations governing product, staffing, and funding levels. The parameter values and functions are allocated to the two interfaces.

  2. Performance tradeoffs in static and dynamic load balancing strategies

    NASA Technical Reports Server (NTRS)

    Iqbal, M. A.; Saltz, J. H.; Bokhart, S. H.

    1986-01-01

    The problem of uniformly distributing the load of a parallel program over a multiprocessor system was considered. A program was analyzed whose structure permits the computation of the optimal static solution. Then four strategies for load balancing were described and their performance compared. The strategies are: (1) the optimal static assignment algorithm which is guaranteed to yield the best static solution, (2) the static binary dissection method which is very fast but sub-optimal, (3) the greedy algorithm, a static fully polynomial time approximation scheme, which estimates the optimal solution to arbitrary accuracy, and (4) the predictive dynamic load balancing heuristic which uses information on the precedence relationships within the program and outperforms any of the static methods. It is also shown that the overhead incurred by the dynamic heuristic is reduced considerably if it is started off with a static assignment provided by either of the other three strategies.

  3. Dynamic Performance of Subway Vehicle with Linear Induction Motor System

    NASA Astrophysics Data System (ADS)

    Wu, Pingbo; Luo, Ren; Hu, Yan; Zeng, Jing

    The light rail vehicle with Linear Induction Motor (LIM) bogie, which is a new type of urban rail traffic tool, has the advantages of low costs, wide applicability, low noise, simple maintenance and better dynamic behavior. This kind of vehicle, supported and guided by the wheel and rail, is not driven by the wheel/rail adhesion force, but driven by the electromagnetic force between LIM and reaction plate. In this paper, three different types of suspensions and their characteristic are discussed with considering the interactions both between wheel and rail and between LIM and reaction plate. A nonlinear mathematical model of the vehicle with LIM bogie is set up by using the software SIMPACK, and the electromechanical model is also set up on Simulink roof. Then the running behavior of the LIM vehicle is simulated, and the influence of suspension on the vehicle dynamic performance is investigated.

  4. Performance Analysis of GYRO: A Tool Evaluation

    SciTech Connect

    Worley, P.; Roth, P.; Candy, J.; Shan, Hongzhang; Mahinthakumar,G.; Sreepathi, S.; Carrington, L.; Kaiser, T.; Snavely, A.; Reed, D.; Zhang, Y.; Huck, K.; Malony, A.; Shende, S.; Moore, S.; Wolf, F.

    2005-06-26

    The performance of the Eulerian gyrokinetic-Maxwell solver code GYRO is analyzed on five high performance computing systems. First, a manual approach is taken, using custom scripts to analyze the output of embedded wall clock timers, floating point operation counts collected using hardware performance counters, and traces of user and communication events collected using the profiling interface to Message Passing Interface (MPI) libraries. Parts of the analysis are then repeated or extended using a number of sophisticated performance analysis tools: IPM, KOJAK, SvPablo, TAU, and the PMaC modeling tool suite. The paper briefly discusses what has been discovered via this manual analysis process, what performance analyses are inconvenient or infeasible to attempt manually, and to what extent the tools show promise in accelerating or significantly extending the manual performance analyses.

  5. Investigation of Control Inceptor Dynamics and Effect on Human Subject Performance

    NASA Technical Reports Server (NTRS)

    Stanco, Anthony A.; Cardullo, Frank M.; Houck, Jacob A.; Grube, Richard C.; Kelly, Lon C.

    2013-01-01

    The control inceptor used in a vehicle simulation is an important part of adequately representing the dynamics of the vehicle. The inceptor characteristics are typically based on a second order spring mass damper system with damping, force gradient, breakout force, and natural frequency parameters. Changing these parameters can have a great effect on pilot control of the vehicle. A quasi transfer of training experiment was performed employing a high fidelity and a low fidelity control inceptor. A disturbance compensatory task was employed which involved a simple horizon line disturbed in roll by a sum of sinusoids presented in an out-the-window display. Vehicle dynamics were modeled as 1/s and 1/s2. The task was to maintain level flight. Twenty subjects were divided between the high and the low fidelity training groups. Each group was trained to a performance asymptote, and then transferred to the high fidelity simulation. RMS tracking error, a PSD analysis, and a workload analysis were performed to quantify the transfer of training effect. Quantitative results of the experiments show that there is no significant difference between the high and low fidelity training groups for 1/s plant dynamics. For 1/s2 plant dynamics there is a greater difference in tracking performance and PSD; and the subjects are less correlated with the input disturbance function

  6. Vehicle dynamic analysis using neuronal network algorithms

    NASA Astrophysics Data System (ADS)

    Oloeriu, Florin; Mocian, Oana

    2014-06-01

    Theoretical developments of certain engineering areas, the emergence of new investigation tools, which are better and more precise and their implementation on-board the everyday vehicles, all these represent main influence factors that impact the theoretical and experimental study of vehicle's dynamic behavior. Once the implementation of these new technologies onto the vehicle's construction had been achieved, it had led to more and more complex systems. Some of the most important, such as the electronic control of engine, transmission, suspension, steering, braking and traction had a positive impact onto the vehicle's dynamic behavior. The existence of CPU on-board vehicles allows data acquisition and storage and it leads to a more accurate and better experimental and theoretical study of vehicle dynamics. It uses the information offered directly by the already on-board built-in elements of electronic control systems. The technical literature that studies vehicle dynamics is entirely focused onto parametric analysis. This kind of approach adopts two simplifying assumptions. Functional parameters obey certain distribution laws, which are known in classical statistics theory. The second assumption states that the mathematical models are previously known and have coefficients that are not time-dependent. Both the mentioned assumptions are not confirmed in real situations: the functional parameters do not follow any known statistical repartition laws and the mathematical laws aren't previously known and contain families of parameters and are mostly time-dependent. The purpose of the paper is to present a more accurate analysis methodology that can be applied when studying vehicle's dynamic behavior. A method that provides the setting of non-parametrical mathematical models for vehicle's dynamic behavior is relying on neuronal networks. This method contains coefficients that are time-dependent. Neuronal networks are mostly used in various types' system controls, thus

  7. Dynamic Analysis of a Spur Gear by the Dynamic Stiffness Method

    NASA Astrophysics Data System (ADS)

    HUANG, K. J.; LIU, T. S.

    2000-07-01

    This study treats a spur gear tooth as a variable cross-section Timoshenko beam to construct a dynamic model, being able to obtain transient response for spur gears of involute profiles. The dynamic responses of a single tooth and a gear pair are investigated. Firstly, polynomials are used to represent the gear blank and the tooth profile. The dynamic stiffness matrix and natural frequencies of the gear are in turn calculated. The forced response of a tooth subject to a shaft-driven transmission torque is calculated by performing modal analysis. This study takes into account time-varying stiffness and mass matrices and the gear meshing forces at moving meshing points. The forced response at arbitrary points in a gear tooth can be obtained. Calculation results of fillet stresses and strains are compared with those in the literature to verify the proposed method.

  8. Dynamic feature analysis in bidirectional pedestrian flows

    NASA Astrophysics Data System (ADS)

    Xiao-Xia, Yang; Winnie, Daamen; Serge, Paul Hoogendoorn; Hai-Rong, Dong; Xiu-Ming, Yao

    2016-02-01

    Analysis of dynamic features of pedestrian flows is one of the most exciting topics in pedestrian dynamics. This paper focuses on the effect of homogeneity and heterogeneity in three parameters of the social force model, namely desired velocity, reaction time, and body size, on the moving dynamics of bidirectional pedestrian flows in the corridors. The speed and its deviation in free flows are investigated. Simulation results show that the homogeneous higher desired speed which is less than a critical threshold, shorter reaction time or smaller body size results in higher speed of flows. The free dynamics is more sensitive to the heterogeneity in desired speed than that in reaction time or in body size. In particular, an inner lane formation is observed in normal lanes. Furthermore, the breakdown probability and the start time of breakdown are focused on. This study reveals that the sizes of homogeneous desired speed, reaction time or body size play more important roles in affecting the breakdown than the heterogeneities in these three parameters do. Project supported jointly by the National Natural Science Foundation of China (Grant No. 61233001) and the Fundamental Research Funds for Central Universities of China (Grant No. 2013JBZ007).

  9. Expansion of epicyclic gear dynamic analysis program

    NASA Technical Reports Server (NTRS)

    Boyd, Linda Smith; Pike, James A.

    1987-01-01

    The multiple mesh/single stage dynamics program is a gear tooth analysis program which determines detailed geometry, dynamic loads, stresses, and surface damage factors. The program can analyze a variety of both epicyclic and single mesh systems with spur or helical gear teeth including internal, external, and buttress tooth forms. The modifications refine the options for the flexible carrier and flexible ring gear rim and adds three options: a floating Sun gear option; a natural frequency option; and a finite element compliance formulation for helical gear teeth. The option for a floating Sun incorporates two additional degrees of freedom at the Sun center. The natural frequency option evaluates the frequencies of planetary, star, or differential systems as well as the effect of additional springs at the Sun center and those due to a flexible carrier and/or ring gear rim. The helical tooth pair finite element calculated compliance is obtained from an automated element breakup of the helical teeth and then is used with the basic gear dynamic solution and stress postprocessing routines. The flexible carrier or ring gear rim option for planetary and star spur gear systems allows the output torque per carrier and ring gear rim segment to vary based on the dynamic response of the entire system, while the total output torque remains constant.

  10. Sustaining high performance: dynamic balancing in an otherwise unbalanced system.

    PubMed

    Wolf, Jason A

    2011-01-01

    As Ovid said, "There is nothing in the whole world which is permanent." It is this very premise that frames the discoveries in this chapter and the compelling paradox it has raised. What began as a question of how performance is sustained, unveiled a collection of core organizational paradoxes. The findings ultimately suggest that sustained high performance is not a permanent state an organization achieves, but rather it is through perpetual movement and dynamic balance that sustainability occurs. The idea of sustainability as movement is predicated on the ability of organizational members to move beyond the experience of paradox as an impediment to progress. Through holding three critical "movements"--agile/consistency, collective/individualism, and informative/inquiry--not as paradoxical, but as active polarities, the organizations in the study were able to transcend paradox, and take active steps to continuous achievement in outperforming their peers. The study, focused on a collection of hospitals across the Unites States, reveals powerful stories of care and service, of the profound grace of human capacity, and of clear actions taken to create significant results. All of this was achieved in an environment of great volatility, in essence an unbalanced system. It was the discovery of movement and ultimately of dynamic balancing that allowed the organizations to in this study to move beyond stasis to the continuous "state" of sustaining high performance.

  11. Higher order SVD analysis for dynamic texture synthesis.

    PubMed

    Costantini, Roberto; Sbaiz, Luciano; Süsstrunk, Sabine

    2008-01-01

    Videos representing flames, water, smoke, etc., are often defined as dynamic textures: "textures" because they are characterized by the redundant repetition of a pattern and "dynamic" because this repetition is also in time and not only in space. Dynamic textures have been modeled as linear dynamic systems by unfolding the video frames into column vectors and describing their trajectory as time evolves. After the projection of the vectors onto a lower dimensional space by a singular value decomposition (SVD), the trajectory is modeled using system identification techniques. Synthesis is obtained by driving the system with random noise. In this paper, we show that the standard SVD can be replaced by a higher order SVD (HOSVD), originally known as Tucker decomposition. HOSVD decomposes the dynamic texture as a multidimensional signal (tensor) without unfolding the video frames on column vectors. This is a more natural and flexible decomposition, since it permits us to perform dimension reduction in the spatial, temporal, and chromatic domain, while standard SVD allows for temporal reduction only. We show that for a comparable synthesis quality, the HOSVD approach requires, on average, five times less parameters than the standard SVD approach. The analysis part is more expensive, but the synthesis has the same cost as existing algorithms. Our technique is, thus, well suited to dynamic texture synthesis on devices limited by memory and computational power, such as PDAs or mobile phones.

  12. Dynamic analysis and control of novel moving mass flight vehicle

    NASA Astrophysics Data System (ADS)

    Li, Jianqing; Gao, Changsheng; Jing, Wuxing; Wei, Pengxin

    2017-02-01

    In terms of the moving mass control technology, the configuration of internal moving masses is a key challenge. In order to reduce the complexity of configuring these moving masses in a flight vehicle, a combination bank-to-turn control mode with the single moving mass and reaction jet is proposed in this paper. To investigate the dynamics and the potential of the control mechanism, an attitude dynamic model with single moving mass is generated. The dynamic analysis indicates that the control stability, control authority and dynamic behavior of the pitch channel are determined by the mass ratio of the moving mass to the system and the difference between the mass center of the moving mass and the mass center of the vehicle body. Interestingly, control authority increases proportionally with increasing mass ratio and also with decreasing the magnitude of the static margin. To deal with the coupling caused by the additional inertia moment which is generated by the motion of the moving mass, an adaptive control law by using dynamic inversion theory and the extended state observer is designed. Also, a compensator is designed for eliminating the influence of the servo actuator's dynamics on attitude of the flight vehicle. Finally, the simulation results validate the quality of the proposed adaptive controller which ensures a good performance in the novel configuration with internal moving mass.

  13. Comparing the Performance of Two Dynamic Load Distribution Methods

    NASA Technical Reports Server (NTRS)

    Kale, L. V.

    1987-01-01

    Parallel processing of symbolic computations on a message-passing multi-processor presents one challenge: To effectively utilize the available processors, the load must be distributed uniformly to all the processors. However, the structure of these computations cannot be predicted in advance. go, static scheduling methods are not applicable. In this paper, we compare the performance of two dynamic, distributed load balancing methods with extensive simulation studies. The two schemes are: the Contracting Within a Neighborhood (CWN) scheme proposed by us, and the Gradient Model proposed by Lin and Keller. We conclude that although simpler, the CWN is significantly more effective at distributing the work than the Gradient model.

  14. Rigorous performance bounds for quadratic and nested dynamical decoupling

    SciTech Connect

    Xia, Yuhou; Uhrig, Goetz S.; Lidar, Daniel A.

    2011-12-15

    We present rigorous performance bounds for the quadratic dynamical decoupling pulse sequence which protects a qubit from general decoherence, and for its nested generalization to an arbitrary number of qubits. Our bounds apply under the assumptions of instantaneous pulses and of bounded perturbing environment and qubit-environment Hamiltonians such as those realized by baths of nuclear spins in quantum dots. We prove that if the total sequence time is fixed then the trace-norm distance between the unperturbed and protected system states can be made arbitrarily small by increasing the number of applied pulses.

  15. Nonlinear Dynamic Analysis of Scalp EEG Epileptic Signals

    NASA Astrophysics Data System (ADS)

    Blanco, Susana A.; Creso, Judith; Figliola, Alejandra; Quiroga, Rodrigo Quian; Rosso, Osvaldo A.

    Noisy signals obtained during a tonic-clonic epileptic seizure, are usually neglected for visual inspection by the physicians due to the presence of muscle artifacts. Although noise obscures completely the recording, information about the underlying brain activity can be obtained by filtering, through the Orthogonal Wavelet Transforms, those frequencies bands associated with muscle activity. After generating a "noise free" signal by removing the muscle artifacts with wavelets, a dynamical analysis of the brain behavior will be performed by using nonlinear dynamics methods. The values for nonlinear metric invariants, like the correlation dimension and the maximum Lyapunov exponent, confirm that the brain dynamical behavior is more ordered during the epileptic seizure than pre-seizure stage.

  16. Structural dynamic analysis of composite beams

    NASA Astrophysics Data System (ADS)

    Suresh, J. K.; Venkatesan, C.; Ramamurti, V.

    1990-12-01

    In the treatment of the structural dynamic problem of composite materials, two alternate types of formulations, based on the elastic modulus and compliance quantities, exist in the literature. The definitions of the various rigidities are observed to differ in these two approaches. Following these two types of formulation, the structural dynamic characteristics of a composite beam are analyzed. The results of the analysis are compared with those available in the literature. Based on the comparison, the influence of the warping function in defining the coupling terms in the modulus approach and also on the natural frequencies of the beam has been identified. It is found from the analysis that, in certain cases, the difference between the results of the two approaches is appreciable. These differences may be attributed to the constraints imposed on the deformation and flexibility of the beam by the choice of the description of the warping behaviour. Finally, the influence of material properties on the structural dynamic characteristics of the beam is studied for different composites for various angles of orthotropy.

  17. Effect of Eccentricity on the Static and Dynamic Performance of a Turbulent Hybrid Bearing

    NASA Technical Reports Server (NTRS)

    Sanandres, Luis A.

    1991-01-01

    The effect of journal eccentricity on the static and dynamic performance of a water lubricated, 5-recess hybrid bearing is presented in detail. The hydrostatic bearing has been designed to operate at a high speed and with a large level of external pressurization. The operating conditions determine the flow in the bearing to be highly turbulent and strongly dominated by fluid inertia effects. The analysis covers the spectrum of journal center displacements directed towards the middle of a recess and towards the mid-land portion between two consecutive recesses. Predicted dynamic force coefficients are uniform for small to moderate eccentricities. For large journal center displacements, fluid cavitation and recess position determine large changes in the bearing dynamic performance. The effect of fluid inertia force coefficients on the threshold speed of instability and whirl ratio of a single mass flexible rotor is discussed.

  18. Velocity fluctuation analysis via dynamic programming

    SciTech Connect

    Schlossberg, D. J.; Gupta, D. K.; Fonck, R. J.; McKee, G. R.; Shafer, M. W.

    2006-10-15

    A new method of calculating one-dimensional velocity fluctuations from spatially resolved density fluctuation measurements is presented. The algorithm uses vector-matching methods of dynamic programming that match structures, such as turbulent fluctuations, in two data sets. The associated time delay between data sets is estimated by determining an optimal path to transform one vector to another. This time-delay-estimation (TDE) method establishes a new benchmark for velocity analysis by achieving higher sensitivity and frequency response than previously developed methods, such as time-resolved cross correlations and wavelets. TDE has been successfully applied to beam emission spectroscopy measurements of density fluctuations to obtain poloidal flow fluctuations associated with such phenomena as the geodesic acoustic mode. The dynamic programming algorithm should allow extension to high frequency velocity fluctuations associated with underlying electrostatic potential and resulting ExB fluctuations.

  19. A waved journal bearing concept with improved steady-state and dynamic performance

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1994-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. A three wave, waved journal bearing geometry is used to show the geometry of this concept. The performance of generic waved bearings having either three, four, six, or eight waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of dynamic coefficients and fluid film stability. It was found that the bearing wave amplitude has an important influence on both steady-state and dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases. Also, the waved bearing becomes more stable as the wave amplitude increases. In addition, increasing the number of waves reduces the waved bearing's sensitivity to the direction of the applied load relative to the wave. However, the range in which the bearing performance can be varied decreases as the number of waves increases. Therefore, both the number and the amplitude of the waves must be properly selected to optimize the waved bearing design for a specific application. It is concluded that the stiffness of an air bearing, due to the hydrodynamic effect, could be doubled and made to run stably by using a six or eight wave geometry with a wave amplitude approximately half of the bearing radial clearance.

  20. A Perspective on DSN System Performance Analysis

    NASA Technical Reports Server (NTRS)

    Pham, Timothy T.

    2006-01-01

    This paper discusses the performance analysis effort being carried out in the NASA Deep Space Network. The activity involves root cause analysis of failures and assessment of key performance metrics. The root cause analysis helps pinpoint the true cause of observed problems so that proper correction can be effected. The assessment currently focuses on three aspects: (1) data delivery metrics such as Quantity, Quality, Continuity, and Latency; (2) link-performance metrics such as antenna pointing, system noise temperature, Doppler noise, frequency and time synchronization, wide-area-network loading, link-configuration setup time; and (3) reliability, maintainability, availability metrics. The analysis establishes whether the current system is meeting its specifications and if so, how much margin is available. The findings help identify the weak points in the system and direct attention of programmatic investment for performance improvement.

  1. Building America Performance Analysis Procedures: Revision 1

    SciTech Connect

    2004-06-01

    To measure progress toward multi-year research goals, cost and performance trade-offs are evaluated through a series of controlled field and laboratory experiments supported by energy analysis techniques using test data to calibrate simulation models.

  2. A new technique for dynamic analysis of bladder compliance.

    PubMed

    Gilmour, R F; Churchill, B M; Steckler, R E; Houle, A M; Khoury, A E; McLorie, G A

    1993-10-01

    We propose an alternative method of measuring compliance that takes into account the multiple phases of bladder filling. We describe our new technique, dynamic compliance analysis, and evaluate its clinical applicability. To perform the analysis we digitized a cystometrogram curve at a sampling rate of 2 samples per second using an MS-DOS computer system. A program designed to retrieve the stored data was used to analyze the subtracted bladder pressure. The result yielded a value of compliance every half second that was then plotted on an x-y graph, with instantaneous compliance as the dependent variable and per cent of total volume infused as the independent variable. To determine the clinical applicability of this technique we chose 63 curves from clinically normal patients. The results of the dynamic compliance analyses were predictable. The dynamic compliance values for the normal group had a minimum that was always greater than 10 ml./cm. water throughout the tonus limb (phase 2) of the cystometrogram. We conclude that dynamic compliance analysis yields more information about bladder response during filling, similar to the stress-strain curve used in the study of solid mechanics.

  3. Functional knee braces and dynamic performance: a review.

    PubMed

    Kramer, J F; Dubowitz, T; Fowler, P; Schachter, C; Birmingham, T

    1997-01-01

    The purpose of the present review was to examine current experimental research on the effectiveness of functional knee braces (FKBs) used by patients with anterior cruciate ligament injury during dynamic performance tests. Twelve studies published in peer-reviewed journals and listed in the Excerpta Medica system were reviewed. All studies compared braced and unbraced tests performed by the same subjects, using tests characterized by weight bearing/axial loading. Studies were reviewed independently by three investigators. Tests included one-leg hop, figure-of-eight run, stair climbing, walking, cutting, agility runs, straight running, and bicycle ergometry. Experimental situations were classified as follows: (a) maximal effort tests, which compared overall measures of performance such as the distance hopped and the time to run a specific distance; and (b) matched submaximal effort tests, which compared specific variables such as electromyography, range of motion, ground reaction forces, and energy costs. Bracing was found to be advantageous in three of the 16 maximal effort situations, disadvantageous in two, and of no measurable effect in 11. Six of the 10 matched effort situations reported differences in the criterion measurements when braced, while four reported no differences. If FKB prescription is to be based solely on empirical evidence of efficacy from performance tests, then further investigation is required to provide this evidence. Future research needs to examine the subjective and psychological aspects of FKB usage along with the results of objective performance tests.

  4. EMTP modeling of IGBT dynamic performance for power dissipation estimation

    SciTech Connect

    Wong, C.

    1995-12-31

    A new approach to the modeling of IGBTs (Insulated Gate Bipolar Transistors) for EMTP (ElectroMagnetic Transients Program) simulation is developed. Other commercially available simulators, such a PSPICE, model the devices on an exact semiconductor physics basis. They suffer from large amount of CPU time for sinewave PWM inverter applications which require a complete cycle simulation at fundamental frequency with a small time step to cover the details of IGBT switching transients. This approach uses a curve-fitting method, combined with the point-by-point user-defined function available in EMTP, to model the dynamic characteristics of IGBTs. Since there is no device physics modeling required, the simulation is much faster than the conventional approach. The proposed method is applicable for both static and dynamic modeling, on a cycle-by-cycle basis, which is important for dynamical power dissipation and thermal analysis. The simulation includes IGBT turn-on and turn-off transients, IGBT saturation, free-wheeling diode forward voltage and reverse recovery characteristics. The simulation results are verified by comparison with the experimental measured data. Measurements show a close agreement with simulations.

  5. Computational Fluid Dynamics Analysis of Thoracic Aortic Dissection

    NASA Astrophysics Data System (ADS)

    Tang, Yik; Fan, Yi; Cheng, Stephen; Chow, Kwok

    2011-11-01

    Thoracic Aortic Dissection (TAD) is a cardiovascular disease with high mortality. An aortic dissection is formed when blood infiltrates the layers of the vascular wall, and a new artificial channel, the false lumen, is created. The expansion of the blood vessel due to the weakened wall enhances the risk of rupture. Computational fluid dynamics analysis is performed to study the hemodynamics of this pathological condition. Both idealized geometry and realistic patient configurations from computed tomography (CT) images are investigated. Physiological boundary conditions from in vivo measurements are employed. Flow configuration and biomechanical forces are studied. Quantitative analysis allows clinicians to assess the risk of rupture in making decision regarding surgical intervention.

  6. Paramedir: A Tool for Programmable Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Labarta, Jesus; Gimenez, Judit

    2004-01-01

    Performance analysis of parallel scientific applications is time consuming and requires great expertise in areas such as programming paradigms, system software, and computer hardware architectures. In this paper we describe a tool that facilitates the programmability of performance metric calculations thereby allowing the automation of the analysis and reducing the application development time. We demonstrate how the system can be used to capture knowledge and intuition acquired by advanced parallel programmers in order to be transferred to novice users.

  7. Architecture Analysis of High Performance Capacitors (POSTPRINT)

    DTIC Science & Technology

    2009-07-01

    includes the measurement of heat dissipated from a recently developed fluorenyl polyester (FPE) capacitor under an AC excitation. II. Capacitor ...AFRL-RZ-WP-TP-2010-2100 ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) Hiroyuki Kosai and Tyler Bixel UES, Inc...2009 4. TITLE AND SUBTITLE ARCHITECTURE ANALYSIS OF HIGH PERFORMANCE CAPACITORS (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER 5c

  8. Framing of task performance strategies: effects on performance in a multiattribute dynamic decision making environment.

    PubMed

    Nygren, T E

    1997-09-01

    It is well documented that the way a static choice task is "framed" can dramatically alter choice behavior, often leading to observable preference reversals. This framing effect appears to result from perceived changes in the nature or location of a person's initial reference point, but it is not clear how framing effects might generalize to performance on dynamic decision making tasks that are characterized by high workload, time constraints, risk, or stress. A study was conducted to examine the hypothesis that framing can introduce affective components to the decision making process and can influence, either favorably (positive frame) or adversely (negative frame), the implementation and use of decision making strategies in dynamic high-workload environments. Results indicated that negative frame participants were significantly impaired in developing and employing a simple optimal decision strategy relative to a positive frame group. Discussion focuses on implications of these results for models of dynamic decision making.

  9. Dynamic competitive probabilistic principal components analysis.

    PubMed

    López-Rubio, Ezequiel; Ortiz-DE-Lazcano-Lobato, Juan Miguel

    2009-04-01

    We present a new neural model which extends the classical competitive learning (CL) by performing a Probabilistic Principal Components Analysis (PPCA) at each neuron. The model also has the ability to learn the number of basis vectors required to represent the principal directions of each cluster, so it overcomes a drawback of most local PCA models, where the dimensionality of a cluster must be fixed a priori. Experimental results are presented to show the performance of the network with multispectral image data.

  10. A Performance Approach to Job Analysis.

    ERIC Educational Resources Information Center

    Folsom, Al

    2001-01-01

    Discussion of performance technology and training evaluation focuses on a job analysis process in the Coast Guard. Topics include problems with low survey response rates; costs; the need for appropriate software; discussions with stakeholders and subject matter experts; and maximizing worthy performance. (LRW)

  11. Conducting a Customer-Focused Performance Analysis.

    ERIC Educational Resources Information Center

    Grant, David A.; Moseley, James L.

    1999-01-01

    Explains how to conduct an organization's performance analysis that focuses on customer needs by identifying the desired state, determining the current state, and identifying the current or predicted gap in performance. Considers the organization's mission, a vision or strategic plan, the organization's cultural values, and organizational goals.…

  12. A Performance Approach to Job Analysis.

    ERIC Educational Resources Information Center

    Folsom, Al

    2001-01-01

    Discussion of performance technology and training evaluation focuses on a job analysis process in the Coast Guard. Topics include problems with low survey response rates; costs; the need for appropriate software; discussions with stakeholders and subject matter experts; and maximizing worthy performance. (LRW)

  13. Analysis of Performance Variation Using Query Expansion.

    ERIC Educational Resources Information Center

    Alemayehu, Nega

    2003-01-01

    Discussion of information retrieval performance evaluation focuses on a case study using a statistical repeated measures analysis of variance for testing the significance of factors, such as retrieval method and topic in retrieval performance variation. Analyses of the effect of query expansion on document ranking confirm that expansion affects…

  14. Analysis of Performance Variation Using Query Expansion.

    ERIC Educational Resources Information Center

    Alemayehu, Nega

    2003-01-01

    Discussion of information retrieval performance evaluation focuses on a case study using a statistical repeated measures analysis of variance for testing the significance of factors, such as retrieval method and topic in retrieval performance variation. Analyses of the effect of query expansion on document ranking confirm that expansion affects…

  15. Employment of CB models for non-linear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  16. Employment of CB models for non-linear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  17. The effects of training on performance and performance-related states in individual elite athletes: a dynamic approach.

    PubMed

    Barnett, Anthony; Cerin, Ester; Reaburn, Peter; Hooper, Sue

    2010-08-01

    There are difficulties undertaking controlled training studies with elite athletes. Thus, data from non-elite performers are often presented in scientific journals and subsequently used to guide general training principles. This information may not be transferable or specific enough to inform training practices in an individual elite athlete. However, the nature of athletic participation at elite levels provides the opportunity to collect training data, performance-related variables, and performance data of elite athletes over long periods. In this paper, we describe how dynamic linear models provide an opportunity to use these data to inform training. Data from an elite female triathlete collected over a 111-day training period were used to model the relationship between training and self-reported fatigue. The dynamic linear model analysis showed the independent effects of the three modes of triathlon training on fatigue, how these can change across time, and the possible influence of other unmeasured variables. This paper shows the potential for the use of dynamic linear models as an aid to planning training in elite athletes.

  18. Musical structure analysis using similarity matrix and dynamic programming

    NASA Astrophysics Data System (ADS)

    Shiu, Yu; Jeong, Hong; Kuo, C.-C. Jay

    2005-10-01

    Automatic music segmentation and structure analysis from audio waveforms based on a three-level hierarchy is examined in this research, where the three-level hierarchy includes notes, measures and parts. The pitch class profile (PCP) feature is first extracted at the note level. Then, a similarity matrix is constructed at the measure level, where a dynamic time warping (DTW) technique is used to enhance the similarity computation by taking the temporal distortion of similar audio segments into account. By processing the similarity matrix, we can obtain a coarse-grain music segmentation result. Finally, dynamic programming is applied to the coarse-grain segments so that a song can be decomposed into several major parts such as intro, verse, chorus, bridge and outro. The performance of the proposed music structure analysis system is demonstrated for pop and rock music.

  19. RAVEN, a New Software for Dynamic Risk Analysis

    SciTech Connect

    Cristian Rabiti; Andrea Alfonsi; Joshua Cogliati; Diego Mandelli; Robert Kinoshita

    2014-06-01

    RAVEN is a generic software driver to perform parametric and probabilistic analysis of code simulating complex systems. Initially developed to provide dynamic risk analysis capabilities to the RELAP-7 code [1] is currently being generalized with the addition of Application Programming Interfaces (APIs). These interfaces are used to extend RAVEN capabilities to any software as long as all the parameters that need to be perturbed are accessible by inputs files or directly via python interfaces. RAVEN is capable to investigate the system response probing the input space using Monte Carlo, grid strategies, or Latin Hyper Cube schemes, but its strength is its focus toward system feature discovery like limit surfaces separating regions of the input space leading to system failure using dynamic supervised learning techniques. The paper will present an overview of the software capabilities and their implementation schemes followed by same application examples.

  20. Interactive computer code for dynamic and soil structure interaction analysis

    SciTech Connect

    Mulliken, J.S.

    1995-12-01

    A new interactive computer code is presented in this paper for dynamic and soil-structure interaction (SSI) analyses. The computer program FETA (Finite Element Transient Analysis) is a self contained interactive graphics environment for IBM-PC`s that is used for the development of structural and soil models as well as post-processing dynamic analysis output. Full 3-D isometric views of the soil-structure system, animation of displacements, frequency and time domain responses at nodes, and response spectra are all graphically available simply by pointing and clicking with a mouse. FETA`s finite element solver performs 2-D and 3-D frequency and time domain soil-structure interaction analyses. The solver can be directly accessed from the graphical interface on a PC, or run on a number of other computer platforms.

  1. DYNAMIC NON LINEAR IMPACT ANALYSIS OF FUEL CASK CONTAINMENT VESSELS

    SciTech Connect

    Leduc, D

    2008-06-10

    Large fuel casks present challenges when evaluating their performance in the accident sequence specified in 10CFR 71. Testing is often limited because of cost, difficulty in preparing test units and the limited availability of facilities which can carry out such tests. In the past, many casks were evaluated without testing using simplified analytical methods. This paper details the use of dynamic non-linear analysis of large fuel casks using advanced computational techniques. Results from the dynamic analysis of two casks, the T-3 Spent Fuel Cask and the Hanford Un-irradiated Fuel Package are examined in detail. These analyses are used to fully evaluate containment vessel stresses and strains resulting from complex loads experienced by cask components during impacts. Importantly, these advanced analytical analyses are capable of examining stresses in key regions of the cask including the cask closure. This paper compares these advanced analytical results with the results of simplified cask analyses like those detailed in NUREG 3966.

  2. Architectural Analysis of Dynamically Reconfigurable Systems

    NASA Technical Reports Server (NTRS)

    Lindvall, Mikael; Godfrey, Sally; Ackermann, Chris; Ray, Arnab; Yonkwa, Lyly

    2010-01-01

    oTpics include: the problem (increased flexibility of architectural styles decrease analyzability, behavior emerges and varies depending on the configuration, does the resulting system run according to the intended design, and architectural decisions can impede or facilitate testing); top down approach to architecture analysis, detection of defects and deviations, and architecture and its testability; currently targeted projects GMSEC and CFS; analyzing software architectures; analyzing runtime events; actual architecture recognition; GMPUB in Dynamic SAVE; sample output from new approach; taking message timing delays into account; CFS examples of architecture and testability; some recommendations for improved testablity; and CFS examples of abstract interfaces and testability; CFS example of opening some internal details.

  3. HL-20 computational fluid dynamics analysis

    NASA Astrophysics Data System (ADS)

    Weilmuenster, K. James; Greene, Francis A.

    1993-09-01

    The essential elements of a computational fluid dynamics analysis of the HL-20/personnel launch system aerothermal environment at hypersonic speeds including surface definition, grid generation, solution techniques, and visual representation of results are presented. Examples of solution technique validation through comparison with data from ground-based facilities are presented, along with results from computations at flight conditions. Computations at flight points indicate that real-gas effects have little or no effect on vehicle aerodynamics and, at these conditions, results from approximate techniques for determining surface heating are comparable with those obtained from Navier-Stokes solutions.

  4. HL-20 computational fluid dynamics analysis

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Greene, Francis A.

    1993-01-01

    The essential elements of a computational fluid dynamics analysis of the HL-20/personnel launch system aerothermal environment at hypersonic speeds including surface definition, grid generation, solution techniques, and visual representation of results are presented. Examples of solution technique validation through comparison with data from ground-based facilities are presented, along with results from computations at flight conditions. Computations at flight points indicate that real-gas effects have little or no effect on vehicle aerodynamics and, at these conditions, results from approximate techniques for determining surface heating are comparable with those obtained from Navier-Stokes solutions.

  5. POWER GRID DYNAMICS: ENHANCING POWER SYSTEM OPERATION THROUGH PRONY ANALYSIS

    SciTech Connect

    Ray, C.; Huang, Z.

    2007-01-01

    Prony Analysis is a technique used to decompose a signal into a series consisting of weighted complex exponentials and promises to be an effi cient way of recognizing sensitive lines during faults in power systems such as the U.S. Power grid. Positive Sequence Load Flow (PSLF) was used to simulate the performance of a simple two-area-four-generator system and the reaction of the system during a line fault. The Dynamic System Identifi cation (DSI) Toolbox was used to perform Prony analysis and use modal information to identify key transmission lines for power fl ow adjustment to improve system damping. The success of the application of Prony analysis methods to the data obtained from PSLF is reported, and the key transmission line for adjustment is identifi ed. Future work will focus on larger systems and improving the current algorithms to deal with networks such as large portions of the Western Electricity Coordinating Council (WECC) power grid.

  6. Performance optimisations for distributed analysis in ALICE

    NASA Astrophysics Data System (ADS)

    Betev, L.; Gheata, A.; Gheata, M.; Grigoras, C.; Hristov, P.

    2014-06-01

    Performance is a critical issue in a production system accommodating hundreds of analysis users. Compared to a local session, distributed analysis is exposed to services and network latencies, remote data access and heterogeneous computing infrastructure, creating a more complex performance and efficiency optimization matrix. During the last 2 years, ALICE analysis shifted from a fast development phase to the more mature and stable code. At the same time, the frameworks and tools for deployment, monitoring and management of large productions have evolved considerably too. The ALICE Grid production system is currently used by a fair share of organized and individual user analysis, consuming up to 30% or the available resources and ranging from fully I/O-bound analysis code to CPU intensive correlations or resonances studies. While the intrinsic analysis performance is unlikely to improve by a large factor during the LHC long shutdown (LS1), the overall efficiency of the system has still to be improved by an important factor to satisfy the analysis needs. We have instrumented all analysis jobs with "sensors" collecting comprehensive monitoring information on the job running conditions and performance in order to identify bottlenecks in the data processing flow. This data are collected by the MonALISa-based ALICE Grid monitoring system and are used to steer and improve the job submission and management policy, to identify operational problems in real time and to perform automatic corrective actions. In parallel with an upgrade of our production system we are aiming for low level improvements related to data format, data management and merging of results to allow for a better performing ALICE analysis.

  7. Perform - A performance optimizing computer program for dynamic systems subject to transient loadings

    NASA Technical Reports Server (NTRS)

    Pilkey, W. D.; Wang, B. P.; Yoo, Y.; Clark, B.

    1973-01-01

    A description and applications of a computer capability for determining the ultimate optimal behavior of a dynamically loaded structural-mechanical system are presented. This capability provides characteristics of the theoretically best, or limiting, design concept according to response criteria dictated by design requirements. Equations of motion of the system in first or second order form include incompletely specified elements whose characteristics are determined in the optimization of one or more performance indices subject to the response criteria in the form of constraints. The system is subject to deterministic transient inputs, and the computer capability is designed to operate with a large linear programming on-the-shelf software package which performs the desired optimization. The report contains user-oriented program documentation in engineering, problem-oriented form. Applications cover a wide variety of dynamics problems including those associated with such diverse configurations as a missile-silo system, impacting freight cars, and an aircraft ride control system.

  8. Dynamic compaction of salt: Initial demonstration and performance testing

    SciTech Connect

    Hansen, F.D.; Ahrens, E.H.; Tidwell, V.C.; Tillerson, J.R; Brodsky, N.S.

    1994-12-31

    Reconsolidated crushed salt is proposed as the sole long-term shaft seal between the Waste Isolation Pilot Plant (WIPP) and the biosphere. The concept for a long-term shaft seal for the WIPP repository is to place crushed salt in the four shafts and to develop an effective seal as the surrounding salt creeps into the shafts, reconsolidating the salt. Permeability of the salt components is calculated to achieve performance objectives at some acceptable time in the future, an expectation which is a key to performance assessment calculations for the WIPP. Such a seal has never been constructed, and until now no performance measurements have been made on an appropriately large scale. A full understanding of construction methods, achievable initial density and permeability and time-wise performance of reconsolidating salt is required. This paper discusses nearly full-scale dynamic compaction of mine-run WIPP salt, preliminary measurements of density and permeability, and their variability within a relatively large volume of compacted material

  9. Computational Fluid Dynamics Framework for Turbine Biological Performance Assessment

    SciTech Connect

    Richmond, Marshall C.; Serkowski, John A.; Carlson, Thomas J.; Ebner, Laurie L.; Sick, Mirjam; Cada, G. F.

    2011-05-04

    In this paper, a method for turbine biological performance assessment is introduced to bridge the gap between field and laboratory studies on fish injury and turbine design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, the engineer can identify the more-promising designs. Discussion here is focused on Kaplan-type turbines, although the method could be extended to other designs. Following the description of the general methodology, we will present sample risk assessment calculations based on CFD data from a model of the John Day Dam on the Columbia River in the USA.

  10. Interfacing Computer Aided Parallelization and Performance Analysis

    NASA Technical Reports Server (NTRS)

    Jost, Gabriele; Jin, Haoqiang; Labarta, Jesus; Gimenez, Judit; Biegel, Bryan A. (Technical Monitor)

    2003-01-01

    When porting sequential applications to parallel computer architectures, the program developer will typically go through several cycles of source code optimization and performance analysis. We have started a project to develop an environment where the user can jointly navigate through program structure and performance data information in order to make efficient optimization decisions. In a prototype implementation we have interfaced the CAPO computer aided parallelization tool with the Paraver performance analysis tool. We describe both tools and their interface and give an example for how the interface helps within the program development cycle of a benchmark code.

  11. Perturbation analysis for patch occupancy dynamics

    USGS Publications Warehouse

    Martin, Julien; Nichols, James D.; McIntyre, Carol L.; Ferraz, Goncalo; Hines, James E.

    2009-01-01

    Perturbation analysis is a powerful tool to study population and community dynamics. This article describes expressions for sensitivity metrics reflecting changes in equilibrium occupancy resulting from small changes in the vital rates of patch occupancy dynamics (i.e., probabilities of local patch colonization and extinction). We illustrate our approach with a case study of occupancy dynamics of Golden Eagle (Aquila chrysaetos) nesting territories. Examination of the hypothesis of system equilibrium suggests that the system satisfies equilibrium conditions. Estimates of vital rates obtained using patch occupancy models are used to estimate equilibrium patch occupancy of eagles. We then compute estimates of sensitivity metrics and discuss their implications for eagle population ecology and management. Finally, we discuss the intuition underlying our sensitivity metrics and then provide examples of ecological questions that can be addressed using perturbation analyses. For instance, the sensitivity metrics lead to predictions about the relative importance of local colonization and local extinction probabilities in influencing equilibrium occupancy for rare and common species.

  12. Spectrum analysis with quantum dynamical systems

    NASA Astrophysics Data System (ADS)

    Ng, Shilin; Ang, Shan Zheng; Wheatley, Trevor A.; Yonezawa, Hidehiro; Furusawa, Akira; Huntington, Elanor H.; Tsang, Mankei

    2016-04-01

    Measuring the power spectral density of a stochastic process, such as a stochastic force or magnetic field, is a fundamental task in many sensing applications. Quantum noise is becoming a major limiting factor to such a task in future technology, especially in optomechanics for temperature, stochastic gravitational wave, and decoherence measurements. Motivated by this concern, here we prove a measurement-independent quantum limit to the accuracy of estimating the spectrum parameters of a classical stochastic process coupled to a quantum dynamical system. We demonstrate our results by analyzing the data from a continuous-optical-phase-estimation experiment and showing that the experimental performance with homodyne detection is close to the quantum limit. We further propose a spectral photon-counting method that can attain quantum-optimal performance for weak modulation and a coherent-state input, with an error scaling superior to that of homodyne detection at low signal-to-noise ratios.

  13. Decision Analysis of Dynamic Spectrum Access Rules

    SciTech Connect

    Juan D. Deaton; Luiz A. DaSilva; Christian Wernz

    2011-12-01

    A current trend in spectrum regulation is to incorporate spectrum sharing through the design of spectrum access rules that support Dynamic Spectrum Access (DSA). This paper develops a decision-theoretic framework for regulators to assess the impacts of different decision rules on both primary and secondary operators. We analyze access rules based on sensing and exclusion areas, which in practice can be enforced through geolocation databases. Our results show that receiver-only sensing provides insufficient protection for primary and co-existing secondary users and overall low social welfare. On the other hand, using sensing information between the transmitter and receiver of a communication link, provides dramatic increases in system performance. The performance of using these link end points is relatively close to that of using many cooperative sensing nodes associated to the same access point and large link exclusion areas. These results are useful to regulators and network developers in understanding in developing rules for future DSA regulation.

  14. Dynamic Factor Analysis Models with Time-Varying Parameters

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian

    2011-01-01

    Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor…

  15. Dynamic Factor Analysis Models with Time-Varying Parameters

    ERIC Educational Resources Information Center

    Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian

    2011-01-01

    Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor…

  16. Massive Contingency Analysis with High Performance Computing

    SciTech Connect

    Huang, Zhenyu; Chen, Yousu; Nieplocha, Jaroslaw

    2009-07-26

    Contingency analysis is a key function in the Energy Management System (EMS) to assess the impact of various combinations of power system component failures based on state estimates. Contingency analysis is also extensively used in power market operation for feasibility test of market solutions. Faster analysis of more cases is required to safely and reliably operate today’s power grids with less marginal and more intermittent renewable energy sources. Enabled by the latest development in the computer industry, high performance computing holds the promise of meet the need in the power industry. This paper investigates the potential of high performance computing for massive contingency analysis. The framework of "N-x" contingency analysis is established and computational load balancing schemes are studied and implemented with high performance computers. Case studies of massive 300,000-contingency-case analysis using the Western Electricity Coordinating Council power grid model are presented to illustrate the application of high performance computing and demonstrate the performance of the framework and computational load balancing schemes.

  17. The relationship between lower-body stiffness and dynamic performance.

    PubMed

    Pruyn, Elizabeth C; Watsford, Mark; Murphy, Aron

    2014-10-01

    Greater levels of lower-body stiffness have been associated with improved outcomes for a number of physical performance variables involving rapid stretch-shorten cycles. The aim of this study was to investigate the relationship between several measures of lower-body stiffness and physical performance variables typically evident during team sports in female athletes. Eighteen female athletes were assessed for quasi-static stiffness (myometry) for several isolated muscles in lying and standing positions. The muscles included the medial gastrocnemius (MedGast), lateral gastrocnemius, soleus, and Achilles tendon. Dynamic stiffness during unilateral hopping was also assessed. Participants were separated into relatively stiff and compliant groups for each variable. A number of significant differences in performance were evident between stiff and compliant subjects. When considering the quasi-static stiffness of the MedGast in lying and standing positions, relatively stiff participants recorded significantly superior results during agility, bounding, sprinting, and jumping activities. Stiffness as assessed by hopping did not discriminate between performance ability in any test. Relationships highlighted by MedGast results were supported by further significant differences in eccentric utilisation ratio and drop jump results between stiff and compliant groups for the lateral gastrocnemius and soleus in lying and standing positions. Higher levels of lower-body stiffness appear to be advantageous for females when performing rapid and (or) repeated stretch-shorten cycle movements, including sprinting, bounding, and jumping. Further, the stiffness of the MedGast is of particular importance during the performance of these activities. It is important for practitioners working with athletes in sports that rely upon these activities for success to consider stiffness assessment and modification.

  18. Dynamic investigation of static divergence: Analysis and testing

    NASA Astrophysics Data System (ADS)

    Heeg, Jennifer

    2000-10-01

    The phenomenon known as aeroelastic divergence is the focus of this work. The analyses and experiment presented here show that divergence can occur without a structural dynamic mode losing its oscillatory nature. Aeroelastic divergence occurs when the structural restorative capability or stiffness of a structure is overwhelmed by the static aerodynamic moment. This static aeroelastic coupling does not require the structural dynamic system behavior to cease, however. Aeroelastic changes in the dynamic mode behavior are governed not only by the stiffness, but by damping and inertial properties. The work presented here supports these fundamental assertions by examining a simple system: a typical section airfoil with only a rotational structural degree of freedom. Aeroelastic stability analysis is performed in the discrete time domain. The aerodynamic, structural dynamic, and downwash relationships are cast as time-marching equations and combined to form aeroelastic state space equations. The discrete time eigenvalues and eigenvectors of the coupled system are computed. This method is advantageous because the exact roots and the degree of stability of the system are determined, within the framework of the aerodynamic and structural dynamic representations. The discrete-time eigenvalues are transformed into the continuous time domain to facilitate their interpretation. Results from the analysis have identified configurations of a simple model that exhibit different types of dynamic mode behavior as the system encounters divergence. For the simple configuration examined, these results indicate that low inertial properties and elastic axis location near the center of pressure promote divergence while the dynamic mode persists. Large inertias and large separation between elastic axis and center of pressure promote divergence where the dynamic mode becomes a static mode. A wind tunnel model was designed and tested to examine divergence experimentally. The experimental

  19. Performance comparison between static and dynamic cardiac CT on perfusion quantitation and patient classification tasks

    NASA Astrophysics Data System (ADS)

    Bindschadler, Michael; Modgil, Dimple; Branch, Kelley R.; La Riviere, Patrick J.; Alessio, Adam M.

    2015-03-01

    Cardiac CT acquisitions for perfusion assessment can be performed in a dynamic or static mode. In this simulation study, we evaluate the relative classification and quantification performance of these modes for assessing myocardial blood flow (MBF). In the dynamic method, a series of low dose cardiac CT acquisitions yields data on contrast bolus dynamics over time; these data are fit with a model to give a quantitative MBF estimate. In the static method, a single CT acquisition is obtained, and the relative CT numbers in the myocardium are used to infer perfusion states. The static method does not directly yield a quantitative estimate of MBF, but these estimates can be roughly approximated by introducing assumed linear relationships between CT number and MBF, consistent with the ways such images are typically visually interpreted. Data obtained by either method may be used for a variety of clinical tasks, including 1) stratifying patients into differing categories of ischemia and 2) using the quantitative MBF estimate directly to evaluate ischemic disease severity. Through simulations, we evaluate the performance on each of these tasks. The dynamic method has very low bias in MBF estimates, making it particularly suitable for quantitative estimation. At matched radiation dose levels, ROC analysis demonstrated that the static method, with its high bias but generally lower variance, has superior performance in stratifying patients, especially for larger patients.

  20. Comparative performance analysis of mobile displays

    NASA Astrophysics Data System (ADS)

    Safaee-Rad, Reza; Aleksic, Milivoje

    2012-01-01

    Cell-phone display performance (in terms of color quality and optical efficiency) has become a critical factor in creating a positive user experience. As a result, there is a significant amount of effort by cell-phone OEMs to provide a more competitive display solution. This effort is focused on using different display technologies (with significantly different color characteristics) and more sophisticated display processors. In this paper, the results of a mobile-display comparative performance analysis are presented. Three cell-phones from major OEMs are selected and their display performances are measured and quantified. Comparative performance analysis is done using display characteristics such as display color gamut size, RGB-channels crosstalk, RGB tone responses, gray tracking performance, color accuracy, and optical efficiency.

  1. Integrating Reliability Analysis with a Performance Tool

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Palumbo, Daniel L.; Ulrey, Michael

    1995-01-01

    A large number of commercial simulation tools support performance oriented studies of complex computer and communication systems. Reliability of these systems, when desired, must be obtained by remodeling the system in a different tool. This has obvious drawbacks: (1) substantial extra effort is required to create the reliability model; (2) through modeling error the reliability model may not reflect precisely the same system as the performance model; (3) as the performance model evolves one must continuously reevaluate the validity of assumptions made in that model. In this paper we describe an approach, and a tool that implements this approach, for integrating a reliability analysis engine into a production quality simulation based performance modeling tool, and for modeling within such an integrated tool. The integrated tool allows one to use the same modeling formalisms to conduct both performance and reliability studies. We describe how the reliability analysis engine is integrated into the performance tool, describe the extensions made to the performance tool to support the reliability analysis, and consider the tool's performance.

  2. Mytoe: automatic analysis of mitochondrial dynamics.

    PubMed

    Lihavainen, Eero; Mäkelä, Jarno; Spelbrink, Johannes N; Ribeiro, Andre S

    2012-04-01

    We present Mytoe, a tool for analyzing mitochondrial morphology and dynamics from fluorescence microscope images. The tool provides automated quantitative analysis of mitochondrial motion by optical flow estimation and of morphology by segmentation of individual branches of the network-like structure of the organelles. Mytoe quantifies several features of individual branches, such as length, tortuosity and speed, and of the macroscopic structure, such as mitochondrial area and degree of clustering. We validate the methods and apply them to the analysis of sequences of images of U2OS human cells with fluorescently labeled mitochondria. Source code, Windows software and Manual available at http://www.cs.tut.fi/%7Esanchesr/mito Supplementary data are available at Bioinformatics online. eero.lihavainen@tut.fi; andre.ribeiro@tut.fi.

  3. Dynamic Numerical Analysis of Steel Footbridge

    NASA Astrophysics Data System (ADS)

    Major, Maciej; Minda, Izabela; Major, Izabela

    2017-06-01

    The study presents a numerical analysis of the arched footbridge designed in two variants, made of steel and aluminium. The first part presents the criteria for evaluation of the comfort of using the footbridges. The study examined the footbridge with arched design with span in the axis of 24 m and width of 1.4 m. Arch geometry was made as a part of the circle with radius of r = 20 m cut off with a chord with length equal to the calculation length of the girders. The model of the analysed footbridge was subjected to the dynamic effect of wind and the pedestrian traffic with variable flexibility. The analyses used Robot Structural Analysis software.

  4. Dynamic Factor Analysis Models With Time-Varying Parameters.

    PubMed

    Chow, Sy-Miin; Zu, Jiyun; Shifren, Kim; Zhang, Guangjian

    2011-04-11

    Dynamic factor analysis models with time-varying parameters offer a valuable tool for evaluating multivariate time series data with time-varying dynamics and/or measurement properties. We use the Dynamic Model of Activation proposed by Zautra and colleagues (Zautra, Potter, & Reich, 1997) as a motivating example to construct a dynamic factor model with vector autoregressive relations and time-varying cross-regression parameters at the factor level. Using techniques drawn from the state-space literature, the model was fitted to a set of daily affect data (over 71 days) from 10 participants who had been diagnosed with Parkinson's disease. Our empirical results lend partial support and some potential refinement to the Dynamic Model of Activation with regard to how the time dependencies between positive and negative affects change over time. A simulation study is conducted to examine the performance of the proposed techniques when (a) changes in the time-varying parameters are represented using the true model of change, (b) supposedly time-invariant parameters are represented as time-varying, and

  5. Effect of material uncertainties on dynamic analysis of piezoelectric fans

    NASA Astrophysics Data System (ADS)

    Srivastava, Swapnil; Yadav, Shubham Kumar; Mukherjee, Sujoy

    2015-04-01

    A piezofan is a resonant device that uses a piezoceramic material to induce oscillations in a cantilever beam. In this study, lumped-mass modelling is used to analyze a piezoelectric fan. Uncertainties are associated with the piezoelectric structures due to several reasons such as variation during manufacturing process, temperature, presence of adhesive layer between the piezoelectric actuator/sensor and the shim stock etc. Presence of uncertainty in the piezoelectric materials can influence the dynamic behavior of the piezoelectric fan such as natural frequency, tip deflection etc. Moreover, these quantities will also affect the performance parameters of the piezoelectric fan. Uncertainty analysis is performed using classical Monte Carlo Simulation (MCS). It is found that the propagation of uncertainty causes significant deviations from the baseline deterministic predictions, which also affect the achievable performance of the piezofan. The numerical results in this paper provide useful bounds on several performance parameters of the cooling fan and will enhance confidence in the design process.

  6. Comprehensive analysis of transport aircraft flight performance

    NASA Astrophysics Data System (ADS)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance

  7. Comparative Sensitivity Analysis of Muscle Activation Dynamics

    PubMed Central

    Rockenfeller, Robert; Günther, Michael; Schmitt, Syn; Götz, Thomas

    2015-01-01

    We mathematically compared two models of mammalian striated muscle activation dynamics proposed by Hatze and Zajac. Both models are representative for a broad variety of biomechanical models formulated as ordinary differential equations (ODEs). These models incorporate parameters that directly represent known physiological properties. Other parameters have been introduced to reproduce empirical observations. We used sensitivity analysis to investigate the influence of model parameters on the ODE solutions. In addition, we expanded an existing approach to treating initial conditions as parameters and to calculating second-order sensitivities. Furthermore, we used a global sensitivity analysis approach to include finite ranges of parameter values. Hence, a theoretician striving for model reduction could use the method for identifying particularly low sensitivities to detect superfluous parameters. An experimenter could use it for identifying particularly high sensitivities to improve parameter estimation. Hatze's nonlinear model incorporates some parameters to which activation dynamics is clearly more sensitive than to any parameter in Zajac's linear model. Other than Zajac's model, Hatze's model can, however, reproduce measured shifts in optimal muscle length with varied muscle activity. Accordingly we extracted a specific parameter set for Hatze's model that combines best with a particular muscle force-length relation. PMID:26417379

  8. Shuttle/TDRSS communications system performance analysis

    NASA Technical Reports Server (NTRS)

    Braun, W. R.

    1980-01-01

    The results of the performance analysis performed on the Shuttle/Tracking and Data Relay Satellite System (TDRSS) communications system are presented. The existing Shuttle/TDRSS link simulation program were modified and refined to model the post-radio frequency interference TDRS hardware and to evaluate the performance degradation due to RFI effects. The refined link models were then used to determine, evaluate and assess expected S-band and Ku-band link performance. Parameterization results are presented for the ground station carrier and timing recovery circuits

  9. Performance analysis of LAN bridges and routers

    NASA Technical Reports Server (NTRS)

    Hajare, Ankur R.

    1991-01-01

    Bridges and routers are used to interconnect Local Area Networks (LANs). The performance of these devices is important since they can become bottlenecks in large multi-segment networks. Performance metrics and test methodology for bridges and routers were not standardized. Performance data reported by vendors is not applicable to the actual scenarios encountered in an operational network. However, vendor-provided data can be used to calibrate models of bridges and routers that, along with other models, yield performance data for a network. Several tools are available for modeling bridges and routers - Network II.5 was used. The results of the analysis of some bridges and routers are presented.

  10. Effective field theory of dark energy: a dynamical analysis

    SciTech Connect

    Frusciante, Noemi; Raveri, Marco; Silvestri, Alessandra E-mail: mraveri@sissa.it

    2014-02-01

    The effective field theory (EFT) of dark energy relies on three functions of time to describe the dynamics of background cosmology. The viability of these functions is investigated here by means of a thorough dynamical analysis. While the system is underdetermined, and one can always find a set of functions reproducing any expansion history, we are able to determine general compatibility conditions for these functions by requiring a viable background cosmology. In particular, we identify a set of variables that allows us to transform the non-autonomous system of equations into an infinite-dimensional one characterized by a significant recursive structure. We then analyze several autonomous sub-systems, obtained truncating the original one at increasingly higher dimension, that correspond to increasingly general models of dark energy and modified gravity. Furthermore, we exploit the recursive nature of the system to draw some general conclusions on the different cosmologies that can be recovered within the EFT formalism and the corresponding compatibility requirements for the EFT functions. The machinery that we set up serves different purposes. It offers a general scheme for performing dynamical analysis of dark energy and modified gravity models within the model independent framework of EFT; the general results, obtained with this technique, can be projected into specific models, as we show in one example. It also can be used to determine appropriate ansätze for the three EFT background functions when studying the dynamics of cosmological perturbations in the context of large scale structure tests of gravity.

  11. Performative family: homosexuality, marriage and intergenerational dynamics in China.

    PubMed

    Choi, Susanne Yp; Luo, Ming

    2016-06-01

    Using in-depth interview data on nominal marriages - legal marriages between a gay man and a lesbian to give the appearance of heterosexuality - this paper develops the concept of performative family to explain the processes through which parents and their adult children negotiate and resolve disagreements in relation to marriage decisions in post-socialist China. We identify three mechanisms - network pressure, a revised discourse of filial piety and resource leverage - through which parents influence their gay offspring's decision to turn to nominal marriage. We also delineate six strategies, namely minimizing network participation, changing expectations, making partial concessions, drawing the line, delaying decisions and ending the marriage, by which gay people in nominal marriages attempt to meet parental expectations while simultaneously retaining a degree of autonomy. Through these interactions, we argue that Chinese parents and their gay adult children implicitly and explicitly collaborate to perform family, emphasizing the importance of formally meeting society's expectations about marriage rather than substantively yielding to its demands. We also argue that the performative family is a pragmatic response to the tension between the persistent centrality of family and marriage and the rising tide of individualism in post-socialist China. We believe that our findings highlight the specific predicament of homosexual people. They also shed light on the more general dynamics of intergenerational negotiation because there is evidence that the mechanisms used by parents to exert influence may well be similar between gay and non-gay people. © London School of Economics and Political Science 2016.

  12. Performance bounds for dynamic causal modeling of brain connectivity.

    PubMed

    Wu, Shun Chi; Swindlehurst, A Lee

    2012-01-01

    The use of complex dynamical models have been proposed for describing the connections and causal interactions between different regions of the brain. The goal of these models is to accurately mimic the event-related potentials observed by EEG/MEG measurement systems, and are useful in understanding overall brain functionality. In this paper, we focus on a class of nonlinear dynamic causal models (DCM) that are described by a set of connectivity parameters. In practice, the DCM parameters are inferred using data obtained by an EEG or MEG sensor array in response to a certain event or stimulus, and the resulting estimates are used to analyze the strength and direction of the causal interactions between different brain regions. The usefulness of the parameter estimates will depend on how accurately they can be estimated, which in turn will depend on noise, the sampling rate, number of data samples collected, the accuracy of the source localization and reconstruction steps, etc. The goal of this paper is to derive Cramér-Rao performance bounds for DCM estimates, and examine the behavior of the bounds under different operating conditions.

  13. High-performance holographic technologies for fluid-dynamics experiments

    PubMed Central

    Orlov, Sergei S.; Abarzhi, Snezhana I.; Oh, Se Baek; Barbastathis, George; Sreenivasan, Katepalli R.

    2010-01-01

    Modern technologies offer new opportunities for experimentalists in a variety of research areas of fluid dynamics. Improvements are now possible in the state-of-the-art in precision, dynamic range, reproducibility, motion-control accuracy, data-acquisition rate and information capacity. These improvements are required for understanding complex turbulent flows under realistic conditions, and for allowing unambiguous comparisons to be made with new theoretical approaches and large-scale numerical simulations. One of the new technologies is high-performance digital holography. State-of-the-art motion control, electronics and optical imaging allow for the realization of turbulent flows with very high Reynolds number (more than 107) on a relatively small laboratory scale, and quantification of their properties with high space–time resolutions and bandwidth. In-line digital holographic technology can provide complete three-dimensional mapping of the flow velocity and density fields at high data rates (over 1000 frames per second) over a relatively large spatial area with high spatial (1–10 μm) and temporal (better than a few nanoseconds) resolution, and can give accurate quantitative description of the fluid flows, including those of multi-phase and unsteady conditions. This technology can be applied in a variety of problems to study fundamental properties of flow–particle interactions, rotating flows, non-canonical boundary layers and Rayleigh–Taylor mixing. Some of these examples are discussed briefly. PMID:20211881

  14. Dynamic stall analysis of horizontal-axis-wind-turbine blades using computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Sayed, Mohamed A.; Kandil, Hamdy A.; Morgan, El-Sayed I.

    2012-06-01

    Dynamic stall has been widely known to significantly affect the performance of the wind turbines. In this paper, aerodynamic simulation of the unsteady low-speed flow past two-dimensional wind turbine blade profiles, developed by the National Renewable Energy Laboratory (NREL), will be performed. The aerodynamic simulation will be performed using Computational Fluid Dynamics (CFD). The governing equations used in the simulations are the Unsteady-Reynolds-Averaged-Navier-Stokes (URANS) equations. The unsteady separated turbulent flow around an oscillating airfoil pitching in a sinusoidal pattern in the regime of low Reynolds number is investigated numerically. The investigation employs the URANS approach with the most suitable turbulence model. The development of the light dynamic stall of the blades under consideration is studied. The S809 blade profile is simulated at different mean wind speeds. Moreover, the S826 blade profile is also considered for analysis of wind turbine blade which is the most suitable blade profile for the wind conditions in Egypt over the site of Gulf of El-Zayt. In order to find the best oscillating frequency, different oscillating frequencies are studied. The best frequency can then be used for the blade pitch controller. The comparisons with the experimental results showed that the used CFD code can accurately predict the blade profile unsteady aerodynamic loads.

  15. Dynamic characterization and analysis of space shuttle SRM solid propellant

    NASA Technical Reports Server (NTRS)

    Hufferd, W. L.

    1979-01-01

    The dynamic response properties of the space shuttle solid rocket moter (TP-H1148) propellant were characterized and the expected limits of propellant variability were established. Dynamic shear modulus tests conducted on six production batches of TP-H1148 at various static and dynamic strain levels over the temperature range from 40 F to 90 F. A heat conduction analysis and dynamic response analysis of the space shuttle solid rocket motor (SRM) were also conducted. The dynamic test results show significant dependence on static and dynamic strain levels and considerable batch-to-batch and within-batch variability. However, the results of the SRM dynamic response analyses clearly demonstrate that the stiffness of the propellant has no consequential on the overall SRM dynamic response. Only the mass of the propellant needs to be considered in the dynamic analysis of the space shuttle SRM.

  16. Aero-Thermo-Dynamic Mass Analysis

    PubMed Central

    Shiba, Kota; Yoshikawa, Genki

    2016-01-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335

  17. Aero-Thermo-Dynamic Mass Analysis.

    PubMed

    Shiba, Kota; Yoshikawa, Genki

    2016-07-14

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  18. Aero-Thermo-Dynamic Mass Analysis

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  19. Computational analysis of Variable Thrust Engine (VTE) performance

    NASA Technical Reports Server (NTRS)

    Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.

    1993-01-01

    The Variable Thrust Engine (VTE) of the Orbital Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The performance of the VTE depends on a number of complex interacting phenomena such as atomization, spray dynamics, vaporization, turbulent mixing, convective/radiative heat transfer, and hypergolic combustion. This study involved the development of a comprehensive numerical methodology to facilitate detailed analysis of the VTE. An existing Computational Fluid Dynamics (CFD) code was extensively modified to include the following models: a two-liquid, two-phase Eulerian-Lagrangian spray model; a chemical equilibrium model; and a discrete ordinate radiation heat transfer model. The modified code was used to conduct a series of simulations to assess the effects of various physical phenomena and boundary conditions on the VTE performance. The details of the models and the results of the simulations are presented.

  20. Computational analysis of Variable Thrust Engine (VTE) performance

    NASA Astrophysics Data System (ADS)

    Giridharan, M. G.; Krishnan, A.; Przekwas, A. J.

    1993-02-01

    The Variable Thrust Engine (VTE) of the Orbital Maneuvering Vehicle (OMV) uses a hypergolic propellant combination of Monomethyl Hydrazine (MMH) and Nitrogen Tetroxide (NTO) as fuel and oxidizer, respectively. The performance of the VTE depends on a number of complex interacting phenomena such as atomization, spray dynamics, vaporization, turbulent mixing, convective/radiative heat transfer, and hypergolic combustion. This study involved the development of a comprehensive numerical methodology to facilitate detailed analysis of the VTE. An existing Computational Fluid Dynamics (CFD) code was extensively modified to include the following models: a two-liquid, two-phase Eulerian-Lagrangian spray model; a chemical equilibrium model; and a discrete ordinate radiation heat transfer model. The modified code was used to conduct a series of simulations to assess the effects of various physical phenomena and boundary conditions on the VTE performance. The details of the models and the results of the simulations are presented.

  1. Thermodynamic performance analysis of ramjet engine at wide working conditions

    NASA Astrophysics Data System (ADS)

    Ou, Min; Yan, Li; Tang, Jing-feng; Huang, Wei; Chen, Xiao-qian

    2017-03-01

    Although ramjet has the advantages of high-speed flying and higher specific impulse, the performance parameters will decline seriously with the increase of flight Mach number and flight height. Therefore, the investigation on the thermodynamic performance of ramjet is very crucial for broadening the working range. In the current study, a typical ramjet model has been employed to investigate the performance characteristics at wide working conditions. First of all, the compression characteristic analysis is carried out based on the Brayton cycle. The obtained results show that the specific cross-section area (A2 and A5) and the air-fuel ratio (f) have a great influence on the ramjet performance indexes. Secondly, the thermodynamic calculation process of ramjet is given from the view of the pneumatic thermal analysis. Then, the variable trends of the ramjet performance indexes with the flow conditions, the air-fuel ratio (f), the specific cross-sectional area (A2 and A5) under the fixed operating condition, equipotential dynamic pressure condition and variable dynamic pressure condition have been discussed. Finally, the optimum value of the specific cross-sectional area (A5) and the air-fuel ratio (f) of the ramjet model at a fixed work condition (Ma=3.5, H=12 km) are obtained.

  2. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  3. Ongoing Analysis of Rocket Based Combined Cycle Engines by the Applied Fluid Dynamics Analysis Group at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph; Holt, James B.; Canabal, Francisco

    1999-01-01

    This paper presents the status of analyses on three Rocket Based Combined Cycle configurations underway in the Applied Fluid Dynamics Analysis Group (TD64). TD64 is performing computational fluid dynamics analysis on a Penn State RBCC test rig, the proposed Draco axisymmetric RBCC engine and the Trailblazer engine. The intent of the analysis on the Penn State test rig is to benchmark the Finite Difference Navier Stokes code for ejector mode fluid dynamics. The Draco engine analysis is a trade study to determine the ejector mode performance as a function of three engine design variables. The Trailblazer analysis is to evaluate the nozzle performance in scramjet mode. Results to date of each analysis are presented.

  4. Static and Dynamic Performance Simulation of Direct-Acting Force Motor Valve

    NASA Astrophysics Data System (ADS)

    Ye, Xinghai; Ding, Jianjun; Zheng, Gang; Jiang, Kunpeng; Chen, Dongdong

    2017-07-01

    This work focuses on static and dynamic characteristics of direct-acting force motor valve. First, we analyzed the structure features and operating principle of the Mitsubishi-Hitachi force motor valve (FMV) and the operating principle of its internal permanent-magnet moving-coil force motor magnetic circuit, determined the transfer function of the FMV force motor system, and established a mathematical model for the system. Secondly, we established a static performance analysis model using the AMESIM software and utilized the model in combination with experimental results to analyze the effects of electro-hydraulic servo valve structural parameters on static characteristics. Lastly, we deduced the trajectory equation of the system, established the relationship between dynamic characteristic indexes and structural parameters, and analyzed the effects of different parameter values on the dynamic characteristics of the system. This research can provide a theoretical guidance for designing and manufacturing the FMV body.

  5. Adaptive control schemes for improving dynamic performance of efficiency-optimized induction motor drives.

    PubMed

    Kumar, Navneet; Raj Chelliah, Thanga; Srivastava, S P

    2015-07-01

    Model Based Control (MBC) is one of the energy optimal controllers used in vector-controlled Induction Motor (IM) for controlling the excitation of motor in accordance with torque and speed. MBC offers energy conservation especially at part-load operation, but it creates ripples in torque and speed during load transition, leading to poor dynamic performance of the drive. This study investigates the opportunity for improving dynamic performance of a three-phase IM operating with MBC and proposes three control schemes: (i) MBC with a low pass filter (ii) torque producing current (iqs) injection in the output of speed controller (iii) Variable Structure Speed Controller (VSSC). The pre and post operation of MBC during load transition is also analyzed. The dynamic performance of a 1-hp, three-phase squirrel-cage IM with mine-hoist load diagram is tested. Test results are provided for the conventional field-oriented (constant flux) control and MBC (adjustable excitation) with proposed schemes. The effectiveness of proposed schemes is also illustrated for parametric variations. The test results and subsequent analysis confer that the motor dynamics improves significantly with all three proposed schemes in terms of overshoot/undershoot peak amplitude of torque and DC link power in addition to energy saving during load transitions. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  6. Dynamic smile analysis: changes with age.

    PubMed

    Desai, Shyam; Upadhyay, Madhur; Nanda, Ravindra

    2009-09-01

    The objective of this study was to define age-related changes in the smile. The areas of interest were upper lip length at smile and repose, upper lip thickness at smile and repose, maxillary incisal display at smile, interlabial gap height at smile, smile index, percentage of buccal corridors, intercommissural width at rest, smile height, and smile arc. A secondary objective was to study the perioral changes from rest to smile and compare them on the basis of age. Video equipment was used to capture images of 261 subjects, who were divided into 5 groups by age. Two frames for each subject were selected, 1 frame representing the lips at rest and the other representing the widest smile. After 40 subjects were excluded, the data for the remaining 221 were analyzed by using 1-way analysis of variance (ANOVA) with the Fisher LSD post-hoc test. There was a decrease of 1.5 to 2 mm in maxillary incisor display during smile with increasing age, but the smile index showed a significant increase. In accordance with some other studies, most subjects (78%) had average smile height. No subject in the 50 and over age group had a high smile, and no subject in the 15-to-19 year group had a low smile. All dynamic measurements indicated a pattern of decreasing change from rest to smile, especially evident after ages 30 to 39 years. This study helps to establish age-related dynamic norms. As a person ages, the smile gets narrower vertically and wider transversely. The dynamic measures indicate that the muscles' ability to create a smile decreases with increasing age.

  7. Analytic Perturbation Analysis of Discrete Event Dynamic Systems

    SciTech Connect

    Uryasev, S.

    1994-09-01

    This paper considers a new Analytic Perturbation Analysis (APA) approach for Discrete Event Dynamic Systems (DEDS) with discontinuous sample-path functions with respect to control parameters. The performance functions for DEDS usually are formulated as mathematical expectations, which can be calculated only numerically. APA is based on new analytic formulas for the gradients of expectations of indicator functions; therefore, it is called an analytic perturbation analysis. The gradient of performance function may not coincide with the expectation of a gradient of sample-path function (i.e., the interchange formula for the gradient and expectation sign may not be valid). Estimates of gradients can be obtained with one simulation run of the models.

  8. Estimation of changes in dynamic hydraulic force in a magnetically suspended centrifugal blood pump with transient computational fluid dynamics analysis.

    PubMed

    Masuzawa, Toru; Ohta, Akiko; Tanaka, Nobuatu; Qian, Yi; Tsukiya, Tomonori

    2009-01-01

    The effect of the hydraulic force on magnetically levitated (maglev) pumps should be studied carefully to improve the suspension performance and the reliability of the pumps. A maglev centrifugal pump, developed at Ibaraki University, was modeled with 926 376 hexahedral elements for computational fluid dynamics (CFD) analyses. The pump has a fully open six-vane impeller with a diameter of 72.5 mm. A self-bearing motor suspends the impeller in the radial direction. The maximum pressure head and flow rate were 250 mmHg and 14 l/min, respectively. First, a steady-state analysis was performed using commercial code STAR-CD to confirm the model's suitability by comparing the results with the real pump performance. Second, transient analysis was performed to estimate the hydraulic force on the levitated impeller. The impeller was rotated in steps of 1 degrees using a sliding mesh. The force around the impeller was integrated at every step. The transient analysis revealed that the direction of the radial force changed dynamically as the vane's position changed relative to the outlet port during one circulation, and the magnitude of this force was about 1 N. The current maglev pump has sufficient performance to counteract this hydraulic force. Transient CFD analysis is not only useful for observing dynamic flow conditions in a centrifugal pump but is also effective for obtaining information about the levitation dynamics of a maglev pump.

  9. Using Covariance Analysis to Assess Pointing Performance

    NASA Technical Reports Server (NTRS)

    Bayard, David; Kang, Bryan

    2009-01-01

    A Pointing Covariance Analysis Tool (PCAT) has been developed for evaluating the expected performance of the pointing control system for NASA s Space Interferometry Mission (SIM). The SIM pointing control system is very complex, consisting of multiple feedback and feedforward loops, and operating with multiple latencies and data rates. The SIM pointing problem is particularly challenging due to the effects of thermomechanical drifts in concert with the long camera exposures needed to image dim stars. Other pointing error sources include sensor noises, mechanical vibrations, and errors in the feedforward signals. PCAT models the effects of finite camera exposures and all other error sources using linear system elements. This allows the pointing analysis to be performed using linear covariance analysis. PCAT propagates the error covariance using a Lyapunov equation associated with time-varying discrete and continuous-time system matrices. Unlike Monte Carlo analysis, which could involve thousands of computational runs for a single assessment, the PCAT analysis performs the same assessment in a single run. This capability facilitates the analysis of parametric studies, design trades, and "what-if" scenarios for quickly evaluating and optimizing the control system architecture and design.

  10. Severe accident analysis using dynamic accident progression event trees

    NASA Astrophysics Data System (ADS)

    Hakobyan, Aram P.

    In present, the development and analysis of Accident Progression Event Trees (APETs) are performed in a manner that is computationally time consuming, difficult to reproduce and also can be phenomenologically inconsistent. One of the principal deficiencies lies in the static nature of conventional APETs. In the conventional event tree techniques, the sequence of events is pre-determined in a fixed order based on the expert judgments. The main objective of this PhD dissertation was to develop a software tool (ADAPT) for automated APET generation using the concept of dynamic event trees. As implied by the name, in dynamic event trees the order and timing of events are determined by the progression of the accident. The tool determines the branching times from a severe accident analysis code based on user specified criteria for branching. It assigns user specified probabilities to every branch, tracks the total branch probability, and truncates branches based on the given pruning/truncation rules to avoid an unmanageable number of scenarios. The function of a dynamic APET developed includes prediction of the conditions, timing, and location of containment failure or bypass leading to the release of radioactive material, and calculation of probabilities of those failures. Thus, scenarios that can potentially lead to early containment failure or bypass, such as through accident induced failure of steam generator tubes, are of particular interest. Also, the work is focused on treatment of uncertainties in severe accident phenomena such as creep rupture of major RCS components, hydrogen burn, containment failure, timing of power recovery, etc. Although the ADAPT methodology (Analysis of Dynamic Accident Progression Trees) could be applied to any severe accident analysis code, in this dissertation the approach is demonstrated by applying it to the MELCOR code [1]. A case study is presented involving station blackout with the loss of auxiliary feedwater system for a

  11. Dynamic performance of an aero-assist spacecraft - AFE

    NASA Technical Reports Server (NTRS)

    Chang, Ho-Pen; French, Raymond A.

    1992-01-01

    Dynamic performance of the Aero-assist Flight Experiment (AFE) spacecraft was investigated using a high-fidelity 6-DOF simulation model. Baseline guidance logic, control logic, and a strapdown navigation system to be used on the AFE spacecraft are also modeled in the 6-DOF simulation. During the AFE mission, uncertainties in the environment and the spacecraft are described by an error space which includes both correlated and uncorrelated error sources. The principal error sources modeled in this study include navigation errors, initial state vector errors, atmospheric variations, aerodynamic uncertainties, center-of-gravity off-sets, and weight uncertainties. The impact of the perturbations on the spacecraft performance is investigated using Monte Carlo repetitive statistical techniques. During the Solid Rocket Motor (SRM) deorbit phase, a target flight path angle of -4.76 deg at entry interface (EI) offers very high probability of avoiding SRM casing skip-out from the atmosphere. Generally speaking, the baseline designs of the guidance, navigation, and control systems satisfy most of the science and mission requirements.

  12. Molecular Dynamics Simulations on High-Performance Reconfigurable Computing Systems.

    PubMed

    Chiu, Matt; Herbordt, Martin C

    2010-11-01

    The acceleration of molecular dynamics (MD) simulations using high-performance reconfigurable computing (HPRC) has been much studied. Given the intense competition from multicore and GPUs, there is now a question whether MD on HPRC can be competitive. We concentrate here on the MD kernel computation: determining the short-range force between particle pairs. In one part of the study, we systematically explore the design space of the force pipeline with respect to arithmetic algorithm, arithmetic mode, precision, and various other optimizations. We examine simplifications and find that some have little effect on simulation quality. In the other part, we present the first FPGA study of the filtering of particle pairs with nearly zero mutual force, a standard optimization in MD codes. There are several innovations, including a novel partitioning of the particle space, and new methods for filtering and mapping work onto the pipelines. As a consequence, highly efficient filtering can be implemented with only a small fraction of the FPGA's resources. Overall, we find that, for an Altera Stratix-III EP3ES260, 8 force pipelines running at nearly 200 MHz can fit on the FPGA, and that they can perform at 95% efficiency. This results in an 80-fold per core speed-up for the short-range force, which is likely to make FPGAs highly competitive for MD.

  13. Performance of HEPA filters under hot dynamic conditions

    SciTech Connect

    Frankum, D.P.; Costigan, G.

    1995-02-01

    Accidents in nuclear facilities involving fires may have implications upon the ventilation systems where high efficiency particulate air (HEPA) filters are used to minimise the airborne release of radioactive or toxic particles. The Filter Development Section at Harwell Laboratory has been investigating the effect of temperature on the performance of HEPA filters under hot dynamic conditions[{sub 1}] for a number of years. The test rig is capable of delivering air flows of 10001/s (at ambient conditions) at temperatures up to 500{degrees}C, where measurements of the penetration and pressure drop across the filter are obtained. This paper reports the experiments on different constructions of HEPA filters; rectangular and circular. The filters were tested at an air temperature of 200{degrees}C for up to 48 hours at the rated airflow to assess their performance. The penetration measurements for rectangular filters were observed to be below 0.021% after prolonged operation. In a number of cases, holes appeared along the pleat creases of circular filters although the penetration remained below 1%. The sealing gasket for these filters was noted to deform with temperature, permitting a leakage path. A prototype high strength circular filter was evaluated at temperatures of up to 400{degrees}C with a penetration less than 0.65%.

  14. Analysis of ultra-triathlon performances.

    PubMed

    Lepers, Romuald; Knechtle, Beat; Knechtle, Patrizia; Rosemann, Thomas

    2011-01-01

    Despite increased interest in ultra-endurance events, little research has examined ultra-triathlon performance. The aims of this study were: (i) to compare swimming, cycling, running, and overall performances in three ultra-distance triathlons, double Ironman distance triathlon (2IMT) (7.6 km swimming, 360 km cycling, and 84.4 km running), triple Ironman distance triathlon (3IMT) (11.4 km, 540 km, and 126.6 km), and deca Ironman distance triathlon (10IMT) (38 km, 1800 km, and 420 km) and (ii) to examine the relationships between the 2IMT, 3IMT, and 10IMT performances to create predicted equations of the 10IMT performances. Race results from 1985 through 2009 were examined to identify triathletes who performed the three considered ultra-distances. In total, 73 triathletes (68 men and 5 women) were identified. The contribution of swimming to overall ultra-triathlon performance was lower than for cycling and running. Running performance was more important to overall performance for 2IMT and 3IMT compared with 10IMT The 2IMT and 3IMT performances were significantly correlated with 10IMT performances for swimming and cycling, but not for running. 10IMT total time performance might be predicted by the following equation: 10IMT race time (minutes) = 5885 + 3.69 × 3IMT race time (minutes). This analysis of human performance during ultra-distance triathlons represents a unique data set in the field of ultra-endurance events. Additional studies are required to determine the physiological and psychological factors associated with ultra-triathlon performance.

  15. US U-25 channel performance analysis

    SciTech Connect

    Doss, E.; Pan, Y. C.

    1980-07-01

    The results of an ANL computational analysis of the performance of the US U-25 MHD channel are presented. This channel has gone through several revisions. The major revision occurred after it had been decided by the DOE Office of MHD to operate the channel with platinum-clad copper electrodes (cold), rather than with ceramic electrodes (hot), as originally planned. This work has been performed at the request of the DOE Office of MHD and the US U-25 generator design Review Committee. The channel specifications and operating conditions are presented. The combustor temperature and thermodynamic and electrical properties of the plasma are computed, and the results are discussed. The MHD channel performance has been predicted for different operating conditions. Sensitivity studies have also been performed on the effects of mass flow rate, surface roughness, combustor temperatures, and loading on the channel performance.

  16. Dynamic Analysis of Mobile Device Applications

    SciTech Connect

    Corey Thuen

    2013-01-01

    The On-Device Dynamic Analysis of Mobile Applications (ODAMA) project was started in an effort to protect mobile devices used in Industrial Control Systems (ICS) from cyber attack. Because mobile devices hide as much of the “computer” as possible, the user’s ability to assess the software running on their system is limited. The research team chose Google’s Android platform for this initial research because it is open source and it would give us freedom in our approach, including the ability to modify the mobile device’s operating system itself. The research team concluded that a Privileged Application was the right approach, and the result was ODAMA. This project is an important piece of the work to secure the expanding use of mobile devices with our nation’s critical infrastructure.

  17. Pharmaceutical applications of dynamic mechanical thermal analysis.

    PubMed

    Jones, David S; Tian, Yiwei; Abu-Diak, Osama; Andrews, Gavin P

    2012-04-01

    The successful development of polymeric drug delivery and biomedical devices requires a comprehensive understanding of the viscoleastic properties of polymers as these have been shown to directly affect clinical efficacy. Dynamic mechanical thermal analysis (DMTA) is an accessible and versatile analytical technique in which an oscillating stress or strain is applied to a sample as a function of oscillatory frequency and temperature. Through cyclic application of a non-destructive stress or strain, a comprehensive understanding of the viscoelastic properties of polymers may be obtained. In this review, we provide a concise overview of the theory of DMTA and the basic instrumental/operating principles. Moreover, the application of DMTA for the characterization of solid pharmaceutical and biomedical systems has been discussed in detail. In particular we have described the potential of DMTA to measure and understand relaxation transitions and miscibility in binary and higher-order systems and describe the more recent applications of the technique for this purpose.

  18. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  19. Dynamic analysis of the earth pole oscillation process

    NASA Astrophysics Data System (ADS)

    Filippova, A. S.

    2015-11-01

    In the framework of classical mechanics, we perform an amplitude-frequency analysis of a small-parameter model of the Earth pole diurnal oscillations under the action of luni-solar gravitational-tidal torques. The Euler-Liouville dynamic equations with irregular perturbations taken into account are used to obtain the structural properties of diurnal oscillations of the Earth pole coordinates. The results of the Earth pole motion simulation are compared with the high-precision data of VLBI observations on a short time interval.

  20. Centaur Standard Shroud (CSS) full jettison test dynamic analysis

    NASA Technical Reports Server (NTRS)

    Kasper, H. J.; Donovan, R. M.

    1974-01-01

    During the space power facility jettison tests, the non-domed half of the Centaur standard shroud was allowed to completely separate from its hinge connection and was caught in a horizontal catch net. A rigid body dynamic analysis that was performed to predict the half shroud prior to and after net contact is presented. Analytical predictions of the longitudinal and circumferential bending moments imposed on the half shroud by the catch net and the net pressure on the half shroud corrugated skin are also presented.

  1. Fluid Dynamic and Stability Analysis of a Thin Liquid Sheet

    NASA Technical Reports Server (NTRS)

    McMaster, Matthew S.

    1992-01-01

    Interest in thin sheet flows has recently been renewed due to their potential application in space radiators. Theoretical and experimental studies of the fluid dynamics and stability of thin liquid sheet flows have been carried out in this thesis. A computer program was developed to determine the cross-sectional shape of the edge cylinder given the cross-sectional area of the edge cylinder. A stability analysis was performed on a non-planer liquid sheet. A study was conducted to determine the effects of air resistance on the sheet.

  2. Canonical and symplectic analysis for three dimensional gravity without dynamics

    NASA Astrophysics Data System (ADS)

    Escalante, Alberto; Osmart Ochoa-Gutiérrez, H.

    2017-03-01

    In this paper a detailed Hamiltonian analysis of three-dimensional gravity without dynamics proposed by V. Hussain is performed. We report the complete structure of the constraints and the Dirac brackets are explicitly computed. In addition, the Faddeev-Jackiw symplectic approach is developed; we report the complete set of Faddeev-Jackiw constraints and the generalized brackets, then we show that the Dirac and the generalized Faddeev-Jackiw brackets coincide to each other. Finally, the similarities and advantages between Faddeev-Jackiw and Dirac's formalism are briefly discussed.

  3. Numerical model of solar dynamic radiator for parametric analysis

    NASA Technical Reports Server (NTRS)

    Rhatigan, Jennifer L.

    1989-01-01

    Growth power requirements for Space Station Freedom will be met through addition of 25 kW solar dynamic (SD) power modules. Extensive thermal and power cycle modeling capabilities have been developed which are powerful tools in Station design and analysis, but which prove cumbersome and costly for simple component preliminary design studies. In order to aid in refining the SD radiator to the mature design stage, a simple and flexible numerical model was developed. The model simulates heat transfer and fluid flow performance of the radiator and calculates area mass and impact survivability for many combinations of flow tube and panel configurations, fluid and material properties, and environmental and cycle variations.

  4. A Waved Journal Bearing Concept-Evaluating Steady-State and Dynamic Performance with a Potential Active Control Alternative

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1993-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. The performance of generic waved bearings having either three or four waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of fluid film stability and dynamic coefficients. It was found that the bearing wave amplitude has an important influence on both the steady-state and the dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases.

  5. A Waved Journal Bearing Concept-Evaluating Steady-State and Dynamic Performance with a Potential Active Control Alternative

    NASA Technical Reports Server (NTRS)

    Dimofte, Florin

    1993-01-01

    Analysis of the waved journal bearing concept featuring a waved inner bearing diameter for use with a compressible lubricant (gas) is presented. The performance of generic waved bearings having either three or four waves is predicted for air lubricated bearings. Steady-state performance is discussed in terms of bearing load capacity, while the dynamic performance is discussed in terms of fluid film stability and dynamic coefficients. It was found that the bearing wave amplitude has an important influence on both the steady-state and the dynamic performance of the waved journal bearing. For a fixed eccentricity ratio, the bearing steady-state load capacity and direct dynamic stiffness coefficient increase as the wave amplitude increases.

  6. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    SciTech Connect

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets to the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.

  7. The impact of interface bonding efficiency on high-burnup spent nuclear fuel dynamic performance

    SciTech Connect

    Jiang, Hao; Wang, Jy-An John; Wang, Hong

    2016-09-26

    Finite element analysis (FEA) was used to investigate the impact of interfacial bonding efficiency at pellet-pellet and pellet-clad interfaces of high-burnup (HBU) spent nuclear fuel (SNF) on system dynamic performance. Bending moments M were applied to FEA model to evaluate the system responses. From bending curvature, κ, flexural rigidity EI can be estimated as EI = M/κ. The FEA simulation results were benchmarked with experimental results from cyclic integrated reversal bending fatigue test (CIRFT) of HBR fuel rods. The consequence of interface debonding between fuel pellets and cladding is a redistribution of the loads carried by the fuel pellets to the clad, which results in a reduction in composite rod system flexural rigidity. Furthermore, the interface bonding efficiency at the pellet-pellet and pellet-clad interfaces can significantly dictate the SNF system dynamic performance. With the consideration of interface bonding efficiency, the HBU SNF fuel property was estimated with CIRFT test data.

  8. Using Ratio Analysis to Evaluate Financial Performance.

    ERIC Educational Resources Information Center

    Minter, John; And Others

    1982-01-01

    The ways in which ratio analysis can help in long-range planning, budgeting, and asset management to strengthen financial performance and help avoid financial difficulties are explained. Types of ratios considered include balance sheet ratios, net operating ratios, and contribution and demand ratios. (MSE)

  9. Dispersion analysis techniques within the space vehicle dynamics simulation program

    NASA Technical Reports Server (NTRS)

    Snow, L. S.; Kuhn, A. E.

    1975-01-01

    The Space Vehicle Dynamics Simulation (SVDS) program was evaluated as a dispersion analysis tool. The Linear Error Analysis (LEA) post processor was examined in detail and simulation techniques relative to conducting a dispersion analysis using the SVDS were considered. The LEA processor is a tool for correlating trajectory dispersion data developed by simulating 3 sigma uncertainties as single error source cases. The processor combines trajectory and performance deviations by a root-sum-square (RSS process) and develops a covariance matrix for the deviations. Results are used in dispersion analyses for the baseline reference and orbiter flight test missions. As a part of this study, LEA results were verified as follows: (A) Hand calculating the RSS data and the elements of the covariance matrix for comparison with the LEA processor computed data. (B) Comparing results with previous error analyses. The LEA comparisons and verification are made at main engine cutoff (MECO).

  10. Probabilistic Analysis of Gas Turbine Field Performance

    NASA Technical Reports Server (NTRS)

    Gorla, Rama S. R.; Pai, Shantaram S.; Rusick, Jeffrey J.

    2002-01-01

    A gas turbine thermodynamic cycle was computationally simulated and probabilistically evaluated in view of the several uncertainties in the performance parameters, which are indices of gas turbine health. Cumulative distribution functions and sensitivity factors were computed for the overall thermal efficiency and net specific power output due to the thermodynamic random variables. These results can be used to quickly identify the most critical design variables in order to optimize the design, enhance performance, increase system availability and make it cost effective. The analysis leads to the selection of the appropriate measurements to be used in the gas turbine health determination and to the identification of both the most critical measurements and parameters. Probabilistic analysis aims at unifying and improving the control and health monitoring of gas turbine aero-engines by increasing the quality and quantity of information available about the engine's health and performance.

  11. Dynamic modelling and analysis of space webs

    NASA Astrophysics Data System (ADS)

    Yu, Yang; Baoyin, HeXi; Li, JunFeng

    2011-04-01

    Future space missions demand operations on large flexible structures, for example, space webs, the lightweight cable nets deployable in space, which can serve as platforms for very large structures or be used to capture orbital objects. The interest in research on space webs is likely to increase in the future with the development of promising applications such as Furoshiki sat-ellite of JAXA, Robotic Geostationary Orbit Restorer (ROGER) of ESA and Grapple, Retrieve And Secure Payload (GRASP) of NASA. Unlike high-tensioned nets in civil engineering, space webs may be low-tensioned or tensionless, and extremely flexible, owing to the microgravity in the orbit and the lack of support components, which may cause computational difficulties. Mathematical models are necessary in the analysis of space webs, especially in the conceptual design and evaluation for prototypes. A full three-dimensional finite element (FE) model was developed in this work. Trivial truss elements were adopted to reduce the computational complexity. Considering cable is a compression-free material and its tensile stiffness is also variable, we introduced the cable material constitutive relationship to work out an accurate and feasible model for prototype analysis and design. In the static analysis, the stress distribution and global deformation of the webs were discussed to get access to the knowledge of strength of webs with different types of meshes. In the dynamic analysis, special attention was paid to the impact problem. The max stress and global deformation were investigated. The simulation results indicate the interesting phenomenon which may be worth further research.

  12. Dynamic analysis and trajectory tracking of a tethered space robot

    NASA Astrophysics Data System (ADS)

    Soltani, Mehrzad; Keshmiri, Mehdi; Misra, Arun K.

    2016-11-01

    Dynamic analysis and trajectory tracking of a Tethered Space Robot (TSR) is investigated in this paper. A hybrid controller is used to perform the control task. It consists of two components, the first one deals with librational motion of the tether, while the second one takes care of the manipulator motion. A Nonlinear Model Predictive Control (NMPC) approach is used to control the tether libration; for this purpose, the libration is described by a single degree of freedom and the tether length rate is employed as the input to suppress the librational motion. A modified Computed Torque Method (CTM) is used to control the manipulator motion. The dynamic interaction between the manipulator motion and the librational motion is considered both in the system dynamics and control of the system. Using numerical simulations, performance of the proposed control system is evaluated for end-effector positioning as well as for trajectory tracking for two cases: a Low Earth Orbit (LEO) and the Geostationary Earth Orbit (GEO).

  13. Translational and rotational dynamic analysis of a superconducting levitation system

    NASA Astrophysics Data System (ADS)

    Cansiz, A.; Hull, J. R.; Gundogdu, Ö.

    2005-07-01

    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet.

  14. Analysis of Dynamic Stall Through Chirp Signal Pitch Excursions

    NASA Astrophysics Data System (ADS)

    Heintz, Kyle; Coleman, Dustin; Wicks, Michael; Corke, Thomas; Thomas, Flint

    2013-11-01

    An augmentation of the typical pitching airfoil experiment has been performed where the pitching frequency and amplitude are dynamically varied in a short-time event to produce a ``chirp'' trajectory, α (t) =α0 +α1 (t) sin (tω (t)) . The frequency evolution followed a Schroeder-phase relation, ω (t) =ωmin + K (ωmax -ωmin) . The frequencies ranged from 0.5 Hz to 30 Hz, resulting in reduced frequencies from 0.02 to 0.1. The free-stream Mach number ranged from Mach 0.4 to 0.6, giving chord Reynolds numbers from 5 ×105 to 3 ×106 . The airfoil was a NACA 23012 section shape that was fully instrumented with 31 flush-mounted high-bandwidth pressure transducers. The pressure transducer outputs were simultaneously sampled with the instantaneous angle of attack, α (t) . The motivation for this study was to compare dynamic stall under non-equilibrium conditions. A particular interest is on the flow features that occur when dynamically passing between light and deep stall regimes. The results include phase analysis of aerodynamic loads, wavelet-based spectral analysis, and the determination of the intra-cycle aerodynamic damping factors.

  15. Dynamic self-guiding analysis of Alzheimer's disease

    PubMed Central

    Kurakin, Alexei; Bredesen, Dale E.

    2015-01-01

    We applied a self-guiding evolutionary algorithm to initiate the synthesis of the Alzheimer's disease-related data and literature. A protein interaction network associated with amyloid-beta precursor protein (APP) and a seed model that treats Alzheimer's disease as progressive dysregulation of APP-associated signaling were used as dynamic “guides” and structural “filters” in the recursive search, analysis, and assimilation of data to drive the evolution of the seed model in size, detail, and complexity. Analysis of data and literature across sub-disciplines and system-scale discovery platforms suggests a key role of dynamic cytoskeletal connectivity in the stability, plasticity, and performance of multicellular networks and architectures. Chronic impairment and/or dysregulation of cell adhesions/synapses, cytoskeletal networks, and/or reversible epithelial-to-mesenchymal-like transitions, which enable and mediate the stable and coherent yet dynamic and reconfigurable multicellular architectures, may lead to the emergence and persistence of the disordered, wound-like pockets/microenvironments of chronically disconnected cells. Such wound-like microenvironments support and are supported by pro-inflammatory, pro-secretion, de-differentiated cellular phenotypes with altered metabolism and signaling. The co-evolution of wound-like microenvironments and their inhabitants may lead to the selection and stabilization of degenerated cellular phenotypes, via acquisition of epigenetic modifications and mutations, which eventually result in degenerative disorders such as cancer and Alzheimer's disease. PMID:26041885

  16. Dynamic process analysis by moments of extreme orders

    NASA Astrophysics Data System (ADS)

    Šimberová, S.; Suk, T.

    2016-01-01

    Dynamic processes in astronomical observations are captured in various video sequences. The image datacubes are represented by the datasets of random variables. Diagnostics of a fast developing event is based on the specific behavior of the high-order moments (HOM) in time. The moment curves computed in an image video sequence give valuable information about various phases of the phenomenon and significant periods in the frequency analysis. The proposed method uses statistical moments of high and very high orders to describe and investigate the dynamic process in progress. Since these moments are highly correlated, the method of principal component analysis (PCA) has been suggested for following frequency analysis. PCA can be used both for decorrelation of the moments and for determination of the number of used moments. We experimentally illustrate performance of the method on simulated data. A typical development of the dynamic phenomenon is modeled by the moment time curve. Then applications to the real data sequences follow: solar active regions observed in the spectral line H α (wavelength 6563 A˚-Ondřejov and Kanzelhöhe observatories) in two different angular resolutions. The frequency analysis of the first few principal components showed common periods or quasi-periods of all examined events and the periods specific for individual events. The detailed analysis of the moment's methodology can contribute to the observational mode settings. The method can be applied to video sequences obtained by observing systems with various angular resolutions. It is robust to noise and it can work with high range of sampling frequencies.

  17. Pattern dynamics analysis of seismic catalogs

    NASA Astrophysics Data System (ADS)

    Tiampo, K.; Rundle, J.; Klein, W.; McGinnis, S.; Posadas, A.; Fernàndez, J.; Luzòn, F.

    2003-04-01

    The historical earthquake record, while not complete, spans hundreds to thousands of years of human history. As a result, large, extended fault systems such as those in California are known to demonstrate complex space-time seismicity patterns, which include, but are not limited to, repetitive events, precursory activity and quiescence, and aftershock sequences ((Mogi, 1969; Keilis-Borok et al., 1980; Kanamori, 1981; Kagan and Jackson, 1992; Saleur et al., 1996; Ellsworth and Cole, 1997; Pollitz and Sacks, 1997; Bowman et al., 1998; Nanjo et al., 1998; Wyss and Wiemer, 1999). Although the characteristics of these patterns can be qualitatively described, a systematic quantitative analysis remains elusive (Kanamori, 1981; Turcotte, 1991; Geller et al., 1997). Here we describe a new technique, formulated based on new developments in the physical and theoretical understanding of these complex, nonlinear fault systems that isolates emergent regions of coherent, correlated seismicity (Bak and Tang, 1989; Rundle, 1989; Sornette and Sornette, 1989; Rundle and Klein, 1995; Sammis et al., 1996; 1997; Fisher et al., 1997; Jaume and Sykes, 1999; Rundle et al., 1999; Tiampo et al., 2002). Analysis of data taken prior to large events reveals that the appearance of the coherent correlated regions is often associated with the future occurrence of major earthquakes in the same areas or other tectonic mechanisms such as aseismic slip events (Tiampo et al., 2002). We proceed to detail this pattern dynamics methodology and then identify systematic space-time variations in the seismicity from several tectonic regions.

  18. Introducing Dynamic Analysis Using Malthus's Principle of Population.

    ERIC Educational Resources Information Center

    Pingle, Mark

    2003-01-01

    Declares the use of dynamic models is increasing in macroeconomics. Explains how to introduce dynamic models to students whose technical skills are modest or varied. Chooses Malthus's Principle of Population as a natural context for introducing dynamic analysis because it provides a method for reviewing the mathematical tools and theoretical…

  19. Performance analysis and prediction in triathlon.

    PubMed

    Ofoghi, Bahadorreza; Zeleznikow, John; Macmahon, Clare; Rehula, Jan; Dwyer, Dan B

    2016-01-01

    Performance in triathlon is dependent upon factors that include somatotype, physiological capacity, technical proficiency and race strategy. Given the multidisciplinary nature of triathlon and the interaction between each of the three race components, the identification of target split times that can be used to inform the design of training plans and race pacing strategies is a complex task. The present study uses machine learning techniques to analyse a large database of performances in Olympic distance triathlons (2008-2012). The analysis reveals patterns of performance in five components of triathlon (three race "legs" and two transitions) and the complex relationships between performance in each component and overall performance in a race. The results provide three perspectives on the relationship between performance in each component of triathlon and the final placing in a race. These perspectives allow the identification of target split times that are required to achieve a certain final place in a race and the opportunity to make evidence-based decisions about race tactics in order to optimise performance.

  20. Performance of a 10 Gbps FSO System Implementing Novel Beam Tracking a Dynamic Buffering Modem

    NASA Technical Reports Server (NTRS)

    Kiriazes, John; Valencia, J. Emilio; Peach, Robert; Visone, Chris; Burdge, Geoffrey; Vickers, John; Leclerc, Troy; Sauer, Paul; Andrews, Larry; Phillips, Ron

    2012-01-01

    A 10 Gbps Free space optical (FSO) system implements beam tracking, a high dynamic range optical receiver, and a dynamic buffering packet modem. Performance was characterized at the 4.5 km Shuttle Landing Facility at Kennedy Space Center Florida.

  1. NPAC-Nozzle Performance Analysis Code

    NASA Technical Reports Server (NTRS)

    Barnhart, Paul J.

    1997-01-01

    A simple and accurate nozzle performance analysis methodology has been developed. The geometry modeling requirements are minimal and very flexible, thus allowing rapid design evaluations. The solution techniques accurately couple: continuity, momentum, energy, state, and other relations which permit fast and accurate calculations of nozzle gross thrust. The control volume and internal flow analyses are capable of accounting for the effects of: over/under expansion, flow divergence, wall friction, heat transfer, and mass addition/loss across surfaces. The results from the nozzle performance methodology are shown to be in excellent agreement with experimental data for a variety of nozzle designs over a range of operating conditions.

  2. The co-development of looking dynamics and discrimination performance

    PubMed Central

    Perone, Sammy; Spencer, John P.

    2015-01-01

    The study of looking dynamics and discrimination form the backbone of developmental science and are central processes in theories of infant cognition. Looking dynamics and discrimination change dramatically across the first year of life. Surprisingly, developmental changes in looking and discrimination have not been studied together. Recent simulations of a dynamic neural field (DNF) model of infant looking and memory suggest that looking and discrimination do change together over development and arise from a single neurodevelopmental mechanism. We probe this claim by measuring looking dynamics and discrimination along continuous, metrically organized dimensions in 5-, 7, and 10-month-old infants (N = 119). The results showed that looking dynamics and discrimination changed together over development and are linked within individuals. Quantitative simulations of a DNF model provide insights into the processes that underlie developmental change in looking dynamics and discrimination. Simulation results support the view that these changes might arise from a single neurodevelopmental mechanism. PMID:23957821

  3. The co-development of looking dynamics and discrimination performance.

    PubMed

    Perone, Sammy; Spencer, John P

    2014-03-01

    The study of looking dynamics and discrimination form the backbone of developmental science and are central processes in theories of infant cognition. Looking dynamics and discrimination change dramatically across the 1st year of life. Surprisingly, developmental changes in looking and discrimination have not been studied together. Recent simulations of a dynamic neural field (DNF) model of infant looking and memory suggest that looking and discrimination do change together over development and arise from a single neurodevelopmental mechanism. We probed this claim by measuring looking dynamics and discrimination along continuous, metrically organized dimensions in 5-, 7-, and 10-month-old infants (N = 119). The results showed that looking dynamics and discrimination changed together over development and are linked within individuals. Quantitative simulations of a DNF model provide insights into the processes that underlie developmental change in looking dynamics and discrimination. Simulation results support the view that these changes might arise from a single neurodevelopmental mechanism.

  4. Dynamic Phenomena in Laser Cutting and Process Performance

    NASA Astrophysics Data System (ADS)

    Schuöcker, Dieter; Aichinger, Joachim; Majer, Richard

    Laser cutting of sheet metals is widely used all over the world since it combines high speed with excellent cutting quality. Nevertheless if the thickness of the work piece becomes relatively high, the roughness of the cut edges becomes quite coarse and also the formation of dross and slag is likely. The latter phenomena must obviously be related to dynamic processes that can be identified as fluctuations in the liquid body that forms at the current end of the cut due to absorption of laser radiation and where material removal takes place due to friction with a sharply focused gas jet. A detailed analysis of the liquid layer shows that viscosity and surface tension that have so far not been considered very often in the literature have a strong impact on the material removal mechanism which consists of the formation and separation of droplets formed at the bottom of the work piece, thus being essentially intermittent. The mathematical treatment of this model shows good coincidence with experimental data. It gives rise to the idea that a substantial reduction of surface tension could improve the material removal mechanism insofar as the intermittent ejection is transformed into a continuous ejection of melt flow thus considerably improving cutting speed and quality. These ideas have also led to a new patent for an improved laser cutting head.

  5. Dynamic analysis of news streams: institutional versus environmental effects.

    PubMed

    Dooley, Kevin; Corman, Steven

    2004-07-01

    Many societal phenomena are studied through analysis of their representation in media-related texts, such as news articles. The dynamics of such data reflect the phenomenon's underlying generative mechanism. Media artifacts are assumed to mirror the social activity occurring in the environment, thus observed dynamics are assumed to reflect environmental dynamics. The institutional mechanics of media production also affect the observed dynamics however. In this study we examine the extent to which institutional versus environmental effects explain the observed dynamics of media content, in particular focusing on semi-continuous "news streams". We examine the dynamics of news streams produced by the electronic news organization Reuters, immediately following the events of September 11, 2001. We find that many of the observed dynamics appear institutionally generated. We conclude with methodological suggestions concerning the dynamic analysis of media content.

  6. Structural dynamic analysis of a ball joint

    NASA Astrophysics Data System (ADS)

    Hwang, Seok-Cheol; Lee, Kwon-Hee

    2012-11-01

    Ball joint is a rotating and swiveling element that is typically installed at the interface between two parts. In an automobile, the ball joint is the component that connects the control arms to the steering knuckle. The ball joint can also be installed in linkage systems for motion control applications. This paper describes the simulation strategy for a ball joint analysis, considering manufacturing process. Its manufacturing process can be divided into plugging and spinning. Then, the interested responses is selected as the stress distribution generated between its ball and bearing. In this paper, a commercial code of NX DAFUL using an implicit integration method is introduced to calculate the response. In addition, the gap analysis is performed to investigate the fitness, focusing on the response of the displacement of a ball stud. Also, the optimum design is suggested through case studies.

  7. The impact of dynamic balance measures on walking performance in multiple sclerosis

    PubMed Central

    Fritz, Nora E.; Marasigan, Rhul Evans R.; Calabresi, Peter A.; Newsome, Scott D.; Zackowski, Kathleen M.

    2014-01-01

    Background Static posture imbalance and gait dysfunction are common in individuals with multiple sclerosis (MS). Although the impact of strength and static balance on walking has been examined, little is known about the impact of dynamic standing balance on walking in MS. Objective To determine the impact of dynamic balance, static balance, sensation, and strength measures to walking in individuals with MS. Methods 52 individuals with MS (27 females; 26 relapsing-remitting; mean age 45.6±10.3 years; median EDSS 3.5 (range 0-7) participated in testing for dynamic and static posturography (Kistler 9281 force plate), hip flexion, hip extension, and ankle dorsiflexion strength (Microfet2 hand-held dynamometer), sensation (Vibratron II) and walk velocity (Optotrak Motion Analysis System). Mann-Whitney tests, Spearman correlation coefficients, and forward stepwise multiple regression were used to assess statistical significance. Results All measures were significantly abnormal in MS subjects when compared to age and sex-matched norms (p<0.05 for all). Static balance (eyes open, feet together [EOFT]), anterior- posterior (AP) dynamic sway, and hip extension strength were strongly correlated with fast walking velocity (AP sway r=0.68; hip extension strength r=0.73; EOFT r=-0.40). Together, AP dynamic sway (ρr=0.71, p<0.001), hip extension strength (ρr=0.54, p<0.001), and EOFT static balance (ρr=-0.41, p=0.01) explained more than 70% of the variance in fast walking velocity (p<0.001). Conclusions These data suggest that AP dynamic sway impacts walking performance in MS. A combined evaluation of dynamic balance, static balance and strength may lead to a better understanding of walking mechanisms as well as the development of strategies to improve walking. PMID:24795162

  8. Multipole Algorithms for Molecular Dynamics Simulation on High Performance Computers.

    NASA Astrophysics Data System (ADS)

    Elliott, William Dewey

    1995-01-01

    A fundamental problem in modeling large molecular systems with molecular dynamics (MD) simulations is the underlying N-body problem of computing the interactions between all pairs of N atoms. The simplest algorithm to compute pair-wise atomic interactions scales in runtime {cal O}(N^2), making it impractical for interesting biomolecular systems, which can contain millions of atoms. Recently, several algorithms have become available that solve the N-body problem by computing the effects of all pair-wise interactions while scaling in runtime less than {cal O}(N^2). One algorithm, which scales {cal O}(N) for a uniform distribution of particles, is called the Greengard-Rokhlin Fast Multipole Algorithm (FMA). This work describes an FMA-like algorithm called the Molecular Dynamics Multipole Algorithm (MDMA). The algorithm contains several features that are new to N-body algorithms. MDMA uses new, efficient series expansion equations to compute general 1/r^{n } potentials to arbitrary accuracy. In particular, the 1/r Coulomb potential and the 1/r^6 portion of the Lennard-Jones potential are implemented. The new equations are based on multivariate Taylor series expansions. In addition, MDMA uses a cell-to-cell interaction region of cells that is closely tied to worst case error bounds. The worst case error bounds for MDMA are derived in this work also. These bounds apply to other multipole algorithms as well. Several implementation enhancements are described which apply to MDMA as well as other N-body algorithms such as FMA and tree codes. The mathematics of the cell -to-cell interactions are converted to the Fourier domain for reduced operation count and faster computation. A relative indexing scheme was devised to locate cells in the interaction region which allows efficient pre-computation of redundant information and prestorage of much of the cell-to-cell interaction. Also, MDMA was integrated into the MD program SIgMA to demonstrate the performance of the program over

  9. Electromagnetic tracking performance analysis and optimization.

    PubMed

    Qi, Yu; Sadjadi, Hossein; Yeo, Caitlin T; Hashtrudi-Zaad, Keyvan; Fichtinger, Gabor

    2014-01-01

    The purpose of this study is to evaluate the uncertainties of an electromagnetic (EM) tracking system and to improve both the trueness and the precision of the EM tracker. For evaluating errors, we introduce an optical (OP) tracking system and consider its measurement as "ground truth". In the experiment, static data sets and dynamic profiles are collected in both relatively less-metallic environments. Static data sets are for error modeling, and dynamic ones are for testing. To improve the trueness and precision of the EM tracker, tracker calibration based on polynomial fitting and smooth filters, such as the Kalman filter, the moving average filter and the local regression filter, are deployed. From the experimental data analysis, as the distance between the transmitter and the sensor of the EM tracking system increases, the trueness and precision tend to decrease. The system's trueness and jitter errors can be modeled as the 3(rd) order polynomial error equations. After minimizing the positional error and applying smoothing filters, the mean value of error reduction is 36.9%. Our method can effectively reduce both positional systematic error and jitter error caused by EM field distortion. The method is successfully applied to calibrate an EM tracked surgical cautery tool.

  10. Engine dynamic analysis with general nonlinear finite element codes

    NASA Technical Reports Server (NTRS)

    Adams, M. L.; Padovan, J.; Fertis, D. G.

    1991-01-01

    A general engine dynamic analysis as a standard design study computational tool is described for the prediction and understanding of complex engine dynamic behavior. Improved definition of engine dynamic response provides valuable information and insights leading to reduced maintenance and overhaul costs on existing engine configurations. Application of advanced engine dynamic simulation methods provides a considerable cost reduction in the development of new engine designs by eliminating some of the trial and error process done with engine hardware development.

  11. Effects of dynamic and static stretching on vertical jump performance and electromyographic activity.

    PubMed

    Hough, Paul A; Ross, Emma Z; Howatson, Glyn

    2009-03-01

    The results of previous research have demonstrated that static stretching (SS) can reduce muscular performance and that dynamic stretching (DS) can enhance muscular performance. The purpose of this study was to assess the effects of SS and DS on vertical jump (VJ) performance and electromyographic (EMG) activity of the m. vastus medialis. Eleven healthy men (age 21 +/- 2 years) took part in 3 conditions (no stretching [NS], SS, and DS), on separate occasions in a randomized, crossover design. During each condition, measurements of VJ height and EMG activity during the VJ were recorded. A repeated-measures analysis of variance and post hoc analysis indicated that VJ height was significantly less (4.19 +/- 4.47%) after SS than NS (p < 0.05) and significantly greater (9.44 +/- 4.25%) in DS than SS (p < 0.05). There was significantly greater EMG amplitude in the DS compared with the SS (p < 0.05). The results demonstrated that SS has a negative influence on VJ performance, whereas DS has a positive impact. Increased VJ performance after DS may be attributed to postactivation potentiation, whereas the reduction in VJ performance after SS may be attributable to neurological impairment and a possible alteration in the viscoelastic properties of the muscular tendon unit (MTU). This investigation provides some physiological basis for the inclusion of DS and exclusion of SS in preparation for activities requiring jumping performance.

  12. Static and dynamic posterior cingulate cortex nodal topology of default mode network predicts attention task performance.

    PubMed

    Lin, Pan; Yang, Yong; Jovicich, Jorge; De Pisapia, Nicola; Wang, Xiang; Zuo, Chun S; Levitt, James Jonathan

    2016-03-01

    Characterization of the default mode network (DMN) as a complex network of functionally interacting dynamic systems has received great interest for the study of DMN neural mechanisms. In particular, understanding the relationship of intrinsic resting-state DMN brain network with cognitive behaviors is an important issue in healthy cognition and mental disorders. However, it is still unclear how DMN functional connectivity links to cognitive behaviors during resting-state. In this study, we hypothesize that static and dynamic DMN nodal topology is associated with upcoming cognitive task performance. We used graph theory analysis in order to understand better the relationship between the DMN functional connectivity and cognitive behavior during resting-state and task performance. Nodal degree of the DMN was calculated as a metric of network topology. We found that the static and dynamic posterior cingulate cortex (PCC) nodal degree within the DMN was associated with task performance (Reaction Time). Our results show that the core node PCC nodal degree within the DMN was significantly correlated with reaction time, which suggests that the PCC plays a key role in supporting cognitive function.

  13. PATHA: Performance Analysis Tool for HPC Applications

    SciTech Connect

    Yoo, Wucherl; Koo, Michelle; Cao, Yi; Sim, Alex; Nugent, Peter; Wu, Kesheng

    2016-02-18

    Large science projects rely on complex workflows to analyze terabytes or petabytes of data. These jobs are often running over thousands of CPU cores and simultaneously performing data accesses, data movements, and computation. It is difficult to identify bottlenecks or to debug the performance issues in these large workflows. In order to address these challenges, we have developed Performance Analysis Tool for HPC Applications (PATHA) using the state-of-art open source big data processing tools. Our framework can ingest system logs to extract key performance measures, and apply the most sophisticated statistical tools and data mining methods on the performance data. Furthermore, it utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of PATHA, we conduct a case study on the workflows from an astronomy project known as the Palomar Transient Factory (PTF). This study processed 1.6 TB of system logs collected on the NERSC supercomputer Edison. Using PATHA, we were able to identify performance bottlenecks, which reside in three tasks of PTF workflow with the dependency on the density of celestial objects.

  14. PATHA: Performance Analysis Tool for HPC Applications

    DOE PAGES

    Yoo, Wucherl; Koo, Michelle; Cao, Yi; ...

    2016-02-18

    Large science projects rely on complex workflows to analyze terabytes or petabytes of data. These jobs are often running over thousands of CPU cores and simultaneously performing data accesses, data movements, and computation. It is difficult to identify bottlenecks or to debug the performance issues in these large workflows. In order to address these challenges, we have developed Performance Analysis Tool for HPC Applications (PATHA) using the state-of-art open source big data processing tools. Our framework can ingest system logs to extract key performance measures, and apply the most sophisticated statistical tools and data mining methods on the performance data.more » Furthermore, it utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of PATHA, we conduct a case study on the workflows from an astronomy project known as the Palomar Transient Factory (PTF). This study processed 1.6 TB of system logs collected on the NERSC supercomputer Edison. Using PATHA, we were able to identify performance bottlenecks, which reside in three tasks of PTF workflow with the dependency on the density of celestial objects.« less

  15. Impact of wind generator infed on dynamic performance of a power system

    NASA Astrophysics Data System (ADS)

    Alam, Md. Ahsanul

    Wind energy is one of the most prominent sources of electrical energy in the years to come. A tendency to increase the amount of electricity generation from wind turbine can be observed in many countries. One of the major concerns related to the high penetration level of the wind energy into the existing power grid is its influence on power system dynamic performance. In this thesis, the impact of wind generation system on power system dynamic performance is investigated through detailed dynamic modeling of the entire wind generator system considering all the relevant components. Nonlinear and linear models of a single machine as well as multimachine wind-AC system have been derived. For the dynamic model of integrated wind-AC system, a general transformation matrix is determined for the transformation of machine and network quantities to a common reference frame. Both time-domain and frequency domain analyses on single machine and multimachine systems have been carried out. The considered multimachine systems are---A 4 machine 12 bus system, and 10 machine 39 bus New England system. Through eigenvalue analysis, impact of asynchronous wind system on overall network damping has been quantified and modes responsible for the instability have been identified. Over with a number of simulation studies it is observed that for a induction generator based wind generation system, the fixed capacitor located at the generator terminal cannot normally cater for the reactive power demand during the transient disturbances like wind gust and fault on the system. For weak network connection, system instability may be initiated because of induction generator terminal voltage collapse under certain disturbance conditions. Incorporation of dynamic reactive power compensation scheme through either variable susceptance control or static compensator (STATCOM) is found to improve the dynamic performance significantly. Further improvement in transient profile has been brought in by

  16. Multiprocessor smalltalk: Implementation, performance, and analysis

    SciTech Connect

    Pallas, J.I.

    1990-01-01

    Multiprocessor Smalltalk demonstrates the value of object-oriented programming on a multiprocessor. Its implementation and analysis shed light on three areas: concurrent programming in an object oriented language without special extensions, implementation techniques for adapting to multiprocessors, and performance factors in the resulting system. Adding parallelism to Smalltalk code is easy, because programs already use control abstractions like iterators. Smalltalk's basic control and concurrency primitives (lambda expressions, processes and semaphores) can be used to build parallel control abstractions, including parallel iterators, parallel objects, atomic objects, and futures. Language extensions for concurrency are not required. This implementation demonstrates that it is possible to build an efficient parallel object-oriented programming system and illustrates techniques for doing so. Three modification tools-serialization, replication, and reorganization-adapted the Berkeley Smalltalk interpreter to the Firefly multiprocessor. Multiprocessor Smalltalk's performance shows that the combination of multiprocessing and object-oriented programming can be effective: speedups (relative to the original serial version) exceed 2.0 for five processors on all the benchmarks; the median efficiency is 48%. Analysis shows both where performance is lost and how to improve and generalize the experimental results. Changes in the interpreter to support concurrency add at most 12% overhead; better access to per-process variables could eliminate much of that. Changes in the user code to express concurrency add as much as 70% overhead; this overhead could be reduced to 54% if blocks (lambda expressions) were reentrant. Performance is also lost when the program cannot keep all five processors busy.

  17. The Co-Development of Looking Dynamics and Discrimination Performance

    ERIC Educational Resources Information Center

    Perone, Sammy; Spencer, John P.

    2014-01-01

    The study of looking dynamics and discrimination form the backbone of developmental science and are central processes in theories of infant cognition. Looking dynamics and discrimination change dramatically across the 1st year of life. Surprisingly, developmental changes in looking and discrimination have not been studied together. Recent…

  18. The Co-Development of Looking Dynamics and Discrimination Performance

    ERIC Educational Resources Information Center

    Perone, Sammy; Spencer, John P.

    2014-01-01

    The study of looking dynamics and discrimination form the backbone of developmental science and are central processes in theories of infant cognition. Looking dynamics and discrimination change dramatically across the 1st year of life. Surprisingly, developmental changes in looking and discrimination have not been studied together. Recent…

  19. Dynamic neural networks based on-line identification and control of high performance motor drives

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  20. Dynamic neural networks based on-line identification and control of high performance motor drives

    NASA Technical Reports Server (NTRS)

    Rubaai, Ahmed; Kotaru, Raj

    1995-01-01

    In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.

  1. Interacting dark energy: Dynamical system analysis

    NASA Astrophysics Data System (ADS)

    Golchin, Hanif; Jamali, Sara; Ebrahimi, Esmaeil

    We investigate the impacts of interaction between dark matter (DM) and dark energy (DE) in the context of two DE models, holographic (HDE) and ghost dark energy (GDE). In fact, using the dynamical system analysis, we obtain the cosmological consequence of several interactions, considering all relevant component of universe, i.e. matter (dark and luminous), radiation and DE. Studying the phase space for all interactions in detail, we show the existence of unstable matter-dominated and stable DE-dominated phases. We also show that linear interactions suffer from the absence of standard radiation-dominated epoch. Interestingly, this failure resolved by adding the nonlinear interactions to the models. We find an upper bound for the value of the coupling constant of the interaction between DM and DE as b < 0.57in the case of holographic model, and b < 0.61 in the case of GDE model, to result in a cosmological viable matter-dominated epoch. More specifically, this bound is vital to satisfy instability and deceleration of matter-dominated epoch.

  2. Analysis of uterine contractions: a dynamical approach.

    PubMed

    Nagarajan, R; Eswaran, H; Wilson, J D; Murphy, P; Lowery, C; Preissl, H

    2003-07-01

    The development of suitable techniques for quantifying mechanical and electrophysiological aspects of uterine contractions has been an active area of research. The uterus is a physiological system consisting of a large number of interacting muscle cells. The activity of these cells evolves with time, a trait characteristic of a dynamical system. While such complex physiological systems are non-linear by their very nature, whether this non-linearity is exhibited in the external recording is far from trivial. Traditional techniques such as spectral analysis have been used in the past, but these techniques implicitly assume that the process generating the contractions is linear and hence may be biased. In this tutorial review, a systematic approach using a hierarchy of surrogate algorithms is used to determine the nature of the process generating the contractions produced during labor. The results reveal that uterine contractions are probably generated by non-linear processes. The contraction segments were obtained through simultaneous recordings of the electrical and magnetic signals corresponding to the electrophysiological activity of the uterus and then analyzed. The electrical activity was recorded by placement of non-invasive electrodes onto the maternal abdomen and magnetic activity was recorded non-invasively using a superconducting quantum interference device (SQUID).

  3. Development of a helicopter rotor/propulsion system dynamics analysis

    NASA Technical Reports Server (NTRS)

    Warmbrodt, W.; Hull, R.

    1982-01-01

    A time-domain analysis of coupled engine/drive train/rotor dynamics of a twin-engine, single main rotor helicopter model has been performed. The analysis incorporates an existing helicopter model with nonlinear simulations of a helicopter turboshaft engine and its fuel controller. System dynamic behavior is studied using the resulting simulation which included representations for the two engines and their fuel controllers, drive system, main rotor, tail rotor, and aircraft rigid body motions. Time histories of engine and rotor RPM response to pilot control inputs are studied for a baseline rotor and propulsion system model. Sensitivity of rotor RPM droop to fuel controller gain changes and collective input feed-forward gain changes are studied. Torque-load-sharing between the two engines is investigated by making changes in the fuel controller feedback paths. A linear engine model is derived from the nonlinear engine simulation and used in the coupled system analysis. This four-state linear engine model is then reduced to a three-state model. The effect of this simplification on coupled system behavior is shown.

  4. Attractor Dynamics of Dyadic Interaction: A Recurrence Based Analysis.

    PubMed

    Guevara, Marlenny; Cox, Ralf F A; van Dijk, Marijn; van Geert, Paul

    2017-07-01

    The aim of this study was to investigate interpersonal coordination in young children during dyadic problem solving, by using Cross-Recurrence Quantification Analysis (CRQA). We examined the interactions of seven dyads of children (Mage= 5.1 years) in a longitudinal design (6 sessions) with a sequence of problem-solving tasks increasing in difficulty. An innovative implementation of CRQA is presented in order to study the attractor dynamics of dyadic coordination. The analysis consisted of distinguishing two recurrent states in the relationship between children and the task. In other words, the analysis is focused on how the dyadic interaction oscillates between two stable states that for their recurrent presence are considered to be attractors. The distributed dyadic interaction (DDI) state indicates that both children contribute equally to the solution of the task. The unequal dyadic interaction (UDI) state indicating that only one of the children contributes actively to the solution of the task. Results showed that the DDI was more frequent than the UDI but that the dynamics of these two attractor states were quite similar. The behaviors within these states increased in complexity over time, although they did so in DDI more strongly than UDI. The overall recurrence, which indicates the global level of coordination between the individuals in the dyad across all time points, was moderately correlated with the performance of the children.

  5. Finite element dynamic analysis on CDC STAR-100 computer

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Lambiotte, J. J., Jr.

    1978-01-01

    Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.

  6. Pallidal spiking activity reflects learning dynamics and predicts performance

    PubMed Central

    Noblejas, Maria Imelda; Mizrahi, Aviv D.; Dauber, Omer; Bergman, Hagai

    2016-01-01

    The basal ganglia (BG) network has been divided into interacting actor and critic components, modulating the probabilities of different state–action combinations through learning. Most models of learning and decision making in the BG focus on the roles of the striatum and its dopaminergic inputs, commonly overlooking the complexities and interactions of BG downstream nuclei. In this study, we aimed to reveal the learning-related activity of the external segment of the globus pallidus (GPe), a downstream structure whose computational role has remained relatively unexplored. Recording from monkeys engaged in a deterministic three-choice reversal learning task, we found that changes in GPe discharge rates predicted subsequent behavioral shifts on a trial-by-trial basis. Furthermore, the activity following the shift encoded whether it resulted in reward or not. The frequent changes in stimulus–outcome contingencies (i.e., reversals) allowed us to examine the learning-related neural activity and show that GPe discharge rates closely matched across-trial learning dynamics. Additionally, firing rates exhibited a linear decrease in sequences of correct responses, possibly reflecting a gradual shift from goal-directed execution to automaticity. Thus, modulations in GPe spiking activity are highest for attention-demanding aspects of behavior (i.e., switching choices) and decrease as attentional demands decline (i.e., as performance becomes automatic). These findings are contrasted with results from striatal tonically active neurons, which show none of these task-related modulations. Our results demonstrate that GPe, commonly studied in motor contexts, takes part in cognitive functions, in which movement plays a marginal role. PMID:27671661

  7. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M. Wasiolek

    2004-09-08

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs for the groundwater exposure scenario for the three climate states considered in the TSPA-LA as well as conversion factors for evaluating compliance with the groundwater protection standard. The BDCFs will be used in performance assessment for calculating all-pathway annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose

  8. Performance analysis for second-design space Stirling engine model

    NASA Astrophysics Data System (ADS)

    Ogiwara, Sachio; Fujiwara, Tsutomu; Eguchi, Kunihisa; Nakamura, Yoshihiro

    A hybrid free-piston Stirling research engine, called NALSEM 125, has been tested since 1988 as part of a solar dynamic power technology program. It is a gamma-type Stirling driven linear-alternator machine with helium as a working fluid. The objective of the experimental program is to understand the thermodynamic and dynamic mechanisms of the free piston engine integrated with a magnet-moving alternator. After the first phase engine experiments of NALSEM 125, a second design Stirling engine of NALSEM 125 R has been tested. By using a second-order analytical tool, some design modifications were performed to provide much more stable dynamic operations over a required operating range, as well as to incorporate an electric heater head simulating a hot interface of 12 sodium heat pipes. Describes in this paper are thermodynamic performance data of NALSEM 125R operations, which are also compared with the computational analysis, considering the power losses resulting from pressure drop and gas leakage.

  9. Automated Cache Performance Analysis And Optimization

    SciTech Connect

    Mohror, Kathryn

    2013-12-23

    While there is no lack of performance counter tools for coarse-grained measurement of cache activity, there is a critical lack of tools for relating data layout to cache behavior to application performance. Generally, any nontrivial optimizations are either not done at all, or are done ”by hand” requiring significant time and expertise. To the best of our knowledge no tool available to users measures the latency of memory reference instructions for partic- ular addresses and makes this information available to users in an easy-to-use and intuitive way. In this project, we worked to enable the Open|SpeedShop performance analysis tool to gather memory reference latency information for specific instructions and memory ad- dresses, and to gather and display this information in an easy-to-use and intuitive way to aid performance analysts in identifying problematic data structures in their codes. This tool was primarily designed for use in the supercomputer domain as well as grid, cluster, cloud-based parallel e-commerce, and engineering systems and middleware. Ultimately, we envision a tool to automate optimization of application cache layout and utilization in the Open|SpeedShop performance analysis tool. To commercialize this soft- ware, we worked to develop core capabilities for gathering enhanced memory usage per- formance data from applications and create and apply novel methods for automatic data structure layout optimizations, tailoring the overall approach to support existing supercom- puter and cluster programming models and constraints. In this Phase I project, we focused on infrastructure necessary to gather performance data and present it in an intuitive way to users. With the advent of enhanced Precise Event-Based Sampling (PEBS) counters on recent Intel processor architectures and equivalent technology on AMD processors, we are now in a position to access memory reference information for particular addresses. Prior to the introduction of PEBS counters

  10. Preliminary analysis of the dynamic heliosphere by MHD simulations

    SciTech Connect

    Washimi, H.; Zank, G. P.; Tanaka, T.

    2006-09-26

    A preliminary analysis of the dynamic heliosphere to estimate the termination shock (TS) distance from the sun around the time when Voyager 1 passed the termination shock at December 16, 2004 is performed by using MHD simulations. For input to this simulation, we use the Voyager 2 solar-wind data. We first find a stationary solution of the 3-D outer heliosphere by assigning a set of LISM parameters as our outer boundary conditions and then the dynamical analysis is performed. The model TS crossing is within 6 months of the observed date. The TS is pushed outward every time a high ram-pressure solar wind pulse arrives. After the end of the high ram-pressure wind, the TS shock shrinks inward. When the last Halloween event passed through the TS at DOY 250, 2004, the TS began to shrink inward very quickly and the TS crossed V1. The highest inward speed of the TS is over 400 km/s. The high ram-pressure solar wind transmitted through the TS becomes a high thermal-pressure plasma in the heliosheath, acting to push the TS inward. This suggests that the position of the TS is determined not only by the steady-state pressure balance condition between the solar wind ram-pressure and the LISM pressure, but by the dynamical ram pressure too. The period when the high ram-pressure solar wind arrives at the TS shock seems to correspond to the period of the TS particle event (Stone et al, 2005, Decker et al., 2005). The TS crossing date will be revised in future simulations using a more appropriate set of parameters for the LISM. This will enable us to undertake a detailed comparison of the simulation results with the TS particle events.

  11. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data

    NASA Technical Reports Server (NTRS)

    Waszak, M. R.; Schmidt, D. K.

    1985-01-01

    Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.

  12. Statistical Performance Analysis of Data-Driven Neural Models.

    PubMed

    Freestone, Dean R; Layton, Kelvin J; Kuhlmann, Levin; Cook, Mark J

    2017-02-01

    Data-driven model-based analysis of electrophysiological data is an emerging technique for understanding the mechanisms of seizures. Model-based analysis enables tracking of hidden brain states that are represented by the dynamics of neural mass models. Neural mass models describe the mean firing rates and mean membrane potentials of populations of neurons. Various neural mass models exist with different levels of complexity and realism. An ideal data-driven model-based analysis framework will incorporate the most realistic model possible, enabling accurate imaging of the physiological variables. However, models must be sufficiently parsimonious to enable tracking of important variables using data. This paper provides tools to inform the realism versus parsimony trade-off, the Bayesian Cramer-Rao (lower) Bound (BCRB). We demonstrate how the BCRB can be used to assess the feasibility of using various popular neural mass models to track epilepsy-related dynamics via stochastic filtering methods. A series of simulations show how optimal state estimates relate to measurement noise, model error and initial state uncertainty. We also demonstrate that state estimation accuracy will vary between seizure-like and normal rhythms. The performance of the extended Kalman filter (EKF) is assessed against the BCRB. This work lays a foundation for assessing feasibility of model-based analysis. We discuss how the framework can be used to design experiments to better understand epilepsy.

  13. Double symbolic joint entropy in nonlinear dynamic complexity analysis

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-07-01

    Symbolizations, the base of symbolic dynamic analysis, are classified as global static and local dynamic approaches which are combined by joint entropy in our works for nonlinear dynamic complexity analysis. Two global static methods, symbolic transformations of Wessel N. symbolic entropy and base-scale entropy, and two local ones, namely symbolizations of permutation and differential entropy, constitute four double symbolic joint entropies that have accurate complexity detections in chaotic models, logistic and Henon map series. In nonlinear dynamical analysis of different kinds of heart rate variability, heartbeats of healthy young have higher complexity than those of the healthy elderly, and congestive heart failure (CHF) patients are lowest in heartbeats' joint entropy values. Each individual symbolic entropy is improved by double symbolic joint entropy among which the combination of base-scale and differential symbolizations have best complexity analysis. Test results prove that double symbolic joint entropy is feasible in nonlinear dynamic complexity analysis.

  14. The Association between Unilateral Heel-Rise Performance with Static and Dynamic Balance in Community Dwelling Older Adults

    PubMed Central

    Hashish, Rami; Samarawickrame, Sachithra D.; Wang, Man-Ying; Yu, Sean S-Y; Salem, George J.

    2014-01-01

    INTRODUCTION As a measure of both strength and muscle endurance of the plantar flexors, the unilateral heel rise (UHR) test has been suggested as a method to evaluate balance capabilities in older adults. Thus, the purpose of this study was to examine the association between UHR performance with biomechanical measures of balance in seniors. MATERIALS AND METHODS Twenty-two older adults completed two testing sessions. The first visit included UHR performance; the second visit included dynamic and static motion analysis. RESULTS UHR performance was significantly associated with dynamic balance capability as measured by medial-lateral inclination angle during gait. As indicated by an analysis of center of pressure, there were significant associations between UHR performance and measures of static balance. DISCUSSION AND CONCLUSION Balance is influenced by plantar flexor performance as measured by the UHR test. We therefore suggest incorporating the UHR test in analyses of balance in seniors. PMID:25457285

  15. Performance management in healthcare: a critical analysis.

    PubMed

    Hewko, Sarah J; Cummings, Greta G

    2016-01-01

    Purpose - The purpose of this paper is to explore the underlying theoretical assumptions and implications of current micro-level performance management and evaluation (PME) practices, specifically within health-care organizations. PME encompasses all activities that are designed and conducted to align employee outputs with organizational goals. Design/methodology/approach - PME, in the context of healthcare, is analyzed through the lens of critical theory. Specifically, Habermas' theory of communicative action is used to highlight some of the questions that arise in looking critically at PME. To provide a richer definition of key theoretical concepts, the authors conducted a preliminary, exploratory hermeneutic semantic analysis of the key words "performance" and "management" and of the term "performance management". Findings - Analysis reveals that existing micro-level PME systems in health-care organizations have the potential to create a workforce that is compliant, dependent, technically oriented and passive, and to support health-care systems in which inequalities and power imbalances are perpetually reinforced. Practical implications - At a time when the health-care system is under increasing pressure to provide high-quality, affordable services with fewer resources, it may be wise to investigate new sector-specific ways of evaluating and managing performance. Originality/value - In this paper, written for health-care leaders and health human resource specialists, the theoretical assumptions and implications of current PME practices within health-care organizations are explored. It is hoped that readers will be inspired to support innovative PME practices within their organizations that encourage peak performance among health-care professionals.

  16. Steady-state and dynamic performance of a gas-lubricated seal

    NASA Technical Reports Server (NTRS)

    Colsher, R.; Shapiro, W.

    1972-01-01

    Steady-state and dynamic performance of a gas-lubricated, self-acting face seal was determined using numerical methods based on a variable grid, finite-difference, time-transient procedure. Results were obtained for a gas turbine main shaft seal operating at 206.9 newton per square centimeter (300 psi) sealed air pressure and 152.4 meters per second (500 ft/sec) sliding velocity. Analysis of the seal dynamics revealed that the response of the seal nosepiece to runout of the seat face is markedly affected by secondary seal friction and by nosepiece inertia. The nosepiece response was determined for various levels of secondary seal friction and seat face runout magnitudes.

  17. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  18. Soil dynamics and accelerated erosion: a sensitivity analysis of the LPJ Dynamic vegetation model

    NASA Astrophysics Data System (ADS)

    Bouchoms, Samuel; Van Oost, Kristof; Vanacker, Veerle; Kaplan, Jed O.; Vanwalleghem, Tom

    2013-04-01

    It is widely accepted that humans have become a major geomorphic force by disturbing natural vegetation patterns. Land conversion for agriculture purposes removes the protection of soils by the natural vegetation and leads to increased soil erosion by one to two orders of magnitude, breaking the balance that exists between the loss of soils and its production. Accelerated erosion and deposition have a strong influence on evolution and heterogeneity of basic soil characteristics (soil thickness, hydrology, horizon development,…) as well as on organic matter storage and cycling. Yet, since they are operating at a long time scale, those processes are not represented in state-of-art Dynamic Global Vegetation Models, which is a clear lack when exploring vegetation dynamics over past centuries. The main objectives of this paper are (i) to test the sensitivity of a Dynamic Global Vegetation Model, in terms of NPP and organic matter turnover, variations in state variables in response to accelerated erosion and (ii) to assess the performance of the model under the impact of erosion for a case-study in Central Spain. We evaluated the Lund-Postdam-Jena Dynamic Vegetation Model (LPJ DVGM) (Sitch et al, 2003) which simulates vegetation growth and carbon pools at the surface and in the soil based on climatic, pedologic and topographic variables. We assessed its reactions to changes in key soil properties that are affected by erosion such as texture and soil depth. We present the results of where we manipulated soil texture and bulk density while keeping the environmental drivers of climate, slope and altitude constant. For parameters exhibiting a strong control on NPP or SOM, a factorial analysis was conducted to test for interaction effects. The simulations show an important dependence on the clay content, especially for the slow cycling carbon pools and the biomass production, though the underground litter seems to be mostly influenced by the silt content. The fast cycling C

  19. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M.A. Wasiolek

    2003-07-25

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standard. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop biosphere BDCFs, which are input parameters for the TSPA model. The ''Biosphere Model Report'' (BSC 2003 [DIRS 164186]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports (BSC 2003 [DIRS 160964]; BSC 2003 [DIRS 160965]; BSC 2003 [DIRS 160976]; BSC 2003 [DIRS 161239]; BSC 2003 [DIRS 161241]) contain detailed description of the model input parameters. This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. The objectives of this analysis are to develop BDCFs and conversion factors for the TSPA. The BDCFs will be used in performance assessment for calculating annual doses for a given concentration of radionuclides in groundwater. The conversion factors will be used for calculating gross alpha particle activity in groundwater and the annual dose from beta- and photon-emitting radionuclides.

  20. Dynamical Analysis of Motorcycle by Multibody Dynamics Approach

    NASA Astrophysics Data System (ADS)

    Zhu, Shaopeng; Nishimura, Hidekazu; Iwamatsu, Shunsuke; Tajima, Hiroshi

    In this paper, a dynamical model of a motorcycle, which consists of four rigid bodies with nine degrees of freedom, is presented. In this model, the cross-sectional shape of the tire is described as a half-circle and its deformation is taken into account. By taking account of the tire slip condition or the tire nonslip condition in the longitudinal direction of the wheels, each equation of motion is derived. Also, by carrying out simulations, it is verified that the responses to the front steering impulsive torque are in good agreement with the results obtained using commercial software. Moreover, the longitudinal friction force and the lateral force in a turning maneuver are analyzed.

  1. Application of the Tool for Turbine Engine Closed-Loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey T.; Zinnecker, Alicia M.

    2014-01-01

    The aircraft engine design process seeks to achieve the best overall system-level performance, weight, and cost for a given engine design. This is achieved by a complex process known as systems analysis, where steady-state simulations are used to identify trade-offs that should be balanced to optimize the system. The steady-state simulations and data on which systems analysis relies may not adequately capture the true performance trade-offs that exist during transient operation. Dynamic Systems Analysis provides the capability for assessing these trade-offs at an earlier stage of the engine design process. The concept of dynamic systems analysis and the type of information available from this analysis are presented in this paper. To provide this capability, the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) was developed. This tool aids a user in the design of a power management controller to regulate thrust, and a transient limiter to protect the engine model from surge at a single flight condition (defined by an altitude and Mach number). Results from simulation of the closed-loop system may be used to estimate the dynamic performance of the model. This enables evaluation of the trade-off between performance and operability, or safety, in the engine, which could not be done with steady-state data alone. A design study is presented to compare the dynamic performance of two different engine models integrated with the TTECTrA software.

  2. AIR INGRESS ANALYSIS: COMPUTATIONAL FLUID DYNAMIC MODELS

    SciTech Connect

    Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

    2010-08-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

  3. Dynamic analysis of the GEOS satellite

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Juang, J. N.; Chang, C. P.

    1975-01-01

    The assumed modes method is used to investigate the stability of the GEOS satellite. The system is discretized by representing the continuous displacement by finite series of space-dependent admissible functions multiplied by time-dependent generalized coordinates. The spatial dependence is eliminated by integration over the elastic domains, so that the testing functional reduces to a testing function. The sign properties of the testing function are then tested and the equilibrium defined as nontrivial. In considering the stability of small motions about nontrivial equilibrium, it is shown that if the analysis performed by ignoring the motion of the mass center indicates stability, then the system remains stable if the motion of the mass center is included.

  4. Dynamic Experiments and Constitutive Model Performance for Polycarbonate

    DTIC Science & Technology

    2014-07-01

    sets. Dynamic-Tensile- Extrusion is an integrated experimental technique that allows the study of material deformation at high strain rates (greater...shown in figure 2. Glassy polymers are generally soft and ductile above Tg ( rubber -like state), and hard and brittle below Tg (glass-like state...experiment (1). The Dynamic-Tensile- Extrusion (Dyn-Ten-Ext) experiment was developed by G. T. Gray III and coworkers at LANL to examine extreme tensile

  5. Dynamic Analysis of Fuel Cycle Transitioning

    SciTech Connect

    Brent Dixon; Steve Piet; David Shropshire; Gretchen Matthern

    2009-09-01

    This paper examines the time-dependent dynamics of transitioning from a once-through fuel cycle to a closed fuel cycle. The once-through system involves only Light Water Reactors (LWRs) operating on uranium oxide fuel UOX), while the closed cycle includes both LWRs and fast spectrum reactors (FRs) in either a single-tier system or two-tier fuel system. The single-tier system includes full transuranic recycle in FRs while the two-tier system adds one pass of mixed oxide uranium-plutonium (MOX U-Pu) fuel in the LWR. While the analysis primarily focuses on burner fast reactors, transuranic conversion ratios up to 1.0 are assessed and many of the findings apply to any fuel cycle transitioning from a thermal once-through system to a synergistic thermal-fast recycle system. These findings include uranium requirements for a range of nuclear electricity growth rates, the importance of back end fuel cycle facility timing and magnitude, the impact of employing a range of fast reactor conversion ratios, system sensitivity to used fuel cooling time prior to recycle, impacts on a range of waste management indicators, and projected electricity cost ranges for once-through, single-tier and two-tier systems. The study confirmed that significant waste management benefits can be realized as soon as recycling is initiated, but natural uranium savings are minimal in this century. The use of MOX in LWRs decouples the development of recycle facilities from fast reactor fielding, but also significantly delays and limits fast reactor deployment. In all cases, fast reactor deployment was significantly below than predicted by static equilibrium analyses.

  6. Bayesian Analysis of Individual Level Personality Dynamics.

    PubMed

    Cripps, Edward; Wood, Robert E; Beckmann, Nadin; Lau, John; Beckmann, Jens F; Cripps, Sally Ann

    2016-01-01

    A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques.

  7. Bayesian Analysis of Individual Level Personality Dynamics

    PubMed Central

    Cripps, Edward; Wood, Robert E.; Beckmann, Nadin; Lau, John; Beckmann, Jens F.; Cripps, Sally Ann

    2016-01-01

    A Bayesian technique with analyses of within-person processes at the level of the individual is presented. The approach is used to examine whether the patterns of within-person responses on a 12-trial simulation task are consistent with the predictions of ITA theory (Dweck, 1999). ITA theory states that the performance of an individual with an entity theory of ability is more likely to spiral down following a failure experience than the performance of an individual with an incremental theory of ability. This is because entity theorists interpret failure experiences as evidence of a lack of ability which they believe is largely innate and therefore relatively fixed; whilst incremental theorists believe in the malleability of abilities and interpret failure experiences as evidence of more controllable factors such as poor strategy or lack of effort. The results of our analyses support ITA theory at both the within- and between-person levels of analyses and demonstrate the benefits of Bayesian techniques for the analysis of within-person processes. These include more formal specification of the theory and the ability to draw inferences about each individual, which allows for more nuanced interpretations of individuals within a personality category, such as differences in the individual probabilities of spiraling. While Bayesian techniques have many potential advantages for the analyses of processes at the level of the individual, ease of use is not one of them for psychologists trained in traditional frequentist statistical techniques. PMID:27486415

  8. IBIS detector performance during calibration - preliminary analysis

    NASA Astrophysics Data System (ADS)

    Bazzano, A.; Bird, A. J.; Laurent, P.; Malaguti, G.; Quadrini, E. M.; Segreto, A.; Volkmer, R.; del Santo, M.; Gabriele, M.; Tikkanen, T.

    2003-11-01

    The IBIS telescope is a high angular resolution gamma-ray imager due to be launched on the INTEGRAL satellite on October 17, 2002. The scientific goal of IBIS is to study astrophysical processes from celestial sources and diffuse regions in the hard X-ray and soft gamma-ray domains. IBIS features a coded aperture imaging system and a novel large area (~3000cm2) multilayer pixellated detector which utilises both cadmium telluride (16,384 detectors) and caesium iodide elements (4096 detectors) surrounded by a BGO active veto shield. We present an overview of, and preliminary analysis from, the IBIS calibration campaign. The performance of each pixel has been characterised, and hence the scientific performance of the IBIS detector system as a whole can now be established.

  9. Performance analysis of quantum dots infrared photodetector

    NASA Astrophysics Data System (ADS)

    Liu, Hongmei; Zhang, Fangfang; Zhang, Jianqi; He, Guojing

    2011-08-01

    Performance analysis of the quantum dots infrared photodetector(QDIP), which can provide device designers with theoretical guidance and experimental verification, arouses a wide interest and becomes a hot research topic in the recent years. In the paper, in comparison with quantum well infrared photodetector(QWIP) characteristic, the performance of QDIP is mainly discussed and summarized by analyzing the special properties of quantum dots material. To be specific, the dark current density and the detectivity in the normalized incident phenomenon are obtained from Phillip performance model, the carrier lifetime and the dark current of QDIP are studied by combing with the "photon bottleneck" effect, and the detectivity of QDIP is theoretically derived from considering photoconduction gain under the influence of the capture probability. From the experimental results, a conclusion is made that QDIP can not only receive the normal incidence light, but also has the advantages of the long carrier life, the big photoconductive gain, the low dark current and so on, and it further illustrates a anticipated superiority of QDIP in performance and a wide use of QDIP in many engineering fields in the future.

  10. Diversity Performance Analysis on Multiple HAP Networks.

    PubMed

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-06-30

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  11. Analysis approaches and interventions with occupational performance

    PubMed Central

    Ahn, Sinae

    2016-01-01

    [Purpose] The purpose of this study was to analyze approaches and interventions with occupational performance in patients with stroke. [Subjects and Methods] In this study, articles published in the past 10 years were searched. The key terms used were “occupational performance AND stroke” and “occupational performance AND CVA”. A total 252 articles were identified, and 79 articles were selected. All interventions were classified according to their approaches according to 6 theories. All interventions were analyzed for frequency. [Results] Regarding the approaches, there were 25 articles for studies that provided high frequency interventions aimed at improving biomechanical approaches (31.6%). This included electrical stimulation therapy, robot therapy, and sensory stimulation training, as well as others. Analysis of the frequency of interventions revealed that the most commonly used interventions, which were used in 18 articles (22.8%), made use of the concept of constraint-induced therapy. [Conclusion] The results of this study suggest an approach for use in clinics for selecting an appropriate intervention for occupational performance. PMID:27799719

  12. Diversity Performance Analysis on Multiple HAP Networks

    PubMed Central

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  13. Arrhythmic dynamics from singularity analysis of electrocardiographic maps.

    PubMed

    Pont, Oriol; Yahia, Hussein; Xu, Binbin

    2013-01-01

    From a point view of nonlinear dynamics, the electrical activity of the heart is a complex dynamical system, whose dynamics reflects the actual state of health of the heart. Nonlinear signal-processing methods are needed in order to accurately characterize these signals and improve understanding of cardiac arrhythmias. Recent developments on reconstructible signals and multiscale information content show that an analysis in terms of singularity exponents provides compact and meaningful descriptors of the structure and dynamics of the system. Such approach gives a compact representation atrial arrhythmic dynamics, which can sharply highlight regime transitions and arrhythmogenic areas.

  14. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    M.A. Wasiolek

    2005-04-28

    This analysis report is one of the technical reports containing documentation of the Environmental Radiation Model for Yucca Mountain, Nevada (ERMYN), a biosphere model supporting the Total System Performance Assessment (TSPA) for the license application (LA) for the Yucca Mountain repository. This analysis report describes the development of biosphere dose conversion factors (BDCFs) for the groundwater exposure scenario, and the development of conversion factors for assessing compliance with the groundwater protection standards. A graphical representation of the documentation hierarchy for the ERMYN is presented in Figure 1-1. This figure shows the interrelationships among the products (i.e., analysis and model reports) developed for biosphere modeling and provides an understanding of how this analysis report contributes to biosphere modeling. This report is one of two reports that develop BDCFs, which are input parameters for the TSPA-LA model. The ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) describes in detail the ERMYN conceptual model and mathematical model. The input parameter reports, shown to the right of the ''Biosphere Model Report'' in Figure 1-1, contain detailed description of the model input parameters, their development, and the relationship between the parameters and specific features events and processes (FEPs). This report describes biosphere model calculations and their output, the BDCFs, for the groundwater exposure scenario. This analysis receives direct input from the outputs of the ''Biosphere Model Report'' (BSC 2004 [DIRS 169460]) and the five analyses that develop parameter values for the biosphere model (BSC 2005 [DIRS 172827]; BSC 2004 [DIRS 169672]; BSC 2004 [DIRS 169673]; BSC 2004 [DIRS 169458]; BSC 2004 [DIRS 169459]). The results of this report are further analyzed in the ''Biosphere Dose Conversion Factor Importance and Sensitivity Analysis'' (Figure 1-1). The objectives of this analysis are to develop BDCFs for the

  15. Dynamic SVL and body bias for low leakage power and high performance in CMOS digital circuits

    NASA Astrophysics Data System (ADS)

    Deshmukh, Jyoti; Khare, Kavita

    2012-12-01

    In this article, a new complementary metal oxide semiconductor design scheme called dynamic self-controllable voltage level (DSVL) is proposed. In the proposed scheme, leakage power is controlled by dynamically disconnecting supply to inactive blocks and adjusting body bias to further limit leakage and to maintain performance. Leakage power measurements at 1.8 V, 75°C demonstrate power reduction by 59.4% in case of 1 bit full adder and by 43.0% in case of a chain of four inverters using SVL circuit as a power switch. Furthermore, we achieve leakage power reduction by 94.7% in case of 1 bit full adder and by 91.8% in case of a chain of four inverters using dynamic body bias. The forward body bias of 0.45 V applied in active mode improves the maximum operating frequency by 16% in case of 1 bit full adder and 5.55% in case of a chain of inverters. Analysis shows that additional benefits of using the DSVL and body bias include high performance, low leakage power consumption in sleep mode, single threshold implementation and state retention even in standby mode.

  16. Idaho National Laboratory Quarterly Performance Analysis

    SciTech Connect

    Mitchell, Lisbeth

    2014-11-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of 60 reportable events (23 from the 4th Qtr FY14 and 37 from the prior three reporting quarters) as well as 58 other issue reports (including not reportable events and Significant Category A and B conditions) identified at INL from July 2013 through October 2014. Battelle Energy Alliance (BEA) operates the INL under contract DE AC07 051D14517.

  17. Static and Dynamics of a Pump Impeller with a Balancing Device Part II: Dynamic Analysis

    NASA Astrophysics Data System (ADS)

    Martsinkovsky, V. A.; Zhulyov, A.; Kundera, C.

    2014-08-01

    This paper presents the theoretical study of the system comprising an impeller and a balancing device. It deals with the dynamic analysis of the system, i.e., the axial vibrations of the impeller, and the system stability. The dynamic analysis took into account linearized hydrodynamic forces and moments generated in the longitudinal clearances of the seals of the impeller. The theoretical analysis was supplemented with a numerical example with characteristics determined for a real single-stage centrifugal pump

  18. Tethered Satellite System (TSS) Dynamics Assessments and Analysis, TSS-1R Post Flight Data Evaluation

    NASA Technical Reports Server (NTRS)

    Glaese, John R.

    1996-01-01

    The purpose of this report is to document the analysis performed on the TSS-1R telemetry data after the flight. These analysis addressed the tether dynamics of TSS-1r. The telemetry data was provided in a CD-ROM format. The data contained on the CD-ROM was selected from available Satellite and orbiter MSID's.

  19. Monte Carlo analysis: error of extrapolated thermal conductivity from molecular dynamics simulations

    SciTech Connect

    Liu, Xiang-Yang; Andersson, Anders David

    2016-11-07

    In this short report, we give an analysis of the extrapolated thermal conductivity of UO2 from earlier molecular dynamics (MD) simulations [1]. Because almost all material properties are functions of temperature, e.g. fission gas release, the fuel thermal conductivity is the most important parameter from a model sensitivity perspective [2]. Thus, it is useful to perform such analysis.

  20. An analysis of dynamics of discrete demand-inventory model with bifurcation diagrams and phase portraits

    NASA Astrophysics Data System (ADS)

    Hachuła, Piotr; Nockowska-Rosiak, Magdalena; Schmeidel, Ewa

    2017-07-01

    An analysis of dynamics of demand-inventory model formulated with a system of three first order difference equations with three parameters. The origin, rules, assumptions and example of application are presented. The numerical analysis is performed using bifurcation diagrams and phase portraits. Graphical observation of evolution of trajectories suggests chaotic behaviour occurrence.

  1. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey; Zinnecker, Alicia

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000(CMAPSS40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLABSimulink (The MathWorks, Inc.) environment.

  2. Application of the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) for Dynamic Systems Analysis

    NASA Technical Reports Server (NTRS)

    Csank, Jeffrey Thomas; Zinnecker, Alicia Mae

    2014-01-01

    Systems analysis involves steady-state simulations of combined components to evaluate the steady-state performance, weight, and cost of a system; dynamic considerations are not included until later in the design process. The Dynamic Systems Analysis task, under NASAs Fixed Wing project, is developing the capability for assessing dynamic issues at earlier stages during systems analysis. To provide this capability the Tool for Turbine Engine Closed-loop Transient Analysis (TTECTrA) has been developed to design a single flight condition controller (defined as altitude and Mach number) and, ultimately, provide an estimate of the closed-loop performance of the engine model. This tool has been integrated with the Commercial Modular Aero-Propulsion System Simulation 40,000 (CMAPSS 40k) engine model to demonstrate the additional information TTECTrA makes available for dynamic systems analysis. This dynamic data can be used to evaluate the trade-off between performance and safety, which could not be done with steady-state systems analysis data. TTECTrA has been designed to integrate with any turbine engine model that is compatible with the MATLAB Simulink (The MathWorks, Inc.) environment.

  3. Dynamic analysis of multimesh-gear helicopter transmissions

    NASA Technical Reports Server (NTRS)

    Choy, Fred K.; Townsend, Dennis P.; Oswald, Fred B.

    1988-01-01

    A dynamic analysis of multimesh-gear helicopter transmission systems was performed by correlating analytical simulations with experimental investigations. The two computer programs used in this study, GRDYNMLT and PGT, were developed under NASA/Army sponsorship. Parametric studies of the numerical model with variations on mesh damping ratios, operating speeds, tip-relief tooth modifications, and tooth-spacing errors were performed to investigate the accuracy, application, and limitations of the two computer programs. Although similar levels of dynamic loading were predicted by both programs, the computer code GRDYNMLT was found to be superior and broader in scope. Results from analytical work were also compared with experimental data obtained from the U.S. Army's UH-60A Black Hawk 2240-kW (3000-hp) class, twin-engine helicopter transmission tested at the NASA Lewis Research Center. Good correlation in gear stresses was obtained between the analytical model simulated by GRDYNMLT and the experimental measurements. More realistic mesh damping can be predicted through experimental data correlation.

  4. Numerical Analysis of Constrained Dynamical Systems, with Applications to Dynamic Contact of Solids, Nonlinear Elastodynamics and Fluid-Structure Interactions

    DTIC Science & Technology

    2000-12-01

    NUMERICAL ANALYSIS OF CONSTRAINED DYNAMICAL SYSTEMS, WITH APPLICATIONS TO DYNAMIC CONTACT OF SOLIDS, NONLINEAR ELASTODYNAMICS AND FLUID-STRUCTURE...2000 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Numerical Analysis of Constrained Dynamical Systems, with 5b. GRANT NUMBER Applications to Dynamic...This extension allows the analysis of fluid-structure interfaces through the Lagrangian contact logic previously developed. Similarly, we have developed

  5. Dynamical systems analysis applied to working memory data.

    PubMed

    Gasimova, Fidan; Robitzsch, Alexander; Wilhelm, Oliver; Boker, Steven M; Hu, Yueqin; Hülür, Gizem

    2014-01-01

    In the present paper we investigate weekly fluctuations in the working memory capacity (WMC) assessed over a period of 2 years. We use dynamical system analysis, specifically a second order linear differential equation, to model weekly variability in WMC in a sample of 112 9th graders. In our longitudinal data we use a B-spline imputation method to deal with missing data. The results show a significant negative frequency parameter in the data, indicating a cyclical pattern in weekly memory updating performance across time. We use a multilevel modeling approach to capture individual differences in model parameters and find that a higher initial performance level and a slower improvement at the MU task is associated with a slower frequency of oscillation. Additionally, we conduct a simulation study examining the analysis procedure's performance using different numbers of B-spline knots and values of time delay embedding dimensions. Results show that the number of knots in the B-spline imputation influence accuracy more than the number of embedding dimensions.

  6. Performance Evaluation and Analysis for Gravity Matching Aided Navigation

    PubMed Central

    Wu, Lin; Wang, Hubiao; Chai, Hua; Zhang, Lu; Hsu, Houtse; Wang, Yong

    2017-01-01

    Simulation tests were accomplished in this paper to evaluate the performance of gravity matching aided navigation (GMAN). Four essential factors were focused in this study to quantitatively evaluate the performance: gravity database (DB) resolution, fitting degree of gravity measurements, number of samples in matching, and gravity changes in the matching area. Marine gravity anomaly DB derived from satellite altimetry was employed. Actual dynamic gravimetry accuracy and operating conditions were referenced to design the simulation parameters. The results verified that the improvement of DB resolution, gravimetry accuracy, number of measurement samples, or gravity changes in the matching area generally led to higher positioning accuracies, while the effects of them were different and interrelated. Moreover, three typical positioning accuracy targets of GMAN were proposed, and the conditions to achieve these targets were concluded based on the analysis of several different system requirements. Finally, various approaches were provided to improve the positioning accuracy of GMAN. PMID:28379178

  7. Visibility graph analysis on heartbeat dynamics of meditation training

    NASA Astrophysics Data System (ADS)

    Jiang, Sen; Bian, Chunhua; Ning, Xinbao; Ma, Qianli D. Y.

    2013-06-01

    We apply the visibility graph analysis to human heartbeat dynamics by constructing the complex networks of heartbeat interval time series and investigating the statistical properties of the network before and during chi and yoga meditation. The experiment results show that visibility graph analysis can reveal the dynamical changes caused by meditation training manifested as regular heartbeat, which is closely related to the adjustment of autonomous neural system, and visibility graph analysis is effective to evaluate the effect of meditation.

  8. Effect of electron spin dynamics on solid-state dynamic nuclear polarization performance.

    PubMed

    Siaw, Ting Ann; Fehr, Matthias; Lund, Alicia; Latimer, Allegra; Walker, Shamon A; Edwards, Devin T; Han, Song-I

    2014-09-21

    For the broadest dissemination of solid-state dynamic nuclear polarization (ssDNP) enhanced NMR as a material characterization tool, the ability to employ generic mono-nitroxide radicals as spin probes is critical. A better understanding of the factors contributing to ssDNP efficiency is needed to rationally optimize the experimental condition for the practically accessible spin probes at hand. This study seeks to advance the mechanistic understanding of ssDNP by examining the effect of electron spin dynamics on ssDNP performance at liquid helium temperatures (4-40 K). The key observation is that bi-radicals and mono-radicals can generate comparable nuclear spin polarization at 4 K and 7 T, which is in contrast to the observation for ssDNP at liquid nitrogen temperatures (80-150 K) that finds bi-radicals to clearly outperform mono-radicals. To rationalize this observation, we analyze the change in the DNP-induced nuclear spin polarization (Pn) and the characteristic ssDNP signal buildup time as a function of electron spin relaxation rates that are modulated by the mono- and bi-radical spin concentration. Changes in Pn are consistent with a systematic variation in the product of the electron spin-lattice relaxation time and the electron spin flip-flop rate that constitutes an integral saturation factor of an inhomogeneously broadened EPR spectrum. We show that the comparable Pn achieved with both radical species can be reconciled with a comparable integral EPR saturation factor. Surprisingly, the largest Pn is observed at an intermediate spin concentration for both mono- and bi-radicals. At the highest radical concentration, the stronger inter-electron spin dipolar coupling favors ssDNP, while oversaturation diminishes Pn, as experimentally verified by the observation of a maximum Pn at an intermediate, not the maximum, microwave (μw) power. At the maximum μw power, oversaturation reduces the electron spin population differential that must be upheld between

  9. Dynamic Analysis of Mcfc Porous Electrode

    NASA Astrophysics Data System (ADS)

    Lee, Gwo-Lin Kevin

    1992-01-01

    The intent of this work is to develop AC impedance measurements, in combination with other methods, as a tool to determine the relative importance of various resistance sources in the multi-step process occurring at a gas-diffusion porous electrode. In particular, the case of a MCFC cathode is studied. The goals of this study are: (1) elucidation of electrode mechanism; (2) analysis of the porous electrode performance for the purpose of optimizing design; and (3) developing the capabilities of AC impedance as an index of long-term cell performance decay. The oxygen reduction reaction of molten carbonate fuel cell and the corresponding kinetic as well as transport parameters were tried to be estimated by using impedance techniques combining with other electrochemical methods from flag, wire and rotating disk electrodes in pot cell as well as porous electrode in lab cell. The dominant pathway for oxygen reduction in 62%Li _2CO_3/38%K _2CO_3 melt at 650^circC is via superoxide ions. This follows from flag electrode impedance results indicating that O_sp{2}{ -}/CO_2 mixed diffusion is the dominant source of resistance. The polarization behavior of gas-diffusion porous electrodes has been analyzed in terms of individual voltage loss and overall voltage loss. In most cases, the optimal electrolyte filling will be obtained when the dominant source of voltage loss switches from ohmic or mass transfer resistances to kinetic activation resistance, and similar behavior for optimal electrode thickness. Pressurized operation is favorable for performance if the reaction mechanism follows the superoxide mechanism, but not if the peroxide path dominates. A distributed-network approach has been developed and it is concluded that a digital simulation of AC-superimposed -on-DC impedance of a porous electrode is possible and helpful. Kinetic activation and mass transfer resistances are extracted separate and conclude that both peroxide and superoxide contribute the oxygen reduction

  10. Removing Grit During Wastewater Treatment: CFD Analysis of HDVS Performance.

    PubMed

    Meroney, Robert N; Sheker, Robert E

    2016-05-01

    Computational Fluid Dynamics (CFD) was used to simulate the grit and sand separation effectiveness of a typical hydrodynamic vortex separator (HDVS) system. The analysis examined the influences on the separator efficiency of: flow rate, fluid viscosities, total suspended solids (TSS), and particle size and distribution. It was found that separator efficiency for a wide range of these independent variables could be consolidated into a few curves based on the particle fall velocity to separator inflow velocity ratio, Ws/Vin. Based on CFD analysis it was also determined that systems of different sizes with length scale ratios ranging from 1 to 10 performed similarly when Ws/Vin and TSS were held constant. The CFD results have also been compared to a limited range of experimental data.

  11. Dynamic fractal signature dissimilarity analysis for therapeutic response assessment using dynamic contrast-enhanced MRI

    PubMed Central

    Wang, Chunhao; Subashi, Ergys; Yin, Fang-Fang; Chang, Zheng

    2016-01-01

    Purpose: To develop a dynamic fractal signature dissimilarity (FSD) method as a novel image texture analysis technique for the quantification of tumor heterogeneity information for better therapeutic response assessment with dynamic contrast-enhanced (DCE)-MRI. Methods: A small animal antiangiogenesis drug treatment experiment was used to demonstrate the proposed method. Sixteen LS-174T implanted mice were randomly assigned into treatment and control groups (n = 8/group). All mice received bevacizumab (treatment) or saline (control) three times in two weeks, and one pretreatment and two post-treatment DCE-MRI scans were performed. In the proposed dynamic FSD method, a dynamic FSD curve was generated to characterize the heterogeneity evolution during the contrast agent uptake, and the area under FSD curve (AUCFSD) and the maximum enhancement (MEFSD) were selected as representative parameters. As for comparison, the pharmacokinetic parameter Ktrans map and area under MR intensity enhancement curve AUCMR map were calculated. Besides the tumor’s mean value and coefficient of variation, the kurtosis, skewness, and classic Rényi dimensions d1 and d2 of Ktrans and AUCMR maps were evaluated for heterogeneity assessment for comparison. For post-treatment scans, the Mann–Whitney U-test was used to assess the differences of the investigated parameters between treatment/control groups. The support vector machine (SVM) was applied to classify treatment/control groups using the investigated parameters at each post-treatment scan day. Results: The tumor mean Ktrans and its heterogeneity measurements d1 and d2 values showed significant differences between treatment/control groups in the second post-treatment scan. In contrast, the relative values (in reference to the pretreatment value) of AUCFSD and MEFSD in both post-treatment scans showed significant differences between treatment/control groups. When using AUCFSD and MEFSD as SVM input for treatment/control classification

  12. Nominal Performance Biosphere Dose Conversion Factor Analysis

    SciTech Connect

    Wasiolek, Maryla A.

    2000-12-21

    The purpose of this report was to document the process leading to development of the Biosphere Dose Conversion Factors (BDCFs) for the postclosure nominal performance of the potential repository at Yucca Mountain. BDCF calculations concerned twenty-four radionuclides. This selection included sixteen radionuclides that may be significant nominal performance dose contributors during the compliance period of up to 10,000 years, five additional radionuclides of importance for up to 1 million years postclosure, and three relatively short-lived radionuclides important for the human intrusion scenario. Consideration of radionuclide buildup in soil caused by previous irrigation with contaminated groundwater was taken into account in the BDCF development. The effect of climate evolution, from the current arid conditions to a wetter and cooler climate, on the BDCF values was evaluated. The analysis included consideration of different exposure pathway's contribution to the BDCFs. Calculations of nominal performance BDCFs used the GENII-S computer code in a series of probabilistic realizations to propagate the uncertainties of input parameters into the output. BDCFs for the nominal performance, when combined with the concentrations of radionuclides in groundwater allow calculation of potential radiation doses to the receptor of interest. Calculated estimates of radionuclide concentration in groundwater result from the saturated zone modeling. The integration of the biosphere modeling results (BDCFs) with the outcomes of the other component models is accomplished in the Total System Performance Assessment (TSPA) to calculate doses to the receptor of interest from radionuclides postulated to be released to the environment from the potential repository at Yucca Mountain.

  13. Failure analysis of high performance ballistic fibers

    NASA Astrophysics Data System (ADS)

    Spatola, Jennifer S.

    High performance fibers have a high tensile strength and modulus, good wear resistance, and a low density, making them ideal for applications in ballistic impact resistance, such as body armor. However, the observed ballistic performance of these fibers is much lower than the predicted values. Since the predictions assume only tensile stress failure, it is safe to assume that the stress state is affecting fiber performance. The purpose of this research was to determine if there are failure mode changes in the fiber fracture when transversely loaded by indenters of different shapes. An experimental design mimicking transverse impact was used to determine any such effects. Three different indenters were used: round, FSP, and razor blade. The indenter height was changed to change the angle of failure tested. Five high performance fibers were examined: KevlarRTM KM2, SpectraRTM 130d, DyneemaRTM SK-62 and SK-76, and ZylonRTM 555. Failed fibers were analyzed using an SEM to determine failure mechanisms. The results show that the round and razor blade indenters produced a constant failure strain, as well as failure mechanisms independent of testing angle. The FSP indenter produced a decrease in failure strain as the angle increased. Fibrillation was the dominant failure mechanism at all angles for the round indenter, while through thickness shearing was the failure mechanism for the razor blade. The FSP indenter showed a transition from fibrillation at low angles to through thickness shearing at high angles, indicating that the round and razor blade indenters are extreme cases of the FSP indenter. The failure mechanisms observed with the FSP indenter at various angles correlated with the experimental strain data obtained during fiber testing. This indicates that geometry of the indenter tip in compression is a contributing factor in lowering the failure strain of the high performance fibers. TEM analysis of the fiber failure mechanisms was also attempted, though without

  14. Dynamic analysis for robot arm control

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1983-01-01

    Explicit state equations provide detailed analytic insight into the dynamic behavior of a robot arm and facilitate the understanding of the control problem. The analytic strength of explicit state equations is exemplified for a given robot arm. In fact, for the quoted example, the explicit and exact state equations involve considerably less computation than the use of the known most efficient general-purpose computational algorithm for robot arm dynamics.

  15. Perturbation and nonlinear dynamic analysis of different singing styles.

    PubMed

    Butte, Caitlin J; Zhang, Yu; Song, Huangqiang; Jiang, Jack J

    2009-11-01

    Previous research has used perturbation analysis methods to study the singing voice. Using perturbation and nonlinear dynamic analysis (NDA) methods in conjunction may provide more accurate information on the singing voice and may distinguish vocal usage in different styles. Acoustic samples from different styles of singing were compared using nonlinear dynamic and perturbation measures. Twenty-six songs from different musical styles were obtained from an online music database (Rhapsody, RealNetworks, Inc., Seattle, WA). One-second samples were selected from each song for analysis. Perturbation analyses of jitter, shimmer, and signal-to-noise ratio and NDA of correlation dimension (D(2)) were performed on samples from each singing style. Percent jitter and shimmer median values were low normal for country (0.32% and 3.82%), musical theater (MT) (0.280% and 2.80%), jazz (0.440% and 2.34%), and soul (0.430% and 6.42%). The popular style had slightly higher median jitter and shimmer values (1.13% and 6.78%) than other singing styles, although this was not statistically significant. The opera singing style had median jitter of 0.520%, and yielded significantly high shimmer (P=0.001) of 7.72%. All six singing styles were measured reliably using NDA, indicating that operatic singing is notably more chaotic than other singing styles. Median correlation dimension values were low to normal, compared to healthy voices, in country (median D(2)=2.14), jazz (median D(2)=2.24), pop (median D(2)=2.60), MT (median D(2)=2.73), and soul (mean D(2)=3.26). Correlation dimension was significantly higher in opera (P<0.001) with median D(2)=6.19. In this study, acoustic analysis in opera singing gave significantly high values for shimmer and D(2), suggesting that it is more irregular than other singing styles; a previously unknown quality of opera singing. Perturbation analysis also suggested significant differences in vocal output in different singing styles. This preliminary study

  16. Dynamic Bayesian sensitivity analysis of a myocardial metabolic model.

    PubMed

    Calvetti, D; Hageman, R; Occhipinti, R; Somersalo, E

    2008-03-01

    Dynamic compartmentalized metabolic models are identified by a large number of parameters, several of which are either non-physical or extremely difficult to measure. Typically, the available data and prior information is insufficient to fully identify the system. Since the models are used to predict the behavior of unobserved quantities, it is important to understand how sensitive the output of the system is to perturbations in the poorly identifiable parameters. Classically, it is the goal of sensitivity analysis to asses how much the output changes as a function of the parameters. In the case of dynamic models, the output is a function of time and therefore its sensitivity is a time dependent function. If the output is a differentiable function of the parameters, the sensitivity at one time instance can be computed from its partial derivatives with respect to the parameters. The time course of these partial derivatives describes how the sensitivity varies in time. When the model is not uniquely identifiable, or if the solution of the parameter identification problem is known only approximately, we may have not one, but a distribution of possible parameter values. This is always the case when the parameter identification problem is solved in a statistical framework. In that setting, the proper way to perform sensitivity analysis is to not rely on the values of the sensitivity functions corresponding to a single model, but to consider the distributed nature of the sensitivity functions, inherited from the distribution of the vector of the model parameters. In this paper we propose a methodology for analyzing the sensitivity of dynamic metabolic models which takes into account the variability of the sensitivity over time and across a sample. More specifically, we draw a representative sample from the posterior density of the vector of model parameters, viewed as a random variable. To interpret the output of this doubly varying sensitivity analysis, we propose

  17. High-resolution SAR ATR performance analysis

    NASA Astrophysics Data System (ADS)

    Douglas, Joel; Burke, Monica; Ettinger, Gil J.

    2004-09-01

    High resolution Synthetic Aperture Radar (SAR) imagery (e.g., four inch or better resolution) contains features not seen in one foot or lower resolution imagery, due to the isolation of the scatterers into separate resolution cells. These features provide the potential for additional discrimination power for Automatic Target Recognition (ATR) systems. In this paper, we analyze the performance of the Real-Time MSTAR (RT-MSTAR) system as a function of image resolution. Performance is measured both in terms of the probability of correct identification on military targets, and also in terms of confuser rejection. The analysis demonstrates two factors that significantly enhance performance. First, use of the high resolution imagery results in much higher probability of correct identification, as demonstrated using Lynx SAR imagery at 4" and 12". Second, incorporating models of the confusers, when available, greatly reduces false alarms, even at higher resolutions. Several new areas of work emerge, including making use of higher-level feature information available in the imagery, and rapid creation of models for vehicles that pose particular confuser rejection challenges.

  18. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  19. Evaluation of sliding window correlation performance for characterizing dynamic functional connectivity and brain states

    PubMed Central

    Shakil, Sadia; Lee, Chin-Hui; Keilholz, Shella Dawn

    2016-01-01

    A promising recent development in the study of brain function is the dynamic analysis of resting-state functional MRI scans, which can enhance understanding of normal cognition and alterations that result from brain disorders. One widely used method of capturing the dynamics of functional connectivity is sliding window correlation (SWC). However, in the absence of a “gold standard” for comparison, evaluating the performance of the SWC in typical resting-state data is challenging. This study uses simulated networks (SNs) with known transitions to examine the effects of parameters such as window length, window offset, window type, noise, filtering, and sampling rate on the SWC performance. The SWC time course was calculated for all node pairs of each SN and then clustered using the k-means algorithm to determine how resulting brain states match known configurations and transitions in the SNs. The outcomes show that the detection of state transitions and durations in the SWC is most strongly influenced by the window length and offset, followed by noise and filtering parameters. The effect of the image sampling rate was relatively insignificant. Tapered windows provide less sensitivity to state transitions than rectangular windows, which could be the result of the sharp transitions in the SNs. Overall, the SWC gave poor estimates of correlation for each brain state. Clustering based on the SWC time course did not reliably reflect the underlying state transitions unless the window length was comparable to the state duration, highlighting the need for new adaptive window analysis techniques. PMID:26952197

  20. Development of methodology for horizontal axis wind turbine dynamic analysis

    NASA Technical Reports Server (NTRS)

    Dugundji, J.

    1982-01-01

    Horizontal axis wind turbine dynamics were studied. The following findings are summarized: (1) review of the MOSTAS computer programs for dynamic analysis of horizontal axis wind turbines; (2) review of various analysis methods for rotating systems with periodic coefficients; (3) review of structural dynamics analysis tools for large wind turbine; (4) experiments for yaw characteristics of a rotating rotor; (5) development of a finite element model for rotors; (6) development of simple models for aeroelastics; and (7) development of simple models for stability and response of wind turbines on flexible towers.

  1. Performance Analysis of Intelligent Robust Facility Layout Design

    NASA Astrophysics Data System (ADS)

    Moslemipour, G.; Lee, T. S.; Loong, Y. T.

    2017-03-01

    Design of a robust production facility layout with minimum handling cost (MHC) presents an appropriate approach to tackle facility layout problems in a dynamic volatile environment, in which product demands randomly change in each planning period. The objective of the design is to find the robust facility layout with minimum total material handling cost over the entire multi-period planning horizon. This paper proposes a new mathematical model for designing robust machine layout in the stochastic dynamic environment of manufacturing systems using quadratic assignment problem (QAP) formulation. In this investigation, product demands are assumed to be normally distributed random variables with known expected value, variance, and covariance that randomly change from period to period. The proposed model was verified and validated using randomly generated numerical data and benchmark examples. The effect of dependent product demands and varying interest rate on the total cost function of the proposed model has also been investigated. Sensitivity analysis on the proposed model has been performed. Dynamic programming and simulated annealing optimization algorithms were used in solving the modeled example problems.

  2. Performance Analysis of Intelligent Robust Facility Layout Design

    NASA Astrophysics Data System (ADS)

    Moslemipour, G.; Lee, T. S.; Loong, Y. T.

    2017-03-01

    Design of a robust production facility layout with minimum handling cost (MHC) presents an appropriate approach to tackle facility layout problems in a dynamic volatile environment, in which product demands randomly change in each planning period. The objective of the design is to find the robust facility layout with minimum total material handling cost over the entire multi-period planning horizon. This paper proposes a new mathematical model for designing robust machine layout in the stochastic dynamic environment of manufacturing systems using quadratic assignment problem (QAP) formulation. In this investigation, product demands are assumed to be normally distributed random variables with known expected value, variance, and covariance that randomly change from period to period. The proposed model was verified and validated using randomly generated numerical data and benchmark examples. The effect of dependent product demands and varying interest rate on the total cost function of the proposed model has also been investigated. Sensitivity analysis on the proposed model has been performed. Dynamic programming and simulated annealing optimization algorithms were used in solving the modeled example problems.

  3. Teachers' Performances during a Practical Dynamic Open Inquiry Process

    ERIC Educational Resources Information Center

    Zion, Michal; Schanin, Ilana; Shmueli, Ester Rimerman

    2013-01-01

    The research goal of this study was to determine whether teachers who participated in an inquiry-based course were able to internalize a dynamic open inquiry process. This study focused on 25 science teachers who participated in an annual inquiry-based academic course. Several teaching tools helped teachers employ an open inquiry process. We…

  4. Teachers' Performances during a Practical Dynamic Open Inquiry Process

    ERIC Educational Resources Information Center

    Zion, Michal; Schanin, Ilana; Shmueli, Ester Rimerman

    2013-01-01

    The research goal of this study was to determine whether teachers who participated in an inquiry-based course were able to internalize a dynamic open inquiry process. This study focused on 25 science teachers who participated in an annual inquiry-based academic course. Several teaching tools helped teachers employ an open inquiry process. We…

  5. Potential Flow Analysis of Dynamic Ground Effect

    NASA Technical Reports Server (NTRS)

    Feifel, W. M.

    1999-01-01

    Interpretation of some flight test data suggests the presence of a 'dynamic ground effect'. The lift of an aircraft approaching the ground depends on the rate of descent and is lower than the aircraft steady state lift at a same height above the ground. Such a lift deficiency under dynamic conditions could have a serious impact on the overall aircraft layout. For example, the increased pitch angle needed to compensate for the temporary loss in lift would reduce the tail strike margin or require an increase in landing gear length. Under HSR2 an effort is under way to clarify the dynamic ground effect issue using a multi-pronged approach. A dynamic ground effect test has been run in the NASA Langley 14x22 ft wind tunnel. Northup-Grumman is conducting time accurate CFD (Computational Fluid Dynamics) Euler analyses on the National Aerodynamic Simulator facility. Boeing has been using linear potential flow methodology which are thought to provide much needed insight in, physics of this very complex problem. The present report summarizes the results of these potential flow studies.

  6. Performance analysis of jump-gliding locomotion for miniature robotics.

    PubMed

    Vidyasagar, A; Zufferey, Jean-Christohphe; Floreano, Dario; Kovač, M

    2015-03-26

    Recent work suggests that jumping locomotion in combination with a gliding phase can be used as an effective mobility principle in robotics. Compared to pure jumping without a gliding phase, the potential benefits of hybrid jump-gliding locomotion includes the ability to extend the distance travelled and reduce the potentially damaging impact forces upon landing. This publication evaluates the performance of jump-gliding locomotion and provides models for the analysis of the relevant dynamics of flight. It also defines a jump-gliding envelope that encompasses the range that can be achieved with jump-gliding robots and that can be used to evaluate the performance and improvement potential of jump-gliding robots. We present first a planar dynamic model and then a simplified closed form model, which allow for quantification of the distance travelled and the impact energy on landing. In order to validate the prediction of these models, we validate the model with experiments using a novel jump-gliding robot, named the 'EPFL jump-glider'. It has a mass of 16.5 g and is able to perform jumps from elevated positions, perform steered gliding flight, land safely and traverse on the ground by repetitive jumping. The experiments indicate that the developed jump-gliding model fits very well with the measured flight data using the EPFL jump-glider, confirming the benefits of jump-gliding locomotion to mobile robotics. The jump-glide envelope considerations indicate that the EPFL jump-glider, when traversing from a 2 m height, reaches 74.3% of optimal jump-gliding distance compared to pure jumping without a gliding phase which only reaches 33.4% of the optimal jump-gliding distance. Methods of further improving flight performance based on the models and inspiration from biological systems are presented providing mechanical design pathways to future jump-gliding robot designs.

  7. Bifurcation techniques for nonlinear dynamic analysis of compressor stall phenomena

    NASA Technical Reports Server (NTRS)

    Razavi, H. C.; Mehra, R. K.

    1985-01-01

    Compressor stall phenomena is analyzed from nonlinear control theory viewpoint, based on bifurcation-catastrophe techniques. This new approach appears promising and offers insight into such well known compressor instability problems as surge and rotating stall; furthermore it suggests strategies for recovery from stall. Three interlocking dynamic nonlinear state space models are developed. It is shown that the problem of rotating stall can be viewed as an (induced) bifurcation of solution of the unstalled model. Hysteresis effect is shown to exist in the stall/recovery process. Surge cycles are observed to develop for some critical parameter values. It is shown that the oscillatory behavior is due to development of limit cycles, generated by Hopf bifurcation of solutions. Both stable and unstable limit cycles are observed. To further illustrate the usefulness of the methodology some partial computation of domains of attraction of equilibria is carried out, and parameter sensitivity analysis is performed.

  8. Dynamic contact angle analysis of silicone hydrogel contact lenses.

    PubMed

    Read, Michael Leonard; Morgan, Philip Bruce; Kelly, Jeremiah Michael; Maldonado-Codina, Carole

    2011-07-01

    Contact angle measurements are used to infer the clinical wetting characteristics of contact lenses. Such characterization has become more commonplace since the introduction of silicone hydrogel contact lens materials, which have been associated with reduced in vivo wetting due to the inclusion of siloxane-containing components. Using consistent methodology and a single investigator, advancing and receding contact angles were measured for 11 commercially available silicone hydrogel contact lens types with a dynamic captive bubble technique employing customized, fully automated image analysis. Advancing contact angles were found to range between 20° and 72° with the lenses falling into six statistically discrete groupings. Receding contact angles fell within a narrower range, between 17° and 22°, with the lenses segregated into three groups. The relationship between these laboratory measurements and the clinical performance of the lenses requires further investigation.

  9. Analysis of planetary evolution with emphasis on differentiation and dynamics

    NASA Technical Reports Server (NTRS)

    Kaula, William M.; Newman, William I.

    1987-01-01

    In order to address the early stages of nebula evolution, a three-dimensional collapse code which includes not only hydrodynamics and radiative transfer, but also the effects of ionization and, possibly, magnetic fields is being addressed. As part of the examination of solar system evolution, an N-body code was developed which describes the latter stages of planet formation from the accretion of planetesimals. To test the code for accuracy and run-time efficiency, and to develop a stronger theoretical foundation, problems were studied in orbital dynamics. A regional analysis of the correlation in the gravity and topography fields of Venus was performed in order to determine the small and intermediate scale subsurface structure.

  10. State machine analysis of sensor data from dynamic processes

    DOEpatents

    Cook, William R.; Brabson, John M.; Deland, Sharon M.

    2003-12-23

    A state machine model analyzes sensor data from dynamic processes at a facility to identify the actual processes that were performed at the facility during a period of interest for the purpose of remote facility inspection. An inspector can further input the expected operations into the state machine model and compare the expected, or declared, processes to the actual processes to identify undeclared processes at the facility. The state machine analysis enables the generation of knowledge about the state of the facility at all levels, from location of physical objects to complex operational concepts. Therefore, the state machine method and apparatus may benefit any agency or business with sensored facilities that stores or manipulates expensive, dangerous, or controlled materials or information.

  11. Aeroservoelastic and Flight Dynamics Analysis Using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Arena, Andrew S., Jr.

    1999-01-01

    This document in large part is based on the Masters Thesis of Cole Stephens. The document encompasses a variety of technical and practical issues involved when using the STARS codes for Aeroservoelastic analysis of vehicles. The document covers in great detail a number of technical issues and step-by-step details involved in the simulation of a system where aerodynamics, structures and controls are tightly coupled. Comparisons are made to a benchmark experimental program conducted at NASA Langley. One of the significant advantages of the methodology detailed is that as a result of the technique used to accelerate the CFD-based simulation, a systems model is produced which is very useful for developing the control law strategy, and subsequent high-speed simulations.

  12. Coupled climate network analysis of multidecadal dynamics in the Arctic

    NASA Astrophysics Data System (ADS)

    Wiedermann, M.; Donges, J. F.; Heitzig, J.; Kurths, J.

    2012-04-01

    Climate network analysis provides a powerful tool for investigating the correlation structure of the dynamical system Earth. Elements of time series analysis and the theory of complex networks are combined to give new insights into the dynamics of the climate system by delivering a spatially resolved image of the underlying correlation structure from which the network is constructed. Recent results have indicated a possible correlation between the Atlantic Multidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO) with a time lag of 15 to 30 years. However, identifying the involved physical mechanisms remains an open problem of ocean science and atmospheric research. We perform a climate network analysis aiming at assessing the importance of the Arctic for this connection between North Atlantic and North Pacific. As storm tracks were suggested to play a role and the large delay between AMO and PDO points to oceanic processes at work, we focus on analyzing the coupling structure between oceanic sea surface temperature (SST) and atmospheric sea level pressure (SAP) as well as geopotential height (GPH) fields. We employ the recently developed theory of interacting networks, with the corresponding statistical cross-network measures, that enables us to study the properties of a coupled climate network that divides into several subnetworks representing horizontal fields of different observables. As the analysis is performed in a region close to the north pole one has to bear in mind that climatological datasets are often arranged on a rectangular grid such that the density of nodes increases rapidly towards the poles. To correct for the distortions in our results resulting from this inhomogenous node density, we refine the cross-network measures in a way that enables us to assign every node with an individual weight according to the area that the node represents on the Earth's surface. This method has already been applied to the standard set of measures

  13. Nonlinear dynamic analysis for elastic robotic arms

    NASA Astrophysics Data System (ADS)

    Korayem, M. H.; Rahimi, H. N.

    2011-06-01

    The aim of the paper is to analyze the nonlinear dynamics of robotic arms with elastic links and joints. The main contribution of the paper is the comparative assessment of assumed modes and finite element methods as more convenient approaches for computing the nonlinear dynamic of robotic systems. Numerical simulations comprising both methods are carried out and results are discussed. Hence, advantages and disadvantages of each method are illustrated. Then, adding the joint flexibility to the system is dealt with and the obtained model is demonstrated. Finally, a brief description of the optimal motion generation is presented and the simulation is carried out to investigate the role of robot dynamic modeling in the control of robots.

  14. Hubble Space Telescope Pointing Performance Due to Micro-Dynamic Disturbances from the NICMOS Cryogenic Cooler

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Sills, Joel W., Jr.; Voorhees, Carl R.; Griffin, Thomas J. (Technical Monitor)

    2002-01-01

    The Vibration Admittance Test (VET) was performed to measure the emitted disturbances of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) Cryogenic Cooler (NCC) in preparation for NCC installation onboard the Hubble Space Telescope (HST) during Servicing Mission 3B (SM3B). Details of the VET ground-test are described, including facility characteristics, sensor complement and configuration, NCC suspension, and background noise measurements. Kinematic equations used to compute NCC mass center displacements and accelerations from raw measurements are presented, and dynamic equations of motion for the NCC VET system are developed and verified using modal test data. A MIMO linear frequency-domain analysis method is used to compute NCC-induced loads and HST boresight jitter from VET measurements. These results are verified by a nonlinear time-domain analysis approach using a high-fidelity structural dynamics and pointing control simulation for HST. NCC emitted acceleration levels not exceeding 35 micro-g rms were measured in the VET and analysis methods herein predict 3.1 milli-areseconds rms jitter for HST on-orbit. Because the NCC is predicted to become the predominant disturbance source for HST, VET results indicate that HST will continue to meet the 7 milli-arcsecond pointing stability mission requirement in the post-SM3B era.

  15. Overview af MSFC's Applied Fluid Dynamics Analysis Group Activities

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto; Griffin, Lisa; Williams, Robert

    2004-01-01

    This paper presents viewgraphs on NASA Marshall Space Flight Center's Applied Fluid Dynamics Analysis Group Activities. The topics include: 1) Status of programs at MSFC; 2) Fluid Mechanics at MSFC; 3) Relevant Fluid Dynamics Activities at MSFC; and 4) Shuttle Return to Flight.

  16. DynamicBC: A MATLAB Toolbox for Dynamic Brain Connectome Analysis

    PubMed Central

    Xu, Qiang; Ji, Gong-Jun; Zhang, Zhiqiang; Zang, Yu-Feng; Lu, Guangming

    2014-01-01

    Abstract The brain connectome collects the complex network architectures, looking at both static and dynamic functional connectivity. The former normally requires stationary signals and connections. However, the human brain activity and connections are most likely time dependent and dynamic, and related to ongoing rhythmic activity. We developed an open-source MATLAB toolbox DynamicBC with user-friendly graphical user interfaces, implementing both dynamic functional and effective connectivity for tracking brain dynamics from functional MRI. We provided two strategies for dynamic analysis: (1) the commonly utilized sliding-window analysis and (2) the flexible least squares based time-varying parameter regression strategy. The toolbox also implements multiple functional measures including seed-to-voxel analysis, region of interest (ROI)-to-ROI analysis, and voxel-to-voxel analysis. We describe the principles of the implemented algorithms, and then present representative results from simulations and empirical data applications. We believe that this toolbox will help neuroscientists and neurologists to easily map dynamic brain connectomics. PMID:25083734

  17. Dynamical scaling analysis of plant callus growth

    NASA Astrophysics Data System (ADS)

    Galeano, J.; Buceta, J.; Juarez, K.; Pumariño, B.; de la Torre, J.; Iriondo, J. M.

    2003-07-01

    We present experimental results for the dynamical scaling properties of the development of plant calli. We have assayed two different species of plant calli, Brassica oleracea and Brassica rapa, under different growth conditions, and show that their dynamical scalings share a universality class. From a theoretical point of view, we introduce a scaling hypothesis for systems whose size evolves in time. We expect our work to be relevant for the understanding and characterization of other systems that undergo growth due to cell division and differentiation, such as, for example, tumor development.

  18. Dynamic analysis of noncontacting face seals

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1980-01-01

    The dynamic behavior of a noncontacting coned face seal is analyzed taking into account various design parameters and operating conditions. The primary seal ring motion is expressed by a set of nonlinear equations for three degrees of freedom. These equations, which are solved numerically, allow identification of two dimensionless groups of parameters that affect the seal dynamic behavior. Stability maps for various seals are presented. These maps contain a stable-to-unstable transition region in which the ring wobbles at half the shaft frequency. The effect of various parameters on seal stability is discussed and an empirical expression for critical stability is offered.

  19. A Revision of the Dynamic Design-Analysis Method (DDAM) in NASTRAN

    DTIC Science & Technology

    1982-12-01

    NASTRAN is performed in one normal modes analysis run with a set of DMAP ALTERs. This section describes the input details for such a run. EXECUTIVE...DYNAMIC DESIGN-ANALYSIS Final METHOD (DDAM) IN NASTRAN 6. PERFORMING ORG. REPORT NUMBER 7. AUTIOR(e) 6. CONTRACT OR GRANT NUMBER(@) Myles M. Hurwitz 9...from Report) IS. SUPPLEMENTARY NOTES 19., KEY WORDS (Continue on reverse side If necessary end Identify by block number) NASTRAN IPMP DDAM Shock Design

  20. Axial and centrifugal pump meanline performance analysis

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    1994-01-01

    A meanline pump flow modeling method has been developed to provide a fast capability for modeling pumps of cryogenic rocket engines. Based on this method, a meanline pump flow code (PUMPA) has been written that can predict the performance of pumps at off-design operating conditions, given the loss of the diffusion system at the design point. The design point rotor efficiency is obtained from empirically derived correlations of loss to rotor specific speed. The rapid input setup and computer run time for the meanline pump flow code makes it an effective analysis and conceptual design tool. The map generation capabilities of the PUMPA code provide the information needed for interfacing with a rocket engine system modeling code.

  1. Dynamic performance of the RHIC acceleration RF system

    SciTech Connect

    Pirki, Werner

    1993-04-01

    The RHIC accelerating rf system operates at 26.7 MHz and has to provide as its name suggests the power and agility to accelerate the beams from injection up to the end energy and to hand them off to the storage rf system. This note discusses methods to simulate the dynamic behavior of the accelerating cavity system and gives results for the amplitude and phase transient in response to fast changes of the reference signal.

  2. Dynamic State Estimation Utilizing High Performance Computing Methods

    SciTech Connect

    Schneider, Kevin P.; Huang, Zhenyu; Yang, Bo; Hauer, Matthew L.; Nieplocha, Jaroslaw

    2009-03-18

    The state estimation tools which are currently deployed in power system control rooms are based on a quasi-steady-state assumption. As a result, the suite of operational tools that rely on state estimation results as inputs do not have dynamic information available and their accuracy is compromised. This paper presents an overview of the Kalman Filtering process and then focuses on the implementation of the predication component on multiple processors.

  3. Radiation characteristics and implosion dynamics of Z-pinch dynamic hohlraums performed on PTS facility

    NASA Astrophysics Data System (ADS)

    Huang, Xian Bin; Ren, Xiao Dong; Dan, Jia Kun; Wang, Kun Lun; Xu, Qiang; Zhou, Shao Tong; Zhang, Si Qun; Cai, Hong Chun; Li, Jing; Wei, Bing; Ji, Ce; Feng, Shu Ping; Wang, Meng; Xie, Wei Ping; Deng, Jian Jun

    2017-09-01

    The preliminary experimental results of Z-pinch dynamic hohlraums conducted on the Primary Test Stand (PTS) facility are presented herein. Six different types of dynamic hohlraums were used in order to study the influence of load parameters on radiation characteristics and implosion dynamics, including dynamic hohlraums driven by single and nested arrays with different array parameters and different foams. The PTS facility can deliver a current of 6-8 MA in the peak current and 60-70 ns in the 10%-90% rising time to dynamic hohlraum loads. A set of diagnostics monitor the implosion dynamics of plasmas, the evolution of shock waves in the foam and the axial/radial X-ray radiation, giving the key parameters characterizing the features of dynamic hohlraums, such as the trajectory and related velocity of shock waves, radiation temperature, and so on. The experimental results presented here put our future study on Z-pinch dynamic hohlraums on the PTS facility on a firm basis.

  4. A Dynamic Analysis of Piezoelectric Strained Elements.

    DTIC Science & Technology

    1992-12-01

    of Piezoelectricity , Oxford Univ.Press, Oxford (1990). E38] T.C.Ting, "Dynamic response of composites", Appl. Mechs.Rev., vol. 33, no.12, Dp.1629-16...Plenum Press, New York (1969). 276 [36] J.Zelenka, Piezoelectric Resonators and their Applications, Elsevier, Amsterdam (1986). [37] T.Ikeda, Fundamentals

  5. NPV Sensitivity Analysis: A Dynamic Excel Approach

    ERIC Educational Resources Information Center

    Mangiero, George A.; Kraten, Michael

    2017-01-01

    Financial analysts generally create static formulas for the computation of NPV. When they do so, however, it is not readily apparent how sensitive the value of NPV is to changes in multiple interdependent and interrelated variables. It is the aim of this paper to analyze this variability by employing a dynamic, visually graphic presentation using…

  6. Stormwater quality models: performance and sensitivity analysis.

    PubMed

    Dotto, C B S; Kleidorfer, M; Deletic, A; Fletcher, T D; McCarthy, D T; Rauch, W

    2010-01-01

    The complex nature of pollutant accumulation and washoff, along with high temporal and spatial variations, pose challenges for the development and establishment of accurate and reliable models of the pollution generation process in urban environments. Therefore, the search for reliable stormwater quality models remains an important area of research. Model calibration and sensitivity analysis of such models are essential in order to evaluate model performance; it is very unlikely that non-calibrated models will lead to reasonable results. This paper reports on the testing of three models which aim to represent pollutant generation from urban catchments. Assessment of the models was undertaken using a simplified Monte Carlo Markov Chain (MCMC) method. Results are presented in terms of performance, sensitivity to the parameters and correlation between these parameters. In general, it was suggested that the tested models poorly represent reality and result in a high level of uncertainty. The conclusions provide useful information for the improvement of existing models and insights for the development of new model formulations.

  7. Deep Space Optical Link ARQ Performance Analysis

    NASA Technical Reports Server (NTRS)

    Clare, Loren; Miles, Gregory

    2016-01-01

    Substantial advancements have been made toward the use of optical communications for deep space exploration missions, promising a much higher volume of data to be communicated in comparison with present -day Radio Frequency (RF) based systems. One or more ground-based optical terminals are assumed to communicate with the spacecraft. Both short-term and long-term link outages will arise due to weather at the ground station(s), space platform pointing stability, and other effects. To mitigate these outages, an Automatic Repeat Query (ARQ) retransmission method is assumed, together with a reliable back channel for acknowledgement traffic. Specifically, the Licklider Transmission Protocol (LTP) is used, which is a component of the Disruption-Tolerant Networking (DTN) protocol suite that is well suited for high bandwidth-delay product links subject to disruptions. We provide an analysis of envisioned deep space mission scenarios and quantify buffering, latency and throughput performance, using a simulation in which long-term weather effects are modeled with a Gilbert -Elliot Markov chain, short-term outages occur as a Bernoulli process, and scheduled outages arising from geometric visibility or operational constraints are represented. We find that both short- and long-term effects impact throughput, but long-term weather effects dominate buffer sizing and overflow losses as well as latency performance.

  8. Dynamic Performance of a Residential Air-to-Air Heat Pump.

    ERIC Educational Resources Information Center

    Kelly, George E.; Bean, John

    This publication is a study of the dynamic performance of a 5-ton air-to-air heat pump in a residence in Washington, D.C. The effect of part-load operation on the heat pump's cooling and heating coefficients of performance was determined. Discrepancies between measured performance and manufacturer-supplied performance data were found when the unit…

  9. Dynamic peripheral visual performance relates to alpha activity in soccer players.

    PubMed

    Nan, Wenya; Migotina, Daria; Wan, Feng; Lou, Chin Ian; Rodrigues, João; Semedo, João; Vai, Mang I; Pereira, Jose Gomes; Melicio, Fernando; Da Rosa, Agostinho C

    2014-01-01

    Many studies have demonstrated the relationship between the alpha activity and the central visual ability, in which the visual ability is usually assessed through static stimuli. Besides static circumstance, however in the real environment there are often dynamic changes and the peripheral visual ability in a dynamic environment (i.e., dynamic peripheral visual ability) is important for all people. So far, no work has reported whether there is a relationship between the dynamic peripheral visual ability and the alpha activity. Thus, the objective of this study was to investigate their relationship. Sixty-two soccer players performed a newly designed peripheral vision task in which the visual stimuli were dynamic, while their EEG signals were recorded from Cz, O1, and O2 locations. The relationship between the dynamic peripheral visual performance and the alpha activity was examined by the percentage-bend correlation test. The results indicated no significant correlation between the dynamic peripheral visual performance and the alpha amplitudes in the eyes-open and eyes-closed resting condition. However, it was not the case for the alpha activity during the peripheral vision task: the dynamic peripheral visual performance showed significant positive inter-individual correlations with the amplitudes in the alpha band (8-12 Hz) and the individual alpha band (IAB) during the peripheral vision task. A potential application of this finding is to improve the dynamic peripheral visual performance by up-regulating alpha activity using neuromodulation techniques.

  10. Dynamic peripheral visual performance relates to alpha activity in soccer players

    PubMed Central

    Nan, Wenya; Migotina, Daria; Wan, Feng; Lou, Chin Ian; Rodrigues, João; Semedo, João; Vai, Mang I; Pereira, Jose Gomes; Melicio, Fernando; Da Rosa, Agostinho C.

    2014-01-01

    Many studies have demonstrated the relationship between the alpha activity and the central visual ability, in which the visual ability is usually assessed through static stimuli. Besides static circumstance, however in the real environment there are often dynamic changes and the peripheral visual ability in a dynamic environment (i.e., dynamic peripheral visual ability) is important for all people. So far, no work has reported whether there is a relationship between the dynamic peripheral visual ability and the alpha activity. Thus, the objective of this study was to investigate their relationship. Sixty-two soccer players performed a newly designed peripheral vision task in which the visual stimuli were dynamic, while their EEG signals were recorded from Cz, O1, and O2 locations. The relationship between the dynamic peripheral visual performance and the alpha activity was examined by the percentage-bend correlation test. The results indicated no significant correlation between the dynamic peripheral visual performance and the alpha amplitudes in the eyes-open and eyes-closed resting condition. However, it was not the case for the alpha activity during the peripheral vision task: the dynamic peripheral visual performance showed significant positive inter-individual correlations with the amplitudes in the alpha band (8–12 Hz) and the individual alpha band (IAB) during the peripheral vision task. A potential application of this finding is to improve the dynamic peripheral visual performance by up-regulating alpha activity using neuromodulation techniques. PMID:25426058

  11. Dynamic network data envelopment analysis for university hospitals evaluation

    PubMed Central

    Lobo, Maria Stella de Castro; Rodrigues, Henrique de Castro; André, Edgard Caires Gazzola; de Azeredo, Jônatas Almeida; Lins, Marcos Pereira Estellita

    2016-01-01

    ABSTRACT OBJECTIVE To develop an assessment tool to evaluate the efficiency of federal university general hospitals. METHODS Data envelopment analysis, a linear programming technique, creates a best practice frontier by comparing observed production given the amount of resources used. The model is output-oriented and considers variable returns to scale. Network data envelopment analysis considers link variables belonging to more than one dimension (in the model, medical residents, adjusted admissions, and research projects). Dynamic network data envelopment analysis uses carry-over variables (in the model, financing budget) to analyze frontier shift in subsequent years. Data were gathered from the information system of the Brazilian Ministry of Education (MEC), 2010-2013. RESULTS The mean scores for health care, teaching and research over the period were 58.0%, 86.0%, and 61.0%, respectively. In 2012, the best performance year, for all units to reach the frontier it would be necessary to have a mean increase of 65.0% in outpatient visits; 34.0% in admissions; 12.0% in undergraduate students; 13.0% in multi-professional residents; 48.0% in graduate students; 7.0% in research projects; besides a decrease of 9.0% in medical residents. In the same year, an increase of 0.9% in financing budget would be necessary to improve the care output frontier. In the dynamic evaluation, there was progress in teaching efficiency, oscillation in medical care and no variation in research. CONCLUSIONS The proposed model generates public health planning and programming parameters by estimating efficiency scores and making projections to reach the best practice frontier. PMID:27191158

  12. Dynamic Characteristics of Human Motor Performance in Control Systems.

    DTIC Science & Technology

    1979-01-01

    including the neural control of respiration and vestibular organization. In addition, computer simulations of small neuronal networks have added an understanding of circuits involved in motor performance. (Author)

  13. Radio-science performance analysis software

    NASA Astrophysics Data System (ADS)

    Morabito, D. D.; Asmar, S. W.

    1995-02-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  14. Radio-science performance analysis software

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Asmar, S. W.

    1995-01-01

    The Radio Science Systems Group (RSSG) provides various support functions for several flight project radio-science teams. Among these support functions are uplink and sequence planning, real-time operations monitoring and support, data validation, archiving and distribution functions, and data processing and analysis. This article describes the support functions that encompass radio-science data performance analysis. The primary tool used by the RSSG to fulfill this support function is the STBLTY program set. STBLTY is used to reconstruct observable frequencies and calculate model frequencies, frequency residuals, frequency stability in terms of Allan deviation, reconstructed phase, frequency and phase power spectral density, and frequency drift rates. In the case of one-way data, using an ultrastable oscillator (USO) as a frequency reference, the program set computes the spacecraft transmitted frequency and maintains a database containing the in-flight history of the USO measurements. The program set also produces graphical displays. Some examples and discussions on operating the program set on Galileo and Ulysses data will be presented.

  15. Performance Analysis of ICA in Sensor Array

    PubMed Central

    Cai, Xin; Wang, Xiang; Huang, Zhitao; Wang, Fenghua

    2016-01-01

    As the best-known scheme in the field of Blind Source Separation (BSS), Independent Component Analysis (ICA) has been intensively used in various domains, including biomedical and acoustics applications, cooperative or non-cooperative communication, etc. While sensor arrays are involved in most of the applications, the influence on the performance of ICA of practical factors therein has not been sufficiently investigated yet. In this manuscript, the issue is researched by taking the typical antenna array as an illustrative example. Factors taken into consideration include the environment noise level, the properties of the array and that of the radiators. We analyze the analytic relationship between the noise variance, the source variance, the condition number of the mixing matrix and the optimal signal to interference-plus-noise ratio, as well as the relationship between the singularity of the mixing matrix and practical factors concerned. The situations where the mixing process turns (nearly) singular have been paid special attention to, since such circumstances are critical in applications. Results and conclusions obtained should be instructive when applying ICA algorithms on mixtures from sensor arrays. Moreover, an effective countermeasure against the cases of singular mixtures has been proposed, on the basis of previous analysis. Experiments validating the theoretical conclusions as well as the effectiveness of the proposed scheme have been included. PMID:27164100

  16. Past Performance analysis of HPOTP bearings

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.; Dolan, F. J.

    1982-01-01

    The past performance analysis conducted on three High Pressure Oxygen Turbopump (HPOTP) bearings from the Space Shuttle Main Engine is presented. Metallurgical analysis of failed bearing balls and races, and wear track and crack configuration analyses were carried out. In addition, one bearing was tested in laboratory at very high axial loads. The results showed that the cracks were surface initiated and propagated into subsurface locations at relatively small angles. Subsurface cracks were much more extensive than was appeared on the surface. The location of major cracks in the races corresponded to high radial loads rather than high axial loads. There was evidence to suggest that the inner races were heated to elevated temperatures. A failure scenario was developed based on the above findings. According to this scenario the HPOTP bearings are heated by a combination of high loads and high coefficient of friction (poor lubrication). Different methods of extending the HPOTP bearing life are also discussed. These include reduction of axial loads, improvements in bearing design, lubrication and cooling, and use of improved bearing materials.

  17. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity

    PubMed Central

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations. PMID:26075210

  18. Integrating atomistic molecular dynamics simulations, experiments, and network analysis to study protein dynamics: strength in unity.

    PubMed

    Papaleo, Elena

    2015-01-01

    In the last years, we have been observing remarkable improvements in the field of protein dynamics. Indeed, we can now study protein dynamics in atomistic details over several timescales with a rich portfolio of experimental and computational techniques. On one side, this provides us with the possibility to validate simulation methods and physical models against a broad range of experimental observables. On the other side, it also allows a complementary and comprehensive view on protein structure and dynamics. What is needed now is a better understanding of the link between the dynamic properties that we observe and the functional properties of these important cellular machines. To make progresses in this direction, we need to improve the physical models used to describe proteins and solvent in molecular dynamics, as well as to strengthen the integration of experiments and simulations to overcome their own limitations. Moreover, now that we have the means to study protein dynamics in great details, we need new tools to understand the information embedded in the protein ensembles and in their dynamic signature. With this aim in mind, we should enrich the current tools for analysis of biomolecular simulations with attention to the effects that can be propagated over long distances and are often associated to important biological functions. In this context, approaches inspired by network analysis can make an important contribution to the analysis of molecular dynamics simulations.

  19. Dynamic Analysis of Capture Devices for Momentum Exchange with Tethers

    NASA Technical Reports Server (NTRS)

    Canfield, Stephen

    2002-01-01

    One of the significant challenges in developing a momentum exchange / electrodynamic reboost tether system is in the analysis and design of the capture device and its effects on the overall dynamics of the system. The goal of this work is to develop appropriate tether momentum exchange models that can simulate and evaluate the requirements of such a system, and be used to create specifications on the design of a capture device. This report briefly describes dynamic model development, simulation of the momentum exchange process, evaluation of dynamic effects of errors in the momentum exchange process, and the development of guidelines in selecting dynamic properties in the design of a capture device.

  20. Theoretical and software considerations for nonlinear dynamic analysis

    NASA Technical Reports Server (NTRS)

    Schmidt, R. J.; Dodds, R. H., Jr.

    1983-01-01

    In the finite element method for structural analysis, it is generally necessary to discretize the structural model into a very large number of elements to accurately evaluate displacements, strains, and stresses. As the complexity of the model increases, the number of degrees of freedom can easily exceed the capacity of present-day software system. Improvements of structural analysis software including more efficient use of existing hardware and improved structural modeling techniques are discussed. One modeling technique that is used successfully in static linear and nonlinear analysis is multilevel substructuring. This research extends the use of multilevel substructure modeling to include dynamic analysis and defines the requirements for a general purpose software system capable of efficient nonlinear dynamic analysis. The multilevel substructuring technique is presented, the analytical formulations and computational procedures for dynamic analysis and nonlinear mechanics are reviewed, and an approach to the design and implementation of a general purpose structural software system is presented.