Sample records for dynamic phase change

  1. Dynamic functional-structural coupling within acute functional state change phases: Evidence from a depression recognition study.

    PubMed

    Bi, Kun; Hua, Lingling; Wei, Maobin; Qin, Jiaolong; Lu, Qing; Yao, Zhijian

    2016-02-01

    Dynamic functional-structural connectivity (FC-SC) coupling might reflect the flexibility by which SC relates to functional connectivity (FC). However, during the dynamic acute state change phases of FC, the relationship between FC and SC may be distinctive and embody the abnormality inherent in depression. This study investigated the depression-related inter-network FC-SC coupling within particular dynamic acute state change phases of FC. Magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data were collected from 26 depressive patients (13 women) and 26 age-matched controls (13 women). We constructed functional brain networks based on MEG data and structural networks from DTI data. The dynamic connectivity regression algorithm was used to identify the state change points of a time series of inter-network FC. The time period of FC that contained change points were partitioned into types of dynamic phases (acute rising phase, acute falling phase,acute rising and falling phase and abrupt FC variation phase) to explore the inter-network FC-SC coupling. The selected FC-SC couplings were then fed into the support vector machine (SVM) for depression recognition. The best discrimination accuracy was 82.7% (P=0.0069) with FC-SC couplings, particularly in the acute rising phase of FC. Within the FC phases of interest, the significant discriminative network pair was related to the salience network vs ventral attention network (SN-VAN) (P=0.0126) during the early rising phase (70-170ms). This study suffers from a small sample size, and the individual acute length of the state change phases was not considered. The increased values of significant discriminative vectors of FC-SC coupling in depression suggested that the capacity to process negative emotion might be more directly related to the SC abnormally and be indicative of more stringent and less dynamic brain function in SN-VAN, especially in the acute rising phase of FC. We demonstrated that depressive brain dysfunctions could be better characterized by reduced FC-SC coupling flexibility in this particular phase. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Multiscale Modeling of Multiphase Fluid Flow

    DTIC Science & Technology

    2016-08-01

    the disparate time and length scales involved in modeling fluid flow and heat transfer. Molecular dynamics simulations were carried out to provide a...fluid dynamics methods were used to investigate the heat transfer process in open-cell micro-foam with phase change material; enhancement of natural...Computational fluid dynamics, Heat transfer, Phase change material in Micro-foam, Molecular Dynamics, Multiphase flow, Multiscale modeling, Natural

  3. Dynamic structural colour using vanadium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Wilson, K.; Marocico, C. A.; Bradley, A. L.

    2018-06-01

    A thin film stack consisting of layers of indium tin oxide (ITO) with an intermediate vanadium oxide (VO2) layer on an optically thick silver film has been investigated for dynamic structural colour. The structure benefits from the phase change properties of VO2. Compared with other phase change materials, such as germanium antimony telluride (GST), VO2 can be offered as a lower power consumption alternative. It has been overlooked in the visible spectral range due to its smaller refractive index change below 700 nm. We demonstrate that the sensitivity of the visible reflectance spectrum to the change in phase of a 30 nm VO2 layer is increased after it is incorporated in a thin film stack, with performance comparable to other phase change materials. The extent to which dynamic tuning of the reflectance spectra of ITO–VO2–ITO–Ag thin film stacks can be exploited for colour switching is reported, with approximately 25% change in reflectance demonstrated at 550 nm. Inclusion of a top ITO layer is also shown to improve the chromaticity change on phase transition.

  4. The role of gap phase processes in the biomass dynamics of tropical forests

    PubMed Central

    Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M.N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme

    2007-01-01

    The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four ‘old-growth’ tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr−1) and decreased at HKK (−0.56% yr−1) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget. PMID:17785266

  5. The role of gap phase processes in the biomass dynamics of tropical forests.

    PubMed

    Feeley, Kenneth J; Davies, Stuart J; Ashton, Peter S; Bunyavejchewin, Sarayudh; Nur Supardi, M N; Kassim, Abd Rahman; Tan, Sylvester; Chave, Jérôme

    2007-11-22

    The responses of tropical forests to global anthropogenic disturbances remain poorly understood. Above-ground woody biomass in some tropical forest plots has increased over the past several decades, potentially reflecting a widespread response to increased resource availability, for example, due to elevated atmospheric CO2 and/or nutrient deposition. However, previous studies of biomass dynamics have not accounted for natural patterns of disturbance and gap phase regeneration, making it difficult to quantify the importance of environmental changes. Using spatially explicit census data from large (50 ha) inventory plots, we investigated the influence of gap phase processes on the biomass dynamics of four 'old-growth' tropical forests (Barro Colorado Island (BCI), Panama; Pasoh and Lambir, Malaysia; and Huai Kha Khaeng (HKK), Thailand). We show that biomass increases were gradual and concentrated in earlier-phase forest patches, while biomass losses were generally of greater magnitude but concentrated in rarer later-phase patches. We then estimate the rate of biomass change at each site independent of gap phase dynamics using reduced major axis regressions and ANCOVA tests. Above-ground woody biomass increased significantly at Pasoh (+0.72% yr(-1)) and decreased at HKK (-0.56% yr(-1)) independent of changes in gap phase but remained stable at both BCI and Lambir. We conclude that gap phase processes play an important role in the biomass dynamics of tropical forests, and that quantifying the role of gap phase processes will help improve our understanding of the factors driving changes in forest biomass as well as their place in the global carbon budget.

  6. Optimal dynamic remapping of parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, David M.; Reynolds, Paul F., Jr.

    1987-01-01

    A large class of computations are characterized by a sequence of phases, with phase changes occurring unpredictably. The decision problem was considered regarding the remapping of workload to processors in a parallel computation when the utility of remapping and the future behavior of the workload is uncertain, and phases exhibit stable execution requirements during a given phase, but requirements may change radically between phases. For these problems a workload assignment generated for one phase may hinder performance during the next phase. This problem is treated formally for a probabilistic model of computation with at most two phases. The fundamental problem of balancing the expected remapping performance gain against the delay cost was addressed. Stochastic dynamic programming is used to show that the remapping decision policy minimizing the expected running time of the computation has an extremely simple structure. Because the gain may not be predictable, the performance of a heuristic policy that does not require estimnation of the gain is examined. The heuristic method's feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiprocessor. The results suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change. The results also suggest that this heuristic is applicable to computations with more than two phases.

  7. Quantitative phase-contrast digital holographic microscopy for cell dynamic evaluation

    NASA Astrophysics Data System (ADS)

    Yu, Lingfeng; Mohanty, Samarendra; Berns, Michael W.; Chen, Zhongping

    2009-02-01

    The laser microbeam uses lasers to alter and/or to ablate intracellular organelles and cellular and tissue samples, and, today, has become an important tool for cell biologists to study the molecular mechanism of complex biological systems by removing individual cells or sub-cellular organelles. However, absolute quantitation of the localized alteration/damage to transparent phase objects, such as the cell membrane or chromosomes, was not possible using conventional phase-contrast or differential interference contrast microscopy. We report the development of phase-contrast digital holographic microscopy for quantitative evaluation of cell dynamic changes in real time during laser microsurgery. Quantitative phase images are recorded during the process of laser microsurgery and thus, the dynamic change in phase can be continuously evaluated. Out-of-focus organelles are re-focused by numerical reconstruction algorithms.

  8. Polymer Fluid Dynamics.

    ERIC Educational Resources Information Center

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  9. Oscillatory phase dynamics in neural entrainment underpin illusory percepts of time.

    PubMed

    Herrmann, Björn; Henry, Molly J; Grigutsch, Maren; Obleser, Jonas

    2013-10-02

    Neural oscillatory dynamics are a candidate mechanism to steer perception of time and temporal rate change. While oscillator models of time perception are strongly supported by behavioral evidence, a direct link to neural oscillations and oscillatory entrainment has not yet been provided. In addition, it has thus far remained unaddressed how context-induced illusory percepts of time are coded for in oscillator models of time perception. To investigate these questions, we used magnetoencephalography and examined the neural oscillatory dynamics that underpin pitch-induced illusory percepts of temporal rate change. Human participants listened to frequency-modulated sounds that varied over time in both modulation rate and pitch, and judged the direction of rate change (decrease vs increase). Our results demonstrate distinct neural mechanisms of rate perception: Modulation rate changes directly affected listeners' rate percept as well as the exact frequency of the neural oscillation. However, pitch-induced illusory rate changes were unrelated to the exact frequency of the neural responses. The rate change illusion was instead linked to changes in neural phase patterns, which allowed for single-trial decoding of percepts. That is, illusory underestimations or overestimations of perceived rate change were tightly coupled to increased intertrial phase coherence and changes in cerebro-acoustic phase lag. The results provide insight on how illusory percepts of time are coded for by neural oscillatory dynamics.

  10. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior.

    PubMed

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-01-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.

  11. Dynamic phase differences based on quantitative phase imaging for the objective evaluation of cell behavior

    NASA Astrophysics Data System (ADS)

    Krizova, Aneta; Collakova, Jana; Dostal, Zbynek; Kvasnica, Lukas; Uhlirova, Hana; Zikmund, Tomas; Vesely, Pavel; Chmelik, Radim

    2015-11-01

    Quantitative phase imaging (QPI) brought innovation to noninvasive observation of live cell dynamics seen as cell behavior. Unlike the Zernike phase contrast or differential interference contrast, QPI provides quantitative information about cell dry mass distribution. We used such data for objective evaluation of live cell behavioral dynamics by the advanced method of dynamic phase differences (DPDs). The DPDs method is considered a rational instrument offered by QPI. By subtracting the antecedent from the subsequent image in a time-lapse series, only the changes in mass distribution in the cell are detected. The result is either visualized as a two-dimensional color-coded projection of these two states of the cell or as a time dependence of changes quantified in picograms. Then in a series of time-lapse recordings, the chain of cell mass distribution changes that would otherwise escape attention is revealed. Consequently, new salient features of live cell behavior should emerge. Construction of the DPDs method and results exhibiting the approach are presented. Advantage of the DPDs application is demonstrated on cells exposed to an osmotic challenge. For time-lapse acquisition of quantitative phase images, the recently developed coherence-controlled holographic microscope was employed.

  12. Quantum trajectory phase transitions in the micromaser.

    PubMed

    Garrahan, Juan P; Armour, Andrew D; Lesanovsky, Igor

    2011-08-01

    We study the dynamics of the single-atom maser, or micromaser, by means of the recently introduced method of thermodynamics of quantum jump trajectories. We find that the dynamics of the micromaser displays multiple space-time phase transitions, i.e., phase transitions in ensembles of quantum jump trajectories. This rich dynamical phase structure becomes apparent when trajectories are classified by dynamical observables that quantify dynamical activity, such as the number of atoms that have changed state while traversing the cavity. The space-time transitions can be either first order or continuous, and are controlled not just by standard parameters of the micromaser but also by nonequilibrium "counting" fields. We discuss how the dynamical phase behavior relates to the better known stationary-state properties of the micromaser.

  13. Ionic liquid/water mixtures: from hostility to conciliation.

    PubMed

    Kohno, Yuki; Ohno, Hiroyuki

    2012-07-21

    Water was originally inimical to ionic liquids (ILs) especially in the analysis of their detailed properties. Various data on the properties of ILs indicate that there are two ways to design functions of ionic liquids. The first is to change the structure of component ions, to provide "task-specific ILs". The second is to mix ILs with other components, such as other ILs, organic solvents or water. Mixing makes it easy to control the properties of the solution. In this strategy, water is now a very important partner. Below, we summarise our recent results on the properties of IL/water mixtures. Stable phase separation is an effective method in some separation processes. Conversely, a dynamic phase change between a homogeneous mixture and separation of phases is important in many fields. Analysis of the relation between phase behaviour and the hydration state of the component ions indicates that the pattern of phase separation is governed by the hydrophilicity of the ions. Sufficiently hydrophilic ions yielded ILs that are miscible with water, and hydrophobic ions gave stable phase separation with water. ILs composed of hydrophobic but hydrated ions undergo a dynamic phase change between a homogeneous mixture and separate phases according to temperature. ILs having more than seven water molecules per ion pair undergo this phase transition. These dynamic phase changes are considered, with some examples, and application is made to the separation of water-soluble proteins.

  14. High-frequency intrinsic dynamics of the electrocaloric effect from direct atomistic simulations

    NASA Astrophysics Data System (ADS)

    Lisenkov, S.; Ponomareva, I.

    2018-05-01

    We propose a computational methodology capable of harvesting isothermal heat and entropy change in molecular dynamics simulations. The methodology is applied to study high-frequency dynamics of the electrocaloric effect (ECE) in ferroelectric PbTiO3. ECE is associated with a reversible change in temperature under adiabatic application of electric field or with a reversible change in entropy under isothermal application of the electric field. Accurate assessment of electrocaloric performance requires the knowledge of three quantities: isothermal heat, isothermal entropy change, and adiabatic temperature change. Our methodology allows computations of all these quantities directly, that is, without restoring to the reversible thermodynamical models. Consequently, it captures both reversible and irreversible effects, which is critical for ECE simulations. The approach is well suited to address the dynamics of the ECE, which so far remains underexplored. We report the following basic features of the intrinsic dynamics of ECE: (i) the ECE is independent of the electric field frequency, rate of application, or field profile; (ii) the effect persists up to the frequencies associated with the onset of dielectric losses and deteriorates from there due to the creation of irreversible entropy; and (iii) in the vicinity of the phase transition and in the paraelectric phase the onset of irreversible dynamics occurs at lower frequency as compared to the ferroelectric phase. The latter is attributed to lower intrinsic soft-mode frequencies and and larger losses in the paraelectric phase.

  15. Fundamental incorporation of the density change during melting of a confined phase change material

    NASA Astrophysics Data System (ADS)

    Hernández, Ernesto M.; Otero, José A.

    2018-02-01

    The modeling of thermal diffusion processes taking place in a phase change material presents a challenge when the dynamics of the phase transition is coupled to the mechanical properties of the container. Thermo-mechanical models have been developed by several authors, however, it will be shown that these models only explain the phase transition dynamics at low pressures when the density of each phase experiences negligible changes. In our proposal, a new energy-mass balance equation at the interface is derived and found to be a consequence of mass conservation. The density change experienced in each phase is predicted by the proposed formulation of the problem. Numerical and semi-analytical solutions to the proposed model are presented for an example on a high temperature phase change material. The solutions to the models presented by other authors are observed to be well-behaved close to the isobaric limit. However, compared to the results obtained from our model, the change in the fusion temperature, latent heat, and absolute pressure is found to be greatly overestimated by other proposals when the phase transition is studied close to the isochoric regime.

  16. Dynamic Control of Light Emission Faster than the Lifetime Limit Using VO2 Phase-Change

    DTIC Science & Technology

    2015-10-22

    ARTICLE Received 1 Jun 2015 | Accepted 14 Sep 2015 | Published 22 Oct 2015 Dynamic control of light emission faster than the lifetime limit using VO2...excited state lifetime . This proof-of-concept demonstration shows how integration with phase-change materials can transform wide- spread phosphorescent...faster than their radiative lifetime . The concept is based on the dynamic manipulation of light through tailoring the local density of optical states

  17. Topological phase transition in the quench dynamics of a one-dimensional Fermi gas with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wang, Pei; Yi, Wei; Xianlong, Gao

    2015-01-01

    We study the quench dynamics of a one-dimensional ultracold Fermi gas with synthetic spin-orbit coupling. At equilibrium, the ground state of the system can undergo a topological phase transition and become a topological superfluid with Majorana edge states. As the interaction is quenched near the topological phase boundary, we identify an interesting dynamical phase transition of the quenched state in the long-time limit, characterized by an abrupt change of the pairing gap at a critical quenched interaction strength. We further demonstrate the topological nature of this dynamical phase transition from edge-state analysis of the quenched states. Our findings provide interesting clues for the understanding of topological phase transitions in dynamical processes, and can be useful for the dynamical detection of Majorana edge states in corresponding systems.

  18. Effect of water phase transition on dynamic ruptures with thermal pressurization: Numerical simulations with changes in physical properties of water

    NASA Astrophysics Data System (ADS)

    Urata, Yumi; Kuge, Keiko; Kase, Yuko

    2015-02-01

    Phase transitions of pore water have never been considered in dynamic rupture simulations with thermal pressurization (TP), although they may control TP. From numerical simulations of dynamic rupture propagation including TP, in the absence of any water phase transition process, we predict that frictional heating and TP are likely to change liquid pore water into supercritical water for a strike-slip fault under depth-dependent stress. This phase transition causes changes of a few orders of magnitude in viscosity, compressibility, and thermal expansion among physical properties of water, thus affecting the diffusion of pore pressure. Accordingly, we perform numerical simulations of dynamic ruptures with TP, considering physical properties that vary with the pressure and temperature of pore water on a fault. To observe the effects of the phase transition, we assume uniform initial stress and no fault-normal variations in fluid density and viscosity. The results suggest that the varying physical properties decrease the total slip in cases with high stress at depth and small shear zone thickness. When fault-normal variations in fluid density and viscosity are included in the diffusion equation, they activate TP much earlier than the phase transition. As a consequence, the total slip becomes greater than that in the case with constant physical properties, eradicating the phase transition effect. Varying physical properties do not affect the rupture velocity, irrespective of the fault-normal variations. Thus, the phase transition of pore water has little effect on dynamic ruptures. Fault-normal variations in fluid density and viscosity may play a more significant role.

  19. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  20. Anomalous Phase Change in [(GeTe)2/(Sb2Te3)]20 Superlattice Observed by Coherent Phonon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Makino, K.; Saito, Y.; Mitrofanov, K.; Tominaga, J.; Kolobov, A. V.; Nakano, T.; Fons, P.; Hase, M.

    The temperature-dependent ultrafast coherent phonon dynamics of topological (GeTe)2/(Sb2Te3) super lattice phase change memory material was investigated. By comparing with Ge-Sb-Te alloy, a clear contrast suggesting the unique phase change behavior was found.

  1. Ab Initio Molecular-Dynamics Simulation of Neuromorphic Computing in Phase-Change Memory Materials.

    PubMed

    Skelton, Jonathan M; Loke, Desmond; Lee, Taehoon; Elliott, Stephen R

    2015-07-08

    We present an in silico study of the neuromorphic-computing behavior of the prototypical phase-change material, Ge2Sb2Te5, using ab initio molecular-dynamics simulations. Stepwise changes in structural order in response to temperature pulses of varying length and duration are observed, and a good reproduction of the spike-timing-dependent plasticity observed in nanoelectronic synapses is demonstrated. Short above-melting pulses lead to instantaneous loss of structural and chemical order, followed by delayed partial recovery upon structural relaxation. We also investigate the link between structural order and electrical and optical properties. These results pave the way toward a first-principles understanding of phase-change physics beyond binary switching.

  2. Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues.

    PubMed

    Reale, R A; Brugge, J F

    1990-10-01

    1. The interaural-phase-difference (IPD) sensitivity of single neurons in the primary auditory (AI) cortex of the anesthetized cat was studied at stimulus frequencies ranging from 120 to 2,500 Hz. Best frequencies of the 43 AI cells sensitive to IPD ranged from 190 to 2,400 Hz. 2. A static IPD was produced when a pair of low-frequency tone bursts, differing from one another only in starting phase, were presented dichotically. The resulting IPD-sensitivity curves, which plot the number of discharges evoked by the binaural signal as a function of IPD, were deeply modulated circular functions. IPD functions were analyzed for their mean vector length (r) and mean interaural phase (phi). Phase sensitivity was relatively independent of best frequency (BF) but highly dependent on stimulus frequency. Regardless of BF or stimulus frequency within the excitatory response area the majority of cells fired maximally when the ipsilateral tone lagged the contralateral signal and fired least when this interaural-phase relationship was reversed. 3. Sensitivity to continuously changing IPD was studied by delivering to the two ears 3-s tones that differed slightly in frequency, resulting in a binaural beat. Approximately 26% of the cells that showed a sensitivity to static changes in IPD also showed a sensitivity to dynamically changing IPD created by this binaural tonal combination. The discharges were highly periodic and tightly synchronized to a particular phase of the binaural beat cycle. High synchrony can be attributed to the fact that cortical neurons typically respond to an excitatory stimulus with but a single spike that is often precisely timed to stimulus onset. A period histogram, binned on the binaural beat frequency (fb), produced an equivalent IPD-sensitivity function for dynamically changing interaural phase. For neurons sensitive to both static and continuously changing interaural phase there was good correspondence between their static (phi s) and dynamic (phi d) mean interaural phases. 4. All cells responding to a dynamically changing stimulus exhibited a linear relationship between mean interaural phase and beat frequency. Most cells responded equally well to binaural beats regardless of the initial direction of phase change. For a fixed duration stimulus, and at relatively low fb, the number of spikes evoked increased with increasing fb, reflecting the increasing number of effective stimulus cycles. At higher fb, AI neurons were unable to follow the rate at which the most effective phase repeated itself during the 3 s of stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Degenerate time-dependent network dynamics anticipate seizures in human epileptic brain.

    PubMed

    Tauste Campo, Adrià; Principe, Alessandro; Ley, Miguel; Rocamora, Rodrigo; Deco, Gustavo

    2018-04-01

    Epileptic seizures are known to follow specific changes in brain dynamics. While some algorithms can nowadays robustly detect these changes, a clear understanding of the mechanism by which these alterations occur and generate seizures is still lacking. Here, we provide crossvalidated evidence that such changes are initiated by an alteration of physiological network state dynamics. Specifically, our analysis of long intracranial electroencephalography (iEEG) recordings from a group of 10 patients identifies a critical phase of a few hours in which time-dependent network states become less variable ("degenerate"), and this phase is followed by a global functional connectivity reduction before seizure onset. This critical phase is characterized by an abnormal occurrence of highly correlated network instances and is shown to be particularly associated with the activity of the resected regions in patients with validated postsurgical outcome. Our approach characterizes preseizure network dynamics as a cascade of 2 sequential events providing new insights into seizure prediction and control.

  4. Dynamical quantum phase transitions in discrete time crystals

    NASA Astrophysics Data System (ADS)

    Kosior, Arkadiusz; Sacha, Krzysztof

    2018-05-01

    Discrete time crystals are related to nonequilibrium dynamics of periodically driven quantum many-body systems where the discrete time-translation symmetry of the Hamiltonian is spontaneously broken into another discrete symmetry. Recently, the concept of phase transitions has been extended to nonequilibrium dynamics of time-independent systems induced by a quantum quench, i.e., a sudden change of some parameter of the Hamiltonian. There, the return probability of a system to the ground state reveals singularities in time which are dubbed dynamical quantum phase transitions. We show that the quantum quench in a discrete time crystal leads to dynamical quantum phase transitions where the return probability of a periodically driven system to a Floquet eigenstate before the quench reveals singularities in time. It indicates that dynamical quantum phase transitions are not restricted to time-independent systems and can be also observed in systems that are periodically driven. We discuss how the phenomenon can be observed in ultracold atomic gases.

  5. Dynamical quantum phase transitions in extended transverse Ising models

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  6. Dynamical Galam model

    NASA Astrophysics Data System (ADS)

    Cheon, Taksu; Galam, Serge

    2018-06-01

    We introduce a model of temporal evolution of political opinions which amounts to a dynamical extension of Galam model in which the proportions of inflexibles are treated as dynamical variables. We find that the critical value of inflexibles in the original Galam model now turns into a fixed point of the system whose stability controls the phase trajectory of the political opinions. The appearance of two phases is found, in which majority-preserving and regime-changing limit cycles are respectively dominant, and the phase transition between them is observed.

  7. Dynamic tuning of optical absorbers for accelerated solar-thermal energy storage.

    PubMed

    Wang, Zhongyong; Tong, Zhen; Ye, Qinxian; Hu, Hang; Nie, Xiao; Yan, Chen; Shang, Wen; Song, Chengyi; Wu, Jianbo; Wang, Jun; Bao, Hua; Tao, Peng; Deng, Tao

    2017-11-14

    Currently, solar-thermal energy storage within phase-change materials relies on adding high thermal-conductivity fillers to improve the thermal-diffusion-based charging rate, which often leads to limited enhancement of charging speed and sacrificed energy storage capacity. Here we report the exploration of a magnetically enhanced photon-transport-based charging approach, which enables the dynamic tuning of the distribution of optical absorbers dispersed within phase-change materials, to simultaneously achieve fast charging rates, large phase-change enthalpy, and high solar-thermal energy conversion efficiency. Compared with conventional thermal charging, the optical charging strategy improves the charging rate by more than 270% and triples the amount of overall stored thermal energy. This superior performance results from the distinct step-by-step photon-transport charging mechanism and the increased latent heat storage through magnetic manipulation of the dynamic distribution of optical absorbers.

  8. Role of phase synchronisation in turbulence

    NASA Astrophysics Data System (ADS)

    Moradi, Sara; Teaca, Bogdan; Anderson, Johan

    2017-11-01

    The role of the phase dynamics in turbulence is investigated. As a demonstration of the importance of the phase dynamics, a simplified system is used, namely the one-dimensional Burgers equation, which is evolved numerically. The system is forced via a known external force, with two components that are added into the evolution equations of the amplitudes and the phase of the Fourier modes, separately. In this way, we are able to control the impact of the force on the dynamics of the phases. In the absence of the direct forcing in the phase equation, it is observed that the phases are not stochastic as assumed in the Random Phase Approximation (RPA) models, and in contrast, the non-linear couplings result in intermittent locking of the phases to ± π/2. The impact of the force, applied purely on the phases, is to increase the occurrence of the phase locking events in which the phases of the modes in a wide k range are now locked to ± π/2, leading to a change in the dynamics of both phases and amplitudes, with a significant localization of the real space flow structures.

  9. Characterization of Dynamical Phase Transitions in Quantum Jump Trajectories Beyond the Properties of the Stationary State

    NASA Astrophysics Data System (ADS)

    Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P.

    2013-04-01

    We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.

  10. Characterization of dynamical phase transitions in quantum jump trajectories beyond the properties of the stationary state.

    PubMed

    Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P

    2013-04-12

    We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states.

  11. Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding

    NASA Astrophysics Data System (ADS)

    Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling

    2018-03-01

    In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.

  12. Analysis of thermal energy storage material with change-of-phase volumetric effects

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Ibrahim, Mounir B.

    1990-01-01

    NASA's Space Station Freedom proposed hybrid power system includes photovoltaic arrays with nickel hydrogen batteries for energy storage and solar dynamic collectors driving Brayton heat engines with change-of-phase Thermal Energy Storage (TES) devices. A TES device is comprised of multiple metallic, annular canisters which contain a eutectic composition LiF-CaF2 Phase Change Material (PCM) that melts at 1040 K. A moderately sophisticated LiF-CaF2 PCM computer model is being developed in three stages considering 1-D, 2-D, and 3-D canister geometries, respectively. The 1-D model results indicate that the void has a marked effect on the phase change process due to PCM displacement and dynamic void heat transfer resistance. Equally influential are the effects of different boundary conditions and liquid PCM natural convection. For the second stage, successful numerical techniques used in the 1-D phase change model are extended to a 2-D (r,z) PCM containment canister model. A prototypical PCM containment canister is analyzed and the results are discussed.

  13. Microscopic Mechanism of Doping-Induced Kinetically Constrained Crystallization in Phase-Change Materials.

    PubMed

    Lee, Tae Hoon; Loke, Desmond; Elliott, Stephen R

    2015-10-07

    A comprehensive microscopic mechanism of doping-induced kinetically constrained crystallization in phase-change materials is provided by investigating structural and dynamical dopant characteristics via ab initio molecular dynamics simulations. The information gained from this study may provide a basis for a fast screening of dopant species for electronic memory devices, or for understanding the general physics involved in the crystallization of doped glasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Dynamical phases in a one-dimensional chain of heterospecies Rydberg atoms with next-nearest-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Qian, Jing; Zhang, Lu; Zhai, Jingjing; Zhang, Weiping

    2015-12-01

    We theoretically investigate the dynamical phase diagram of a one-dimensional chain of laser-excited two-species Rydberg atoms. The existence of a variety of unique dynamical phases in the experimentally achievable parameter region is predicted under the mean-field approximation, and the change in those phases when the effect of the next-nearest-neighbor interaction is included is further discussed. In particular, we find that the com-petition of the strong Rydberg-Rydberg interactions and the optical excitation imbalance can lead to the presence of complex multiple chaotic phases, which are highly sensitive to the initial Rydberg-state population and the strength of the next-nearest-neighbor interactions.

  15. Controlling dynamical quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; Schuricht, D.; Karrasch, C.

    2018-05-01

    We study the dynamics arising from a double quantum quench where the parameters of a given Hamiltonian are abruptly changed from being in an equilibrium phase A to a different phase B and back (A →B →A ). As prototype models, we consider the (integrable) transverse Ising field as well as the (nonintegrable) ANNNI model. The return amplitude features nonanalyticities after the first quench through the equilibrium quantum critical point (A →B ), which is routinely taken as a signature of passing through a so-called dynamical quantum phase transition. We demonstrate that nonanalyticities after the second quench (B →A ) can be avoided and reestablished in a recurring manner upon increasing the time T spent in phase B. The system retains an infinite memory of its past state, and one has the intriguing opportunity to control at will whether or not dynamical quantum phase transitions appear after the second quench.

  16. Relation between heart beat fluctuations and cyclic alternating pattern during sleep in insomnia patients.

    PubMed

    de Leon-Lomeli, R; Murguia, J S; Chouvarda, I; Mendez, M O; Gonzalez-Galvan, E; Alba, A; Milioli, G; Grassi, A; Terzano, M G; Parrino, L

    2014-01-01

    Insomnia is a condition that affects the nervous and muscular system. Thirty percent of the population between 18 and 60 years suffers from insomnia. The effects of this disorder involve problems such as poor school or job performance and traffic accidents. In addition, patients with insomnia present changes in the cardiac function during sleep. Furthermore, the structure of electroencephalographic A-phases, which builds up the Cyclic Alternating Pattern during sleep, is related to the insomnia events. Therefore, the relationship between these brain activations (A-phases) and the autonomic nervous system would be of interest, revealing the interplay of central and autonomic activity during insomnia. With this goal, a study of the relationship between A-phases and heart rate fluctuations is presented. Polysomnography recording of five healthy subjects, five sleep misperception patients and five patients with psychophysiological insomnia were used in the study. Detrended Fluctuation Analysis (DFA) was used in order to evaluate the heart rate dynamics and this was correlated with the number of A-phases. The results suggest that pathological patients present changes in the dynamics of the heart rate. This is reflected in the modification of A-phases dynamics, which seems to modify of heart rate dynamics.

  17. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer.

    PubMed

    Besserve, Michel; Lowe, Scott C; Logothetis, Nikos K; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50-80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections.

  18. Shifts of Gamma Phase across Primary Visual Cortical Sites Reflect Dynamic Stimulus-Modulated Information Transfer

    PubMed Central

    Besserve, Michel; Lowe, Scott C.; Logothetis, Nikos K.; Schölkopf, Bernhard; Panzeri, Stefano

    2015-01-01

    Distributed neural processing likely entails the capability of networks to reconfigure dynamically the directionality and strength of their functional connections. Yet, the neural mechanisms that may allow such dynamic routing of the information flow are not yet fully understood. We investigated the role of gamma band (50–80 Hz) oscillations in transient modulations of communication among neural populations by using measures of direction-specific causal information transfer. We found that the local phase of gamma-band rhythmic activity exerted a stimulus-modulated and spatially-asymmetric directed effect on the firing rate of spatially separated populations within the primary visual cortex. The relationships between gamma phases at different sites (phase shifts) could be described as a stimulus-modulated gamma-band wave propagating along the spatial directions with the largest information transfer. We observed transient stimulus-related changes in the spatial configuration of phases (compatible with changes in direction of gamma wave propagation) accompanied by a relative increase of the amount of information flowing along the instantaneous direction of the gamma wave. These effects were specific to the gamma-band and suggest that the time-varying relationships between gamma phases at different locations mark, and possibly causally mediate, the dynamic reconfiguration of functional connections. PMID:26394205

  19. Chaos as the hub of systems dynamics. The part I-The attitude control of spacecraft by involving in the heteroclinic chaos

    NASA Astrophysics Data System (ADS)

    Doroshin, Anton V.

    2018-06-01

    In this work the chaos in dynamical systems is considered as a positive aspect of dynamical behavior which can be applied to change systems dynamical parameters and, moreover, to change systems qualitative properties. From this point of view, the chaos can be characterized as a hub for the system dynamical regimes, because it allows to interconnect separated zones of the phase space of the system, and to fulfill the jump into the desirable phase space zone. The concretized aim of this part of the research is to focus on developing the attitude control method for magnetized gyrostat-satellites, which uses the passage through the intentionally generated heteroclinic chaos. The attitude dynamics of the satellite/spacecraft in this case represents the series of transitions from the initial dynamical regime into the chaotic heteroclinic regime with the subsequent exit to the final target dynamical regime with desirable parameters of the attitude dynamics.

  20. Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer

    Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH 3NH 3PbI 3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition.more » For CH 3NH 3PbI 3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH 3NH 3+) inside the perovskite crystal structure.« less

  1. Use of a Bacterial Luciferase Monitoring System To Estimate Real-Time Dynamics of Intracellular Metabolism in Escherichia coli.

    PubMed

    Shimada, Tomohiro; Tanaka, Kan

    2016-10-01

    Regulation of central carbon metabolism has long been an important research subject in every organism. While the dynamics of metabolic flows during changes in available carbon sources have been estimated based on changes in metabolism-related gene expression, as well as on changes in the metabolome, the flux change itself has scarcely been measured because of technical difficulty, which has made conclusions elusive in many cases. Here, we used a monitoring system employing Vibrio fischeri luciferase to probe the intracellular metabolic condition in Escherichia coli Using a batch culture provided with a limited amount of glucose, we performed a time course analysis, where the predominant carbon source shifts from glucose to acetate, and identified a series of sequential peaks in the luciferase activity (peaks 1 to 4). Two major peaks, peaks 1 and 3, were considered to correspond to the glucose and acetate consuming phases, respectively, based on the glucose, acetate, and dissolved oxygen concentrations in the medium. The pattern of these peaks was changed by the addition of a different carbon source or by an increasing concentration of glucose, which was consistent with the present model. Genetically, mutations involved in glycolysis or the tricarboxylic acid (TCA) cycle/gluconeogenesis specifically affected peak 1 or peak 3, respectively, as expected from the corresponding metabolic phase. Intriguingly, mutants for the acetate excretion pathway showed a phenotype of extended peak 2 and delayed transition to the TCA cycle/gluconeogenesis phase, which suggests that peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Intracellular metabolic flows dynamically change during shifts in available carbon sources. However, because of technical difficulty, the flux change has scarcely been measured in living cells. Here, we used a Vibrio fischeri luciferase monitoring system to probe the intracellular metabolic condition in Escherichia coli Using a limited amount of glucose batch culture, a series of sequential peaks (peaks 1 to 4) in the luciferase activity was observed. Changes in the pattern of these peaks by the addition of extra carbon sources and in mutant strains involved in glycolysis or the TCA cycle/gluconeogenesis gene assigned the metabolic phase corresponding to peak 1 as the glycolysis phase and peak 3 as the TCA cycle/gluconeogenesis phase. Intriguingly, the acetate excretion pathway engaged in peak 2 represents the metabolic transition phase. These results indicate that the bacterial luciferase monitoring system is useful to understand the real-time dynamics of metabolism in living bacterial cells. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Dynamic remapping decisions in multi-phase parallel computations

    NASA Technical Reports Server (NTRS)

    Nicol, D. M.; Reynolds, P. F., Jr.

    1986-01-01

    The effectiveness of any given mapping of workload to processors in a parallel system is dependent on the stochastic behavior of the workload. Program behavior is often characterized by a sequence of phases, with phase changes occurring unpredictably. During a phase, the behavior is fairly stable, but may become quite different during the next phase. Thus a workload assignment generated for one phase may hinder performance during the next phase. We consider the problem of deciding whether to remap a paralled computation in the face of uncertainty in remapping's utility. Fundamentally, it is necessary to balance the expected remapping performance gain against the delay cost of remapping. This paper treats this problem formally by constructing a probabilistic model of a computation with at most two phases. We use stochastic dynamic programming to show that the remapping decision policy which minimizes the expected running time of the computation has an extremely simple structure: the optimal decision at any step is followed by comparing the probability of remapping gain against a threshold. This theoretical result stresses the importance of detecting a phase change, and assessing the possibility of gain from remapping. We also empirically study the sensitivity of optimal performance to imprecise decision threshold. Under a wide range of model parameter values, we find nearly optimal performance if remapping is chosen simply when the gain probability is high. These results strongly suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change; precise quantification of the decision model parameters is not necessary.

  3. Multistate and phase change selection in constitutional multivalent systems.

    PubMed

    Barboiu, Mihail

    2012-01-01

    Molecular architectures and materials can be constitutionally self-sorted in the presence of different biomolecular targets or external physical stimuli or chemical effectors, thus responding to an external selection pressure. The high selectivity and specificity of different bioreceptors or self-correlated internal interactions may be used to describe the complex constitutional behaviors through multistate component selection from a dynamic library. The self-selection may result in the dynamic amplification of self-optimized architectures during the phase change process. The sol-gel resolution of dynamic molecular/supramolecular libraries leads to higher self-organized constitutional hybrid materials, in which organic (supramolecular)/inorganic domains are reversibily connected.

  4. Intermittency and dynamical Lee-Yang zeros of open quantum systems.

    PubMed

    Hickey, James M; Flindt, Christian; Garrahan, Juan P

    2014-12-01

    We use high-order cumulants to investigate the Lee-Yang zeros of generating functions of dynamical observables in open quantum systems. At long times the generating functions take on a large-deviation form with singularities of the associated cumulant generating functions-or dynamical free energies-signifying phase transitions in the ensemble of dynamical trajectories. We consider a driven three-level system as well as the dissipative Ising model. Both systems exhibit dynamical intermittency in the statistics of quantum jumps. From the short-time behavior of the dynamical Lee-Yang zeros, we identify critical values of the counting field which we attribute to the observed intermittency and dynamical phase coexistence. Furthermore, for the dissipative Ising model we construct a trajectory phase diagram and estimate the value of the transverse field where the stationary state changes from being ferromagnetic (inactive) to paramagnetic (active).

  5. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy.

    PubMed

    Rinehart, Matthew T; Drake, Tyler K; Robles, Francisco E; Rohan, Lisa C; Katz, David; Wax, Adam

    2011-12-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view.

  6. Time-resolved imaging refractometry of microbicidal films using quantitative phase microscopy

    PubMed Central

    Rinehart, Matthew T.; Drake, Tyler K.; Robles, Francisco E.; Rohan, Lisa C.; Katz, David; Wax, Adam

    2011-01-01

    Quantitative phase microscopy is applied to image temporal changes in the refractive index (RI) distributions of solutions created by microbicidal films undergoing hydration. We present a novel method of using an engineered polydimethylsiloxane structure as a static phase reference to facilitate calibration of the absolute RI across the entire field. We present a study of dynamic structural changes in microbicidal films during hydration and subsequent dissolution. With assumptions about the smoothness of the phase changes induced by these films, we calculate absolute changes in the percentage of film in regions across the field of view. PMID:22191912

  7. Phase Transitions in Development of Writing Fluency from a Complex Dynamic Systems Perspective

    ERIC Educational Resources Information Center

    Baba, Kyoko; Nitta, Ryo

    2014-01-01

    This study explored patterns in L2 writing development by focusing on one of the linguistic features of texts (fluency) from a complex dynamic systems perspective. It investigated whether two English-as-a-foreign-language university students would experience discontinuous change (phase transition) in their writing fluency through repetition of a…

  8. Collisional Dynamics of the Cesium D1 and D2 Transitions

    DTIC Science & Technology

    2010-09-01

    37 14. Comparison of Phase Changing Probability and Polarizability ...Phase Changing Probability and Polarizability for D2 Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 25...theoretically determined the values for broadening and shift rates for cesium with Argon , Krypton, and Xenon from the interatomic potentials [27]. The rates

  9. Lightweight Phase-Change Material For Solar Power

    NASA Technical Reports Server (NTRS)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  10. Performance monitoring for new phase dynamic optimization of instruction dispatch cluster configuration

    DOEpatents

    Balasubramonian, Rajeev [Sandy, UT; Dwarkadas, Sandhya [Rochester, NY; Albonesi, David [Ithaca, NY

    2012-01-24

    In a processor having multiple clusters which operate in parallel, the number of clusters in use can be varied dynamically. At the start of each program phase, the configuration option for an interval is run to determine the optimal configuration, which is used until the next phase change is detected. The optimum instruction interval is determined by starting with a minimum interval and doubling it until a low stability factor is reached.

  11. Communication Dynamics of Blog Networks

    NASA Astrophysics Data System (ADS)

    Goldberg, Mark; Kelley, Stephen; Magdon-Ismail, Malik; Mertsalov, Konstantin; Wallace, William (Al)

    We study the communication dynamics of Blog networks, focusing on the Russian section of LiveJournal as a case study. Communication (blogger-to-blogger links) in such online communication networks is very dynamic: over 60% of the links in the network are new from one week to the next, though the set of bloggers remains approximately constant. Two fundamental questions are: (i) what models adequately describe such dynamic communication behavior; and (ii) how does one detect the phase transitions, i.e. the changes that go beyond the standard high-level dynamics? We approach these questions through the notion of stable statistics. We give strong experimental evidence to the fact that, despite the extreme amount of communication dynamics, several aggregate statistics are remarkably stable. We use stable statistics to test our models of communication dynamics postulating that any good model should produce values for these statistics which are both stable and close to the observed ones. Stable statistics can also be used to identify phase transitions, since any change in a normally stable statistic indicates a substantial change in the nature of the communication dynamics. We describe models of the communication dynamics in large social networks based on the principle of locality of communication: a node's communication energy is spent mostly within its own "social area," the locality of the node.

  12. The dynamics of insight: mathematical discovery as a phase transition.

    PubMed

    Stephen, Damian G; Boncoddo, Rebecca A; Magnuson, James S; Dixon, James A

    2009-12-01

    In recent work in cognitive science, it has been proposed that cognition is a self-organizing, dynamical system. However, capturing the real-time dynamics of cognition has been a formidable challenge. Furthermore, it has been unclear whether dynamics could effectively address the emergence of abstract concepts (e.g., language, mathematics). Here, we provide evidence that a quintessentially cognitive phenomenon-the spontaneous discovery of a mathematical relation-emerges through self-organization. Participants solved a series of gear-system problems while we tracked their eye movements. They initially solved the problems by manually simulating the forces of the gears but then spontaneously discovered a mathematical solution. We show that the discovery of the mathematical relation was predicted by changes in entropy and changes in power-law behavior, two hallmarks of phase transitions. Thus, the present study demonstrates the emergence of higher order cognitive phenomena through the nonlinear dynamics of self-organization.

  13. Dynamics of Phase Transitions in a Snow Mass Containing Water-Soluble Salt Particles

    NASA Astrophysics Data System (ADS)

    Zelenko, V. L.; Heifets, L. I.; Orlov, Yu. N.; Voskresenskiy, N. M.

    2018-07-01

    A macrokinetic approach is used to describe the dynamics of phase transitions in a snow mass containing water-soluble salt particles. Equations are derived that describe the rate of salt granule dissolution and the change in the phase composition and temperature of a snow mass under the conditions of heat transfer with an isothermal surface. An experimental setup that models the change in the state of a snow mass placed on an isothermal surface is created to verify theoretical conclusions. Experimental observations of the change in temperature of the snow mass are compared to theoretical calculations. The mathematical model that is developed can be used to predict the state of a snow mass on roads treated with a deicing agent, or to analyze the state of snow masses containing water-soluble salt inclusions and resting on mountain slopes.

  14. Probing polariton dynamics in trapped ions with phase-coherent two-dimensional spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gessner, Manuel; Schlawin, Frank; Buchleitner, Andreas

    2015-06-07

    We devise a phase-coherent three-pulse protocol to probe the polariton dynamics in a trapped-ion quantum simulation. In contrast to conventional nonlinear signals, the presented scheme does not change the number of excitations in the system, allowing for the investigation of the dynamics within an N-excitation manifold. In the particular case of a filling factor one (N excitations in an N-ion chain), the proposed interaction induces coherent transitions between a delocalized phonon superfluid and a localized atomic insulator phase. Numerical simulations of a two-ion chain demonstrate that the resulting two-dimensional spectra allow for the unambiguous identification of the distinct phases, andmore » the two-dimensional line shapes efficiently characterize the relevant decoherence mechanism.« less

  15. Structural metatransition of energetically tangled crystalline phases.

    PubMed

    Zhou, Dan; Li, Quan; Zheng, Weitao; Ma, Yanming; Chen, Changfeng

    2017-02-08

    We solve the longstanding puzzle of pressure induced structural evolution of SnSe using a swarm structure search method combined with first-principles phonon and kinetic barrier calculations. Our results identify a dynamic set of nearly degenerate crystalline SnSe phases that are separated by low kinetic barriers and undergo an unusual type of structural transitions characterized by a dynamically changing mix of the constituent phases. We introduce a new concept of structural metatransition to highlight the transitional nature of such phase transitions. Our theoretical prediction is corroborated by X-ray diffraction measurements, and this intriguing phenomenon offers insights into the enigmatic property variations of SnSe under pressure. This work raises prospects of considerably improving characterization and understanding of intrinsic multiphase crystals and their dynamic evolution.

  16. Collective firm bankruptcies and phase transition in rating dynamics

    NASA Astrophysics Data System (ADS)

    Sieczka, P.; Hołyst, J. A.

    2009-10-01

    We present a simple model of firm rating evolution. We consider two sources of defaults: individual dynamics of economic development and Potts-like interactions between firms. We show that such a defined model leads to phase transition, which results in collective defaults. The existence of the collective phase depends on the mean interaction strength. For small interaction strength parameters, there are many independent bankruptcies of individual companies. For large parameters, there are giant collective defaults of firm clusters. In the case when the individual firm dynamics favors dumping of rating changes, there is an optimal strength of the firm's interactions from the systemic risk point of view. in here

  17. Respirator triggering of electron-beam computed tomography (EBCT): differences in dynamic changes between augmented ventilation and controlled mechanical ventilation

    NASA Astrophysics Data System (ADS)

    Recheis, Wolfgang A.; Kleinsasser, Axel; Schuster, Antonius H.; Loeckinger, Alexander; Frede, Thomas; Springer, Peter; Hoermann, Christoph; zur Nedden, Dieter

    2000-04-01

    The purpose was to evaluate differences in dynamic changes of the lung aeration (air-tissue ratio) between augmented modes of ventilation (AMV) and controlled mechanical ventilation (CMV) in normal subjects. 4 volunteers, ventilated with the different respirator protocols via face mask, were scanned using the EBCT in the 50 ms mode. A software analyzed the respirator's digitized pressure and volume signals of two subsequent ventilation phases. Using these values it was possible to calculate the onset of inspiration or expiration of the next respiratory phase. The calculated starting point was then used to trigger the EBCT. The dynamic changes of air- tissue ratios were evaluated in three separate regions: a ventral, an intermediate and a dorsal area. AMV results in increase of air-tissue ratio in the dorsal lung area due to the active contraction of the diaphragm, whereas CMV results in a more pronounced increase in air-tissue ratio of the ventral lung area. This study gives further insight into the dynamic changes of the lung's biomechanics by comparing augmented ventilation and controlled mechanical ventilation in the healthy proband.

  18. Dissociation of Calcium Transients and Force Development following a Change in Stimulation Frequency in Isolated Rabbit Myocardium.

    PubMed

    Haizlip, Kaylan M; Milani-Nejad, Nima; Brunello, Lucia; Varian, Kenneth D; Slabaugh, Jessica L; Walton, Shane D; Gyorke, Sandor; Davis, Jonathan P; Biesiadecki, Brandon J; Janssen, Paul M L

    2015-01-01

    As the heart transitions from one exercise intensity to another, changes in cardiac output occur, which are modulated by alterations in force development and calcium handling. Although the steady-state force-calcium relationship at various heart rates is well investigated, regulation of these processes during transitions in heart rate is poorly understood. In isolated right ventricular muscle preparations from the rabbit, we investigated the beat-to-beat alterations in force and calcium during the transition from one stimulation frequency to another, using contractile assessments and confocal microscopy. We show that a change in steady-state conditions occurs in multiple phases: a rapid phase, which is characterized by a fast change in force production mirrored by a change in calcium transient amplitude, and a slow phase, which follows the rapid phase and occurs as the muscle proceeds to stabilize at the new frequency. This second/late phase is characterized by a quantitative dissociation between the calcium transient amplitude and developed force. Twitch timing kinetics, such as time to peak tension and 50% relaxation rate, reached steady-state well before force development and calcium transient amplitude. The dynamic relationship between force and calcium upon a switch in stimulation frequency unveils the dynamic involvement of myofilament-based properties in frequency-dependent activation.

  19. Bayesian inversion analysis of nonlinear dynamics in surface heterogeneous reactions.

    PubMed

    Omori, Toshiaki; Kuwatani, Tatsu; Okamoto, Atsushi; Hukushima, Koji

    2016-09-01

    It is essential to extract nonlinear dynamics from time-series data as an inverse problem in natural sciences. We propose a Bayesian statistical framework for extracting nonlinear dynamics of surface heterogeneous reactions from sparse and noisy observable data. Surface heterogeneous reactions are chemical reactions with conjugation of multiple phases, and they have the intrinsic nonlinearity of their dynamics caused by the effect of surface-area between different phases. We adapt a belief propagation method and an expectation-maximization (EM) algorithm to partial observation problem, in order to simultaneously estimate the time course of hidden variables and the kinetic parameters underlying dynamics. The proposed belief propagation method is performed by using sequential Monte Carlo algorithm in order to estimate nonlinear dynamical system. Using our proposed method, we show that the rate constants of dissolution and precipitation reactions, which are typical examples of surface heterogeneous reactions, as well as the temporal changes of solid reactants and products, were successfully estimated only from the observable temporal changes in the concentration of the dissolved intermediate product.

  20. Study of geometric phase using classical coupled oscillators

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Sharba; Dey, Biprateep; Mohapatra, Ashok K.

    2018-05-01

    We illustrate the geometric phase associated with the cyclic dynamics of a classical system of coupled oscillators. We use an analogy between a classical coupled oscillator and a two-state quantum mechanical system to represent the evolution of the oscillator on an equivalent Hilbert space, which may be represented as a trajectory on the surface of a sphere. The cyclic evolution of the system leads to a change in phase, which consists of a dynamic phase along with an additional phase shift dependent on the geometry of the evolution. A simple experiment suitable for advanced undergraduate students is designed to study the geometric phase incurred during cyclic evolution of a coupled oscillator.

  1. Microgravity fluid management requirements of advanced solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Migra, Robert P.

    1987-01-01

    The advanced solar dynamic system (ASDS) program is aimed at developing the technology for highly efficient, lightweight space power systems. The approach is to evaluate Stirling, Brayton and liquid metal Rankine power conversion systems (PCS) over the temperature range of 1025 to 1400K, identify the critical technologies and develop these technologies. Microgravity fluid management technology is required in several areas of this program, namely, thermal energy storage (TES), heat pipe applications and liquid metal, two phase flow Rankine systems. Utilization of the heat of fusion of phase change materials offers potential for smaller, lighter TES systems. The candidate TES materials exhibit large volume change with the phase change. The heat pipe is an energy dense heat transfer device. A high temperature application may transfer heat from the solar receiver to the PCS working fluid and/or TES. A low temperature application may transfer waste heat from the PCS to the radiator. The liquid metal Rankine PCS requires management of the boiling/condensing process typical of two phase flow systems.

  2. Fast Crystallization of the Phase Change Compound GeTe by Large-Scale Molecular Dynamics Simulations.

    PubMed

    Sosso, Gabriele C; Miceli, Giacomo; Caravati, Sebastiano; Giberti, Federico; Behler, Jörg; Bernasconi, Marco

    2013-12-19

    Phase change materials are of great interest as active layers in rewritable optical disks and novel electronic nonvolatile memories. These applications rest on a fast and reversible transformation between the amorphous and crystalline phases upon heating, taking place on the nanosecond time scale. In this work, we investigate the microscopic origin of the fast crystallization process by means of large-scale molecular dynamics simulations of the phase change compound GeTe. To this end, we use an interatomic potential generated from a Neural Network fitting of a large database of ab initio energies. We demonstrate that in the temperature range of the programming protocols of the electronic memories (500-700 K), nucleation of the crystal in the supercooled liquid is not rate-limiting. In this temperature range, the growth of supercritical nuclei is very fast because of a large atomic mobility, which is, in turn, the consequence of the high fragility of the supercooled liquid and the associated breakdown of the Stokes-Einstein relation between viscosity and diffusivity.

  3. Dynamic modulation of corticospinal excitability and short-latency afferent inhibition during onset and maintenance phase of selective finger movement.

    PubMed

    Cho, Hyun Joo; Panyakaew, Pattamon; Thirugnanasambandam, Nivethida; Wu, Tianxia; Hallett, Mark

    2016-06-01

    During highly selective finger movement, corticospinal excitability is reduced in surrounding muscles at the onset of movement but this phenomenon has not been demonstrated during maintenance of movement. Sensorimotor integration may play an important role in selective movement. We sought to investigate how corticospinal excitability and short-latency afferent inhibition changes in active and surrounding muscles during onset and maintenance of selective finger movement. Using transcranial magnetic stimulation (TMS) and paired peripheral stimulation, input-output recruitment curve and short-latency afferent inhibition (SAI) were measured in the first dorsal interosseus and abductor digiti minimi muscles during selective index finger flexion. Motor surround inhibition was present only at the onset phase, but not at the maintenance phase of movement. SAI was reduced at onset but not at the maintenance phase of movement in both active and surrounding muscles. Our study showed dynamic changes in corticospinal excitability and sensorimotor modulation for active and surrounding muscles in different movement states. SAI does not appear to contribute to motor surround inhibition at the movement onset phase. Also, there seems to be different inhibitory circuit(s) other than SAI for the movement maintenance phase in order to delineate the motor output selectively when corticospinal excitability is increased in both active and surrounding muscles. This study enhances our knowledge of dynamic changes in corticospinal excitability and sensorimotor interaction in different movement states to understand normal and disordered movements. Published by Elsevier Ireland Ltd.

  4. Thermal Convection in a Creeping Solid With Melting/Freezing Interfaces at Either or Both Boundaries

    NASA Astrophysics Data System (ADS)

    Labrosse, S.; Morison, A.; Deguen, R.; Alboussiere, T.; Tackley, P. J.; Agrusta, R.

    2017-12-01

    Thermal convection in the solid mantles of the Earth, other terrestrial planets and icy satellites sets in while it is still crystallising from a liquid layer (see abstract by Morison et al, this conference). The existence of an ocean (water or magma) either or both below and above the solid mantle modifies the conditions applying at the boundary since matter can flow through it by changing phase. Adapting the boundary conditions developed for the dynamics of the inner core by Deguen et al (GJI 2013) to the plane layer and the spherical shell, we solve the linear stability problem and obtain weakly non-linear solutions as well as direct numerical solutions in both geometries, with a liquid-solid phase change at either or both boundaries. The phase change boundary condition is controlled by a dimensionless number, Φ , which when small, allows easy flow through the boundary while the classical non-penetrating boundary condition is recovered for large values. If both boundaries have a phase change, the preferred wavelength of the flow is large, i.e. λ ∝Φ -1/2 in a plane layer and degree 1 in a spherical shell, and the critical Rayleigh number is of order Φ . The heat transfer efficiency, as measured by the dependence of the Nusselt number on the Rayleigh number also increases indefinitely for decreasing values of Φ . If only one boundary has a phase change condition, the critical wavelength is increased by about a factor 2 and the critical Rayleigh number is decreased by about a factor 4. The dynamics is controlled entirely by the boundary layer opposite to the phase change interface and the geometry of the flow. This model provides a natural explanation for the emergence of degree 1 convection in thin ice layers and implies a style of early mantle dynamics on Earth very different from what is classically envisioned.

  5. Nonlinear dynamic phase contrast microscopy for microfluidic and microbiological applications

    NASA Astrophysics Data System (ADS)

    Denz, C.; Holtmann, F.; Woerdemann, M.; Oevermann, M.

    2008-08-01

    In live sciences, the observation and analysis of moving living cells, molecular motors or motion of micro- and nano-objects is a current field of research. At the same time, microfluidic innovations are needed for biological and medical applications on a micro- and nano-scale. Conventional microscopy techniques are reaching considerable limits with respect to these issues. A promising approach for this challenge is nonlinear dynamic phase contrast microscopy. It is an alternative full field approach that allows to detect motion as well as phase changes of living unstained micro-objects in real-time, thereby being marker free, without contact and non destructive, i.e. fully biocompatible. The generality of this system allows it to be combined with several other microscope techniques such as conventional bright field or fluorescence microscopy. In this article we will present the dynamic phase contrast technique and its applications in analysis of micro organismic dynamics, micro flow velocimetry and micro-mixing analysis.

  6. Robust dynamic mitigation of instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawata, S.; Karino, T.

    2015-04-15

    A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, themore » instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.« less

  7. Spontaneous and Flow-Driven Interfacial Phase Change: Dynamics of Microemulsion Formation at the Pore Scale.

    PubMed

    Tagavifar, Mohsen; Xu, Ke; Jang, Sung Hyun; Balhoff, Matthew T; Pope, Gary A

    2017-11-14

    The dynamic behavior of microemulsion-forming water-oil-amphiphiles mixtures is investigated in a 2.5D micromodel. The equilibrium phase behavior of such mixtures is well-understood in terms of macroscopic phase transitions. However, what is less understood and where experimental data are lacking is the coupling between the phase change and the bulk flow. Herein, we study the flow of an aqueous surfactant solution-oil mixture in porous media and analyze the dependence of phase formation and spatial phase configurations on the bulk flow rate. We find that a microemulsion forms instantaneously as a boundary layer at the initial surface of contact between the surfactant solution and oil. The boundary layer is temporally continuous because of the imposed convection. In addition to the imposed flow, we observe spontaneous pulsed Marangoni flows that drag the microemulsion and surfactant solution into the oil stream, forming large (macro)emulsion droplets. The formation of the microemulsion phase at the interface distinguishes the situation from that of the more common Marangoni flow with only two phases present. Additionally, an emulsion forms via liquid-liquid nucleation or the Ouzo effect (i.e., spontaneous emulsification) at low flow rates and via mechanical mixing at high flow rates. With regard to multiphase flow, contrary to the common belief that the microemulsion is the wetting liquid, we observe that the minor oil phase wets the solid surface. We show that a layered flow pattern is formed because of the out-of-equilibrium phase behavior at high volumetric flow rates (order of 2 m/day) where advection is much faster than the diffusive interfacial mass transfer and transverse mixing, which promote equilibrium behavior. At lower flow rates (order of 30 cm/day), however, the dynamic and equilibrium phase behaviors are well-correlated. These results clearly show that the phase change influences the macroscale flow behavior.

  8. Cooperative behavior and phase transitions in co-evolving stag hunt game

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Li, Y. S.; Xu, C.; Hui, P. M.

    2016-02-01

    Cooperative behavior and different phases in a co-evolving network dynamics based on the stag hunt game is studied. The dynamical processes are parameterized by a payoff r that tends to promote non-cooperative behavior and a probability q for a rewiring attempt that could isolate the non-cooperators. The interplay between the parameters leads to different phases. Detailed simulations and a mean field theory are employed to reveal the properties of different phases. For small r, the cooperators are the majority and form a connected cluster while the non-cooperators increase with q but remain isolated over the whole range of q, and it is a static phase. For sufficiently large r, cooperators disappear in an intermediate range qL ≤ q ≤qU and a dynamical all-non-cooperators phase results. For q >qU, a static phase results again. A mean field theory based on how the link densities change in time by the co-evolving dynamics is constructed. The theory gives a phase diagram in the q- r parameter space that is qualitatively in agreement with simulation results. The sources of discrepancies between theory and simulations are discussed.

  9. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    NASA Astrophysics Data System (ADS)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  10. Nonequilibrium optical control of dynamical states in superconducting nanowire circuits.

    PubMed

    Madan, Ivan; Buh, Jože; Baranov, Vladimir V; Kabanov, Viktor V; Mrzel, Aleš; Mihailovic, Dragan

    2018-03-01

    Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system's properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ 3 -MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing.

  11. Nonequilibrium optical control of dynamical states in superconducting nanowire circuits

    PubMed Central

    Madan, Ivan; Baranov, Vladimir V.

    2018-01-01

    Optical control of states exhibiting macroscopic phase coherence in condensed matter systems opens intriguing possibilities for materials and device engineering, including optically controlled qubits and photoinduced superconductivity. Metastable states, which in bulk materials are often associated with the formation of topological defects, are of more practical interest. Scaling to nanosize leads to reduced dimensionality, fundamentally changing the system’s properties. In one-dimensional superconducting nanowires, vortices that are present in three-dimensional systems are replaced by fluctuating topological defects of the phase. These drastically change the dynamical behavior of the superconductor and introduce dynamical periodic long-range ordered states when the current is driven through the wire. We report the control and manipulation of transitions between different dynamically stable states in superconducting δ3-MoN nanowire circuits by ultrashort laser pulses. Not only can the transitions between different dynamically stable states be precisely controlled by light, but we also discovered new photoinduced hidden states that cannot be reached under near-equilibrium conditions, created while laser photoexcited quasi-particles are outside the equilibrium condition. The observed switching behavior can be understood in terms of dynamical stabilization of various spatiotemporal periodic trajectories of the order parameter in the superconductor nanowire, providing means for the optical control of the superconducting phase with subpicosecond control of timing. PMID:29670935

  12. A Critical Interpersonal Distance Switches between Two Coordination Modes in Kendo Matches

    PubMed Central

    Okumura, Motoki; Kijima, Akifumi; Kadota, Koji; Yokoyama, Keiko; Suzuki, Hiroo; Yamamoto, Yuji

    2012-01-01

    In many competitive sports, players need to quickly and continuously execute movements that co-adapt to various movements executed by their opponents and physical objects. In a martial art such as kendo, players must be able to skillfully change interpersonal distance in order to win. However, very little information about the task and expertise properties of the maneuvers affecting interpersonal distance is available. This study investigated behavioral dynamics underlying opponent tasks by analyzing changes in interpersonal distance made by expert players in kendo matches. Analysis of preferred interpersonal distances indicated that players tended to step toward and away from their opponents based on two distances. The most preferred distance enabled the players to execute both striking and defensive movements immediately. The relative phase analysis of the velocities at which players executed steps toward and away revealed that players developed anti-phase synchronizations at near distances to maintain safe distances from their opponents. Alternatively, players shifted to in-phase synchronization to approach their opponents from far distances. This abrupt phase-transition phenomenon constitutes a characteristic bifurcation dynamics that regularly and instantaneously occurs between in- and anti-phase synchronizations at a critical interpersonal distance. These dynamics are profoundly affected by the task constraints of kendo and the physical constraints of the players. Thus, the current study identifies the clear behavioral dynamics that emerge in a sport setting. PMID:23284799

  13. Phase change energy storage for solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  14. Phase change energy storage for solar dynamic power systems

    NASA Astrophysics Data System (ADS)

    Chiaramonte, F. P.; Taylor, J. D.

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  15. Low Stretch Solid-Fuel Flame Transient Response to a Step Change in Gravity

    NASA Technical Reports Server (NTRS)

    Armstrong, J. B.; Olson, S. L.; T'ien, J. S.

    2003-01-01

    The effect of a step change in gravity level on the stability of low stretch diffusion flames over a solid fuel is studied both numerically and experimentally. Drop tower experiments have been conducted in NASA Glenn Research Center's 5.2 Zero Gravity Facility. In the experiments burning PMMA cylinders, a dynamic transition is observed when the steadily burning 1g flame is dropped and becomes a 0g flame. To understand the physics behind this dynamic transition, a transient stagnation point model has been developed which includes gas-phase radiation and solid phase coupling to describe this dynamic process. In this paper, the experimental results are compared with the model predictions. Both model and experiment show that the interior of the solid phase does not have time to change significantly in the few seconds of drop time, so the experimental results are pseudo-steady in the gas-phase, but the solid is inherently unsteady over long time scales. The model is also used to examine the importance of fractional heat losses on extinction, which clearly demonstrates that as the feedback from the flame decreases, the importance of the ongoing heat losses becomes greater, and extinction is observed when these losses represent 80% or more of the flame feedback.

  16. Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials

    DOE PAGES

    Zhu, Zhihua; Evans, Philip G.; Haglund, Richard F.; ...

    2017-07-21

    Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated andmore » local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.« less

  17. Dynamically Reconfigurable Metadevice Employing Nanostructured Phase-Change Materials.

    PubMed

    Zhu, Zhihua; Evans, Philip G; Haglund, Richard F; Valentine, Jason G

    2017-08-09

    Mastering dynamic free-space spectral control and modulation in the near-infrared (NIR) and optical regimes remains a challenging task that is hindered by the available functional materials at high frequencies. In this work, we have realized an efficient metadevice capable of spectral control by minimizing the thermal mass of a vanadium dioxide phase-change material (PCM) and placing the PCM at the feed gap of a bow-tie field antenna. The device has an experimentally measured tuning range of up to 360 nm in the NIR and a modulation depth of 33% at the resonant wavelength. The metadevice is configured for integrated and local heating, leading to faster switching and more precise spatial control compared with devices based on phase-change thin films. We envisage that the combined advantages of this device will open new opportunities for signal processing, memory, security, and holography at optical frequencies.

  18. First-principles study of the liquid and amorphous phases of In2Te3

    NASA Astrophysics Data System (ADS)

    Dragoni, D.; Gabardi, S.; Bernasconi, M.

    2017-08-01

    Structural, dynamical, and electronic properties of the liquid and amorphous phase of the In2Te3 compound have been studied by means of density functional molecular dynamics simulations. This system is of interest as a phase change material, undergoing a fast and reversible change between the crystalline and amorphous phases upon heating. It can be seen as a constituent of ternary InSbTe alloys which are receiving attention for application in electronic phase change memories. Amorphous models of In2Te3 300 -atom large have been generated by quenching from the melt by using different exchange and correlation functionals and different descriptions of the van der Waals interaction. It turns out the local bonding geometry of the amorphous phase is mostly tetrahedral with corner and edge sharing tetrahedra similar to those found in the crystalline phases of the InTe, In2Te3 , and In2Te5 compounds. Benchmark calculations on the crystalline α phase of In2Te3 in the defective zincblend geometry have also been performed. The calculations reveal that the high symmetric F 4 ¯3 m structure inferred experimentally from x-ray diffraction for the α phase must actually result from a random distribution of Te-Te bonds in different octahedral cages formed by the coalescence of vacancies in the In sublattice.

  19. Four dimensional material movies: High speed phase-contrast tomography by backprojection along dynamically curved paths.

    PubMed

    Ruhlandt, A; Töpperwien, M; Krenkel, M; Mokso, R; Salditt, T

    2017-07-26

    We present an approach towards four dimensional (4d) movies of materials, showing dynamic processes within the entire 3d structure. The method is based on tomographic reconstruction on dynamically curved paths using a motion model estimated by optical flow techniques, considerably reducing the typical motion artefacts of dynamic tomography. At the same time we exploit x-ray phase contrast based on free propagation to enhance the signal from micron scale structure recorded with illumination times down to a millisecond (ms). The concept is demonstrated by observing the burning process of a match stick in 4d, using high speed synchrotron phase contrast x-ray tomography recordings. The resulting movies reveal the structural changes of the wood cells during the combustion.

  20. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record

    PubMed Central

    Xu, Deke; Lu, Houyuan; Chu, Guoqiang; Wu, Naiqin; Shen, Caiming; Wang, Can; Mao, Limi

    2014-01-01

    Here we presented a high-resolution 5350-year pollen record from a maar annually laminated lake in East Asia (EA). Pollen record reflected the dynamics of vertical vegetation zones and temperature change. Spectral analysis on pollen percentages/concentrations of Pinus and Quercus, and a temperature proxy, revealed ~500-year quasi-periodic cold-warm fluctuations during the past 5350 years. This ~500-year cyclic climate change occurred in EA during the mid-late Holocene and even the last 150 years dominated by anthropogenic forcing. It was almost in phase with a ~500-year periodic change in solar activity and Greenland temperature change, suggesting that ~500-year small variations in solar output played a prominent role in the mid-late Holocene climate dynamics in EA, linked to high latitude climate system. Its last warm phase might terminate in the next several decades to enter another ~250-year cool phase, and thus this future centennial cyclic temperature minimum could partially slow down man-made global warming. PMID:24402348

  1. The Importance of Dynamic Systems Approaches for Understanding Development

    ERIC Educational Resources Information Center

    Howe, Mark L.; Lewis, Marc D.

    2005-01-01

    We outline the nature of dynamic systems, both linear and nonlinear, and we review dynamic systems principles that apply well to various aspects of human development, including the emergence of new forms, phases of stability and instability, continuous and discontinuous change, and differentiation among individual trajectories. We then document…

  2. Solvation Dynamics in Different Phases of the Lyotropic Liquid Crystalline System.

    PubMed

    Roy, Bibhisan; Satpathi, Sagar; Gavvala, Krishna; Koninti, Raj Kumar; Hazra, Partha

    2015-09-03

    Reverse hexagonal (HII) liquid crystalline material based on glycerol monooleate (GMO) is considered as a potential carrier for drugs and other important biomolecules due to its thermotropic phase change and excellent morphology. In this work, the dynamics of encapsulated water, which plays important role in stabilization and formation of reverse hexagonal mesophase, has been investigated by time dependent Stokes shift method using Coumarin-343 as a solvation probe. The formation of the reverse hexagonal mesophase (HII) and transformation to the L2 phase have been monitored using small-angle X-ray scattering and polarized light microscopy experiments. REES studies suggest the existence of different polar regions in both HII and L2 systems. The solvation dynamics study inside the reverse hexagonal (HII) phase reveals the existence of two different types of water molecules exhibiting dynamics on a 120-900 ps time scale. The estimated diffusion coefficients of both types of water molecules obtained from the observed dynamics are in good agreement with the measured diffusion coefficient collected from the NMR study. The calculated activation energy is found to be 2.05 kcal/mol, which is associated with coupled rotational-translational water relaxation dynamics upon the transition from "bound" to "quasi-free" state. The observed ∼2 ns faster dynamics of the L2 phase compared to the HII phase may be associated with both the phase transformation as well as thermotropic effect on the relaxation process. Microviscosities calculated from time-resolved anisotropy studies infer that the interface is almost ∼22 times higher viscous than the central part of the cylinder. Overall, our results reveal the unique dynamical features of water inside the cylinder of reverse hexagonal and inverse micellar phases.

  3. To Which Extent can Aerosols Affect Alpine Mixed-Phase Clouds?

    NASA Astrophysics Data System (ADS)

    Henneberg, O.; Lohmann, U.

    2017-12-01

    Aerosol-cloud interactions constitute a high uncertainty in regional climate and changing weather patterns. Such uncertainties are due to the multiple processes that can be triggered by aerosol especially in mixed-phase clouds. Mixed-phase clouds most likely result in precipitation due to the formation of ice crystals, which can grow to precipitation size. Ice nucleating particles (INPs) determine how fast these clouds glaciate and form precipitation. The potential for INP to transfer supercooled liquid clouds to precipitating clouds depends on the available humidity and supercooled liquid. Those conditions are determined by dynamics. Moderately high updraft velocities result in persistent mixed-phase clouds in the Swiss Alps [1], which provide an ideal testbed to investigate the effect of aerosol on precipitation in mixed-phase clouds. To address the effect of aerosols in orographic winter clouds under different dynamic conditions, we run a number of real case ensembles with the regional climate model COSMO on a horizontal resolution of 1.1 km. Simulations with different INP concentrations within the range observed at the GAW research station Jungfraujoch in the Swiss Alps are conducted and repeated within the ensemble. Microphysical processes are described with a two-moment scheme. Enhanced INP concentrations enhance the precipitation rate of a single precipitation event up to 20%. Other precipitation events of similar strength are less affected by the INP concentration. The effect of CCNs is negligible for precipitation from orographic winter clouds in our case study. There is evidence for INP to change precipitation rate and location more effectively in stronger dynamic regimes due to the enhanced potential to transfer supercooled liquid to ice. The classification of the ensemble members according to their dynamics will quantify the interaction of aerosol effects and dynamics. Reference [1] Lohmann et al, 2016: Persistence of orographic mixed-phase clouds, GRL

  4. Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals.

    PubMed

    McDaniel, Jesse G; Yethiraj, Arun

    2017-05-18

    Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those with longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ∼20-50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.

  5. Ultrasonic Apparatus and Technique to Measure Changes in Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    2002-01-01

    Changes in intracranial pressure can be measured dynamically and non-invasively by monitoring one or more cerebrospinal fluid pulsatile components. Pulsatile components such as systolic and diastolic blood pressures are partially transferred to the cerebrospinal fluid by way of blood vessels contained in the surrounding brain tissue and membrane. As intracranial pressure varies these cerebrospinal fluid pulsatile components also vary. Thus, intracranial pressure can be dynamically measured. Furthermore, use of acoustics allows the measurement to be completely non-invasive. In the preferred embodiment, phase comparison of a reflected acoustic signal to a reference signal using a constant frequency pulsed phase-locked-loop ultrasonic device allows the pulsatile components to be monitored. Calibrating the device by inducing a known change in intracranial pressure allows conversion to changes in intracranial pressure.

  6. Evolution of Ada technology in the flight dynamics area: Implementation/testing phase analysis

    NASA Technical Reports Server (NTRS)

    Quimby, Kelvin L.; Esker, Linda; Miller, John; Smith, Laurie; Stark, Mike; Mcgarry, Frank

    1989-01-01

    An analysis is presented of the software engineering issues related to the use of Ada for the implementation and system testing phases of four Ada projects developed in the flight dynamics area. These projects reflect an evolving understanding of more effective use of Ada features. In addition, the testing methodology used on these projects has changed substantially from that used on previous FORTRAN projects.

  7. Phase transitions in trajectories of a superconducting single-electron transistor coupled to a resonator.

    PubMed

    Genway, Sam; Garrahan, Juan P; Lesanovsky, Igor; Armour, Andrew D

    2012-05-01

    Recent progress in the study of dynamical phase transitions has been made with a large-deviation approach to study trajectories of stochastic jumps using a thermodynamic formalism. We study this method applied to an open quantum system consisting of a superconducting single-electron transistor, near the Josephson quasiparticle resonance, coupled to a resonator. We find that the dynamical behavior shown in rare trajectories can be rich even when the mean dynamical activity is small, and thus the formalism gives insights into the form of fluctuations. The structure of the dynamical phase diagram found from the quantum-jump trajectories of the resonator is studied, and we see that sharp transitions in the dynamical activity may be related to the appearance and disappearance of bistabilities in the state of the resonator as system parameters are changed. We also demonstrate that for a fast resonator, the trajectories of quasiparticles are similar to the resonator trajectories.

  8. Apparatus and Method to Enable Precision and Fast Laser Frequency Tuning

    NASA Technical Reports Server (NTRS)

    Chen, Jeffrey R. (Inventor); Numata, Kenji (Inventor); Wu, Stewart T. (Inventor); Yang, Guangning (Inventor)

    2015-01-01

    An apparatus and method is provided to enable precision and fast laser frequency tuning. For instance, a fast tunable slave laser may be dynamically offset-locked to a reference laser line using an optical phase-locked loop. The slave laser is heterodyned against a reference laser line to generate a beatnote that is subsequently frequency divided. The phase difference between the divided beatnote and a reference signal may be detected to generate an error signal proportional to the phase difference. The error signal is converted into appropriate feedback signals to phase lock the divided beatnote to the reference signal. The slave laser frequency target may be rapidly changed based on a combination of a dynamically changing frequency of the reference signal, the frequency dividing factor, and an effective polarity of the error signal. Feed-forward signals may be generated to accelerate the slave laser frequency switching through laser tuning ports.

  9. On Mechanical Transitions in Biologically Motivated Soft Matter Systems

    NASA Astrophysics Data System (ADS)

    Fogle, Craig

    The notion of phase transitions as a characterization of a change in physical properties pervades modern physics. Such abrupt and fundamental changes in the behavior of physical systems are evident in condensed matter system and also occur in nuclear and subatomic settings. While this concept is less prevalent in the field of biology, recent advances have pointed to its relevance in a number of settings. Recent studies have modeled both the cell cycle and cancer as phase transition in physical systems. In this dissertation we construct simplified models for two biological systems. As described by those models, both systems exhibit phase transitions. The first model is inspired by the shape transition in the nuclei of neutrophils during differentiation. During differentiation the nucleus transitions from spherical to a shape often described as "beads on a string." As a simplified model of this system, we investigate the spherical-to-wrinkled transition in an elastic core bounded to a fluid shell system. We find that this model exhibits a first-order phase transition, and the shape that minimizes the energy of the system scales as (micror3/kappa). . The second system studied is motivated by the dynamics of globular proteins. These proteins may undergoes conformational changes with large displacements relative to their size. Transitions between conformational states are not possible if the dynamics are governed strictly by linear elasticity. We construct a model consisting of an predominantly elastic region near the energetic minimum of the system and a non-linear softening of the system at a critical displacement. We find that this simple model displays very rich dynamics include a sharp dynamical phase transition and driving-force-dependent symmetry breaking.

  10. A simulation system to hide dynamic objects selectively at visible wavelengths

    NASA Astrophysics Data System (ADS)

    Cheng, Qiluan; Zhang, Shu; Ding, Chizhu; Tan, Zuojun; Wang, Guo Ping

    2018-04-01

    Currently, invisibility devices are increasingly approaching practical application requirements, such as using easily obtained materials for construction and hiding dynamic objects. Here, using phase retrieval and computer-generated holography techniques, we design an invisibility system in simulation to produce a phase-conjugation signal that changes with the dynamic object to hide it. This system is highly selective for the hidden objects, i.e., it only hides the target object and has no effect on the others. Such function may provide our invisibility system with great potential in special fields, such as biology and military applications for living and dynamic target recognition, selective camouflaging, and others.

  11. Elastic excitations in BaTiO3 single crystals and ceramics: Mobile domain boundaries and polar nanoregions observed by resonant ultrasonic spectroscopy

    NASA Astrophysics Data System (ADS)

    Salje, Ekhard K. H.; Carpenter, Michael A.; Nataf, Guillaume F.; Picht, Gunnar; Webber, Kyle; Weerasinghe, Jeevaka; Lisenkov, S.; Bellaiche, L.

    2013-01-01

    The dynamic properties of elastic domain walls in BaTiO3 were investigated using resonance ultrasonic spectroscopy (RUS). The sequence of phase transitions is characterized by minima in the temperature dependence of RUS resonance frequencies and changes in Q factors (resonance damping). Damping is related to the friction of mobile twin boundaries (90° ferroelectric walls) and distorted polar nanoregions (PNRs) in the cubic phase. Damping is largest in the tetragonal phase of ceramic materials but very low in single crystals. Damping is also small in the low-temperature phases of the ceramic sample and slightly increases with decreasing temperature in the single crystal. The phase angle between the real and imaginary part of the dynamic response function changes drastically in the cubic and tetragonal phases and remains constant in the orthorhombic phase. Other phases show a moderate dependence of the phase angle on temperature showing systematic changes of twin microstructures. Mobile twin boundaries (or sections of twin boundaries such as kinks inside twin walls) contribute strongly to the energy dissipation of the forced oscillation while the reduction in effective modulus due to relaxing twin domains is weak. Single crystals and ceramics show strong precursor softening in the cubic phase related to polar nanoregions (PNRs). The effective modulus decreases when the transition point of the cubic-tetragonal transformation is approached from above. The precursor softening follows temperature dependence very similar to recent results from Brillouin scattering. Between the Burns temperature (≈586 K) and Tc at 405 K, we found a good fit of the squared RUS frequency [˜Δ (C11-C12)] to a Vogel-Fulcher process with an activation energy of ˜0.2 eV. Finally, some first-principles-based effective Hamiltonian computations were carried out in BaTiO3 single domains to explain some of these observations in terms of the dynamics of the soft mode and central mode.

  12. Understanding Phase-Change Memory Alloys from a Chemical Perspective

    NASA Astrophysics Data System (ADS)

    Kolobov, A. V.; Fons, P.; Tominaga, J.

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  13. Understanding Phase-Change Memory Alloys from a Chemical Perspective.

    PubMed

    Kolobov, A V; Fons, P; Tominaga, J

    2015-09-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.

  14. Comparative dynamics in a health investment model.

    PubMed

    Eisenring, C

    1999-10-01

    The method of comparative dynamics fully exploits the inter-temporal structure of optimal control models. I derive comparative dynamic results in a simplified demand for health model. The effect of a change in the depreciation rate on the optimal paths for health capital and investment in health is studied by use of a phase diagram.

  15. Dynamic flashing yellow arrow (FYA): a study on variable left-turn mode operational and safety impacts phase II - model expansion and testing.

    DOT National Transportation Integrated Search

    2016-06-01

    The flashing yellow arrow (FYA) signal display creates an opportunity to enhance the left-turn phase with a : variable mode that can be changed on demand. The previously developed decision support system (DSS) in : phase I facilitated the selection o...

  16. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    NASA Astrophysics Data System (ADS)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel; Sebastian, Abu

    2016-01-01

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current in doped Ge2Sb2Te5 nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.

  17. Redefining the Speed Limit of Phase Change Memory Revealed by Time-resolved Steep Threshold-Switching Dynamics of AgInSbTe Devices

    NASA Astrophysics Data System (ADS)

    Shukla, Krishna Dayal; Saxena, Nishant; Durai, Suresh; Manivannan, Anbarasu

    2016-11-01

    Although phase-change memory (PCM) offers promising features for a ‘universal memory’ owing to high-speed and non-volatility, achieving fast electrical switching remains a key challenge. In this work, a correlation between the rate of applied voltage and the dynamics of threshold-switching is investigated at picosecond-timescale. A distinct characteristic feature of enabling a rapid threshold-switching at a critical voltage known as the threshold voltage as validated by an instantaneous response of steep current rise from an amorphous off to on state is achieved within 250 picoseconds and this is followed by a slower current rise leading to crystallization. Also, we demonstrate that the extraordinary nature of threshold-switching dynamics in AgInSbTe cells is independent to the rate of applied voltage unlike other chalcogenide-based phase change materials exhibiting the voltage dependent transient switching characteristics. Furthermore, numerical solutions of time-dependent conduction process validate the experimental results, which reveal the electronic nature of threshold-switching. These findings of steep threshold-switching of ‘sub-50 ps delay time’, opens up a new way for achieving high-speed non-volatile memory for mainstream computing.

  18. Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits.

    PubMed

    Lu, Yegang; Stegmaier, Matthias; Nukala, Pavan; Giambra, Marco A; Ferrari, Simone; Busacca, Alessandro; Pernice, Wolfram H P; Agarwal, Ritesh

    2017-01-11

    Phase change materials (PCMs) are highly attractive for nonvolatile electrical and all-optical memory applications because of unique features such as ultrafast and reversible phase transitions, long-term endurance, and high scalability to nanoscale dimensions. Understanding their transient characteristics upon phase transition in both the electrical and the optical domains is essential for using PCMs in future multifunctional optoelectronic circuits. Here, we use a PCM nanowire embedded into a nanophotonic circuit to study switching dynamics in mixed-mode operation. Evanescent coupling between light traveling along waveguides and a phase-change nanowire enables reversible phase transition between amorphous and crystalline states. We perform time-resolved measurements of the transient change in both the optical transmission and resistance of the nanowire and show reversible switching operations in both the optical and the electrical domains. Our results pave the way toward on-chip multifunctional optoelectronic integrated devices, waveguide integrated memories, and hybrid processing applications.

  19. Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Jacqmin, David A.

    1998-01-01

    Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.

  20. Investigation of Phase Transition-Based Tethered Systems for Small Body Sample Capture

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Scharf, Daniel; Mukherjee, Rudranarayan

    2009-01-01

    This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and possible return to Earth. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.

  1. Modeling and Testing of Phase Transition-Based Deployable Systems for Small Body Sample Capture

    NASA Technical Reports Server (NTRS)

    Quadrelli, Marco; Backes, Paul; Wilkie, Keats; Giersch, Lou; Quijano, Ubaldo; Keim, Jason; Mukherjee, Rudranarayan

    2009-01-01

    This paper summarizes the modeling, simulation, and testing work related to the development of technology to investigate the potential that shape memory actuation has to provide mechanically simple and affordable solutions for delivering assets to a surface and for sample capture and return. We investigate the structural dynamics and controllability aspects of an adaptive beam carrying an end-effector which, by changing equilibrium phases is able to actively decouple the end-effector dynamics from the spacecraft dynamics during the surface contact phase. Asset delivery and sample capture and return are at the heart of several emerging potential missions to small bodies, such as asteroids and comets, and to the surface of large bodies, such as Titan.

  2. Coupling between the Dynamics of Water and Surfactants in Lyotropic Liquid Crystals

    DOE PAGES

    McDaniel, Jesse G.; Yethiraj, Arun

    2017-04-26

    Bilayers composed of lipid or surfactant molecules are central to biological membranes and lamellar lyotropic liquid crystalline (LLC) phases. Common to these systems are phases that exhibit either ordered or disordered packing of the hydrophobic tails. In this work, we study the impact of surfactant ordering, i.e., disordered L α and ordered L β LLC phases, on the dynamics of water and sodium ions in the lamellar phases of dicarboxylate gemini surfactants. We study the different phases at identical hydration levels by changing the length of the hydrophobic tails; surfactants with shorter tails form L α phases and those withmore » longer tails form L β phases. We find that the L α phases exhibit lower density and greater compressibility than the L β phases, with a hydration-dependent headgroup surface area. These structural differences significantly affect the relative dynamic properties of the phases, primarily the mobility of the surfactant molecules tangential to the bilayer surface, as well as the rates of water and ion diffusion. We find ~20–50% faster water diffusion in the L α phases compared to the L β phases, with the differences most pronounced at low hydration. This coupling between water dynamics and surfactant mobility is verified using additional simulations in which the surfactant tails are frozen. Our study indicates that gemini surfactant LLCs provide an important prototypical system for characterizing properties shared with more complex biological lipid membranes.« less

  3. Role of electronic excitation in the amorphization of Ge-Sb-Te alloys.

    PubMed

    Li, Xian-Bin; Liu, X Q; Liu, Xin; Han, Dong; Zhang, Z; Han, X D; Sun, Hong-Bo; Zhang, S B

    2011-07-01

    First-principles molecular dynamics simulation reveals the effects of electronic excitation in the amorphization of Ge-Sb-Te. The excitation makes the phase change an element-selective process, lowers the critical amorphization temperature considerably, for example, to below 700 K at a 9% excitation, and reduces the atomic diffusion coefficient with respect to that of melt by at least 1 order of magnitude. Noticeably, the resulting structure has fewer wrong bonds and significantly increased phase-change reversibility. Our results point to a new direction in manipulating ultrafast phase-change processes with improved controllability.

  4. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model.

    PubMed

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M; Latash, Mark L

    2017-05-14

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1Hz, paced by an auditory metronome. One - Force task - required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task - Share task - required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Unintentional force changes in cyclical tasks performed by an abundant system: Empirical observations and a dynamical model

    PubMed Central

    Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M.; Latash, Mark L.

    2017-01-01

    The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1 Hz, paced by an auditory metronome. One – Force task – required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task – Share task – required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. PMID:28344070

  6. Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China.

    PubMed

    Du, Haibo; Liu, Jie; Li, Mai-He; Büntgen, Ulf; Yang, Yue; Wang, Lei; Wu, Zhengfang; He, Hong S

    2018-03-01

    Treeline responses to environmental changes describe an important phenomenon in global change research. Often conflicting results and generally too short observations are, however, still challenging our understanding of climate-induced treeline dynamics. Here, we use a state-of-the-art dendroecological approach to reconstruct long-term changes in the position of the alpine treeline in relation to air temperature at two sides in the Changbai Mountains in northeast China. Over the past 160 years, the treeline increased by around 80 m, a process that can be divided into three phases of different rates and drives. The first phase was mainly influenced by vegetation recovery after an eruption of the Tianchi volcano in 1702. The slowly upward shift in the second phase was consistent with the slowly increasing temperature. The last phase coincided with rapid warming since 1985, and shows with 33 m per 1°C, the most intense upward shift. The spatial distribution and age structure of trees beyond the current treeline confirm the latest, warming-induced upward shift. Our results suggest that the alpine treeline will continue to rise, and that the alpine tundra may disappear if temperatures will increase further. This study not only enhances mechanistic understanding of long-term treeline dynamics, but also highlights the effects of rising temperatures on high-elevation vegetation dynamics. © 2017 John Wiley & Sons Ltd.

  7. Associative memory of phase-coded spatiotemporal patterns in leaky Integrate and Fire networks.

    PubMed

    Scarpetta, Silvia; Giacco, Ferdinando

    2013-04-01

    We study the collective dynamics of a Leaky Integrate and Fire network in which precise relative phase relationship of spikes among neurons are stored, as attractors of the dynamics, and selectively replayed at different time scales. Using an STDP-based learning process, we store in the connectivity several phase-coded spike patterns, and we find that, depending on the excitability of the network, different working regimes are possible, with transient or persistent replay activity induced by a brief signal. We introduce an order parameter to evaluate the similarity between stored and recalled phase-coded pattern, and measure the storage capacity. Modulation of spiking thresholds during replay changes the frequency of the collective oscillation or the number of spikes per cycle, keeping preserved the phases relationship. This allows a coding scheme in which phase, rate and frequency are dissociable. Robustness with respect to noise and heterogeneity of neurons parameters is studied, showing that, since dynamics is a retrieval process, neurons preserve stable precise phase relationship among units, keeping a unique frequency of oscillation, even in noisy conditions and with heterogeneity of internal parameters of the units.

  8. Dynamics of Choice: Relative Rate and Amount Affect Local Preference at Three Different Time Scales

    ERIC Educational Resources Information Center

    Aparicio, Carlos F.; Baum, William M.

    2009-01-01

    To examine extended control over local choice, the present study investigated preference in transition as food-rate ratio provided by two levers changed across seven components within daily sessions, and food-amount ratio changed across phases. Phase 1 arranged a food-amount ratio of 4:1 (i.e., the left lever delivered four pellets and the right…

  9. Ascent heat transfer rate distribution on the North American Rockwell delta wing orbiter and the General Dynamics/Convair booster at a Mach number of 8 (mated)

    NASA Technical Reports Server (NTRS)

    Matthews, R. K.; Martindale, W. R.; Warmbrod, J. D.

    1972-01-01

    A wind tunnel test program to determine aerodynamic interference heating on the North American Rockwell orbiter mated with the General Dynamics Convair booster is discussed. The tests were conducted at the Arnold Engineering Development Center (AEDC) in Tunnel B of the von Karman Gas Dynamics Facility (VKF). The test period was June 1971. Heat-transfer rates were determined by the phase-change paint technique on 0.013-scale Stycast models using Tempilaq as the surface temperature indicator. The nominal test conditions were: Mach 8, free-stream unit length Reynolds numbers of 1.25 x one million and 2.55 x one million angles of attack of -5, 0, +5 deg. Model details, test conditions, phase-change paint photographs and reduced heat-transfer coefficients are presented.

  10. Effects of dynamic long-period ocean tides on changes in earth's rotation rate

    NASA Technical Reports Server (NTRS)

    Nam, Young; Dickman, S. R.

    1990-01-01

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the zonal response function kappa of the solid earth-ocean system is defined as the ratio, in the frequency domain, of the tidal change in earth's rotation rate to the tide-generating potential. Amplitudes and phases of kappa for the monthly, fortnightly, and nine-day lunar tides are estimated from 2 1/2 years of VLBI UT1 observations, corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988, 1989), amplitudes and phases of kappa for an elastic earth-ocean system are predicted. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of kappa by about 1 percent.

  11. Spatial mapping of dynamic cerebral autoregulation by multichannel near-infrared spectroscopy in high-grade carotid artery disease

    NASA Astrophysics Data System (ADS)

    Reinhard, Matthias; Schumacher, F. Konrad; Rutsch, Sebastian; Oeinck, Maximilian; Timmer, Jens; Mader, Irina; Schelter, Björn; Weiller, Cornelius; Kaller, Christoph P.

    2014-09-01

    The exact spatial distribution of impaired cerebral autoregulation in carotid artery disease is unknown. In this pilot study, we present a new approach of multichannel near-infrared spectroscopy (mcNIRS) for noninvasive spatial mapping of dynamic autoregulation in carotid artery disease. In 15 patients with unilateral severe carotid artery stenosis or occlusion, cortical hemodynamics in the bilateral frontal cortex were assessed from changes in oxyhemoglobin concentration using 52-channel NIRS (spatial resolution ˜2 cm). Dynamic autoregulation was graded by the phase shift between respiratory-induced 0.1 Hz oscillations of blood pressure and oxyhemoglobin. Ten of 15 patients showed regular phase values in the expected (patho) physiological range. Five patients had clearly outlying irregular phase values mostly due to artifacts. In patients with a regular phase pattern, a significant side-to-side difference of dynamic autoregulation was observed for the cortical border zone area between the middle and anterior cerebral artery (p<0.05). In conclusion, dynamic cerebral autoregulation can be spatially assessed from slow hemodynamic oscillations with mcNIRS. In high-grade carotid artery disease, cortical dynamic autoregulation is affected mostly in the vascular border zone. Spatial mapping of dynamic autoregulation may serve as a powerful tool for identifying brain regions at specific risks for hemodynamic infarction.

  12. Phase-space dissimilarity measures for industrial and biomedical applications

    NASA Astrophysics Data System (ADS)

    Protopopescu, V. A.; Hively, L. M.

    2005-12-01

    One of the most important problems in time-series analysis is the suitable characterization of the dynamics for timely, accurate, and robust condition assessment of the underlying system. Machine and physiological processes display complex, non-stationary behaviors that are affected by noise and may range from (quasi-)periodic to completely irregular (chaotic) regimes. Nevertheless, extensive experimental evidence indicates that even when the systems behave very irregularly (e.g., severe tool chatter or cardiac fibrillation), one may assume that - for all practical purposes - the dynamics are confined to low dimensional manifolds. As a result, the behavior of these systems can be described via traditional nonlinear measures (TNM), such as Lyapunov exponents, Kolmogorov entropy, and correlation dimension. While these measures are adequate for discriminating between clear-cut regular and chaotic dynamics, they are not sufficiently sensitive to distinguish between slightly different irregular (chaotic) regimes, especially when data are noisy and/or limited. Both machine and physiological dynamics usually fall into this latter category, creating a massive stumbling block to prognostication of abnormal regimes. We present here a recently developed approach that captures more efficiently changes in the underlying dynamics. We start with process-indicative, time-serial data that are checked for quality and discarded if inadequate. Acceptable data are filtered to remove confounding artifacts (e.g., sinusoidal variation in three-phase electrical signals or eye-blinks and muscular activity in EEG). The artifact-filtered data are then used to recover the essential features of the underlying dynamics via standard time-delay, phase-space reconstruction. One of the main results of this reconstruction is a discrete approximation of the distribution function (DF) on the attractor. Unaltered dynamics yield an unchanging geometry of the attractor and the visitation frequencies of its various points, corresponding to the baseline DF. Condition change is established by comparing the base line DFs to subsequent test case DFs via new, phase space dissimilarity measures (PSDM), namely the distance and - square statistics between two DFs. A clear trend in the dissimilarity measures over time indicates substantial departure from the baseline dynamics, thus signaling condition change. The severity of this departure can be interpreted as a "normal" fluctuation, abnormal behavior, impending failure, or complete breakdown. We illustrate the new approach on an assortment of machinery and biomedical examples. The machine data were collected during laboratory tests on industrial equipment, for diverse failure modes, via seeded faults and accelerated failures. The biomedical applications involve detection of physiological changes, such as epileptic seizures from EEG; ventricular fibrillation, fainting, and sepsis onset from ECG; and breathing difficulty from chest sounds. The PSDM show a consistent discrimination of normal-to-abnormal transitions, allowing earlier, more accurate, and more robust detection of the dynamical change for all of these applications in comparison to TNM.

  13. Analysis of nanoscale two-phase flow of argon using molecular dynamics

    NASA Astrophysics Data System (ADS)

    Verma, Abhishek Kumar; Kumar, Rakesh

    2014-12-01

    Two phase flows through micro and nanochannels have attracted a lot of attention because of their immense applicability to many advanced fields such as MEMS/NEMS, electronic cooling, bioengineering etc. In this work, a molecular dynamics simulation method is employed to study the condensation process of superheated argon vapor force driven flow through a nanochannel combining fluid flow and heat transfer. A simple and effective particle insertion method is proposed to model phase change of argon based on non-periodic boundary conditions in the simulation domain. Starting from a crystalline solid wall of channel, the condensation process evolves from a transient unsteady state where we study the influence of different wall temperatures and fluid wall interactions on interfacial and heat transport properties of two phase flows. Subsequently, we analyzed transient temperature, density and velocity fields across the channel and their dependency on varying wall temperature and fluid wall interaction, after a dynamic equilibrium is achieved in phase transition. Quasi-steady nonequilibrium temperature profile, heat flux and interfacial thermal resistance were analyzed. The results demonstrate that the molecular dynamics method, with the proposed particle insertion method, effectively solves unsteady nonequilibrium two phase flows at nanoscale resolutions whose interphase between liquid and vapor phase is typically of the order of a few molecular diameters.

  14. Crystallization kinetics of the phase change material GeSb 6Te measured with dynamic transmission electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winseck, M. M.; Cheng, H. -Y.; Campbell, G. H.

    2016-03-30

    GeSb 6Te is a chalcogenide-based phase change material that has shown great ptoential for use in solid-state memory devices. The crystallization kinetics of amorphous thin films of GeSb 6Te during laser crystallization were followed with dynamic transmission electron microscopy, a photo-emission electron microscopy technique with nanosecond-scale time resolution. Nine-frame movies of crystal growth were taken during laser crystallization. The nucleation rate is observed to be very low and the growth rates are very high, up to 10.8 m s –1 for amorphous as-deposited films and significantly higher for an amorphous film subject to sub-threshold laser annealing before crystallization. The measuredmore » growth rates exceed any directly measured growth rate of a phase change material. Here, the crystallization is reminiscent of explosive crystallization of elemental semiconductors both in the magnitude of the growth rate and in the resulting crystalline microstructures.« less

  15. Selection of high temperature thermal energy storage materials for advanced solar dynamic space power systems

    NASA Technical Reports Server (NTRS)

    Lacy, Dovie E.; Coles-Hamilton, Carolyn; Juhasz, Albert

    1987-01-01

    Under the direction of NASA's Office of Aeronautics and Technology (OAST), the NASA Lewis Research Center has initiated an in-house thermal energy storage program to identify combinations of phase change thermal energy storage media for use with a Brayton and Stirling Advanced Solar Dynamic (ASD) space power system operating between 1070 and 1400 K. A study has been initiated to determine suitable combinations of thermal energy storage (TES) phase change materials (PCM) that result in the smallest and lightest weight ASD power system possible. To date the heats of fusion of several fluoride salt mixtures with melting points greater than 1025 K have been verified experimentally. The study has indicated that these salt systems produce large ASD systems because of their inherent low thermal conductivity and low density. It is desirable to have PCMs with high densities and high thermal conductivities. Therefore, alternate phase change materials based on metallic alloy systems are also being considered as possible TES candidates for future ASD space power systems.

  16. Dynamic accommodation responses following adaptation to defocus.

    PubMed

    Cufflin, Matthew P; Mallen, Edward A H

    2008-10-01

    Adaptation to defocus is known to influence the subjective sensitivity to blur in both emmetropes and myopes. Blur is a major contributing factor in the closed-loop dynamic accommodation response. Previous investigations have examined the magnitude of the accommodation response following blur adaptation. We have investigated whether a period of blur adaptation influences the dynamic accommodation response to step and sinusoidal changes in target vergence. Eighteen subjects (six emmetropes, six early onset myopes, and six late onset myopes) underwent 30 min of adaptation to 0.00 D (control), +1.00 D or +3.00 D myopic defocus. Following this adaptation period, accommodation responses to a 2.00 D step change and 2.00 D sinusoidal change (0.2 Hz) in target vergence were recorded continuously using an autorefractor. Adaptation to defocus failed to influence accommodation latency times, but did influence response times to a step change in target vergence. Adaptation to both +1.00 and +3.00 D induced significant increases in response times (p = 0.002 and p = 0.012, respectively) and adaptation to +3.00 D increased the change in accommodation response magnitude (p = 0.014) for a 2.00 D step change in demand. Blur adaptation also significantly increased the peak-to-peak phase lag for accommodation responses to a sinusoidally oscillating target, although failed to influence the accommodation gain. These changes in accommodative response were equivalent across all refractive groups. Adaptation to a degraded stimulus causes an increased level of accommodation for dynamic targets moving towards an observer and increases response times and phase lags. It is suggested that the contrast constancy theory may explain these changes in dynamic behavior.

  17. Initial Atomic Motion Immediately Following Femtosecond-Laser Excitation in Phase-Change Materials.

    PubMed

    Matsubara, E; Okada, S; Ichitsubo, T; Kawaguchi, T; Hirata, A; Guan, P F; Tokuda, K; Tanimura, K; Matsunaga, T; Chen, M W; Yamada, N

    2016-09-23

    Despite the fact that phase-change materials are widely used for data storage, no consensus exists on the unique mechanism of their ultrafast phase change and its accompanied large and rapid optical change. By using the pump-probe observation method combining a femtosecond optical laser and an x-ray free-electron laser, we substantiate experimentally that, in both GeTe and Ge_{2}Sb_{2}Te_{5} crystals, rattling motion of mainly Ge atoms takes place with keeping the off-center position just after femtosecond-optical-laser irradiation, which eventually leads to a higher symmetry or disordered state. This very initial rattling motion in the undistorted lattice can be related to instantaneous optical change due to the loss of resonant bonding that characterizes GeTe-based phase change materials. Based on the amorphous structure derived by first-principles molecular dynamics simulation, we infer a plausible ultrafast amorphization mechanism via nonmelting.

  18. Dynamics of Block Copolymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mochrie, Simon G. J.

    2014-09-09

    A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We alsomore » carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.« less

  19. Dynamically generated patterns in dense suspensions of active filaments

    NASA Astrophysics Data System (ADS)

    Prathyusha, K. R.; Henkes, Silke; Sknepnek, Rastko

    2018-02-01

    We use Langevin dynamics simulations to study dynamical behavior of a dense planar layer of active semiflexible filaments. Using the strength of active force and the thermal persistence length as parameters, we map a detailed phase diagram and identify several nonequilibrium phases in this system. In addition to a slowly flowing melt phase, we observe that, for sufficiently high activity, collective flow accompanied by signatures of local polar and nematic order appears in the system. This state is also characterized by strong density fluctuations. Furthermore, we identify an activity-driven crossover from this state of coherently flowing bundles of filaments to a phase with no global flow, formed by individual filaments coiled into rotating spirals. This suggests a mechanism where the system responds to activity by changing the shape of active agents, an effect with no analog in systems of active particles without internal degrees of freedom.

  20. Solid-liquid critical behavior of water in nanopores.

    PubMed

    Mochizuki, Kenji; Koga, Kenichiro

    2015-07-07

    Nanoconfined liquid water can transform into low-dimensional ices whose crystalline structures are dissimilar to any bulk ices and whose melting point may significantly rise with reducing the pore size, as revealed by computer simulation and confirmed by experiment. One of the intriguing, and as yet unresolved, questions concerns the observation that the liquid water may transform into a low-dimensional ice either via a first-order phase change or without any discontinuity in thermodynamic and dynamic properties, which suggests the existence of solid-liquid critical points in this class of nanoconfined systems. Here we explore the phase behavior of a model of water in carbon nanotubes in the temperature-pressure-diameter space by molecular dynamics simulation and provide unambiguous evidence to support solid-liquid critical phenomena of nanoconfined water. Solid-liquid first-order phase boundaries are determined by tracing spontaneous phase separation at various temperatures. All of the boundaries eventually cease to exist at the critical points and there appear loci of response function maxima, or the Widom lines, extending to the supercritical region. The finite-size scaling analysis of the density distribution supports the presence of both first-order and continuous phase changes between solid and liquid. At around the Widom line, there are microscopic domains of two phases, and continuous solid-liquid phase changes occur in such a way that the domains of one phase grow and those of the other evanesce as the thermodynamic state departs from the Widom line.

  1. How Dynamic Visualization Technology can Support Molecular Reasoning

    NASA Astrophysics Data System (ADS)

    Levy, Dalit

    2013-10-01

    This paper reports the results of a study aimed at exploring the advantages of dynamic visualization for the development of better understanding of molecular processes. We designed a technology-enhanced curriculum module in which high school chemistry students conduct virtual experiments with dynamic molecular visualizations of solid, liquid, and gas. They interact with the visualizations and carry out inquiry activities to make and refine connections between observable phenomena and atomic level processes related to phase change. The explanations proposed by 300 pairs of students in response to pre/post-assessment items have been analyzed using a scale for measuring the level of molecular reasoning. Results indicate that from pretest to posttest, students make progress in their level of molecular reasoning and are better able to connect intermolecular forces and phase change in their explanations. The paper presents the results through the lens of improvement patterns and the metaphor of the "ladder of molecular reasoning," and discusses how this adds to our understanding of the benefits of interacting with dynamic molecular visualizations.

  2. Functional coordination of muscles underlying changes in behavioural dynamics.

    PubMed

    Vernooij, Carlijn A; Rao, Guillaume; Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K; Temprado, Jean-Jacques

    2016-06-10

    The dynamical systems approach addresses Bernstein's degrees of freedom problem by assuming that the neuro-musculo-skeletal system transiently assembles and dismantles its components into functional units (or synergies) to meet task demands. Strikingly, little is known from a dynamical point of view about the functioning of the muscular sub-system in this process. To investigate the interaction between the dynamical organisation at muscular and behavioural levels, we searched for specific signatures of a phase transition in muscular coordination when a transition is displayed at the behavioural level. Our results provide evidence that, during Fitts' task when behaviour switches to a different dynamical regime, muscular activation displays typical signatures of a phase transition; a reorganisation in muscular coordination patterns accompanied by a peak in the variability of muscle activation. This suggests that consistent changes occur in coordination processes across the different levels of description (i.e., behaviour and muscles). Specifically, in Fitts' task, target size acts as a control parameter that induces a destabilisation and a reorganisation of coordination patterns at different levels of the neuro-musculo-skeletal system.

  3. Vibrations and reorientations of H2O molecules in [Sr(H2O)6]Cl2 studied by Raman light scattering, incoherent inelastic neutron scattering and proton magnetic resonance.

    PubMed

    Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert

    2014-04-24

    Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic incoherent neutron scattering (IINS) spectra were calculated by the DFT method and quite a good agreement with the experimental data was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Preparation and characterization of novel anion phase change heat storage materials.

    PubMed

    Hong, Wei; Lil, Qingshan; Sun, Jing; Di, Youbo; Zhao, Zhou; Yu, Wei'an; Qu, Yuan; Jiao, TiFeng; Wang, Guowei; Xing, Guangzhong

    2013-10-01

    In this paper, polyurethane phase change material was successfully prepared with TDI with BDO for hard segments and PEG for soft segments. Moreover, based on this the solid-solid phase change material, A-PCM1030 which can release anions was prepared with the successful addition of anion additives A1030 for the first time. Then the test of the above material was conducted utilizing FT-IR, DSC, TEM, WAXD and Air Ion Detector. The Results indicated that the polyurethane phase change material possesses excellent thermal stability since there was no appearance of liquid leakage and phase separation after 50 times warming-cooling thermal cycles. It also presented reversibility on absorbing and releasing heat. In addition, adding a little A1030 can increase the thermal stability and reduce phase transition temperatures, as well as reduce the undercooling of the polyurethane phase change material. In addition, the anion test results suggested that the supreme amount of anion released by A-PCM1030 could reach 2510 anions/cm3 under dynamic conditions, which is beneficial for human health.

  5. Intra- and intermolecular effects on the Compton profile of the ionic liquid 1,3-dimethylimidazolium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koskelo, J., E-mail: jaakko.koskelo@helsinki.fi; Juurinen, I.; Ruotsalainen, K. O.

    2014-12-28

    We present a comprehensive simulation study on the solid-liquid phase transition of the ionic liquid 1,3-dimethylimidazolium chloride in terms of the changes in the atomic structure and their effect on the Compton profile. The structures were obtained by using ab initio molecular dynamics simulations. Chosen radial distribution functions of the liquid structure are presented and found generally to be in good agreement with previous ab initio molecular dynamics and neutron scattering studies. The main contributions to the predicted difference Compton profile are found to arise from intermolecular changes in the phase transition. This prediction can be used for interpreting futuremore » experiments.« less

  6. The Effects of Shoe Traction and Obstacle Height on Lower Extremity Coordination Dynamics during Walking

    PubMed Central

    Decker, Leslie; Houser, Jeremy J.; Noble, John M.; Karst, Gregory M.; Stergiou, Nicholas

    2009-01-01

    This study aims to investigate the effects of shoe traction and obstacle height on lower extremity relative phase dynamics (analysis of intralimb coordination) during walking to better understand the mechanisms employed to avoid slippage following obstacle clearance. Ten participants walked at a self-selected pace during eight conditions: four obstacle heights (0%, 10%, 20%, and 40% of limb length) while wearing two pairs of shoes (low and high traction). A coordination analysis was used and phasing relationships between lower extremity segments were examined. The results demonstrated that significant behavioral changes were elicited under varied obstacle heights and frictional conditions. Both decreasing shoe traction and increasing obstacle height resulted in a more in-phase relationship between the interacting lower limb segments. The higher the obstacle and the lower the shoe traction, the more unstable the system became. These changes in phasing relationship and variability are indicators of alterations in coordinative behavior, which if pushed further may have lead to falling. PMID:19187929

  7. Transcript Profiling Identifies Dynamic Gene Expression Patterns and an Important Role for Nrf2/Keap1 Pathway in the Developing Mouse Esophagus

    PubMed Central

    Li, Haiyan; Hu, Yuhui; Tevebaugh, Whitney; Yamamoto, Masayuki; Que, Jianwen; Chen, Xiaoxin

    2012-01-01

    Background and Aims Morphological changes during human and mouse esophageal development have been well characterized. However, changes at the molecular level in the course of esophageal morphogenesis remain unclear. This study aims to globally profile critical genes and signaling pathways during the development of mouse esophagus. By using microarray analysis this study also aims to determine how the Nrf2/Keap1 pathway regulates the morphogenesis of the esophageal epithelium. Methods Gene expression microarrays were used to survey gene expression in the esophagus at three critical phases: specification, metaplasia and maturation. The esophagi were isolated from wild-type, Nrf2−/−, Keap1−/−, or Nrf2−/−Keap1−/− embryos or young adult mice. Array data were statistically analyzed for differentially expressed genes and pathways. Histochemical and immunohistochemical staining were used to verify potential involvement of the Wnt pathway, Pparβ/δ and the PI3K/Akt pathway in the development of esophageal epithelium. Results Dynamic gene expression patterns accompanied the morphological changes of the developing esophagus at critical phases. Particularly, the Nrf2/Keap1 pathway had a baseline activity in the metaplasia phase and was further activated in the maturation phase. The Wnt pathway was active early and became inactive later in the metaplasia phase. In addition, Keap1−/− mice showed increased expression of Nrf2 downstream targets and genes involved in keratinization. Microarray and immunostaining data also suggested that esophageal hyperkeratosis in the Keap1−/− mice was due to activation of Pparβ/δ and the PI3K/Akt pathway. Conclusions Morphological changes of the esophageal epithelium are associated with dynamic changes in gene expression. Nrf2/Keap1 pathway activity is required for maturation of mouse esophageal epithelium. PMID:22567161

  8. Laser-irradiated Kondo insulators: Controlling the Kondo effect and topological phases

    NASA Astrophysics Data System (ADS)

    Takasan, Kazuaki; Nakagawa, Masaya; Kawakami, Norio

    2017-09-01

    We investigate theoretically the nature of laser-irradiated Kondo insulators. Using Floquet theory and the slave-boson approach, we study a periodic Anderson model and derive an effective model that describes laser-irradiated Kondo insulators. In this model, we find two generic effects induced by laser light. One is dynamical localization, which suppresses hopping and hybridization. The other is laser-induced hopping and hybridization, which can be interpreted as synthetic spin-orbit coupling or a magnetic field. The first effect drastically changes the behavior of the Kondo effect. In particular, the Kondo effect under laser light qualitatively changes its character depending on whether the hybridization is on-site or off-site. The second effect triggers topological phase transitions. In topological Kondo insulators, linearly polarized laser light realizes phase transitions between trivial, weak topological, and strong topological Kondo insulators. Moreover, circularly polarized laser light breaks time-reversal symmetry and induces Weyl semimetallic phases. Our results make it possible to dynamically control the Kondo effect and topological phases in heavy-fermion systems. We also discuss experimental setups to detect the signatures.

  9. Changes in aridity in response to the global warming hiatus

    NASA Astrophysics Data System (ADS)

    Guan, Xiaodan; Huang, Jianping; Guo, Ruixia

    2017-02-01

    The global warming slowdown or warming hiatus, began around the year 2000 and has persisted for nearly 15 years. Most studies have focused on the interpretation of the hiatus in temperature. In this study, changes in a global aridity index (AI) were analyzed by using a newly developed dynamical adjustment method that can successfully identify and separate dynamically induced and radiatively forced aridity changes in the raw data. The AI and Palmer Drought Severity Index produced a wetting zone over the mid-to-high latitudes of the Northern Hemisphere in recent decades. The dynamical adjustment analysis suggested that this wetting zone occurred in response to the global warming hiatus. The dynamically induced AI (DAI) played a major role in the AI changes during the hiatus period, and its relationships with the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO) also indicated that different phases of the NAO, PDO, and AMO contributed to different performances of the DAI over the Northern Hemisphere. Although the aridity wetting over the mid-to-high latitudes may relieve long-term drying in certain regions, the hiatus is temporary, and so is the relief. Accelerated global warming will return when the NAO, PDO, and AMO revert to their opposite phases in the future, and the wetting zone is likely to disappear.

  10. Numerical study of two-dimensional wet foam over a range of shear rates

    NASA Astrophysics Data System (ADS)

    Kähärä, T.

    2017-09-01

    The shear rheology of two-dimensional foam is investigated over a range of shear rates with the numerical DySMaL model, which features dynamically deformable bubbles. It is found that at low shear rates, the rheological behavior of the system can be characterized by a yield stress power-law constitutive equation that is consistent with experimental findings and can be understood in terms of soft glassy rheology models. At low shear rates, the system rheology is also found to be subject to a scaling law involving the bubble size, the surface tension, and the viscosity of the carrier fluid. At high shear rates, the model produces a dynamic phase transition with a sudden change in the flow pattern, which is accompanied by a drop in the effective viscosity. This phase transition can be linked to rapid changes in the average bubble deformation and nematic order of the system. It is very likely that this phase transition is a result of the model dynamics and does not happen in actual foams.

  11. Tamoxifen-model membrane interactions: an FT-IR study

    NASA Astrophysics Data System (ADS)

    Boyar, Handan; Severcan, Feride

    1997-06-01

    The temperature- and concentration-induced effects of tamoxifen (TAM) on dipalmitoyl phosphatidylcholine (DPPC) model membranes were investigated by the Fourier transform-infrared (FT-IR) spectroscopic technique. An investigation of the C-H stretching region and the CO mode reveals that the inclusion of TAM changes the physical properties of the DPPC multibilayers by (i) shifting the main phase transition to lower temperatures; (ii) broadening the transition profile slightly; (iii) disordering the system in the gel and in the liquid crystalline phases; (iv) increasing the dynamics in the gel phase and decreasing the dynamics of the acyl chains in the liquid crystalline phase; (v) increasing the mobility of the terminal methyl group region of the bilayer in the gel phase and decreasing it in the liquid crystalline phase; (vi) increasing the frequency of the CO stretching mode both in the gel and in the liquid crystalline phases, i.e. non-bonding with carbonyl groups.

  12. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: A review

    DOE PAGES

    Reichhardt, Charles; Olson Reichhardt, Cynthia Jane

    2016-12-20

    Here, we review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic andmore » plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.« less

  13. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review

    NASA Astrophysics Data System (ADS)

    Reichhardt, C.; Olson Reichhardt, C. J.

    2017-02-01

    We review the depinning and nonequilibrium phases of collectively interacting particle systems driven over random or periodic substrates. This type of system is relevant to vortices in type-II superconductors, sliding charge density waves, electron crystals, colloids, stripe and pattern forming systems, and skyrmions, and could also have connections to jamming, glassy behaviors, and active matter. These systems are also ideal for exploring the broader issues of characterizing transient and steady state nonequilibrium flow phases as well as nonequilibrium phase transitions between distinct dynamical phases, analogous to phase transitions between different equilibrium states. We discuss the differences between elastic and plastic depinning on random substrates and the different types of nonequilibrium phases which are associated with specific features in the velocity-force curves, fluctuation spectra, scaling relations, and local or global particle ordering. We describe how these quantities can change depending on the dimension, anisotropy, disorder strength, and the presence of hysteresis. Within the moving phase we discuss how there can be a transition from a liquid-like state to dynamically ordered moving crystal, smectic, or nematic states. Systems with periodic or quasiperiodic substrates can have multiple nonequilibrium second or first order transitions in the moving state between chaotic and coherent phases, and can exhibit hysteresis. We also discuss systems with competing repulsive and attractive interactions, which undergo dynamical transitions into stripes and other complex morphologies when driven over random substrates. Throughout this work we highlight open issues and future directions such as absorbing phase transitions, nonequilibrium work relations, inertia, the role of non-dissipative dynamics such as Magnus effects, and how these results could be extended to the broader issues of plasticity in crystals, amorphous solids, and jamming phenomena.

  14. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    NASA Astrophysics Data System (ADS)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  15. Global attractors and extinction dynamics of cyclically competing species.

    PubMed

    Rulands, Steffen; Zielinski, Alejandro; Frey, Erwin

    2013-05-01

    Transitions to absorbing states are of fundamental importance in nonequilibrium physics as well as ecology. In ecology, absorbing states correspond to the extinction of species. We here study the spatial population dynamics of three cyclically interacting species. The interaction scheme comprises both direct competition between species as in the cyclic Lotka-Volterra model, and separated selection and reproduction processes as in the May-Leonard model. We show that the dynamic processes leading to the transient maintenance of biodiversity are closely linked to attractors of the nonlinear dynamics for the overall species' concentrations. The characteristics of these global attractors change qualitatively at certain threshold values of the mobility and depend on the relative strength of the different types of competition between species. They give information about the scaling of extinction times with the system size and thereby the stability of biodiversity. We define an effective free energy as the negative logarithm of the probability to find the system in a specific global state before reaching one of the absorbing states. The global attractors then correspond to minima of this effective energy landscape and determine the most probable values for the species' global concentrations. As in equilibrium thermodynamics, qualitative changes in the effective free energy landscape indicate and characterize the underlying nonequilibrium phase transitions. We provide the complete phase diagrams for the population dynamics and give a comprehensive analysis of the spatio-temporal dynamics and routes to extinction in the respective phases.

  16. Atomic-level study of a thickness-dependent phase change in gold thin films heated by an ultrafast laser.

    PubMed

    Gan, Yong; Shi, Jixiang; Jiang, Shan

    2012-08-20

    An ultrafast laser-induced phase change in gold thin films with different thicknesses has been simulated by the method of coupling the two-temperature model and the molecular dynamics, including transient optical properties. Numerical results show that the decrease of film thickness leads to faster melting in the early nonequilibrium time and a larger melting depth. Moreover, earlier occurrence and a higher rate of resolidification are observed for the thicker film. Further analysis reveals that the mechanism for the thickness-dependent phase change in the films is the fast electron thermal conduction in the nonequilibrium state.

  17. Dynamics of the human linear vestibulo-ocular reflex at medium frequency and modification by short-term training

    NASA Technical Reports Server (NTRS)

    Shelhamer, M.; Roberts, D. C.; Zee, D. S.

    2000-01-01

    We study here the effect of a short-term training paradigm on the gain and phase of the human translational VOR (the linear VOR: LVOR). Subjects were exposed to lateral sinusoidal translations on a sled, at 0.5 Hz, 0.3 g peak acceleration. With subjects tracking a remembered target at 1.2 m, the LVOR (slow-phase) under these conditions typically has a phase lead or lag, and a gain that falls short of compensatory. To induce short-term adaptation (training), we presented an earth-fixed visual scene at 1.2 m during sinusoidal translation (x 1 viewing) for 20 minutes, so as to drive the LVOR toward compensatory phase and gain. We examined both the slow-phase and the saccadic responses to these stimuli. Testing after training showed changes in slow-component gain and phase which were mostly but not always in the compensatory direction. These changes were more consistent in naive subjects than in subjects who had previous LVOR experience. Changes in gain were seen with step as well as sinusoidal test stimuli; gain changes were not correlated with vergence changes. There was a strong correlation between gain changes and phase changes across subjects. Fast phases (catch-up saccades) formed a large component of the LVOR under our testing conditions (approximately 30% of the changes in gain but not in phase due to training.

  18. Observation of microscopic dynamics of phase transition in ferroelectric crystals using fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Sedarous, Salah S.

    1996-03-01

    Despite the large quantity of data on the macroscopic changes in the physical properties of ferroelectric crystals during phase transition, there is a continued need for understanding their microscopic origin. Here we describe a novel method for examining the microscopic dynamics of the ferroelectric phase transition using time-resolved fluorescence spectroscopy. The fluorescence properties of organic chromophores embedded in the ferroelectric crystals triglycine sulfate and potassium dihydrogen phosphate are altered in response to the structural phase transitions. The lifetime and the fractional intensity decay show large changes around Tc and the order of the phase transition is readily recovered (first or second order). To explain the fluorescence lifetime data we present a novel theoretical model based on the concept of polaritons in these crystals. Deactivation of the excited state chromophore involves the participation of the vibrational modes of the chromophore. These modes are coupled to the polarization dispersion of the matrix and facilitate the coupling of the excited state to the collective modes in the crystal. The net result is the flow of energy from the excited state chromophore to the lattice phonon. The data indicate that changes in fluorescence lifetime can be used to examine directly the collective modes in these crystals. Our work provides important insight into the emergence of macroscopic phase transition behavior out of microscopic fluctuations.

  19. Examination of rapid phase change in copper wires to improve material models and understanding of burst

    NASA Astrophysics Data System (ADS)

    Olles, Joseph; Garasi, Christopher; Ball, J. Patrick

    2017-11-01

    Electrically-pulsed wires undergo multiple phase changes including a postulated metastable phase resulting in explosive wire growth. Simulations using the MHD approximation attempt to account for the governing physics, but lack the material properties (equations-of-state and electrical conductivity) to accurately predict the phase evolution of the exploding (bursting) wire. To explore the dynamics of an exploding copper wire (in water), we employ a digital micro-Schlieren streak photography technique. This imaging quantifies wire expansion and shock waves emitted from the wire during phase changes. Using differential voltage probes, a Rogowski coil, and timing fiducials, the phase change of the wire is aligned with electrical power and energy deposition. Time-correlated electrical diagnostics and imaging allow for detailed validation of MHD simulations, comparing observed phases with phase change details found in the material property descriptions. In addition to streak imaging, a long exposure image is taken to capture axial striations along the length of the wire. These images are used to compare with results from 3D MHD simulations which propose that these perturbations impact the rate of wire expansion and temporal change in phases. If successful, the experimental data will identify areas for improvement in the material property models, and modeling results will provide insight into the details of phase change in the wire with correlation to variations in the electrical signals.

  20. Morphology effect on the light scattering and dynamic response of polymer network liquid crystal phase modulator.

    PubMed

    Xiangjie, Zhao; Cangli, Liu; Jiazhu, Duan; Jiancheng, Zeng; Dayong, Zhang; Yongquan, Luo

    2014-06-16

    Polymer network liquid crystal (PNLC) was one of the most potential liquid crystal for submillisecond response phase modulation, which was possible to be applied in submillisecond response phase only spatial light modulator. But until now the light scattering when liquid crystal director was reoriented by external electric field limited its phase modulation application. Dynamic response of phase change when high voltage was applied was also not elucidated. The mechanism that determines the light scattering was studied by analyzing the polymer network morphology by SEM method. Samples were prepared by varying the polymerization temperature, UV curing intensity and polymerization time. The morphology effect on the dynamic response of phase change was studied, in which high voltage was usually applied and electro-striction effect was often induced. The experimental results indicate that the polymer network morphology was mainly characterized by cross linked single fibrils, cross linked fibril bundles or even both. Although the formation of fibril bundle usually induced large light scattering, such a polymer network could endure higher voltage. In contrast, although the formation of cross linked single fibrils induced small light scattering, such a polymer network cannot endure higher voltage. There is a tradeoff between the light scattering and high voltage endurance. The electro-optical properties such as threshold voltage and response time were taken to verify our conclusion. For future application, the monomer molecular structure, the liquid crystal solvent and the polymerization conditions should be optimized to generate optimal polymer network morphology.

  1. Evidence for thermally assisted threshold switching behavior in nanoscale phase-change memory cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Gallo, Manuel; Athmanathan, Aravinthan; Krebs, Daniel

    2016-01-14

    In spite of decades of research, the details of electrical transport in phase-change materials are still debated. In particular, the so-called threshold switching phenomenon that allows the current density to increase steeply when a sufficiently high voltage is applied is still not well understood, even though there is wide consensus that threshold switching is solely of electronic origin. However, the high thermal efficiency and fast thermal dynamics associated with nanoscale phase-change memory (PCM) devices motivate us to reassess a thermally assisted threshold switching mechanism, at least in these devices. The time/temperature dependence of the threshold switching voltage and current inmore » doped Ge{sub 2}Sb{sub 2}Te{sub 5} nanoscale PCM cells was measured over 6 decades in time at temperatures ranging from 40 °C to 160 °C. We observe a nearly constant threshold switching power across this wide range of operating conditions. We also measured the transient dynamics associated with threshold switching as a function of the applied voltage. By using a field- and temperature-dependent description of the electrical transport combined with a thermal feedback, quantitative agreement with experimental data of the threshold switching dynamics was obtained using realistic physical parameters.« less

  2. Phase change material based tunable reflectarray for free-space optical inter/intra chip interconnects.

    PubMed

    Zou, Longfang; Cryan, Martin; Klemm, Maciej

    2014-10-06

    The concept of phase change material (PCM) based optical antennas and antenna arrays is proposed for dynamic beam shaping and steering utilized in free-space optical inter/intra chip interconnects. The essence of this concept lies in the fact that the behaviour of PCM based optical antennas will change due to the different optical properties of the amorphous and crystalline state of the PCM. By engineering optical antennas or antenna arrays, it is feasible to design dynamic optical links in a desired manner. In order to illustrate this concept, a PCM based tunable reflectarray is proposed for a scenario of a dynamic optical link between a source and two receivers. The designed reflectarray is able to switch the optical link between two receivers by switching the two states of the PCM. Two types of antennas are employed in the proposed tunable reflectarray to achieve full control of the wavefront of the reflected beam. Numerical studies show the expected binary beam steering at the optical communication wavelength of 1.55 μm. This study suggests a new research area of PCM based optical antennas and antenna arrays for dynamic optical switching and routing.

  3. Bottom-up excited state dynamics of two cinnamate-based sunscreen filter molecules.

    PubMed

    Peperstraete, Yoann; Staniforth, Michael; Baker, Lewis A; Rodrigues, Natércia D N; Cole-Filipiak, Neil C; Quan, Wen-Dong; Stavros, Vasilios G

    2016-10-12

    Methyl-E-4-methoxycinnamate (E-MMC) is a model chromophore of the commonly used commercial sunscreen agent, 2-ethylhexyl-E-4-methoxycinnamate (E-EHMC). In an effort to garner a molecular-level understanding of the photoprotection mechanisms in operation with E-EHMC, we have used time-resolved pump-probe spectroscopy to explore E-MMC's and E-EHMC's excited state dynamics upon UV-B photoexcitation to the S 1 (1 1 ππ*) state in both the gas- and solution-phase. In the gas-phase, our studies suggest that the excited state dynamics are driven by non-radiative decay from the 1 1 ππ* to the S 3 (1 1 nπ*) state, followed by de-excitation from the 1 1 nπ* to the ground electronic state (S 0 ). Using both a non-polar-aprotic solvent, cyclohexane, and a polar-protic solvent, methanol, we investigated E-MMC and E-EHMC's photochemistry in a more realistic, 'closer-to-shelf' environment. A stark change to the excited state dynamics in the gas-phase is observed in the solution-phase suggesting that the dynamics are now driven by efficient E/Z isomerisation from the initially photoexcited 1 1 ππ* state to S 0 .

  4. Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.

    PubMed

    Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R

    2015-10-01

    Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.

  5. Robust image registration for multiple exposure high dynamic range image synthesis

    NASA Astrophysics Data System (ADS)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  6. Social judgment theory based model on opinion formation, polarization and evolution

    NASA Astrophysics Data System (ADS)

    Chau, H. F.; Wong, C. Y.; Chow, F. K.; Fung, Chi-Hang Fred

    2014-12-01

    The dynamical origin of opinion polarization in the real world is an interesting topic that physical scientists may help to understand. To properly model the dynamics, the theory must be fully compatible with findings by social psychologists on microscopic opinion change. Here we introduce a generic model of opinion formation with homogeneous agents based on the well-known social judgment theory in social psychology by extending a similar model proposed by Jager and Amblard. The agents’ opinions will eventually cluster around extreme and/or moderate opinions forming three phases in a two-dimensional parameter space that describes the microscopic opinion response of the agents. The dynamics of this model can be qualitatively understood by mean-field analysis. More importantly, first-order phase transition in opinion distribution is observed by evolving the system under a slow change in the system parameters, showing that punctuated equilibria in public opinion can occur even in a fully connected social network.

  7. Phase transitions in the common brainstem and related systems investigated by nonstationary time series analysis.

    PubMed

    Lambertz, M; Vandenhouten, R; Grebe, R; Langhorst, P

    2000-01-14

    Neuronal activities of the reticular formation (RF) of the lower brainstem and the nucleus tractus solitarii (NTS, first relay station of baroreceptor afferents) were recorded together in the anesthized dog with related parameters of EEG, respiration and cardiovascular system. The RF neurons are part of the common brainstem system (CBS) which participates in regulation and coordination of cardiovascular, respiratory, somatomotor systems, and vigilance. Multiple time series of these physiological subsystems yield useful information about internal dynamic coordination of the organism. Essential problems are nonlinearity and instationarity of the signals, due to the dynamic complexity of the systems. Several time-resolving methods are presented to describe nonlinear dynamic couplings in the time course, particularly during phase transitions. The methods are applied to the recorded signals representing the complex couplings of the physiological subsystems. Phase transitions in these systems are detected by recurrence plots of the instationary signals. The pointwise transinformation and the pointwise conditional coupling divergence are measures of the mutual interaction of the subsystems in the state space. If the signals show marked rhythms, instantaneous frequencies and their shiftings are demonstrated by time frequency distributions, and instantaneous phase differences show couplings of oscillating subsystems. Transient signal components are reconstructed by wavelet packet time selective transient reconstruction. These methods are useful means for analyzing coupling characteristics of the complex physiological system, and detailed analyses of internal dynamic coordination of subsystems become possible. During phase transitions of the functional organization (a) the rhythms of the central neuronal activities and the peripheral systems are altered, (b) changes in the coupling between CBS neurons and cardiovascular signals, respiration and the EEG, and (c) between NTS neurons (influenced by baroreceptor afferents) and CBS neurons occur, and (d) the processing of baroreceptor input at the NTS neurons changes. The results of this complex analysis, which could not be done formerly in this manner, confirm and complete former investigations on the dynamic organization of the CBS with its changing relations to peripheral and other central nervous subsystems.

  8. Instantaneous phase-shifting Fizeau interferometry with high-speed pixelated phase-mask camera

    NASA Astrophysics Data System (ADS)

    Yatagai, Toyohiko; Jackin, Boaz Jessie; Ono, Akira; Kiyohara, Kosuke; Noguchi, Masato; Yoshii, Minoru; Kiyohara, Motosuke; Niwa, Hayato; Ikuo, Kazuyuki; Onuma, Takashi

    2015-08-01

    A Fizeou interferometer with instantaneous phase-shifting ability using a Wollaston prism is designed. to measure dynamic phase change of objects, a high-speed video camera of 10-5s of shutter speed is used with a pixelated phase-mask of 1024 × 1024 elements. The light source used is a laser of wavelength 532 nm which is split into orthogonal polarization states by passing through a Wollaston prism. By adjusting the tilt of the reference surface it is possible to make the reference and object beam with orthogonal polarizations states to coincide and interfere. Then the pixelated phase-mask camera calculate the phase changes and hence the optical path length difference. Vibration of speakers and turbulence of air flow were successfully measured in 7,000 frames/sec.

  9. The effects of five-order nonlinear on the dynamics of dark solitons in optical fiber.

    PubMed

    He, Feng-Tao; Wang, Xiao-Lin; Duan, Zuo-Liang

    2013-01-01

    We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce.

  10. The Effects of Five-Order Nonlinear on the Dynamics of Dark Solitons in Optical Fiber

    PubMed Central

    Wang, Xiao-Lin; Duan, Zuo-Liang

    2013-01-01

    We study the influence of five-order nonlinear on the dynamic of dark soliton. Starting from the cubic-quintic nonlinear Schrodinger equation with the quadratic phase chirp term, by using a similarity transformation technique, we give the exact solution of dark soliton and calculate the precise expressions of dark soliton's width, amplitude, wave central position, and wave velocity which can describe the dynamic behavior of soliton's evolution. From two different kinds of quadratic phase chirps, we mainly analyze the effect on dark soliton's dynamics which different fiver-order nonlinear term generates. The results show the following two points with quintic nonlinearities coefficient increasing: (1) if the coefficients of the quadratic phase chirp term relate to the propagation distance, the solitary wave displays a periodic change and the soliton's width increases, while its amplitude and wave velocity reduce. (2) If the coefficients of the quadratic phase chirp term do not depend on propagation distance, the wave function only emerges in a fixed area. The soliton's width increases, while its amplitude and the wave velocity reduce. PMID:23818814

  11. Competing dynamic phases of active polymer networks

    NASA Astrophysics Data System (ADS)

    Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.

    Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.

  12. Photoinduced transition to charge-ordered phases from dynamical localization in the metallic phase of α -(BEDT-TTF)2I3

    NASA Astrophysics Data System (ADS)

    Oya, Koudai; Takahashi, Akira

    2018-03-01

    From theory, we investigate charge localization induced by higher-frequency off-resonance light-pulse excitation in the metallic phase of α -(BEDT-TTF) 2I3 by numerically solving the time-dependent Schrödinger equation in the quarter-filled extended Hubbard model for the material. Around e a A(max )=1 , where e a A(max ) is the maximum amplitude of the dimensionless vector potential of the pump pulse, the charge distribution is significantly changed by photoexcitation, and the light-pulse-induced collective charge oscillations continue after photoexcitation. Furthermore, the charge dynamics depend strongly on the polarization direction of the pump pulse. These results are consistent with experiment. The magnitudes of the effective transfer integrals are reduced by strong photoexcitation, and this precursory phenomenon for dynamical localization is mainly driven by a photoinduced change in the ratio of the effective transfer integrals between the two strongest bonds. For e a A(max )≳2 , the photoinduced transition to the charge-ordered state, which can be regarded as a light-dressed state, occurs because of dynamical localization. Furthermore, the type of photogenerated charge-ordered state can be controlled by choosing e a A(max ) and the polarization direction.

  13. Finite-connectivity spin-glass phase diagrams and low-density parity check codes.

    PubMed

    Migliorini, Gabriele; Saad, David

    2006-02-01

    We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate , an RS critical transition point at while the critical RSB transition point is located at , to be compared with the corresponding Shannon bound . For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed.

  14. Two-step interrogation then recognition of DNA binding site by Integration Host Factor: an architectural DNA-bending protein.

    PubMed

    Velmurugu, Yogambigai; Vivas, Paula; Connolly, Mitchell; Kuznetsov, Serguei V; Rice, Phoebe A; Ansari, Anjum

    2018-02-28

    The dynamics and mechanism of how site-specific DNA-bending proteins initially interrogate potential binding sites prior to recognition have remained elusive for most systems. Here we present these dynamics for Integration Host factor (IHF), a nucleoid-associated architectural protein, using a μs-resolved T-jump approach. Our studies show two distinct DNA-bending steps during site recognition by IHF. While the faster (∼100 μs) step is unaffected by changes in DNA or protein sequence that alter affinity by >100-fold, the slower (1-10 ms) step is accelerated ∼5-fold when mismatches are introduced at DNA sites that are sharply kinked in the specific complex. The amplitudes of the fast phase increase when the specific complex is destabilized and decrease with increasing [salt], which increases specificity. Taken together, these results indicate that the fast phase is non-specific DNA bending while the slow phase, which responds only to changes in DNA flexibility at the kink sites, is specific DNA kinking during site recognition. Notably, the timescales for the fast phase overlap with one-dimensional diffusion times measured for several proteins on DNA, suggesting that these dynamics reflect partial DNA bending during interrogation of potential binding sites by IHF as it scans DNA.

  15. Molecular dynamics simulation of Bu4N+ in dimethylformamide: Solvation-induced volume changes

    NASA Astrophysics Data System (ADS)

    Kiselev, M. G.; Safonova, L. P.

    2011-06-01

    The structure of the Bu4N+-dimethylformamide system in the condensed and gas phases was studied by molecular dynamics simulation and quantum-chemical calculations. The calculation results were used to reveal the role played by steric effects in the volumetric characteristics of ion solvation.

  16. Autonomous learning by simple dynamical systems with delayed feedback.

    PubMed

    Kaluza, Pablo; Mikhailov, Alexander S

    2014-09-01

    A general scheme for the construction of dynamical systems able to learn generation of the desired kinds of dynamics through adjustment of their internal structure is proposed. The scheme involves intrinsic time-delayed feedback to steer the dynamics towards the target performance. As an example, a system of coupled phase oscillators, which can, by changing the weights of connections between its elements, evolve to a dynamical state with the prescribed (low or high) synchronization level, is considered and investigated.

  17. Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms.

    PubMed

    Ibrahim, George M; Wong, Simeon M; Anderson, Ryan A; Singh-Cadieux, Gabrielle; Akiyama, Tomoyuki; Ochi, Ayako; Otsubo, Hiroshi; Okanishi, Tohru; Valiante, Taufik A; Donner, Elizabeth; Rutka, James T; Snead, O Carter; Doesburg, Sam M

    2014-01-01

    Pathological high frequency oscillations (pHFOs) have been proposed to be robust markers of epileptic cortex. Oscillatory activity below this frequency range has been shown to be modulated by phase of lower frequency oscillations. Here, we tested the hypothesis that dynamic cross-frequency interactions involving pHFOs are concentrated within the epileptogenic cortex. Intracranial electroencephalographic recordings from 17 children with medically-intractable epilepsy secondary to focal cortical dysplasia were obtained. A time-resolved analysis was performed to determine topographic concentrations and dynamic changes in cross-frequency amplitude-to-phase coupling (CFC). CFC between pHFOs and the phase of theta and alpha rhythms was found to be significantly elevated in the seizure-onset zone compared to non-epileptic regions (p<0.01). Data simulations showed that elevated CFC could not be attributed to the presence of sharp transients or other signal properties. The phase of low frequency oscillations at which pHFO amplitudes were maximal was inconsistent at seizure initiation, yet consistently at the trough of the low frequency rhythm at seizure termination. Amplitudes of pHFOs were most significantly modulated by the phase of alpha-band oscillations (p<0.01). These results suggest that increased CFC between pHFO amplitude and alpha phase may constitute a marker of epileptogenic brain areas and may be relevant for understanding seizure dynamics. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. A Role of Phase-Resetting in Coordinating Large Scale Neural Networks During Attention and Goal-Directed Behavior

    PubMed Central

    Voloh, Benjamin; Womelsdorf, Thilo

    2016-01-01

    Short periods of oscillatory activation are ubiquitous signatures of neural circuits. A broad range of studies documents not only their circuit origins, but also a fundamental role for oscillatory activity in coordinating information transfer during goal directed behavior. Recent studies suggest that resetting the phase of ongoing oscillatory activity to endogenous or exogenous cues facilitates coordinated information transfer within circuits and between distributed brain areas. Here, we review evidence that pinpoints phase resetting as a critical marker of dynamic state changes of functional networks. Phase resets: (1) set a “neural context” in terms of narrow band frequencies that uniquely characterizes the activated circuits; (2) impose coherent low frequency phases to which high frequency activations can synchronize, identifiable as cross-frequency correlations across large anatomical distances; (3) are critical for neural coding models that depend on phase, increasing the informational content of neural representations; and (4) likely originate from the dynamics of canonical E-I circuits that are anatomically ubiquitous. These multiple signatures of phase resets are directly linked to enhanced information transfer and behavioral success. We survey how phase resets re-organize oscillations in diverse task contexts, including sensory perception, attentional stimulus selection, cross-modal integration, Pavlovian conditioning, and spatial navigation. The evidence we consider suggests that phase-resets can drive changes in neural excitability, ensemble organization, functional networks, and ultimately, overt behavior. PMID:27013986

  19. Computational fluid dynamics analysis of SSME phase 2 and phase 2+ preburner injector element hydrogen flow paths

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.

    1992-01-01

    Phase 2+ Space Shuttle Main Engine powerheads, E0209 and E0215 degraded their main combustion chamber (MCC) liners at a faster rate than is normal for phase 2 powerheads. One possible cause of the accelerated degradation was a reduction of coolant flow through the MCC. Hardware changes were made to the preburner fuel leg which may have reduced the resistance and, therefore, pulled some of the hydrogen from the MCC coolant leg. A computational fluid dynamics (CFD) analysis was performed to determine hydrogen flow path resistances of the phase 2+ fuel preburner injector elements relative to the phase 2 element. FDNS was implemented on axisymmetric grids with the hydrogen assumed to be incompressible. The analysis was performed in two steps: the first isolated the effect of the different inlet areas and the second modeled the entire injector element hydrogen flow path.

  20. Nonequilibrium dynamic phases in driven vortex lattices with periodic pinning

    NASA Astrophysics Data System (ADS)

    Reichhardt, Charles Michael

    1998-12-01

    We present the results of an extensive series of simulations of flux-gradient and current driven vortices interacting with either random or periodically arranged pinning sites. First, we consider flux-gradient-driven simulations of superconducting vortices interacting with strong randomly-distributed columnar pinning defects, as an external field H(t) is quasi-statically swept from zero through a matching field Bsb{phi}. Here, we find significant changes in the behavior of the local flux density B(x, y, H(t)), magnetization M(H(t)), critical current Jsb{c}(B(t)), and the individual vortex flow paths, as the local flux density crosses Bsb{phi}. Further, we find that for a given pin density, Jsb{c}(B) can be enhanced by maximizing the distance between the pins for B < Bsb{phi}. For the case of periodic pinning sites as a function of applied field, we find a rich variety of ordered and partially-ordered vortex lattice configurations. We present formulas that predict the matching fields at which commensurate vortex configurations occur and the vortex lattice orientation with respect to the pinning lattice. Our results are in excellent agreement with recent imaging experiments on square pinning arrays (K. Harada et al., Science 274, 1167 (1996)). For current driven simulations with periodic pinning we find a remarkable number of dynamical plastic flow phases. Signatures of the transitions between these different dynamical phases include sudden jumps in the current-voltage curves, hysteresis, as well as marked changes in the vortex trajectories and vortex lattice order. These phases are outlined in a series of dynamic phase diagrams. We show that several of these phases and their phase-boundaries can be understood in terms of analytical arguments. Finally, when the vortex lattice is driven at varying angles with respect to the underlying periodic pinning array, the transverse voltage-current V(I) curves show a series of mode-locked plateaus with the overall V(I) forming a devil's staircase structure.

  1. Predictive Modeling of Rice Yellow Stem Borer Population Dynamics under Climate Change Scenarios in Indramayu

    NASA Astrophysics Data System (ADS)

    Nurhayati, E.; Koesmaryono, Y.; Impron

    2017-03-01

    Rice Yellow Stem Borer (YSB) is one of the major insect pests in rice plants that has high attack intensity in rice production center areas, especially in West Java. This pest is consider as holometabola insects that causes rice damage in the vegetative phase (deadheart) as well as generative phase (whitehead). Climatic factor is one of the environmental factors influence the pattern of dynamics population. The purpose of this study was to develop a predictive modeling of YSB pest dynamics population under climate change scenarios (2016-2035 period) using Dymex Model in Indramayu area, West Java. YSB modeling required two main components, namely climate parameters and YSB development lower threshold of temperature (To) to describe YSB life cycle in every phase. Calibration and validation test of models showed the coefficient of determination (R2) between the predicted results and observations of the study area were 0.74 and 0.88 respectively, which was able to illustrate the development, mortality, transfer of individuals from one stage to the next life also fecundity and YSB reproduction. On baseline climate condition, there was a tendency of population abundance peak (outbreak) occured when a change of rainfall intensity in the rainy season transition to dry season or the opposite conditions was happen. In both of application of climate change scenarios, the model outputs were generated well and able to predict the pattern of YSB population dynamics with a the increasing trend of specific population numbers, generation numbers per season and also shifting pattern of populations abundance peak in the future climatic conditions. These results can be adopted as a tool to predict outbreak and to give early warning to control YSB pest more effectively.

  2. Sensing dynamic cytoplasm refractive index changes of adherent cells with quantitative phase microscopy using incorporated microspheres as optical probes.

    PubMed

    Przibilla, Sabine; Dartmann, Sebastian; Vollmer, Angelika; Ketelhut, Steffi; Greve, Burkhard; von Bally, Gert; Kemper, Björn

    2012-09-01

    The intracellular refractive index is an important parameter that describes the optical density of the cytoplasm and the concentration of the intracellular solutes. The refractive index of adherently grown cells is difficult to access. We present a method in which silica microspheres in living cells are used to determine the cytoplasm refractive index with quantitative phase microscopy. The reliability of our approach for refractive index retrieval is shown by data from a comparative study on osmotically stimulated adherent and suspended human pancreatic tumor cells. Results from adherent human fibro sarcoma cells demonstrate the capability of the method for sensing of dynamic refractive index changes and its usage with microfluidics.

  3. Composition and emission dynamics of migratory locust volatiles in response to changes in developmental stages and population density.

    PubMed

    Wei, Jianing; Shao, Wenbo; Wang, Xianhui; Ge, Jin; Chen, Xiangyong; Yu, Dan; Kang, Le

    2017-02-01

    Chemical communication plays an important role in density-dependent phase change in locusts. However, the volatile components and emission patterns of the migratory locust, Locusta migratoria, are largely unknown. In this study, we identified the chemical compositions and emission dynamics of locust volatiles from the body and feces and associated them with developmental stages, sexes and phase changes. The migratory locust shares a number of volatile components with the desert locust (Schistocerca gregaria), but the emission dynamics of the two locust species are significantly different. The body odors of the gregarious nymphs in the migratory locust consisted of phenylacetonitrile (PAN), benzaldehyde, guaiacol, phenol, aliphatic acids and 2,3-butanediol, and PAN was the dominant volatile. Volatiles from the fecal pellets of the nymphs primarily consist of guaiacol and phenol. Principal component analysis (PCA) showed significant differences in the volatile profiles between gregarious and solitary locusts. PAN and 4-vinylanisole concentrations were significantly higher in gregarious individuals than in solitary locusts. Gregarious mature males released significantly higher amounts of PAN and 4-vinylanisole during adulthood than mature females and immature adults of both sexes. Furthermore, PAN and 4-vinylanisole were completely lost in gregarious nymphs during the solitarization process, but were obtained by solitary nymphs during gregarization. The amounts of benzaldehyde, guaiacol and phenol only unidirectionally decreased from solitary to crowded treatment. Aliphatic aldehydes (C7 to C10), which were previously reported as locust volatiles, are now identified as environmental contaminants. Therefore, our results illustrate the precise odor profiles of migratory locusts during developmental stages, sexes and phase change. However, the function and role of PAN and other aromatic compounds during phase transition need further investigation. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  4. Ultrafast dynamics during the photoinduced phase transition in VO2

    NASA Astrophysics Data System (ADS)

    Wegkamp, Daniel; Stähler, Julia

    2015-12-01

    The phase transition of VO2 from a monoclinic insulator to a rutile metal, which occurs thermally at TC = 340 K, can also be driven by strong photoexcitation. The ultrafast dynamics during this photoinduced phase transition (PIPT) have attracted great scientific attention for decades, as this approach promises to answer the question of whether the insulator-to-metal (IMT) transition is caused by electronic or crystallographic processes through disentanglement of the different contributions in the time domain. We review our recent results achieved by femtosecond time-resolved photoelectron, optical, and coherent phonon spectroscopy and discuss them within the framework of a selection of latest, complementary studies of the ultrafast PIPT in VO2. We show that the population change of electrons and holes caused by photoexcitation launches a highly non-equilibrium plasma phase characterized by enhanced screening due to quasi-free carriers and followed by two branches of non-equilibrium dynamics: (i) an instantaneous (within the time resolution) collapse of the insulating gap that precedes charge carrier relaxation and significant ionic motion and (ii) an instantaneous lattice potential symmetry change that represents the onset of the crystallographic phase transition through ionic motion on longer timescales. We discuss the interconnection between these two non-thermal pathways with particular focus on the meaning of the critical fluence of the PIPT in different types of experiments. Based on this, we conclude that the PIPT threshold identified in optical experiments is most probably determined by the excitation density required to drive the lattice potential change rather than the IMT. These considerations suggest that the IMT can be driven by weaker excitation, predicting a transiently metallic, monoclinic state of VO2 that is not stabilized by the non-thermal structural transition and, thus, decays on ultrafast timescales.

  5. Rheology and microstructure of filled polymer melts

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin John

    The states of particle dispersion in polymer nanocomposite melts are studied through rheological characterization of nanocomposite melt mechanical properties and small angle X-ray scattering measurement of the particle microstructure. The particle microstructure probed with scattering is related to bulk flow mechanics to determine the origin of slow dynamics in these complex dispersions: whether a gel or glass transition or a slowing down of dispersing phase dynamics. These studies were conducted to understand polymer mediated particle-particle interactions and potential particle-polymer phase separation. The phase behavior of the dispersion will be governed by enthalpic and entropic contributions. A variety of phases are expected: homogeneous fluid, phase separated, or non-equilibrium gel. The effects of dispersion control parameters, namely particle volume fraction, polymer molecular weight, and polymer-particle surface affinity, on the phase behavior of 44 nm silica dispersions are studied in low molecular weight polyethylene oxide (PEO), polyethylene oxide dimethylether (PEODME), and polytetrahydrofuran (PTHF). Scattering measurements of the particle second virial coefficient in PEO melts indicates repulsive particles by a value slightly greater than unity. In PEO nanocomposites, dispersion dynamics slow down witnessed by a plateau in the elastic modulus as the particle separation approaches the length scale of the polymer radius of gyration. As the polymer molecular weight is increased, the transition shifts to lower particle volume fractions. Below polymer entanglement, the slow dynamics mimics that of a colloidal glass by the appearance of two relaxation times in the viscous modulus that display power law scaling with volume fraction. Above entanglement, the slow dynamics is qualitatively different resembling the behavior of a gelled suspension yet lacking any sign of scattering from particle agglomerates. As polymer molecular weight is increased at a fixed volume fraction, two strain yielding events emerge. Further particle loading leads to the formation of a particle-polymer network and the onset of brittle mechanical behavior. The performance of PEO nanocomposites is contrasted by PEODME and PTHF nanocomposites where a change in the polymer segment-surface activity changes the slow dynamics of the nanocomposite and the microstructure of particles in the melt. Slow dynamics and the particle microstructure indicate a gelled suspension as volume fraction is raised with particles in or near contact and support the turning on of particle attractions in the melt.

  6. Phase transition of a DPPC bilayer induced by an external surface pressure: from bilayer to monolayer behavior. a molecular dynamics simulation study.

    PubMed

    López Cascales, J J; Otero, T F; Fernandez Romero, A J; Camacho, L

    2006-06-20

    Understanding the lipid phase transition of lipid bilayers is of great interest from biophysical, physicochemical, and technological points of view. With the aim of elucidating the structural changes that take place in a DPPC phospholipid bilayer induced by an external isotropic surface pressure, five computer simulations were carried out in a range from 0.1 to 40 mN/m. Molecular dynamics simulations provided insight into the structural changes that took place in the lipid structure. It was seen that low pressures ranging from 0.1 to 1 mN/m had hardly any effect on the structure, electrical properties, or hydration of the lipid bilayer. However, for pressures above 40 mN/m, there was a sharp change in the lipid-lipid interactions, hydrocarbon lipid fluidity, and electrostatic potential, corresponding to the mesomorphic transition from a liquid crystalline state (L(alpha)) to its gel state (P'(beta)). The head lipid orientation remained almost unaltered, parallel to the lipid layer, as the surface pressure was increased, although a noticeable change in its angular distribution function was evident with the phase transition.

  7. The Proposed Doppler Electron Velocimeter and the Need for Nanoscale Dynamics

    DOE PAGES

    Reu, Phillip L.

    2007-05-01

    As engineering challenges grow in the ever-shrinking world of nano-design, methods of making dynamic measurements of nano-materials and systems become more important. The Doppler electron velocimeter (DEV) is a new measurement concept motivated by the increasing importance of nano-dynamics. Nano-dynamics is defined in this context as any phenomenon that causes a dynamically changing phase in an electron beam, and includes traditional mechanical motion, as well as additional phenomena including changing magnetic and electric fields. The DEV is only a theoretical device at this point. Lastly, this article highlights the importance of pursuing nano-dynamics and presents a case that the electronmore » microscope and its associated optics are a viable test bed to develop this new measurement tool.« less

  8. PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets.

    PubMed

    Marcos, Marco A; Cabaleiro, David; Guimarey, María J G; Comuñas, María J P; Fedele, Laura; Fernández, Josefa; Lugo, Luis

    2017-12-29

    This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol -1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number.

  9. PEG 400-Based Phase Change Materials Nano-Enhanced with Functionalized Graphene Nanoplatelets

    PubMed Central

    Marcos, Marco A.; Guimarey, María J. G.; Comuñas, María J. P.

    2017-01-01

    This study presents new Nano-enhanced Phase Change Materials, NePCMs, formulated as dispersions of functionalized graphene nanoplatelets in a poly(ethylene glycol) with a mass-average molecular mass of 400 g·mol−1 for possible use in Thermal Energy Storage. Morphology, functionalization, purity, molecular mass and thermal stability of the graphene nanomaterial and/or the poly(ethylene glycol) were characterized. Design parameters of NePCMs were defined on the basis of a temporal stability study of nanoplatelet dispersions using dynamic light scattering. Influence of graphene loading on solid-liquid phase change transition temperature, latent heat of fusion, isobaric heat capacity, thermal conductivity, density, isobaric thermal expansivity, thermal diffusivity and dynamic viscosity were also investigated for designed dispersions. Graphene nanoplatelet loading leads to thermal conductivity enhancements up to 23% while the crystallization temperature reduces up to in 4 K. Finally, the heat storage capacities of base fluid and new designed NePCMs were examined by means of the thermophysical properties through Stefan and Rayleigh numbers. Functionalized graphene nanoplatelets leads to a slight increase in the Stefan number. PMID:29286324

  10. The Usefulness of US Transportation Service Index for New York State/Metro Area

    DOT National Transportation Integrated Search

    2009-10-19

    Business indices play a critical role in summarizing the business conditions of the economy and indicating the forthcoming of phase changes in business cycle. The useful indices should accurately reflect the business reality and dynamic changes of th...

  11. On the coplanar eccentric non-restricted co-orbital dynamics

    NASA Astrophysics Data System (ADS)

    Leleu, A.; Robutel, P.; Correia, A. C. M.

    2018-03-01

    We study the phase space of eccentric coplanar co-orbitals in the non-restricted case. Departing from the quasi-circular case, we describe the evolution of the phase space as the eccentricities increase. We find that over a given value of the eccentricity, around 0.5 for equal mass co-orbitals, important topological changes occur in the phase space. These changes lead to the emergence of new co-orbital configurations and open a continuous path between the previously distinct trojan domains near the L_4 and L_5 eccentric Lagrangian equilibria. These topological changes are shown to be linked with the reconnection of families of quasi-periodic orbits of non-maximal dimension.

  12. Development of Novel PEM Membrane and Multiphase CD Modeling of PEM Fuel Cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. J. Berry; Susanta Das

    2009-12-30

    To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtainedmore » from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance. To understand heat and water management phenomena better within an operational proton exchange membrane fuel cell's (PEMFC) conditions, a three-dimensional, two-phase computational fluid dynamic (CFD) flow model has been developed and simulated for a complete PEMFC. Both liquid and gas phases are considered in the model by taking into account the gas flow, diffusion, charge transfer, change of phase, electro-osmosis, and electrochemical reactions to understand the overall dynamic behaviors of species within an operating PEMFC. The CFD model is solved numerically under different parametric conditions in terms of water management issues in order to improve cell performance. The results obtained from the CFD two-phase flow model simulations show improvement in cell performance as well as water management under PEMFCs operational conditions as compared to the results of a single phase flow model available in the literature. The quantitative information obtained from the two-phase model simulation results helped to develop a CFD control algorithm for low temperature PEM fuel cell stacks which opens up a route in designing improvement of PEMFC for better operational efficiency and performance.« less

  13. Mind over motor mapping: Driver response to changing vehicle dynamics.

    PubMed

    Bruno, Jennifer L; Baker, Joseph M; Gundran, Andrew; Harbott, Lene K; Stuart, Zachary; Piccirilli, Aaron M; Hosseini, S M Hadi; Gerdes, J Christian; Reiss, Allan L

    2018-06-08

    Improvements in vehicle safety require understanding of the neural systems that support the complex, dynamic task of real-world driving. We used functional near infrared spectroscopy (fNIRS) and pupilometry to quantify cortical and physiological responses during a realistic, simulated driving task in which vehicle dynamics were manipulated. Our results elucidate compensatory changes in driver behavior in response to changes in vehicle handling. We also describe associated neural and physiological responses under different levels of mental workload. The increased cortical activation we observed during the late phase of the experiment may indicate motor learning in prefrontal-parietal networks. Finally, relationships among cortical activation, steering control, and individual personality traits suggest that individual brain states and traits may be useful in predicting a driver's response to changes in vehicle dynamics. Results such as these will be useful for informing the design of automated safety systems that facilitate safe and supportive driver-car communication. © 2018 Wiley Periodicals, Inc.

  14. Dynamically Switching the Polarization State of Light Based on the Phase Transition of Vanadium Dioxide

    NASA Astrophysics Data System (ADS)

    Jia, Zhi-Yong; Shu, Fang-Zhou; Gao, Ya-Jun; Cheng, Feng; Peng, Ru-Wen; Fan, Ren-Hao; Liu, Yongmin; Wang, Mu

    2018-03-01

    There have been great endeavors devoted to manipulating the polarization state of light by plasmonic nanostructures in recent decades. However, the topic of active polarizers has attracted much less attention. We present a composite plasmonic nanostructure consisting of vanadium dioxide that can dynamically modulate the polarization state of the reflected light through a thermally induced phase transition of vanadium dioxide. We design a system consisting of anisotropic plasmonic nanostructures with vanadium dioxide that exhibits distinct reflections subjected to different linearly polarized incidence at room temperature and in the heated state. Under a particular linearly polarized incidence, the polarization state of the reflected light changes at room temperature, and reverts to its original polarization state above the phase-transition temperature. The composite structure can also be used to realize a dynamically switchable infrared image, wherein a pattern can be visualized at room temperature while it disappears above the phase-transition temperature. The composite structure could be potentially used for versatile optical modulators, molecular detection, and polarimetric imaging.

  15. Dynamical regimes due to technological change in a microeconomical model of production

    NASA Astrophysics Data System (ADS)

    Hamacher, K.

    2012-09-01

    We develop a microeconomical model to investigate the impact of technological change onto production decisions of suppliers—modeling an effective feedback mechanism of the market. An important property—the time horizon of production planning—is related to the Kolmogorov entropy of the one-dimensional maps describing price dynamics. We simulate this price dynamics in an ensemble representing the whole macroeconomy. We show how this model can be used to support ongoing research in economic growth and incorporate the obtained microeconomic findings into the discussion about appropriate macroeconomic quantities such as the production function—thus effectively underpinning macroeconomics with microeconomical dynamics. From there we can show that the model exhibits different dynamical regimes (suggesting "phase transitions") with respect to an order parameter. The non-linear feedback under technological change was found to be the crucial mechanism. The implications of the obtained regimes are finally discussed.

  16. Dynamical regimes due to technological change in a microeconomical model of production.

    PubMed

    Hamacher, K

    2012-09-01

    We develop a microeconomical model to investigate the impact of technological change onto production decisions of suppliers-modeling an effective feedback mechanism of the market. An important property-the time horizon of production planning-is related to the Kolmogorov entropy of the one-dimensional maps describing price dynamics. We simulate this price dynamics in an ensemble representing the whole macroeconomy. We show how this model can be used to support ongoing research in economic growth and incorporate the obtained microeconomic findings into the discussion about appropriate macroeconomic quantities such as the production function-thus effectively underpinning macroeconomics with microeconomical dynamics. From there we can show that the model exhibits different dynamical regimes (suggesting "phase transitions") with respect to an order parameter. The non-linear feedback under technological change was found to be the crucial mechanism. The implications of the obtained regimes are finally discussed.

  17. Discontinuous Patterns of Brain Activation in the Psychotherapy Process of Obsessive-Compulsive Disorder: Converging Results from Repeated fMRI and Daily Self-Reports

    PubMed Central

    Schiepek, Günter; Tominschek, Igor; Heinzel, Stephan; Aigner, Martin; Dold, Markus; Unger, Annemarie; Lenz, Gerhard; Windischberger, Christian; Moser, Ewald; Plöderl, Martin; Lutz, Jürgen; Meindl, Thomas; Zaudig, Michael; Pogarell, Oliver; Karch, Susanne

    2013-01-01

    This study investigates neuronal activation patterns during the psychotherapeutic process, assuming that change dynamics undergo critical instabilities and discontinuous transitions. An internet-based system was used to collect daily self-assessments during inpatient therapies. A dynamic complexity measure was applied to the resulting time series. Critical phases of the change process were indicated by the maxima of the varying complexity. Repeated functional magnetic resonance imaging (fMRI) measurements were conducted over the course of the therapy. The study was realized with 9 patients suffering from obsessive-compulsive disorder (subtype: washing/contamination fear) and 9 matched healthy controls. For symptom-provocative stimulation individualized pictures from patients’ personal environments were used. The neuronal responses to these disease-specific pictures were compared to the responses during standardized disgust-provoking and neutral pictures. Considerably larger neuronal changes in therapy-relevant brain areas (cingulate cortex/supplementary motor cortex, bilateral dorsolateral prefrontal cortex, bilateral insula, bilateral parietal cortex, cuneus) were observed during critical phases (order transitions), as compared to non-critical phases, and also compared to healthy controls. The data indicate that non-stationary changes play a crucial role in the psychotherapeutic process supporting self-organization and complexity models of therapeutic change. PMID:23977168

  18. Development of media for dynamic latent heat storage for the low-temperature range. Part 1: Thermal analyses of selected salt hydrate systems

    NASA Technical Reports Server (NTRS)

    Kanwischer, H.; Tamme, R.

    1985-01-01

    Phase change temperatures and phase change enthalpies of seventeen salt hydrates, three double salts, and four eutectics were measured thermodynamically and the results reported herein. Good results were obtained, especially for congruently melting salt hydrates. Incongruently melting salt hydrates appear less suitable for heat storage applications. The influence of the second phase - water, acid and hydroxide - to the latent heat is described. From these results, basic values of the working temperatures and storage capabilities of various storage media compositions may be derived.

  19. The behavior of single-crystal silicon to dynamic loading using in-situ X-ray diffraction and phase contrast imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hae Ja; Xing, Zhou; Galtier, Eric; Arnold, Brice; Granados, Eduardo; Brown, Shaughnessy B.; Tavella, Franz; McBride, Emma; Fry, Alan; Nagler, Bob; Schropp, Andreas; Seiboth, Frank; Samberg, Dirk; Schroer, Christian; Gleason, Arianna E.; Higginbotham, Andrew

    Hydrostatic and uniaxial compression studies have revealed that crystalline silicon undergoes phase transitions from a cubic diamond structure to a variety of phases including orthorhombic Imma phase, body-centered tetragonal phase, and a hexagonal primitive phase. The dynamic response of silicon at high pressure, however, is not well understood. Phase contrast imaging has proven to be a powerful tool for probing density changes caused by the shock propagation into a material. In order to characterize the elastic and phase transitions, we image shock waves in Si with high spatial resolution using the LCLS X-ray free electron laser and Matter in Extreme Conditions instrument. In this study, the long pulse optical laser with pseudo-flat top shape creates high pressures up to 60 GPa. We measure the crystal structure by observing X-ray diffraction orthogonal to the shock propagation direction over a range of pressures. We describe the capability of simultaneously performing phase contrast imaging and in situ X-ray diffraction during shock loading and discuss the dynamic response of Si in high-pressure phases Use of the Linac Coherent Light Source (LCLS), SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The MEC instrument is supported by.

  20. Microscopic origin of resistance drift in the amorphous state of the phase-change compound GeTe

    NASA Astrophysics Data System (ADS)

    Gabardi, S.; Caravati, S.; Sosso, G. C.; Behler, J.; Bernasconi, M.

    2015-08-01

    Aging is a common feature of the glassy state. In the case of phase-change chalcogenide alloys the aging of the amorphous state is responsible for an increase of the electrical resistance with time. This phenomenon called drift is detrimental in the application of these materials in phase-change nonvolatile memories, which are emerging as promising candidates for storage class memories. By means of combined molecular dynamics and electronic structure calculations based on density functional theory, we have unraveled the atomistic origin of the resistance drift in the prototypical phase-change compound GeTe. The drift results from a widening of the band gap and a reduction of Urbach tails due to structural relaxations leading to the removal of chains of Ge-Ge homopolar bonds. The same structural features are actually responsible for the high mobility above the glass transition which boosts the crystallization speed exploited in the device.

  1. From phase transitions to the topological renaissance. Comment on "Topodynamics of metastable brains" by Arturo Tozzi et al.

    NASA Astrophysics Data System (ADS)

    Somogyvári, Zoltán; Érdi, Péter

    2017-07-01

    The neural topodynamics theory of Tozzi et al. [13] has two main foci: metastable brain dynamics and the topological approach based on the Borsuk-Ulam theorem (BUT). Briefly, metastable brain dynamics theory hypothesizes that temporary stable synchronization and desynchronization of large number of individual dynamical systems, formed by local neural circuits, are responsible for coding of complex concepts in the brain and sudden changes of these synchronization patterns correspond to operational steps. But what dynamical network could form the substrate for this metastable dynamics, capable of entering into a combinatorially high number of metastable synchronization patterns and exhibit rapid transient changes between them? The general problem is related to the discrimination between ;Black Swans; and ;Dragon Kings;. While BSs are related to the theory of self-organized criticality, and suggests that high-impact extreme events are unpredictable, Dragon-kings are associated with the occurrence of a phase transition, whose emergent organization is based on intermittent criticality [9]. Widening the limits of predictability is one of the big open problems in the theory and practice of complex systems (Sect. 9.3 of Érdi [2]).

  2. Dynamic changes in brain activity during prism adaptation.

    PubMed

    Luauté, Jacques; Schwartz, Sophie; Rossetti, Yves; Spiridon, Mona; Rode, Gilles; Boisson, Dominique; Vuilleumier, Patrik

    2009-01-07

    Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance. We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction. Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment. This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Q. L., E-mail: maqinli@gmail.com, E-mail: mizukami@wpi-aimr.tohoku.ac.jp; Miyazaki, T.; Mizukami, S., E-mail: maqinli@gmail.com, E-mail: mizukami@wpi-aimr.tohoku.ac.jp

    The laser-induced spin dynamics of FeCo in perpendicularly magnetized L1{sub 0}-MnGa/FeCo bilayers with ferromagnetic and antiferromagnetic interfacial exchange coupling (IEC) are examined using the time-resolved magneto-optical Kerr effect. We found a precessional phase reversal of the FeCo layer as the IEC changes from ferromagnetic to antiferromagnetic. Moreover, a precession-suspension window was observed when the magnetic field was applied in a certain direction for the bilayer with ferromagnetic IEC. Our observations reveal that the spin dynamics modulation is strongly dependent on the IEC type within the Landau-Lifshitz-Gilbert depiction. The IEC dependence of the precessional phase and amplitude suggests the interesting methodmore » for magnetization dynamics modulation.« less

  4. Pattern destabilization and emotional processing in cognitive therapy for personality disorders

    PubMed Central

    Hayes, Adele M.; Yasinski, Carly

    2015-01-01

    Clinical trials of treatments for personality disorders can provide a medium for studying the process of therapeutic change with particularly entrenched and self-perpetuating systems and might reveal important principles of system transition. We examined the extent to which maladaptive personality patterns were destabilized in a trial of cognitive therapy personality disorders (CT-PD) and how destabilization was associated with emotional processing and treatment outcomes. Dynamic systems theory was used as a theoretical framework for studying change. Method: Participants were 27 patients diagnosed with Avoidant or Obsessive Compulsive Personality Disorder (AVPD or OCPD), who completed an open trial of CT-PD. Raters coded treatment sessions using a coding system that operationalizes emotional processing, as well as cognitive, affective, behavioral, and somatic components of pathological (negative) and more adaptive (positive) patterns of functioning. Pattern destabilization (dispersion) scores during the early phase of treatment (phase 1: session 1–10) and the schema-focused phase (phase 2: session 11–34) were calculated using a program called GridWare. Results: More pattern destabilization and emotional processing in the schema-focused phase of CT-PD predicted more improvement in personality disorder symptoms and positive pattern strength at the end of treatment, whereas these variables in phase 1 did not predict outcome. Conclusion: In addition to illustrating a quantitative method for studying destabilization and change of patterns of psychopathology, we present findings that are consistent with recent updates of emotional processing theory and with principles from dynamic systems theory. PMID:25755647

  5. Pattern destabilization and emotional processing in cognitive therapy for personality disorders.

    PubMed

    Hayes, Adele M; Yasinski, Carly

    2015-01-01

    Clinical trials of treatments for personality disorders can provide a medium for studying the process of therapeutic change with particularly entrenched and self-perpetuating systems and might reveal important principles of system transition. We examined the extent to which maladaptive personality patterns were destabilized in a trial of cognitive therapy personality disorders (CT-PD) and how destabilization was associated with emotional processing and treatment outcomes. Dynamic systems theory was used as a theoretical framework for studying change. Participants were 27 patients diagnosed with Avoidant or Obsessive Compulsive Personality Disorder (AVPD or OCPD), who completed an open trial of CT-PD. Raters coded treatment sessions using a coding system that operationalizes emotional processing, as well as cognitive, affective, behavioral, and somatic components of pathological (negative) and more adaptive (positive) patterns of functioning. Pattern destabilization (dispersion) scores during the early phase of treatment (phase 1: session 1-10) and the schema-focused phase (phase 2: session 11-34) were calculated using a program called GridWare. More pattern destabilization and emotional processing in the schema-focused phase of CT-PD predicted more improvement in personality disorder symptoms and positive pattern strength at the end of treatment, whereas these variables in phase 1 did not predict outcome. In addition to illustrating a quantitative method for studying destabilization and change of patterns of psychopathology, we present findings that are consistent with recent updates of emotional processing theory and with principles from dynamic systems theory.

  6. Constitutive Modeling of the Dynamic-Tensile-Extrusion Test of PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, Anatoly; Brown, Eric; Trujillo, Carl; Gray, George

    2015-06-01

    Use of polymers in the defence, aerospace and industrial application at extreme conditions makes prediction of behaviour of these materials very important. Crucial to this is knowledge of the physical damage response in association with the phase transformations during the loading and the ability to predict this via multi-phase simulation taking the thermodynamical non-equilibrium and strain rate sensitivity into account. The current work analyses Dynamic-Tensile-Extrusion (DTE) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during the loading with subsequent tension are analysed using a two-phase rate sensitive material model implemented in the CTH hydrocode and the calculations are compared with experimental high-speed photography. The damage patterns and their link with the change of loading modes are analysed numerically and are correlated to the test observations.

  7. Segmentation and classification of brain images using firefly and hybrid kernel-based support vector machine

    NASA Astrophysics Data System (ADS)

    Selva Bhuvaneswari, K.; Geetha, P.

    2017-05-01

    Magnetic resonance imaging segmentation refers to a process of assigning labels to set of pixels or multiple regions. It plays a major role in the field of biomedical applications as it is widely used by the radiologists to segment the medical images input into meaningful regions. In recent years, various brain tumour detection techniques are presented in the literature. The entire segmentation process of our proposed work comprises three phases: threshold generation with dynamic modified region growing phase, texture feature generation phase and region merging phase. by dynamically changing two thresholds in the modified region growing approach, the first phase of the given input image can be performed as dynamic modified region growing process, in which the optimisation algorithm, firefly algorithm help to optimise the two thresholds in modified region growing. After obtaining the region growth segmented image using modified region growing, the edges can be detected with edge detection algorithm. In the second phase, the texture feature can be extracted using entropy-based operation from the input image. In region merging phase, the results obtained from the texture feature-generation phase are combined with the results of dynamic modified region growing phase and similar regions are merged using a distance comparison between regions. After identifying the abnormal tissues, the classification can be done by hybrid kernel-based SVM (Support Vector Machine). The performance analysis of the proposed method will be carried by K-cross fold validation method. The proposed method will be implemented in MATLAB with various images.

  8. Femtosecond laser pulse induced phase transition of Cr-doped Sb2Te1 films studied with a pump-probe system

    NASA Astrophysics Data System (ADS)

    Jiang, Minghui; Wang, Qing; Lei, Kai; Wang, Yang; Liu, Bo; Song, Zhitang

    2016-10-01

    The Femtosecond laser pulse induced phase transition dynamics of Cr-doped Sb2Te1 films was studied by real-time reflectivity measurements with a pump-probe system. It was found that crystallization of the as-deposited CrxSb2Te1 phase-change thin films exhibits a multi-stage process lasting for about 40ns.The time required for the multi-stage process seems to be not related to the contents of Cr element. The durations of the crystallization and amorphization processes are approximately the same. Doping Cr into Sb2Te1 thin film can improve its photo-thermal stability without obvious change in the crystallization rate. Optical images and image intensity cross sections are used to visualize the transformed regions. This work may provide further insight into the phase-change mechanism of CrxSb2Te1 under extra-non-equilibrium conditions and aid to develop new ultrafast phase-change memory materials.

  9. Construction of a biodynamic model for Cry protein production studies.

    PubMed

    Navarro-Mtz, Ana Karin; Pérez-Guevara, Fermín

    2014-12-01

    Mathematical models have been used from growth kinetic simulation to gen regulatory networks prediction for B. thuringiensis culture. However, this culture is a time dependent dynamic process where cells physiology suffers several changes depending on the changes in the cell environment. Therefore, through its culture, B. thuringiensis presents three phases related with the predominance of three major metabolic pathways: vegetative growth (Embded-Meyerhof-Parnas pathway), transition (γ-aminobutiric cycle) and sporulation (tricarboxylic acid cycle). There is not available a mathematical model that relates the different stages of cultivation with the metabolic pathway active on each one of them. Therefore, in the present study, and based on published data, a biodynamic model was generated to describe the dynamic of the three different phases based on their major metabolic pathways. The biodynamic model is used to study the interrelation between the different culture phases and their relationship with the Cry protein production. The model consists of three interconnected modules where each module represents one culture phase and its principal metabolic pathway. For model validation four new fermentations were done showing that the model constructed describes reasonably well the dynamic of the three phases. The main results of this model imply that poly-β-hydroxybutyrate is crucial for endospore and Cry protein production. According to the yields of dipicolinic acid and Cry from poly-β-hydroxybutyrate, calculated with the model, the endospore and Cry protein production are not just simultaneous and parallel processes they are also competitive processes.

  10. On the inward drift of runaway electrons during the plateau phase of runaway current

    DOE PAGES

    Hu, Di; Qin, Hong

    2016-03-29

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. Furthermore, this indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase. (C) 2016 AIP Publishing LLC.« less

  11. On the inward drift of runaway electrons during the plateau phase of runaway current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Di, E-mail: hudi-2@pku.edu.cn; Qin, Hong; School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei 230026

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase.« less

  12. On the inward drift of runaway electrons during the plateau phase of runaway current

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Di; Qin, Hong

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrangemore » equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. Furthermore, this indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase. (C) 2016 AIP Publishing LLC.« less

  13. In Situ X-ray Diffraction of Forsterite Under Shock Compression to 52 GPa: Time Resolved Observation of Changes in Crystal Structure and Phase

    NASA Astrophysics Data System (ADS)

    Akin, M. C.; Maddox, B.; Teruya, A.; Asimow, P. D.

    2015-12-01

    The Earth's mantle is composed primarily of ferromagnesian silicates, of which Forsterite (Fo) is the magnesium-rich end member of the dominant upper mantle phase, olivine. Fo is thought to undergo a chemical decomposition associated with a structural phase transition when dynamically loaded to 40-71 GPa, but previous inferences about such decomposition have been based only on pressure-density data with no direct phase identification. To obtain direct data on the phase evolution of shocked Fo, synthetic single crystal samples of Mg2SiO4 Fo were loaded to pressures of 52 GPa using a two stage light gas gun. X-ray diffraction (XRD) patterns were collected on the static and the loaded samples in situ using a single pulse Mo Kα anode to provide a 17 keV X-ray source. X-ray polycapillary optics were used to couple the source to the sample. Clear Laue spots were observed in the static images, while the dynamic images show the appearance of new spots at early times and powder-like rings at late times. The angles of the dynamically driven spots and rings overlap with each other and indicate the change in phase of forsterite under pressure through a process that begins with the formation of single crystals and ends with polycrystalline material. Efforts are underway to identify the high-pressure phases from among the library of dense magnesium silicates, and further experiments covering a larger pressure range will be completed shortly. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. Characterization of the Dynamic Pressure Response of Fuels in Microchannels

    NASA Astrophysics Data System (ADS)

    Haendler, Brenda; Pisano, Albert; Liepmann, Dorian

    2004-11-01

    In order to create a self-pumping fuel vaporization and delivery systems for a MEMS rotary engine power system, the dynamic pressure response due to phase eruption of fuels in micro channels must be characterized. Testing is done using micro channels with diameters the same order of magnitude as the critical bubble radius, a constant mass flow rate syringe pump, and a steady heat source. Pressure changes in the micro channel due to the periodic movement of the phase change meniscus are measured for a variety of flow conditions. A discrete Fourier transform is performed on the data to determine the dominant frequencies in the signal. Critical trends are discussed comparing both the frequency and the amplitude of the pressure spikes for a variety of temperatures and flow rates. The results presented on the trends in the pressure signature due to phase eruption for fuels are then related back to the fuel delivery system, which is using a nozzle-diffuser design to accomplish positive flow rectification given the periodic pressure condition at the phase eruption interface.

  15. Interdyad differences in early mother-infant face-to-face communication: real-time dynamics and developmental pathways.

    PubMed

    Lavelli, Manuela; Fogel, Alan

    2013-12-01

    A microgenetic research design with a multiple case study method and a combination of quantitative and qualitative analyses was used to investigate interdyad differences in real-time dynamics and developmental change processes in mother-infant face-to-face communication over the first 3 months of life. Weekly observations of 24 mother-infant dyads with analyses performed dyad by dyad showed that most dyads go through 2 qualitatively different developmental phases of early face-to-face communication: After a phase of mutual attentiveness, mutual engagement begins in Weeks 7-8, with infant smiling and cooing bidirectionally linked with maternal mirroring. This gives rise to sequences of positive feedback that, by the 3rd month, dynamically stabilizes into innovative play routines. However, when there is a lack of bidirectional positive feedback between infant and maternal behaviors, and a lack of permeability of the early communicative patterns to incorporate innovations, the development of the mutual engagement phase is compromised. The findings contribute both to theories of relationship change processes and to clinical work with at-risk mother-infant interactions. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  16. Phase transitions in traffic flow on multilane roads.

    PubMed

    Kerner, Boris S; Klenov, Sergey L

    2009-11-01

    Based on empirical and numerical analyses of vehicular traffic, the physics of spatiotemporal phase transitions in traffic flow on multilane roads is revealed. The complex dynamics of moving jams observed in single vehicle data measured by video cameras on American highways is explained by the nucleation-interruption effect in synchronized flow, i.e., the spontaneous nucleation of a narrow moving jam with the subsequent jam dissolution. We find that (i) lane changing, vehicle merging from on-ramps, and vehicle leaving to off-ramps result in different traffic phases-free flow, synchronized flow, and wide moving jams-occurring and coexisting in different road lanes as well as in diverse phase transitions between the traffic phases; (ii) in synchronized flow, the phase transitions are responsible for a non-regular moving jam dynamics that explains measured single vehicle data: moving jams emerge and dissolve randomly at various road locations in different lanes; (iii) the phase transitions result also in diverse expanded general congested patterns occurring at closely located bottlenecks.

  17. Combined NMR and GC-MS analyses revealed dynamic metabolic changes associated with the carrageenan-induced rat pleurisy.

    PubMed

    Li, Huihui; An, Yanpeng; Zhang, Lulu; Lei, Hehua; Zhang, Limin; Wang, Yulan; Tang, Huiru

    2013-12-06

    Inflammation is closely associated with pathogenesis of various metabolic disorders, cardiovascular diseases, and cancers. To understand the systems responses to localized inflammation, we analyzed the dynamic metabolic changes in rat plasma and urine associated with the carrageenan-induced self-limiting pleurisy using NMR spectroscopy in conjunction with multivariate data analysis. Fatty acids in plasma were also analyzed using GC-FID/MS with the data from clinical chemistry and histopathology as complementary information. We found that in the acute phase of inflammation rats with pleurisy had significantly lower levels in serum albumin, fatty acids, and lipoproteins but higher globulin level and larger quantity of pleural exudate than controls. The carrageenan-induced inflammation was accompanied by significant metabolic alterations involving TCA cycle, glycolysis, biosyntheses of acute phase proteins, and metabolisms of amino acids, fatty acids, ketone bodies, and choline in acute phase. The resolution process of pleurisy was heterogeneous, and two subgroups were observed for the inflammatory rats at day-6 post treatment with different metabolic features together with the quantity of pleural exudate and weights of thymus and spleen. The metabolic differences between these subgroups were reflected in the levels of albumin and acute-phase proteins, the degree of returning to normality for multiple metabolic pathways including glycolysis, TCA cycle, gut microbiota functions, and metabolisms of lipids, choline and vitamin B3. These findings provided some essential details for the dynamic metabolic changes associated with the carrageenan-induced self-limiting inflammation and demonstrated the combined NMR and GC-FID/MS analysis as a powerful approach for understanding biochemical aspects of inflammation.

  18. On The Dynamics And Kinematics Of Two Fluid Phase Flow In Porous Media

    DTIC Science & Technology

    2015-06-16

    fluid-fluid interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled...saturation data intended to denote an equilibrium state is likely a sampling from a dynamic system undergoing changes of interfacial curvatures that are not... interfacial area density in a two-fluid-system. This dynamic equation set is unique to this work, and the importance of the modeled physics is shown

  19. Dynamical signature of localization-delocalization transition in a one-dimensional incommensurate lattice

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Wang, Yucheng; Wang, Pei; Gao, Xianlong; Chen, Shu

    2017-05-01

    We investigate the quench dynamics of a one-dimensional incommensurate lattice described by the Aubry-André model by a sudden change of the strength of incommensurate potential Δ and unveil that the dynamical signature of localization-delocalization transition can be characterized by the occurrence of zero points in the Loschmidt echo. For the quench process with quenching taking place between two limits of Δ =0 and Δ =∞ , we give analytical expressions of the Loschmidt echo, which indicate the existence of a series of zero points in the Loschmidt echo. For a general quench process, we calculate the Loschmidt echo numerically and analyze its statistical behavior. Our results show that if both the initial and post-quench Hamiltonian are in extended phase or localized phase, Loschmidt echo will always be greater than a positive number; however if they locate in different phases, Loschmidt echo can reach nearby zero at some time intervals.

  20. Amorphization dynamics of Ge{sub 2}Sb{sub 2}Te{sub 5} films upon nano- and femtosecond laser pulse irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siegel, J.; Gawelda, W.; Puerto, D.

    2008-01-15

    Phase transformations of crystalline Ge{sub 2}Sb{sub 2}Te{sub 5} films upon pulsed laser irradiation have been studied using in situ reflectivity measurements with temporal resolution. Two different configurations allowed point probing with nanosecond temporal resolution and imaging with subpicosecond temporal and micrometer spatial resolution. The role of the pulse duration and laser fluence on the dynamics of the phase change and the degree of amorphization is discussed. Several advantageous features of femtosecond compared to nanosecond laser-induced amorphization are identified. Moreover, a high-resolution study of the amorphization dynamics reveals the onset of amorphization at moderate fluences to occur within {approx}100 ps aftermore » arrival of the laser pulse. At high fluences, amorphization occurs after {approx}430 ps and the molten phase is characterized by an anomalously low reflectivity value, indicative of a state of extreme supercooling.« less

  1. Constitutive modeling of the dynamic-tensile-extrusion test of PTFE

    NASA Astrophysics Data System (ADS)

    Resnyansky, A. D.; Brown, E. N.; Trujillo, C. P.; Gray, G. T.

    2017-01-01

    Use of polymers in defense, aerospace and industrial applications under extreme loading conditions makes prediction of the behavior of these materials very important. Crucial to this is knowledge of the physical damage response in association with phase transformations during loading and the ability to predict this via multi-phase simulation accounting for thermodynamical non-equilibrium and strain rate sensitivity. The current work analyzes Dynamic-Tensile-Extrusion (Dyn-Ten-Ext) experiments on polytetrafluoroethylene (PTFE). In particular, the phase transition during loading and subsequent tension are analyzed using a two-phase rate sensitive material model implemented in the CTH hydrocode. The calculations are compared with experimental high-speed photography. Deformation patterns and their link with changing loading modes are analyzed numerically and correlated to the test observations. It is concluded that the phase transformation is not as critical to the response of PTFE under Dyn-Ten-Ext loading as it is during the Taylor rod impact testing.

  2. Three-dimensional mantle dynamics with an endothermic phase transition

    NASA Technical Reports Server (NTRS)

    Honda, S.; Balachandar, S.; Yuen, D. A.; Reuteler, D.

    1993-01-01

    3D convection for the spinel to perovskite phase change has been simulated numerically. Results for Rayleigh (Ra) numbers of 0(10 exp 6) show intermittent layering with a strong robust plume rising through the phase boundary. Many descending instabilities are deflected but merging cold sheets come together at a junction. A pool of cold material accumulates underneath in the phase-transition zone. A strong gravitational instability results, which precipitates a rapid and massive discharge of upper-mantle material.

  3. Phase-sensitive fiber-based parametric all-optical switch.

    PubMed

    Parra-Cetina, Josué; Kumpera, Aleš; Karlsson, Magnus; Andrekson, Peter A

    2015-12-28

    We experimentally demonstrate, for the first time, an all-optical switch in a phase-sensitive fiber optic parametric amplifier operated in saturation. We study the effect of phase variation of the signal and idler waves on the pump power depletion. By changing the phase of a 0.9 mW signal/idler pair wave by π/2 rad, a pump power extinction ratio of 30.4 dB is achieved. Static and dynamic characterizations are also performed and time domain results presented.

  4. Effects of dynamic long-period ocean tides on changes in Earth's rotation rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nam, Y.S.; Dickman, S.R.

    1990-05-10

    As a generalization of the zonal response coefficient first introduced by Agnew and Farrell (1978), the authors define the zonal response function k of the solid earth-ocean system as the ratio, in the frequency domain, of the tidal change in Earth's rotation rate to the tide-generating potential. Amplitudes and phases of k for the monthly, fortnightly, and 9-day lunar tides are estimated from 2 1/2 years of very long baseline interferometry UTI observations (both 5-day and daily time series), corrected for atmospheric angular momentum effects using NMC wind and pressure series. Using the dynamic ocean tide model of Dickman (1988a,more » 1989a), the authors predict amplitudes and phases of k for an elastic earth-ocean system. The predictions confirm earlier results which found that dynamic effects of the longer-period ocean tides reduce the amplitude of k by about 1%. However, agreement with the observed k is best achieved for all three tides if the predicted tide amplitudes are combined with the much larger satellite-observed ocean tide phases; in these cases the dynamic tidal effects reduce k by up to 8%. Finally, comparison between the observed and predicted amplitudes of k implies that anelastic effects on Earth's rotation at periods less than fortnightly cannot exceed 2%.« less

  5. Autonomic neural control of dynamic cerebral autoregulation in humans

    NASA Technical Reports Server (NTRS)

    Zhang, Rong; Zuckerman, Julie H.; Iwasaki, Kenichi; Wilson, Thad E.; Crandall, Craig G.; Levine, Benjamin D.

    2002-01-01

    BACKGROUND: The purpose of the present study was to determine the role of autonomic neural control of dynamic cerebral autoregulation in humans. METHODS AND RESULTS: We measured arterial pressure and cerebral blood flow (CBF) velocity in 12 healthy subjects (aged 29+/-6 years) before and after ganglion blockade with trimethaphan. CBF velocity was measured in the middle cerebral artery using transcranial Doppler. The magnitude of spontaneous changes in mean blood pressure and CBF velocity were quantified by spectral analysis. The transfer function gain, phase, and coherence between these variables were estimated to quantify dynamic cerebral autoregulation. After ganglion blockade, systolic and pulse pressure decreased significantly by 13% and 26%, respectively. CBF velocity decreased by 6% (P<0.05). In the very low frequency range (0.02 to 0.07 Hz), mean blood pressure variability decreased significantly (by 82%), while CBF velocity variability persisted. Thus, transfer function gain increased by 81%. In addition, the phase lead of CBF velocity to arterial pressure diminished. These changes in transfer function gain and phase persisted despite restoration of arterial pressure by infusion of phenylephrine and normalization of mean blood pressure variability by oscillatory lower body negative pressure. CONCLUSIONS: These data suggest that dynamic cerebral autoregulation is altered by ganglion blockade. We speculate that autonomic neural control of the cerebral circulation is tonically active and likely plays a significant role in the regulation of beat-to-beat CBF in humans.

  6. A Facile Synthesis of Dynamic, Shape Changing Polymer Particles

    PubMed Central

    Klinger, Daniel; Wang, Cynthia; Connal, Luke A.; Audus, Debra J.; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L.; Fredrickson, Glenn H.; Kramer, Edward J.; Hawker, Craig J.

    2014-01-01

    We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles exhibiting a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric PS-b-P2VP in dispersed droplets. In a second step, the dynamic shape change is realized by crosslinking the P2VP domains, hereby connecting glassy PS discs with pH-sensitive hydrogel actuators. PMID:24700705

  7. A Comparative Analysis of Phase-Change Wastewater Processing Approaches for Microgravity

    NASA Technical Reports Server (NTRS)

    Lange, Kevin

    2016-01-01

    Two phase-change wastewater processing candidates, the ISS Vapor Compression Distillation (VCD) System and the Cascade Distiller System (CDS), are compared based on dynamic modeling of both technologies. Differences in fluid handling and energy recovery for the technologies are described and contrasted. Model predictions are presented showing how temperatures, pressures, and compositions vary locally within each distiller. These dynamic variations are difficult to observe experimentally and have implications regarding non-condensable buildup and salt precipitation potential. Alternative architectures involving VCD and CDS components are analyzed in terms of predicted performance and equivalent system mass (ESM). The addition of a downstream brine processor to increase water recovery is also evaluated. Options for reducing overall ESM are discussed, including the possibility of developing a single precipitation-tolerant primary wastewater processor.

  8. Super energy saver heat pump with dynamic hybrid phase change material

    DOEpatents

    Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN

    2010-07-20

    A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.

  9. On near-source earthquake triggering

    USGS Publications Warehouse

    Parsons, T.; Velasco, A.A.

    2009-01-01

    When one earthquake triggers others nearby, what connects them? Two processes are observed: static stress change from fault offset and dynamic stress changes from passing seismic waves. In the near-source region (r ??? 50 km for M ??? 5 sources) both processes may be operating, and since both mechanisms are expected to raise earthquake rates, it is difficult to isolate them. We thus compare explosions with earthquakes because only earthquakes cause significant static stress changes. We find that large explosions at the Nevada Test Site do not trigger earthquakes at rates comparable to similar magnitude earthquakes. Surface waves are associated with regional and long-range dynamic triggering, but we note that surface waves with low enough frequency to penetrate to depths where most aftershocks of the 1992 M = 5.7 Little Skull Mountain main shock occurred (???12 km) would not have developed significant amplitude within a 50-km radius. We therefore focus on the best candidate phases to cause local dynamic triggering, direct waves that pass through observed near-source aftershock clusters. We examine these phases, which arrived at the nearest (200-270 km) broadband station before the surface wave train and could thus be isolated for study. Direct comparison of spectral amplitudes of presurface wave arrivals shows that M ??? 5 explosions and earthquakes deliver the same peak dynamic stresses into the near-source crust. We conclude that a static stress change model can readily explain observed aftershock patterns, whereas it is difficult to attribute near-source triggering to a dynamic process because of the dearth of aftershocks near large explosions.

  10. Multiphase Dynamics of Magma Oceans

    NASA Astrophysics Data System (ADS)

    Boukaré, Charles-Edouard; Ricard, Yanick; Parmentier, Edgar M.

    2017-04-01

    Since the earliest study of the Apollo lunar samples, the magma ocean hypothesis has received increasing consideration for explaining the early evolution of terrestrial planets. Giant impacts seem to be able to melt significantly large planets at the end of their accretion. The evolution of the resulting magma ocean would set the initial conditions (thermal and compositionnal structure) for subsequent long-term solid-state planet dynamics. However, magma ocean dynamics remains poorly understood. The major challenge relies on understanding interactions between the physical properties of materials (e.g., viscosity (at liquid or solid state), buoyancy) and the complex dynamics of an extremely vigorously convecting system. Such complexities might be neglected in cases where liquidus/adiabat interactions and density stratification leads to stable situations. However, interesting possibilities arise when exploring magma ocean dynamics in other regime. In the case of the Earth, recent studies have shown that the liquidus might intersect the adiabat at mid-mantle depth and/or that solids might be buoyant at deep mantle conditions. These results require the consideration of more sophisticated scenarios. For instance, how does bottom-up crystallization look with buoyant crystals? To understand this complex dynamics, we develop a multiphase phase numerical code that can handle simultaneously phase change, the convection in each phase and in the slurry, as well as the compaction or decompaction of the two phases. Although our code can only run in a limited parameter range (Rayleigh number, viscosity contrast between phases, Prandlt number), it provides a rich dynamics that illustrates what could have happened. For a given liquidus/adiabat configuration and density contrast between melt and solid, we explore magma ocean scenarios by varying the relative timescales of three first order processes: solid-liquid separation, thermo-chemical convective motions and magma ocean cooling.

  11. Fragile-to-strong transition in liquid silica

    NASA Astrophysics Data System (ADS)

    Geske, Julian; Drossel, Barbara; Vogel, Michael

    2016-03-01

    We investigate anomalies in liquid silica with molecular dynamics simulations and present evidence for a fragile-to-strong transition at around 3100 K-3300 K. To this purpose, we studied the structure and dynamical properties of silica over a wide temperature range, finding four indicators of a fragile-to-strong transition. First, there is a density minimum at around 3000 K and a density maximum at 4700 K. The turning point is at 3400 K. Second, the local structure characterized by the tetrahedral order parameter changes dramatically around 3000 K from a higher-ordered, lower-density phase to a less ordered, higher-density phase. Third, the correlation time τ changes from an Arrhenius behavior below 3300 K to a Vogel-Fulcher-Tammann behavior at higher temperatures. Fourth, the Stokes-Einstein relation holds for temperatures below 3000 K, but is replaced by a fractional relation above this temperature. Furthermore, our data indicate that dynamics become again simple above 5000 K, with Arrhenius behavior and a classical Stokes-Einstein relation.

  12. Water Hydrogen-Bonding Network Structure and Dynamics at Phospholipid Multibilayer Surface: Femtosecond Mid-IR Pump-Probe Spectroscopy.

    PubMed

    Kundu, Achintya; Błasiak, Bartosz; Lim, Joon-Hyung; Kwak, Kyungwon; Cho, Minhaeng

    2016-03-03

    The water hydrogen-bonding network at a lipid bilayer surface is crucial to understanding membrane structures and its functional activities. With a phospholipid multibilayer mimicking a biological membrane, we study the temperature dependence of water hydrogen-bonding structure, distribution, and dynamics at a lipid multibilayer surface using femtosecond mid-IR pump-probe spectroscopy. We observe two distinguished vibrational lifetime components. The fast component (0.6 ps) is associated with water interacting with a phosphate part, whereas the slow component (1.9 ps) is with bulk-like choline-associated water. With increasing temperature, the vibrational lifetime of phosphate-associated water remains constant though its relative fraction dramatically increases. The OD stretch vibrational lifetime of choline-bound water slows down in a sigmoidal fashion with respect to temperature, indicating a noticeable change of the water environment upon the phase transition. The water structure and dynamics are thus shown to be in quantitative correlation with the structural change of liquid multibilayer upon the gel-to-liquid crystal phase transition.

  13. Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase

    NASA Astrophysics Data System (ADS)

    Saito, Shohei; Nobusue, Shunpei; Tsuzaka, Eri; Yuan, Chunxue; Mori, Chigusa; Hara, Mitsuo; Seki, Takahiro; Camacho, Cristopher; Irle, Stephan; Yamaguchi, Shigehiro

    2016-07-01

    Liquid crystal (LC) provides a suitable platform to exploit structural motions of molecules in a condensed phase. Amplification of the structural changes enables a variety of technologies not only in LC displays but also in other applications. Until very recently, however, a practical use of LCs for removable adhesives has not been explored, although a spontaneous disorganization of LC materials can be easily triggered by light-induced isomerization of photoactive components. The difficulty of such application derives from the requirements for simultaneous implementation of sufficient bonding strength and its rapid disappearance by photoirradiation. Here we report a dynamic molecular LC material that meets these requirements. Columnar-stacked V-shaped carbon frameworks display sufficient bonding strength even during heating conditions, while its bonding ability is immediately lost by a light-induced self-melting function. The light-melt adhesive is reusable and its fluorescence colour reversibly changes during the cycle, visualizing the bonding/nonbonding phases of the adhesive.

  14. Integration of Treatment Innovation Planning and Implementation: Strategic Process Models and Organizational Challenges

    PubMed Central

    Lehman, Wayne E. K.; Simpson, D. Dwayne; Knight, Danica K.; Flynn, Patrick M.

    2015-01-01

    Sustained and effective use of evidence-based practices in substance abuse treatment services faces both clinical and contextual challenges. Implementation approaches are reviewed that rely on variations of plan-do-study-act (PDSA) cycles, but most emphasize conceptual identification of core components for system change strategies. A 2-phase procedural approach is therefore presented based on the integration of TCU models and related resources for improving treatment process and program change. Phase 1 focuses on the dynamics of clinical services, including stages of client recovery (cross-linked with targeted assessments and interventions), as the foundations for identifying and planning appropriate innovations to improve efficiency and effectiveness. Phase 2 shifts to the operational and organizational dynamics involved in implementing and sustaining innovations (including the stages of training, adoption, implementation, and practice). A comprehensive system of TCU assessments and interventions for client and program-level needs and functioning are summarized as well, with descriptions and guidelines for applications in practical settings. PMID:21443294

  15. A time-dependent order parameter for ultrafast photoinduced phase transitions.

    PubMed

    Beaud, P; Caviezel, A; Mariager, S O; Rettig, L; Ingold, G; Dornes, C; Huang, S-W; Johnson, J A; Radovic, M; Huber, T; Kubacka, T; Ferrer, A; Lemke, H T; Chollet, M; Zhu, D; Glownia, J M; Sikorski, M; Robert, A; Wadati, H; Nakamura, M; Kawasaki, M; Tokura, Y; Johnson, S L; Staub, U

    2014-10-01

    Strongly correlated electron systems often exhibit very strong interactions between structural and electronic degrees of freedom that lead to complex and interesting phase diagrams. For technological applications of these materials it is important to learn how to drive transitions from one phase to another. A key question here is the ultimate speed of such phase transitions, and to understand how a phase transition evolves in the time domain. Here we apply time-resolved X-ray diffraction to directly measure the changes in long-range order during ultrafast melting of the charge and orbitally ordered phase in a perovskite manganite. We find that although the actual change in crystal symmetry associated with this transition occurs over different timescales characteristic of the many electronic and vibrational coordinates of the system, the dynamics of the phase transformation can be well described using a single time-dependent 'order parameter' that depends exclusively on the electronic excitation.

  16. Navigating a Way through Plurality and Social Responsibility

    ERIC Educational Resources Information Center

    Gall, David A.

    2008-01-01

    Teachers need to have a clearer understanding of the dynamic process effecting change in culture and identity if they are to overcome fears about teaching diversity. This article draws on Eastern and Western insights on culture to clarify its dynamic process. In particular, teachers need to be aware of the two phases of culture: in one it appears…

  17. Impact of predator dormancy on prey-predator dynamics

    NASA Astrophysics Data System (ADS)

    Freire, Joana G.; Gallas, Marcia R.; Gallas, Jason A. C.

    2018-05-01

    The impact of predator dormancy on the population dynamics of phytoplankton-zooplankton in freshwater ecosystems is investigated using a simple model including dormancy, a strategy to avoid extinction. In addition to recently reported chaos-mediated mixed-mode oscillations, as the carrying capacity grows, we find surprisingly wide phases of nonchaos-mediated mixed-mode oscillations to be present well before the onset of chaos in the system. Nonchaos-mediated cascades display spike-adding sequences, while chaos-mediated cascades show spike-doubling. A host of braided periodic phases with exotic shapes is found embedded in a region of control parameters dominated by chaotic oscillations. We describe the organization of these complicated phases and show how they are interconnected and how their complexity unfolds as control parameters change. The novel nonchaos-mediated phases are found to be large and stable, even for low carrying capacity.

  18. Human Endometrial DNA Methylome Is Cycle-Dependent and Is Associated With Gene Expression Regulation

    PubMed Central

    Houshdaran, Sahar; Zelenko, Zara; Irwin, Juan C.

    2014-01-01

    Human endometrium undergoes major gene expression changes, resulting in altered cellular functions in response to cyclic variations in circulating estradiol and progesterone, largely mediated by transcription factors and nuclear receptors. In addition to classic modulators, epigenetic mechanisms regulate gene expression during development in response to environmental factors and in some diseases and have roles in steroid hormone action. Herein, we tested the hypothesis that DNA methylation plays a role in gene expression regulation in human endometrium in different hormonal milieux. High throughput, genome-wide DNA methylation profiling of endometrial samples in proliferative, early secretory, and midsecretory phases revealed dynamic DNA methylation patterns with segregation of proliferative from secretory phase samples by unsupervised cluster analysis of differentially methylated genes. Changes involved different frequencies of gain and loss of methylation within or outside CpG islands. Comparison of changes in transcriptomes and corresponding DNA methylomes from the same samples revealed association of DNA methylation and gene expression in a number of loci, some important in endometrial biology. Human endometrial stromal fibroblasts treated in vitro with estradiol and progesterone exhibited DNA methylation changes in several genes observed in proliferative and secretory phase tissues, respectively. Taken together, the data support the observation that epigenetic mechanisms are involved in gene expression regulation in human endometrium in different hormonal milieux, adding endometrium to a small number of normal adult tissues exhibiting dynamic DNA methylation. The data also raise the possibility that the interplay between steroid hormone and methylome dynamics regulates normal endometrial functions and, if abnormal, may result in endometrial dysfunction and associated disorders. PMID:24877562

  19. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    DOE PAGES

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; ...

    2016-12-16

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO 2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M 2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picosecondsmore » at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less

  20. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    PubMed Central

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu

    2016-01-01

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium. PMID:27982066

  1. The nature of photoinduced phase transition and metastable states in vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.; Torres, David; Wang, Tongyu; Sepulveda, Nelson; Chang, Kiseok; Young, Margaret; Lunt, Richard R.; Ruan, Chong-Yu

    2016-12-01

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picoseconds at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.

  2. Systems and Methods for Derivative-Free Adaptive Control

    NASA Technical Reports Server (NTRS)

    Calise, Anthony J. (Inventor); Yucelen, Tansel (Inventor); Kim, Kilsoo (Inventor)

    2015-01-01

    An adaptive control system is disclosed. The control system can control uncertain dynamic systems. The control system can employ one or more derivative-free adaptive control architectures. The control system can further employ one or more derivative-free weight update laws. The derivative-free weight update laws can comprise a time-varying estimate of an ideal vector of weights. The control system of the present invention can therefore quickly stabilize systems that undergo sudden changes in dynamics, caused by, for example, sudden changes in weight. Embodiments of the present invention can also provide a less complex control system than existing adaptive control systems. The control system can control aircraft and other dynamic systems, such as, for example, those with non-minimum phase dynamics.

  3. Theta phase precession and phase selectivity: a cognitive device description of neural coding

    NASA Astrophysics Data System (ADS)

    Zalay, Osbert C.; Bardakjian, Berj L.

    2009-06-01

    Information in neural systems is carried by way of phase and rate codes. Neuronal signals are processed through transformative biophysical mechanisms at the cellular and network levels. Neural coding transformations can be represented mathematically in a device called the cognitive rhythm generator (CRG). Incoming signals to the CRG are parsed through a bank of neuronal modes that orchestrate proportional, integrative and derivative transformations associated with neural coding. Mode outputs are then mixed through static nonlinearities to encode (spatio) temporal phase relationships. The static nonlinear outputs feed and modulate a ring device (limit cycle) encoding output dynamics. Small coupled CRG networks were created to investigate coding functionality associated with neuronal phase preference and theta precession in the hippocampus. Phase selectivity was found to be dependent on mode shape and polarity, while phase precession was a product of modal mixing (i.e. changes in the relative contribution or amplitude of mode outputs resulted in shifting phase preference). Nonlinear system identification was implemented to help validate the model and explain response characteristics associated with modal mixing; in particular, principal dynamic modes experimentally derived from a hippocampal neuron were inserted into a CRG and the neuron's dynamic response was successfully cloned. From our results, small CRG networks possessing disynaptic feedforward inhibition in combination with feedforward excitation exhibited frequency-dependent inhibitory-to-excitatory and excitatory-to-inhibitory transitions that were similar to transitions seen in a single CRG with quadratic modal mixing. This suggests nonlinear modal mixing to be a coding manifestation of the effect of network connectivity in shaping system dynamic behavior. We hypothesize that circuits containing disynaptic feedforward inhibition in the nervous system may be candidates for interpreting upstream rate codes to guide downstream processes such as phase precession, because of their demonstrated frequency-selective properties.

  4. A Multimedia Tutorial for Charged-Particle Beam Dynamics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silbar, Richard R.

    1999-07-26

    In September 1995 WhistleSoft, Inc., began developing a computer-based multimedia tutorial for charged-particle beam dynamics under Phase II of a Small Business Innovative Research grant from the U.S. Department of Energy. In Phase I of this project (see its Final Report) we had developed several prototype multimedia modules using an authoring system on NeXTStep computers. Such a platform was never our intended target, and when we began Phase II we decided to make the change immediately to develop our tutorial modules for the Windows and Macintosh microcomputer market. This Report details our progress and accomplishments. It also gives a flavormore » of the look and feel of the presently available and upcoming modules.« less

  5. Changing roles of propagule, climate, and land use during extralimital colonization of a rose chafer beetle

    NASA Astrophysics Data System (ADS)

    Horak, Jakub; Hui, Cang; Roura-Pascual, Núria; Romportl, Dusan

    2013-04-01

    Regardless of their ecosystem functions, some insects are threatened when facing environmental changes and disturbances, while others become extremely successful. It is crucial for successful conservation to differentiate factors supporting species' current distributions from those triggering range dynamics. Here, we studied the sudden extralimital colonization of the rose chafer beetle, Oxythyrea funesta, in the Czech Republic. Specifically, we depicted the range expansion using accumulated historical records of first known occurrences and then explained the colonization events using five transformed indices depicting changes in local propagule pressure (LPP), climate, land use, elevation, and landscape structure. The slow occupancy increase of O. funesta before 1990 changed to a phase of rapid occupancy increase after 1990, driven not only by changes in the environment (climate and land use) but also by the spatial accumulation of LPP. Climate was also found to play a significant role but only during the niche-filling stage before 1990, while land use became important during the phase of rapid expansion after 1990. Inland waters (e.g., riparian corridors) also contributed substantially to the spread in the Czech Republic. Our method of using spatially transformed variables to explain the colonization events provides a novel way of detecting factors triggering range dynamics. The results highlight the importance of LPP in driving sudden occupancy increase of extralimital species and recommend the use of LPP as an important predictor for modeling range dynamics.

  6. Atomic scale dynamics of a solid state chemical reaction directly determined by annular dark-field electron microscopy.

    PubMed

    Pennycook, Timothy J; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D

    2014-12-22

    Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.

  7. Dynamical stability of plutonium alloys

    NASA Astrophysics Data System (ADS)

    Torrent, Marc; Dorado, Boris; Bieder, Jordan

    Plutonium sits at the center of the actinide series and marks the transition between localization and delocalization of the 5 f electrons. From a metallurgical standpoint, the monoclinic α phase (stable at low T) is brittle, not suitable for engineering applications, as opposed to the ductile fcc δ phase (stable at 580K). The δ - α transition can be avoided by alloying δ-Pu with ''deltagen'' elements. There is a wide unexplored area for Pu when it comes to lattice dynamics. Due to the changes in the composition, the dynamical stability of is constantly challenged. Displ. cascades are created in the material, which in turn produce numerous of point defects. Therefore, the accumulation of defects preclude a thermodynamic equilibrium. Given the importance for engineering applications, it is crucial that we understand the mechanisms that lead to stabilization with respect to the alloy composition. We use first-principles calculations to provide evidence of the effect of defects/impurities (C, O, Al, Fe, Ni, Ga, Ce, U, Am) on the dynamical stability of δ-Pu. We show that this phase is dynamically unstable at low T and that it depends on the 5 f orbital occupancies. We investigate how defects affect the stability by comparing the phonon DoS.

  8. The Effects of Solar Wind Dynamic Pressure Changes on the Substorm Auroras and Energetic Electron Injections on 24 August 2005

    NASA Astrophysics Data System (ADS)

    Li, L. Y.; Wang, Z. Q.

    2018-01-01

    After the passage of an interplanetary (IP) shock at 06:13 UT on 24 August 2005, the enhancement (>6 nPa) of solar wind dynamic pressure and the southward turning of interplanetary magnetic field (IMF) cause the earthward movement of dayside magnetopause and the drift loss of energetic particles near geosynchronous orbit. The persistent electron drift loss makes the geosynchronous satellites cannot observe the substorm electron injection phenomenon during the two substorm expansion phases (06:57-07:39 UT) on that day. Behind the IP shock, the fluctuations ( 0.5-3 nPa) of solar wind dynamic pressure not only alter the dayside auroral brightness but also cause the entire auroral oval to swing in the day-night direction. However, there is no Pi2 pulsation in the nightside auroral oval during the substorm growth phase from 06:13 to 06:57 UT. During the subsequent two substorm expansion phases, the substorm expansion activities cause the nightside aurora oval brightening from substorm onset site to higher latitudes, and meanwhile, the enhancement (decline) of solar wind dynamic pressure makes the nightside auroral oval move toward the magnetic equator (the magnetic pole). These observations demonstrate that solar wind dynamic pressure changes and substorm expansion activities can jointly control the luminosity and location of the nightside auroral oval when the internal and external disturbances occur simultaneously. During the impact of a strong IP shock, the earthward movement of dayside magnetopause probably causes the disappearance of the substorm electron injections near geosynchronous orbit.

  9. Cytoskeletal Components Define Protein Location to Membrane Microdomains*

    PubMed Central

    Szymanski, Witold G.; Zauber, Henrik; Erban, Alexander; Gorka, Michal; Wu, Xu Na; Schulze, Waltraud X.

    2015-01-01

    The plasma membrane is an important compartment that undergoes dynamic changes in composition upon external or internal stimuli. The dynamic subcompartmentation of proteins in ordered low-density (DRM) and disordered high-density (DSM) membrane phases is hypothesized to require interactions with cytoskeletal components. Here, we systematically analyzed the effects of actin or tubulin disruption on the distribution of proteins between membrane density phases. We used a proteomic screen to identify candidate proteins with altered submembrane location, followed by biochemical or cell biological characterization in Arabidopsis thaliana. We found that several proteins, such as plasma membrane ATPases, receptor kinases, or remorins resulted in a differential distribution between membrane density phases upon cytoskeletal disruption. Moreover, in most cases, contrasting effects were observed: Disruption of actin filaments largely led to a redistribution of proteins from DRM to DSM membrane fractions while disruption of tubulins resulted in general depletion of proteins from the membranes. We conclude that actin filaments are necessary for dynamic movement of proteins between different membrane phases and that microtubules are not necessarily important for formation of microdomains as such, but rather they may control the protein amount present in the membrane phases. PMID:26091700

  10. A stability-based mechanism for hysteresis in the walk–trot transition in quadruped locomotion

    PubMed Central

    Aoi, Shinya; Katayama, Daiki; Fujiki, Soichiro; Tomita, Nozomi; Funato, Tetsuro; Yamashita, Tsuyoshi; Senda, Kei; Tsuchiya, Kazuo

    2013-01-01

    Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely unclear. It has been suggested that gaits correspond to attractors in their dynamics and that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in stability. In the present study, we used a robotic platform to investigate the dynamic stability of gaits and to clarify the hysteresis mechanism in the walk–trot transition of quadrupeds. Specifically, we used a quadruped robot as the body mechanical model and an oscillator network for the nervous system model to emulate dynamic locomotion of a quadruped. Experiments using this robot revealed that dynamic interactions among the robot mechanical system, the oscillator network, and the environment generate walk and trot gaits depending on the locomotion speed. In addition, a walk–trot transition that exhibited hysteresis was observed when the locomotion speed was changed. We evaluated the gait changes of the robot by measuring the locomotion of dogs. Furthermore, we investigated the stability structure during the gait transition of the robot by constructing a potential function from the return map of the relative phase of the legs and clarified the physical characteristics inherent to the gait transition in terms of the dynamics. PMID:23389894

  11. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion.

    PubMed

    Aoi, Shinya; Katayama, Daiki; Fujiki, Soichiro; Tomita, Nozomi; Funato, Tetsuro; Yamashita, Tsuyoshi; Senda, Kei; Tsuchiya, Kazuo

    2013-04-06

    Quadrupeds vary their gaits in accordance with their locomotion speed. Such gait transitions exhibit hysteresis. However, the underlying mechanism for this hysteresis remains largely unclear. It has been suggested that gaits correspond to attractors in their dynamics and that gait transitions are non-equilibrium phase transitions that are accompanied by a loss in stability. In the present study, we used a robotic platform to investigate the dynamic stability of gaits and to clarify the hysteresis mechanism in the walk-trot transition of quadrupeds. Specifically, we used a quadruped robot as the body mechanical model and an oscillator network for the nervous system model to emulate dynamic locomotion of a quadruped. Experiments using this robot revealed that dynamic interactions among the robot mechanical system, the oscillator network, and the environment generate walk and trot gaits depending on the locomotion speed. In addition, a walk-trot transition that exhibited hysteresis was observed when the locomotion speed was changed. We evaluated the gait changes of the robot by measuring the locomotion of dogs. Furthermore, we investigated the stability structure during the gait transition of the robot by constructing a potential function from the return map of the relative phase of the legs and clarified the physical characteristics inherent to the gait transition in terms of the dynamics.

  12. Dynamic light scattering study on phase separation of a protein-water mixture: Application on cold cataract development in the ocular lens

    NASA Astrophysics Data System (ADS)

    Petta, V.; Pharmakakis, N.; Papatheodorou, G. N.; Yannopoulos, S. N.

    2008-06-01

    We present a detailed dynamic light scattering study of the phase separation in the ocular lens emerging during cold cataract development. Cold cataract is a phase separation effect that proceeds via spinodal decomposition of the lens cytoplasm with cooling. The intensity autocorrelation functions of the lens protein content are analyzed with the aid of two methods, providing information on the populations and dynamics of the scattering elements associated with cold cataract. It is found that the temperature dependence of many measurable parameters changes appreciably at the characteristic temperature ˜16±1°C which is associated with the onset of cold cataract. By extending the temperature range of this work to previously inaccessible regimes, i.e., well below the phase separation or coexistence curve at Tcc , we have been able to accurately determine the temperature dependence of the collective and self-diffusion coefficients of proteins near the spinodal. The analysis showed that the dynamics of proteins bears some resemblance to the dynamics of structural glasses, where the apparent activation energy for particle diffusion increases below Tcc , indicating a highly cooperative motion. Application of ideas developed for studying the critical dynamics of binary protein-solvent mixtures, as well as the use of a modified Arrhenius equation, enabled us to estimate the spinodal temperature Tsp of the lens nucleus. The applicability of dynamic light scattering as a noninvasive, early-diagnostic tool for ocular diseases is also demonstrated in light of the findings of the present paper.

  13. Relative phase asynchrony and long-range correlation of long-term solar magnetic activity

    NASA Astrophysics Data System (ADS)

    Deng, Linhua

    2017-07-01

    Statistical signal processing is one of the most important tasks in a large amount of areas of scientific studies, such as astrophysics, geophysics, and space physics. Phase recurrence analysis and long-range persistence are the two dynamical structures of the underlying processes for the given natural phenomenon. Linear and nonlinear time series analysis approaches (cross-correlation analysis, cross-recurrence plot, wavelet coherent transform, and Hurst analysis) are combined to investigate the relative phase interconnection and long-range correlation between solar activity and geomagnetic activity for the time interval from 1932 January to 2017 January. The following prominent results are found: (1) geomagnetic activity lags behind sunspot numbers with a phase shift of 21 months, and they have a high level of asynchronous behavior; (2) their relative phase interconnections are in phase for the periodic scales during 8-16 years, but have a mixing behavior for the periodic belts below 8 years; (3) both sunspot numbers and geomagnetic activity can not be regarded as a stochastic phenomenon because their dynamical behaviors display a long-term correlation and a fractal nature. We believe that the presented conclusions could provide further information on understanding the dynamical coupling of solar dynamo process with geomagnetic activity variation, and the crucial role of solar and geomagnetic activity in the long-term climate change.

  14. A high dynamic range method for the direct readout of a dynamic phase change in homodyne interferometers

    NASA Astrophysics Data System (ADS)

    Marçal, L. A. P.; Kitano, C.; Higuti, R. T.; Nader, G.; Silva, E. C. N.

    2012-12-01

    Piezoelectric flextensional actuators (PFAs) are an efficient alternative to systems that demand nano-positioning of devices, such as in nanotechnology. Optical techniques constitute an excellent choice for contactless measurement of nano-displacements. In particular, optical interferometry constitutes an adequate choice for characterizing PFAs. There are several types of interferometers, as well as optical phase demodulation methods, used in practice. One interesting class of demodulation methods uses the spectrum of the photo-detected signal and its intrinsic properties when there is a harmonically varying time-domain modulating signal. In this work, a low cost homodyne Michelson interferometer, associated with simple electronic circuits for signal conditioning and acquisition, is used. A novel dynamic phase demodulation method, named Jm&Jm + 2, is proposed, which uses only the magnitude spectrum of the photo-detected signal, without the need to know its phase spectrum. The method is passive, direct, self-consistent, without problems of phase ambiguity and immune to fading, and presents a dynamic range from 0.45 to 100 rad displacements (between 22.6 nm and 5 µm, for λ = 632.8 nm). When applied to the measurement of half-wave voltage in a proof-of-concept Pockels cell, it presents errors smaller than 0.9% when compared to theory. For the estimation of PFA displacement, it allows the measurement of linearity and frequency response curves, with excellent results.

  15. Summary and synthesis: past and future changes in the Alaskan Boreal Forest.

    Treesearch

    F. Stuart Chapin; David McGuire; Roger W. Ruess; Marilyn W. Walker; Richard D. Boone; Mary E. Edwards; Bruce P. Finney; Larry D. Hinzman; Jeremy B. Jones; Glenn P. Juday; Eric S. Kasischke; Knut Kielland; Andrea H. Lloyd; Mark W. Oswood; Chien-Lu Ping; Eric Rexstad; Vladimir E. Romanovsky; Joshua P. Schimel; Elena B. Sparrow; Bjartmar Sveinbjörnsson; David W. Valentine; Keith Van Cleve; David L. Verbyla; Leslie A. Viereck; Richard A. Werner; Tricia L. Wurtz; John Yarie

    2006-01-01

    Historically the boreal forest has experienced major changes, and it remains a highly dynamic biome today. During cold phases of Quaternary climate cycles, forests were virtually absent from Alaska, and since the postglacial re-establishment of forests ca 13,000 years ago, here have been periods of both relative stability and rapid change (Chapter 5). Today, the...

  16. Tropical-Forest Structure and Biomass Dynamics from TanDEM-X Radar Interferometry

    Treesearch

    Robert Treuhaft; Yang Lei; Fabio Gonçalves; Michael Keller; João Santos; Maxim Neumann; André Almeida

    2017-01-01

    Changes in tropical-forest structure and aboveground biomass (AGB) contribute directly to atmospheric changes in CO2, which, in turn, bear on global climate. This paper demonstrates the capability of radar-interferometric phase-height time series at X-band (wavelength = 3 cm) to monitor changes in vertical structure and AGB, with sub-hectare and monthly spatial and...

  17. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Subedi, Alaska; Siegrist, Theo; Singh, David J.

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  18. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials

    DOE PAGES

    Subedi, Alaska; Siegrist, Theo; Singh, David J.; ...

    2016-05-19

    Ge 2Sb 2Te 5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strongmore » competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO 3, BiFeO 3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. As a result, this different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.« less

  19. Competing covalent and ionic bonding in Ge-Sb-Te phase change materials.

    PubMed

    Mukhopadhyay, Saikat; Sun, Jifeng; Subedi, Alaska; Siegrist, Theo; Singh, David J

    2016-05-19

    Ge2Sb2Te5 and related phase change materials are highly unusual in that they can be readily transformed between amorphous and crystalline states using very fast melt, quench, anneal cycles, although the resulting states are extremely long lived at ambient temperature. These states have remarkably different physical properties including very different optical constants in the visible in strong contrast to common glass formers such as silicates or phosphates. This behavior has been described in terms of resonant bonding, but puzzles remain, particularly regarding different physical properties of crystalline and amorphous phases. Here we show that there is a strong competition between ionic and covalent bonding in cubic phase providing a link between the chemical basis of phase change memory property and origins of giant responses of piezoelectric materials (PbTiO3, BiFeO3). This has important consequences for dynamical behavior in particular leading to a simultaneous hardening of acoustic modes and softening of high frequency optic modes in crystalline phase relative to amorphous. This different bonding in amorphous and crystalline phases provides a direct explanation for different physical properties and understanding of the combination of long time stability and rapid switching and may be useful in finding new phase change compositions with superior properties.

  20. Fast, externally triggered, digital phase controller for an optical lattice

    NASA Astrophysics Data System (ADS)

    Sadgrove, Mark; Nakagawa, Ken'ichi

    2011-11-01

    We present a method to control the phase of an optical lattice according to an external trigger signal. The method has a latency of less than 30 μs. Two phase locked digital synthesizers provide the driving signal for two acousto-optic modulators which control the frequency and phase of the counter-propagating beams which form a standing wave (optical lattice). A micro-controller with an external interrupt function is connected to the desired external signal, and updates the phase register of one of the synthesizers when the external signal changes. The standing wave (period λ/2 = 390 nm) can be moved by units of 49 nm with a mean jitter of 28 nm. The phase change is well known due to the digital nature of the synthesizer, and does not need calibration. The uses of the scheme include coherent control of atomic matter-wave dynamics.

  1. Robust sensorimotor representation to physical interaction changes in humanoid motion learning.

    PubMed

    Shimizu, Toshihiko; Saegusa, Ryo; Ikemoto, Shuhei; Ishiguro, Hiroshi; Metta, Giorgio

    2015-05-01

    This paper proposes a learning from demonstration system based on a motion feature, called phase transfer sequence. The system aims to synthesize the knowledge on humanoid whole body motions learned during teacher-supported interactions, and apply this knowledge during different physical interactions between a robot and its surroundings. The phase transfer sequence represents the temporal order of the changing points in multiple time sequences. It encodes the dynamical aspects of the sequences so as to absorb the gaps in timing and amplitude derived from interaction changes. The phase transfer sequence was evaluated in reinforcement learning of sitting-up and walking motions conducted by a real humanoid robot and compatible simulator. In both tasks, the robotic motions were less dependent on physical interactions when learned by the proposed feature than by conventional similarity measurements. Phase transfer sequence also enhanced the convergence speed of motion learning. Our proposed feature is original primarily because it absorbs the gaps caused by changes of the originally acquired physical interactions, thereby enhancing the learning speed in subsequent interactions.

  2. Numerical modelling of phase-change material used for PV panels cooling

    NASA Astrophysics Data System (ADS)

    Sellami, Assia; Elotmani, Rabie; Kandoussi, Khalid; Eljouad, Mohamed; Hajjaji, Abdelowahed; Boutaous, M'Hamed

    2017-12-01

    Passive cooling of a PV solar panel using phase-change material (PCM) may play an important role in increasing efficiency of PV cells. Because it does not need a maintenance and does not release greenhouses gases, PCM seems to be a good way to decrease the among of overheating of PV cell. The aims of this paper describes a detailed multiphysical issue in order to understand the effect of PCM (RT25) in keeping PV cell temperature close to ambient. The study is focused on modeling the heat and mass transfer in a PCM domain by modifying the buoyancy term in momentum equation. Due to a phase-change and free convection, transient incompressible flow is taken into account to explain the dynamic variations of the velocity profile and viscosity distribution. With standard condition of irradiation and heat flux on both sides of the PV panel, a melt front has been tracked by the energy equation, which gives a good argument for the temperature evolution during phase-change.

  3. Phase space interrogation of the empirical response modes for seismically excited structures

    NASA Astrophysics Data System (ADS)

    Paul, Bibhas; George, Riya C.; Mishra, Sudib K.

    2017-07-01

    Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.

  4. A Theoretical Approach to Understanding Population Dynamics with Seasonal Developmental Durations

    NASA Astrophysics Data System (ADS)

    Lou, Yijun; Zhao, Xiao-Qiang

    2017-04-01

    There is a growing body of biological investigations to understand impacts of seasonally changing environmental conditions on population dynamics in various research fields such as single population growth and disease transmission. On the other side, understanding the population dynamics subject to seasonally changing weather conditions plays a fundamental role in predicting the trends of population patterns and disease transmission risks under the scenarios of climate change. With the host-macroparasite interaction as a motivating example, we propose a synthesized approach for investigating the population dynamics subject to seasonal environmental variations from theoretical point of view, where the model development, basic reproduction ratio formulation and computation, and rigorous mathematical analysis are involved. The resultant model with periodic delay presents a novel term related to the rate of change of the developmental duration, bringing new challenges to dynamics analysis. By investigating a periodic semiflow on a suitably chosen phase space, the global dynamics of a threshold type is established: all solutions either go to zero when basic reproduction ratio is less than one, or stabilize at a positive periodic state when the reproduction ratio is greater than one. The synthesized approach developed here is applicable to broader contexts of investigating biological systems with seasonal developmental durations.

  5. Hovering and targeting flight simulations of a dragonfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method

    NASA Astrophysics Data System (ADS)

    Hirohashi, Kensuke; Inamuro, Takaji

    2017-08-01

    Hovering and targeting flights of the dragonfly-like flapping wing-body model are numerically investigated by using the immersed boundary-lattice Boltzmann method. The governing parameters of the problem are the Reynolds number Re, the Froude number Fr, and the non-dimensional mass m. We set the parameters at Re = 200, Fr = 15 and m = 51. First, we simulate free flights of the model for various values of the phase difference angle ϕ between the forewing and the hindwing motions and for various values of the stroke angle β between the stroke plane and the horizontal plane. We find that the vertical motion of the model depends on the phase difference angle ϕ, and the horizontal motion of the model depends on the stroke angle β. Secondly, using the above results we try to simulate the hovering flight by dynamically changing the phase difference angle ϕ and the stroke angle β. The hovering flight can be successfully simulated by a simple proportional controller of the phase difference angle and the stroke angle. Finally, we simulate a targeting flight by dynamically changing the stroke angle β.

  6. Threshold q -voter model

    NASA Astrophysics Data System (ADS)

    Vieira, Allan R.; Anteneodo, Celia

    2018-05-01

    We introduce the threshold q -voter opinion dynamics where an agent, facing a binary choice, can change its mind when at least q0 among q neighbors share the opposite opinion. Otherwise, the agent can still change its mind with a certain probability ɛ . This threshold dynamics contemplates the possibility of persuasion by an influence group even when there is not full agreement among its members. In fact, individuals can follow their peers not only when there is unanimity (q0=q ) in the lobby group, as assumed in the q -voter model, but also, depending on the circumstances, when there is simple majority (q0>q /2 ), Byzantine consensus (q0>2 q /3 ), or any minimal number q0 among q . This realistic threshold gives place to emerging collective states and phase transitions which are not observed in the standard q voter. The threshold q0, together with the stochasticity introduced by ɛ , yields a phenomenology that mimics as particular cases the q voter with stochastic drivings such as nonconformity and independence. In particular, nonconsensus majority states are possible, as well as mixed phases. Continuous and discontinuous phase transitions can occur, but also transitions from fluctuating phases into absorbing states.

  7. Density functional simulations of Sb-rich GeSbTe phase change alloys.

    PubMed

    Gabardi, S; Caravati, S; Bernasconi, M; Parrinello, M

    2012-09-26

    We generated models of the amorphous phase of Sb-rich GeSbTe phase change alloys by quenching from the melt within density functional molecular dynamics. We considered the two compositions Ge(1)Sb(1)Te(1) and Ge(2)Sb(4)Te(5). Comparison with previous results on the most studied Ge(2)Sb(2)Te(5) allowed us to draw some conclusions on the dependence of the structural properties of the amorphous phase on the alloy composition. Vibrational and electronic properties were also scrutinized. Phonons at high frequencies above 200 cm(-1) are localized in tetrahedra around Ge atoms in Sb-rich compounds as well as in Ge(2)Sb(2)Te(5). All compounds are semiconducting in the amorphous phase, with a band gap in the range 0.7-1.0 eV.

  8. Density functional simulations of Sb-rich GeSbTe phase change alloys

    NASA Astrophysics Data System (ADS)

    Gabardi, S.; Caravati, S.; Bernasconi, M.; Parrinello, M.

    2012-09-01

    We generated models of the amorphous phase of Sb-rich GeSbTe phase change alloys by quenching from the melt within density functional molecular dynamics. We considered the two compositions Ge1Sb1Te1 and Ge2Sb4Te5. Comparison with previous results on the most studied Ge2Sb2Te5 allowed us to draw some conclusions on the dependence of the structural properties of the amorphous phase on the alloy composition. Vibrational and electronic properties were also scrutinized. Phonons at high frequencies above 200 cm-1 are localized in tetrahedra around Ge atoms in Sb-rich compounds as well as in Ge2Sb2Te5. All compounds are semiconducting in the amorphous phase, with a band gap in the range 0.7-1.0 eV.

  9. Multistage Estimation Of Frequency And Phase

    NASA Technical Reports Server (NTRS)

    Kumar, Rajendra

    1991-01-01

    Conceptual two-stage software scheme serves as prototype of multistage scheme for digital estimation of phase, frequency, and rate of change of frequency ("Doppler rate") of possibly phase-modulated received sinusoidal signal in communication system in which transmitter and/or receiver traveling rapidly, accelerating, and/or jerking severely. Each additional stage of multistage scheme provides increasingly refined estimate of frequency and phase of signal. Conceived for use in estimating parameters of signals from spacecraft and high dynamic GPS signal parameters, also applicable, to terrestrial stationary/mobile (e.g., cellular radio) and land-mobile/satellite communication systems.

  10. Shock, release and Taylor impact of the semicrystalline thermoplastic polytetrafluoroethylene

    NASA Astrophysics Data System (ADS)

    Bourne, N. K.; Brown, E. N.; Millett, J. C. F.; Gray, G. T.

    2008-04-01

    The high strain-rate response of polymers is a subject that has gathered interest over recent years due to their increasing engineering importance, particularly in load bearing applications subject to extremes of pressure and strain rate. The current work presents two specific sets of experiments interrogating the effect of dynamic, high-pressure loading in the regime of the phase II to phase III pressure-induced crystalline phase transition in polytetrafluoroethylene (PTFE). These are gas-gun driven plate- and Taylor impact. Together these experiments highlight several effects associated with the dynamic, pressure-induced phase transitions in PTFE. An elevated release wave speed shows evidence of a pressure-induced phase change at a stress commensurate with that observed statically. It is shown that convergence between analytic derivations of release wave speed and the data requires the phase II to III transition to occur. Taylor impact is an integrated test that highlights continuum behavior that has origin in mesoscale response. There is a rapid transition from ductile to brittle behavior observed that occurs at a pressure consistent with this phase transition.

  11. Sensing Floquet-Majorana fermions via heat transfer

    NASA Astrophysics Data System (ADS)

    Molignini, Paolo; van Nieuwenburg, Evert; Chitra, R.

    2017-09-01

    Time periodic modulations of the transverse field in the closed X Y spin-1/2 chain generate a very rich dynamical phase diagram, with a hierarchy of Zn topological phases characterized by differing numbers of Floquet-Majorana modes. This rich phase diagram survives when the system is coupled to dissipative end reservoirs. Circumventing the obstacle of preparing and measuring quasienergy configurations endemic to Floquet-Majorana detection schemes, we show that stroboscopic heat transport and spin density are robust observables to detect both the dynamical phase transitions and Majorana modes in dissipative settings. We find that the heat current provides very clear signatures of these Floquet topological phase transitions. In particular, we observe that the derivative of the heat current, with respect to a control parameter, changes sign at the boundaries separating topological phases with differing nonzero numbers of Floquet-Majorana modes. We present a simple scheme to directly count the number of Floquet-Majorana modes in a phase from the Fourier transform of the local spin density profile. Our results are valid provided the anisotropies are not strong and can be easily implemented in quantum engineered systems.

  12. Master-equation approach to the study of phase-change processes in data storage media

    NASA Astrophysics Data System (ADS)

    Blyuss, K. B.; Ashwin, P.; Bassom, A. P.; Wright, C. D.

    2005-07-01

    We study the dynamics of crystallization in phase-change materials using a master-equation approach in which the state of the crystallizing material is described by a cluster size distribution function. A model is developed using the thermodynamics of the processes involved and representing the clusters of size two and greater as a continuum but clusters of size one (monomers) as a separate equation. We present some partial analytical results for the isothermal case and for large cluster sizes, but principally we use numerical simulations to investigate the model. We obtain results that are in good agreement with experimental data and the model appears to be useful for the fast simulation of reading and writing processes in phase-change optical and electrical memories.

  13. The Effect of Aging on Muscular Dynamics Underlying Movement Patterns Changes.

    PubMed

    Vernooij, Carlijn A; Rao, Guillaume; Berton, Eric; Retornaz, Frédérique; Temprado, Jean-Jacques

    2016-01-01

    Introduction: Aging leads to alterations not only within the complex subsystems of the neuro-musculo-skeletal system, but also in the coupling between them. Here, we studied how aging affects functional reorganizations that occur both within and between the behavioral and muscular levels, which must be coordinated to produce goal-directed movements. Using unimanual reciprocal Fitts' task, we examined the behavioral and muscular dynamics of older adults (74.4 ± 3.7 years) and compared them to those found for younger adults (23.2 ± 2.0 years). Methods: To achieve this objective, we manipulated the target size to trigger a phase transition in the behavioral regime and searched for concomitant signatures of a phase transition in the muscular coordination. Here, muscular coordination was derived by using the method of muscular synergy extraction. With this technique, we obtained functional muscular patterns through non-negative matrix factorization of the muscular signals followed by clustering the resulting synergies. Results: Older adults showed a phase transition in behavioral regime, although, in contrast to young participants, their kinematic profiles did not show a discontinuity. In parallel, muscular coordination displayed two typical signatures of a phase transition, that is, increased variability of coordination patterns and a reorganization of muscular synergies. Both signatures confirmed the existence of muscular reorganization in older adults, which is coupled with change in dynamical regime at behavioral level. However, relative to young adults, transition occurred at lower index of difficulty (ID) in older participants and the reorganization of muscular patterns lasted longer (over multiple IDs). Discussion: This implies that consistent changes occur in coordination processes across behavior and muscle. Furthermore, the repertoire of muscular patterns was reduced and somewhat modified for older adults, relative to young participants. This suggests that aging is not only related to changes in individual muscles (e.g., caused by dynapenia) but also in their coordination.

  14. Dynamic signatures of the transition from stacking disordered to hexagonal ice: Dielectric and nuclear magnetic resonance studies

    NASA Astrophysics Data System (ADS)

    Gainaru, C.; Vynokur, E.; Köster, K. W.; Fuentes-Landete, V.; Spettel, N.; Zollner, J.; Loerting, T.; Böhmer, R.

    2018-04-01

    Using various temperature-cycling protocols, the dynamics of ice I were studied via dielectric spectroscopy and nuclear magnetic resonance relaxometry on protonated and deuterated samples obtained by heating high-density amorphous ices as well as crystalline ice XII. Previous structural studies of ice I established that at temperatures of about 230 K, the stacking disorder of the cubic/hexagonal oxygen lattice vanishes. The present dielectric and nuclear magnetic resonance investigations of spectral changes disclose that the memory of the existence of a precursor phase is preserved in the hydrogen matrix up to 270 K. This finding of hydrogen mobility lower than that of the undoped hexagonal ice near the melting point highlights the importance of dynamical investigations of the transitions between various ice phases and sheds new light on the dynamics in ice I in general.

  15. Programmable temperature control system for biological materials

    NASA Technical Reports Server (NTRS)

    Anselmo, V. J.; Harrison, R. G.; Rinfret, A. P.

    1982-01-01

    A system was constructed which allows programmable temperature-time control for a 5 cu cm sample volume of arbitrary biological material. The system also measures the parameters necessary for the determination of the sample volume specific heat and thermal conductivity as a function of temperature, and provides a detailed measurement of the temperature during phase change and a means of calculating the heat of the phase change. Steady-state and dynamic temperature control is obtained by supplying heat to the sample volume through resistive elements constructed as an integral part of the sample container. For cooling purposes, this container is totally immersed into a cold heat sink. Using a mixture of dry ice and alcohol at 79 C, the sample volume can be controlled from +40 to -60 C at rates from steady state to + or - 65 C/min. Steady-state temperature precision is better than 0.2 C, while the dynamic capability depends on the temperature rate of change as well as the mass of both the sample and the container.

  16. Dynamic interaction of two-phase debris flow with pyramidal defense structures: An optimal strategy to efficiently protecting the desired area

    NASA Astrophysics Data System (ADS)

    Kattel, Parameshwari; Kafle, Jeevan; Fischer, Jan-Thomas; Mergili, Martin; Tuladhar, Bhadra Man; Pudasaini, Shiva P.

    2017-04-01

    In this work we analyze the dynamic interaction of two phase debris flows with pyramidal obstacles. To simulate the dynamic interaction of two-phase debris flow (a mixture of solid particles and viscous fluid) with obstacles of different dimensions and orientations, we employ the general two-phase mass flow model (Pudasaini, 2012). The model consists of highly non-linear partial differential equations representing the mass and momentum conservations for both solid and fluid. Besides buoyancy, the model includes some dominant physical aspects of the debris flows such as generalized drag, virtual mass and non-Newtonian viscous stress as induced by the gradient of solid-volume-fraction. Simulations are performed with high-resolution numerical schemes to capture essential dynamics, including the strongly re-directed flow with multiple stream lines, mass arrest and debris-vacuum generation when the rapidly cascading debris mass suddenly encounters the obstacle. The solid and fluid phases show fundamentally different interactions with obstacles, flow spreading and dispersions, run-out dynamics, and deposition morphology. A forward-facing pyramid deflects the mass wider, and a rearward-facing pyramid arrests a portion of solid-mass at its front. Our basic study reveals that appropriately installed obstacles, their dimensions and orientations have a significant influence on the flow dynamics, material redistribution and redirection. The precise knowledge of the change in dynamics is of great importance for the optimal and effective protection of designated areas along the mountain slopes and the runout zones. Further important results are, that specific installations lead to redirect either solid, or fluid, or both, in the desired amounts and directions. The present method of the complex interactions of real two-phase mass flows with the obstacles may help us to construct defense structures and to design advanced and physics-based engineering solutions for the prevention and mitigation of natural hazards caused by geophysical mass flows. References: Pudasaini, S. P. (2012): A general two-phase debris flow model. J. Geophys. Res. 117, F03010, doi: 10.1029/ 2011JF002186.

  17. Two liquid states of matter: a dynamic line on a phase diagram.

    PubMed

    Brazhkin, V V; Fomin, Yu D; Lyapin, A G; Ryzhov, V N; Trachenko, K

    2012-03-01

    It is generally agreed that the supercritical region of a liquid consists of one single state (supercritical fluid). On the other hand, we show here that liquids in this region exist in two qualitatively different states: "rigid" and "nonrigid" liquids. Rigid to nonrigid transition corresponds to the condition τ≈τ(0), where τ is the liquid relaxation time and τ(0) is the minimal period of transverse quasiharmonic waves. This condition defines a new dynamic crossover line on the phase diagram and corresponds to the loss of shear stiffness of a liquid at all available frequencies and, consequently, to the qualitative change in many important liquid properties. We analyze this line theoretically as well as in real and model fluids and show that the transition corresponds to the disappearance of high-frequency sound, to the disappearance of roton minima, qualitative changes in the temperature dependencies of sound velocity, diffusion, viscous flow, and thermal conductivity, an increase in particle thermal speed to half the speed of sound, and a reduction in the constant volume specific heat to 2k(B) per particle. In contrast to the Widom line that exists near the critical point only, the new dynamic line is universal: It separates two liquid states at arbitrarily high pressure and temperature and exists in systems where liquid-gas transition and the critical point are absent altogether. We propose to call the new dynamic line on the phase diagram "Frenkel line".

  18. Time scales of relaxation dynamics during transient conditions in two-phase flow: RELAXATION DYNAMICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlüter, Steffen; Berg, Steffen; Li, Tianyi

    2017-06-01

    The relaxation dynamics toward a hydrostatic equilibrium after a change in phase saturation in porous media is governed by fluid reconfiguration at the pore scale. Little is known whether a hydrostatic equilibrium in which all interfaces come to rest is ever reached and which microscopic processes govern the time scales of relaxation. Here we apply fast synchrotron-based X-ray tomography (X-ray CT) to measure the slow relaxation dynamics of fluid interfaces in a glass bead pack after fast drainage of the sample. The relaxation of interfaces triggers internal redistribution of fluids, reduces the surface energy stored in the fluid interfaces, andmore » relaxes the contact angle toward the equilibrium value while the fluid topology remains unchanged. The equilibration of capillary pressures occurs in two stages: (i) a quick relaxation within seconds in which most of the pressure drop that built up during drainage is dissipated, a process that is to fast to be captured with fast X-ray CT, and (ii) a slow relaxation with characteristic time scales of 1–4 h which manifests itself as a spontaneous imbibition process that is well described by the Washburn equation for capillary rise in porous media. The slow relaxation implies that a hydrostatic equilibrium is hardly ever attained in practice when conducting two-phase experiments in which a flux boundary condition is changed from flow to no-flow. Implications for experiments with pressure boundary conditions are discussed.« less

  19. Thermal properties of lauric acid filled in carbon nanotubes as shape-stabilized phase change materials.

    PubMed

    Feng, Yanhui; Wei, Runzhi; Huang, Zhi; Zhang, Xinxin; Wang, Ge

    2018-03-14

    Carbon nanotubes (CNTs) filled with lauric acid (LA) as a kind of shape-stabilized phase change material were prepared and their structures and phase change properties were characterized. The results showed that the melting point and latent heat of LA confined in carbon nanotubes were lower than those of the bulk material, and both decrease as the diameters of CNTs and the filling ratios of LA decrease. Molecular dynamics (MD) simulations indicated that LA molecules form a liquid layer near pore walls and crystallize at the pore center. When the LA filling ratio was reduced to a certain value, all LA molecules were attached to the inner walls of CNTs, hindering their crystallization. A linear relationship between the melting temperature shift and structural properties was obtained based on the modified Gibbs-Thomson equation, which gives a reliable interpretation of the size effect of nanochannels in phase change materials. We also found that the thermal conductivity of the composite CNTs/LA was four times larger than that of pure LA. This study will provide insights into the design of novel composite phase change materials with better thermal properties by the selection of suitable porous materials and tailoring their pore structures.

  20. Soft X-ray spectromicroscopy using ptychography with randomly phased illumination

    NASA Astrophysics Data System (ADS)

    Maiden, A. M.; Morrison, G. R.; Kaulich, B.; Gianoncelli, A.; Rodenburg, J. M.

    2013-04-01

    Ptychography is a form of scanning diffractive imaging that can successfully retrieve the modulus and phase of both the sample transmission function and the illuminating probe. An experimental difficulty commonly encountered in diffractive imaging is the large dynamic range of the diffraction data. Here we report a novel ptychographic experiment using a randomly phased X-ray probe to considerably reduce the dynamic range of the recorded diffraction patterns. Images can be reconstructed reliably and robustly from this setup, even when scatter from the specimen is weak. A series of ptychographic reconstructions at X-ray energies around the L absorption edge of iron demonstrates the advantages of this method for soft X-ray spectromicroscopy, which can readily provide chemical sensitivity without the need for optical refocusing. In particular, the phase signal is in perfect registration with the modulus signal and provides complementary information that can be more sensitive to changes in the local chemical environment.

  1. Small interfering ribonucleic acid induces liquid-to-ripple phase transformation in a phospholipid membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choubey, Amit; Nomura, Ken-ichi; Kalia, Rajiv K.

    Small interfering ribonucleic acid (siRNA) molecules play a pivotal role in silencing gene expression via the RNA interference mechanism. A key limitation to the widespread implementation of siRNA therapeutics is the difficulty of delivering siRNA-based drugs to cells. Here, we examine changes in the structure and dynamics of a dipalmitoylphosphatidylcholine bilayer in the presence of a siRNA molecule and mechanical barriers to siRNA transfection in the bilayer. Our all-atom molecular dynamics simulation shows that siRNA induces a liquid crystalline-to-ripple phase transformation in the bilayer. The ripple phase consists of a major region of non-interdigitated and a minor region of interdigitatedmore » lipid molecules with an intervening kink. In the ripple phase, hydrocarbon chains of lipid molecules have large compressive stresses, which present a considerable barrier to siRNA transfection.« less

  2. Comparisons of planetary wave propagation to the upper atmosphere during stratospheric warming events at different QBO phases

    NASA Astrophysics Data System (ADS)

    Koval, Andrey V.; Gavrilov, Nikolai M.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2018-06-01

    The dynamical coupling of the lower and upper atmosphere by planetary waves (PWs) is studied. Numerical simulations of planetary wave (PW) amplitudes during composite sudden stratospheric warming (SSW) events in January-February are made using a model of general circulation of the middle and upper atmosphere with initial and boundary conditions typical for the westerly and easterly phases of quasi-biennial oscillation (QBO). The changes in PW amplitudes in the middle atmosphere before, during and after SSW event for the different QBO phases are considered. Near the North Pole, the increase in the mean temperature during SSW reaches 10-30 K at altitudes 30-50 km for four pairs of the model runs with the eQBO and wQBO, which is characteristic for the sudden stratospheric warming event. Amplitudes of stationary PWs in the middle atmosphere of the Northern hemisphere may differ up to 30% during wQBO and eQBO before and during the SSW. After the SSW event SPW amplitudes are substantially larger during wQBO phase. PW refractivity indices and Eliassen-Palm flux vectors are calculated. The largest EP-fluxes in the middle atmosphere correspond to PWs with zonal wavenumber m=1. Simulated changes in PW amplitudes correspond to inhomogeneities of the global circulation, refractivity index and EP-flux produced by the changes in QBO phases. Comparisons of differences in PW characteristics and circulation between the wQBO and eQBO show that PWs could provide effective coupling mechanism and transport dynamical changes from local regions of the lower atmosphere to distant regions of the upper atmosphere of both hemispheres.

  3. Cortical plasticity between the pain and pain-free phases in patients with episodic tension-type headache.

    PubMed

    Chen, Bing; He, Yuan; Xia, Lei; Guo, Li-Li; Zheng, Jin-Long

    2016-12-01

    State-related brain structural alterations in patients with episodic tension-type headache (ETTH) are unclear. We aimed to conduct a longitudinal study to explore dynamic gray matter (GM) changes between the pain and pain-free phases in ETTH. We recruited 40 treatment-naïve ETTH patients and 40 healthy controls. All participants underwent brain structural scans on a 3.0-T MRI system. ETTH patients were scanned in and out of pain phases. Voxel-based morphometry analysis was used to determine the differences in regional gray matter density (GMD) between groups. Additional regression analysis was used to identify any associations between regional GMD and clinical symptoms. ETTH patients exhibited reduced GMD in the bilateral primary somatosensory cortex, and increased GMD in the bilateral anterior cingulate cortex (ACC) and anterior insula for the in pain phase compared with the out of pain phase. The out of pain phase of ETTH patients exhibited no regions with higher or lower GMD compared with healthy controls. GMD in the left ACC and left anterior insula was negatively correlated with headache days. GMD in the left ACC was negatively correlated with anxiety and depressive symptoms in ETTH patients. This is the first study to demonstrate dynamic and reversible GMD changes between the pain and pain-free phases in ETTH patients. However, this balance might be disrupted by increased headache days and progressive anxiety and depressive symptoms.

  4. Co-evolutionary dynamics of the human-environment system in the Heihe River basin in the past 2000years.

    PubMed

    Lu, Zhixiang; Wei, Yongping; Feng, Qi; Xie, Jiali; Xiao, Honglang; Cheng, Guodong

    2018-09-01

    There is limited quantitative understanding of interactions between human and environmental systems over the millennial scale. We aim to reveal the co-evolutionary dynamics of the human-environment system in a river basin by simulating the water use and net primary production (NPP) allocation for human and environmental systems over the last 2000years in Heihe River basin (HRB) in northwest China. We partition the catchment total evapotranspiration (ET) into ET for human and environmental systems with a social-hydrological framework and estimate the NPP for human and environmental systems using the Box-Lieth model, then classify the co-evolutionary processes of the human-environment system into distinct phases using the rate of changes of NPP over time, and discover the trade-offs or synergies relationships between them based on the elasticity of change of the NPP for humans to the change of NPP for environment. The co-evolutionary dynamics of human-environment system in the HRB can be divided into four periods, including: Phase I (Han Dynasty-Yuan Dynasty): predevelopment characterized by nearly no trade-offs between human and environment; Phase II (Yuan Dynasty-RC): slow agricultural development: characterized by a small human win due to small trade-offs between human and environment; Phase III (RC-2000): rapid agricultural development: characterized by a large human win due to large trade-offs between human and environment, and Phase IV (2000-2010): a rebalance characterized by large human wins with a small-environment win due to synergies, although these occurred very occasionally. This study provides a quantitative approach to describe the co-evolution of the human-environment system from the perspective of trade-offs and synergies in the millennial scale for the first time. The relationships between humans and environment changed from trade-off to synergy with the implementation of the water reallocation scheme in 2000. These findings improve the understanding of how humans influence environmental systems and responses to environmental stresses. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. ESR and PALS detection of the dynamic crossover in the supercooled liquid states of short and medium-sized n-alkanes

    NASA Astrophysics Data System (ADS)

    Bartoš, J.; Zgardzinska, B.; Švajdlenková, H.; Lukešová, M.; Zaleski, R.

    2018-05-01

    A joint study of the spin probe TEMPO dynamics by ESR and the annihilation rate of ortho-positronium by PALS in four short-and medium-sized n-alkanes is presented. In addition to the usually observed changes in both the reorientation dynamics and size of free volumes at the temperature of melting, Tm, and solid-solid phase transition, Tss, an additional coincidence between the characteristic ESR and PALS temperatures TX1fast ≅ Tb1sol < Tm, Tss was found. The phenomenological analysis of the viscosity data of n-alkanes using the power law equation indicates a presence of locally disordered regions in which the dynamic change occurs at the crossover temperature TX ≅ TX1fast ≅ Tb1sol.

  6. Pressure dependence of excited-state charge-carrier dynamics in organolead tribromide perovskites

    NASA Astrophysics Data System (ADS)

    Liu, X. C.; Han, J. H.; Zhao, H. F.; Yan, H. C.; Shi, Y.; Jin, M. X.; Liu, C. L.; Ding, D. J.

    2018-05-01

    Excited-state charge-carrier dynamics governs the performance of organometal trihalide perovskites (OTPs) and is strongly influenced by the crystal structure. Characterizing the excited-state charge-carrier dynamics in OTPs under high pressure is imperative for providing crucial insights into structure-property relations. Here, we conduct in situ high-pressure femtosecond transient absorption spectroscopy experiments to study the excited-state carrier dynamics of CH3NH3PbBr3 (MAPbBr3) under hydrostatic pressure. The results indicate that compression is an effective approach to modulate the carrier dynamics of MAPbBr3. Across each pressure-induced phase, carrier relaxation, phonon scattering, and Auger recombination present different pressure-dependent properties under compression. Responsiveness is attributed to the pressure-induced variation in the lattice structure, which also changes the electronic band structure. Specifically, simultaneous prolongation of carrier relaxation and Auger recombination is achieved in the ambient phase, which is very valuable for excess energy harvesting. Our discussion provides clues for optimizing the photovoltaic performance of OTPs.

  7. Fractional Stability of Trunk Acceleration Dynamics of Daily-Life Walking: Toward a Unified Concept of Gait Stability

    PubMed Central

    Ihlen, Espen A. F.; van Schooten, Kimberley S.; Bruijn, Sjoerd M.; Pijnappels, Mirjam; van Dieën, Jaap H.

    2017-01-01

    Over the last decades, various measures have been introduced to assess stability during walking. All of these measures assume that gait stability may be equated with exponential stability, where dynamic stability is quantified by a Floquet multiplier or Lyapunov exponent. These specific constructs of dynamic stability assume that the gait dynamics are time independent and without phase transitions. In this case the temporal change in distance, d(t), between neighboring trajectories in state space is assumed to be an exponential function of time. However, results from walking models and empirical studies show that the assumptions of exponential stability break down in the vicinity of phase transitions that are present in each step cycle. Here we apply a general non-exponential construct of gait stability, called fractional stability, which can define dynamic stability in the presence of phase transitions. Fractional stability employs the fractional indices, α and β, of differential operator which allow modeling of singularities in d(t) that cannot be captured by exponential stability. The fractional stability provided an improved fit of d(t) compared to exponential stability when applied to trunk accelerations during daily-life walking in community-dwelling older adults. Moreover, using multivariate empirical mode decomposition surrogates, we found that the singularities in d(t), which were well modeled by fractional stability, are created by phase-dependent modulation of gait. The new construct of fractional stability may represent a physiologically more valid concept of stability in vicinity of phase transitions and may thus pave the way for a more unified concept of gait stability. PMID:28900400

  8. Can complexity decrease in congestive heart failure?

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sayan; Palit, Sanjay Kumar; Banerjee, Santo; Ariffin, M. R. K.; Rondoni, Lamberto; Bhattacharya, D. K.

    2015-12-01

    The complexity of a signal can be measured by the Recurrence period density entropy (RPDE) from the reconstructed phase space. We have chosen a window based RPDE method for the classification of signals, as RPDE is an average entropic measure of the whole phase space. We have observed the changes in the complexity in cardiac signals of normal healthy person (NHP) and congestive heart failure patients (CHFP). The results show that the cardiac dynamics of a healthy subject is more complex and random compare to the same for a heart failure patient, whose dynamics is more deterministic. We have constructed a general threshold to distinguish the border line between a healthy and a congestive heart failure dynamics. The results may be useful for wide range for physiological and biomedical analysis.

  9. CFA Films in Amorphous Substrate: Structural Phase Induction and Magnetization Dynamics

    NASA Astrophysics Data System (ADS)

    Correa, M. A.; Bohn, F.; Escobar, V. M.

    We report a systematic study of the structural and quasi-static magnetic properties, as well as of the dynamic magnetic response through MI effect, in Co2FeAl and MgO//Co2FeAl single layers and a MgO//Co2FeAl/Ag/Co2FeAl trilayered film, all grown onto an amorphous substrate. We present a new route to induce the crystalline structure in the Co2FeAl alloy and verify that changes in the structural phase of this material leads to remarkable modifications of the magnetic anisotropy and, consequently, dynamic magnetic behavior. Considering the electrical and magnetic properties of the Co2FeAl, our results open new possibilities for technological applications of this full-Heusler alloy in rigid and flexible spintronic devices.

  10. Development of phase detection schemes based on surface plasmon resonance using interferometry.

    PubMed

    Kashif, Muhammad; Bakar, Ahmad Ashrif A; Arsad, Norhana; Shaari, Sahbudin

    2014-08-28

    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors.

  11. Development of Phase Detection Schemes Based on Surface Plasmon Resonance Using Interferometry

    PubMed Central

    Kashif, Muhammad; Bakar, Ahmad Ashrif A.; Arsad, Norhana; Shaari, Sahbudin

    2014-01-01

    Surface plasmon resonance (SPR) is a novel optical sensing technique with a unique ability to monitor molecular binding in real-time for biological and chemical sensor applications. Interferometry is an excellent tool for accurate measurement of SPR changes, the measurement and comparison is made for the sensitivity, dynamic range and resolution of the different analytes using interferometry techniques. SPR interferometry can also employ phase detection in addition to the amplitude of the reflected light wave, and the phase changes more rapidly compared with other approaches, i.e., intensity, angle and wavelength. Therefore, the SPR phase interferometer offers the advantages of spatial phase resolution and high sensitivity. This work discusses the advancements in interferometric SPR methods to measure the phase shifts due to refractive index changes. The main application areas of SPR sensors are demonstrated, i.e., the Fabry-Perot interferometer, Michelson interferometer and Mach-Zehnder interferometer, with different configurations. The three interferometers are discussed in detail, and solutions are suggested to enhance the performance parameters that will aid in future biological and chemical sensors. PMID:25171117

  12. Lithium concentration dependent structure and mechanics of amorphous silicon

    NASA Astrophysics Data System (ADS)

    Sitinamaluwa, H. S.; Wang, M. C.; Will, G.; Senadeera, W.; Zhang, S.; Yan, C.

    2016-06-01

    A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of LixSi alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus of elasticity and fracture strength but increase in ductility in tension. For a LixSi system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Zhensheng; Zhou, Faran; Han, Tzong-Ru T.

    Photoinduced threshold switching processes that lead to bistability and the formation of metastable phases in photoinduced phase transition of VO 2 are elucidated through ultrafast electron diffraction and diffusive scattering techniques with varying excitation wavelengths. We uncover two distinct regimes of the dynamical phase change: a nearly instantaneous crossover into an intermediate state and its decay led by lattice instabilities over 10 ps timescales. The structure of this intermediate state is identified to be monoclinic, but more akin to M 2 rather than M1 based on structure refinements. The extinction of all major monoclinic features within just a few picosecondsmore » at the above-threshold-level (~20%) photoexcitations and the distinct dynamics in diffusive scattering that represents medium-range atomic fluctuations at two photon wavelengths strongly suggest a density-driven and nonthermal pathway for the initial process of the photoinduced phase transition. These results highlight the critical roles of electron correlations and lattice instabilities in driving and controlling phase transformations far from equilibrium.« less

  14. Model of fracture of metal melts and the strength of melts under dynamic conditions

    NASA Astrophysics Data System (ADS)

    Mayer, P. N.; Mayer, A. E.

    2015-07-01

    The development of a continuum model of deformation and fracture of melts is needed for the description of the behavior of metals in extreme states, in particular, under high-current electron and ultrashort laser irradiation. The model proposed includes the equations of mechanics of a two-phase continuum and the equations of the kinetics of phase transitions. The change (exchange) of the volumes of dispersed and carrier phases and of the number of dispersed particles is described, and the energy and mass exchange between the phases due to phase transitions is taken into account. Molecular dynamic (MD) calculations are carried out with the use of the LAMMPS program. The continuum model is verified by MD, computational, and experimental data. The strength of aluminum, copper, and nickel is determined at various temperatures and strain rates. It is shown that an increase in the strain rate leads to an increase in the strength of a liquid metal, while an increase in temperature leads to a decrease in its strength.

  15. Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack.

    PubMed

    van der Goot, F G; Harder, T

    2001-04-01

    While the existence of cholesterol/sphingolipid (raft) membrane domains in the plasma membrane is now supported by strong experimental evidence, the structure of these domains, their size, their dynamics, and their molecular composition remain to be understood. Raft domains are thought to represent a specific physical state of lipid bilayers, the liquid-ordered phase. Recent observations suggest that in the mammalian plasma membrane small raft domains in ordered lipid phases are in a dynamic equilibrium with a less ordered membrane environment. Rafts may be enlarged and/or stabilized by protein-mediated cross-linking of raft-associated components. These changes of plasma membrane structure are perceived by the cells as signals, most likely an important element of immunoreceptor signalling. Pathogens abuse raft domains on the host cell plasma membrane as concentration devices, as signalling platforms and/or entry sites into the cell. Elucidation of these interactions requires a detailed understanding raft structure and dynamics. Copyright 2001 Academic Press.

  16. [Fungal community structure in phase II composting of Volvariella volvacea].

    PubMed

    Chen, Changqing; Li, Tong; Jiang, Yun; Li, Yu

    2014-12-04

    To understand the fungal community succession during the phase II of Volvariella volvacea compost and clarify the predominant fungi in different fermentation stages, to monitor the dynamic compost at the molecular level accurately and quickly, and reveal the mechanism. The 18S rDNA-denaturing gradient gel electrophoresis (DGGE) and sequencing methods were used to analyze the fungal community structure during the course of compost. The DGGE profile shows that there were differences in the diversity of fungal community with the fermentation progress. The diversity was higher in the stages of high temperature. And the dynamic changes of predominant community and relative intensity was observed. Among the 20 predominant clone strains, 9 were unknown eukaryote and fungi, the others were Eurotiales, Aspergillus sp., Melanocarpus albomyces, Colletotrichum sp., Rhizomucor sp., Verticillium sp., Penicillium commune, Microascus trigonosporus and Trichosporon lactis. The 14 clone strains were detected in the stages of high and durative temperature. The fungal community structure and predominant community have taken dynamic succession during the phase II of Volvariella volvacea compost.

  17. Changes in the electronic structure and spin dynamics across the metal-insulator transition in LaLa 1-xSr xCoO 3

    DOE PAGES

    Smith, R. X.; Hoch, M. J. R.; Moulton, W. G.; ...

    2016-01-25

    The magnetoelectronic properties of La 1-xSr xCoO 3, which include giant magnetoresistance, are strongly dependent on the level of hole doping. The system evolves, with increasing x, from a spin glass insulator to a metallic ferromagnet with a metal-insulator (MI) transition at x C ~ 0.18. Nanoscale phase separation occurs in the insulating phase and persists, to some extent, into the just-metallic phase. The present experiments at 4.2 K have used 139La NMR to investigate the transition from hopping dynamics for x < x C to Korringa-like ferromagnetic metal behavior for x > x C. A marked decrease in themore » spin-lattice relaxation rate is found in the vicinity of x C as the MI transition is crossed. Lastly, this behavior is accounted for in terms of the evolution of the electronic structure and dynamics with cluster size.« less

  18. Dynamics of the Trapped Electron Phase Space Density in Relation to the Wave Activity in the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Vassiliadis, D.; Green, J.

    2008-05-01

    The phase space density fe of the radiation belt electron population is reconstructed based on measurements made by POLAR/HIST. The density peaks in invariant space (mu, K, L*) are shown to be responding to changes in the solar wind velocity and density, and the interplanetary magnetic field. We have associated specific types of storms with the appearance of peaks thereby producing a climatology of fe. We will report on comparing the phase space density changes during these storms to the ULF wave power in the inner magnetosphere remote- sensed by the IMAGE magnetometer array and related properties of the wave environment.

  19. Inelastic x-ray scattering measurements of phonon dynamics in URu 2Si 2

    DOE PAGES

    Gardner, D. R.; Bonnoit, C. J.; Chisnell, R.; ...

    2016-02-11

    In this paper, we study high-resolution inelastic x-ray scattering measurements of the acoustic phonons of URu 2Si 2. At all temperatures, the longitudinal acoustic phonon linewidths are anomalously broad at small wave vectors revealing a previously unknown anharmonicity. The phonon modes do not change significantly upon cooling into the hidden order phase. In addition, our data suggest that the increase in thermal conductivity in the hidden order phase cannot be driven by a change in phonon dispersions or lifetimes. Hence, the phonon contribution to the thermal conductivity is likely much less significant compared to that of the magnetic excitations inmore » the low temperature phase.« less

  20. A low jitter PLL clock used for phase change memory

    NASA Astrophysics Data System (ADS)

    Xiao, Hong; Houpeng, Chen; Zhitang, Song; Daolin, Cai; Xi, Li

    2013-02-01

    A fully integrated low-jitter, precise frequency CMOS phase-locked loop (PLL) clock for the phase change memory (PCM) drive circuit is presented. The design consists of a dynamic dual-reset phase frequency detector (PFD) with high frequency acquisition, a novel low jitter charge pump, a CMOS ring oscillator based voltage-controlled oscillator (VCO), a 2nd order passive loop filter, and a digital frequency divider. The design is fabricated in 0.35 μm CMOS technology and consumes 20 mW from a supply voltage of 5 V. In terms of the PCM's program operation requirement, the output frequency range is from 1 to 140 MHz. For the 140 MHz output frequency, the circuit features a cycle-to-cycle jitter of 28 ps RMS and 250 ps peak-to-peak.

  1. Binaural interaction in low-frequency neurons in inferior colliculus of the cat. II. Effects of changing rate and direction of interaural phase.

    PubMed

    Yin, T C; Kuwada, S

    1983-10-01

    We used the binaural beat stimulus to study the interaural phase sensitivity of inferior colliculus (IC) neurons in the cat. The binaural beat, produced by delivering tones of slightly different frequencies to the two ears, generates continuous and graded changes in interaural phase. Over 90% of the cells that exhibit a sensitivity to changes in the interaural delay also show a sensitivity to interaural phase disparities with the binaural beat. Cells respond with a burst of impulses with each complete cycle of the beat frequency. The period histogram obtained by binning the poststimulus time histogram on the beat frequency gives a measure of the interaural phase sensitivity of the cell. In general, there is good correspondence in the shapes of the period histograms generated from binaural beats and the interaural phase curves derived from interaural delays and in the mean interaural phase angle calculated from them. The magnitude of the beat frequency determines the rate of change of interaural phase and the sign determines the direction of phase change. While most cells respond in a phase-locked manner up to beat frequencies of 10 Hz, there are some cells tht will phase lock up to 80 Hz. Beat frequency and mean interaural phase angle are linearly related for most cells. Most cells respond equally in the two directions of phase change and with different rates of change, at least up to 10 Hz. However, some IC cells exhibit marked sensitivity to the speed of phase change, either responding more vigorously at low beat frequencies or at high beat frequencies. In addition, other cells demonstrate a clear directional sensitivity. The cells that show sensitivity to the direction and speed of phase changes would be expected to demonstrate a sensitivity to moving sound sources in the free field. Changes in the mean interaural phase of the binaural beat period histograms are used to determine the effects of changes in average and interaural intensity on the phase sensitivity of the cells. The effects of both forms of intensity variation are continuously distributed. The binaural beat offers a number of advantages for studying the interaural phase sensitivity of binaural cells. The dynamic characteristics of the interaural phase can be varied so that the speed and direction of phase change are under direct control. The data can be obtained in a much more efficient manner, as the binaural beat is about 10 times faster in terms of data collection than the interaural delay.

  2. Phase field modeling of rapid crystallization in the phase-change material AIST

    NASA Astrophysics Data System (ADS)

    Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus

    2017-07-01

    We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.

  3. Dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model in an oscillating field: the effective-field theory based on the Glauber-type stochastic dynamics

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-06-01

    Using the effective-field theory based on the Glauber-type stochastic dynamics (DEFT), we investigate dynamic phase transitions and dynamic phase diagrams of the Blume-Emery-Griffiths model under an oscillating magnetic field. We presented the dynamic phase diagrams in (T/J, h0/J), (D/J, T/J) and (K/J, T/J) planes, where T, h0, D, K and z are the temperature, magnetic field amplitude, crystal-field interaction, biquadratic interaction and the coordination number. The dynamic phase diagrams exhibit several ordered phases, coexistence phase regions and special critical points, as well as re-entrant behavior depending on interaction parameters. We also compare and discuss the results with the results of the same system within the mean-field theory based on the Glauber-type stochastic dynamics and find that some of the dynamic first-order phase lines and special dynamic critical points disappeared in the DEFT calculation.

  4. Multi-cluster processor operating only select number of clusters during each phase based on program statistic monitored at predetermined intervals

    DOEpatents

    Balasubramonian, Rajeev [Sandy, UT; Dwarkadas, Sandhya [Rochester, NY; Albonesi, David [Ithaca, NY

    2009-02-10

    In a processor having multiple clusters which operate in parallel, the number of clusters in use can be varied dynamically. At the start of each program phase, the configuration option for an interval is run to determine the optimal configuration, which is used until the next phase change is detected. The optimum instruction interval is determined by starting with a minimum interval and doubling it until a low stability factor is reached.

  5. The influence of stratospheric dynamics on the forcing efficacy of tropical volcanic SO2 injection: a case study around the 1991 Mount Pinatubo eruption

    NASA Astrophysics Data System (ADS)

    Dhomse, Sandip; Mann, Graham; Marshall, Lauren; Schmidt, Anja; Carslaw, Kenneth; Chipperfield, Martyn; Bellouin, Nicolas; Morgenstern, Olaf; Johnson, Colin; O'Connor, Fiona

    2016-04-01

    Major tropical volcanic eruptions exert significant climate impacts principally via enhanced scattering of solar radiation due to the injected SO2 elevating particle concentrations in the stratospheric aerosol layer. The size distribution of stratospheric aerosol particles also shifts to larger sizes in volcanically-enhanced conditions, which promotes absorption and subsequent stratospheric heating as well as causing faster sedimentation. How the volcanic sulphur cloud is dispersed also strongly affects the longevity of its radiative effects. In this presentation we investigate the role of stratospheric dynamical variability in affecting the temporal evolution of the volcanic aerosol, and also its feedback on subsequent chemical and dynamical ozone changes. Among various processes, the Quasi-Biennial Oscillation (QBO), the dominant mode of dynamical variability in the tropical stratosphere, is known to play a key role in determining the meridional dispersion of the volcanic cloud generated by major tropical eruptions. We have carried out a series of interactive stratospheric aerosol simulations with the UM-UKCA composition-climate model, to explore how different QBO phase impact volcanic radiative forcing, with a test case based around Mount Pinatubo. We will present results from an ensemble of simulations for different easterly and westerly phases of QBO, comparing simulated stratospheric aerosol properties (e.g. extinction, AOD, effective radius, particle size distribution) against a range of satellite and in-situ observational datasets. Changes in dynamics and temperatures would be compared against reanalysis (e.g. ERA-interim, HaDCRUT4) datasets followed by an analysis of radiative and dynamical changes for contrasting phases of QBO. References: Dhomse SS, Chipperfield MP, Feng W, Hossaini R, Mann GW, Santee ML (2015) Revisiting the hemispheric asymmetry in midlatitude ozone changes following the Mount Pinatubo eruption: A 3-D model study, Geophysical Research Letters, 42, pp.3038-3047. doi: 10.1002/2015GL063052 Dhomse SS, Emmerson KM, Mann GW, Bellouin N, Carslaw KS, Chipperfield MP, Hommel R, Abraham NL, Telford P, Braesicke P, Dalvi M, Johnson CE, O'Connor F, Morgenstern O, Pyle JA, Deshler T, Zawodny JM, Thomason LW (2014) Aerosol microphysics simulations of the Mt.˜Pinatubo eruption with the UM-UKCA composition-climate model, Atmospheric Chemistry and Physics, 14, pp.11221-11246. doi: 10.5194/acp-14-11221-2014

  6. Dynamic optical arbitrary waveform generation with amplitude controlled by interference of two FBG arrays.

    PubMed

    Zhang, Ailing; Li, Changxiu

    2012-10-08

    In this paper, a novel structure of dynamic optical arbitrary waveform generation (O-AWG) with amplitude controlled by interference of two fiber Bragg grating (FBG) arrays is proposed. The FBG array consists of several FBGs and fiber stretchers (FSs). The amplitude is controlled by FSs through interference of two FBG arrays. The phase is controlled by FSs simultaneously. As a result, optical pulse trains with various waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width in each period are obtained via FSs adjustment to change the phase shift of signal in each array.

  7. Dynamics of Mantle Plume Controlled by both Post-spinel and Post-garnet Phase Transitions

    NASA Astrophysics Data System (ADS)

    Liu, H.; Leng, W.

    2017-12-01

    Mineralogical studies indicate that two major phase transitions occur near 660 km depth in the Earth's pyrolitic mantle: the ringwoodite (Rw) to perovskite (Pv) + magnesiowüstite (Mw) and majorite (Mj) to perovskite (Pv) phase transitions. Seismological results also show a complicated phase boundary structure for plume regions at this depth, including broad pulse, double reflections and depressed 660 km discontinuity beneath hot regions etc… These observations have been attributed to the co-existence of these two phase transformations. However, previous geodynamical modeling mainly focused on the effects of Rw-Pv+Mw phase transition on the plume dynamics and largely neglected the effects of Mj-Pv phase transition. Here we develop a 3-D regional spherical geodynamic model to study the influence of the combination of Rw - Pv+Mw and Mj - Pv phase transitions on plume dynamics, including the topography fluctuation of 660 km discontinuity, plume shape and penetration capability of plume. Our results show that (1) a double phase boundary occurs at the hot center area of plume while for other regions with relatively lower temperature the phase boundary is single and flat, which respectively corresponds to the double reflections in the seismic observations and a high velocity prism-like structure at the top of 660 km discontinuity; (2) a large amount of low temperature plume materials could be trapped to form a complex trapezoid overlying the 660 km depth; (3) Mj - Pv phase change strongly enhances the plume penetration capability at 660 km depth, which significantly increases the plume mass flux due to the increased plume radius, but significantly reduces plume heat flux due to the decreased plume temperature in the upper mantle. Our model results provide new enlightenments for better constraining seismic structure and mineral reactions at 660 km phase boundaries.

  8. Evaluation of alternative phase change materials for energy storage in solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Dustin, M. O.

    1988-01-01

    The performance of fluoride salt and metallic thermal energy storage materials are compared in terms of basic performance as applied to solar dynamic power generation. Specific performance considerations include uniformity of cycle inlet temperature, peak cavity temperature, TES utilization, and system weights. Also investigated were means of enhancing the thermal conductivity of the salts and its effect on the system performance.

  9. Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point

    ERIC Educational Resources Information Center

    Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf

    2011-01-01

    An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…

  10. Imaging phase slip dynamics in micron-size superconducting rings

    NASA Astrophysics Data System (ADS)

    Polshyn, Hryhoriy; Naibert, Tyler R.; Budakian, Raffi

    2018-05-01

    We present a scanning probe technique for measuring the dynamics of individual fluxoid transitions in multiply connected superconducting structures. In these measurements, a small magnetic particle attached to the tip of a silicon cantilever is scanned over a micron-size superconducting ring fabricated from a thin aluminum film. We find that near the superconducting transition temperature of the aluminum, the dissipation and frequency of the cantilever changes significantly at particular locations where the tip-induced magnetic flux penetrating the ring causes the two lowest-energy fluxoid states to become nearly degenerate. In this regime, we show that changes in the cantilever frequency and dissipation are well-described by a stochastic resonance (SR) process, wherein small oscillations of the cantilever in the presence of thermally activated phase slips (TAPS) in the ring give rise to a dynamical force that modifies the mechanical properties of the cantilever. Using the SR model, we calculate the average fluctuation rate of the TAPS as a function of temperature over a 32-dB range in frequency, and we compare it to the Langer-Ambegaokar-McCumber-Halperin theory for TAPS in one-dimensional superconducting structures.

  11. Towards clinical computed ultrasound tomography in echo-mode: Dynamic range artefact reduction.

    PubMed

    Jaeger, Michael; Frenz, Martin

    2015-09-01

    Computed ultrasound tomography in echo-mode (CUTE) allows imaging the speed of sound inside tissue using hand-held pulse-echo ultrasound. This technique is based on measuring the changing local phase of beamformed echoes when changing the transmit beam steering angle. Phantom results have shown a spatial resolution and contrast that could qualify CUTE as a promising novel diagnostic modality in combination with B-mode ultrasound. Unfortunately, the large intensity range of several tens of dB that is encountered in clinical images poses difficulties to echo phase tracking and results in severe artefacts. In this paper we propose a modification to the original technique by which more robust echo tracking can be achieved, and we demonstrate in phantom experiments that dynamic range artefacts are largely eliminated. Dynamic range artefact reduction also allowed for the first time a clinical implementation of CUTE with sufficient contrast to reproducibly distinguish the different speed of sound in different tissue layers of the abdominal wall and the neck. Copyright © 2015. Published by Elsevier B.V.

  12. Structural steady states and relaxation oscillations in a two-phase fluid under shear flow: Experiments and phenomenological model

    NASA Astrophysics Data System (ADS)

    Courbin, L.; Benayad, A.; Panizza, P.

    2006-01-01

    By means of several rheophysics techniques, we report on an extensive study of the couplings between flow and microstructures in a two-phase fluid made of lamellar (Lα) and sponge (L3) phases. Depending on the nature of the imposed dynamical parameter (stress or shear rate) and on the experimental conditions (brine salinity or temperature), we observe several different structural steady states consisting of either multilamellar droplets (with or without a long range order) or elongated (L3) phase domains. Two different astonishing phenomena, shear-induced phase inversion and relaxation oscillations, are observed. We show that (i) phase inversion is related to a shear-induced topological change between monodisperse multilamellar droplets and elongated structures and (ii) droplet size relaxation oscillations result from a shear-induced change of the surface tension between both coexisting (Lα) and (L3) phases. To explain these relaxation oscillations, we present a phenomenological model and compare its numerical predictions to our experimental results.

  13. The interaction of evaporative and convective instabilities

    NASA Astrophysics Data System (ADS)

    Ozen, O.

    Evaporative convection arises in a variety of natural and industrial processes, such as drying of lakebeds, heat pipe technology and dry-eye syndrome. The phenomenon of evaporative convection leads to an interfacial instability where an erstwhile flat surface becomes undulated as a control variable, such as temperature drop, exceeds a critical value. This instability has been investigated by others assuming that the vapor phase is infinitely deep and passive, i.e. vapor fluid dynamics has been ignored. However, when we look at some engineering processes, such as distillation columns, heat pipes and drying technologies where phase change takes place we might imagine that the assumption of an infinitely deep vapor layer or at least that of a passive vapor is inappropriate. Previous work on convection in bilayer systems with no phase-change suggests that active vapor layers play a major role in determining the stability of an interface. Hence, for the case of convection with phase-change, we will address this issue and try to answer the question whether the infinitely deep and passive vapor layer is a valid assumption. We have also investigated, theoretically, the gravity and surface tension gradient-driven instabilities occurring during the evaporation of a liquid into its own vapor taking into account the fluid dynamics of both phases and the finiteness of the domains of each phase, i.e. the liquid and its vapor are assumed to be confined between two horizontal plates, and different heating arrangements are applied. The effects of fluid layer depths, the evaporation rate and the temperature gradient applied across the fluids on the stability of the interface are studied. The modes of the flow pattern are determined for each scenario. The physics of the instability are explained and a comparison is made with the results of similar, yet physically different problems.

  14. Pupil dilation dynamics with an intracameral fixed combination of mydriatics and anesthetic during cataract surgery.

    PubMed

    Chiambaretta, Frederic; Pleyer, Uwe; Behndig, Anders; Pisella, Pierre-Jean; Mertens, Erik; Limao, Antonio; Fasce, Francesco; Fernandez, Joaquin; Benmoussa, Salah-Eddine; Labetoulle, Marc; Cochener, Beatrice

    2018-03-01

    To compare the pupil dynamics of an intracameral combination of 2 mydriatics and 1 anesthetic (Mydrane) to a standard topical regimen for cataract surgery. Sixty-two centers in Europe and 6 centers in Algeria. Prospective case series. Pupil size measurements were performed in 2 randomized studies (phase 2 and phase 3) under masked conditions (recorded videography, masked reading center). The outcomes in the phase 2 study supported evaluation of the timeframe to obtain pupil dilation and the phase 3 study provided results on mydriasis stability. Phase 2 and phase 3 comprised 139 patients and 591 patients, respectively. After intracameral combination administration, 95% of the pupil dilation was achieved within a mean of 28.6 seconds ± 4.6 (SD). At the beginning of capsulorhexis creation, the mean pupil diameter was larger than 7.0 mm in both groups. The intraoperative pupil diameter remained stable in the intracameral combination group and decreased in the topical group. The mean change in pupil size just before capsulorhexis to the end of surgery (just before cefuroxime injection) was -0.22 ± 0.72 mm and -1.67 ± 0.98 mm, respectively. No clinically significant change in pupil diameter (change <1.0 mm) occurred in the majority of the intracameral combination group (89.3%) compared with the topical group (26.8%). Intracameral combination of 2 mydriatics and 1 anesthetic is an alternative to topical mydriatics for cataract surgery. The prompt onset of pupil dilation and the stable mydriasis induced by this drug combination improved the intraoperative conditions during crucial steps, such as intraocular lens implantation. Copyright © 2018. Published by Elsevier Inc.

  15. Integration of treatment innovation planning and implementation: strategic process models and organizational challenges.

    PubMed

    Lehman, Wayne E K; Simpson, D Dwayne; Knight, Danica K; Flynn, Patrick M

    2011-06-01

    Sustained and effective use of evidence-based practices in substance abuse treatment services faces both clinical and contextual challenges. Implementation approaches are reviewed that rely on variations of plan-do-study-act (PDSA) cycles, but most emphasize conceptual identification of core components for system change strategies. A two-phase procedural approach is therefore presented based on the integration of Texas Christian University (TCU) models and related resources for improving treatment process and program change. Phase 1 focuses on the dynamics of clinical services, including stages of client recovery (cross-linked with targeted assessments and interventions), as the foundations for identifying and planning appropriate innovations to improve efficiency and effectiveness. Phase 2 shifts to the operational and organizational dynamics involved in implementing and sustaining innovations (including the stages of training, adoption, implementation, and practice). A comprehensive system of TCU assessments and interventions for client and program-level needs and functioning are summarized as well, with descriptions and guidelines for applications in practical settings. (PsycINFO Database Record (c) 2011 APA, all rights reserved).

  16. Atomic structure and pressure-induced phase transformations in a phase-change alloy

    NASA Astrophysics Data System (ADS)

    Xu, Ming

    Phase-change materials exist in at least two phases under the ambient condition. One is the amorphous state and another is crystalline phase. These two phases have vastly different physical properties, such as electrical conductivity, optical reflectivity, mass density, thermal conductivity, etc. The distinct physical properties and the fast transformation between amorphous and crystalline phases render these materials the ability to store information. For example, the DVD and the Blue-ray discs take advantage of the optical reflectivity contrast, and the newly developed solid-state memories make use of the large conductivity difference. In addition, both the amorphous and crystalline phases in phase-change memories (PCMs) are very stable at room temperature, and they are easy to be scaled up in the production of devices with large storage density. All these features make phase-change materials the ideal candidates for the next-generation memories. Despite of the fast development of these new memory materials in industry, many fundamental physics problems underlying these interesting materials are still not fully resolved. This thesis is aiming at solving some of the key issues in phase-change materials. Most of phase-change materials are composed of Ge-Sb-Te constituents. Among all these Ge-Sb-Te based materials, Ge2Sb2Te5 (GST) has the best performance and has been frequently studied as a prototypical phase-change material. The first and foremost issue is the structure of the two functioning phases. In this thesis, we investigate the unique atomic structure and bonding nature of amorphous GST (a-GST) and crystalline GST ( c-GST), using ab initio tools and X-ray diffraction (XRD) methods. Their local structures and bonding scenarios are then analyzed using electronic structure calculations. In order to gain insight into the fast phase transformation mechanism, we also carried out a series of high-pressure experiments on GST. Several new polymorphs and their transformations have been revealed under high pressure via in situ XRD and in situ electrical resistivity measurements. The mechanisms of the structural and property changes have been uncovered via ab initio molecular dynamics simulations.

  17. Saturn Ring Data Analysis and Thermal Modeling

    NASA Technical Reports Server (NTRS)

    Dobson, Coleman

    2011-01-01

    CIRS, VIMS, UVIS, and ISS (Cassini's Composite Infrared Specrtometer, Visual and Infrared Mapping Spectrometer, Ultra Violet Imaging Spectrometer and Imaging Science Subsystem, respectively), have each operated in a multidimensional observation space and have acquired scans of the lit and unlit rings at multiple phase angles. To better understand physical and dynamical ring particle parametric dependence, we co-registered profiles from these three instruments, taken at a wide range of wavelengths, from ultraviolet through the thermal infrared, to associate changes in ring particle temperature with changes in observed brightness, specifically with albedos inferred by ISS, UVIS and VIMS. We work in a parameter space where the solar elevation range is constrained to 12 deg - 14 deg and the chosen radial region is the B3 region of the B ring; this region is the most optically thick region in Saturn's rings. From this compilation of multiple wavelength data, we construct and fit phase curves and color ratios using independent dynamical thermal models for ring structure and overplot Saturn, Saturn ring, and Solar spectra. Analysis of phase curve construction and color ratios reveals thermal emission to fall within the extrema of the ISS bandwidth and a geometrical dependence of reddening on phase angle, respectively. Analysis of spectra reveals Cassini CIRS Saturn spectra dominate Cassini CIRS B3 Ring Spectra from 19 to 1000 microns, while Earth-based B Ring Spectrum dominates Earth-based Saturn Spectrum from 0.4 to 4 microns. From our fits we test out dynamical thermal models; from the phase curves we derive ring albedos and non-lambertian properties of the ring particle surfaces; and from the color ratios we examine multiple scattering within the regolith of ring particles.

  18. Circadian Role in Daily Pattern of Cardiovascular Risk

    NASA Astrophysics Data System (ADS)

    Ivanov, Plamen Ch.; Hu, Kun; Chen, Zhi; Hilton, Michael F.; Stanley, H. Eugene; Shea, Steven A.

    2004-03-01

    Numerous epidemiological studies demonstrate that sudden cardiac death, pulmonary embolism, myocardial infarction, and stroke have a 24-hour daily pattern with a broad peak between 9-11am. Such a daily pattern in cardiovascular risk could be attributable to external factors, such as the daily behavior patterns, including sleep-wake cycles and activity levels, or internal factors, such as the endogenous circadian pacemaker. Findings of significant alternations in the temporal organization and nonlinear properties of heartbeat fluctuations with disease and with sleep-wake transitions raise the intriguing possibility that changes in the mechanism of control associated with behavioral sleep-wake transition may be responsible for the increased cardiac instability observed in particular circadian phases. Alternatively, we hypothesize that there is a circadian clock, independent of the sleep-wake cycle, which affects the cardiac dynamics leading to increased cardiovascular risk. We analyzed continuous recordings from healthy subjects during 7 cycles of forced desynchrony routine wherein subjects' sleep-wake cycles are adjusted to 28 hours so that their behaviors occur across all circadian phases. Heartbeat data were divided into one-hour segments. For each segment, we estimated the correlations and the nonlinear properties of the heartbeat fluctuations at the corresponding circadian phase. Since the sleep and wake contributions are equally weighted in our experiment, a change of the properties of the heartbeat dynamics with circadian phase suggest a circadian rhythm. We show significant circadian-mediated alterations in the correlation and nonlinear properties of the heartbeat resembling those observed in patients with heart failure. Remarkably, these dynamical alterations are centered at 60 degrees circadian phase, coinciding with the 9-11am window of cardiac risk.

  19. Predicting impact of multi-paths on phase change in map-based vehicular ad hoc networks

    NASA Astrophysics Data System (ADS)

    Rahmes, Mark; Lemieux, George; Sonnenberg, Jerome; Chester, David B.

    2014-05-01

    Dynamic Spectrum Access, which through its ability to adapt the operating frequency of a radio, is widely believed to be a solution to the limited spectrum problem. Mobile Ad Hoc Networks (MANETs) can extend high capacity mobile communications over large areas where fixed and tethered-mobile systems are not available. In one use case with high potential impact cognitive radio employs spectrum sensing to facilitate identification of allocated frequencies not currently accessed by their primary users. Primary users own the rights to radiate at a specific frequency and geographic location, secondary users opportunistically attempt to radiate at a specific frequency when the primary user is not using it. We quantify optimal signal detection in map based cognitive radio networks with multiple rapidly varying phase changes and multiple orthogonal signals. Doppler shift occurs due to reflection, scattering, and rapid vehicle movement. Path propagation as well as vehicle movement produces either constructive or destructive interference with the incident wave. Our signal detection algorithms can assist the Doppler spread compensation algorithm by deciding how many phase changes in signals are present in a selected band of interest. Additionally we can populate a spatial radio environment map (REM) database with known information that can be leveraged in an ad hoc network to facilitate Dynamic Spectrum Access. We show how topography can help predict the impact of multi-paths on phase change, as well as about the prediction from dense traffic areas. Utilization of high resolution geospatial data layers in RF propagation analysis is directly applicable.

  20. Effect of nanostructure on rapid boiling of water on a hot copper plate: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Fu, Ting; Mao, Yijin; Tang, Yong; Zhang, Yuwen; Yuan, Wei

    2016-08-01

    Molecular dynamic simulations are performed to study the effects of nanostructure on rapid boiling of water that is suddenly heated by a hot copper plate. The results show that the nanostructure has significant effects on energy transfer from solid copper plate to liquid water and phase change process from liquid water to vapor. The liquid water on the solid surface rapidly boil after contacting with an extremely hot copper plate and consequently a cluster of liquid water moves upward during phase change. The temperature of the water film when it separates from solid surface and its final temperature when the system is at equilibrium strongly depend on the size of the nanostructure. These temperatures increase with increasing size of nanostructure. Furthermore, a non-vaporized molecular layer is formed on the surface of the copper plate even continuous heat flux is passing into water domain through the plate.

  1. Computational Fluid Dynamic Analysis of Enhancing Passenger Cabin Comfort Using PCM

    NASA Astrophysics Data System (ADS)

    Purusothaman, M.; Valarmathi, T. N.; Dada Mohammad, S. K.

    2016-09-01

    The main purpose of this study is to determine a cost effective way to enhance passenger cabin comfort by analyzing the effect of solar radiation of a open parked vehicle, which is exposed to constant solar radiation on a hot and sunny day. Maximum heat accumulation occurs in the car cabin due to the solar radiation. By means of computational fluid dynamics (CFD) analysis, a simulation process is conducted for the thermal regulation of the passenger cabin using a layer of phase change material (PCM) on the roof structure of a stationary car when exposed to ambient temperature on a hot sunny day. The heat energy accumulated in the passenger cabin is absorbed by a layer of PCM for phase change process. The installation of a ventilation system which uses an exhaust fan to create a natural convection scenario in the cabin is also considered to enhance passenger comfort along with PCM.

  2. Raman scattering study of the ferroelectric phase transition in BaT i2O5

    NASA Astrophysics Data System (ADS)

    Tsukada, Shinya; Fujii, Yasuhiro; Yoneda, Yasuhiro; Moriwake, Hiroki; Konishi, Ayako; Akishige, Yukikuni

    2018-02-01

    Uniaxial ferroelectric BaT i2O5 with a Curie temperature TC of 743 K was investigated to clarify its paraelectric-ferroelectric phase-transition behavior. The mechanism is discussed on the basis of the structure from short to long ranges determined by synchrotron x-ray diffraction and the lattice dynamics probed by Raman spectroscopy. BaT i2O5 is regarded as a homogeneous system, and the lattice dynamics can be interpreted by the selection rules and tensor properties of the homogeneous structure. Angle-resolved polarized Raman spectroscopy clearly shows that an A -mode-type overdamped phonon plays the key role in the phase transition. Using a combination of experimental results and first-principles calculations, we explain the phase transition as follows: In one of three Ti O6 octahedral units, Ti vibrates along the b axis opposite an oxygen octahedral unit with large damping in the paraelectric phase, whereas this vibration is frozen in the ferroelectric phase, leading to a change in the space group from nonpolar C 2 /m to polar C 2 .

  3. Bilateral preictal signature of phase-amplitude coupling in canine epilepsy.

    PubMed

    Gagliano, Laura; Bou Assi, Elie; Nguyen, Dang K; Rihana, Sandy; Sawan, Mohamad

    2018-01-01

    Seizure forecasting would improve the quality of life of patients with refractory epilepsy. Although early findings were optimistic, no single feature has been found capable of individually characterizing brain dynamics during transition to seizure. Cross-frequency phase amplitude coupling has been recently proposed as a precursor of seizure activity. This work evaluates the existence of a statistically significant difference in mean phase amplitude coupling distribution between the preictal and interictal states of seizures in dogs with bilaterally implanted intracranial electrodes. Results show a statistically significant change (p<0.05) of phase amplitude coupling during the preictal phase. This change is correlated with the position of implanted electrodes and is more significant within high-gamma frequency bands. These findings highlight the potential benefit of bilateral iEEG analysis and the feasibility of seizure forecasting based on slow modulation of high frequency amplitude. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Segmentation and classification of cell cycle phases in fluorescence imaging.

    PubMed

    Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan

    2009-01-01

    Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.

  5. Dynamic phase transitions of the Blume-Emery-Griffiths model under an oscillating external magnetic field by the path probability method

    NASA Astrophysics Data System (ADS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-03-01

    By using the path probability method (PPM) with point distribution, we study the dynamic phase transitions (DPTs) in the Blume-Emery-Griffiths (BEG) model under an oscillating external magnetic field. The phases in the model are obtained by solving the dynamic equations for the average order parameters and a disordered phase, ordered phase and four mixed phases are found. We also investigate the thermal behavior of the dynamic order parameters to analyze the nature dynamic transitions as well as to obtain the DPT temperatures. The dynamic phase diagrams are presented in three different planes in which exhibit the dynamic tricritical point, double critical end point, critical end point, quadrupole point, triple point as well as the reentrant behavior, strongly depending on the values of the system parameters. We compare and discuss the dynamic phase diagrams with dynamic phase diagrams that were obtained within the Glauber-type stochastic dynamics based on the mean-field theory.

  6. Large deviations in the presence of cooperativity and slow dynamics

    NASA Astrophysics Data System (ADS)

    Whitelam, Stephen

    2018-06-01

    We study simple models of intermittency, involving switching between two states, within the dynamical large-deviation formalism. Singularities appear in the formalism when switching is cooperative or when its basic time scale diverges. In the first case the unbiased trajectory distribution undergoes a symmetry breaking, leading to a change in shape of the large-deviation rate function for a particular dynamical observable. In the second case the symmetry of the unbiased trajectory distribution remains unbroken. Comparison of these models suggests that singularities of the dynamical large-deviation formalism can signal the dynamical equivalent of an equilibrium phase transition but do not necessarily do so.

  7. Nanoscopic dynamics of phospholipid in unilamellar vesicles: Effect of gel to fluid phase transition

    DOE PAGES

    Sharma, V. K.; Mamontov, E.; Anunciado, D. B.; ...

    2015-03-04

    Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, amore » sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. Lastly, the data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.« less

  8. Tracking the insulator-to-metal phase transition in VO 2 with few-femtosecond extreme UV transient absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jager, Marieke F.; Ott, Christian; Kraus, Peter M.

    We present coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO 2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M 2,3 edge is used to track the insulator-to-metal phase transition in VO 2 . This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase,more » and measures the phase-transition dynamics in the insulating phase. An understanding of the VO 2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V 3+/d 2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d 2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. In conclusion, the findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.« less

  9. Tracking the insulator-to-metal phase transition in VO2 with few-femtosecond extreme UV transient absorption spectroscopy

    PubMed Central

    Jager, Marieke F.; Ott, Christian; Kraus, Peter M.; Kaplan, Christopher J.; Pouse, Winston; Marvel, Robert E.; Haglund, Richard F.; Neumark, Daniel M.; Leone, Stephen R.

    2017-01-01

    Coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M2,3 edge is used to track the insulator-to-metal phase transition in VO2. This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase, and measures the phase-transition dynamics in the insulating phase. An understanding of the VO2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V3+/d2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. The findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials. PMID:28827356

  10. Tracking the insulator-to-metal phase transition in VO 2 with few-femtosecond extreme UV transient absorption spectroscopy

    DOE PAGES

    Jager, Marieke F.; Ott, Christian; Kraus, Peter M.; ...

    2017-08-21

    We present coulomb correlations can manifest in exotic properties in solids, but how these properties can be accessed and ultimately manipulated in real time is not well understood. The insulator-to-metal phase transition in vanadium dioxide (VO 2) is a canonical example of such correlations. Here, few-femtosecond extreme UV transient absorption spectroscopy (FXTAS) at the vanadium M 2,3 edge is used to track the insulator-to-metal phase transition in VO 2 . This technique allows observation of the bulk material in real time, follows the photoexcitation process in both the insulating and metallic phases, probes the subsequent relaxation in the metallic phase,more » and measures the phase-transition dynamics in the insulating phase. An understanding of the VO 2 absorption spectrum in the extreme UV is developed using atomic cluster model calculations, revealing V 3+/d 2 character of the vanadium center. We find that the insulator-to-metal phase transition occurs on a timescale of 26 ± 6 fs and leaves the system in a long-lived excited state of the metallic phase, driven by a change in orbital occupation. Potential interpretations based on electronic screening effects and lattice dynamics are discussed. A Mott–Hubbard-type mechanism is favored, as the observed timescales and d 2 nature of the vanadium metal centers are inconsistent with a Peierls driving force. In conclusion, the findings provide a combined experimental and theoretical roadmap for using time-resolved extreme UV spectroscopy to investigate nonequilibrium dynamics in strongly correlated materials.« less

  11. Comparison of short-range-order in liquid- and rotator-phase states of a simple molecular liquid: A reverse Monte Carlo and molecular dynamics analysis of neutron diffraction data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pardo, Luis Carlos; Tamarit, Josep Lluis; Veglio, Nestor

    2007-10-01

    The short-range order (SRO) correlations in liquid- and rotator-phase states of carbon tetrachloride are revisited here. The correlation of some angular magnitudes is used to evaluate the positional and orientational correlations in the liquid as well as in the rotator phase. The results show significant similitudes in the relative position of the molecules surrounding a central one but striking differences in their relative orientations, which could explain the changes in SRO between the two phases and the puzzling behavior of the local density in the liquid and rotator phases.

  12. Dynamic properties of the adaptive optics system depending on the temporary transformations of mirror control voltages

    NASA Astrophysics Data System (ADS)

    Lavrinov, V. V.; Lavrinova, L. N.

    2017-11-01

    The statistically optimal control algorithm for the correcting mirror is formed by constructing a prediction of distortions of the optical signal and improves the time resolution of the adaptive optics system. The prediction of distortions is based on an analysis of the dynamics of changes in the optical inhomogeneities of the turbulent atmosphere or the evolution of phase fluctuations at the input aperture of the adaptive system. Dynamic properties of the system are manifested during the temporary transformation of the stresses controlling the mirror and are determined by the dynamic characteristics of the flexible mirror.

  13. Qualitative Analysis of Microbial Dynamics during Anaerobic Digestion of Microalgal Biomass in a UASB Reactor

    PubMed Central

    Doloman, Anna; Soboh, Yousef; Walters, Andrew J.; Sims, Ronald C.

    2017-01-01

    Anaerobic digestion (AD) is a microbiologically coordinated process with dynamic relationships between bacterial players. Current understanding of dynamic changes in the bacterial composition during the AD process is incomplete. The objective of this research was to assess changes in bacterial community composition that coordinates with anaerobic codigestion of microalgal biomass cultivated on municipal wastewater. An upflow anaerobic sludge blanket reactor was used to achieve high rates of microalgae decomposition and biogas production. Samples of the sludge were collected throughout AD and extracted DNA was subjected to next-generation sequencing using methanogen mcrA gene specific and universal bacterial primers. Analysis of the data revealed that samples taken at different stages of AD had varying bacterial composition. A group consisting of Bacteroidales, Pseudomonadales, and Enterobacteriales was identified to be putatively responsible for the hydrolysis of microalgal biomass. The methanogenesis phase was dominated by Methanosarcina mazei. Results of observed changes in the composition of microbial communities during AD can be used as a road map to stimulate key bacterial species identified at each phase of AD to increase yield of biogas and rate of substrate decomposition. This research demonstrates a successful exploitation of methane production from microalgae without any biomass pretreatment. PMID:29259629

  14. Effect of Parametric Dichotomic Markov Noise on the Properties of Chaotic Transitions in Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Gac, J. M.; Żebrowski, J. J.

    A chaotic transition occurs when a continuous change of one of the parameters of the system causes a discontinuous change in the properties of the chaotic attractor of the system. Such phenomena are present in many dynamical systems, in which a chaotic behavior occurs. The best known of these transitions are: the period-doubling bifurcation cascade, intermittency and crises. The effect of dichotomous Markov noise (DMN) on the properties of systems with chaotic transitions is discussed. DMN is a very simple two-valued stochastic process, with constant transition rates between the two states. In spite of its simplicity, this kind of noise is a very powerful tool to describe various phenomena present in many physical, chemical or biological systems. Many interesting phenomena induced by DMN are known. However, there is no research on the effect of this kind of noise on intermittency or crises. We present the change of the mean laminar phase length and of laminar phase length distribution caused by DMN modulating the parameters of a system with intermittency and the modification of the mean life time on the pre-crisis attractor in the case of a boundary crisis. The results obtained analytically are compared with numerical simulations for several simple dynamical systems.

  15. 1H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH2)3]3Bi2I9 as an example

    NASA Astrophysics Data System (ADS)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Jakubas, R.; Brym, Sz.; Kruk, D.

    2016-02-01

    1H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu3Bi2I9 ([Gu = C(NH2)3] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole (14N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10-6 s which has turned out to be (almost) temperature independent, and a fast process in the range of 10-9 s. From the 1H-14N relaxation contribution (that shows "quadrupole peaks") the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.

  16. Phases of capitalism, welfare states, medical dominance, and health care in Ontario.

    PubMed

    Coburn, D

    1999-01-01

    There has been a lacuna in previous studies of medicine and health care of concepts or structures relating changes in health care with their contextualizing social structures. That is, there is a need to more adequately account for health care and social structure in terms of dynamic rather than static concepts. This article reports the application of a general schema outlining the transformation of capitalism through the phases of entrepreneurial, monopoly, and global capitalism, first presented by Ross and Trachte, to help understand both the changing role of medicine in Canada and the historical trajectory of the development of health insurance. These related events are shown to be partly reflective of the transformed class dynamic involved in a changing capitalist mode of production. The recent history of challenges to medicare in Canada as well as evidence of the declining power of medicine are both related directly and indirectly to the increased power of business and the decline in the relative autonomy of the state accompanying globalization. The application of the phases of capitalism sequence does roughly fit the Canadian instance although some modifications will be required to account for the specifics of the Canadian case. The schema also helps resolve two previously competing class arguments about the rise of health insurance in Canada.

  17. Pressure-induced structural phase transformation and superconducting properties of titanium mononitride

    NASA Astrophysics Data System (ADS)

    Li, Qian; Guo, Yanan; Zhang, Miao; Ge, Xinlei

    2018-03-01

    In this work, we have systematically performed the first-principles structure search on titanium mononitride (TiN) within Crystal Structure AnaLYsis by Particle Swarm Optimization (CALYPSO) methodology at high pressures. Here, we have confirmed a phase transition from cubic rock-salt (fcc) phase to CsCl (bcc) phase of TiN at ∼348 GPa. Further simulations reveal that the bcc phase is dynamically stable, and could be synthesized experimentally in principle. The calculated elastic anisotropy decreases with the phase transformation from fcc to bcc structure under high pressures, and the material changes from ductile to brittle simultaneously. Moreover, we found that both structures are superconductive with the superconducting critical temperature of 2-12 K.

  18. MULTIGRAIN: a smoothed particle hydrodynamic algorithm for multiple small dust grains and gas

    NASA Astrophysics Data System (ADS)

    Hutchison, Mark; Price, Daniel J.; Laibe, Guillaume

    2018-05-01

    We present a new algorithm, MULTIGRAIN, for modelling the dynamics of an entire population of small dust grains immersed in gas, typical of conditions that are found in molecular clouds and protoplanetary discs. The MULTIGRAIN method is more accurate than single-phase simulations because the gas experiences a backreaction from each dust phase and communicates this change to the other phases, thereby indirectly coupling the dust phases together. The MULTIGRAIN method is fast, explicit and low storage, requiring only an array of dust fractions and their derivatives defined for each resolution element.

  19. Novel Gyroscopic Mounting for Crystal Oscillators to Increase Short and Medium Term Stability under Highly Dynamic Conditions.

    PubMed

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-06-17

    In this paper, a gyroscopic mounting method for crystal oscillators to reduce the impact of dynamic loads on their output stability has been proposed. In order to prove the efficiency of this mounting approach, each dynamic load-induced instability has been analyzed in detail. A statistical study has been performed on the elevation angle of the g-sensitivity vector of Stress Compensated-cut (SC-cut) crystals. The analysis results show that the proposed gyroscopic mounting method gives good performance for host vehicle attitude changes. A phase noise improvement of 27 dB maximum and 5.7 dB on average can be achieved in the case of steady state loads, while under sinusoidal vibration conditions, the maximum and average phase noise improvement are as high as 24 dB and 7.5 dB respectively. With this gyroscopic mounting method, random vibration-induced phase noise instability is reduced 30 dB maximum and 8.7 dB on average. Good effects are apparent for crystal g-sensitivity vectors with low elevation angle φ and azimuthal angle β. under highly dynamic conditions, indicating the probability that crystal oscillator instability will be significantly reduced by using the proposed mounting approach.

  20. Quench dynamics of a dissipative Rydberg gas in the classical and quantum regimes

    NASA Astrophysics Data System (ADS)

    Gribben, Dominic; Lesanovsky, Igor; Gutiérrez, Ricardo

    2018-01-01

    Understanding the nonequilibrium behavior of quantum systems is a major goal of contemporary physics. Much research is currently focused on the dynamics of many-body systems in low-dimensional lattices following a quench, i.e., a sudden change of parameters. Already such a simple setting poses substantial theoretical challenges for the investigation of the real-time postquench quantum dynamics. In classical many-body systems, the Kolmogorov-Mehl-Johnson-Avrami model describes the phase transformation kinetics of a system that is quenched across a first-order phase transition. Here, we show that a similar approach can be applied for shedding light on the quench dynamics of an interacting gas of Rydberg atoms, which has become an important experimental platform for the investigation of quantum nonequilibrium effects. We are able to gain an analytical understanding of the time evolution following a sudden quench from an initial state devoid of Rydberg atoms and identify strikingly different behaviors of the excitation growth in the classical and quantum regimes. Our approach allows us to describe quenches near a nonequilibrium phase transition and provides an approximate analytical solution deep in the quantum domain.

  1. Response of Debris-Covered and Clean-Ice Glaciers to Climate Change from Observations and Modeling

    NASA Astrophysics Data System (ADS)

    Rupper, S.; Maurer, J. M.; Schaefer, J. M.; Roe, G.; Huybers, K. M.

    2017-12-01

    Debris-covered glaciers form a significant percentage of the glacier area and volume in many mountainous regions of the world, and respond differently to climatic forcings as compared to clean-ice glaciers. In particular, debris-covered glaciers tend to downwaste with very little retreat, while clean-ice glaciers simultaneously thin and retreat. This difference has posed a significant challenge to quantifying glacier sensitivity to climate change, modeling glacier response to future climate change, and assessing the impacts of recent and future glacier changes on mountain environments and downstream populations. In this study, we evaluate observations of the geodetic mass balance and thinning profiles of 1000 glaciers across the Himalayas from 1975 to 2016. We use this large sampling of glacier changes over multiple decades to provide a robust statistical comparison of mass loss for clean-ice versus debris-covered glaciers over a period relevant to glacier dynamics. In addition, we force a glacier model with a series of climate change scenarios, and compare the modeled results to the observations. We essentially ask the question, "Are our theoretical expectations consistent with the observations?" Our observations show both clean-ice and debris-covered glaciers, regionally averaged, thinned in a similar pattern for the first 25-year observation period. For the more recent 15-year period, clean ice glaciers show significantly steepened thinning gradients across the surface, while debris-covered glaciers have continued to thin more uniformaly across the surface. Our preliminary model results generally agree with these observations, and suggest that both glacier types are expected to have a thinning phase followed by a retreat phase, but that the timing of the retreat phase is much later for debris-covered glaciers. Thus, these early results suggest these two glacier types are dynamically very similar, but are currently in different phases of response to recent climate change. This difference in phase of response will be carefully evaluated by integrating the modeling and observational components of this work. In addition, we will use this integrated framework to assess the expected impacts of differing glacier response on glacier-related resources in the Himalayas over the coming century.

  2. Measuring dynamic membrane fluctuations in cell membrane using quantitative phase imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lee, SangYun; Kim, Kyoohyun; Park, YongKeun

    2017-02-01

    There is a strong correlation between the dynamic membrane fluctuations and the biomechanical properties of living cells. The dynamic membrane fluctuation consists of submicron displacements, and can be altered by changing the cells' pathophysiological conditions. These results have significant relevance to the understanding of RBC biophysics and pathology, as follows. RBCs must withstand large mechanical deformations during repeated passages through the microvasculature and the fenestrated walls of the splenic sinusoids. This essential ability is diminished with senescence, resulting in physiological destruction of the aging RBCs. Pathological destruction of the red cells, however, occurs in cells affected by a host of diseases such as spherocytosis, malaria, and Sickle cell disease, as RBCs depart from their normal discoid shape and lose their deformability. Therefore, quantifying the RBC deformability insight into a variety of problems regarding the interplay of cell structure, dynamics, and function. Furthermore, the ability to monitor mechanical properties of RBCs is of vital interest in monitoring disease progression or response to treatment as molecular and pharmaceutical approaches for treatment of chronic diseases. Here, we present the measurements of dynamic membrane fluctuations in live cells using quantitative phase imaging techniques. Measuring both the 3-D refractive index maps and the dynamic phase images of live cells are simultaneously measured, from which dynamic membrane fluctuation and deformability of cells are precisely calculated. We also present its applications to various diseases ranging from sickle cell diseases, babesiosis, and to diabetes.

  3. Network inoculation: Heteroclinics and phase transitions in an epidemic model

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Rogers, Tim; Gross, Thilo

    2016-08-01

    In epidemiological modelling, dynamics on networks, and, in particular, adaptive and heterogeneous networks have recently received much interest. Here, we present a detailed analysis of a previously proposed model that combines heterogeneity in the individuals with adaptive rewiring of the network structure in response to a disease. We show that in this model, qualitative changes in the dynamics occur in two phase transitions. In a macroscopic description, one of these corresponds to a local bifurcation, whereas the other one corresponds to a non-local heteroclinic bifurcation. This model thus provides a rare example of a system where a phase transition is caused by a non-local bifurcation, while both micro- and macro-level dynamics are accessible to mathematical analysis. The bifurcation points mark the onset of a behaviour that we call network inoculation. In the respective parameter region, exposure of the system to a pathogen will lead to an outbreak that collapses but leaves the network in a configuration where the disease cannot reinvade, despite every agent returning to the susceptible class. We argue that this behaviour and the associated phase transitions can be expected to occur in a wide class of models of sufficient complexity.

  4. Synchronous behaviour of two interacting oscillatory systems undergoing quasiperiodic route to chaos.

    PubMed

    Mondal, S; Pawar, S A; Sujith, R I

    2017-10-01

    Thermoacoustic instability, caused by a positive feedback between the unsteady heat release and the acoustic field in a combustor, is a major challenge faced in most practical combustors such as those used in rockets and gas turbines. We employ the synchronization theory for understanding the coupling between the unsteady heat release and the acoustic field of a thermoacoustic system. Interactions between coupled subsystems exhibiting different collective dynamics such as periodic, quasiperiodic, and chaotic oscillations are addressed. Even though synchronization studies have focused on different dynamical states separately, synchronous behaviour of two coupled systems exhibiting a quasiperiodic route to chaos has not been studied. In this study, we report the first experimental observation of different synchronous behaviours between two subsystems of a thermoacoustic system exhibiting such a transition as reported in Kabiraj et al. [Chaos 22, 023129 (2012)]. A rich variety of synchronous behaviours such as phase locking, intermittent phase locking, and phase drifting are observed as the dynamics of such subsystem change. The observed synchronization behaviour is further characterized using phase locking value, correlation coefficient, and relative mean frequency. These measures clearly reveal the boundaries between different states of synchronization.

  5. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Shen, X.; Chen, Z.; Li, R. K.; Dunning, M.; Sokolowski-Tinten, K.; Zheng, Q.; Weathersby, S. P.; Reid, A. H.; Coffee, R.; Makasyuk, I.; Edstrom, S.; McCormick, D.; Jobe, K.; Hast, C.; Glenzer, S. H.; Wang, X.

    2016-11-01

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined. This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.

  6. Diabatic Definition of Geometric Phase Effects.

    PubMed

    Izmaylov, Artur F; Li, Jiaru; Joubert-Doriol, Loïc

    2016-11-08

    Electronic wave functions in the adiabatic representation acquire nontrivial geometric phases (GPs) when corresponding potential energy surfaces undergo conical intersection (CI). These GPs have profound effects on the nuclear quantum dynamics and cannot be eliminated in the adiabatic representation without changing the physics of the system. To define dynamical effects arising from the GP presence, the nuclear quantum dynamics of the CI containing system is compared with that of the system with artificially removed GP. We explore a new construction of the system with removed GP via a modification of the diabatic representation for the original CI containing system. Using an absolute value function of diabatic couplings, we remove the GP while preserving adiabatic potential energy surfaces and CI. We assess GP effects in dynamics of a two-dimensional linear vibronic coupling model both for ground and excited state dynamics. Results are compared with those obtained with a conventional removal of the GP by ignoring double-valued boundary conditions of the real electronic wave functions. Interestingly, GP effects appear similar in two approaches only for the low energy dynamics. In contrast with the conventional approach, the new approach does not have substantial GP effects in the ultrafast excited state dynamics.

  7. A facile synthesis of dynamic, shape-changing polymer particles.

    PubMed

    Klinger, Daniel; Wang, Cynthia X; Connal, Luke A; Audus, Debra J; Jang, Se Gyu; Kraemer, Stephan; Killops, Kato L; Fredrickson, Glenn H; Kramer, Edward J; Hawker, Craig J

    2014-07-01

    We herein report a new facile strategy to ellipsoidal block copolymer nanoparticles that exhibit a pH-triggered anistropic swelling profile. In a first step, elongated particles with an axially stacked lamellae structure are selectively prepared by utilizing functional surfactants to control the phase separation of symmetric polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) in dispersed droplets. In a second step, the dynamic shape change is realized by cross-linking the P2VP domains, thereby connecting glassy PS discs with pH-sensitive hydrogel actuators. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synchronization and Cardio-pulmonary feedback in Sleep Apnea

    NASA Astrophysics Data System (ADS)

    Xu, Limei; Ivanov, Plamen Ch.; Chen, Zhi; Hu, Kun; Paydarfar, David; Stanley, H. Eugene

    2004-03-01

    Findings indicate a dynamical coupling between respiratory and cardiac function. However, the nature of this nonlinear interaction remains not well understood. We investigate transient patterns in the cardio-pulmonary interaction under healthy conditions by means of cross-correlation and nonlinear synchronization techniques, and we compare how these patterns change under pathologic conditions such as obstructive sleep apnea --- a periodic cessation of breathing during sleep. We find that during apnea episodes the nonlinear features of cardio-pulmonary interaction change intermittently, and can exhibit variations characterized by different time delays in the phase synchronization between breathing and heartbeat dynamics.

  9. Molecular dynamics study on the effect of boundary heating rate on the phase change characteristics of thin film liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Mohammad Nasim, E-mail: nasim@me.buet.ac.bd.com; Morshed, A. K. M. Monjur, E-mail: shavik@me.buet.ac.bd.com; Rabbi, Kazi Fazle, E-mail: rabbi35.me10@gmail.com

    2016-07-12

    In this study, theoretical investigation of thin film liquid phase change phenomena under different boundary heating rates has been conducted with the help of molecular dynamics simulation. To do this, the case of argon boiling over a platinum surface has been considered. The study has been conducted to get a better understanding of the nano-scale physics of evaporation/boiling for a three phase system with particular emphasis on the effect of boundary heating rate. The simulation domain consisted of liquid and vapor argon atoms placed over a platinum wall. Initially the whole system was brought to an equilibrium state at 90more » K with the help of equilibrium molecular dynamics and then the temperature of the bottom wall was increased to a higher temperature (250 K/130 K) over a finite heating period. Depending on the heating period, the boundary heating rate has been varied in the range of 1600×10{sup 9} K/s to 8×10{sup 9} K/s. The variations of argon region temperature, pressure, net evaporation number with respect to time under different boundary heating rates have been determined and discussed. The heat fluxes normal to platinum wall for different cases were also calculated and compared with theoretical upper limit of maximum possible heat transfer to elucidate the effect of boundary heating rate.« less

  10. Experimental study of the heated contact line region for a pure fluid and binary fluid mixture in microgravity.

    PubMed

    Nguyen, Thao T T; Kundan, Akshay; Wayner, Peter C; Plawsky, Joel L; Chao, David F; Sicker, Ronald J

    2017-02-15

    Understanding the dynamics of phase change heat and mass transfer in the three-phase contact line region is a critical step toward improving the efficiency of phase change processes. Phase change becomes especially complicated when a fluid mixture is used. In this paper, a wickless heat pipe was operated on the International Space Station (ISS) to study the contact line dynamics of a pentane/isohexane mixture. Different interfacial regions were identified, compared, and studied. Using high resolution (50×), interference images, we calculated the curvature gradient of the liquid-vapor interface at the contact line region along the edges of the heat pipe. We found that the curvature gradient in the evaporation region increases with increasing heat flux magnitude and decreasing pentane concentration. The curvature gradient for the mixture case is larger than for the pure pentane case. The difference between the two cases increases as pentane concentration decreases. Our data showed that the curvature gradient profile within the evaporation section is separated into two regions with the boundary between the two corresponding to the location of a thick, liquid, "central drop" region at the point of maximum internal local heat flux. We found that the curvature gradients at the central drop and on the flat surfaces where condensation begins are one order of magnitude smaller than the gradients in the corner meniscus indicating the driving forces for fluid flow are much larger in the corners. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang

    2018-03-01

    Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1  × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.

  12. The influence of tobacco smoking on the relationship between pressure and flow in the middle cerebral artery in humans.

    PubMed

    Peebles, Karen C; Horsman, Helen; Tzeng, Yu-Chieh

    2013-01-01

    Cigarette smoking is associated with an increased risk of stroke but the mechanism is unclear. The study examined whether acute and chronic cigarette smoking alters the dynamic relationship between blood pressure and cerebral blood flow. We hypothesised that acute and chronic smoking would result in a cerebral circulation that was less capable of buffering against dynamic fluctuations in blood pressure. Further, these changes would be accompanied by a reduction in baroreflex sensitivity, which is reduced after smoking (acute smoking). We recruited 17 non-smokers and 15 habitual smokers (13 ± 5 pack years). Continuous measurements of mean cerebral blood flow velocity (transcranial Doppler ultrasound), blood pressure (finger photoplethysmography) and heart rate enabled transfer function analysis of the dynamic relationship between pressure and flow (gain, normalised gain, phase and coherence) and baroreflex sensitivity during supine rest before and after smoking a single cigarette (acute smoking). There were no between-group differences in gain, phase or coherence before acute smoking. However, both groups showed a reduction in gain and coherence, associated with a reduction in baroreflex sensitivity, and increase in phase after acute smoking. Contrary to our hypothesis, these findings suggest that in the face of a reduction in baroreflex sensitivity acute smoking may potentially improve the ability of the cerebral circulation to buffer against changes in blood pressure. However, chronic smoking did not alter the dynamic relationship between blood pressure and cerebral blood flow velocity. These results have implications on understanding mechanisms for attenuating stroke risk.

  13. Satellite thermal storage systems using metallic phase-change materials

    NASA Astrophysics Data System (ADS)

    Lauf, R. J.; Hamby, C.

    Solar (thermal) dynamic power systems for satellites require a heat storage system capable of operating the engine during eclipse. A system is described in which the phase-change material (PCM) is a metal rather than the more conventional fluoride salts. Thermal storage modules consisting of germanium contained in graphite have good thermal conductivity, low parasitic mass, and are physically and chemically stable. The result is described for thermal cycle testing of graphite capsules containing germanium and several germanium- and silicon-based alloys, as well as some initial tests of the compatibility of graphite with Nb-1 percent Zr structural materials.

  14. Phase change thermal storage for a solar total energy system

    NASA Technical Reports Server (NTRS)

    Rice, R. E.; Cohen, B. M.

    1978-01-01

    An analytical and experimental program is being conducted on a one-tenth scale model of a high-temperature (584 K) phase-change thermal energy storage system for installation in a solar total energy test facility at Albuquerque, New Mexico, U.S.A. The thermal storage medium is anhydrous sodium hydroxide with 8% sodium nitrate. The program will produce data on the dynamic response of the system to repeated cycles of charging and discharging simulating those of the test facility. Data will be correlated with a mathematical model which will then be used in the design of the full-scale system.

  15. Graph-theoretic analysis of discrete-phase-space states for condition change detection and quantification of information

    DOEpatents

    Hively, Lee M.

    2014-09-16

    Data collected from devices and human condition may be used to forewarn of critical events such as machine/structural failure or events from brain/heart wave data stroke. By monitoring the data, and determining what values are indicative of a failure forewarning, one can provide adequate notice of the impending failure in order to take preventive measures. This disclosure teaches a computer-based method to convert dynamical numeric data representing physical objects (unstructured data) into discrete-phase-space states, and hence into a graph (structured data) for extraction of condition change.

  16. Understanding hygroscopic growth and phase transformation of aerosols using single particle Raman spectroscopy in an electrodynamic balance.

    PubMed

    Lee, Alex K Y; Ling, T Y; Chan, Chak K

    2008-01-01

    Hygroscopic growth is one of the most fundamental properties of atmospheric aerosols. By absorbing or evaporating water, an aerosol particle changes its size, morphology, phase, chemical composition and reactivity and other parameters such as its refractive index. These changes affect the fate and the environmental impacts of atmospheric aerosols, including global climate change. The ElectroDynamic Balance (EDB) has been widely accepted as a unique tool for measuring hygroscopic properties and for investigating phase transformation of aerosols via single particle levitation. Coupled with Raman spectroscopy, an EDB/Raman system is a powerful tool that can be used to investigate both physical and chemical changes associated with the hygroscopic properties of individually levitated particles under controlled environments. In this paper, we report the use of an EDB/Raman system to investigate (1) contact ion pairs formation in supersaturated magnesium sulfate solutions; (2) phase transformation in ammonium nitrate/ammonium sulfate mixed particles; (3) hygroscopicity of organically coated inorganic aerosols; and (4) heterogeneous reactions altering the hygroscopicity of organic aerosols.

  17. Excitations and relaxation dynamics in multiferroic GeV4S8 studied by terahertz and dielectric spectroscopy

    NASA Astrophysics Data System (ADS)

    Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.

    2017-10-01

    We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.

  18. Dynamic Characteristics of Ventilatory and Gas Exchange during Sinusoidal Walking in Humans.

    PubMed

    Fukuoka, Yoshiyuki; Iihoshi, Masaaki; Nazunin, Juhelee Tuba; Abe, Daijiro; Fukuba, Yoshiyuki

    2017-01-01

    Our present study investigated whether the ventilatory and gas exchange responses show different dynamics in response to sinusoidal change in cycle work rate or walking speed even if the metabolic demand was equivalent in both types of exercise. Locomotive parameters (stride length and step frequency), breath-by-breath ventilation (V̇E) and gas exchange (CO2 output (V̇CO2) and O2 uptake (V̇O2)) responses were measured in 10 healthy young participants. The speed of the treadmill was sinusoidally changed between 3 km·h-1 and 6 km·h-1 with various periods (from 10 to 1 min). The amplitude of locomotive parameters against sinusoidal variation showed a constant gain with a small phase shift, being independent of the oscillation periods. In marked contrast, when the periods of the speed oscillations were shortened, the amplitude of V̇E decreased sharply whereas the phase shift of V̇E increased. In comparing walking and cycling at the equivalent metabolic demand, the amplitude of V̇E during sinusoidal walking (SW) was significantly greater than that during sinusoidal cycling (SC), and the phase shift became smaller. The steeper slope of linear regression for the V̇E amplitude ratio to V̇CO2 amplitude ratio was observed during SW than SC. These findings suggested that the greater amplitude and smaller phase shift of ventilatory dynamics were not equivalent between SW and SC even if the metabolic demand was equivalent between both exercises. Such phenomenon would be derived from central command in proportion to locomotor muscle recruitment (feedforward) and muscle afferent feedback.

  19. Fluoride salts as phase change materials for thermal energy storage in the temperature range 1000-1400 K

    NASA Technical Reports Server (NTRS)

    Misra, Ajay K.

    1988-01-01

    Eutectic compositions and congruently melting intermediate compounds in binary and ternary fluoride salt systems were characterized for potential use as latent heat of fusion phase change materials to store thermal energy in the temperature range 1000-1400 K. The melting points and eutectic compositions for many systems with published phase diagrams were experimentally verified and new eutectic compositions having melting points between 1000 and 1400 K were identified. Heats of fusion of several binary and ternary eutectics and congruently melting compounds were experimentally measured by differential scanning calorimetry. For a few systems in which heats of mixing in the melts have been measured, heats of fusion of the eutectics were calculated from thermodynamic considerations and good agreement was obtained between the measured and calculated values. Several combinations of salts with high heats of fusion per unit mass (greater than 0.7 kJ/g) have been identified for possible use as phase change materials in advanced solar dynamic space power applications.

  20. 3D undersampled golden-radial phase encoding for DCE-MRA using inherently regularized iterative SENSE.

    PubMed

    Prieto, Claudia; Uribe, Sergio; Razavi, Reza; Atkinson, David; Schaeffter, Tobias

    2010-08-01

    One of the current limitations of dynamic contrast-enhanced MR angiography is the requirement of both high spatial and high temporal resolution. Several undersampling techniques have been proposed to overcome this problem. However, in most of these methods the tradeoff between spatial and temporal resolution is constant for all the time frames and needs to be specified prior to data collection. This is not optimal for dynamic contrast-enhanced MR angiography where the dynamics of the process are difficult to predict and the image quality requirements are changing during the bolus passage. Here, we propose a new highly undersampled approach that allows the retrospective adaptation of the spatial and temporal resolution. The method combines a three-dimensional radial phase encoding trajectory with the golden angle profile order and non-Cartesian Sensitivity Encoding (SENSE) reconstruction. Different regularization images, obtained from the same acquired data, are used to stabilize the non-Cartesian SENSE reconstruction for the different phases of the bolus passage. The feasibility of the proposed method was demonstrated on a numerical phantom and in three-dimensional intracranial dynamic contrast-enhanced MR angiography of healthy volunteers. The acquired data were reconstructed retrospectively with temporal resolutions from 1.2 sec to 8.1 sec, providing a good depiction of small vessels, as well as distinction of different temporal phases.

  1. Dynamic assessment of school-age children's narrative ability: an experimental investigation of classification accuracy.

    PubMed

    Peña, Elizabeth D; Gillam, Ronald B; Malek, Melynn; Ruiz-Felter, Roxanna; Resendiz, Maria; Fiestas, Christine; Sabel, Tracy

    2006-10-01

    Two experiments examined reliability and classification accuracy of a narration-based dynamic assessment task. The first experiment evaluated whether parallel results were obtained from stories created in response to 2 different wordless picture books. If so, the tasks and measures would be appropriate for assessing pretest and posttest change within a dynamic assessment format. The second experiment evaluated the extent to which children with language impairments performed differently than typically developing controls on dynamic assessment of narrative language. In the first experiment, 58 1st- and 2nd-grade children told 2 stories about wordless picture books. Stories were rated on macrostructural and microstructural aspects of language form and content, and the ratings were subjected to reliability analyses. In the second experiment, 71 children participated in dynamic assessment. There were 3 phases: a pretest phase, in which children created a story that corresponded to 1 of the wordless picture books from Experiment 1; a teaching phase, in which children attended 2 short mediation sessions that focused on storytelling ability; and a posttest phase, in which children created a story that corresponded to a second wordless picture book from Experiment 1. Analyses compared the pretest and posttest stories that were told by 2 groups of children who received mediated learning (typical and language impaired groups) and a no-treatment control group of typically developing children from Experiment 1. The results of the first experiment indicated that the narrative measures applied to stories about 2 different wordless picture books had good internal consistency. In Experiment 2, typically developing children who received mediated learning demonstrated a greater amount of pretest to posttest change than children in the language impaired and control groups. Classification analysis indicated better specificity and sensitivity values for measures of response to intervention (modifiability) and posttest storytelling than for measures of pretest storytelling. Observation of modifiability was the single best indicator of language impairment. Posttest measures and modifiability together yielded no misclassifications. The first experiment supported the use of 2 wordless picture books as stimulus materials for collecting narratives before and after mediation within a dynamic assessment paradigm. The second experiment supported the use of dynamic assessment for accurately identifying language impairments in school-age children.

  2. Dynamic Assessment of School-Age Children’s Narrative Ability

    PubMed Central

    Peña, Elizabeth D.; Gillam, Ronald B.; Malek, Melynn; Ruiz-Felter, Roxanna; Resendiz, Maria; Fiestas, Christine; Sabel, Tracy

    2008-01-01

    Two experiments examined reliability and classification accuracy of a narration-based dynamic assessment task. Purpose The first experiment evaluated whether parallel results were obtained from stories created in response to 2 different wordless picture books. If so, the tasks and measures would be appropriate for assessing pretest and posttest change within a dynamic assessment format. The second experiment evaluated the extent to which children with language impairments performed differently than typically developing controls on dynamic assessment of narrative language. Method In the first experiment, 58 1st- and 2nd-grade children told 2 stories about wordless picture books. Stories were rated on macrostructural and microstructural aspects of language form and content, and the ratings were subjected to reliability analyses. In the second experiment, 71 children participated in dynamic assessment. There were 3 phases: a pretest phase, in which children created a story that corresponded to 1 of the wordless picture books from Experiment 1; a teaching phase, in which children attended 2 short mediation sessions that focused on storytelling ability; and a posttest phase, in which children created a story that corresponded to a second wordless picture book from Experiment 1. Analyses compared the pretest and posttest stories that were told by 2 groups of children who received mediated learning (typical and language impaired groups) and a no-treatment control group of typically developing children from Experiment 1. Results The results of the first experiment indicated that the narrative measures applied to stories about 2 different wordless picture books had good internal consistency. In Experiment 2, typically developing children who received mediated learning demonstrated a greater amount of pretest to posttest change than children in the language impaired and control groups. Classification analysis indicated better specificity and sensitivity values for measures of response to intervention (modifiability) and posttest storytelling than for measures of pretest storytelling. Observation of modifiability was the single best indicator of language impairment. Posttest measures and modifiability together yielded no misclassifications. Conclusion The first experiment supported the use of 2 wordless picture books as stimulus materials for collecting narratives before and after mediation within a dynamic assessment paradigm. The second experiment supported the use of dynamic assessment for accurately identifying language impairments in school-age children. PMID:17077213

  3. Dynamics of human subthalamic neuron phase-locking to motor and sensory cortical oscillations during movement.

    PubMed

    Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark

    2017-09-01

    Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also demonstrate, for the first time in humans, a mechanism through which the premotor and sensory cortices are functionally connected to the STN. Copyright © 2017 the American Physiological Society.

  4. Dynamics of light-field control of molecular dissociation at the few-cycle limit.

    PubMed

    Tong, X M; Lin, C D

    2007-03-23

    We studied the laser-molecule interaction dynamics that leads to the asymmetric D+ ion ejection in the dissociative ionization of D2 molecules observed recently in Kling et al. [Science 312, 246 (2006)10.1126/science.1126259]. By changing the carrier-envelope phase, we showed that the asymmetry is a consequence of manipulating the initial ionization and the rescattering of the electrons within one optical cycle of the laser. The result illustrates the feasibility of coherent control of reaction dynamics at the attosecond time scale.

  5. The effect of an external electric field on the growth of incongruent-melting material

    NASA Astrophysics Data System (ADS)

    Uda, Satoshi; Huang, Xinming; Wang, Shou-Qi

    2005-02-01

    The significance of an electric field on the crystallization process is differentiated into two consequences; (i) thermodynamic effect and (ii) growth-dynamic effect. The former modifies the chemical potential of the associated phases which changes the equilibrium phase relationship while the latter influences the solute transport, growth kinetics, surface creation and defect generation during growth. The intrinsic electric field generating during growth is attributed to the crystallization-related electromotive force and the thermoelectric power driven by the temperature gradient at the interface which influences the solute transport and solute partitioning. The external electric field was applied to the growth apparatus in the ternary system of La2O3- Ga2O3- SiO2 so that the chemical potential of both solid and liquid phases changed leading to the variation of the equilibrium phase relationship. Imposing a 500 V/cm electric field on the system moved the boundary of primary phase field of lanthanum gallate ( LaGaO3) and Ga-bearing lanthanum silicate ( La14GaxSi9-xO) toward the SiO2 apex by 5 mol% which clearly demonstrated the change of the phase relationship by the external electric field.

  6. Studying topology and dynamical phase transitions with ultracold quantum gases in optical lattices

    NASA Astrophysics Data System (ADS)

    Sengstock, Klaus

    Topological properties lie at the heart of many fascinating phenomena in solid-state systems such as quantum Hall systems or Chern insulators. The topology of the bands can be captured by the distribution of Berry curvature, which describes the geometry of the eigenstates across the Brillouin zone. Using fermionic ultracold atoms in a hexagonal optical lattice, we engineered the Berry curvature of the Bloch bands using resonant driving and show a full momentum-resolved state tomography from which we obtain the Berry curvature and Chern number. Furthermore, we study the time-evolution of the many-body wavefunction after a sudden quench of the lattce parameters and observe the appearance, movement, and annihilation of vortices in reciprocal space. We identify their number as a dynamical topological order parameter, which suddenly changes its value at critical times. Our measurements constitute the first observation of a so called dynamical topological phase transition`, which we show to be a fruitful concept for the understanding of quantum dynamics far from equilibrium

  7. Magnetic response of a disordered binary ferromagnetic alloy to an oscillating magnetic field

    NASA Astrophysics Data System (ADS)

    Vatansever, Erol; Polat, Hamza

    2015-08-01

    By means of Monte Carlo simulation with local spin update Metropolis algorithm, we have elucidated non-equilibrium phase transition properties and stationary-state treatment of a disordered binary ferromagnetic alloy of the type ApB1-p on a square lattice. After a detailed analysis, we have found that the system shows many interesting and unusual thermal and magnetic behaviors, for instance, the locations of dynamic phase transition points change significantly depending upon amplitude and period of the external magnetic field as well as upon the active concentration of A-type components. Much effort has also been dedicated to clarify the hysteresis tools, such as coercivity, dynamic loop area as well as dynamic correlations between time dependent magnetizations and external time dependent applied field as a functions of period and amplitude of field as well as active concentration of A-type components, and outstanding physical findings have been reported in order to better understand the dynamic process underlying present system.

  8. Understanding the fast phase-change mechanism of tetrahedrally bonded Cu2GeTe3 : Comprehensive analyses of electronic structure and transport phenomena

    NASA Astrophysics Data System (ADS)

    Kobayashi, Keisuke; Skelton, Jonathan M.; Saito, Yuta; Shindo, Satoshi; Kobata, Masaaki; Fons, Paul; Kolobov, Alexander V.; Elliott, Stephen; Ando, Daisuke; Sutou, Yuji

    2018-05-01

    Cu2GeTe3 (CGT) phase-change material, a promising candidate for advanced fast nonvolatile random-access-memory devices, has a chalcopyritelike structure with s p3 bonding in the crystalline phase; thus, the phase-change (PC) mechanism is considered to be essentially different from that of the standard PC materials (e.g., Ge-Sb-Te) with threefold to sixfold p -like bonding. In order to reveal the PC mechanism of CGT, the electronic structure change due to PC has been investigated by laboratory hard x-ray photoelectron spectroscopy and combined first-principles density-functional theory molecular-dynamics simulations. The valence-band spectra, in both crystalline and amorphous phases, are well simulated by the calculations. An inherent tendency of Te 5 s lone-pair formation and an enhanced participation of Cu 3 d orbitals in the bonding are found to play dominant roles in the PC mechanism. The electrical conductivity of as-deposited films and its change during the PC process is investigated in connection with valence-band spectral changes near the Fermi level. The results are successfully analyzed, based on a model proposed by Davis and Mott for chalcogenide amorphous semiconductors. The results suggest that robustness of the defect-band states against thermal stress is a key to the practical application of this material for memory devices.

  9. Effective control of complex turbulent dynamical systems through statistical functionals.

    PubMed

    Majda, Andrew J; Qi, Di

    2017-05-30

    Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among complex systems in science and engineering, including climate, material, and neural science. Control of these complex systems is a grand challenge, for example, in mitigating the effects of climate change or safe design of technology with fully developed shear turbulence. Control of flows in the transition to turbulence, where there is a small dimension of instabilities about a basic mean state, is an important and successful discipline. In complex turbulent dynamical systems, it is impossible to track and control the large dimension of instabilities, which strongly interact and exchange energy, and new control strategies are needed. The goal of this paper is to propose an effective statistical control strategy for complex turbulent dynamical systems based on a recent statistical energy principle and statistical linear response theory. We illustrate the potential practical efficiency and verify this effective statistical control strategy on the 40D Lorenz 1996 model in forcing regimes with various types of fully turbulent dynamics with nearly one-half of the phase space unstable.

  10. Molecular dynamics for dense matter

    NASA Astrophysics Data System (ADS)

    Maruyama, Toshiki; Watanabe, Gentaro; Chiba, Satoshi

    2012-08-01

    We review a molecular dynamics method for nucleon many-body systems called quantum molecular dynamics (QMD), and our studies using this method. These studies address the structure and the dynamics of nuclear matter relevant to neutron star crusts, supernova cores, and heavy-ion collisions. A key advantage of QMD is that we can study dynamical processes of nucleon many-body systems without any assumptions about the nuclear structure. First, we focus on the inhomogeneous structures of low-density nuclear matter consisting not only of spherical nuclei but also of nuclear "pasta", i.e., rod-like and slab-like nuclei. We show that pasta phases can appear in the ground and equilibrium states of nuclear matter without assuming nuclear shape. Next, we show our simulation of compression of nuclear matter which corresponds to the collapsing stage of supernovae. With the increase in density, a crystalline solid of spherical nuclei changes to a triangular lattice of rods by connecting neighboring nuclei. Finally, we discuss fragment formation in expanding nuclear matter. Our results suggest that a generally accepted scenario based on the liquid-gas phase transition is not plausible at lower temperatures.

  11. Near-field thermal rectification devices using phase change periodic nanostructure.

    PubMed

    Ghanekar, Alok; Tian, Yanpei; Ricci, Matthew; Zhang, Sinong; Gregory, Otto; Zheng, Yi

    2018-01-22

    We theoretically analyze two near-field thermal rectification devices: a radiative thermal diode and a thermal transistor that utilize a phase change material to achieve dynamic control over heat flow by exploiting metal-insulator transition of VO 2 near 341 K. The thermal analogue of electronic diode allows high heat flow in one direction while it restricts the heat flow when the polarity of temperature gradient is reversed. We show that with the introduction of 1-D rectangular grating, thermal rectification is dramatically enhanced in the near-field due to reduced tunneling of surface waves across the interfaces for negative polarity. The radiative thermal transistor also works around phase transition temperature of VO 2 and controls heat flow. We demonstrate a transistor-like behavior wherein heat flow across the source and the drain can be greatly varied by making a small change in gate temperature.

  12. Chemical gas-dynamics beyond Wang Chang-Uhlenbeck's kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesnichenko, Evgeniy G.; Gorbachev, Yuriy E.

    Wang Chang-Uhlenbeck equation does not give possibility to take into account intermolecular processes such as redistribution of the energy among different degrees of freedom. The modification of the generalized Wang Chang-Uhlenbeck equation including such processes is proposed. It allows to study for instance the kinetics of non-radiative transitions. Limitations of this approach are connected with the requirements of absence of polarization of rotational momentum and phases of intermolecular vibrations.

  13. Quantification and visualization of relative local ventilation on dynamic chest radiographs

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Sanada, Shigeru; Okazaki, Nobuo; Kobayashi, Takeshi; Nakayama, Kazuya; Matsui, Takeshi; Hayashi, Norio; Matsui, Osamu

    2006-03-01

    Recently-developed dynamic flat-panel detector (FPD) with a large field of view is possible to obtain breathing chest radiographs, which provide respiratory kinetics information. This study was performed to investigate the ability of dynamic chest radiography using FPD to quantify relative ventilation according to respiratory physiology. We also reported the results of primary clinical study and described the possibility of clinical use of our method. Dynamic chest radiographs of 12 subjects involving abnormal subjects during respiration were obtained using a modified FPD system (30 frames in 10 seconds). Imaging was performed in three different positions (standing, and right and left decubitus positions) to change the distribution of local ventilation by changing the lung's own gravity in each area. The distance from the lung apex to the diaphragm (abbr. DLD) was measured by the edge detection technique for use as an index of respiratory phase. We measured pixel values in each lung area and calculated correlation coefficients with DLD. Differences in the pixel values between the maximum inspiratory and expiratory frame were calculated, and the trend of distribution was evaluated by two-way analysis of variance. Pixel value in each lung area was strongly associated with respiratory phase and its time variation and distribution were consistent with known properties in respiratory physiology. Dynamic chest radiography using FPD combined with our computerized methods was capable of quantifying relative amount of ventilation during respiration, and of detecting regional differences in ventilation. In the subjects with emphysema, areas with decreased respiratory changes in pixel value are consisted with the areas with air trapping. This method is expected to be a useful novel diagnostic imaging method for supporting diagnosis and follow-up of pulmonary disease, which presents with abnormalities in local ventilation.

  14. Stochastic Endogenous Replication Stress Causes ATR-Triggered Fluctuations in CDK2 Activity that Dynamically Adjust Global DNA Synthesis Rates.

    PubMed

    Daigh, Leighton H; Liu, Chad; Chung, Mingyu; Cimprich, Karlene A; Meyer, Tobias

    2018-06-04

    Faithful DNA replication is challenged by stalling of replication forks during S phase. Replication stress is further increased in cancer cells or in response to genotoxic insults. Using live single-cell image analysis, we found that CDK2 activity fluctuates throughout an unperturbed S phase. We show that CDK2 fluctuations result from transient ATR signals triggered by stochastic replication stress events. In turn, fluctuating endogenous CDK2 activity causes corresponding decreases and increases in DNA synthesis rates, linking changes in stochastic replication stress to fluctuating global DNA replication rates throughout S phase. Moreover, cells that re-enter the cell cycle after mitogen stimulation have increased CDK2 fluctuations and prolonged S phase resulting from increased replication stress-induced CDK2 suppression. Thus, our study reveals a dynamic control principle for DNA replication whereby CDK2 activity is suppressed and fluctuates throughout S phase to continually adjust global DNA synthesis rates in response to recurring stochastic replication stress events. Copyright © 2018. Published by Elsevier Inc.

  15. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    NASA Astrophysics Data System (ADS)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  16. Capacity planning of link restorable optical networks under dynamic change of traffic

    NASA Astrophysics Data System (ADS)

    Ho, Kwok Shing; Cheung, Kwok Wai

    2005-11-01

    Future backbone networks shall require full-survivability and support dynamic changes of traffic demands. The Generalized Survivable Networks (GSN) was proposed to meet these challenges. GSN is fully-survivable under dynamic traffic demand changes, so it offers a practical and guaranteed characterization framework for ASTN / ASON survivable network planning and bandwidth-on-demand resource allocation 4. The basic idea of GSN is to incorporate the non-blocking network concept into the survivable network models. In GSN, each network node must specify its I/O capacity bound which is taken as constraints for any allowable traffic demand matrix. In this paper, we consider the following generic GSN network design problem: Given the I/O bounds of each network node, find a routing scheme (and the corresponding rerouting scheme under failure) and the link capacity assignment (both working and spare) which minimize the cost, such that any traffic matrix consistent with the given I/O bounds can be feasibly routed and it is single-fault tolerant under the link restoration scheme. We first show how the initial, infeasible formal mixed integer programming formulation can be transformed into a more feasible problem using the duality transformation of the linear program. Then we show how the problem can be simplified using the Lagrangian Relaxation approach. Previous work has outlined a two-phase approach for solving this problem where the first phase optimizes the working capacity assignment and the second phase optimizes the spare capacity assignment. In this paper, we present a jointly optimized framework for dimensioning the survivable optical network with the GSN model. Experiment results show that the jointly optimized GSN can bring about on average of 3.8% cost savings when compared with the separate, two-phase approach. Finally, we perform a cost comparison and show that GSN can be deployed with a reasonable cost.

  17. The effect of dynamic stretching on hamstrings flexibility with respect to the spino-pelvic rhythm.

    PubMed

    Hasebe, Kiyotaka; Okubo, Yu; Kaneoka, Koji; Takada, Kohei; Suzuki, Daisuke; Sairyo, Koichi

    2016-01-01

    To ascertain the dynamic stretch effects of flexibility of the hamstrings on lumbar spine and pelvic kinematics. Tight hamstrings are positively correlated with low back pain. However, it is unclear how flexibility of the hamstrings affects spino-pelvic rhythm. Twelve healthy men participated in the study. The straight leg raising (SLR) angle, finger floor distance (FFD), and spino-pelvic rhythm was measured before and after the 6-week stretching protocol. The forward bending task was divided into 4 phases. The paired t-test was used to determine significant differences before and after the FFD, SLR angle, lumbar motion, and pelvic motion, and spino-pelvic rhythm in each phase (p<0.05). After 6 weeks of stretching, significant improvements were seen in the FFD with maximum forward bending and in the SLR angle. Total pelvic rotation was also significantly increased in contrast to total lumbar flexion. A decreased spino-pelvic ratio was seen in the final phase. Dynamic stretching could change the spino-pelvic rhythm to a pelvis-dominant motion, indicating that flexible hamstrings are important for preventing low back pain.

  18. Neutron powder diffraction and molecular simulation study of the structural evolution of ammonia borane from 15 to 340 K.

    PubMed

    Hess, Nancy J; Schenter, Gregory K; Hartman, Michael R; Daemen, Luc L; Proffen, Thomas; Kathmann, Shawn M; Mundy, Christopher J; Hartl, Monika; Heldebrant, David J; Stowe, Ashley C; Autrey, Tom

    2009-05-14

    The structural behavior of (11)B-, (2)H-enriched ammonia borane, ND(3)(11)BD(3), over the temperature range from 15 to 340 K was investigated using a combination of neutron powder diffraction and ab initio molecular dynamics simulations. In the low temperature orthorhombic phase, the progressive displacement of the borane group under the amine group was observed leading to the alignment of the B-N bond near parallel to the c-axis. The orthorhombic to tetragonal structural phase transition at 225 K is marked by dramatic change in the dynamics of both the amine and borane group. The resulting hydrogen disorder is problematic to extract from the metrics provided by Rietveld refinement but is readily apparent in molecular dynamics simulation and in difference Fourier transform maps. At the phase transition, Rietveld refinement does indicate a disruption of one of two dihydrogen bonds that link adjacent ammonia borane molecules. Metrics determined by Rietveld refinement are in excellent agreement with those determined from molecular simulation. This study highlights the valuable insights added by coupled experimental and computational studies.

  19. Phonon coupling to dynamic short-range polar order in a relaxor ferroelectric near the morphotropic phase boundary

    DOE PAGES

    John A. Schneeloch; Xu, Zhijun; Winn, B.; ...

    2015-12-28

    We report neutron inelastic scattering experiments on single-crystal PbMg 1/3Nb 2/3O 3 doped with 32% PbTiO 3, a relaxor ferroelectric that lies close to the morphotropic phase boundary. When cooled under an electric field E∥ [001] into tetragonal and monoclinic phases, the scattering cross section from transverse acoustic (TA) phonons polarized parallel to E weakens and shifts to higher energy relative to that under zero-field-cooled conditions. Likewise, the scattering cross section from transverse optic (TO) phonons polarized parallel to E weakens for energy transfers 4 ≤ ℏω ≤ 9 meV. However, TA and TO phonons polarized perpendicular to E showmore » no change. This anisotropic field response is similar to that of the diffuse scattering cross section, which, as previously reported, is suppressed when polarized parallel to E but not when polarized perpendicular to E. Lastly, our findings suggest that the lattice dynamics and dynamic short-range polar correlations that give rise to the diffuse scattering are coupled.« less

  20. EVIDENCE FOR COLLAPSING FIELDS IN THE CORONA AND PHOTOSPHERE DURING THE 2011 FEBRUARY 15 X2.2 FLARE: SDO/AIA AND HMI OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gosain, S., E-mail: sgosain@nso.edu; Udaipur Solar Observatory, P.O. Box 198, Dewali, Udaipur, Rajasthan 313001

    2012-04-10

    We use high-resolution Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly observations to study the evolution of the coronal loops in a flaring solar active region, NOAA 11158. We identify three distinct phases of the coronal loop dynamics during this event: (1) slow-rise phase: slow rising motion of the loop-tops prior to the flare in response to the slow rise of the underlying flux rope; (2) collapse phase: sudden contraction of the loop-tops, with the lower loops collapsing earlier than the higher loops; and (3) oscillation phase: the loops exhibit global kink oscillations after the collapse phase at different periods, with themore » period decreasing with the decreasing height of the loops. The period of these loop oscillations is used to estimate the field strength in the coronal loops. Furthermore, we also use SDO/Helioseismic and Magnetic Imager (HMI) observations to study the photospheric changes close to the polarity inversion line (PIL). The longitudinal magnetograms show a stepwise permanent decrease in the magnetic flux after the flare over a coherent patch along the PIL. Furthermore, we examine the HMI Stokes I, Q, U, V profiles over this patch and find that the Stokes-V signal systematically decreases while the Stokes-Q and U signals increase after the flare. These observations suggest that close to the PIL the field configuration became more horizontal after the flare. We also use HMI vector magnetic field observations to quantify the changes in the field inclination angle and find an inward collapse of the field lines toward the PIL by {approx}10 Degree-Sign . These observations are consistent with the 'coronal implosion' scenario and its predictions about flare-related photospheric field changes.« less

  1. Quantification of cardiorespiratory interactions based on joint symbolic dynamics.

    PubMed

    Kabir, Muammar M; Saint, David A; Nalivaiko, Eugene; Abbott, Derek; Voss, Andreas; Baumert, Mathias

    2011-10-01

    Cardiac and respiratory rhythms are highly nonlinear and nonstationary. As a result traditional time-domain techniques are often inadequate to characterize their complex dynamics. In this article, we introduce a novel technique to investigate the interactions between R-R intervals and respiratory phases based on their joint symbolic dynamics. To evaluate the technique, electrocardiograms (ECG) and respiratory signals were recorded in 13 healthy subjects in different body postures during spontaneous and controlled breathing. Herein, the R-R time series were extracted from ECG and respiratory phases were obtained from abdomen impedance belts using the Hilbert transform. Both time series were transformed into ternary symbol vectors based on the changes between two successive R-R intervals or respiratory phases. Subsequently, words of different symbol lengths were formed and the correspondence between the two series of words was determined to quantify the interaction between cardiac and respiratory cycles. To validate our results, respiratory sinus arrhythmia (RSA) was further studied using the phase-averaged characterization of the RSA pattern. The percentage of similarity of the sequence of symbols, between the respective words of the two series determined by joint symbolic dynamics, was significantly reduced in the upright position compared to the supine position (26.4 ± 4.7 vs. 20.5 ± 5.4%, p < 0.01). Similarly, RSA was also reduced during upright posture, but the difference was less significant (0.11 ± 0.02 vs. 0.08 ± 0.01 s, p < 0.05). In conclusion, joint symbolic dynamics provides a new efficient technique for the analysis of cardiorespiratory interaction that is highly sensitive to the effects of orthostatic challenge.

  2. Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study

    DOE PAGES

    Kalesse, Heike; de Boer, Gijs; Solomon, Amy; ...

    2016-11-23

    Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less

  3. Understanding Rapid Changes in Phase Partitioning between Cloud Liquid and Ice in Stratiform Mixed-Phase Clouds: An Arctic Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalesse, Heike; de Boer, Gijs; Solomon, Amy

    Understanding phase transitions in mixed-phase clouds is of great importance because the hydrometeor phase controls the lifetime and radiative effects of clouds. These cloud radiative effects have a crucial impact on the surface energy budget and thus on the evolution of the ice cover, in high altitudes. For a springtime low-level mixed-phase stratiform cloud case from Barrow, Alaska, a unique combination of instruments and retrieval methods is combined with multiple modeling perspectives to determine key processes that control cloud phase partitioning. The interplay of local cloud-scale versus large-scale processes is considered. Rapid changes in phase partitioning were found to bemore » caused by several main factors. Some major influences were the large-scale advection of different air masses with different aerosol concentrations and humidity content, cloud-scale processes such as a change in the thermodynamical coupling state, and local-scale dynamics influencing the residence time of ice particles. Other factors such as radiative shielding by a cirrus and the influence of the solar cycle were found to only play a minor role for the specific case study (11–12 March 2013). Furthermore, for an even better understanding of cloud phase transitions, observations of key aerosol parameters such as profiles of cloud condensation nucleus and ice nucleus concentration are desirable.« less

  4. A Facile Synthesis of Dynamic, Shape-Changing Polymer Particles

    DTIC Science & Technology

    2014-04-02

    utilizing functional surfactants to control the phase separation of symmetric polystyrene- b -poly(2-vinylpyr- idine) ( PS - b - P2VP ) in dispersed droplets...Figure 1. Schematic representation of a mixed surfactant strategy for controlling the self-assembly of PS - b - P2VP and the generation of particles with...surfactant mixtures to control the phase separation of the symmetric polystyrene- b -poly(2-vinylpyridine) ( PS - b - P2VP ) block copolymers (BCPs) within

  5. Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model

    NASA Astrophysics Data System (ADS)

    Lang, Johannes; Frank, Bernhard; Halimeh, Jad C.

    2018-05-01

    We construct the finite-temperature dynamical phase diagram of the fully connected transverse-field Ising model from the vantage point of two disparate concepts of dynamical criticality. An analytical derivation of the classical dynamics and exact diagonalization simulations are used to study the dynamics after a quantum quench in the system prepared in a thermal equilibrium state. The different dynamical phases characterized by the type of nonanalyticities that emerge in an appropriately defined Loschmidt-echo return rate directly correspond to the dynamical phases determined by the spontaneous breaking of Z2 symmetry in the long-time steady state. The dynamical phase diagram is qualitatively different depending on whether the initial thermal state is ferromagnetic or paramagnetic. Whereas the former leads to a dynamical phase diagram that can be directly related to its equilibrium counterpart, the latter gives rise to a divergent dynamical critical temperature at vanishing final transverse-field strength.

  6. Bacterial Associates Modify Growth Dynamics of the Dinoflagellate Gymnodinium catenatum

    PubMed Central

    Bolch, Christopher J. S.; Bejoy, Thaila A.; Green, David H.

    2017-01-01

    Marine phytoplankton cells grow in close association with a complex microbial associate community known to affect the growth, behavior, and physiology of the algal host. The relative scale and importance these effects compared to other major factors governing algal cell growth remain unclear. Using algal-bacteria co-culture models based on the toxic dinoflagellate Gymnodinium catenatum, we tested the hypothesis that associate bacteria exert an independent effect on host algal cell growth. Batch co-cultures of G. catenatum were grown under identical environmental conditions with simplified bacterial communities composed of one-, two-, or three-bacterial associates. Modification of the associate community membership and complexity induced up to four-fold changes in dinoflagellate growth rate, equivalent to the effect of a 5°C change in temperature or an almost six-fold change in light intensity (20–115 moles photons PAR m-2 s-1). Almost three-fold changes in both stationary phase cell concentration and death rate were also observed. Co-culture with Roseobacter sp. DG874 reduced dinoflagellate exponential growth rate and led to a more rapid death rate compared with mixed associate community controls or co-culture with either Marinobacter sp. DG879, Alcanivorax sp. DG881. In contrast, associate bacteria concentration was positively correlated with dinoflagellate cell concentration during the exponential growth phase, indicating growth was limited by supply of dinoflagellate-derived carbon. Bacterial growth increased rapidly at the onset of declining and stationary phases due to either increasing availability of algal-derived carbon induced by nutrient stress and autolysis, or at mid-log phase in Roseobacter co-cultures potentially due to the onset of bacterial-mediated cell lysis. Co-cultures with the three bacterial associates resulted in dinoflagellate and bacterial growth dynamics very similar to more complex mixed bacterial community controls, suggesting that three-way co-cultures are sufficient to model interaction and growth dynamics of more complex communities. This study demonstrates that algal associate bacteria independently modify the growth of the host cell under non-limiting growth conditions and supports the concept that algal–bacterial interactions are an important structuring mechanism in phytoplankton communities. PMID:28469613

  7. Adaptation of primate vestibuloocular reflex to altered peripheral vestibular inputs. I. Frequency-specific recovery of horizontal VOR after inactivation of the lateral semicircular canals

    NASA Technical Reports Server (NTRS)

    Angelaki, D. E.; Hess, B. J.; Arai, Y.; Suzuki, J.

    1996-01-01

    1. The adaptive plasticity of the vestibuloocular reflex (VOR) following a selective lesion of the peripheral vestibular organs was investigated in rhesus monkeys whose lateral semicircular canals were inactivated by plugging of the canal lumen in both ears. Gain and phase of horizontal, vertical, and torsional slow-phase eye velocity were determined from three-dimensional eye movement recordings obtained acutely after the plugging operation, as well as in regular intervals up to 10 mo later. 2. Acutely after plugging, horizontal VOR was minimal during yaw rotation with gains of < 0.1 at all frequencies. Horizontal VOR gain gradually increased over time, reaching gains of 0.4-0.5 for yaw oscillations at 1.1 Hz approximately 5 mo after lateral canal inactivation. This response recovery was strongly frequency dependent: horizontal VOR gains were largest at the highest frequency tested and progressively decreased for lower frequencies. Below approximately 0.1 Hz, no consistent horizontal VOR could be elicited even 10 mo after plugging. 3. The frequency-dependent changes in gain paralleled changes in horizontal VOR phase. Below approximately 0.1-0.05 Hz large phase leads were present, similarly as in semicircular canal primary afferents. Smaller phase leads were also present at higher frequencies, particularly at 1.1 Hz (the highest frequency tested). 4. Consistent with the afferent-like dynamics of the adapted horizontal VOR, per- and postrotatory horizontal responses to constant-velocity yaw rotations were short lasting. Time constants of the slow-phase eye velocity envelope of the horizontal postrotatory nystagmus were approximately 2 s. Nonetheless, a consistent horizontal optokinetic afternystagmus was evoked in plugged animals. 5. A torsional component that was absent in intact animals was consistently present during yaw rotation acutely after lateral canal inactivation and remained approximately constant thereafter. The frequency response characteristics of this torsional component resembled those of the adapted horizontal slow-phase responses: gain decreased and large phase leads were introduced at frequencies below approximately 0.05-0.1 Hz. Torsional responses elicited by roll oscillations in supine position, on the other hand, were indistinguishable in their dynamics from intact animals. No consistent vertical nystagmus was elicited during yaw rotation. 6. Our results show that there is a slow, frequency-specific recovery of horizontal VOR after selective inactivation of the lateral semicircular canals. Both the spatial organization and the dynamic properties of the adapted VOR responses are distinctly different from responses in intact animals, suggesting complex changes in the underlying vestibuloocular circuitry.

  8. Dynamics of nanoparticle-protein corona complex formation: analytical results from population balance equations.

    PubMed

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid.

  9. Thermal Energy Storage Flight Experiment in Microgravity

    NASA Technical Reports Server (NTRS)

    Namkoong, David

    1992-01-01

    The Thermal Energy Storage Flight Experiment was designed to characterize void shape and location in LiF-based phase change materials in different energy storage configurations representative of advanced solar dynamic systems. Experiment goals and payload design are described in outline and graphic form.

  10. The Influence of Shaping Air Pressure of Pneumatic Spray Gun

    NASA Astrophysics Data System (ADS)

    Chen, Wenzhuo; Chen, Yan; Pan, Haiwei; Zhang, Weiming; Li, Bo

    2018-02-01

    The shaping air pressure is a very important parameter in the application of pneumatic spray gun, and studying its influence on spray flow field and film thickness distribution has practical values. In this paper, Euler-Lagrangian method is adopted to describe the two-phase spray flow of pneumatic painting process, and the air flow fields, spray patterns and dynamic film thickness distributions were obtained with the help of the computational fluid dynamics code—ANSYS Fluent. Results show that with the increase of the shaping air pressure, the air phase flow field spreads in the plane perpendicular to the shaping air hole plane, the spray pattern becomes narrower and flatter, and the width of the dynamic film increases with the reduced maximum value of the film thickness. But the film thickness distribution seems to change little with the shaping air pressure decreasing from 0.6bar to 0.9bar.

  11. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, M. Z., E-mail: mmo09@slac.stanford.edu; Shen, X.; Chen, Z.

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 μm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime.« less

  12. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, M. Z.; Shen, X.; Chen, Z.

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less

  13. Single-shot mega-electronvolt ultrafast electron diffraction for structure dynamic studies of warm dense matter

    DOE PAGES

    Mo, M. Z.; Shen, X.; Chen, Z.; ...

    2016-08-04

    We have developed a single-shot mega-electronvolt ultrafast-electron-diffraction system to measure the structural dynamics of warm dense matter. The electron probe in this system is featured by a kinetic energy of 3.2 MeV and a total charge of 20 fC, with the FWHM pulse duration and spot size at sample of 350 fs and 120 µm respectively. We demonstrate its unique capability by visualizing the atomic structural changes of warm dense gold formed from a laser-excited 35-nm freestanding single-crystal gold foil. The temporal evolution of the Bragg peak intensity and of the liquid signal during solid-liquid phase transition are quantitatively determined.more » This experimental capability opens up an exciting opportunity to unravel the atomic dynamics of structural phase transitions in warm dense matter regime« less

  14. Design of the Heat Receiver for the U.S./Russia Solar Dynamic Power Joint Flight Demonstration

    NASA Technical Reports Server (NTRS)

    Strumpf, Hal J.; Krystkowiak, Christopher; Klucher, Beth A.

    1996-01-01

    A joint U.S./Russia program is being conducted to develop, fabricate, launch, and operate a solar dynamic demonstration system on Space Station Mir. The goal of the program is to demonstrate and confirm that solar dynamic power systems are viable for future space applications such as the International Space Station Alpha The major components of the system include a heat receiver, a closed Brayton cycle power conversion unit, a power conditioning and control unit, a concentrator, a radiator, a thermal control system, and a Space Shuttle Carrier. This paper discusses the design of the heat receiver component. The receiver comprises a cylindrical cavity, the walls of which are lined with a series of tubes running the length of the cavity. The engine working fluid, a mixture of xenon and helium, is heated by the concentrated sunlight incident on these tubes. The receiver incorporates integral thermal storage, using a eutectic mixture of lithium fluoride and calcium difluoride as the thermal storage solid-to-liquid phase change materiaL This thermal storage is required to enable power production during eclipse. The phase change material is contained in a series of individual containment canisters.

  15. Lithium concentration dependent structure and mechanics of amorphous silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sitinamaluwa, H. S.; Wang, M. C.; Will, G.

    2016-06-28

    A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of Li{sub x}Si alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus ofmore » elasticity and fracture strength but increase in ductility in tension. For a Li{sub x}Si system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.« less

  16. Comparison of Chain Conformation of Poly(vinyl alcohol) in Solutions and Melts from Quantum Chemistry Based Molecular Dynamics Simulations

    NASA Technical Reports Server (NTRS)

    Jaffe, Richard; Han, Jie; Matsuda, Tsunetoshi; Yoon, Do; Langhoff, Stephen R. (Technical Monitor)

    1997-01-01

    Confirmations of 2,4-dihydroxypentane (DHP), a model molecule for poly(vinyl alcohol), have been studied by quantum chemistry (QC) calculations and molecular dynamics (MD) simulations. QC calculations at the 6-311G MP2 level show the meso tt conformer to be lowest in energy followed by the racemic tg, due to intramolecular hydrogen bond between the hydroxy groups. The Dreiding force field has been modified to reproduce the QC conformer energies for DHP. MD simulations using this force field have been carried out for DHP molecules in the gas phase, melt, and CHCl3 and water solutions. Extensive intramolecular hydrogen bonding is observed for the gas phase and CHCl3 solution, but not for the melt or aqueous solution, Such a condensed phase effect due to intermolecular interactions results in a drastic change in chain conformations, in agreement with experiments.

  17. Evidence for a vibrational phase-dependent isotope effect on the photochemistry of vision.

    PubMed

    Schnedermann, C; Yang, X; Liebel, M; Spillane, K M; Lugtenburg, J; Fernández, I; Valentini, A; Schapiro, I; Olivucci, M; Kukura, P; Mathies, R A

    2018-04-01

    Vibronic coupling is key to efficient energy flow in molecular systems and a critical component of most mechanisms invoking quantum effects in biological processes. Despite increasing evidence for coherent coupling of electronic states being mediated by vibrational motion, it is not clear how and to what degree properties associated with vibrational coherence such as phase and coupling of atomic motion can impact the efficiency of light-induced processes under natural, incoherent illumination. Here, we show that deuteration of the H 11 -C 11 =C 12 -H 12 double-bond of the 11-cis retinal chromophore in the visual pigment rhodopsin significantly and unexpectedly alters the photoisomerization yield while inducing smaller changes in the ultrafast isomerization dynamics assignable to known isotope effects. Combination of these results with non-adiabatic molecular dynamics simulations reveals a vibrational phase-dependent isotope effect that we suggest is an intrinsic attribute of vibronically coherent photochemical processes.

  18. Numerical Modeling of Three-Dimensional Fluid Flow with Phase Change

    NASA Technical Reports Server (NTRS)

    Esmaeeli, Asghar; Arpaci, Vedat

    1999-01-01

    We present a numerical method to compute phase change dynamics of three-dimensional deformable bubbles. The full Navier-Stokes and energy equations are solved for both phases by a front tracking/finite difference technique. The fluid boundary is explicitly tracked by discrete points that are connected by triangular elements to form a front that is used to keep the stratification of material properties sharp and to calculate the interfacial source terms. Two simulations are presented to show robustness of the method in handling complex phase boundaries. In the first case, growth of a vapor bubble in zero gravity is studied where large volume increase of the bubble is managed by adaptively increasing the front resolution. In the second case, growth of a bubble under high gravity is studied where indentation at the rear of the bubble results in a region of large curvature which challenges the front tracking in three dimensions.

  19. Gas-water two-phase flow characterization with Electrical Resistance Tomography and Multivariate Multiscale Entropy analysis.

    PubMed

    Tan, Chao; Zhao, Jia; Dong, Feng

    2015-03-01

    Flow behavior characterization is important to understand gas-liquid two-phase flow mechanics and further establish its description model. An Electrical Resistance Tomography (ERT) provides information regarding flow conditions at different directions where the sensing electrodes implemented. We extracted the multivariate sample entropy (MSampEn) by treating ERT data as a multivariate time series. The dynamic experimental results indicate that the MSampEn is sensitive to complexity change of flow patterns including bubbly flow, stratified flow, plug flow and slug flow. MSampEn can characterize the flow behavior at different direction of two-phase flow, and reveal the transition between flow patterns when flow velocity changes. The proposed method is effective to analyze two-phase flow pattern transition by incorporating information of different scales and different spatial directions. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.

  20. Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures

    NASA Astrophysics Data System (ADS)

    Creath, Katherine

    2010-08-01

    This paper presents images and data of live biological samples taken with a novel Linnik interference microscope. The specially designed optical system enables instantaneous and 3D video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with current magnifications of 10X (NA 0.3) and 20X (NA 0.5) and wavelengths of 660 nm and 785 nm over fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phasemeasurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different mud puddle organisms such as paramecium, flagellates and rotifers will be presented, as will measurements of flying ant wings and cultures of human breast cancer cells. These data highlight examples of monitoring different biological processes and motions. The live presentation features 4D phase movies of these examples.

  1. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound. PMID:22088026

  2. A reduced-order, single-bubble cavitation model with applications to therapeutic ultrasound.

    PubMed

    Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A

    2011-11-01

    Cavitation often occurs in therapeutic applications of medical ultrasound such as shock-wave lithotripsy (SWL) and high-intensity focused ultrasound (HIFU). Because cavitation bubbles can affect an intended treatment, it is important to understand the dynamics of bubbles in this context. The relevant context includes very high acoustic pressures and frequencies as well as elevated temperatures. Relative to much of the prior research on cavitation and bubble dynamics, such conditions are unique. To address the relevant physics, a reduced-order model of a single, spherical bubble is proposed that incorporates phase change at the liquid-gas interface as well as heat and mass transport in both phases. Based on the energy lost during the inertial collapse and rebound of a millimeter-sized bubble, experimental observations were used to tune and test model predictions. In addition, benchmarks from the published literature were used to assess various aspects of model performance. Benchmark comparisons demonstrate that the model captures the basic physics of phase change and diffusive transport, while it is quantitatively sensitive to specific model assumptions and implementation details. Given its performance and numerical stability, the model can be used to explore bubble behaviors across a broad parameter space relevant to therapeutic ultrasound.

  3. Rational molecular dynamics scheme for predicting optimum concentration loading of nano-additive in phase change materials

    NASA Astrophysics Data System (ADS)

    Rastogi, Monisha; Vaish, Rahul; Madhar, Niyaz Ahamad; Shaikh, Hamid; Al-Zahrani, S. M.

    2015-10-01

    The present study deals with the diffusion and phase transition behaviour of paraffin reinforced with carbon nano-additives namely graphene oxide (GO) and surface functionalized single walled carbon nanotubes (SWCNT). Bulk disordered systems of paraffin hydrocarbons impregnated with carbon nano-additives have been generated in realistic equilibrium conformations for potential application as latent heat storage systems. Ab initio molecular dynamics(MD) in conjugation with COMPASS forcefield has been implemented using periodic boundary conditions. The proposed scheme allows determination of optimum nano-additive loading for improving thermo-physical properties through analysis of mass, thermal and transport properties; and assists in determination of composite behaviour and related performance from microscopic point of view. It was observed that nanocomposites containing 7.8 % surface functionalised SWCNT and 55% GO loading corresponds to best latent heat storage system. The propounded methodology could serve as a by-pass route for economically taxing and iterative experimental procedures required to attain the optimum composition for best performance. The results also hint at the large unexplored potential of ab-initio classical MD techniques for predicting performance of new nanocomposites for potential phase change material applications.

  4. The timing of galvanic vestibular stimulation affects responses to platform translation

    NASA Technical Reports Server (NTRS)

    Hlavacka, F.; Shupert, C. L.; Horak, F. B.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    We compared the effects of galvanic vestibular stimulation applied at 0, 0.5, 1.5 and 2.5 s prior to a backward platform translation on postural responses. The effect of the galvanic stimulation was largest on the final equilibrium position of the center of pressure (CoP). The largest effects occurred for the 0.5 and 0-s pre-period, when the dynamic CoP pressure changes in response to both the galvanic stimulus and the platform translation coincided. The shift in the final equilibrium position was also larger than the sum of the shifts for the galvanic stimulus and the platform translation alone for the 0.5 and 0-s pre-periods. The initial rate of change of the CoP response to the platform translation was not significantly affected in any condition. Changes in the peak CoP position could be accounted for by local interaction of CoP velocity changes induced by the galvanic and translation responses alone, but the changes in final equilibrium position could only be accounted for by a change in global body orientation. These findings suggest that the contribution of vestibulospinal information is greatest during the dynamic phase of the postural response, and that the vestibular system contributes most to the later components of the postural response, particularly to the final equilibrium position. These findings suggest that a nonlinear interaction between the vestibular signal induced by the galvanic current and the sensory stimuli produced by the platform translation occurs when the two stimuli are presented within 1 s, during the dynamic phase of the postural response to the galvanic stimulus. When presented at greater separations in time, the stimuli appear to be treated as independent events, such that no interaction occurs. Copyright 1999 Elsevier Science B.V.

  5. Understanding the importance of the temperature dependence of viscosity on the crystallization dynamics in the Ge2Sb2Te5 phase-change material

    NASA Astrophysics Data System (ADS)

    Aladool, A.; Aziz, M. M.; Wright, C. D.

    2017-06-01

    The crystallization dynamics in the phase-change material Ge2Sb2Te5 is modelled using the more detailed Master equation method over a wide range of heating rates commensurate with published ultrafast calorimetry experiments. Through the attachment and detachment of monomers, the Master rate equation naturally traces nucleation and growth of crystallites with temperature history to calculate the transient distribution of cluster sizes in the material. Both the attachment and detachment rates in this theory are strong functions of viscosity, and thus, the value of viscosity and its dependence on temperature significantly affect the crystallization process. In this paper, we use the physically realistic Mauro-Yue-Ellison-Gupta-Allan viscosity model in the Master equation approach to study the role of the viscosity model parameters on the crystallization dynamics in Ge2Sb2Te5 under ramped annealing conditions with heating rates up to 4 × 104 K/s. Furthermore, due to the relatively low computational cost of the Master equation method compared to atomistic level computations, an iterative numerical approach was developed to fit theoretical Kissinger plots simulated with the Master equation system to experimental Kissinger plots from ultrafast calorimetry measurements at increasing heating rates. This provided a more rigorous method (incorporating both nucleation and growth processes) to extract the viscosity model parameters from the analysis of experimental data. The simulations and analysis revealed the strong coupling between the glass transition temperature and fragility index in the viscosity and crystallization models and highlighted the role of the dependence of the glass transition temperature on the heating rate for the accurate estimation of the fragility index of phase-change materials from the analysis of experimental measurements.

  6. Novel dynamic thermal characterization of multifunctional concretes with microencapsulated phase change materials

    NASA Astrophysics Data System (ADS)

    Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Cabeza, Luisa F.; Ubertini, Filippo; Cotana, Franco

    2017-04-01

    Concrete is widely applied in the construction sector for its reliable mechanical performance, its easiness of use and low costs. It also appears promising for enhancing the thermal-energy behavior of buildings thanks to its capability to be doped with multifunctional fillers. In fact, key studies acknowledged the benefits of thermally insulated concretes for applications in ceilings and walls. At the same time, thermal capacity also represents a key property to be optimized, especially for lightweight constructions. In this view, Thermal-Energy Storage (TES) systems have been recently integrated into building envelopes for increasing thermal inertia. More in detail, numerical experimental investigations showed how Phase Change materials (PCMs), as an acknowledged passive TES strategy, can be effectively included in building envelope, with promising results in terms of thermal buffer potentiality. In particular, this work builds upon previous papers aimed at developing the new PCM-filled concretes for structural applications and optimized thermalenergy efficiency, and it is focused on the development of a new experimental method for testing such composite materials in thermal-energy dynamic conditions simulated in laboratory by exposing samples to environmentally controlled microclimate while measuring thermal conductivity and diffusivity by means of transient plane source techniques. The key findings show how the new composites are able to increasingly delay the thermal wave with increasing the PCM concentration and how the thermal conductivity varies during the course of the phase change, in both melting and solidification processes. The new analysis produces useful findings in proposing an effective method for testing composite materials with adaptive thermal performance, much needed by the scientific community willing to study building envelopes dynamics.

  7. Wave energy absorption by a floating air bag

    NASA Astrophysics Data System (ADS)

    Kurniawan, A.; Chaplin, J. R.; Greaves, D. M.; Hann, M.

    2017-02-01

    A floating air bag, ballasted in water, expands and contracts as it heaves under wave action. Connecting the bag to a secondary volume via a turbine transforms the bag into a device capable of generating useful energy from the waves. Small-scale measurements of the device reveal some interesting properties, which are successfully predicted numerically. Owing to its compressibility, the device can have a heave resonance period longer than that of a rigid device of the same shape and size, without any phase control. Furthermore, varying the amount of air in the bag is found to change its shape and hence its dynamic response, while varying the turbine damping or the air volume ratio changes the dynamic response without changing the shape.

  8. Dynamic and interacting complex networks

    NASA Astrophysics Data System (ADS)

    Dickison, Mark E.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of dynamic and interacting complex networks. The mapping of various social and physical phenomena to complex networks has been a rich field in the past few decades. Subjects as broad as petroleum engineering, scientific collaborations, and the structure of the internet have all been analyzed in a network physics context, with useful and universal results. In the first chapter we introduce basic concepts in networks, including the two types of network configurations that are studied and the statistical physics and epidemiological models that form the framework of the network research, as well as covering various previously-derived results in network theory that are used in the work in the following chapters. In the second chapter we introduce a model for dynamic networks, where the links or the strengths of the links change over time. We solve the model by mapping dynamic networks to the problem of directed percolation, where the direction corresponds to the time evolution of the network. We show that the dynamic network undergoes a percolation phase transition at a critical concentration pc, that decreases with the rate r at which the network links are changed. The behavior near criticality is universal and independent of r. We find that for dynamic random networks fundamental laws are changed: i) The size of the giant component at criticality scales with the network size N for all values of r, rather than as N2/3 in static network, ii) In the presence of a broad distribution of disorder, the optimal path length between two nodes in a dynamic network scales as N1/2, compared to N1/3 in a static network. The third chapter consists of a study of the effect of quarantine on the propagation of epidemics on an adaptive network of social contacts. For this purpose, we analyze the susceptible-infected-recovered model in the presence of quarantine, where susceptible individuals protect themselves by disconnecting their links to infected neighbors with probability w and reconnecting them to other susceptible individuals chosen at random. Starting from a single infected individual, we show by an analytical approach and simulations that there is a phase transition at a critical rewiring (quarantine) threshold wc separating a phase (w < wc) where the disease reaches a large fraction of the population from a phase (w > wc) where the disease does not spread out. We find that in our model the topology of the network strongly affects the size of the propagation and that wc increases with the mean degree and heterogeneity of the network. We also find that wc is reduced if we perform a preferential rewiring, in which the rewiring probability is proportional to the degree of infected nodes. In the fourth chapter, we study epidemic processes on interconnected network systems, and find two distinct regimes. In strongly-coupled network systems, epidemics occur simultaneously across the entire system at a critical value betac. In contrast, in weakly-coupled network systems, a mixed phase exists below betac where an epidemic occurs in one network but does not spread to the coupled network. We derive an expression for the network and disease parameters that allow this mixed phase and verify it numerically. Public health implications of communities comprising these two classes of network systems are also mentioned.

  9. Quantifying Intrinsic Variability of Sagittarius A* Using Closure Phase Measurements of the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Roelofs, Freek; Johnson, Michael D.; Shiokawa, Hotaka; Doeleman, Sheperd S.; Falcke, Heino

    2017-09-01

    General relativistic magnetohydrodynamic (GRMHD) simulations of accretion disks and jets associated with supermassive black holes show variability on a wide range of timescales. On timescales comparable to or longer than the gravitational timescale {t}G={GM}/{c}3, variation may be dominated by orbital dynamics of the inhomogeneous accretion flow. Turbulent evolution within the accretion disk is expected on timescales comparable to the orbital period, typically an order of magnitude larger than t G . For Sgr A*, t G is much shorter than the typical duration of a VLBI experiment, enabling us to study this variability within a single observation. Closure phases, the sum of interferometric visibility phases on a triangle of baselines, are particularly useful for studying this variability. In addition to a changing source structure, variations in observed closure phase can also be due to interstellar scattering, thermal noise, and the changing geometry of projected baselines over time due to Earth rotation. We present a metric that is able to distinguish the latter two from intrinsic or scattering variability. This metric is validated using synthetic observations of GRMHD simulations of Sgr A*. When applied to existing multi-epoch EHT data of Sgr A*, this metric shows that the data are most consistent with source models containing intrinsic variability from source dynamics, interstellar scattering, or a combination of those. The effects of black hole inclination, orientation, spin, and morphology (disk or jet) on the expected closure phase variability are also discussed.

  10. Investigating multiphoton phenomena using nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Shu

    Many seemingly simple systems can display extraordinarily complex dynamics which has been studied and uncovered through nonlinear dynamical theory. The leitmotif of this thesis is changing phase-space structures and their (linear or non-linear) stabilities by adding control functions (which act on the system as external perturbations) to the relevant Hamiltonians. These phase-space structures may be periodic orbits, invariant tori or their stable and unstable manifolds. One-electron systems and diatomic molecules are fundamental and important staging ground for new discoveries in nonlinear dynamics. In past years, increasing emphasis and effort has been put on the control or manipulation of these systems. Recent developments of nonlinear dynamical tools can provide efficient ways of doing so. In the first subtopic of the thesis, we are adding a control function to restore tori at prescribed locations in phase space. In the remainder of the thesis, a control function with parameters is used to change the linear stability of the periodic orbits which govern the processes in question. In this thesis, we report our theoretical analyses on multiphoton ionization of Rydberg atoms exposed to strong microwave fields and the dissociation of diatomic molecules exposed to bichromatic lasers using nonlinear dynamical tools. This thesis is composed of three subtopics. In the first subtopic, we employ local control theory to reduce the stochastic ionization of hydrogen atom in a strong microwave field by adding a relatively small control term to the original Hamiltonian. In the second subtopic, we perform periodic orbit analysis to investigate multiphoton ionization driven by a bichromatic microwave field. Our results show quantitative and qualitative agreement with previous studies, and hence identify the mechanism through which short periodic orbits organize the dynamics in multiphoton ionization. In addition, we achieve substantial time savings with this approach. In the third subtopic we extend our periodic orbit analysis to the dissociation of diatomic molecules driven by a bichromatic laser. In this problem, our results based on periodic orbit analysis again show good agreement with previous work, and hence promise more potential applications of this approach in molecular physics.

  11. The role of dynamically induced variability in the recent warming trend slowdown over the Northern Hemisphere

    PubMed Central

    Guan, Xiaodan; Huang, Jianping; Guo, Ruixia; Lin, Pu

    2015-01-01

    Since the slowing of the trend of increasing surface air temperature (SAT) in the late 1990 s, intense interest and debate have arisen concerning the contribution of human activities to the warming observed in previous decades. Although several explanations have been proposed for the warming-trend slowdown (WTS), none has been generally accepted. We investigate the WTS using a recently developed methodology that can successfully identify and separate the dynamically induced and radiatively forced SAT changes from raw SAT data. The dynamically induced SAT changes exhibited an obvious cooling effect relative to the warming effect of the adjusted SAT in the hiatus process. A correlation analysis suggests that the changes are dominated primarily by the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multidecadal Oscillation (AMO). Our results confirm that dynamically induced variability caused the WTS. The radiatively forced SAT changes are determined mainly by anthropogenic forcing, indicating the warming influence of greenhouse gases (GHGs), which reached levels of 400 ppm during the hiatus period. Therefore, the global SAT will not remain permanently neutral. The increased radiatively forced SAT will be amplified by increased dynamically induced SAT when the natural mode returns to a warming phase in the next period. PMID:26223491

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Cai, Zhonghou; Chen, Pice

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO 2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation ismore » initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO 2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO 2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less

  13. Modeling the dynamics of a phreatic eruption based on a tilt observation: Barrier breakage leading to the 2014 eruption of Mount Ontake, Japan

    NASA Astrophysics Data System (ADS)

    Maeda, Yuta; Kato, Aitaro; Yamanaka, Yoshiko

    2017-02-01

    Although phreatic eruptions are common volcanic phenomena that sometimes result in significant disasters, their dynamics are poorly understood. In this study, we address the dynamics of the phreatic eruption of Mount Ontake, Japan, in 2014 based on analyses of a tilt change observed immediately (450 s) before the eruption onset. We conducted two sets of analysis: a waveform inversion and a modified phase-space analysis. Our waveform inversion of the tilt signal points to a vertical tensile crack at a depth of 1100 m. Our modified phase-space analysis suggests that the tilt change was at first a linear function in time that then switched to exponential growth. We constructed simple analytical models to explain these temporal functions. The linear function was explained by the boiling of underground water controlled by a constant heat supply from a greater depth. The exponential function was explained by the decompression-induced boiling of water and the upward Darcy flow of the water vapor through a permeable region of small cracks that were newly created in response to ongoing boiling. We interpret that this region was intact prior to the start of the tilt change, and thus, it has acted as a permeability barrier for the upward migration of fluids; it was a breakage of this barrier that led to the eruption.

  14. {sup 1}H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids—[C(NH{sub 2}){sub 3}]{sub 3}Bi{sub 2}I{sub 9} as an example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Florek-Wojciechowska, M.; Wojciechowski, M.; Brym, Sz.

    {sup 1}H nuclear magnetic resonance relaxometry has been applied to reveal information on dynamics and structure of Gu{sub 3}Bi{sub 2}I{sub 9} ([Gu = C(NH{sub 2}){sub 3}] denotes guanidinium cation). The data have been analyzed in terms of a theory of quadrupole relaxation enhancement, which has been extended here by including effects associated with quadrupole ({sup 14}N) spin relaxation caused by a fast fluctuating component of the electric field gradient tensor. Two motional processes have been identified: a slow one occurring on a timescale of about 8 × 10{sup −6} s which has turned out to be (almost) temperature independent, andmore » a fast process in the range of 10{sup −9} s. From the {sup 1}H-{sup 14}N relaxation contribution (that shows “quadrupole peaks”) the quadrupole parameters, which are a fingerprint of the arrangement of the anionic network, have been determined. It has been demonstrated that the magnitude of the quadrupole coupling considerably changes with temperature and the changes are not caused by phase transitions. At the same time, it has been shown that there is no evidence of abrupt changes in the cationic dynamics and the anionic substructure upon the phase transitions.« less

  15. Neural network with dynamically adaptable neurons

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul (Inventor)

    1994-01-01

    This invention is an adaptive neuron for use in neural network processors. The adaptive neuron participates in the supervised learning phase of operation on a co-equal basis with the synapse matrix elements by adaptively changing its gain in a similar manner to the change of weights in the synapse IO elements. In this manner, training time is decreased by as much as three orders of magnitude.

  16. Learning-based deformable image registration for infant MR images in the first year of life.

    PubMed

    Hu, Shunbo; Wei, Lifang; Gao, Yaozong; Guo, Yanrong; Wu, Guorong; Shen, Dinggang

    2017-01-01

    Many brain development studies have been devoted to investigate dynamic structural and functional changes in the first year of life. To quantitatively measure brain development in such a dynamic period, accurate image registration for different infant subjects with possible large age gap is of high demand. Although many state-of-the-art image registration methods have been proposed for young and elderly brain images, very few registration methods work for infant brain images acquired in the first year of life, because of (a) large anatomical changes due to fast brain development and (b) dynamic appearance changes due to white-matter myelination. To address these two difficulties, we propose a learning-based registration method to not only align the anatomical structures but also alleviate the appearance differences between two arbitrary infant MR images (with large age gap) by leveraging the regression forest to predict both the initial displacement vector and appearance changes. Specifically, in the training stage, two regression models are trained separately, with (a) one model learning the relationship between local image appearance (of one development phase) and its displacement toward the template (of another development phase) and (b) another model learning the local appearance changes between the two brain development phases. Then, in the testing stage, to register a new infant image to the template, we first predict both its voxel-wise displacement and appearance changes by the two learned regression models. Since such initializations can alleviate significant appearance and shape differences between new infant image and the template, it is easy to just use a conventional registration method to refine the remaining registration. We apply our proposed registration method to align 24 infant subjects at five different time points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and achieve more accurate and robust registration results, compared to the state-of-the-art registration methods. The proposed learning-based registration method addresses the challenging task of registering infant brain images and achieves higher registration accuracy compared with other counterpart registration methods. © 2016 American Association of Physicists in Medicine.

  17. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study.

    PubMed

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-25

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency.

  18. Building Energy Storage Panel Based on Paraffin/Expanded Perlite: Preparation and Thermal Performance Study

    PubMed Central

    Kong, Xiangfei; Zhong, Yuliang; Rong, Xian; Min, Chunhua; Qi, Chengying

    2016-01-01

    This study is focused on the preparation and performance of a building energy storage panel (BESP). The BESP was fabricated through a mold pressing method based on phase change material particle (PCMP), which was prepared in two steps: vacuum absorption and surface film coating. Firstly, phase change material (PCM) was incorporated into expanded perlite (EP) through a vacuum absorption method to obtain composite PCM; secondly, the composite PCM was immersed into the mixture of colloidal silica and organic acrylate, and then it was taken out and dried naturally. A series of experiments, including differential scanning calorimeter (DSC), scanning electron microscope (SEM), best matching test, and durability test, have been conducted to characterize and analyze the thermophysical property and reliability of PCMP. Additionally, the thermal performance of BESP was studied through a dynamic thermal property test. The results have showed that: (1) the surface film coating procedure can effectively solve the leakage problem of composite phase change material prepared by vacuum impregnation; (2) the optimum adsorption ratio for paraffin and EP was 52.5:47.5 in mass fraction, and the PCMP has good thermal properties, stability, and durability; and (3) in the process of dynamic thermal performance test, BESP have low temperature variation, significant temperature lagging, and large heat storage ability, which indicated the potential of BESP in the application of building energy efficiency. PMID:28787870

  19. Sequence Directionality Dramatically Affects LCST Behavior of Elastin-Like Polypeptides.

    PubMed

    Li, Nan K; Roberts, Stefan; Quiroz, Felipe Garcia; Chilkoti, Ashutosh; Yingling, Yaroslava G

    2018-04-30

    Elastin-like polypeptides (ELP) exhibit an inverse temperature transition or lower critical solution temperature (LCST) transition phase behavior in aqueous solutions. In this paper, the thermal responsive properties of the canonical ELP, poly(VPGVG), and its reverse sequence poly(VGPVG) were investigated by turbidity measurements of the cloud point behavior, circular dichroism (CD) measurements, and all-atom molecular dynamics (MD) simulations to gain a molecular understanding of mechanism that controls hysteretic phase behavior. It was shown experimentally that both poly(VPGVG) and poly(VGPVG) undergo a transition from soluble to insoluble in aqueous solution upon heating above the transition temperature ( T t ). However, poly(VPGVG) resolubilizes upon cooling below its T t , whereas the reverse sequence, poly(VGPVG), remains aggregated despite significant undercooling below the T t . The results from MD simulations indicated that a change in sequence order results in significant differences in the dynamics of the specific residues, especially valines, which lead to extensive changes in the conformations of VPGVG and VGPVG pentamers and, consequently, dissimilar propensities for secondary structure formation and overall structure of polypeptides. These changes affected the relative hydrophilicities of polypeptides above T t , where poly(VGPVG) is more hydrophilic than poly(VPGVG) with more extended conformation and larger surface area, which led to formation of strong interchain hydrogen bonds responsible for stabilization of the aggregated phase and the observed thermal hysteresis for poly(VGPVG).

  20. Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds

    NASA Astrophysics Data System (ADS)

    Gabardi, Silvia; Caravati, Sebastiano; Los, Jan H.; Kühne, Thomas D.; Bernasconi, Marco

    2016-05-01

    We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge2Sb2Te5 phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.

  1. Influence of the exchange and correlation functional on the structure of amorphous InSb and In3SbTe2 compounds.

    PubMed

    Gabardi, Silvia; Caravati, Sebastiano; Los, Jan H; Kühne, Thomas D; Bernasconi, Marco

    2016-05-28

    We have investigated the structural, vibrational, and electronic properties of the amorphous phase of InSb and In3SbTe2 compounds of interest for applications in phase change non-volatile memories. Models of the amorphous phase have been generated by quenching from the melt by molecular dynamics simulations based on density functional theory. In particular, we have studied the dependence of the structural properties on the choice of the exchange-correlation functional. It turns out that the use of the Becke-Lee-Yang-Parr functional provides models with a much larger fraction of In atoms in a tetrahedral bonding geometry with respect to previous results obtained with the most commonly used Perdew-Becke-Ernzerhof functional. This outcome is at odd with the properties of Ge2Sb2Te5 phase change compound for which the two exchange-correlation functionals yield very similar results on the structure of the amorphous phase.

  2. First-principles study of the amorphous In3SbTe2 phase change compound

    NASA Astrophysics Data System (ADS)

    Los, Jan H.; Kühne, Thomas D.; Gabardi, Silvia; Bernasconi, Marco

    2013-11-01

    Ab initio molecular dynamics simulations based on density functional theory were performed to generate amorphous models of the phase change compound In3SbTe2 by quenching from the melt. In-Sb and In-Te are the most abundant bonds with only a minor fraction of Sb-Te bonds. The bonding geometry in the amorphous phase is, however, strongly dependent on the density in the range 6.448-5.75 g/cm3 that we investigated. While at high density the bonding geometry of In atoms is mostly octahedral-like as in the cubic crystalline phase of the ternary compound In3SbTe2, at low density we observed a sizable fraction of tetrahedral-like geometries similar to those present in the crystalline phase of the two binary compounds InTe and InSb that the ternary system can be thought to be made of. We show that the different ratio between octahedral-like and tetrahedral-like bonding geometries has fingerprints in the optical and vibrational spectra.

  3. Phase-resolved acoustic radiation force optical coherence elastography

    NASA Astrophysics Data System (ADS)

    Qi, Wenjuan; Chen, Ruimin; Chou, Lidek; Liu, Gangjun; Zhang, Jun; Zhou, Qifa; Chen, Zhongping

    2012-11-01

    Many diseases involve changes in the biomechanical properties of tissue, and there is a close correlation between tissue elasticity and pathology. We report on the development of a phase-resolved acoustic radiation force optical coherence elastography method (ARF-OCE) to evaluate the elastic properties of tissue. This method utilizes chirped acoustic radiation force to produce excitation along the sample's axial direction, and it uses phase-resolved optical coherence tomography (OCT) to measure the vibration of the sample. Under 500-Hz square wave modulated ARF signal excitation, phase change maps of tissue mimicking phantoms are generated by the ARF-OCE method, and the resulting Young's modulus ratio is correlated with a standard compression test. The results verify that this technique could efficiently measure sample elastic properties accurately and quantitatively. Furthermore, a three-dimensional ARF-OCE image of the human atherosclerotic coronary artery is obtained. The result indicates that our dynamic phase-resolved ARF-OCE method can delineate tissues with different mechanical properties.

  4. In Situ Observation of Oxygen Vacancy Dynamics and Ordering in the Epitaxial LaCoO3 System.

    PubMed

    Jang, Jae Hyuck; Kim, Young-Min; He, Qian; Mishra, Rohan; Qiao, Liang; Biegalski, Michael D; Lupini, Andrew R; Pantelides, Sokrates T; Pennycook, Stephen J; Kalinin, Sergei V; Borisevich, Albina Y

    2017-07-25

    Vacancy dynamics and ordering underpin the electrochemical functionality of complex oxides and strongly couple to their physical properties. In the field of the epitaxial thin films, where connection between chemistry and film properties can be most clearly revealed, the effects related to oxygen vacancies are attracting increasing attention. In this article, we report a direct, real-time, atomic level observation of the formation of oxygen vacancies in the epitaxial LaCoO 3 thin films and heterostructures under the influence of the electron beam utilizing scanning transmission electron microscopy (STEM). In the case of LaCoO 3 /SrTiO 3 superlattice, the formation of the oxygen vacancies is shown to produce quantifiable changes in the interatomic distances, as well as qualitative changes in the symmetry of the Co sites manifested as off-center displacements. The onset of these changes was observed in both the [100] pc and [110] pc orientations in real time. Additionally, annular bright field images directly show the formation of oxygen vacancy channels along [110]pc direction. In the case of 15 u.c. LaCoO 3 thin film, we observe the sequence of events during beam-induced formation of oxygen vacancy ordered phases and find them consistent with similar processes in the bulk. Moreover, we record the dynamics of the nucleation, growth, and defect interaction at the atomic scale as these transformations happen. These results demonstrate that we can track dynamic oxygen vacancy behavior with STEM, generating atomic-level quantitative information on phase transformation and oxygen diffusion.

  5. Mantle convection with plates and mobile, faulted plate margins.

    PubMed

    Zhong, S; Gurnis, M

    1995-02-10

    A finite-element formulation of faults has been incorporated into time-dependent models of mantle convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and mantle dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower mantle, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower mantle by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates.

  6. Novel Gyroscopic Mounting for Crystal Oscillators to Increase Short and Medium Term Stability under Highly Dynamic Conditions

    PubMed Central

    Abedi, Maryam; Jin, Tian; Sun, Kewen

    2015-01-01

    In this paper, a gyroscopic mounting method for crystal oscillators to reduce the impact of dynamic loads on their output stability has been proposed. In order to prove the efficiency of this mounting approach, each dynamic load-induced instability has been analyzed in detail. A statistical study has been performed on the elevation angle of the g-sensitivity vector of Stress Compensated-cut (SC-cut) crystals. The analysis results show that the proposed gyroscopic mounting method gives good performance for host vehicle attitude changes. A phase noise improvement of 27 dB maximum and 5.7 dB on average can be achieved in the case of steady state loads, while under sinusoidal vibration conditions, the maximum and average phase noise improvement are as high as 24 dB and 7.5 dB respectively. With this gyroscopic mounting method, random vibration-induced phase noise instability is reduced 30 dB maximum and 8.7 dB on average. Good effects are apparent for crystal g-sensitivity vectors with low elevation angle φ and azimuthal angle β. under highly dynamic conditions, indicating the probability that crystal oscillator instability will be significantly reduced by using the proposed mounting approach. PMID:26091393

  7. Examination of directed flow as a signal for a phase transition in relativistic nuclear collisions

    NASA Astrophysics Data System (ADS)

    Steinheimer, J.; Auvinen, J.; Petersen, H.; Bleicher, M.; Stöcker, H.

    2014-05-01

    The sign change of the slope of the directed flow of baryons has been predicted as a signal for a first order phase transition within fluid dynamical calculations. Recently, the directed flow of identified particles was measured by the STAR Collaboration in the beam energy scan program. In this article, we examine the collision energy dependence of directed flow v1 in fluid dynamical model descriptions of heavy ion collisions for √sNN =3-20 GeV. The first step is to reproduce the existing predictions within pure fluid dynamical calculations. As a second step we investigate the influence of the order of the phase transition on the anisotropic flow within a state-of-the-art hybrid approach that describes other global observables reasonably well. We find that, in the hybrid approach, there seems to be no sensitivity of the directed flow on the equation of state and in particular on the existence of a first order phase transition. In addition, we explore more subtle sensitivities such as the Cooper-Frye transition criterion and discuss how momentum conservation and the definition of the event plane affects the results. At this point, none of our calculations matches qualitatively the behavior of the STAR data; the values of the slopes are always larger than in the data.

  8. Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos.

    PubMed

    Innocenti, Giacomo; Morelli, Alice; Genesio, Roberto; Torcini, Alessandro

    2007-12-01

    The dynamical phases of the Hindmarsh-Rose neuronal model are analyzed in detail by varying the external current I. For increasing current values, the model exhibits a peculiar cascade of nonchaotic and chaotic period-adding bifurcations leading the system from the silent regime to a chaotic state dominated by bursting events. At higher I-values, this phase is substituted by a regime of continuous chaotic spiking and finally via an inverse period doubling cascade the system returns to silence. The analysis is focused on the transition between the two chaotic phases displayed by the model: one dominated by spiking dynamics and the other by bursts. At the transition an abrupt shrinking of the attractor size associated with a sharp peak in the maximal Lyapunov exponent is observable. However, the transition appears to be continuous and smoothed out over a finite current interval, where bursts and spikes coexist. The beginning of the transition (from the bursting side) is signaled from a structural modification in the interspike interval return map. This change in the map shape is associated with the disappearance of the family of solutions responsible for the onset of the bursting chaos. The successive passage from bursting to spiking chaos is associated with a progressive pruning of unstable long-lasting bursts.

  9. Dynamics of ionospheric disturbances during the 17-19 March 2015 geomagnetic storm over East Asia

    NASA Astrophysics Data System (ADS)

    Polekh, N.; Zolotukhina, N.; Kurkin, V.; Zherebtsov, G.; Shi, J.; Wang, G.; Wang, Z.

    2017-12-01

    Based on vertical sounding data from nine ionosondes located at 19-66°N, 100-130°E we investigated the latitude-temporal dynamics of ionospheric disturbances during the 17-19 March 2015 severe two-step geomagnetic storm, and compared it with temporal dynamics of total electron content (TEC) profiles along 120°E. The phenomena that accompanied the main and early recovery storm phases were in particular focused on in this study. The distinct storm-related ionospheric disturbances began 2.5, 4 and 5 h after onset of the storm main phase at subauroral, middle and low latitudes, respectively. To clarify the main mechanisms causing the disturbances at different latitudes we compared the changes in ionospheric parameters and TEC profiles with changes in the northern polar cap index and geomagnetic field in the vicinity of 120°E. The equatorward shift of the main ionospheric trough (MIT) and diffuse precipitations zone accompanied by an increase in precipitating particle flux was found to have a substantial influence on the subauroral ionosphere during the main and early recovery phases. The thermosphere Joule heating due to westward and polarized jets led to an increase in neutral wind velocity and generation of disturbed dynamo electric field. The strengthened wind was the main reason of the positive ionospheric disturbance observed at middle latitudes in the evening on 17 March. The further enhancement of magnetospheric convection caused the displacement of MIT and its associated negative ionospheric disturbance to middle latitudes. At low latitudes superposition of prompt penetration and disturbed dynamo electric fields play the decisive role in the ionosphere behavior till the end of the early recovery phase.

  10. 78 FR 64916 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-30

    ...., light to heat), crystallization, melting, phase transformations, fracture, and other dynamic events. The... Sciences University, 1120 15th Street, Augusta, GA 30912. Instrument: Imaging System/Digital Microscope... the instrument include fast wavelength change, a dichromotome system, and two different light sources...

  11. Does shaking increase the pressure inside a bottle of champagne?

    PubMed

    Vreme, A; Pouligny, B; Nadal, F; Liger-Belair, G

    2015-02-01

    Colas, beers and sparkling wines are all concentrated solutions of carbon dioxide in aqueous solvents. Any such carbonated liquid is ordinarily conditioned inside a closed bottle or a metal can as a liquid-gas 2-phase system. At thermodynamic equilibrium, the partial pressure of carbon-dioxide in the gas phase and its concentration in the liquid are proportional (Henry's law). In practical conditions and use (transport, opening of the container, exterior temperature change, etc.), Henry's equilibrium can be perturbed. The goal of this paper is to describe and understand how the system responds to such perturbations and evolves towards a new equilibrium state. Formally, we investigate the dynamics around Henry's equilibrium of a closed system, through dedicated experiments and modeling. We focus on the response to a sudden pressure change and to mechanical shaking (the latter point inspired the article's title). Observations are rationalized through basic considerations including molecular diffusion, bubble dynamics (based on Epstein-Plesset theory) and chemi-convective hydrodynamic instabilities. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. A 'dynamic' landscape of fear: prey responses to spatiotemporal variations in predation risk across the lunar cycle.

    PubMed

    Palmer, M S; Fieberg, J; Swanson, A; Kosmala, M; Packer, C

    2017-11-01

    Ambiguous empirical support for 'landscapes of fear' in natural systems may stem from failure to consider dynamic temporal changes in predation risk. The lunar cycle dramatically alters night-time visibility, with low luminosity increasing hunting success of African lions. We used camera-trap data from Serengeti National Park to examine nocturnal anti-predator behaviours of four herbivore species. Interactions between predictable fluctuations in night-time luminosity and the underlying risk-resource landscape shaped herbivore distribution, herding propensity and the incidence of 'relaxed' behaviours. Buffalo responded least to temporal risk cues and minimised risk primarily through spatial redistribution. Gazelle and zebra made decisions based on current light levels and lunar phase, and wildebeest responded to lunar phase alone. These three species avoided areas where likelihood of encountering lions was high and changed their behaviours in risky areas to minimise predation threat. These patterns support the hypothesis that fear landscapes vary heterogeneously in both space and time. © 2017 John Wiley & Sons Ltd/CNRS.

  13. Observational study: microgravity testing of a phase-change reference on the International Space Station

    PubMed Central

    Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre

    2015-01-01

    Background: Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Aims: Improvement of orbital temperature measurements for long duration earth observing and remote sensing. Methods: To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. Results: MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. Conclusions: To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed. PMID:28725713

  14. Observational study: microgravity testing of a phase-change reference on the International Space Station.

    PubMed

    Topham, T Shane; Bingham, Gail E; Latvakoski, Harri; Podolski, Igor; Sychev, Vladimir S; Burdakin, Andre

    2015-01-01

    Orbital sensors to monitor global climate change during the next decade require low-drift rates for onboard thermometry, which is currently unattainable without on-orbit recalibration. Phase-change materials (PCMs), such as those that make up the ITS-90 standard, are seen as the most reliable references on the ground and could be good candidates for orbital recalibration. Space Dynamics Lab (SDL) has been developing miniaturized phase-change references capable of deployment on an orbital blackbody for nearly a decade. Improvement of orbital temperature measurements for long duration earth observing and remote sensing. To determine whether and how microgravity will affect the phase transitions, SDL conducted experiments with ITS-90 standard material (gallium, Ga) on the International Space Station (ISS) and compared the phase-change temperature with earth-based measurements. The miniature on-orbit thermal reference (MOTR) experiment launched to the ISS in November 2013 on Soyuz TMA-11M with the Expedition 38 crew and returned to Kazakhstan in March 2014 on the Soyuz TMA-10 spacecraft. MOTR tested melts and freezes of Ga using repeated 6-h cycles. Melt cycles obtained on the ground before and after launch were compared with those obtained on the ISS. To within a few mK uncertainty, no significant difference between the melt temperature of Ga at 1 g and in microgravity was observed.

  15. The relative phases of basal ganglia activities dynamically shape effective connectivity in Parkinson's disease.

    PubMed

    Cagnan, Hayriye; Duff, Eugene Paul; Brown, Peter

    2015-06-01

    Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37-64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance-related pathological circuit interactions. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

  16. Microbial phylogeny determines transcriptional response of resistome to dynamic composting processes.

    PubMed

    Wang, Cheng; Dong, Da; Strong, P J; Zhu, Weijing; Ma, Zhuang; Qin, Yong; Wu, Weixiang

    2017-08-16

    Animal manure is a reservoir of antibiotic resistance genes (ARGs) that pose a potential health risk globally, especially for resistance to the antibiotics commonly used in livestock production (such as tetracycline, sulfonamide, and fluoroquinolone). Currently, the effects of biological treatment (composting) on the transcriptional response of manure ARGs and their microbial hosts are not well characterized. Composting is a dynamic process that consists of four distinct phases that are distinguished by the temperature resulting from microbial activity, namely the mesophilic, thermophilic, cooling, and maturing phases. In this study, changes of resistome expression were determined and related to active microbiome profiles during the dynamic composting process. This was achieved by integrating metagenomic and time series metatranscriptomic data for the evolving microbial community during composting. Composting noticeably reduced the aggregated expression level of the manure resistome, which primarily consisted of genes encoding for tetracycline, vancomycin, fluoroquinolone, beta-lactam, and aminoglycoside resistance, as well as efflux pumps. Furthermore, a varied transcriptional response of resistome to composting at the ARG levels was highlighted. The expression of tetracycline resistance genes (tetM-tetW-tetO-tetS) decreased during composting, where distinctive shifts in the four phases of composting were related to variations in antibiotic concentration. Composting had no effect on the expression of sulfonamide and fluoroquinolone resistance genes, which increased slightly during the thermophilic phase and then decreased to initial levels. As indigenous populations switched greatly throughout the dynamic composting, the core resistome persisted and their reservoir hosts' composition was significantly correlated with dynamic active microbial phylogenetic structure. Hosts for sulfonamide and fuoroquinolone resistance genes changed notably in phylognetic structure and underwent an initial increase and then a decrease in abundance. By contrast, hosts for tetracycline resistance genes (tetM-tetW-tetO-tetS) exhibited a constant decline through time. The transcriptional patterns of a core resistome over the course of composting were identified, and microbial phylogeny was the key determinant in defining the varied transcriptional response of resistome to this dynamic biological process. This research demonstrated the benefits of composting for manure treatment. It reduced the risk of emerging environmental contaminants such as tetracyclines, tetracycline resistance genes, and clinically relevant pathogens carrying ARGs, as well as RNA viruses and bacteriophages.

  17. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations.

    PubMed

    Yuhara, Daisuke; Brumby, Paul E; Wu, David T; Sum, Amadeu K; Yasuoka, Kenji

    2018-05-14

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  18. Analysis of three-phase equilibrium conditions for methane hydrate by isometric-isothermal molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yuhara, Daisuke; Brumby, Paul E.; Wu, David T.; Sum, Amadeu K.; Yasuoka, Kenji

    2018-05-01

    To develop prediction methods of three-phase equilibrium (coexistence) conditions of methane hydrate by molecular simulations, we examined the use of NVT (isometric-isothermal) molecular dynamics (MD) simulations. NVT MD simulations of coexisting solid hydrate, liquid water, and vapor methane phases were performed at four different temperatures, namely, 285, 290, 295, and 300 K. NVT simulations do not require complex pressure control schemes in multi-phase systems, and the growth or dissociation of the hydrate phase can lead to significant pressure changes in the approach toward equilibrium conditions. We found that the calculated equilibrium pressures tended to be higher than those reported by previous NPT (isobaric-isothermal) simulation studies using the same water model. The deviations of equilibrium conditions from previous simulation studies are mainly attributable to the employed calculation methods of pressure and Lennard-Jones interactions. We monitored the pressure in the methane phase, far from the interfaces with other phases, and confirmed that it was higher than the total pressure of the system calculated by previous studies. This fact clearly highlights the difficulties associated with the pressure calculation and control for multi-phase systems. The treatment of Lennard-Jones interactions without tail corrections in MD simulations also contributes to the overestimation of equilibrium pressure. Although improvements are still required to obtain accurate equilibrium conditions, NVT MD simulations exhibit potential for the prediction of equilibrium conditions of multi-phase systems.

  19. Girsanov reweighting for path ensembles and Markov state models

    NASA Astrophysics Data System (ADS)

    Donati, L.; Hartmann, C.; Keller, B. G.

    2017-06-01

    The sensitivity of molecular dynamics on changes in the potential energy function plays an important role in understanding the dynamics and function of complex molecules. We present a method to obtain path ensemble averages of a perturbed dynamics from a set of paths generated by a reference dynamics. It is based on the concept of path probability measure and the Girsanov theorem, a result from stochastic analysis to estimate a change of measure of a path ensemble. Since Markov state models (MSMs) of the molecular dynamics can be formulated as a combined phase-space and path ensemble average, the method can be extended to reweight MSMs by combining it with a reweighting of the Boltzmann distribution. We demonstrate how to efficiently implement the Girsanov reweighting in a molecular dynamics simulation program by calculating parts of the reweighting factor "on the fly" during the simulation, and we benchmark the method on test systems ranging from a two-dimensional diffusion process and an artificial many-body system to alanine dipeptide and valine dipeptide in implicit and explicit water. The method can be used to study the sensitivity of molecular dynamics on external perturbations as well as to reweight trajectories generated by enhanced sampling schemes to the original dynamics.

  20. Cumulants and correlation functions versus the QCD phase diagram

    DOE PAGES

    Bzdak, Adam; Koch, Volker; Strodthoff, Nils

    2017-05-12

    Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less

  1. Cumulants and correlation functions versus the QCD phase diagram

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bzdak, Adam; Koch, Volker; Strodthoff, Nils

    Here, we discuss the relation of particle number cumulants and correlation functions. It is argued that measuring couplings of the genuine multiparticle correlation functions could provide cleaner information on possible nontrivial dynamics in heavy-ion collisions. We also extract integrated multiproton correlation functions from the presently available experimental data on proton cumulants. We find that the STAR data contain significant four-proton correlations, at least at the lower energies, with indication of changing dynamics in central collisions. We also find that these correlations are rather long ranged in rapidity. Finally, using the Ising model, we demonstrate how the signs of the multiprotonmore » correlation functions may be used to exclude certain regions of the phase diagram close to the critical point.« less

  2. Optical intensity dynamics in a five-emitter semiconductor array laser

    NASA Astrophysics Data System (ADS)

    Williams, Matthew O.; Kutz, J. Nathan

    2009-06-01

    The intensity dynamics of a five-emitter laser array subject to a linearly decreasing injection current are examined numerically. We have matched the results of the numerical model to an experimental AlGaAs quantum-dot array laser and have achieved the same robust oscillatory power output with a nearly π phase shift between emitters that was observed in experiments. Due to the linearly decreasing injection current, the output power of the waveguide decreases as a function of waveguide number. For injection currents ranging from 380 to 500 mA, the oscillatory behavior persists with only a slight change in phase difference. However, the fundamental frequency of oscillation increases with injection current, and higher harmonics as well as some fine structures are produced.

  3. Pore-Scale Transport of Strontium During Dynamic Water Content Changes in the Unsaturated Zone

    NASA Astrophysics Data System (ADS)

    Weaver, W.; Kibbey, T. C. G.; Papelis, C.

    2016-12-01

    Dynamic water content changes in the unsaturated zone caused by natural and manmade processes, such as evaporation, rainfall, and irrigation, have an effect on contaminant mobility. In general, in the unsaturated zone, evaporation causes an increase in contaminant concentrations, potentially leading to sorption of contaminants on aquifer materials or precipitation of crystalline or amorphous phases. On the other hand, increase of water content may result in dissolution of precipitated phases and increased mobility of contaminants. The objective of this study was to develop a quantitative model for the transport of strontium through sand under dynamic water content conditions, as a function of strontium concentration, pH, and ionic strength. Strontium was selected as a surrogate for strontium-90, a by-product of nuclear reactions. The dynamic water content was determined using an automated device for rapidly measuring the hysteretic capillary pressure—saturation relationship, followed by ambient air evaporation, and gravimetric water content measurement. Strontium concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). Flow interruption experiments were conducted to determine whether equilibrium conditions existed for a given flowrate. Scanning electron microscopy (SEM) was used to visualize the treated quartz sand particles and the distribution of strontium on sand grains was determined using elemental maps created by energy-dispersive x-ray spectroscopy (EDX). Strontium behavior appears to be pH dependent as well as ionic strength dependent under these conditions.

  4. A new approach to network heterogeneity: Polymerization Induced Phase Separation in photo-initiated, free-radical methacrylic systems

    PubMed Central

    Szczepanski, Caroline R.; Pfeifer, Carmem S.; Stansbury, Jeffrey W.

    2012-01-01

    Non-reactive, thermoplastic prepolymers (poly- methyl, ethyl and butyl methacrylate) were added to a model homopolymer matrix composed of triethylene glycol dimethacrylate (TEGDMA) to form heterogeneous networks via polymerization induced phase separation (PIPS). PIPS creates networks with distinct phase structure that can partially compensate for volumetric shrinkage during polymerization through localized internal volume expansion. This investigation utilizes purely photo-initiated, free-radical systems, broadening the scope of applications for PIPS since these processing conditions have not been studied previously. The introduction of prepolymer into TEGDMA monomer resulted in stable, homogeneous monomer formulations, most of which underwent PIPS upon photo-irradiation, creating heterogeneous networks. During polymerization the presence of prepolymer enhanced autoacceleration, allowing for a more extensive ambient cure of the material. Phase separation, as characterized by dynamic changes in sample turbidity, was monitored simultaneously with monomer conversion and either preceded or was coincident with network gelation. Dynamic mechanical analysis shows a broadening of the tan delta peak and secondary peak formation, characteristic of phase-separated materials, indicating one phase rich in prepolymer and another depleted form upon phase separation. In certain cases, PIPS leads to an enhanced physical reduction of volumetric shrinkage, which is attractive for many applications including dental composite materials. PMID:23109733

  5. Mueller-matrix mapping of optically anisotropic fluorophores of molecular biological tissues in the diagnosis of death causes

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Pidkamin, L. Y.; Soltys, I. V.; Zhytaryuk, V. G.; Pavlyukovich, N.

    2016-09-01

    A model of generalized optical anisotropy of polycrystalline networks of albumin and globulin of human brain liquor has been suggested. The polarization-phase method of spatial and frequency differentiation of linear and circular birefringence coordinate distributions have been analytically substantiated. A set of criteria of the dynamics of necrotic changes of polarization-phase images of liquor polycrystalline films for determination of death coming prescription has been detected and substantiated.

  6. HIGH RESOLUTION SPECTROSCOPY IN THE GAS PHASE: Even Large Molecules Have Well-Defined Shapes

    NASA Astrophysics Data System (ADS)

    Pratt, David W.

    1998-10-01

    A review of recent high-resolution microwave, infrared, and optical spectroscopy experiments demonstrates that remarkable progress has been made in the past 20 years in determining the equilibrium geometries of large polyatomic molecules and their clusters in the gas phase, and how these geometries change when the photon is absorbed. A special focus is on the dynamical information that can be obtained from such studies, particularly of electronically excited states.

  7. Application of WRF/Chem over the Continental U.S. under the AQMEII Phase II: Part 2. Evaluation of 2010 Application and Responses of Air Quality and Meteorology-Chemistry Interactions to Changes in Emissions and Meteorology from 2006 to 2010

    EPA Science Inventory

    The Weather Research and Forecasting model with Chemistry (WRF/Chem) simulation with the 2005 Carbon Bond (CB05) gas-phase mechanism coupled to the Modal for Aerosol Dynamics for Europe (MADE) and the Volatility Basis Set (VBS) approach for secondary organic aerosol (SOA) (MADE/V...

  8. A New Approach for Determining Phase Response Curves Reveals that Purkinje Cells Can Act as Perfect Integrators

    PubMed Central

    Roth, Arnd; Häusser, Michael

    2010-01-01

    Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate. PMID:20442875

  9. Psychotherapy Is Chaotic—(Not Only) in a Computational World

    PubMed Central

    Schiepek, Günter K.; Viol, Kathrin; Aichhorn, Wolfgang; Hütt, Marc-Thorsten; Sungler, Katharina; Pincus, David; Schöller, Helmut J.

    2017-01-01

    Objective: The aim of this article is to outline the role of chaotic dynamics in psychotherapy. Besides some empirical findings of chaos at different time scales, the focus is on theoretical modeling of change processes explaining and simulating chaotic dynamics. It will be illustrated how some common factors of psychotherapeutic change and psychological hypotheses on motivation, emotion regulation, and information processing of the client's functioning can be integrated into a comprehensive nonlinear model of human change processes. Methods: The model combines 5 variables (intensity of emotions, problem intensity, motivation to change, insight and new perspectives, therapeutic success) and 4 parameters into a set of 5 coupled nonlinear difference equations. The results of these simulations are presented as time series, as phase space embedding of these time series (i.e., attractors), and as bifurcation diagrams. Results: The model creates chaotic dynamics, phase transition-like phenomena, bi- or multi-stability, and sensibility of the dynamic patterns on parameter drift. These features are predicted by chaos theory and by Synergetics and correspond to empirical findings. The spectrum of these behaviors illustrates the complexity of psychotherapeutic processes. Conclusion: The model contributes to the development of an integrative conceptualization of psychotherapy. It is consistent with the state of scientific knowledge of common factors, as well as other psychological topics, such as: motivation, emotion regulation, and cognitive processing. The role of chaos theory is underpinned, not only in the world of computer simulations, but also in practice. In practice, chaos demands technologies capable of real-time monitoring and reporting on the nonlinear features of the ongoing process (e.g., its stability or instability). Based on this monitoring, a client-centered, continuous, and cooperative process of feedback and control becomes possible. By contrast, restricted predictability and spontaneous changes challenge the usefulness of prescriptive treatment manuals or other predefined programs of psychotherapy. PMID:28484401

  10. Psychotherapy Is Chaotic-(Not Only) in a Computational World.

    PubMed

    Schiepek, Günter K; Viol, Kathrin; Aichhorn, Wolfgang; Hütt, Marc-Thorsten; Sungler, Katharina; Pincus, David; Schöller, Helmut J

    2017-01-01

    Objective: The aim of this article is to outline the role of chaotic dynamics in psychotherapy. Besides some empirical findings of chaos at different time scales, the focus is on theoretical modeling of change processes explaining and simulating chaotic dynamics. It will be illustrated how some common factors of psychotherapeutic change and psychological hypotheses on motivation, emotion regulation, and information processing of the client's functioning can be integrated into a comprehensive nonlinear model of human change processes. Methods: The model combines 5 variables (intensity of emotions, problem intensity, motivation to change, insight and new perspectives, therapeutic success) and 4 parameters into a set of 5 coupled nonlinear difference equations. The results of these simulations are presented as time series, as phase space embedding of these time series (i.e., attractors), and as bifurcation diagrams. Results: The model creates chaotic dynamics, phase transition-like phenomena, bi- or multi-stability, and sensibility of the dynamic patterns on parameter drift. These features are predicted by chaos theory and by Synergetics and correspond to empirical findings. The spectrum of these behaviors illustrates the complexity of psychotherapeutic processes. Conclusion: The model contributes to the development of an integrative conceptualization of psychotherapy. It is consistent with the state of scientific knowledge of common factors, as well as other psychological topics, such as: motivation, emotion regulation, and cognitive processing. The role of chaos theory is underpinned, not only in the world of computer simulations, but also in practice. In practice, chaos demands technologies capable of real-time monitoring and reporting on the nonlinear features of the ongoing process (e.g., its stability or instability). Based on this monitoring, a client-centered, continuous, and cooperative process of feedback and control becomes possible. By contrast, restricted predictability and spontaneous changes challenge the usefulness of prescriptive treatment manuals or other predefined programs of psychotherapy.

  11. Polarization momentum transfer collision: Faxen-Holtzmark theory and quantum dynamic shielding.

    PubMed

    Ki, Dae-Han; Jung, Young-Dae

    2013-04-21

    The influence of the quantum dynamic shielding on the polarization momentum transport collision is investigated by using the Faxen-Holtzmark theory in strongly coupled Coulomb systems. The electron-atom polarization momentum transport cross section is derived as a function of the collision energy, de Broglie wavelength, Debye length, thermal energy, and atomic quantum states. It is found that the dynamic shielding enhances the scattering phase shift as well as the polarization momentum transport cross section. The variation of quantum effect on the momentum transport collision due to the change of thermal energy and de Broglie wavelength is also discussed.

  12. El Niño Southern Oscillation (ENSO) Enhances CO2 Exchange Rates in Freshwater Marsh Ecosystems in the Florida Everglades

    PubMed Central

    Malone, Sparkle L.; Staudhammer, Christina L.; Oberbauer, Steven F.; Olivas, Paulo; Ryan, Michael G.; Schedlbauer, Jessica L.; Loescher, Henry W.; Starr, Gregory

    2014-01-01

    This research examines the relationships between El Niño Southern Oscillation (ENSO), water level, precipitation patterns and carbon dioxide (CO2) exchange rates in the freshwater wetland ecosystems of the Florida Everglades. Data was obtained over a 5-year study period (2009–2013) from two freshwater marsh sites located in Everglades National Park that differ in hydrology. At the short-hydroperiod site (Taylor Slough; TS) and the long-hydroperiod site (Shark River Slough; SRS) fluctuations in precipitation patterns occurred with changes in ENSO phase, suggesting that extreme ENSO phases alter Everglades hydrology which is known to have a substantial influence on ecosystem carbon dynamics. Variations in both ENSO phase and annual net CO2 exchange rates co-occurred with changes in wet and dry season length and intensity. Combined with site-specific seasonality in CO2 exchanges rates, El Niño and La Niña phases magnified season intensity and CO2 exchange rates at both sites. At TS, net CO2 uptake rates were higher in the dry season, whereas SRS had greater rates of carbon sequestration during the wet season. As La Niña phases were concurrent with drought years and extended dry seasons, TS became a greater sink for CO2 on an annual basis (−11 to −110 g CO2 m−2 yr−1) compared to El Niño and neutral years (−5 to −43.5 g CO2 m−2 yr−1). SRS was a small source for CO2 annually (1.81 to 80 g CO2 m−2 yr−1) except in one exceptionally wet year that was associated with an El Niño phase (−16 g CO2 m−2 yr−1). Considering that future climate predictions suggest a higher frequency and intensity in El Niño and La Niña phases, these results indicate that changes in extreme ENSO phases will significantly alter CO2 dynamics in the Florida Everglades. PMID:25521299

  13. Communication: Microphase equilibrium and assembly dynamics.

    PubMed

    Zhuang, Yuan; Charbonneau, Patrick

    2017-09-07

    Despite many attempts, ordered equilibrium microphases have yet to be obtained in experimental colloidal suspensions. The recent computation of the equilibrium phase diagram of a microscopic, particle-based microphase former [Zhuang et al., Phys. Rev. Lett. 116, 098301 (2016)] has nonetheless found such mesoscale assemblies to be thermodynamically stable. Here, we consider their equilibrium and assembly dynamics. At intermediate densities above the order-disorder transition, we identify four different dynamical regimes and the structural changes that underlie the dynamical crossovers from one disordered regime to the next. Below the order-disorder transition, we also find that periodic lamellae are the most dynamically accessible of the periodic microphases. Our analysis thus offers a comprehensive view of the dynamics of disordered microphases and a route to the assembly of periodic microphases in a putative well-controlled, experimental system.

  14. Phase transition analysis of V-shaped liquid crystal: Combined temperature-dependent FTIR and density functional theory approach

    NASA Astrophysics Data System (ADS)

    Singh, Swapnil; Singh, Harshita; Karthick, T.; Tandon, Poonam; Prasad, Veena

    2018-01-01

    Temperature-dependent Fourier transform infrared spectroscopy (FTIR) combined with density functional theory (DFT) is employed to study the mechanism of phase transitions of V-shaped bent-core liquid crystal. Since it has a large number of flexible bonds, one-dimensional potential energy scan (PES) was performed on the flexible bonds and predicted the most stable conformer I. A detailed analysis of vibrational normal modes of conformer I have been done on the basis of potential energy distribution. The good agreement between the calculated spectrum of conformer I and observed FTIR spectrum at room temperature validates our theoretical structure model. Furthermore, the prominent changes observed in the stretching vibrational bands of CH3/CH2, Cdbnd O, ring CC, ring CO, ring CH in-plane bending, and ring CH out-of-plane bending at Iso → nematic phase transition (at 155 °C) have been illustrated. However, the minor changes in the spectral features observed for the other phase transitions might be due to the shape or bulkiness of molecules. Combined FTIR and PES study beautifully explained the dynamics of the molecules, molecular realignment, H-bonding, and conformational changes at the phase transitions.

  15. Protein phosphorylation differs significantly among ontogenetic phases in Malus seedlings

    PubMed Central

    2014-01-01

    Background Although protein phosphorylation is an important post-translational modification affecting protein function and metabolism, dynamic changes in this process during ontogenesis remain unexplored in woody angiosperms. Methods Phosphorylated proteins from leaves of three apple seedlings at juvenile, adult vegetative and reproductive stages were extracted and subjected to alkaline phosphatase pre-treatment. After separating the proteins by two-dimensional gel electrophoresis and phosphoprotein-specific Pro-Q Diamond staining, differentially expressed phosphoproteins were identified by MALDI-TOF-TOF mass spectrometry. Results A total of 107 phosphorylated protein spots on nine gels (three ontogenetic phases × three seedlings) were identified by MALDI-TOF-TOF mass spectrometry. The 55 spots of ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) large-chain fragments varied significantly in protein abundance and degree of phosphorylation among ontogenetic phases. Abundances of the 27 spots corresponding to Rubisco activase declined between juvenile and reproductive phases. More extensively, phosphorylated β-tubulin chain spots with lower isoelectric points were most abundant during juvenile and adult vegetative phases. Conclusions Protein phosphorylation varied significantly during vegetative phase change and floral transition in apple seedlings. Most of the observed changes were consistent among seedlings and between hybrid populations. PMID:24904238

  16. Direct Numerical Simulations of Dynamic Drainage and Imbibition to Investigate Capillary Pressure-Saturation-Interfacial Area Relation

    NASA Astrophysics Data System (ADS)

    Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.

    2017-12-01

    We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.

  17. A Consistent Definition of Phase Resetting Using Hilbert Transform.

    PubMed

    Oprisan, Sorinel A

    2017-01-01

    A phase resetting curve (PRC) measures the transient change in the phase of a neural oscillator subject to an external perturbation. The PRC encapsulates the dynamical response of a neural oscillator and, as a result, it is often used for predicting phase-locked modes in neural networks. While phase is a fundamental concept, it has multiple definitions that may lead to contradictory results. We used the Hilbert Transform (HT) to define the phase of the membrane potential oscillations and HT amplitude to estimate the PRC of a single neural oscillator. We found that HT's amplitude and its corresponding instantaneous frequency are very sensitive to membrane potential perturbations. We also found that the phase shift of HT amplitude between the pre- and poststimulus cycles gives an accurate estimate of the PRC. Moreover, HT phase does not suffer from the shortcomings of voltage threshold or isochrone methods and, as a result, gives accurate and reliable estimations of phase resetting.

  18. Storm-time radiation belt electron dynamics: Repeatability in the outer radiation belt

    NASA Astrophysics Data System (ADS)

    Murphy, K. R.; Mann, I. R.; Rae, J.; Watt, C.; Boyd, A. J.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J. F.

    2017-12-01

    During intervals of enhanced solar wind driving the outer radiation belt becomes extremely dynamic leading to geomagnetic storms. During these storms the flux of energetic electrons can vary by over 4 orders of magnitude. Despite recent advances in understanding the nature of competing storm-time electron loss and acceleration processes the dynamic behavior of the outer radiation belt remains poorly understood; the outer radiation belt can exhibit either no change, an enhancement, or depletion in radiation belt electrons. Using a new analysis of the total radiation belt electron content, calculated from the Van Allen probes phase space density (PSD), we statistically analyze the time-dependent and global response of the outer radiation belt during storms. We demonstrate that by removing adiabatic effects there is a clear and repeatable sequence of events in storm-time radiation belt electron dynamics. Namely, the relativistic (μ=1000 MeV/G) and ultra-relativistic (μ=4000 MeV/G) electron populations can be separated into two phases; an initial phase dominated by loss followed by a second phase dominated by acceleration. At lower energies, the radiation belt seed population of electrons (μ=150 MeV/G) shows no evidence of loss but rather a net enhancement during storms. Further, we investigate the dependence of electron dynamics as a function of the second adiabatic invariant, K. These results demonstrate a global coherency in the dynamics of the source, relativistic and ultra-relativistic electron populations as function of the second adiabatic invariant K. This analysis demonstrates two key aspects of storm-time radiation belt electron dynamics. First, the radiation belt responds repeatably to solar wind driving during geomagnetic storms. Second, the response of the radiation belt is energy dependent, relativistic electrons behaving differently than lower energy seed electrons. These results have important implications in radiation belt research. In particular, the repeatability in electron dynamics coupled with observations of processes leading to electron loss (EMIC waves) and acceleration (VLF or ULF waves) can be used to diagnose the relative importance of physical processes in radiation belt dynamics during storms.

  19. Low temperature phase of the trigonal RbIn(MoO4)2 crystal

    NASA Astrophysics Data System (ADS)

    Zapart, W.; Zapart, M. B.; Schranz, W.; Reinecker, M.

    2013-02-01

    The present article is devoted to a new low-temperature phase transition found at about T pt = 84 K in the layered RbIn(MoO4)2 crystal. This phase transition is well proved by dynamical mechanical analysis through anomalies in the temperature behaviour of both real and imaginary parts of the Young's modulus. From the polarizing microscope observations it was found that below T pt the ferroelastic phase disappears. This transition has also been seen through strong changes in the shape of the electron paramagnetic resonance lines. EPR studies, performed in the liquid nitrogen temperature, yield evidence of strong rebuilding of the crystal unit cell in comparison with that of the high temperature paraelastic phase.

  20. Phase modulation due to crystal diffraction by ptychographic imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Civita, M.; Diaz, A.; Bean, R. J.

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samplesmore » using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.« less

  1. Phase modulation due to crystal diffraction by ptychographic imaging

    DOE PAGES

    Civita, M.; Diaz, A.; Bean, R. J.; ...

    2018-03-06

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samplesmore » using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.« less

  2. Phase modulation due to crystal diffraction by ptychographic imaging

    NASA Astrophysics Data System (ADS)

    Civita, M.; Diaz, A.; Bean, R. J.; Shabalin, A. G.; Gorobtsov, O. Yu.; Vartanyants, I. A.; Robinson, I. K.

    2018-03-01

    Solving the phase problem in x-ray crystallography has occupied a considerable scientific effort in the 20th century and led to great advances in structural science. Here we use x-ray ptychography to demonstrate an interference method which measures the phase of the beam transmitted through a crystal, relative to the incoming beam, when diffraction takes place. The observed phase change of the direct beam through a small gold crystal is found to agree with both a quasikinematical model and full dynamical theories of diffraction. Our discovery of a diffraction contrast mechanism will enhance the interpretation of data obtained from crystalline samples using the ptychography method, which provides some of the most accurate x-ray phase-contrast images.

  3. System analysis of the dynamic response of the coronary circulation to a sudden change in heart rate.

    PubMed

    Dankelman, J; Stassen, H G; Spaan, J A

    1990-03-01

    In this study the response of driving pressure/flow ration on an abrupt change in heart rate was analysed. The difference between the response obtained with constant pressure and constant flow perfusion was also studied. The responses show a fast initial reversed phase followed by a slow phase caused by regulation. To test whether the initial phase could be the result of mechanical changes in the coronary circulation, a model for regulation was extended by the addition of four different mechanical models originating from the literature. These extended models were able to explain the fast initial phase. However, the mechanical model consisting of an intramyocardial compliance (C = 0.08 ml mm Hg-1 100 g-1) with a variable venous resistance, and the model consisting of a waterfall and a small compliance (C = 0.007 ml mm Hg-1 100g-1) both explained these responses best. The analysis showed that there is no direct relationship between rate of change of vascular tone and rate of change of pressure/flow ratio. However, on the basis of the two extended models, it can be predicted that the half-time for the response of regulation to be complete is about 9s with constant pressure perfusion and 15 s with constant flow perfusion.

  4. Using Molecular Dynamics Simulation to Reinforce Student Understanding of Intermolecular Forces

    ERIC Educational Resources Information Center

    Burkholder, Phillip R.; Purser, Gordon H.; Cole, Renee S.

    2008-01-01

    Intermolecular forces play an important role in many aspects of chemistry ranging from inorganic to biological chemistry. These forces dictate molecular conformation, species aggregation (including self-assembly), trends in solubility and boiling points, adsorption characteristics, viscosity, phase changes, surface tension, capillary action, vapor…

  5. The development of a change model of "exits" during cognitive analytic therapy for the treatment of depression.

    PubMed

    Sandhu, Sundeep Kaur; Kellett, Stephen; Hardy, Gillian

    2017-11-01

    "Exits" in cognitive analytic therapy (CAT) are methods that change unhelpful patterns or roles during the final "revision" phase of the therapy. How exits are conceived and achieved is currently poorly understood. This study focussed on the revision stage to explore and define how change is accomplished in CAT. Qualitative content analysis studied transcripts of sessions 6 and 7 of a protocol delivered 8-session CAT treatment for depression. Eight participants met the study inclusion criteria, and therefore, 16 sessions were analysed. The exit model developed contained 3 distinct (but interacting) phases: (a) developing an observing self via therapist input or client self-reflection, (b) breaking out of old patterns by creating new roles and procedures, and (c) utilisation of a range of methods to support and maintain change. Levels of interrater reliability for the exit categories that formed the model were good. The revision stage of CAT emerged as a complex and dynamic process involving 3 interacting stages. Further research is recommended to understand how exits relate to durability of change and whether change processes differ according to presenting problem. Exit work in cognitive analytic therapy is a dynamic process that requires progression through stages of insight, active change, and consolidation. Development of an "observing self" is an important foundation stone for change, and cognitive analytic therapists need to work within the client's zone of proximal development. A number of aspects appear important in facilitating change, such as attending to the process and feelings generated by change talk. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Impact of adaptation currents on synchronization of coupled exponential integrate-and-fire neurons.

    PubMed

    Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus

    2012-01-01

    The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies.

  7. Impact of Adaptation Currents on Synchronization of Coupled Exponential Integrate-and-Fire Neurons

    PubMed Central

    Ladenbauer, Josef; Augustin, Moritz; Shiau, LieJune; Obermayer, Klaus

    2012-01-01

    The ability of spiking neurons to synchronize their activity in a network depends on the response behavior of these neurons as quantified by the phase response curve (PRC) and on coupling properties. The PRC characterizes the effects of transient inputs on spike timing and can be measured experimentally. Here we use the adaptive exponential integrate-and-fire (aEIF) neuron model to determine how subthreshold and spike-triggered slow adaptation currents shape the PRC. Based on that, we predict how synchrony and phase locked states of coupled neurons change in presence of synaptic delays and unequal coupling strengths. We find that increased subthreshold adaptation currents cause a transition of the PRC from only phase advances to phase advances and delays in response to excitatory perturbations. Increased spike-triggered adaptation currents on the other hand predominantly skew the PRC to the right. Both adaptation induced changes of the PRC are modulated by spike frequency, being more prominent at lower frequencies. Applying phase reduction theory, we show that subthreshold adaptation stabilizes synchrony for pairs of coupled excitatory neurons, while spike-triggered adaptation causes locking with a small phase difference, as long as synaptic heterogeneities are negligible. For inhibitory pairs synchrony is stable and robust against conduction delays, and adaptation can mediate bistability of in-phase and anti-phase locking. We further demonstrate that stable synchrony and bistable in/anti-phase locking of pairs carry over to synchronization and clustering of larger networks. The effects of adaptation in aEIF neurons on PRCs and network dynamics qualitatively reflect those of biophysical adaptation currents in detailed Hodgkin-Huxley-based neurons, which underscores the utility of the aEIF model for investigating the dynamical behavior of networks. Our results suggest neuronal spike frequency adaptation as a mechanism synchronizing low frequency oscillations in local excitatory networks, but indicate that inhibition rather than excitation generates coherent rhythms at higher frequencies. PMID:22511861

  8. Stratosphere-resolving CMIP5 models simulate different changes in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Rea, Gloria; Riccio, Angelo; Fierli, Federico; Cairo, Francesco; Cagnazzo, Chiara

    2018-03-01

    This work documents long-term changes in the Southern Hemisphere circulation in the austral spring-summer season in the Coupled Intercomparison Project Phase 5 models, showing that those changes are larger in magnitude and closer to ERA-Interim and other reanalyses if models include a dynamical representation of the stratosphere. Specifically, models with a high-top and included dynamical and—in some cases—chemical feedbacks within the stratosphere better simulate the lower stratospheric cooling observed over 1979-2001 and strongly driven by ozone depletion, when compared to the other models. This occurs because high-top models can fully capture the stratospheric large scale circulation response to the ozone-induced cooling. Interestingly, this difference is also found at the surface for the Southern Annular Mode (SAM) changes, even though all model categories tend to underestimate SAM trends over those decades. In this analysis, models including a proper dynamical stratosphere are more sensitive to lower stratospheric cooling in their tropospheric circulation response. After a brief discussion of two RCP scenarios, our study confirms that at least for large changes in the extratropical regions, stratospheric changes induced by external forcing have to be properly simulated, as they are important drivers of tropospheric climate variations.

  9. Dynamic magnetic hysteresis properties of two-dimensional ferrimagnetic structures containing high-spin (S = 5/2) and low-spin (S = 1/2)

    NASA Astrophysics Data System (ADS)

    Batı, Mehmet; Ertaş, Mehmet

    2017-09-01

    The dynamic hysteresis behaviors of a containing high spin-5/2 and low spin-1/2 Ising ferrimagnetic system on a square lattice are studied by using the dynamic mean-field approximation. The influences of the temperature, the single-ion anisotropy and the frequency on dynamic hysteresis behaviors are investigated in detail. Somewhat characteristic behaviors are found, such as the presence of triple hysteresis loop for appropriate values of the crystal field or temperature. Besides, we observed that, hysteresis loop area and phase transition points are very sensitive to changes in frequency and thus have profound importance in device application.

  10. Impact of hydration and temperature history on the structure and dynamics of lignin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vural, Derya; Gainaru, C.; O'Neill, Hugh Michael

    The full utilization of plant biomass for the production of energy and novel materials often involves high temperature treatment. Examples include melt spinning of lignin for manufacturing low-cost carbon fiber and the relocalization of lignin to increase the accessibility of cellulose for production of biofuels. These temperature-induced effects arise from poorly understood changes in lignin flexibility. Here, we combine molecular dynamics simulations with neutron scattering and dielectric spectroscopy experiments to probe the dependence of lignin dynamics on hydration and thermal history. We find a dynamical and structural hysteresis: at a given temperature, the lignin molecules are more expanded and theirmore » dynamics faster when the lignin is cooled than when heated. The structural hysteresis is more pronounced for dry lignin. The difference in dynamics, however, follows a different trend, it is found to be more significant at high temperatures and high hydration levels. The simulations also reveal syringyl units to be more dynamic than guiacyl. The results provide an atomic-detailed description of lignin dynamics, important for understanding lignin role in plant cell wall mechanics and for rationally improving lignin processing. The lignin glass transition, at which the polymer softens, is lower when lignin is cooled than when heated, therefore extending the cooling phase of processing and shortening the heating phase may offer ways to lower processing costs.« less

  11. Impact of hydration and temperature history on the structure and dynamics of lignin

    DOE PAGES

    Vural, Derya; Gainaru, C.; O'Neill, Hugh Michael; ...

    2018-03-16

    The full utilization of plant biomass for the production of energy and novel materials often involves high temperature treatment. Examples include melt spinning of lignin for manufacturing low-cost carbon fiber and the relocalization of lignin to increase the accessibility of cellulose for production of biofuels. These temperature-induced effects arise from poorly understood changes in lignin flexibility. Here, we combine molecular dynamics simulations with neutron scattering and dielectric spectroscopy experiments to probe the dependence of lignin dynamics on hydration and thermal history. We find a dynamical and structural hysteresis: at a given temperature, the lignin molecules are more expanded and theirmore » dynamics faster when the lignin is cooled than when heated. The structural hysteresis is more pronounced for dry lignin. The difference in dynamics, however, follows a different trend, it is found to be more significant at high temperatures and high hydration levels. The simulations also reveal syringyl units to be more dynamic than guiacyl. The results provide an atomic-detailed description of lignin dynamics, important for understanding lignin role in plant cell wall mechanics and for rationally improving lignin processing. The lignin glass transition, at which the polymer softens, is lower when lignin is cooled than when heated, therefore extending the cooling phase of processing and shortening the heating phase may offer ways to lower processing costs.« less

  12. Structural and dynamical trends in alkali-metal silanides characterized by neutron-scattering methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less

  13. Structural and dynamical trends in alkali-metal silanides characterized by neutron-scattering methods

    DOE PAGES

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel; ...

    2016-09-02

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less

  14. Two-Dimensional Modeling of Heat and Moisture Dynamics in Swedish Roads: Model Set up and Parameter Sensitivity

    NASA Astrophysics Data System (ADS)

    Rasul, H.; Wu, M.; Olofsson, B.

    2017-12-01

    Modelling moisture and heat changes in road layers is very important to understand road hydrology and for better construction and maintenance of roads in a sustainable manner. In cold regions due to the freezing/thawing process in the partially saturated material of roads, the modeling task will become more complicated than simple model of flow through porous media without freezing/thawing pores considerations. This study is presenting a 2-D model simulation for a section of highway with considering freezing/thawing and vapor changes. Partial deferential equations (PDEs) are used in formulation of the model. Parameters are optimized from modelling results based on the measured data from test station on E18 highway near Stockholm. Impacts of phase change considerations in the modelling are assessed by comparing the modeled soil moisture with TDR-measured data. The results show that the model can be used for prediction of water and ice content in different layers of the road and at different seasons. Parameter sensitivities are analyzed by implementing a calibration strategy. In addition, the phase change consideration is evaluated in the modeling process, by comparing the PDE model with another model without considerations of freezing/thawing in roads. The PDE model shows high potential in understanding the moisture dynamics in the road system.

  15. Southern Great Plains Rapid Ecoregional Assessment: pre-assessment report

    USGS Publications Warehouse

    Assal, Timothy J.; Melcher, Cynthia P.; Carr, Natasha B.

    2015-01-01

    An overview on the ecology and management issues for each Conservation Element is provided, including distribution and ecology, landscape structure and dynamics, and associated species of management concern affiliated with each Conservation Element. For each Conservation Element, effects of the Change Agents are described. An overview of potential key ecological attributes and potential Change Agents are summarized by conceptual models and tables. The tables provide an organizational framework and background information for evaluating the key ecological attributes and Change Agents in Phase II.

  16. Ca2+-associated triphasic pH changes in mitochondria during brown adipocyte activation.

    PubMed

    Hou, Yanyan; Kitaguchi, Tetsuya; Kriszt, Rókus; Tseng, Yu-Hua; Raghunath, Michael; Suzuki, Madoka

    2017-08-01

    Brown adipocytes (BAs) are endowed with a high metabolic capacity for energy expenditure due to their high mitochondria content. While mitochondrial pH is dynamically regulated in response to stimulation and, in return, affects various metabolic processes, how mitochondrial pH is regulated during adrenergic stimulation-induced thermogenesis is unknown. We aimed to reveal the spatial and temporal dynamics of mitochondrial pH in stimulated BAs and the mechanisms behind the dynamic pH changes. A mitochondrial targeted pH-sensitive protein, mito-pHluorin, was constructed and transfected to BAs. Transfected BAs were stimulated by an adrenergic agonist, isoproterenol. The pH changes in mitochondria were characterized by dual-color imaging with indicators that monitor mitochondrial membrane potential and heat production. The mechanisms of pH changes were studied by examining the involvement of electron transport chain (ETC) activity and Ca 2+ profiles in mitochondria and the intracellular Ca 2+ store, the endoplasmic reticulum (ER). A triphasic mitochondrial pH change in BAs upon adrenergic stimulation was revealed. In comparison to a thermosensitive dye, we reveal that phases 1 and 2 of the pH increase precede thermogenesis, while phase 3, characterized by a pH decrease, occurs during thermogenesis. The mechanism of pH increase is partially related to ETC. In addition, the pH increase occurs concurrently with an increase in mitochondrial Ca 2+ . This Ca 2+ increase is contributed to by an influx from the ER, and it is further involved in mitochondrial pH regulation. We demonstrate that an increase in mitochondrial pH is implicated as an early event in adrenergically stimulated BAs. We further suggest that this pH increase may play a role in the potentiation of thermogenesis.

  17. Mesoscopic structural phase progression in photo-excited VO 2 revealed by time-resolved x-ray diffraction microscopy

    DOE PAGES

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; ...

    2016-02-26

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase seperated regions. The ability to simultanousely track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of- the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO 2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation ismore » initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO 2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, which is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO 2. Lastly, the direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.« less

  18. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy

    NASA Astrophysics Data System (ADS)

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J.; Jung, Il Woong; Walko, Donald A.; Dufresne, Eric M.; Jeong, Jaewoo; Samant, Mahesh G.; Parkin, Stuart S. P.; Freeland, John W.; Evans, Paul G.; Wen, Haidan

    2016-02-01

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

  19. Mesoscopic structural phase progression in photo-excited VO2 revealed by time-resolved x-ray diffraction microscopy.

    PubMed

    Zhu, Yi; Cai, Zhonghou; Chen, Pice; Zhang, Qingteng; Highland, Matthew J; Jung, Il Woong; Walko, Donald A; Dufresne, Eric M; Jeong, Jaewoo; Samant, Mahesh G; Parkin, Stuart S P; Freeland, John W; Evans, Paul G; Wen, Haidan

    2016-02-26

    Dynamical phase separation during a solid-solid phase transition poses a challenge for understanding the fundamental processes in correlated materials. Critical information underlying a phase transition, such as localized phase competition, is difficult to reveal by measurements that are spatially averaged over many phase separated regions. The ability to simultaneously track the spatial and temporal evolution of such systems is essential to understanding mesoscopic processes during a phase transition. Using state-of-the-art time-resolved hard x-ray diffraction microscopy, we directly visualize the structural phase progression in a VO2 film upon photoexcitation. Following a homogenous in-plane optical excitation, the phase transformation is initiated at discrete sites and completed by the growth of one lattice structure into the other, instead of a simultaneous isotropic lattice symmetry change. The time-dependent x-ray diffraction spatial maps show that the in-plane phase progression in laser-superheated VO2 is via a displacive lattice transformation as a result of relaxation from an excited monoclinic phase into a rutile phase. The speed of the phase front progression is quantitatively measured, and is faster than the process driven by in-plane thermal diffusion but slower than the sound speed in VO2. The direct visualization of localized structural changes in the time domain opens a new avenue to study mesoscopic processes in driven systems.

  20. Modeling effects of climate change and phase shifts on detrital production of a kelp bed.

    PubMed

    Krumhansl, Kira A; Lauzon-Guay, Jean-Sébastien; Scheibling, Robert E

    2014-03-01

    The exchange of energy and nutrients between ecosystems (i.e., resource subsidies) plays a central role in ecological dynamics over a range of spatial and temporal scales. Little attention has been paid to the role of anthropogenic impacts on natural systems in altering the magnitude, timing, and quality of resource subsidies. Kelp ecosystems are highly productive on a local scale and export over 80% of kelp primary production as detritus, subsidizing consumers across broad spatial scales. Here, we generate a model of detrital production from a kelp bed in Nova Scotia to hindcast trends in detrital production based on temperature and wave height recorded in the study region from 1976 to 2009, and to project changes in detrital production that may result from future climate change. Historical and projected increases in temperature and wave height led to higher rates of detrital production through increased blade breakage and kelp dislodgment from the substratum, but this reduced kelp biomass and led to a decline in detrital production in the long-term. We also used the model to demonstrate that the phase shift from a highly productive kelp bed to a low-productivity barrens, driven by the grazing activity of sea urchins, reduces kelp detrital production by several orders of magnitude, an effect that would be exacerbated by projected increases in temperature and wave action. These results indicate that climate-mediated changes in ecological dynamics operating on local scales may alter the magnitude of resource subsidies to adjacent ecosystems, affecting ecological dynamics on regional scales.

  1. Dynamics of Nanoparticle-Protein Corona Complex Formation: Analytical Results from Population Balance Equations

    PubMed Central

    Darabi Sahneh, Faryad; Scoglio, Caterina; Riviere, Jim

    2013-01-01

    Background Nanoparticle-protein corona complex formation involves absorption of protein molecules onto nanoparticle surfaces in a physiological environment. Understanding the corona formation process is crucial in predicting nanoparticle behavior in biological systems, including applications of nanotoxicology and development of nano drug delivery platforms. Method This paper extends the modeling work in to derive a mathematical model describing the dynamics of nanoparticle corona complex formation from population balance equations. We apply nonlinear dynamics techniques to derive analytical results for the composition of nanoparticle-protein corona complex, and validate our results through numerical simulations. Results The model presented in this paper exhibits two phases of corona complex dynamics. In the first phase, proteins rapidly bind to the free surface of nanoparticles, leading to a metastable composition. During the second phase, continuous association and dissociation of protein molecules with nanoparticles slowly changes the composition of the corona complex. Given sufficient time, composition of the corona complex reaches an equilibrium state of stable composition. We find analytical approximate formulae for metastable and stable compositions of corona complex. Our formulae are very well-structured to clearly identify important parameters determining corona composition. Conclusion The dynamics of biocorona formation constitute vital aspect of interactions between nanoparticles and living organisms. Our results further understanding of these dynamics through quantitation of experimental conditions, modeling results for in vitro systems to better predict behavior for in vivo systems. One potential application would involve a single cell culture medium related to a complex protein medium, such as blood or tissue fluid. PMID:23741371

  2. Dynamic Effects in the Photoionization of the 6s Subshell of Radon and Nobelium

    NASA Astrophysics Data System (ADS)

    Keating, David; Manson, Steven; Deshmukh, Pranawa

    2017-04-01

    Relativistic interactions are very important contributors to atomic properties. Of interest is the alterations made to the wave functions, i.e., the dynamics. These dynamical changes can greatly affect the photoionization cross section of heavy (high Z) atoms. To explore the extent of these dynamic effects a theoretical study of the 6s photoionization cross section of both radon (Z = 86) and nobelium (Z = 102) have been performed using the relativistic random phase approximation (RRPA) methodology. These two cases have been selected because they offer the clearest picture of the effects in question. In order to determine which features in the photoionization cross section are due to relativity, calculations using the (nonrelativistic) random phase approximation with exchange method (RPAE) are performed for comparison. Interchannel coupling can obscure the dynamic effects by ``pulling'' minima out of the discrete spectrum and into the continuum or by inducing minima. Therefore it is necessary to perform calculations without coupling included. This is possible thanks to the RRPA and RPAE codes being able to calculate cross sections with particular channels omitted. Comparisons are presented between calculations with and without interchannel coupling. Work supported by DOE and NSF.

  3. Patterns formation in ferrofluids and solid dissolutions using stochastic models with dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Morales, Marco A.; Fernández-Cervantes, Irving; Agustín-Serrano, Ricardo; Anzo, Andrés; Sampedro, Mercedes P.

    2016-08-01

    A functional with interactions short-range and long-range low coarse-grained approximation is proposed. This functional satisfies models with dissipative dynamics A, B and the stochastic Swift-Hohenberg equation. Furthermore, terms associated with multiplicative noise source are added in these models. These models are solved numerically using the method known as fast Fourier transform. Results of the spatio-temporal dynamic show similarity with respect to patterns behaviour in ferrofluids phases subject to external fields (magnetic, electric and temperature), as well as with the nucleation and growth phenomena present in some solid dissolutions. As a result of the multiplicative noise effect over the dynamic, some microstructures formed by changing solid phase and composed by binary alloys of Pb-Sn, Fe-C and Cu-Ni, as well as a NiAl-Cr(Mo) eutectic composite material. The model A for active-particles with a non-potential term in form of quadratic gradient explain the formation of nanostructured particles of silver phosphate. With these models is shown that the underlying mechanisms in the patterns formation in all these systems depends of: (a) dissipative dynamics; (b) the short-range and long-range interactions and (c) the appropiate combination of quadratic and multiplicative noise terms.

  4. Analysis of the El Niño/La Niña-Southern Oscillation variability and malaria in the Estado Sucre, Venezuela.

    PubMed

    Delgado-Petrocelli, Laura; Córdova, Karenia; Camardiel, Alberto; Aguilar, Víctor H; Hernández, Denise; Ramos, Santiago

    2012-09-01

    The last decade has seen an unprecedented, worldwide acceleration of environmental and climate changes. These processes impact the dynamics of natural systems, which include components associated with human communities such as vector-borne diseases. The dynamics of environmental and climate variables, altered by global change as reported by the Intergovernmental Panel on Climate Change, affect the distribution of many tropical diseases. Complex systems, e.g. the El Niño/La Niña-Southern Oscillation (ENSO), in which environmental variables operate synergistically, can provoke the reemergence and emergence of vector-borne diseases at new sites. This research investigated the influence of ENSO events on malaria incidence by determining the relationship between climate variations, expressed as warm, cold and neutral phases, and their relation to the number of malaria cases in some north-eastern municipalities of Venezuela (Estado Sucre) during the period 1990-2000. Significant differences in malaria incidence were found, particularly in the La Niña ENSO phases (cold) of moderate intensity. These findings should be taken into account for surveillance and control in the future as they shed light on important indicators that can lead to reduced vulnerability to malaria.

  5. Nucleosome architecture throughout the cell cycle

    PubMed Central

    Deniz, Özgen; Flores, Oscar; Aldea, Martí; Soler-López, Montserrat; Orozco, Modesto

    2016-01-01

    Nucleosomes provide additional regulatory mechanisms to transcription and DNA replication by mediating the access of proteins to DNA. During the cell cycle chromatin undergoes several conformational changes, however the functional significance of these changes to cellular processes are largely unexplored. Here, we present the first comprehensive genome-wide study of nucleosome plasticity at single base-pair resolution along the cell cycle in Saccharomyces cerevisiae. We determined nucleosome organization with a specific focus on two regulatory regions: transcription start sites (TSSs) and replication origins (ORIs). During the cell cycle, nucleosomes around TSSs display rearrangements in a cyclic manner. In contrast to gap (G1 and G2) phases, nucleosomes have a fuzzier organization during S and M phases, Moreover, the choreography of nucleosome rearrangements correlate with changes in gene expression during the cell cycle, indicating a strong association between nucleosomes and cell cycle-dependent gene functionality. On the other hand, nucleosomes are more dynamic around ORIs along the cell cycle, albeit with tighter regulation in early firing origins, implying the functional role of nucleosomes on replication origins. Our study provides a dynamic picture of nucleosome organization throughout the cell cycle and highlights the subsequent impact on transcription and replication activity. PMID:26818620

  6. The number comb for a soil physical properties dynamic measurement

    NASA Astrophysics Data System (ADS)

    Olechko, K.; Patiño, P.; Tarquis, A. M.

    2012-04-01

    We propose the prime numbers distribution extracted from the soil digital multiscale images and some physical properties time series as the precise indicator of the spatial and temporal dynamics under soil management changes. With this new indicator the soil dynamics can be studied as a critical phenomenon where each phase transition is estimated and modeled by the graph partitioning induced phase transition. The critical point of prime numbers distribution was correlated with the beginning of Andosols, Vertisols and saline soils physical degradation under the unsustainable soil management in Michoacan, Guanajuato and Veracruz States of Mexico. The data banks corresponding to the long time periods (between 10 and 28 years) were statistically compared by RISK 5.0 software and our own algorithms. Our approach makes us able to distill free-form natural laws of soils physical properties dynamics directly from the experimental data. The Richter (1987) and Schmidt and Lipson (2009) original approaches were very useful to design the algorithms to identify Hamiltonians, Lagrangians and other laws of geometric and momentum conservation especially for erosion case.

  7. Development of advanced space solar dynamic receiver

    NASA Astrophysics Data System (ADS)

    Abe, Yoshiyuki; Tanaka, Kotaro; Nomura, Osami; Kanari, Katsuhiko; Takahashi, Yoshio; Kamimoto, Masayuki

    Work on an advanced solar dynamic receiver is reviewed. The authors first describe the component test of the receiver tube with LiF in metallic containers, which was performed in a closed high-temperature He-Xe loop. They then give the details of the development of composite phase change materials, such as ceramic/molten salts or carbon/molten salts for advanced receiver concepts. As for SiC/LiF composites, the performance test of the receiver component will soon be ready to begin.

  8. Materials compatibility issues related to thermal energy storage for a space solar dynamic power system

    NASA Technical Reports Server (NTRS)

    Faget, N. M.

    1986-01-01

    Attention is given to results obtained to date in developmental investigations of a thermal energy storage (TES) system for the projected NASA Space Station's solar dynamic power system; these tests have concentrated on issues related to materials compatibility for phase change materials (PCMs) and their containment vessels' materials. The five PCMs tested have melting temperatures that correspond to the operating temperatures of either the Brayton or Rankine heat engines, which were independently chosen for their high energy densities.

  9. Enlightening intracellular complexity of living cells with quantitative phase microscopy

    NASA Astrophysics Data System (ADS)

    Martinez Torres, C.; Laperrousaz, B.; Berguiga, L.; Boyer Provera, E.; Elezgaray, J.; Nicolini, F. E.; Maguer-Satta, V.; Arneodo, A.; Argoul, F.

    2016-03-01

    The internal distribution of refractive indices (RIs) of a living cell is much more complex than usually admitted in multi-shell models. The reconstruction of RI maps from single phase images has rarely been achieved for several reasons: (i) we still have very little knowledge of the impact of internal macromolecular complexes on the local RI and (ii) phase changes produced by light propagation through the sample are mixed with diffraction effects by internal cell bodies. We propose the implementation a 2D wavelet-based contour chain detection method to distinguish internal boundaries thanks to their greatest optical path difference gradients. These contour chains correspond to the highest image phase contrast and follow the local RI inhomogeneities linked to the intracellular structural intricacy. Their statistics and spatial distribution are morphological indicators for distinguishing cells of different origins and to follow their transformation in pathologic situations. We use this method to compare non adherent blood cells from primary and laboratory culture origins, in healthy and pathological situations (chronic myelogenous leukaemia). In a second part of this presentation, we concentrate on the temporal dynamics of the phase contour chains and we discuss the spectral decomposition of their dynamics in both health and disease.

  10. Phase Transition of Single-Layer Molybdenum Disulfide Nanosheets under Mechanical Loading Based on Molecular Dynamics Simulations.

    PubMed

    Pang, Haosheng; Li, Minglin; Gao, Chenghui; Huang, Haili; Zhuo, Weirong; Hu, Jianyue; Wan, Yaling; Luo, Jing; Wang, Weidong

    2018-03-27

    The single-layer molybdenum disulfide (SLMoS2) nanosheets have been experimentally discovered to exist in two different polymorphs, which exhibit different electrical properties, metallic or semiconducting. Herein, molecular dynamics (MD) simulations of nanoindentation and uniaxial compression were conducted to investigate the phase transition of SLMoS2 nanosheets. Typical load-deflection curves, stress-strain curves, and local atomic structures were obtained. The loading force decreases sharply and then increases again at a critical deflection under the nanoindentation, which is inferred to the phase transition. In addition to the layer thickness, some related bond lengths and bond angles were also found to suddenly change as the phase transition occurs. A bell-like hollow, so-called residual deformation, was found to form, mainly due to the lattice distortion around the waist of the bell. The effect of indenter size on the residual hollow was also analyzed. Under the uniaxial compression along the armchair direction, a different phase transition, a uniformly quadrilateral structure, was observed when the strain is greater than 27.7%. The quadrilateral structure was found to be stable and exhibit metallic conductivity in view of the first-principle calculation.

  11. Detecting critical state before phase transition of complex systems by hidden Markov model

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Chen, Pei; Li, Yongjun; Chen, Luonan

    Identifying the critical state or pre-transition state just before the occurrence of a phase transition is a challenging task, because the state of the system may show little apparent change before this critical transition during the gradual parameter variations. Such dynamics of phase transition is generally composed of three stages, i.e., before-transition state, pre-transition state, and after-transition state, which can be considered as three different Markov processes. Thus, based on this dynamical feature, we present a novel computational method, i.e., hidden Markov model (HMM), to detect the switching point of the two Markov processes from the before-transition state (a stationary Markov process) to the pre-transition state (a time-varying Markov process), thereby identifying the pre-transition state or early-warning signals of the phase transition. To validate the effectiveness, we apply this method to detect the signals of the imminent phase transitions of complex systems based on the simulated datasets, and further identify the pre-transition states as well as their critical modules for three real datasets, i.e., the acute lung injury triggered by phosgene inhalation, MCF-7 human breast cancer caused by heregulin, and HCV-induced dysplasia and hepatocellular carcinoma.

  12. Elucidating the Vibrational Fingerprint of the Flexible Metal–Organic Framework MIL-53(Al) Using a Combined Experimental/Computational Approach

    PubMed Central

    2018-01-01

    In this work, mid-infrared (mid-IR), far-IR, and Raman spectra are presented for the distinct (meta)stable phases of the flexible metal–organic framework MIL-53(Al). Static density functional theory (DFT) simulations are performed, allowing for the identification of all IR-active modes, which is unprecedented in the low-frequency region. A unique vibrational fingerprint is revealed, resulting from aluminum-oxide backbone stretching modes, which can be used to clearly distinguish the IR spectra of the closed- and large-pore phases. Furthermore, molecular dynamics simulations based on a DFT description of the potential energy surface enable determination of the theoretical Raman spectrum of the closed- and large-pore phases for the first time. An excellent correspondence between theory and experiment is observed. Both the low-frequency IR and Raman spectra show major differences in vibrational modes between the closed- and large-pore phases, indicating changes in lattice dynamics between the two structures. In addition, several collective modes related to the breathing mechanism in MIL-53(Al) are identified. In particular, we rationalize the importance of the trampoline-like motion of the linker for the phase transition. PMID:29449906

  13. The influence of velocity-changing collisions on resonant degenerate four-wave mixing

    NASA Technical Reports Server (NTRS)

    Richardson, W. H.; Maleki, L.; Garmire, Elsa

    1989-01-01

    The phase-conjugate signal observed in resonant degenerate four-wave mixing on the 6 3P2 to 7 3S1 transition of atomic Hg in an Hg-Ar discharge is investigated. At a fixed Ar pressure the variation of the signal with pump powers is explained by a model that includes the effects of velocity-changing collisions (VCCs). As the Ar pressure was varied from 0 to 1 torr, an increase in the phase-conjugate signal was observed and is ascribed to a change in the discharge dynamics with Ar pressure and to the influence of VCCs. To further clarify the role of collisions and optical pumping, degenerate four-wave mixing spectra are examined as a function of pump power. Line shapes are briefly discussed.

  14. The influence of orographic waves and quasi-biennial oscillations on vertical ozone flux in the model of general atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Koval, Andrey V.; Pogoreltsev, Alexander I.; Savenkova, Elena N.

    2017-11-01

    A parameterization of the dynamical and thermal effects of orographic gravity waves (OGWs) and assimilation quasibiennial oscillations (QBOs) of the zonal wind in the equatorial lower atmosphere are implemented into the numerical model of the general circulation of the middle and upper atmosphere MUAM. The sensitivity of vertical ozone fluxes to the effects of stationary OGWs at different QBO phases at altitudes up to 100 km for January is investigated. The simulated changes in vertical velocities produce respective changes in vertical ozone fluxes caused by the effects of the OGW parameterization and the transition from the easterly to the westerly QBO phase. These changes can reach 40 - 60% in the Northern Hemisphere at altitudes of the middle atmosphere.

  15. Stochastic dynamics and combinatorial optimization

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, Igor V.; Wang, Kang L.

    2017-11-01

    Natural dynamics is often dominated by sudden nonlinear processes such as neuroavalanches, gamma-ray bursts, solar flares, etc., that exhibit scale-free statistics much in the spirit of the logarithmic Ritcher scale for earthquake magnitudes. On phase diagrams, stochastic dynamical systems (DSs) exhibiting this type of dynamics belong to the finite-width phase (N-phase for brevity) that precedes ordinary chaotic behavior and that is known under such names as noise-induced chaos, self-organized criticality, dynamical complexity, etc. Within the recently proposed supersymmetric theory of stochastic dynamics, the N-phase can be roughly interpreted as the noise-induced “overlap” between integrable and chaotic deterministic dynamics. As a result, the N-phase dynamics inherits the properties of the both. Here, we analyze this unique set of properties and conclude that the N-phase DSs must naturally be the most efficient optimizers: on one hand, N-phase DSs have integrable flows with well-defined attractors that can be associated with candidate solutions and, on the other hand, the noise-induced attractor-to-attractor dynamics in the N-phase is effectively chaotic or aperiodic so that a DS must avoid revisiting solutions/attractors thus accelerating the search for the best solution. Based on this understanding, we propose a method for stochastic dynamical optimization using the N-phase DSs. This method can be viewed as a hybrid of the simulated and chaotic annealing methods. Our proposition can result in a new generation of hardware devices for efficient solution of various search and/or combinatorial optimization problems.

  16. Human Research Initiative (HRI)

    NASA Technical Reports Server (NTRS)

    Motil, Brian

    2003-01-01

    A code U initiative starting in the FY04 budget includes specific funding for 'Phase Change' and 'Multiphase Flow Research' on the ISS. NASA GRC developed a concept for two facilities based on funding/schedule constraints: 1) Two Phase Flow Facility (TphiFFy) which assumes integrating into FIR; 2) Contact Line Dynamics Experiment Facility (CLiDE) which assumes integration into MSG. Each facility will accommodate multiple experiments conducted by NRA selected PIs with an overall goal of enabling specific NASA strategic objectives. There may also be a significant ground-based component.

  17. A symmetry breaking phase transition-triggered high-temperature solid-state quadratic nonlinear optical switch coupled with a switchable dielectric constant in an organic-inorganic hybrid compound.

    PubMed

    Mei, Guang-Quan; Zhang, Han-Yue; Liao, Wei-Qiang

    2016-09-25

    An organic-inorganic hybrid compound, [NH3(CH2)5NH3]SbCl5, exhibits a switchable second harmonic generation (SHG) effect between SHG-OFF and SHG-ON states and tunable dielectric behaviors between high and low dielectric states, connected with the changes in the dynamics of 1,5-pentanediammonium cations during its centrosymmetric-to-noncentrosymmetric symmetry breaking phase transition at 365.4 K.

  18. Contact processes with competitive dynamics in bipartite lattices: effects of distinct interactions

    NASA Astrophysics Data System (ADS)

    Pianegonda, Salete; Fiore, Carlos E.

    2014-05-01

    The two-dimensional contact process (CP) with a competitive dynamics proposed by Martins et al (2011 Phys. Rev. E 84 011125) leads to the appearance of an unusual active-asymmetric phase, in which the system sublattices are unequally populated. It differs from the usual CP only by the fact that particles also interact with their next-nearest neighbor sites via a distinct strength creation rate, and for the inclusion of an inhibition effect, proportional to the local density. Aimed at investigating the robustness of such an asymmetric phase, in this paper we study the influence of distinct interactions for two bidimensional CPs. In the first model, the interaction between first neighbors requires a minimal neighborhood of adjacent particles for creating new offspring, whereas second neighbors interact as usual (e.g. at least one neighboring particle is required). The second model takes the opposite situation, in which the restrictive dynamics is in the interaction between next-nearest neighbor sites. Both models are investigated under mean field theory (MFT) and Monte Carlo simulations. In similarity with results by Martins et al, the inclusion of distinct sublattice interactions maintains the occurrence of an asymmetric active phase and re-entrant transition lines. In contrast, remarkable differences are presented, such as discontinuous phase transitions (even between the active phases), the appearance of tricritical points and the stabilization of active phases under larger values of control parameters. Finally, we have shown that the critical behaviors are not altered due to the change of interactions, in which the absorbing transitions belong to the directed percolation (DP) universality class, whereas second-order active phase transitions belong to the Ising universality class.

  19. Pressure effect on micellization of non-ionic surfactant Triton X-100

    NASA Astrophysics Data System (ADS)

    Espinosa, Yanis R.; Caffarena, Ernesto R.; Martínez, Yanina Berrueta; Grigera, J. Raúl

    2018-02-01

    Micellar aggregates can be arranged in new types of conformational assemblies when they are isotropically compressed. Thus, the pressure effects in the underlying fundamental interactions leading to self-assembly of micellar aggregates can be represented by changes in the phase boundaries with increasing pressure. In this paper, we have employed molecular dynamics simulations to study the self-assembly of micelles composed of the non-ionic surfactant Triton X-100 at the atomic scale, monitoring the changes in the solvation dynamics when the micelles are subjected to a wide range of hydrostatic pressures. The computational molecular model was capable of self-assembling and forming a non-ionic micelle, which subsequently was coupled to a high-pressure barostat producing a geometric transition of the micelle due to changes in the solvation dynamics. Accordingly, under a high pressure regime, the hydrogen bonds are redistributed, the water density is modified, and water acts as an unstructured liquid, capable of penetrating into the micelle.

  20. National Business Cycles and Community Competition for Jobs.

    ERIC Educational Resources Information Center

    Kasarda, John D.; Irwin, Michael D.

    1991-01-01

    Analysis of employment change data for 3,101 counties during recent national recession and recovery periods found that factors derived from human ecological theory (density, infrastructure age, unionization, labor force education, and crime rate) best predicted local competitive dynamics across all business-cycle phases. Contains 60 references.…

  1. Learners Reconceptualising Education: Widening Participation through Creative Engagement?

    ERIC Educational Resources Information Center

    Craft, Anna; Chappell, Kerry; Twining, Peter

    2008-01-01

    Engaging imaginatively with how education is manifested is necessary for providers both in higher education and in preceding contexts and phases. Fostering dispositions for creativity in dynamic engagement and the consideration of pedagogy, curriculum, inclusion, policy and the management of change, requires innovative provision to span school,…

  2. Dynamic bacterial community changes in the autothermal thermophilic aerobic digestion process with cell lysis activities, shaking and temperature increase.

    PubMed

    Cheng, Huijun; Asakura, Yuya; Kanda, Kosuke; Fukui, Ryo; Kawano, Yoshihisa; Okugawa, Yuki; Tashiro, Yukihiro; Sakai, Kenji

    2018-04-12

    Autothermal thermophilic aerobic digestion (ATAD) is conducted for stabilization of sludge waste and is driven by the action of various microorganisms under aerobic conditions. However, the mechanism controlling bacterial community changes during ATAD via three (initial, middle and final) phases is currently unclear. To investigate this mechanism, activity analysis and a microcosm assay with shaking were performed on a bacterial community during the initial, middle, and final phases of incubation. Cell lysis activities toward gram-negative bacteria, but not gram-positive bacteria, were detected in the ATAD samples in the middle and final phases. During shaking incubation in initial-phase samples at 30 °C, major operational taxonomic units (OTUs) related to Acinetobacter indicus and Arcobacter cibarius dramatically increased along with decreases in several major OTUs. In middle-phase samples at 45 °C, we observed a major alteration of OTUs related to Caldicellulosiruptor bescii and Aciditerrimonas ferrireducens, together with distinct decreases in several other OTUs. Final-phase samples maintained a stable bacterial community with major OTUs showing limited similarities to Heliorestis baculata, Caldicellulosiruptorbescii, and Ornatilinea apprima. In conclusion, the changes in the bacterial community observed during ATAD could be partially attributed to the cell lysis activity toward gram-negative bacteria in the middle and final phases. The microcosm assay suggested that certain physical factors, such as a high oxygen supply and shearing forces, also might contribute to bacterial community changes in the initial and middle phases, and to the stable bacterial community in the final phase of ATAD. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. A Quiescent Phase in Human Mortality? Exploring the Ages of Least Vulnerability

    PubMed Central

    Engelman, Michal; Seplaki, Christopher L.; Varadhan, Ravi

    2017-01-01

    Demographic studies of mortality often emphasize the two ends of the lifespan, focusing on the declining hazard after birth or the increasing risk of death at older ages. We call attention to the intervening phase, when humans are least vulnerable to the force of mortality, and consider its features in both evolutionary and historical perspectives. We define this quiescent phase (Q-phase) formally, estimate its bounds using life tables for Swedish cohorts born between 1800 and 1920, and describe changes in the morphology of the Q-phase. We show that for cohorts aging during Sweden’s demographic and epidemiological transitions, the Q-phase became longer and more pronounced, reflecting the retreat of infections and maternal mortality as key causes of death. These changes revealed an underlying hazard trajectory that remains relatively low and constant during the prime ages for reproduction and investment in both personal capital and relationships with others. Our characterization of the Q-phase highlights it as a unique, dynamic, and historically contingent cohort feature, whose increased visibility was made possible by the rapid pace of survival improvements in the nineteenth and twentieth centuries. This visibility may be reduced or sustained under subsequent demographic regimes. PMID:28397179

  4. Changes in structure and function of fungal community in cow manure composting.

    PubMed

    Wang, Ke; Yin, Xiangbo; Mao, Hailong; Chu, Chu; Tian, Yu

    2018-05-01

    In this study, dynamic changes in fungal communities, trophic modes and effect factors in 60 days composting of cow manure were analyzed by using high throughput sequencing, FUNGuild and Biolog FF MicroPlate, respectively. Orpinomyces (relative abundance >10.85%) predominated in feedstock, and Mycothermus became the dominating genus (relative abundance >75%) during the active phase. Aerobic composting treatment had a significant effect on fungal trophic modes with pathogenic fungi fading away and wood saprotrophs increasing over composting time. Fungal communities had the higher carbon sources utilization capabilities at the thermophilic phase and mature phase than those in the other periods. Oxidation reduction potential (ORP) significantly increased from -180 to 180 mV during the treatment. Redundancy analysis showed that the succession of fungal community during composting had a significant association with ORP (p < .05). This indicated that aerobic composting treatment not only influenced fungal community structure, but also changed fungal trophic modes and metabolic characteristics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents

    NASA Astrophysics Data System (ADS)

    Wilson, Mark R.; Ilnytskyi, Jaroslav M.; Stimson, Lorna M.

    2003-08-01

    Molecular dynamics simulations have been carried out to study the structure of a model liquid crystalline dendrimer (LCDr) in solution. A simplified model is used for a third generation carbosilane LCDr in which united atom Lennard-Jones sites are used to represent all heavy atoms in the dendrimer with the exception of the terminal mesogenic groups, which are represented by Gay-Berne potentials. The model dendrimer is immersed in a mesogenic solvent composed of Gay-Berne particles, which can form nematic and smectic-A phases in addition to the isotropic liquid. Markedly different behavior results from simulations in the different phases, with the dendrimer changing shape from spherical to rodlike in moving from isotropic to nematic solvents. In the smectic-A phase the terminal mesogenic units are able to occupy five separate smectic layers. The change in structure of the dendrimer is mediated by conformational changes in the flexible chains, which link the terminal mesogenic moieties to the dendrimer core.

  6. Numerical and Experimental Analysis on Inorganic Phase Change Material Usage in Construction

    NASA Astrophysics Data System (ADS)

    Muthuvel, S.; Saravanasankar, S.; Sudhakarapandian, R.; Muthukannan, M.

    2014-12-01

    This work demonstrates the significance of Phase Change Material (PCM) in the construction of working sheds and product storage magazines in fireworks industries to maintain less temperature variation by passive cooling. The inorganic PCM, namely Calcium Chloride Hexahydrate (CCH) is selected in this study. First, the performance of two models with inbuilt CCH was analysed, using computational fluid dynamics. A significant change in the variation of inner wall temperature was observed, particularly during the working hours. This is mainly due to passive cooling, where the heat transfer from the surroundings to the room is partially used for the phase change from solid to liquid. The experiment was carried out by constructing two models, one with PCM packed in hollow brick walls and roof, and the other one as a conventional construction. The experimental results show that the temperature of the room got significantly reduced up to 7 °C. The experimental analysis results had good agreement with the numerical analysis results, and this reveals the advantage of the PCM in the fireworks industry construction.

  7. Traffic flow behavior at un-signalized intersection with crossings pedestrians

    NASA Astrophysics Data System (ADS)

    Khallouk, A.; Echab, H.; Ez-Zahraouy, H.; Lakouari, N.

    2018-02-01

    Mixed traffic flux composed of crossing pedestrians and vehicles extensively exists in cities. To study the characteristics of the interference traffic flux, we develop a pedestrian-vehicle cellular automata model to present the interaction behaviors on a simple cross road. By realizing the fundamental parameters (i.e. injecting rates α1, α2, the extracting rate β and the pedestrian arrival rate αP), simulations are carried out. The vehicular traffic flux is calculated in terms of rates. The effect of the crosswalk can be regarded as a dynamic impurity. The system phase diagrams in the (α1 ,αP) plane are built. It is found that the phase diagrams consist essentially of four phases namely Free Flow, Congested, Maximal Current and Gridlock. The value of the Maximal current phase depends on the extracting rate β, while the Gridlock phase is achieved only when the pedestrians generating rate is higher than a critical value. Furthermore, the effect of vehicles changing lane (Pch1 ,Pch2) and the location of the crosswalk XP on the dynamic characteristics of vehicles flow are investigated. It is found that traffic situation in the system is slightly enhanced if the location of the crosswalks XP is far from the intersection. However, when Pch1, Pch2 increase, the traffic becomes congested and the Gridlock phase enlarges.

  8. Dynamic reflectance of tin shocked from its beta to BCT phase

    NASA Astrophysics Data System (ADS)

    Stevens, Gerald; La Lone, Brandon; Veeser, Lynn; Turley, Dale

    2015-06-01

    Shock-induced phase transitions have historically been inferred by features in loading/unloading velocity wave profiles, which arise due to volume or sound speed differences between phases. In 2010, we used a flash-lamp illuminated multi-band reflectometer to demonstrate that iron, tin, cerium, and gallium have measureable reflectance changes at phase boundaries. We have improved upon our prior technique, utilizing an integrating sphere with an internal xenon flash lamp to illuminate a shocked metal beneath a LiF window. The new reflectance system is insensitive to motion, tilt, or curvature and measures the absolute (not relative) reflectance within five bands centered at 500, 700, 850, 1300, and 1550 nm. We have made dynamic reflectance measurements of tin samples shocked to pressures above and below the beta-bct phase transition using either high explosives or a gas gun. Below the transition, the visible reflectance decreases with pressure. At and above the transition, the visible reflectance increases to values higher than the ambient values. Reflectance can therefore be used to locate the beta-bct phase transition boundary for tin, independent of the velocity wave profile. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy, and supported by the Site-Directed Research and Development Program.

  9. Naturally stable Sagnac–Michelson nonlinear interferometer

    DOE PAGES

    Lukens, Joseph M.; Peters, Nicholas A.; Pooser, Raphael C.

    2016-11-16

    Interferometers measure a wide variety of dynamic processes by converting a phase change into an intensity change. Nonlinear interferometers, making use of nonlinear media in lieu of beamsplitters, promise substantial improvement in the quest to reach the ultimate sensitivity limits. Here we demonstrate a new nonlinear interferometer utilizing a single parametric amplifier for mode mixing conceptually, a nonlinear version of the conventional Michelson interferometer with its arms collapsed together. We observe up to 99.9% interference visibility and find evidence for noise reduction based on phase-sensitive gain. As a result, our configuration utilizes fewer components than previous demonstrations and requires nomore » active stabilization, offering new capabilities for practical nonlinear interferometric-based sensors.« less

  10. Synthesis of dynamic phase profile by the correlation technique for spatial control of optical beams in multiplexing and switching

    NASA Astrophysics Data System (ADS)

    Bugaychuk, Svitlana A.; Gnatovskyy, Vladimir O.; Sidorenko, Andrey V.; Pryadko, Igor I.; Negriyko, Anatoliy M.

    2015-11-01

    New approach for the correlation technique, which is based on multiple periodic structures to create a controllable angular spectrum, is proposed and investigated both theoretically and experimentally. The transformation of an initial laser beam occurs due to the actions of consecutive phase periodic structures, which may differ by their parameters. Then, after the Fourier transformation of a complex diffraction field, the output diffraction orders will be changed both by their intensities and by their spatial position. The controllable change of output angular spectrum is carried out by a simple control of the parameters of the periodic structures. We investigate several simple examples of such management.

  11. Visualization of the influence of the air conditioning system to the high-power laser beam quality with the modulation coherent imaging method.

    PubMed

    Tao, Hua; Veetil, Suhas P; Pan, Xingchen; Liu, Cheng; Zhu, Jianqiang

    2015-08-01

    Air conditioning systems can lead to dynamic phase change in the laser beams of high-power laser facilities for the inertial confinement fusion, and this kind of phase change cannot be measured by most of the commonly employed Hartmann wavefront sensor or interferometry due to some uncontrollable factors, such as too large laser beam diameters and the limited space of the facility. It is demonstrated that this problem can be solved using a scheme based on modulation coherent imaging, and thus the influence of the air conditioning system on the performance of the high-power facility can be evaluated directly.

  12. Reduced Nucleus Pulposus Glycosaminoglycan Content Alters Intervertebral Disc Dynamic Viscoelastic Mechanics

    PubMed Central

    Boxberger, John I.; Orlansky, Amy S.; Sen, Sounok; Elliott, Dawn M.

    2009-01-01

    The intervertebral disc functions over a range of dynamic loading regimes including axial loads applied across a spectrum of frequencies at varying compressive loads. Biochemical changes occurring in early degeneration, including reduced nucleus pulposus glycosaminoglycan content, may alter disc mechanical behavior and thus may contribute to the progression of degeneration. The objective of this study was to determine disc dynamic viscoelastic properties under several equilibrium loads and loading frequencies, and further, to determine how reduced nucleus glycosaminglycan content alters dynamic mechanics. We hypothesized (1) that dynamic stiffness would be elevated with increasing equilibrium load and increasing frequency, (2) that the disc would behave more elastically at higher frequencies, and finally, (3) that dynamic stiffness would be reduced at low equilibrium loads under all frequencies due to nucleus glycosaminoglycan loss. We mechanically tested control and chondroitinase-ABC injected rat lumbar motion segments at several equilibrium loads using oscillatory loading at frequencies ranging from 0.05 to 5 Hz. The rat lumbar disc behaved non-linearly with higher dynamic stiffness at elevated compressive loads irrespective of frequency. Phase angle was not affected by equilibrium load, although it decreased as frequency was increased. Reduced glycosaminoglycan decreased dynamic stiffness at low loads but not at high equilibrium loads and led to increased phase angle at all loads and frequencies. The findings of this study demonstrate the effect of equilibrium load and loading frequencies on dynamic disc mechanics and indicate possible mechanical mechanisms through which disc degeneration can progress. PMID:19539936

  13. Coulomb coupling effects in the gigahertz complex admittance of a quantum R–L circuit

    NASA Astrophysics Data System (ADS)

    Song, L.; Yin, J. Z.; Chen, S. W.

    2018-05-01

    We report on the gigahertz admittance measurements of a quantum conductor, i.e. a quantum R–L circuit, to probe the intrinsic dynamic of the conductor. The magnetic field dependence of the admittance phase provides us with an effective way to study the role of Coulomb interaction between counterpropagating edge channels. In addition, there is a small jump in the admittance phase when the transmitted modes are changed. This is because the gate voltage leads to a static potential shift of the quantum channel, then a quantum capacitance related to the density of states of the edge channels are influenced. Our study has made new discoveries of the dynamic transport in a quantum conductor, finding evidence for the deviations from quantum chiral transport associated with Coulomb interactions.

  14. Development of a new type of high pressure calorimetric cell, mechanically agitated and equipped with a dynamic pressure control system: Application to the characterization of gas hydrates

    NASA Astrophysics Data System (ADS)

    Plantier, F.; Marlin, L.; Missima, D.; Torré, J.-P.

    2013-12-01

    A novel prototype of calorimetric cell has been developed allowing experiments under pressure with an in situ agitation system and a dynamic control of the pressure inside the cell. The use of such a system opens a wide range of potential practical applications for determining properties of complex fluids in both pressurized and agitated conditions. The technical details of this prototype and its calibration procedure are described, and an application devoted to the determination of phase equilibrium and phase change enthalpy of gas hydrates is presented. Our results, obtained with a good precision and reproducibility, were found in fairly good agreement with those found in literature, illustrate the various interests to use this novel apparatus.

  15. Measuring of electrical changes induced by in situ combustion through flow-through electrodes in a laboratory sample of core material

    DOEpatents

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1986-12-09

    Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front there through. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique. 12 figs.

  16. Measuring of electrical changes induced by in situ combustion through flow-through electrodes in a laboratory sample of core material

    DOEpatents

    Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.

    1986-01-01

    Method and apparatus are provided for obtaining accurate dynamic measurements for passage of phase fronts through a core sample in a test fixture. Flow-through grid structures are provided for electrodes to permit data to be obtained before, during and after passage of a front therethrough. Such electrodes are incorporated in a test apparatus for obtaining electrical characteristics of the core sample. With the inventive structure a method is provided for measurement of instabilities in a phase front progressing through the medium. Availability of accurate dynamic data representing parameters descriptive of material characteristics before, during and after passage of a front provides a more efficient method for enhanced recovery of oil using a fire flood technique.

  17. Dynamical properties of nematic liquid crystals subjected to shear flow and magnetic fields: tumbling instability and nonequilibrium fluctuations.

    PubMed

    Fatriansyah, Jaka Fajar; Orihara, Hiroshi

    2013-07-01

    We investigate the dynamical properties of monodomain nematic liquid crystals under shear flow and magnetic fields on the basis of the Ericksen-Leslie theory. Stable and unstable states appear depending on the magnetic field and the shear rate. The trajectory of the unstable state shows tumbling motion. The phase diagram of these states is plotted as a function of the three components of the magnetic field at a constant shear rate. The phase diagram changes depending on the viscous properties of different types of nematic liquid crystals. In this nonequilibrium steady state, we calculate the correlation function of director fluctuations and the response function, and discuss the nonequilibrium fluctuations and the modified fluctuation-dissipation relation in connection with nonconservative forces due to shear flow.

  18. Dispersion-free continuum two-dimensional electronic spectrometer

    PubMed Central

    Zheng, Haibin; Caram, Justin R.; Dahlberg, Peter D.; Rolczynski, Brian S.; Viswanathan, Subha; Dolzhnikov, Dmitriy S.; Khadivi, Amir; Talapin, Dmitri V.; Engel, Gregory S.

    2015-01-01

    Electronic dynamics span broad energy scales with ultrafast time constants in the condensed phase. Two-dimensional (2D) electronic spectroscopy permits the study of these dynamics with simultaneous resolution in both frequency and time. In practice, this technique is sensitive to changes in nonlinear dispersion in the laser pulses as time delays are varied during the experiment. We have developed a 2D spectrometer that uses broadband continuum generated in argon as the light source. Using this visible light in phase-sensitive optical experiments presents new challenges in implementation. We demonstrate all-reflective interferometric delays using angled stages. Upon selecting an ~180 nm window of the available bandwidth at ~10 fs compression, we probe the nonlinear response of broadly absorbing CdSe quantum dots and electronic transitions of Chlorophyll a. PMID:24663470

  19. Dynamic cerebral autoregulation during cognitive task: Effect of hypoxia.

    PubMed

    Ogoh, Shigehiko; Nakata, Hiroki; Miyamoto, Tadayoshi; Bailey, Damian M; Shibasaki, Manabu

    2018-02-08

    Changes in cerebral blood flow (CBF) subsequent to alterations in the partial pressures of oxygen and carbon dioxide can modify dynamic cerebral autoregulation (CA). While cognitive activity increases CBF, to what extent it impacts CA remains to be established. In the present study we determined if dynamic CA would decrease during a cognitive task and whether hypoxia would further compound impairment. Fourteen young healthy subjects performed a simple Go/No-go task during normoxia and hypoxia (FIO 2 =12%) and the corresponding relationship between mean arterial pressure (MAP) and mean middle cerebral artery blood velocity (MCA V mean ) was examined. Dynamic CA and steady-state changes in MCA V in relation to changes in arterial pressure were evaluated using transfer function analysis (TFA). While MCA V mean increased during the cognitive activity (P<0.001), hypoxia did not cause any additional changes (P=0.804 vs. normoxia). Cognitive performance was also unaffected by hypoxia (Reaction time, P=0.712; Error, P=0.653). A decrease in the very low and low frequency Phase shift (VLF and LF; P=0.021 and P=0.01) and increase in LF gain were observed (P=0.037) during cognitive activity implying impaired dynamic CA. While hypoxia also increased VLF gain (P<0.001) it failed to cause any additional modifications in dynamic CA. Collectively, our findings suggest that dynamic CA is impaired during cognitive activity independent of altered systemic O 2 availability though we acknowledge the interpretive complications associated with additional competing, albeit undefined inputs that could potentially distort the MAP-MCA V mean relationship.

  20. SPACE PROPULSION SYSTEM PHASED-MISSION PROBABILITY ANALYSIS USING CONVENTIONAL PRA METHODS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis Smith; James Knudsen

    As part of a series of papers on the topic of advance probabilistic methods, a benchmark phased-mission problem has been suggested. This problem consists of modeling a space mission using an ion propulsion system, where the mission consists of seven mission phases. The mission requires that the propulsion operate for several phases, where the configuration changes as a function of phase. The ion propulsion system itself consists of five thruster assemblies and a single propellant supply, where each thruster assembly has one propulsion power unit and two ion engines. In this paper, we evaluate the probability of mission failure usingmore » the conventional methodology of event tree/fault tree analysis. The event tree and fault trees are developed and analyzed using Systems Analysis Programs for Hands-on Integrated Reliability Evaluations (SAPHIRE). While the benchmark problem is nominally a "dynamic" problem, in our analysis the mission phases are modeled in a single event tree to show the progression from one phase to the next. The propulsion system is modeled in fault trees to account for the operation; or in this case, the failure of the system. Specifically, the propulsion system is decomposed into each of the five thruster assemblies and fed into the appropriate N-out-of-M gate to evaluate mission failure. A separate fault tree for the propulsion system is developed to account for the different success criteria of each mission phase. Common-cause failure modeling is treated using traditional (i.e., parametrically) methods. As part of this paper, we discuss the overall results in addition to the positive and negative aspects of modeling dynamic situations with non-dynamic modeling techniques. One insight from the use of this conventional method for analyzing the benchmark problem is that it requires significant manual manipulation to the fault trees and how they are linked into the event tree. The conventional method also requires editing the resultant cut sets to obtain the correct results. While conventional methods may be used to evaluate a dynamic system like that in the benchmark, the level of effort required may preclude its use on real-world problems.« less

Top